Study of the interlayer adhesion and warping during material extrusion-based additive manufacturing of a carbon nanotube/biobased thermoplastic polyurethane nanocomposite

Maria Virginia Candal,a,b* Itxaso Calafel b, Mercedes Fernández b, Nora Aranburu b, Roberto Hernández Aguirresarobe b, Gonzalo Gerrica-Echevarria b, Antxon Santamaría b* and Alejandro J. Müller b,c*

a Universidad Simón Bolívar, Departamento de Mecánica, Grupo de Polímeros, Apartado 89000, Caracas 1080-A, Venezuela

b POLYMAT and Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain.

c IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

*Corresponding authors: mariavirginia.candalp@ehu.es, antxon.santamaria@ehu.es, alejandrojesus.muller@ehu.es
ABSTRACT

A thermoplastic bio-polyurethane from renewable sources (TPU) and the nanocomposite developed by mixing it with carbon nanotubes (CNT) are investigated as potentially adequate for Material Extrusion-based Additive Manufacturing (EAM). Thermal and rheological features are studied from the perspective of their liaisons with printing adequacy and conditions. As predicted by rheology, both samples show good performance in filament elaboration and flow in the nozzle. Warpage is observed for TPU, but not for the nanocomposite, which is due to the effect of CNT nanoparticles on polymer chains dynamics. At the studied printing velocities, interlayer adhesion strength is independent of printing velocity implying that there is no significant chain orientation which can induce changes in the TPU entanglements. The nanocomposite shows a lower welding strength, notwithstanding both have the same chain entanglements density. This is explained by considering that the higher viscosity of TPU/CNT, as compared to TPU, reduces the melt diffusion coefficient.

Key-words: thermoplastic polyurethane; biobased TPU; carbon nanotubes; material extrusion-based additive manufacturing; entanglements; inter-diffusion.
1. Introduction

Additive Manufacturing (AM) is the name of a set of emerging technologies to fabricate three-dimensional objects from a digital design employing layer by layer material addition. For many years, AM was used only for rapid prototyping (RP) to obtain visualization models. Currently, AM is being used to fabricate end-use products in aerospace, automotive, construction, medical and dental implants, clothes and food, among others (1-2).

Extrusion-based additive manufacturing (EAM) is one of the seven 3D printing processes categories included in the ISO 17296-2 international standard. Filament fabrication (FFF) or fused deposition modeling (FDM) is one of the most commonly used EAM technique for prototyping and rapid manufacturing of products. FFF employs a continuous filament of a thermoplastic polymeric material that is fed from a large coil. A computer-aided design (CAD) software capable of creating “.stl files” that "slice" the part into thin layers is employed. This information drives the movement of a printer head and hot nozzle as they melt and add successive layers of material, forming a physical object on the heater bed (platform).

The reliability and simplicity of EAM technology have contributed to its wide spread use in industry and academia. Many researchers are working to improve the process, optimizing the process conditions, reducing the printing time, developing new materials, and applying the process in a wide range of engineering applications (3-5). Good adhesion between the deposited layers is very important for EAM parts. For this, the manufacture and process conditions used to obtain good quality and mechanical properties parts should be studied. The viscoelastic behavior when the polymer is melted and deposited to the bed (platform) is critical to perform good interlayer welding.

Some researchers have studied the effect of processing parameters and their optimization (6-10) on the mechanical properties of the printed parts (11-12). These studies are mostly focused on determining the optimum process conditions of EAM, to obtain adequate build time, mechanical resistance and surface integrity of the manufacturing parts. The mechanical resistance of parts made by EAM is usually lower than those manufactured by injection molding, because of their anisotropy and poorer adhesive strength between layers or filaments (13-16). Recently, Gao et al. (17) made an interesting review with the
advances on bond interface in EAM pieces in aspects of its mechanisms, characterization and enhancement methods.

Amorphous thermoplastic polymers are the materials most commonly recommended for EAM. Their low thermal expansion coefficient and extrusion temperature reduce internal stresses presented during cooling (such as warpage for example). But semi-crystalline polymers, such as polylactic acid (PLA), thermoplastic polyurethanes (TPU) and polyamides (PA) are currently also employed for EAM to widen the spectrum of properties. It can be expected that semicrystalline printed parts will exhibit a greater grade of anisotropy than amorphous polymers (18). Also, semicrystalline polymers are more complicated for the study of the interdiffusion across the interface, because incipient crystallization may become a hindering factor.

The lack of variation of feedstock materials in filament form for EAM and the aim of increasing the range of properties has lead to consider polymer nanocomposites as potential candidates. The recent review of Angelopoulos et al. (19) analyses the feasibility of polymer nanocomposites for fused filament fabrication. Amorphous and semicrystalline matrices mixed with ceramic, carbon nanotubes, graphene, glass, wood, mineral and metallic particles are reported. The recapitulation of results shows that mechanical properties have been profusely investigated, whereas formability (i.e., rheology and shrinkage) has received less attention. In particular, not a single paper about rheology/viscosity and shrinkage/warpage of polymer-carbon nanotube (CNT) nanocomposites is mentioned by Angelopoulos et al. (19), reflecting a shortage of research on the subject.

In the respective fields of EAM and nanocomposites, TPUs are a class of polymers that provides a wide range of mechanical properties combined with physical and chemical properties (20). Although a number of papers refer to the processing of these polymers by EAM (21-23), indeed very few works have reported on the capacities and eventual advantages of this fabrication technique for TPUs filled with carbon nanotubes (CNTs), i.e., TPU/CNT nanocomposites. Christ et al. (24) demonstrated that TPU/MWCNT (multi-wall carbon nanotubes) nanocomposite is a material with excellent piezoresistive properties for EAM with potential electronic and medical applications. Li et al. (25), Kim et al. (26) and Gan et al. (27) prepared sensors with high piezoresistivity by using TPU/CNT fibers manufactured by EAM.
Notwithstanding the progress on the understanding of EAM of nanocomposites in general and TPU/CNT nanocomposites in particular, the scarcity of the research on the subject is evident. The aim of this paper is to focus on the following crucial issues which, as mentioned above, have been ignored for polymer nanocomposites that contain CNTs, so far: a) Viscosity in the shear rate range involved in the nozzle; b) Interlayer welding, linked to polymer chains interdiffusion between layers and, c) Dimensional stability of the final parts, linked to the phenomenon of warpage.

For the first time, the liaison between the basic physical properties of a biobased TPU/CNT nanocomposite and its performance in EAM is investigated, focusing on the aforementioned insufficiencies. With this purpose, rheological measurements in linear and non-linear regime, as well as calorimetric and dilatometric experiments are performed to study the entanglements density and crystallization process. Taking advantage of the obtained results, the best conditions for EAM are established to develop dimensionally stable samples with remarkable interlayer adhesion. These results are interpreted considering the role played by polymer chains entanglements and the effect of CNTs on chains dynamics.

2. Materials and Methods

2.1 Materials

We employ a thermoplastic linear, aromatic bio-polyurethane (TPU) Pearlbond™ ECO 590 (MFI = 30–60 g/10 min, 170ºC/2.16 Kg, ISO 1133) from Lubrizol (USA). It is based on a polyol from renewable sources. According to the results obtained by NMR (1H and 13C), it is composed of 4% methylene diphenyl 4,4'-diisocyanate (MDI) and 96% of poly(butylen sebacate) (PBSE).

A TPU based nanocomposite with 4 wt% CNT (TPU/CNT) was developed. Multi-wall carbon nanotubes (MWCNT Cheaptubes, China) of 20-30 nm outer diameter and 5-10 nm inside diameter, 10-30 microns in length and purity larger than 95% (information obtained of the data-sheet provided by the manufacturers) were used. A dehumidifier was used to dry the CNTs for 24h at 80ºC before extrusion. TPU was also dried at 50ºC for 2 h in an air circulating oven. TPU and CNT were pre-mixed in the solid-state before feeding them to the extruder. Melt mixing of TPU with CNT was performed with a Collin ZK25 co-rotating twin-screw extruder-kneader, equipped with a 25 mm diameter screw and L/D ratio of 30. The extruder is equipped with 6 heating zones, and the programmed temperature profile was 120-
120-125-125-130-130ºC. The screw rotation rate was 400 rpm. Extruded samples were quenched in a water bath and pelletized on-line, with a Collin CSG-171/1 pelletizer. The TPU/CNT pellets were dried in an air-circulating oven at 50ºC for 24 h to remove moisture before further processing.

2.2 Elaboration of filaments
TPU and TPU/CNT filaments with 1.75 mm diameters for EAM were obtained with a Collin ZK25 co-rotating twin-screw extruder-kneader (screw diameter of 25 mm and L/D ratio of 30), and equipped with a circular die of 2.5 mm of diameter. The programmed temperature profile was 120-120-125-125-130-130ºC, and the screw rotation rate was in this case 50 rpm. The phenomenon of filament buckling, which is typically observed in systems with a low modulus to viscosity ratio (28), was not observed under our experimental conditions. The filaments obtained from the extruder were quenched in a water bath and winded. The winding speed was optimized to obtain filaments with a constant diameter of 1.75 mm, suitable for FFF.

2.3 FFF of samples
As printed equipment, a TUMAKER Voladora V1 from Tumaker (Spain) EAM Machine was employed. The printer was controlled with the software Simplify3D by Creative Tools AB. The digital model of the parts was designed and converted to STL file format for FFF. The maximum printing size obtained, with a nozzle diameter of 0.4 mm, was 22 x 22 x 30 cm (length, width, and height, respectively). 1.75 mm is the diameter of the feeding filament for FFF.

2.4 Printing parameters
The FFF printing parameters are listed in Table 1. As an example of the reliability of the process, Figure 1 shows an image of a printed specimen with this material (TPU/CNT). The good appearance of the printed part and the absence of warpage are evident. For data analysis of the results, we employed the Taguchi experimental design method. The selected response variable to optimize was the trouser test tearing energy. The proposed design included two process variables with three-factor levels (low, medium, and high). Such variables are nozzle temperature (ºC) and printing velocity (mm/s). In practice, bed temperature is often kept
constant, whereas nozzle temperature and printing velocity are more frequently adjusted. In our case a bed temperature of $T=30^\circ$C has been chosen to demonstrate that is not necessary a higher energy consumption to reach adequate printing conditions. The levels of each printing parameter were specified based on the recommended processing temperatures values for the materials used. These variables were modified to obtain adequate printing conditions for good bonding and adhesion between layers that lead to optimized trouser test tearing energies. Parts were printed with edge-on layers orientation. The layer height, infill density, raster orientation, and infill pattern setting were held fixed at 0.3 mm, 100%, 0°, and rectilinear, respectively. The nozzle diameter was 0.4 mm. Five specimens for each condition were printed. The experimental data were processed following the recommendations of section 2.6 (see below).

Table 1. FFF process conditions studied in this work.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Nozzle temperature (°C)</th>
<th>Bed Temperature (°C)</th>
<th>Printing Velocity (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>80</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>M11</td>
<td>100</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>M12</td>
<td>100</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>M13</td>
<td>100</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>H11</td>
<td>120</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 1: TPU/CNT printing part (M11 condition, Table 1).
2.5 Welding tear strength (Trouser Tear) Geometry

The ASTM D1938-14 test method (29) is normally used to determine the critical tearing force by employing a Mode III (“trouser tear”) fracture test. This method has been modified previously by Candal et al. (30), Davis et al. (31) and Seppala et al. (32) to study the interfacial bonding strength of parts manufactured using FFF. The Tinkercad open source software was used to draw the geometry of the EAM specimens. The generated files were first exported as STL files and then imported to the EAM software (Simplify3D). Figure 2 shows the trouser test specimen dimensions. A pre-crack of 60 mm was made by inserting a 0.01 mm wide section of aluminum paper in between layers 41 and 42 during printing.

![Figure 2. Dimensions of a trouser specimen.](image)

2.6 Welding strength

Figure 3 shows a schematic illustrating a mode III fracture test or trouser tearing test. During this test, a force is applied to a polymer specimen that contains a pre-crack (generated during the molding of the sample, as indicated in Figure 2). The tearing energy of the EAM printed sample was obtained by modifying the ASTM D1938-14 test method (see references (33-35). The test was made with an INSTRON 5569 universal testing machine, employing 50 mm of initial distance, and a test speed of 254 mm/min. Pneumatic grips were used to hold the specimens during testing. The resulting tear force versus displacement curves for TPU and TPU/CNT are similar to those typically generated by low-extensible thin films and sheets (29). The average of the load over a 25.4 mm interval was used to calculate the tearing force.
2.7 Thermal characterization of the materials
2.7.1. Differential scanning calorimetry (DSC)

The crystallization and melting temperatures of the polymers were measured with a Perkin-Elmer DSC 8000 equipped with an Intracooler 2. Ultra-pure nitrogen was used as purge gas. Samples with 7 mg of approximate weight were encapsulated in aluminum pans. Tin and indium standards were used as calibrants. Samples were first heated from 30°C to 100°C at a heating rate of 20°C/min; then, they were held at 100 ℃ to erase thermal history, later they were cooled to 30 ℃ at 20 ℃/min. After 3 minutes equilibration at 30 ℃, a second heating scan was recorded between 30 and 100 ℃. The degree of crystallinity, \(X_c \), was calculated as:

\[
X_c = \frac{\Delta H_m}{\Delta H_m^0} \times 100 \quad \text{(Eq. 1)}
\]

where \(\Delta H_m \) (J/g) is the experimentally obtained melting enthalpy of the sample, \(f \) is the fraction of the crystallizable phase (i.e., PBSE) and \(\Delta H_m^0 \) is the equilibrium melting enthalpy. A value of \(\Delta H_m^0 = 155 \pm 10 \) J/g reported by Papageorgiu et al. (33) for neat PBSE was employed.
2.7.2. Pressure–volume–Temperature (PVT) measurements

PVT behavior of TPU and TPU/CNT was analyzed in a piston die type PVT100 equipment made by Haake (Germany). Experiments were performed from 120°C to 0°C. We performed isobaric cooling mode experiments (pressure range from 200-1600 bar) with a cooling rate of 5°C/min. Employing the Tait model (35) to perform an extrapolation, we were able to obtain the results at a pressure of 1 bar. Several tests were performed to ensure that a volume difference lower than 0.05% between two measurements was achieved.

2.8 Rheology measurements

Capillary rheometry experiments were carried out in a Göttfert 2002 rheometer (with a capillary of D=1 mm and L=30 mm). The temperatures and shear rates employed are reported in the Results and Discussion section. Corrections for the non-Newtonian behaviour were performed, but pressure losses at the entrance were neglected, since a high length/diameter (L/D) die was employed. The viscosity as a function of shear rate, $\eta(\dot{\gamma})$, was obtained.

A stress-controlled TA Instruments ARG2 rheometer was employed for small amplitude oscillatory shear (SAOS) measurements with parallel-plates geometry (diameter 25 mm). Measurements were performed under nitrogen flow using TPU and TPU/CNT disks of 1 mm thickness. The elastic modulus, G', and the viscous modulus, G'' were measured in the linear viscoelastic regime (strain amplitude below 0.5%) in a frequency range of 0.01 to 100 Hz at varying temperatures from 70°C to 150°C.

2.9 Cross-section morphology

A Scanning Electron Microscope (SEM) (Hitachi S-2700) was employed to observe the weld between two filaments with 15 kV accelerating voltage. The specimens were fractured in liquid nitrogen, to avoid plastic deformation. Then the cross-sectional surface (the actual width of the weld) was gold (Au) coated with a Bio-Rad Microscience Division SC500 sputter Coater. The images of the printing filaments and the weld were captured with a digital camera. The thickness of the specimens ($2a_r$) were measured with an image analysis software (Image J).
2.10 Weld tearing energy

The average tearing force \((F_t) \) of the weld of two EAM layers was normalized with the nominal thickness of the specimen \(a_r \) to estimate the weld tearing energy \((\sigma_t) \), following Davis et al. (31):

\[
\sigma_t = \frac{F_t}{a_r} \quad \text{(Eq. 2)}
\]

3. Results and discussions

3.1. Rheological measurements

The viscosity results of TPU and TPU/CNT samples at 100 and 130°C are presented in Figure 4. The data were fitted to a modified version of the Carreau-Yasuda equation (35):

\[
\eta = \frac{\eta_o}{1 + (\tau_o/\dot{\gamma})^\alpha} \quad \text{(Eq. 3)}
\]

where \(\eta_o \) is the Newtonian viscosity, \(\tau_o \) a relaxation time related to the onset of the disentanglement process and \(\alpha \) a shear thinning index.

Notwithstanding that the viscosity values of the nanocomposites are considerably higher than those of neat TPUs, the difference is reduced as shear rate is increased. To relate the adequacy of these rheological results to the good performance of these materials in EAM, in Figure 4 we include the data of two commercial polymers widely used in EAM, such as PLA (PLA SF Smart Fil, Smart Materials 3D, Spain) and ABS (Smart Fil, Smart Materials 3D, Spain). Since the viscosities of both TPU and TPU/CNT samples lie in the range of the viscosities of the commercial specimens; we can assert that they are suitable to flow through the typical nozzle of an EAM device.
Figure 4. Flow curves (shear viscosity versus shear rate) of the investigated samples at $T=100^\circ$C and $T=130^\circ$C; the segmented lines correspond to fittings of equation 4. The results of PLA and ABS, commonly used for EAM, are also presented at their use temperatures for comparison purposes.

In recent years, some efforts have been made to correlate the viscoelastic properties of polymers to their interlayer welding performance once the melt is deposited in the bed (31-33). In particular, the role played by entanglements has been investigated, establishing a certain value for the entanglements density, above which interlayer adhesion is more efficient. Our analysis contemplates this point of view, as shown below.

The entanglements modulus, G_N^0, which is related to M_e, the molecular weight between entanglements, through the equation $M_e=\rho RT/G_N^0$, is calculated using the equation:

$$G_N^0 = \frac{2}{\pi} \int_{-\infty}^{+\infty} G''(\omega) d\ln\omega \quad \text{(Eq. 4)}$$

The corresponding elastic and viscous moduli, G' and G'', as a function of frequency at $T=70^\circ$C, are presented in Figure 5. We choose this temperature as the intermediate between that of the nozzle and the bed. The results of the theory of the general linear viscoelastic fluids (36) are fulfilled for neat TPU, since the dependences $G'\sim\omega^2$ and $G''\sim\omega$ with $G''>G'$, are observed at low frequencies (below 0.1 Hz). This is a sign of the homogeneity of the neat
TPU that, as could be expected, is not obtained for the heterogeneous TPU/CNT nanocomposite.

![Figure 5](image)

Figure 5. Master curves of the elastic and viscous moduli at a reference temperature of 70°C (a) TPU and (b) TPU/CNT.

We notice that for the nanocomposite also the viscous modulus prevails over the elastic modulus, $G'' > G'$, except at frequencies close to 100 Hz at which the rubbery zone starts and $G' > G''$ for both samples. This result indicates that the rheological percolation, characterized by the suppression of the flow zone at low frequencies ($G' > G''$), has not been achieved in our TPU/CNT nanocomposite. Therefore, we assume that there is not a network formed by polymer chains-CNT interactions, so the only existing physical network in both samples is the entanglements network defined by G_N^0.

By means of equation 4 the entanglement modulus value for both samples is obtained: $G_N^0 = 1.45 \text{ MPa} \pm 0.07 \text{ MPa}$ for TPU and $G_N^0 = 1.60 \text{ MPa} \pm 0.07 \text{ MPa}$ for the TPU/CNT nanocomposite. The slightly higher value observed for the nanocomposite could arise from the presence of CNT nanoparticles. Actually, the effect of nanoparticles on G' and G'' is only significantly noticed at low frequencies, in the terminal viscoelastic region, where chain motions at large scale are implied. In view of the obtained G_N^0 value, we can assume that the entanglements density, which is proportional to $M_w \times G_N^0$, is alike for both samples. Therefore, on the sole consideration of the similitude of the entanglement densities, similar values for the interlayer adhesion can be expected for TPU and TPU/CNT nanocomposite. This issue is discussed in Section 3.3 of the paper.
From another point of view, it should be noted that $G'' > G'$ for both samples (Figure 5) which is a favorable condition for interlayer bonding, because inter-diffusion is more likely to occur under terminal or flow conditions. Although this is an acceptable general hypothesis, we note that it lies in contradiction with the proven good interlayer adhesion in ABS samples in EAM that show $G'' > G'$ at low frequencies (31). As an alternative to this contradiction, we have recently proposed to use the Dalquist criterion (35), developed to analyze the immediate stickiness of adhesives, which states that the shear elastic modulus should be $G' < 3 \times 10^5$ Pa at a frequency of 1 Hz to ensure good performance. The results shown in the Supporting Information, Figure 4, reveal that this requirement is satisfied by our samples at 70 °C.

3.2 Differential Scanning Calorimetry (DSC)

DSC results at 20°C/min are shown in Figure 6. The relevant calorimetric parameters are listed in Table 2. Figure 6 shows that both, neat TPU and the TPU/CNT nanocomposite, exhibit single crystallization and melting peaks.

As could be expected (37-38), a nucleating effect of the carbon nanotubes is observed and crystallization is accelerated, whereas the crystallinity degree is only slightly increased and the crystallization temperature shifts from 39 to 46°C when CNTs are added. The eventual relationship of these results with the phenomenon of warpage is contemplated, because, in fact, warpage is observed for neat TPU but not for the TPU/CNT composite. Certainly, the origin of warpage in EAM is complex (39), because it depends on intrinsic factors, such as the anisotropic deposition of the strands and the induced chain orientations, and a complicated temperature distribution, due to the transferring heat of a layer to the sub-layer (32). In any case, the slight crystallization changes produced by CNTs addition can be hardly considered to be responsible for the observed elimination of warpage. Indeed, Spoerk et al. (39) reported that warpage observed in EAM of polypropylene (PP) is reduced by decreasing the crystallinity by incorporating, for instance, polyethylene segments.

After rejecting the hypothesis of crystallization changes being accountable for warpage reduction, we analyse the likely effect of CNTs on shrinkage/warpage. As remarked by Angelopoulos et al. (19), glass fillers added to a PP matrix reduce warpage as compared to that observed for neat polypropylene. Spoerk et al. (39) have demonstrated that PP/carbon fiber nanocomposites show better dimensional stability (less warpage) than PP. The alleged
reasons for that are two: a) The action of carbon fibers hindering the entropic contraction motion of polymer chains and b) The increase of thermal conductivity brought about by carbon fibers, which accounts for a more homogeneous temperature distribution.

![Graphs](image)

Figure 6. (a) DSC scans obtained during the first heating, (b) cooling and (c) second heating of filament samples of TPU and TPU/CNT. The vertical line drawn in b) corresponds to the printer bed temperature.

For the first time, we present results on the effect of CNT nanoparticles on the warpage of a nanocomposite. On the basis of the aforementioned literature results, we assert that the observed warpage reduction in our TPU/CNT nanocomposite is most probably due to the effect produced by the nanoparticles on polymer chain dynamics and thermal conductivity, rather than to crystallization changes. Within this context, but out of the scope of this paper, we have to recall that the influence of nanoparticles to avoid warpage, in
particular their anchoring effect to reduce chains mobility, can give rise to a reduction of the ductility of the printed samples.

Table 2. Melting and crystallization temperatures (taken at the respective peaks), enthalpies and crystallinity degrees determined from DSC curves of TPU and TPU/CNT filaments.

<table>
<thead>
<tr>
<th>Material</th>
<th>First heating</th>
<th></th>
<th></th>
<th></th>
<th>Second heating</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_{m1}</td>
<td>ΔH_m</td>
<td>X_c</td>
<td>T_c</td>
<td>ΔH_c</td>
<td>X_c</td>
<td>T_{m2}</td>
<td>ΔH_p</td>
</tr>
<tr>
<td></td>
<td>(°C)</td>
<td>(J/g)</td>
<td>(%)</td>
<td>(°C)</td>
<td>(J/g)</td>
<td>(%)</td>
<td>(°C)</td>
<td>(J/g)</td>
</tr>
<tr>
<td>TPU</td>
<td>73</td>
<td>80.5</td>
<td>52</td>
<td>39</td>
<td>66.5</td>
<td>43</td>
<td>69</td>
<td>68.0</td>
</tr>
<tr>
<td>TPU/CNT</td>
<td>71</td>
<td>79.1</td>
<td>51</td>
<td>46</td>
<td>68.3</td>
<td>44</td>
<td>66</td>
<td>72.1</td>
</tr>
</tbody>
</table>

PVT results at a pressure of 1 bar, and a cooling rate of 5 °C/min are shown in Figure 7. Analysis of the data in this figure shows that from 100°C to 30°C there is more volume reduction for TPU, $\Delta V = 0.1105$ cm3/g, than for TPU/CNT, $\Delta V = 0.0856$ cm3/g. Also, we found a higher contraction coefficient for TPU, $(dV/dT)/V = 7.6 \times 10^{-4}$ °C$^{-1}$, with respect to 5.5×10^{-4} °C$^{-1}$ for TPU/CNT in the range 20-35°C. The relatively higher dimensional stability found for TPU/CNT nanocomposite samples is associated with the presence of carbon nanotubes that actually avoid the warpage effect, which on the contrary can be observed in the case of neat TPU during FFF (Figure 8).
Figure 7. PVT cooling scans, at a pressure of 1 bar and a rate of 5 °C/min, of non-processed (a) TPU and (b) TPU/CNT samples.

Figure 8. Warpage effect in the neat TPU during FFF (M11 condition, Table 1).

3.3 Strength of welding: Trouser tests

The trouser tear tests (Mode III) were implemented to study the fracture strength of the weld line of the printed specimens. The force vs. crosshead displacement curve allows the determination of the average tearing force at the EAM conditions. Examples of the representative force versus displacement curves of both materials for the same printing conditions are shown in Figure 9.
Figure 9. Representative cases of force versus displacement curves (tear test) of (a) TPU and (b) TPU/CNT samples, 3D printed at nozzle and bed temperatures of 100ºC and 30ºC and with a printing velocity of 15 mm/s.

In our case, we followed the analysis of Davis et al. (31), and we determined the tearing energy dividing the average force value during steady state-crack propagation by the nominal thickness of the specimens \((2a_r) / 2\) after EAM, as previously indicated in equation 2. The nominal thickness of welded filaments, \(a_r\), was determined by SEM micrographs, like those shown in Figure 10. The tearing energy results of the specimens printed under different EAM conditions are presented in Tables 3 and 4, the first reports the effect of printing velocity and the second the effect of nozzle temperature.

Figure 10. SEM microphotographs of the fracture surface of 3D printed specimens of (a) TPU and (b) TPU/CNT. 3D printed conditions: melt temperature of 100ºC and bed temperature of 30ºC and 10 mm/min printing velocity. The respective thicknesses of TPU and TPU/CNT are 650µm and 500µm.

Table 3. Tearing energy versus printing velocity for TPU and TPU/CNT with a bed temperature of 30ºC and a nozzle temperature of 100ºC.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Printing velocity (mm/s)</th>
<th>TPU Trousers energy (N/mm)</th>
<th>TPU/CNT Trousers energy (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M11</td>
<td>10.0</td>
<td>16.0 ±1.0</td>
<td>10.4±0.5</td>
</tr>
<tr>
<td>M12</td>
<td>15.0</td>
<td>15.3±0.9</td>
<td>10.7±0.9</td>
</tr>
</tbody>
</table>
As can be seen in Table 3 there is not an effect of the printer velocity on trouser energy, considering the experimental error. However, the reduction of the trouser energy caused by CNTs is evident in view of the lower values obtained for TPU/CNT nanocomposite.

The influence of printing velocity on weld strength or trouser energy has been studied in several cases; literature results are scarce. For a polylactic acid (PLA) sample, Constanzo et al. (40) report experimental data of the weld fracture toughness in a printing velocity range of 5 mm/s to 120 mm/s observing a decrease, but only at printing velocities above 20 mm/s. Yang and Ye (41) present results of a PLA/wood fibers composite obtained at 30, 50 and 70 mm/s, observing a lower bond strength for the highest printing velocity. However, Coogan et al. (42) did not find any effect of the printing velocity on measured bond strength of a high impact polystyrene (HIPS), in a printing velocity range of 16 to 66 mm/s.

In the field of EAM modeling, we have to consider the research of McIlroy et al. (40, 43) about the effect of disentanglements on weld strength, promoted by chain alignment at the weld interface. In the model of McIlroy et al. (40, 43), the role played by polymer chains inter-diffusion at the interface is relegated due to the dominant effect of the non-equilibrium configuration of the entanglements. Alignment is enhanced as printing velocity is increased, and the experimentally observed consequence of this is a reduction of the weld strength and tearing energy. Significantly enough, the model only works for printing velocities above 20 mm/s, as can be seen in Reference (40).

Table 4. Tearing energy versus nozzle temperature of TPU and TPU/CNT with a bed temperature of 30°C and a printing velocity of 10 mm/s.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Nozzle temperature (°C)</th>
<th>TPU Tearing energy (N/mm)</th>
<th>TPU/CNT Tearing energy (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>80</td>
<td>5.5±0.3</td>
<td>4.0±0.1</td>
</tr>
<tr>
<td>M11</td>
<td>100</td>
<td>16.0±1.0</td>
<td>10.4±0.5</td>
</tr>
<tr>
<td>H11</td>
<td>120</td>
<td>18.5±1.2</td>
<td>14.0±0.1</td>
</tr>
</tbody>
</table>
According to the aforementioned results, we can estimate that printing velocities higher than 20 mm/s are required to observe a weld strength decrease due to chain orientation effects. Thus, the low printing velocity values (<20 mm/s) employed in our EAM processes to obtain the TPU and TPU/CNT specimens, can explain the absence of any particular effect of printing velocity on the tearing energies of both samples seen in Tables 3-4. Consequently, it can be assumed that our welding strength results arise from inter-diffusion of the polymer chains across filament-filament interface, rather than from disentanglements due to alignment. The enhancing effect of temperature on welding and the lower tearing energy values found for TPU/CNT with respect to neat TPU, observed in Table 4, support this assumption.

Although a mathematical relation between the tearing energy and the polymer diffusion coefficient has not been yet established, it is assumed that the larger the polymer diffusion, the stronger the welding. For instance, Gao et al. (44) remark that enhancing molecular diffusion by the addition of polyethylene glycol (PEG) to PLA improves interlayer bond strength. Coupling polymer diffusion and rheological results was a task developed years ago, for instance, by Qiu and Bousmina (45). In particular, the dependence of the diffusion coefficient on the Newtonian viscosity can be expressed as (38):

$$\Delta \chi \cong M_e \rho R T / \eta_o \quad (\text{Eq. 5})$$

where M_e is the entanglement molecular weight, ρ the density, R the gas constant, and η_o the Newtonian viscosity.

A temperature increase leads to enhanced diffusion through the observed direct proportionality in the equation and also via viscosity reduction, so the significant enhancement of tearing energy observed as a function of temperature (Table 4) should be associated with the increase in the diffusion coefficient. Equation 5 also explains the higher tearing energies of TPU, as compared to TPU/CNT. As shown in Figure 4, lower viscosities are obtained in the former, which implies larger diffusion coefficient values and, consequently, larger tearing energies.

4. Conclusions
The comparative thermal and rheological analysis of a biobased TPU and its nanocomposite with 4% carbon nanotubes, TPU/CNT, reveals that both samples are adequate for EAM. Nevertheless, the following differences are noticed: I) The viscosity is higher for TPU/CNT (particularly at low shear rates), but lies in the range of viscosities of other thermoplastics used for EAM; II) At the processing temperatures and at low frequencies, the elastic modulus, G’, is higher for the nanocomposite, but the entanglement densities are similar for both samples; III) The 3D printed TPU sample shows a slight warpage in the bed, not observed in TPU/CNT sample; IV) The interlayer adhesion, as measured by the tearing experiment, is lower for TPU/CNT nanocomposite.

The absence of warpage in the TPU/CNT nanocomposite is due to the CNT nanoparticles, which hinder the entropic contraction motion of polymer chains and increase thermal conductivity homogenizing temperature.

At the printing velocities considered in our work (10, 15, 20 mm/s), there is not an effect of velocity on trouser energy. This is shown to be compatible with experimental and theoretical model results, which justify a decrease of the strength as printing velocity increases, but only for velocities above 20mm/s. On the other hand, our TPU/CNT nanocomposite presents a lower trouser energy than neat TPU, which is probably due to the higher viscosity of TPU/CNT at low shear rates, which leads to a lower chain interdiffusion between layers.

Considering the advantages and flaws of the investigated nanocomposite, the paper overall constitutes a novel case of a thermal and rheological study to investigate the reliability of filled polymers to be processed by EAM.

Acknowledgment

We would like to thank the financial support provided by the BIODEST project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778092. This work has also received funding from MINECO through project MAT2017-83014-C2-1-P and from the Basque Government through grant IT1309-19.

References

