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Pricing interest-rate financial derivatives is a major problem in finance, in which it is crucial to accurately
reproduce the time evolution of interest rates. Several stochastic dynamics have been proposed in the literature to
model either the instantaneous interest rate or the instantaneous forward rate. A successful approach to model the
latter is the celebrated Heath-Jarrow-Morton framework, in which its dynamics is entirely specified by volatility
factors. In its multifactor version, this model considers several noisy components to capture at best the dynamics
of several time-maturing forward rates. However, as no general analytical solution is available, there is a trade-off
between the number of noisy factors considered and the computational time to perform a numerical simulation.
Here, we employ the quantum principal component analysis to reduce the number of noisy factors required to
accurately simulate the time evolution of several time-maturing forward rates. The principal components are
experimentally estimated with the five-qubit IBMQX2 quantum computer for 2 × 2 and 3 × 3 cross-correlation
matrices, which are based on historical data for two and three time-maturing forward rates. This paper is a
step towards the design of a general quantum algorithm to fully simulate on quantum computers the Heath-
Jarrow-Morton model for pricing interest-rate financial derivatives. It shows indeed that practical applications of
quantum computers in finance will be achievable in the near future.

DOI: 10.1103/PhysRevResearch.3.013167

I. INTRODUCTION

In finance, derivatives are contracts whose value derives
from the value of an underlying financial asset or a set of
assets, like an index, bonds, currency rates, stocks, market
indices, or interest rates. Typical financial derivatives con-
tracts include forwards, futures, swaps (currency swaps or
interest rate swaps), caps, floors, and swaptions, among many
others. They are typically used either to manage (mitigate)
risk exposure (hedging), or for pure speculation. In the case
of pricing interest-rate financial derivatives under the risk-
neutral assumption [1,2], it is crucial to model accurately the
time evolution of interest rates. Several stochastic dynamics
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have been proposed in the literature to model either the in-
stantaneous interest rate r(t ) (also known as the instantaneous
spot rate or, simply, as the short rate) or the instantaneous
forward rate, which is the forward rate at a future, infinitesimal
period (T, T + δt ) forecasted at a previous time t , denoted
by f (t, T ) [1]. Simple dynamics based on one or two noisy
(random) factors for modeling both the short rate and the
forward rates have been proposed [1,3–5]. For short rates,
one- and two-factor models became popular, such as the the
Vasicek model, the Hull-White model, the Cox-Ingesroll-Ross
(CIR) model and its CIR++ extension as one-factor models,
and the Gaussian-Vasicek model and the Hull-White model,
as two-factor models. Furthermore, their corresponding al-
gorithms are straightforward to implement. However, these
models suffer from the strong requirements which arise from
the necessity to calibrate to market data and to capture, at
the same time, correlation and covariance structures from the
time evolution of different forward rates. A highly successful
approach proposed to overcome these constraints is the cele-
brated Heath-Jarrow-Morton (HJM) framework [6–9], which
directly models the time evolution of forward rates. Indeed,
the HJM model is a general family of models from which
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most of the aforementioned models may be derived [1]. To
get a deeper understanding of this model, we refer the reader
to Appendix A. In the HJM model, the dynamics is entirely
specified by its volatility factors. Although general, there is
a trade-off between the number of noisy factors considered
and the computational time when executing the algorithm.
Therefore, the computational power limits the accuracy of
the model. Here is where a quantum computer becomes a
useful tool. A quantum computer has a significantly bigger
computational capacity than a classical one; therefore, using
it would allow us to increase the accuracy of the HJM model.

Quantum computing (QC) has emerged in the past years
as one of the most exciting applications of quantum technolo-
gies [10], which promises to revolutionize the computational
power at our disposal. In QC, entanglement, probably the most
characteristic signature of quantum physics, is employed as an
extra resource to speed up the performance of the computa-
tion, since it allows us to parallelize the calculations. Multiple
algorithms with provable quantum speedup with respect to
their best classical counterparts have been proposed for prime
factorization [11], searching in a list [12], solving systems
of linear equations [13], and finding the largest eigenvalues
and eigenvectors of a given matrix [14], among many others.
A particularly relevant application is quantum simulation, in
which a controllable quantum system simulates the dynamics
of another quantum system of interest whose classical simu-
lation would be highly inefficient. Examples of applications
of quantum simulations can be found in spin systems [15,16],
quantum chemistry [17–20], quantum field theories [21,22],
fluid dynamics [23], and quantum artificial life [24–26]. Some
applications of quantum technologies to finances have already
been proposed [27–31], but only few experiments have been
carried out so far [32–35]. State-of-the-art technology, how-
ever, only provides us with small noisy quantum chips, which
limits the applicability of digital quantum simulations to toy
models.

In this article, we employ an efficient quantum prin-
cipal component analysis (qPCA) algorithm to effectively
reduce the number of noisy factors needed to accurately sim-
ulate the joint dynamics of several time-maturing forward
rates, according to the multifactor HJM model. Although
this is a general implementation that can be run in any
superconductive-circuit-based quantum processor, we have
implemented this algorithm in the five-qubit IBMQX2 su-
perconducting quantum processor of IBM due to its easy
accessibility. The volatility factors,

σ̄i(τ j ) =
√

λi(vi ) j, (1)

where λi and vi are the eigenvalues and eigenvectors of
the covariance matrix, respectively, are estimated from 2 × 2
and 3 × 3 cross-correlation matrices between different time-
maturing forward rates based on historical data. To illustrate
our qPCA algorithm, we apply this technique to the covari-
ance matrix appearing in Fig. 19.3 in Ref. [36], based on
historical data for 1-, 3- and 6-month rates:

σ3 =
⎛
⎝0.000189 0.000097 0.000091

0.000097 0.000106 0.000101
0.000091 0.000101 0.000126

⎞
⎠. (2)

This is, to our knowledge, both the first quantum comput-
ing experiment in financial option pricing and the largest
implementation of the qPCA algorithm on a quantum plat-
form. Although for small matrices the problem can be easily
solved on a classical computer, this contribution represents
a promising attempt towards the quantum computation of
large-scale financial problems which are today prohibitively
expensive. In the present noisy intermediate-scale quantum
(NISQ) technology era [22], we extend the applications of
quantum computers to the field of finance, paving the way
for achieving useful quantum supremacy or advantage in the
following years.

Quantum principal component analysis

Principal component analysis (PCA) is a mathematical
technique which allows us to find the optimal low-rank ap-
proximation of a given matrix by computing its spectral
decomposition in eigenvalues and eigenvectors. Indeed, this
approximation discards the smallest eigenvalues of the ma-
trix, keeping only the principal components of the spectral
decomposition. This technique is of paramount importance for
a variety of applications that go from dimensionality reduction
problems to problems related to finding patterns in data of
big dimension. Unfortunately, the computational cost is too
high when the size of the matrix is elevated. It is in this
context in which quantum algorithms and quantum computers
may play a relevant role. Indeed, in Ref. [14] the authors
provided an elegant quantum algorithm to perform PCA with
an exponential speedup. The authors assumed that the matrix
can be represented by a quantum state; i.e., it is a non-negative
matrix with trace equal to 1, which covers a wide range of
interesting cases, including the case under study in this paper
of covariance matrices associated to volatilities.

In this article, we explore the use of this qPCA technique
to effectively reduce the dimensionality of the HJM model, by
reducing the number of noisy factors without detriment to its
accuracy. The qPCA algorithm proposed is specially suited for
this financial problem since it is only applicable to density ma-
trices, such as the one given by the correlation matrix used as
input for the HJM model. Finally, succeeding in reducing the
effective number of noisy factors turns out to be critical for the
construction of any quantum Monte Carlo algorithm for this
model, after reducing the potential number of quantum gates
of the resulting quantum circuit, thus alleviating the limitation
in terms of decoherence times of the quantum processor.

We implement a slightly modified version of the aforemen-
tioned algorithm, which is better adapted to be run in a small
and noisy quantum chip, typical in this NISQ technology era
[37]. This allows us to reduce the number of noisy factors
presented within the HJM model. This is the first step toward
the construction of a general quantum computing algorithm to
fully simulate the HJM model on the IBM quantum computer
for pricing interest-rate financial derivatives. In the following
section, we briefly describe the algorithm.

II. QUANTUM CIRCUIT

Let us consider a non-negative matrix σN ∈ RN × RN with
tr[σN ] = 1, which is the matrix whose principal components
we want to compute. Let us assume that we can efficiently
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FIG. 1. Quantum circuit implementation for n + log N qubits. The first n qubits are dedicated to the binary codification of the maximum
eigenvalue of the matrix σN and they are initialized in the site |0〉. The rest of the qubits, a total of log N , encode the estimation of the
corresponding eigenvector and are initialized on a random state |b〉. The single qubit gate H corresponds to the Hadamard gate. The rest of the
gates are controlled operations. The controlled U 2k

ρ gate applies the matrix U = eitσN 2k times on the last set of qubits. The controlled R†
k gate

applies the matrix (1 0
0 e2π i/2k ) to each target qubit. After performing all the operations, if the initial |b〉 is appropriate, one gets the final state

|b1b2 · · · bn〉 ⊗ |umax〉, where |b1b2 · · · bn〉 is the n-bit estimation of the eigenvalue λ
(n)
j and |umax〉 is the best estimation of the exact eigenvector

of σN .

generate the unitary eitσN . It has been proven in the literature
that, under certain conditions such as sparsity of the matrix
[38,39] or access to several copies of σN [14], this is possible.
In our case the covariance matrix σN is not sparse, but we
can access several copies of it codified in quantum states.
Thus, the best way to efficiently generate the unitary operation
eitσN with accuracy ε in O(t2ε−1) steps is the one described
by Lloyd et al in Ref. [14]. This matrix admits a spectral
decomposition σN = ∑N

j=1 λ j |u j〉〈u j |, with 0 � λ j � 1 and∑N
j=1 λ j = 1, and we assume that σN can be very well approx-

imated by a matrix ρr = ∑r
j=1 λ j |u j〉〈u j | with rank r � N .

Therefore, the goal of the algorithm is the determination of
the r largest eigenvalues of σN and their corresponding eigen-
vectors. If we want to determine the eigenvalues with an n-bit
precision, we will need n + log N qubits, as depicted in Fig. 1,
which represents the gate decomposition of the algorithm. A
priori, we do not know the eigenvectors of our algorithm.
Hence, we cannot make use of quantum phase estimation to
compute directly the corresponding eigenvalue. Consequently,
we initialize our system in a random state |b〉 whose (un-
known) decomposition in terms of the eigenbasis is given by
|b〉 = ∑N

j=1 β j |u j〉. If we take a random vector, the probability
that there exists a component βk = 0 is zero. The quantum
state after the quantum Fourier transform can be written as
|
b〉 = ∑N

j=1 β j |�(n)
j 〉 ⊗ |u j〉, so eigenvalues and eigenvec-

tors are entangled. �
(n)
j = 0.b1b2 · · · bn is the n-bit precision

binary representation of the jth eigenvalue of ρr . However,
if our assumption that σN is well approximated by the r-rank
matrix ρr is correct, then the highest eigenvalues should be
around 1/r ≈ ∑n

k=1 yk2−k . Calling |y(n)〉 = |y1 y2 · · · yn〉 the
vector of these components, it means that, by projecting the
eigenvalue component |�(n)

j 〉 of the state |
b〉 around this
component, one may obtain the eigenvector corresponding to
the maximum eigenvalue, i.e., 〈y(n)| ⊗ 1|
b〉 ≈ |umax〉. It is
possible, especially when n is small, as may happen in the
NISQ chips, that the n-bit approximation of the eigenvalue
cannot be able to distinguish between two or more eigen-
vectors. In this case, the projection is not into the maximum
eigenvalue, but into a K-dimensional subspace containing the

indistinguishable components 〈y(n)| ⊗ 1|
b〉 = ∑K
j=1 β̃ j |u j〉,

where the β̃ j are the normalized β j in the subspace. As we
do not know a priori whether K > 1 or not, we could start
with a different random state |c〉 = ∑N

j=1 γ j |u j〉, which leads

to |
c〉 = ∑N
j=1 γ j |�(n)

j 〉 ⊗ |u j〉. After projecting into |y(n)〉
the expected state is a different superposition

∑L
j=1 γ̃ j |u j〉

with high probability, which helps us to check whether we
have actually identified the eigenvector corresponding to the
maximum eigenvalue. Otherwise, we must increase the n-bit
precision until a unique eigenvalue is identified.

Let us assume now that the n-bit precision is sufficient
to determine a unique eigenvector. Taking into account the
constraints due to the small number of qubits and the noise
of the chip and the operations, we can sequentially improve
the result of the eigenvector. As described above, we start the
protocol with a random quantum state |b0〉, to which the noisy
algorithm is applied and the projection into the |y(n)〉 subspace
is performed. Let us call the result |
b0〉, which is an approx-
imation for the eigenvector. If we employ now this state as
the initial state in the protocol, |
b0〉 = |b1〉, then one expects
that the approximation for the eigenvector provided by |
b1〉
improves the fidelity due to the cancellation of coherent errors
associated to the β components. Nonetheless, there is a limita-
tion in this sequential improvement related to the decoherence
of the qubits and the statistical error of the measurement.
In any case, the result can be (slightly) further improved by
performing measurements in different bases and averaging,
since this cancels some systematic errors of the gates.

III. RESULTS

As described in the previous section, the protocol is di-
vided into two parts. First, we estimate the eigenvector |umax〉
corresponding to the largest eigenvalue λmax. We start with
a random state, apply the circuit implementation shown in
Fig. 2, project on the binary n-bit estimation for the largest
eigenvalue |y(n)〉, and use this state as the initial state of the
process, which sequentially approaches the exact eigenvector.
Afterwards, we use this eigenvector to get a more accurate
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FIG. 2. (a) Quantum circuit implementation for the 2 × 2 ma-
trix. The first two qubits encode the 2-bit estimation of the greatest
eigenvalue of ρ2 and are initialized on the state |0〉. The last qubit
is dedicated to the estimation of the corresponding eigenvector. It is
initialized on a random state |b〉. For the first iteration, we initialize it
on the state |+〉 by applying a Hadamard gate. The single-qubit gates
represented by the letter H refer to the Hadamard gate. The con-
trolled U gates represent the unitary controlled operations called U 2k

ρ

in Fig. 1. The last two-qubit gate is a controlled S† gate, controlling
the first qubit and acting on the second. The final state of the system
after running the circuit and taking measures is |11〉 ⊗ (0.719|0〉 +
0.659|1〉). (b) Populations for each iteration. The graphic shows the
experimental probabilities of finding the three qubits in each state and
its corresponding errors for the four iterations of the algorithm. We
have considered both statistical and experimental errors, assuming
for the latter an error of 8% for each two-qubit gate.

approximation for the eigenvalue λmax by means of quantum
phase estimation.

For the estimation of the eigenvector, we start with a
random state |b0〉. Hence, the initial state of the system is
|0〉 ⊗ |0〉 ⊗ |b0〉. After the first iteration and projecting on the
computational basis the eigenvector, we obtain a first esti-
mation, which we call |b1〉, and use it as the initial state of
the system on the next iteration. This is |0〉 ⊗ |0〉 ⊗ |b1〉. We
continue this process and iterate k times until |bk−1〉 ≈ |bk〉.
Once we reach that point, we can say that |bk〉 ≈ |umax〉.

Let us now estimate the eigenvalue λmax. Once the first part
is finished and we have an accurate approximation for |umax〉,
we can apply quantum phase estimation [10] to obtain λmax

with n-bit precision. The precision is limited in this case by
the size of the processor. Our aim is to apply the algorithm to
the 3 × 3 matrix given in Eq. (2) in the five-qubit IBMQX2
quantum processor. First, we solve the 2 × 2 submatrix of
σ3 containing only two maturities, and afterwards, we solve
the 4 × 4 expansion of the same matrix. Despite the small
size of the problem, the volume of the quantum algorithms
allowed in this processor is almost achieved, but we can still
obtain relatively accurate results. We have run the algorithm in
both the simulator provided by QISKIT [40] and the real IBM
quantum processor, reaching accurate results in both cases.

A. 2 × 2 matrix

First, we need to codify the covariance matrix in a quantum
state, so we only need to normalize it with respect to its trace,

ρ2 = σ2

tr(σ2)
=

(
0.6407 0.3288
0.3288 0.3593

)
, (3)

whose spectral decomposition is given by

λ1 = 0.8576, |u1〉 = 0.8347|0〉 + 0.5508|1〉, (4)

λ2 = 0.1424, |u2〉 = 0.5508|0〉 − 0.8347|1〉. (5)

Let us remark that λmax � λ2, a usual characteristic of these
correlation matrices, so we can apply the PCA technique to
find the optimal low-rank approximation of ρ2. Let us now
define the unitary

Uρ2 = e2π iρ2 =
(

0.6260 − 0.3068i −0.7170i
−0.7170i 0.6260 + 0.3068i

)
.

(6)
For the first part of the protocol, we make use of three

qubits, two for a 2-bit approximation of the eigenvalue, and
a third one one to represent the eigenvector. We apply the
first part of the protocol as described above, starting with a
quantum state |b0〉 = 1√

2
(|0〉 + |1〉) and projecting into the

|y(n)〉 = |11〉 state. After the fourth iteration, each of them av-
eraged over 8192 realizations, the outcome vector estimating
the eigenvector stabilizes and we stop. With this final eigen-
vector, we also rotate the measurement basis in x, y, and an
arbitrary direction r = (cos α,−eiβ sin α; eiβ sin α, eiγ cos α)
to compute the relative phase and to improve the accuracy of
the solution provided. We have chosen the set of angles α =
1.00, β = 0.80, and γ = 0.16, but any other choice would be
valid as long as all of the angles are different from zero. Our
estimation for |umax〉 is consequently given by

|umax〉 = [(0.87 ± δ) − i(0.10 ± δ)]|0〉
+[(0.47 ± δ) + i(0.10 ± δ)]|1〉, (7)

with δ = 0.9 the error estimated from the two-qubit gates
and measurement fidelity provided by IBM and the statistical
error related to the number of repetitions. This δ should be
understood as an upper bound of all possible errors, includ-
ing not only the gate and qubit errors provided by IBMQ,
but also other errors, which do not increase with the depth
of the algorithm, such as T1 and T2, measurement errors,
crosstalk, non-Markovian errors, etc. As we had no direct
access to the processor, it is not possible to distinguish among
them, so we consider the worst possible case. In Appendix
B we provide more information about how we have esti-
mated the error δ. Let us remark that we have split the
complex phase between both states using the global phase.
The estimation for the coefficients after each iteration in the
z basis is provided in Table I. We can observe that the al-
gorithm has already converged in the first iteration, and the
variations are within the estimated error. We take the eigen-
vector produced in the last iteration and repeat the algorithm
with this one as the initial state measuring in x, y, and r-
random directions to check possible relative phases and to try
to remove systematic errors, which yields the states |bx〉 =
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TABLE I. Estimated coefficients of the eigenvector for consec-
utive iterations of the algorithm in modulus and measured in the z
basis. Here, the state of the previous iteration is employed as the
initial state in the following iteration until the values are stabilized.
Measurements of the eigenvector are performed in the z basis and
repeated for 8192 realizations.

Iteration cz
0 cz

1

1 0.719 0.695
2 0.707 0.707
3 0.720 0.694
4 0.680 0.734

0.878|0〉 + (0.421 + i0.230)|1〉, |by〉 = 0.878|0〉 + (0.427 +
i0.220)|1〉, and |br〉 = 0.985|0〉 + 0.175|1〉.

Let us remark that the previous estimation of the eigenvec-
tor was performed by projecting into the subspace estimating
the eigenvalue into the 2-bit string �max = 0.11. However, we
can now apply quantum phase estimation to improve the es-
timation for the eigenvalue. We divide the problem into these
two stages for two reasons. First, we do not know a priori the
value of the maximum eigenvalue, only the approximate rank,
and hence a low n-bit approximation covers a larger range,
as explained in the previous section. Additionally, we observe
a lower error when the protocol is performed in this manner,
probably due to the accumulation of two-qubit gates and the
error in the projection for the eigenvalue estimation. However,
we cannot be sure, since IBM does not provide the exact
quantum circuit which they are performing in the processor.

Let us now use three qubits for the eigenvalue estimation
�max = 0.b1b2b3, keeping one qubit to encode the corre-
sponding eigenvector. The depth of the circuit implementation
grows and leads us to the decoherence of the system when we
run it on the real quantum processor, as depicted in Fig. 3.
However, the result provided by the QISKIT simulator, pro-
ducing the quantum state |111〉 ⊗ [0.8150|0〉 + 0.5794|1〉], is
an almost ideal result for the 3-bit string estimation of the
eigenvalue. Indeed, the predicted eigenvalue is � = 0.111
in binary representation and corresponds to the number λ =
0.875 and the fidelity between |umax〉 and the one obtained
after performing the quantum phase estimation in the QISKIT

simulator |uQPE〉 is

F = |〈uQPE|umax〉|2 = 0.965. (8)

This shows that, with few improvements in the gates and chips
or with a lower level programming in the chip, one could
substantially improve the results.

B. 4 × 4 matrix

In this case, the matrix σ3 will be represented by the two-
qubit quantum state

ρ4 = σ4

tr(σ4)
=

⎛
⎜⎝

0.4489 0.2304 0.2162 0
0.2304 0.2518 0.2399 0
0.2162 0.2399 0.2993 0

0 0 0 0

⎞
⎟⎠. (9)

Thus, the unitary generated, Uρ4 = e2π iρ4 , is given by

Uρ4 =

⎛
⎜⎝

0.415 + 0.048i −0.108 − 0.566i −0.029 − 0.702i 0
−0.108 − 0.566i 0.744 − 0.030i −0.285 − 0.181i 0
−0.029 − 0.702i −0.285 − 0.181i 0.618 + 0.099i 0

0 0 0 1

⎞
⎟⎠.

The spectral decomposition of ρ4, for the sake of comparability, is given by

λ1 = 0.000, |u1〉 = (0.000, 0.000, 0.000, 1.000),

λ2 = 0.031, |u2〉 = (−0.119, 0.786,−0.607, 0.000),

λ3 = 0.169, |u3〉 = (0.734,−0.342,−0.587, 0.000),

λ4 = 0.800, |u4〉 = (0.669, 0.516, 0.536, 0.000),

where the vectors are expressed in the basis
{|00〉, |01〉, |10〉, |11〉}. This problem is much more
complicated than the previous one, since we do not
implement Uρ4 , but the controlled Uρ4 . This matrix must be
decomposed in terms of two-qubit gates, which dramatically
increases the depth of the algorithm and, consequently,
the decoherence and the errors. The quantum circuit
implementation for this problem is shown in Fig. 4.
Following the aforementioned protocol, we start with the
state |b0〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2 and provide the
coefficients in the z basis, for both the simulator and the real
processor, in Table II.

Afterwards, we measure in different bases in order to
compute the relative phases, and take the average to can-
cel systematic errors. The estimation of the eigenvector is,

therefore,

|umax〉 = (0.6287 + i0.3991)|00〉 + (0.4010 + i0.0693i)|01〉
+(0.4807 − i0.1964)|10〉 + (0.0305 + i0.0959)|11〉.

The number of entangling gates performed for this algorithm
is at least 18, so the total estimated error δ in the coefficients,
assuming the 8% error per gate observed in the previous
section, is over 100%, which makes in principle the result
meaningless.

A possible way to address this issue is to make use of some
error mitigation methods [41], similar to how it is done in
Ref. [32]. By measuring in different bases, we have mitigated
the systematic errors associated to measurements. However,
the errors that occur during the quantum circuit can be miti-
gated by employing, for instance, Richardson’s extrapolation
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FIG. 3. (a) Quantum phase estimation circuit implementation for
the 3-bit estimation of the greatest eigenvalue, �(3). After estimating
the eigenvector |umax〉, it is used to improve the estimation of the cor-
responding eigenvalue λ by applying the quantum phase estimation
algorithm. In this case we dedicate three qubits to the binary codifica-
tion of λ. The fourth qubit is initialized on the estimated eigenvector
|umax〉. The fifth two-qubit gate represents a controlled T † gate,
controlling the first qubit and acting on the third one. The rest of
the gates are the same that have been applied on the previous part of
the algorithm. Finally, one takes measures and gets the final state
of the system: |�(3)〉 ⊗ |umax〉 = |111〉 ⊗ [0.8150|0〉 + 0.5794|1〉].
(b) Populations of the 3-bit eigenvalue estimation. This chart shows
the probabilities of each state in the QISKIT simulator (green bars) and
in the real quantum processor (yellow bars) for the quantum phase es-
timation algorithm taking the previously obtained eigenvector given
in Eq. (C1). The first qubit refers to the subspace of the eigenvector
estimation. The next three qubits refers to the subspace of the binary
estimation of the eigenvalue. The quantum circuit comprises at least
six entangling gates, which leads the system to an almost total deco-
herence, as reflected in the homogeneous distribution of probabilities
in the real chip.

[42] to eliminate powers of the noise perturbation. Addition-
ally, to improve the error cancellation during measurements,
readout error mitigation [43] could be applied.

IV. CONCLUSIONS

We have proposed and implemented an efficient quantum
algorithm to reduce the number of noisy factors present in the
time evolution of forward rates according to the multifactor
Heath-Jarrow-Morton model. Indeed, this model considers
several noisy components to accurately describe the dynam-
ics of several time-maturing forward rates, which can be
gathered in a cross-correlation matrix. The eigenvectors cor-
responding to the largest eigenvalues of this matrix provide
the principal components of the correlations. When the con-
sidered data set is large, this calculation turns out to be
challenging. The principal components are experimentally es-
timated using a hybrid classical-quantum algorithm with the
five-qubit IBMQX2 quantum computer for 2 × 2 and 3 × 3
cross-correlation matrices, which are based on historical data

for two and three time-maturing forward rates. We have ob-
tained a reasonable approximation for both the maximum
eigenvalue and its corresponding eigenvector in the 2 × 2
case. For the 4 × 4 matrix, the depth of the algorithm is too
high and the experimental errors in the quantum processor
prevent us from extracting any useful information. For the
4 × 4 matrix, the depth of the algorithm is too large and
the experimental errors in the quantum processor prevent us
from extracting any useful information. The application of
some error mitigation techniques could be a solution for this
problem. Simultaneously, the simulation in QISKIT shows that
it would be achievable in a better experimental set. This means
that we have exhausted the computational power provided
by the current quantum processor in terms of gate fidelities,
connectivity, and number of qubits. Nonetheless, this paper
is a step towards the design of a general quantum algorithm
to fully simulate on quantum computers the HJM model for
pricing interest-rate financial derivatives, and shows that prac-
tical applications of quantum computers in finance will be
achievable even in the NISQ technology era.

The codes we have used to run our experiments both on the
real chip and on the QISKIT [40] built-in simulator are available
on the following GitHub public repository [44]. These codes
have been written according to the 0.7.1 version of QISKIT.
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FIG. 4. Quantum circuit implementation for the 4 × 4 matrix. The first qubit is the only one dedicated for the binary codification of
the greatest eigenvalue λ of the matrix ρ4. It is initialized on the state |0〉. The last two qubits encode the estimation of the corresponding
eigenvector and are initialized on a random state |b〉. The final state of the system after measuring is |1〉 ⊗ |umax〉.

APPENDIX A: THE HEATH-JARROW-MORTON
FRAMEWORK

In Sec. I, we introduced the HJM model to model the time
evolution of forward rates. Here we present a brief description
of such a framework.

Calculating the fair price of financial derivatives represents
a challenge from both the mathematical modeling and the
computational power perspectives. Traditionally, simplistic
assumptions on the dynamics of financial markets in terms
of mathematical pricing models, such as the Black-Scholes
model, provided simple analytical tools for both pricing and
hedging purposes. However, these simple models have limited
features in terms of modeling and, in particular, do not prop-
erly account for all the relevant financial risk factors. To solve
this issue, sophisticated models such as the HJM framework
considered in this work gained increasing interest, requiring
one, however, to resort to numerical techniques due to the fact
that its solution (price) is no longer available analytically.

Solving sophisticated pricing models that account for mul-
tiple risk factors using numerical techniques represents a
formidable computational task. The most popular technique
used by the global financial community is based on Monte
Carlo, which, due to its low convergence rate, requires a
huge amount of computational resources in order to meet

TABLE II. Estimated coefficients of the eigenvector for consec-
utive iterations of the algorithm in modulus and measured in the z
basis. Here, the state of the previous iteration is employed as the
initial state in the following iteration until the values are stabilized.
Measurements of the eigenvector are performed in the z basis and
repeated for 8192 realizations.

Iteration cz
00 cz

01 cz
10 cz

11

Chip
1 0.542 0.503 0.466 0.487
2 0.531 0.498 0.493 0.477
3 0.543 0.493 0.494 0.468
4 0.502 0.492 0.523 0.482

Simulator
1 0.719 0.695 0.695 0.695
2 0.707 0.707 0.695 0.695
3 0.720 0.694 0.695 0.695
4 0.680 0.734 0.695 0.695

acceptable levels of accuracy. Generally speaking, designing
an efficient Monte Carlo algorithm requires two subsequent
stages: first, to reduce the computational complexity of the
model when possible, resorting to dimensionality reduction
techniques, and second, to accelerate the Monte Carlo conver-
gence from the resulting reduced model. Quantum computing
appears as a promising alternative to speed up both stages.

A T-maturity zero-coupon bond (also known as a pure
discount bond) is a contract that ensures its investor to accrue
one unit of currency at time T (its maturity), whose price at a
previous time t is denoted by P(t, T ). From this definition, it is
clear that at expiry of the contract we must have P(T, T ) = 1.
This time-dependent curve represents a fundamental element
in the theory of risk-neutral derivative pricing [1] and will
extensively be used throughout this article. P(t, T ) is also
known as the curve of discount factors, since it is employed
to calculate the present value of future cash flows. The inverse
of this amount is called the capitalization factor, providing the
capitalization of a present quantity to a future time.

In finance, the instantaneous interest rate rt (also known
as the instantaneous spot rate, or simply the short rate) is the
rate of return of a risk-free investment at time t (for example,
a U.S. Treasury bond) (see Ref. [1]). This is also the interest
rate applied when borrowing money from the money market
and it is given as an annual percentage. We denote by B(t ) the
time-t value B(t ) of the money market account, defined as

B(t ) = exp

(
−

∫ t

0
r(s)ds

)
. (A1)

Of course, if today is the time t , the value of r(t ) can
be observed in the money market and, therefore, it consti-
tutes a known value. However, for future times T > t , r(T )
is uncertain and modeled through a stochastic process. In
the risk-neutral framework, when using the money market
account B(t ) as numéraire, the link between the short rate
and the zero coupon is indeed materialized by the risk-neutral
pricing formula

P(t, T ) = EQB

[
B(t )

B(T )
× 1|Ft

]
= EQB

[
e(−

∫ T
t r(s)ds)|Ft

]
,

(A2)
where QB is the equivalent martingale measure associated
to the numéraire B(t ), and Ft denotes the filtration of the
information observed in the market until time t . Therefore, if
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TABLE III. Complete outcome of each iteration of the first part
of the algorithm. The first two qubits correspond to the state |λ(n)〉,
which encodes the 2-bit estimation of the largest eigenvalue λmax.
The last qubit corresponds to the estimation of the corresponding
eigenvector |umax〉. Each experiment has been run a total of 8192
times. The table shows both the number of times the experiment ends
up on each state (under the heading “Counts”) and the percentage it
represents over the total number of runs (“%”).

Simulator Chip

State Counts % Counts %

First iteration
000 2205 27 2474 30
001 428 5 793 10
010 181 2 808 10
011 558 7 1253 15
100 325 4 457 6
101 316 4 304 4
110 2692 33 1087 13
111 1487 18 1016 12

Second iteration
000 2190 27 2538 31
001 422 5 787 10
010 181 2 766 9
011 516 6 1257 15
100 297 4 443 5
101 264 3 277 3
110 2757 34 1063 13
111 1565 19 1061 13

Third iteration
000 2196 27 2401 29
001 418 5 746 9
010 169 2 779 10
011 510 6 1347 16
100 292 4 465 6
101 287 4 297 4
110 2755 34 1117 14
111 1565 19 1040 13

Fourth iteration
000 2179 27 2182 27
001 414 5 671 8
010 191 2 754 9
011 469 6 1100 13
100 317 4 605 7
101 306 4 400 5
110 2801 34 1145 14
111 1515 18 1335 16

today is the time t , then P(t, T ) is deterministic and it should
match the information observed in the market. However, at
any future time t f from today, t < t f < T , P(t f , T ) represents
a random variable whose value is model dependent.

Models for short rate are typically classified depending
upon the number of noisy factors that defines their dynam-
ics. Popular one-factor short-rate models include the Vasicek,
the Hull-White model, and the CIR model and its CIR++
extension, among others. They quickly became of lesser inter-
est due to their limitation when pricing financial instruments
whose payoffs involve the joint distribution of several of such
rates at different maturities, mainly due to their incapability

to exhibit the intrinsic decorrelation among them. Motivated
from this observation, multifactor models appeared to enrich
the correlation structure. As a result, several two-factor mod-
els were proposed, such as the Gaussian-Vasicek model and
the Hull-White two-factor model.

Despite the freedom when modeling the instantaneous
short rate in the models mentioned above, some limitations
may appear when attempting to calibrate a particular model
to the current (observed) market curve of discount factors and
to capture, at the same time, the correlation and covariance
structure of forward rates. The first sound alternative to short-
rate models was introduced by Heath, Jarrow, and Morton
in 1992 [8], developing a general framework for modeling
the instantaneous forward rates. In its multifactor version,
determining the number of noisy factors needed becomes a
trade-off between the ability, with increasing noisy factors, to
better reproduce correlation and covariance structures while
capturing market data, and the computational cost when per-
forming a numerical simulation.

The connection between the forward rates f (t, T ) and the
short rate r(t ) is established through the bond price as

f (t, T ) = − ∂

∂T
log P(t, T ). (A3)

When f (t, T ) is known for all T , we must have

P(t, T ) = e− ∫ T
t f (t,s)ds. (A4)

By differentiating Eq. (A2) with respect to T we obtain

−∂P(t, T )

∂T
= EQB

[
exp

(
−

∫ T

t
r(s)ds

)
r(T )

∣∣∣∣Ft

]
. (A5)

By changing to the T -forward measure QT associated to
the bond price numéraire P(t, T ) we have

−∂P(t, T )

∂T

= EQT

[
exp

(
−

∫ T

t
r(s)ds

)
r(T )

P(t, T )

exp
(− ∫ T

t r(s)ds
)
∣∣∣∣∣Ft

]

= P(t, T )EQT [r(T )|Ft ], (A6)

and therefore,

f (t, T ) = EQT [r(T )|Ft ]. (A7)

As such, in the HJM multifactor model, the evolution of
a risk-neutral zero-coupon bond price satisfies the following
equation:

dP(t, T ) = P(t, T )

{
r(t )dt +

N∑
i=1

(∫ T

t
σi(t, s)ds

)
dWi(t )

}
,

(A8)
where dWi, i = 1, . . . , N , are the uncorrelated Brownian in-
crements associated to the volatilities σi. Using the bond price
dynamics (A8) and (A3), we have

df (t, T ) = α(t, T )dt +
N∑

i=1

σi(t, T )dWi(t ), (A9)

where

α(t, T ) =
N∑

i=1

σi(t, T )
∫ T

t
σi(t, s)ds. (A10)
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TABLE IV. After the fourth iteration, we rotate the measurement basis in x, y, and an arbitrary direction r =
(cos α, −eiβ sin α; eiβ sin α, eiγ cos α), with α = 1.00, β = 0.80, and γ = 0.16. Here we present the complete outcome for each rotation. The
first two qubits correspond to the state |�(n)〉, which encodes the 2-bit estimation of the largest eigenvalue λmax. The last qubit corresponds
to the estimation of the corresponding eigenvector |umax〉. Each experiment has been run a total of 8192 times. The table shows both the
number of times the experiment ends up on each state (under the heading “Counts”) and the percentage it represents over the total number of
runs (“%”).

x rotation y rotation r rotation

Simulator Chip Simulator Chip Simulator Chip

State Counts % Counts % Counts % Counts % Counts % Counts %

000 2215 27 2642 32 2229 27 2503 31 519 6 752 9
001 340 4 599 7 436 5 570 7 2089 26 2341 29
010 633 8 2183 27 631 8 2072 25 236 3 810 10
011 77 1 297 4 145 2 360 4 542 7 1413 17
100 588 7 557 7 549 7 567 7 75 1 160 2
101 4 0 125 2 3 0 133 2 508 6 422 5
110 4249 52 1555 19 4126 50 1736 21 475 6 449 5
111 86 1 234 3 73 1 251 3 3748 46 1845 23

This unique choice for α(t, T ) as a function of the volatility
terms is what prevents arbitrage. As mentioned before, this is
a general framework from which many short-rate models may
be derived, upon the particular choices for the σ terms. How-
ever, not every choice generates a Markovian dynamics. They
must also be carefully selected in order to derive practical
algorithms that are efficient in terms of computational times.
One possibility that ensures Markovianity is to assume that
the volatility factors only depend on the time to maturity, so
σi = σ̄i(T − t ) = σ̄i(τ ). At this point, we can use time series
data to calculate the functions σ̄i. For this purpose, we build
the covariance matrix between the changes in the forward
rates for different time maturities τ j (typically for maturities
at 1 month, 3 months, 6 monts, 1 year, 2 years, etc.). The
result is a symmetric matrix whose diagonal terms are the
variances of the rates, while the off-diagonal terms represent
the covariances between each pair of rates.

Considering all possible time-maturing forwards is compu-
tationally costly for the numerical simulations. Using PCA we
can obtain the most relevant eigenvectors and their associated
eigenvalues. As seen in the literature, most of the evolution
of the curve can be explained by considering two or three
of such factors. Typically, it is observed that whenever the
entries of the first principal component are all similar, then the
dominant movement of the curve will be a parallel shift. Also,
the second component typically accounts for a twist in the
curve. In general, if the eigenvalues are λi and the eigenvectors
are vi, the volatility factors will be given by

σ̄i(τ j ) =
√

λi(vi ) j . (A11)

where λi and vi are the eigenvalues and eigenvectors of the
covariance matrix, respectively, and are estimated from 2 × 2
and 3 × 3 cross-correlation matrices between different time-
maturing forward rates based on historical data.

APPENDIX B: ERROR δ

As we mention in Sec. III, the error δ is an upper bound
of all possible errors. We cannot differentiate where the errors

that we get are coming from since they are a mixture between
the two-qubit gates and measurement errors and the inherent
errors of the system, which does not increase with the depth of
the circuit. Thus, we have to consider the worst possible case,
where all of the possible errors are taking place.

We first run the experiment for the 2 × 2 covariance matrix
and compute the fidelity of our circuit. After running this first
experiment successfully and assuming that all of the errors
that we get are a consequence of the two-qubit gate error, we
estimate the error per two-qubit gate. Thus, the total error δ of
the process might be described as

δ =
∑ Fidelity

number of two-qubit gates
, (B1)

and the error per gate, δtwo-qubit gate, is defined as

δtwo-qubit gate = Fidelity

number of two-qubit gates
. (B2)

To estimate the upper bound of the error that we expect to
suffer when we run the experiment for the 4 × 4 covariance
matrix, we simply multiply δtwo-qubit gate by the number of two-
qubit gates of the corresponding quantum circuit.

APPENDIX C: COMPLETE RESULTS

1. 2 × 2 matrix

For the first part of the circuit we use two qubits for a 2-bit
approximation of the eigenvalue λmax and one to represent the
corresponding eigenvector. We start this part by initializing
the last qubit, which corresponds to the eigenvector estima-
tion, on the state |+〉 = 1/

√
2(|0〉 + |1〉) and project into the

state |y(n)〉 = |11〉. In Table III we show the complete outcome
we get on each iteration. After the fourth iteration the outcome
vector estimating the eigenvector stabilizes and we stop.

In order to improve the accuracy of the solution pro-
vided and to compute the relative phase, we rotate the
measurement basis in x, y, and an arbitrary direction r =
(cos α,−eiβ sin α; eiβ sin α, eiγ cos α), with α = 1.00, β =
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TABLE V. Complete outcome of the quantum phase estimation
algorithm. The first three qubits are dedicated to the binary codifica-
tion of the eigenvalue λ. The last qubit corresponds to the eigenvector
estimated on the previous part of the protocol.

Simulator Chip

State Counts % Counts %

0000 1 0 509 6
0001 119 1 393 5
0010 78 1 1126 14
0011 209 3 475 6
0100 7 0 440 5
0101 13 0 194 2
0110 10 0 730 9
0111 7 0 523 6
1000 2 0 281 3
1001 22 0 216 3
1010 29 0 328 4
1011 14 0 458 6
1100 13 0 308 4
1101 192 2 260 3
1110 4949 60 1409 17
1111 2527 31 542 7

0.80, and γ = 0.16. In Table IV it is possible to see the
outcome we get for each rotation.

After all these operations we get the following estimation
of the eigenvector:

|umax〉 = [(0.87 ± δ) − i(0.10 ± δ)]|0〉
+((0.47 ± δ) + i(0.10 ± δ))|1〉, (C1)

where δ = 0.9 is the error estimated from the qubit and mea-
surement fidelity provided by IBM and the statistical error
related to the number of repetitions. We also get the 2-bit
string estimation of the eigenvalue: �max = 0.11.

We now implement the second part of the protocol, which
consists of applying the quantum phase estimation algorithm
on a four-qubit system. The first three qubits are dedicated
to get a more accurate estimation of the eigenvalue �max and
the last qubit encodes the previously estimated eigenvector.
In Table V we show the outcome we get after performing
this last part of the protocol. Due to the depth of the circuit
implementation we end up losing all coherence when we run
the experiment on the real quantum processor, which can be
verified by looking at the results in Table V. However, looking
at the results we get after running the same experiment on
the QISKIT simulator, we see that the final state of the system
is |111〉 ⊗ [0.8150|0〉 + 0.5794|1〉], which is an almost ideal
result for the 3-bit string estimation of the eigenvalue. The
predicted eigenvalue � = 0.111 is the binary representation
of the number 0.875, which is a good approximation of the
exact eigenvalue we are looking for.

2. 4 × 4 matrix

In the 4 × 4 case we follow the same steps as in the
2 × 2 case. We start with the state |b0〉 = (|00〉 + |01〉 +
|10〉 + |11〉)/2, and then we apply four times the previously

TABLE VI. Complete outcome of each iteration of the first part
of the algorithm for the 4 × 4 case. The first qubit corresponds to
the state |�(1)〉, which encodes the 1-bit estimation of the largest
eigenvalue λmax. The next two qubits hold the estimation of the
corresponding eigenvector |umax〉. Each experiment has been run a
total of 8192 times. The table shows both the number of times the
experiment ends up on each state (under the heading “Counts”) and
the percentage it represents over the total number of runs (“%”).

Simulator Chip

State Counts % Counts %

First iteration
000 639 8 1131 14
001 1096 13 1098 13
010 195 2 1073 13
011 1570 19 991 12
100 2217 27 1144 14
101 684 8 985 12
110 1730 21 848 10
111 61 1 922 11

Second iteration
000 833 10 1414 17
001 1302 16 1105 13
010 59 1 1122 14
011 134 2 916 11
100 3360 41 1025 13
101 910 11 902 11
110 1533 19 883 11
111 61 1 825 10

Third iteration
000 829 10 1401 17
001 1720 21 1069 13
010 116 1 1209 15
011 71 1 890 11
100 3087 38 1069 13
101 906 11 879 11
110 1405 17 883 11
111 58 1 792 10

Fourth iteration
000 797 10 1325 6
001 1735 21 1036 13
010 144 2 1055 13
011 87 1 1249 15
100 3011 37 889 11
101 899 11 854 10
110 1464 18 964 12
111 55 1 820 10

described iterative process. In Table VI we provide a complete
description of the results obtained for each iteration. As in
the previous case, we then measure in different bases in order
to compute the relative phases (see Table VII). Due to the
quantum circuit implementation being much deeper now than
in the previous case, decoherence prevents us from recovering
any remarkable result when running the experiment on the
real quantum processor. The estimation of the eigenvector we
get after running the protocol on the simulator is

|umax〉 = (0.6287 + i0.3991)|00〉 + (0.4010 + i0.0693)|01〉
+(0.4807−i0.1964)|10〉 + (0.0305 + i0.0959)|11〉.
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TABLE VII. List of the complete results obtained for the 4 × 4 case after rotating the basis in three arbitrary directions. The first rotation
consists in applying a Hadamard gate to the first qubit, which corresponds to the change of basis r = (cos θ, −eiλ sin θ ; eiφ sin θ, ei(λ+φ cos θ ),
with θ = π

4 , λ = π

2 , and φ = 0 in the planes (|00〉 , |10〉) and (|01〉 , |11〉). The second rotation consists in applying a Hadamard gate to the
second qubit, which corresponds to the same change of basis but in the planes (|00〉 , |01〉) and (|10〉 , |11〉). The third rotation is the combination
of the two previous rotations. The first qubit corresponds to the state |�(1)〉 and encodes the 1-bit estimation of the largest eigenvalue λmax. The
last two qubits correspond to the estimation of the eigenvector |umax〉. Each experiment has been run a total of 8192 times. The table shows
both the number of times the experiment ends up on each state (under the heading “Counts”) and the percentage it represents over the total
number of runs (“%”).

Rotation I Rotation II Rotation III

Simulator Chip Simulator Chip Simulator Chip

State Counts % Counts % Counts % Counts % Counts % Counts %

000 150 2 1239 15 1229 15 987 12 1344 16 1008 12
001 4866 59 988 12 197 2 1128 14 686 8 998 12
010 384 5 1253 15 335 4 915 11 187 2 963 12
011 186 2 1077 13 770 9 1016 12 263 3 1117 14
100 1830 22 789 10 2262 28 1184 14 2382 29 980 12
101 66 1 777 9 821 10 1059 13 2633 32 787 10
110 79 1 770 9 450 5 944 12 392 5 1198 15
111 631 8 1299 16 2128 26 959 12 305 4 1141 14

APPENDIX D: ERROR ESTIMATION

The purpose of this section is to explain shortly how we
obtained the error bars shown in Fig. 2. The argument we used
to estimate the errors in state populations is the following.
We suppose an experimental error of 8% in each two-qubit
gate, which makes a total error of 24% for the experimental
setup used in the estimation of the eigenvector in the 2 × 2

case. We also have to take into account the statistical error,
which goes as N− 1

2 . Since in our case the number of shots is
8192, this error is around 11%. Thus, we assumed a total error
of 35%. This means that from 8192 results approximately
2900 are wrong. Dividing this quantity by the number of
states (8) we get an error of 360 for the number of counts
per state, which is the value we used to generate the error
bars.
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