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Abstract: A new discrete susceptible-exposed-infectious-recovered (SEIR) epidemic model is pre-
sented subject to a feedback vaccination effort involving two doses. Both vaccination doses, which are
subject to a non-necessarily identical effectiveness, are administrated by respecting a certain mutual
delay interval, and their immunity effect is registered after a certain delay since the second dose.
The delays and the efficacies of the doses are parameters, which can be fixed in the model for each
concrete experimentation. The disease-free equilibrium point is characterized as well as its stability
properties, while it is seen that no endemic equilibrium point exists. The exposed subpopulation
is supposed to be infective eventually, under a distinct transmission rate of that of the infectious
subpopulation. Some simulation examples are presented by using disease parameterizations of the
COVID-19 pandemic under vaccination efforts requiring two doses.

Keywords: discrete epidemic model; delayed feedback vaccination control; vaccination doses;
COVID-19 pandemic

1. Introduction

Typical formulations used to describe epidemic models are based on either differential
or difference equations. In that way, the basic reproduction number and its physical and
biological insight are discussed in [1] which is related to pertussis and measles descriptions.
In addition, feedback vaccination laws have been developed using techniques such as
sliding-mode control or linear or impulsive feedback vaccination [2,3]. The transient
evolution of epidemic diseases is also an important issue for properly describing the day-to-
day time-transmission levels and the appropriate eventual interventions to perform since
the stability properties are more related to the stationary states, typically the disease-free
and the endemic ones. For instance, in [4], an analytic methodology is given to predict and
monitor the dates of maximum hospital occupancy of beds. The differential and difference
models have also been corrected with other powerful analysis techniques. In that way, the
bifurcation analysis and the stability of a fractional order susceptible-infectious-recovered
(SIR) epidemic model with delay has been discussed in [5]. On the other hand, discretized
and discrete-time epidemic models have been proposed in the background literature.
The different approaches can basically consist of the discretization of continuous-time-
based models by numerical methods or in the development of discrete models based in
difference equations. See, for instance, [6–12] and some of the references therein. It turns
out that since the relevant time of the dynamics evolution in epidemics is relatively long,
typically for instance, on the orders of days or weeks, discrete-oriented epidemic models
can be found to be appropriate for describing and monitoring the infection evolution
through time. An extended SEIR model which incorporates its usual subpopulations,
the asymptomatic, and the dead-infective subpopulations has been proposed in [6]. That
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model has been proposed as appropriate for the Ebola disease. On the other hand, a
multistaged SIR was discussed in [7]. Such a model considers several coupled layers of
infectious subpopulation for a coupled disease transmission from each layer to the adjacent
ones. Moreover, discrete susceptible-infectious-recovered-susceptible (SIRS) models have
also been studied in heterogeneous networks [8]. The vaccination effort can be considered
either as an external forcing term or as a generator of a new subpopulation, the so-called
vaccinated one. Such a subpopulation becomes dynamically coupled to the remaining
ones in the model rather than as a specific forcing control [9]. Other types of epidemic
models, such as, for instance, discretized susceptible-infectious-recovered (SIR)-type ones,
or susceptible-infectious-susceptible (SIS)-type ones, have been proposed in [10–13] and
some of the references therein.

Recently, a lot of research is being dedicated to studying and monitoring the new
COVID-19 pandemic using registered data, like infection and detection tests, hospital bed
occupancies, and mortality-related records. Normally, such data are updated in discrete
time, typically, day to day or week to week. Therefore, discrete epidemic models have been
found appropriate for processing such data. See, for instance, [14–36] and some related
references therein. Studies on particular data for different countries or regions can be found
in the literature related to COVID-19, sometimes related to public interventions, such as
quarantines, isolation measures, lockdowns, use of masks, social distance rules, etc. See,
for instance, those concerned with Saudi Arabia [16,17], Madrid capital town, metropolitan
area and surrounding administrative area [18,19], India [23,24], Italy [25], United States [26],
Canada and several of its provinces [28], Switzerland, [29], Brazil [30], etc. In addition, the
analysis of data has been sometimes accompanied with mathematical analysis techniques
on the pandemic evolution related to public interventions or mathematically founded
analysis of the obtained data. In that way, the impact of lockdowns is investigated in [17],
while the effects of total or partial quarantines are investigated in [18] for a SEIAR model,
which incorporates the asymptomatic subpopulation to the typical SEIR model by consid-
ering the isolated population as removed either from the infectious individuals or from the
susceptible ones. In [19], a more general model of potential usefulness in the description
and monitoring of COVID-19 has been proposed, discussed, and tested with recorded
real data. Such a model includes three different infectious subpopulations, namely, the
slightly infections, the hospitalized ones and the ones staying at the intensive care units
are considered. On the other hand, the implementation of control rules oriented either
toward reducing the number of exposed individuals or toward increasing the number of
treated individuals is proposed and discussed in [20] while impulsive optimal control tech-
niques are developed in [21]. In particular, the analysis technique proposed in [20] relies
on the fact that the epidemics is endemic. In [23], the inadequacy of the implementation
of open-loop (i.e., without using feedback) controls is emphasized contrarily to the use
of closed-loop controls like, for instance, sliding mode-based control or other feedback
laws. Moreover, it has been proved in [27] that the suppression strategies are appropriate,
provided that they are sufficiently strong while taken through prompt decisions, whereas
the mitigation strategies can fail because of eventual unfavorable combinations of delays,
unstable dynamics, and uncertainties in the model.

This paper proposes and investigates a new discrete SEIR model subject to a linear
two-stage delayed feedback vaccination effort having in mind that some of the recently ap-
proved vaccines for COVID-19 require two doses for increasing their average effectiveness.
Such doses are administered to the susceptible subpopulation with a delay period, and
their potential benefits on immunity appear several days after the administration of the
second doses. In fact, the model considers the injection of two doses with different delays
and eventual average different effectiveness. The proposed model considers also that the
exposed have a transmission rate exposed-susceptible which may be eventually distinct
from the infectious-susceptible transmission rate. The underlying idea is that in some
infectious diseases, such as, for instance, in the COVID-19 pandemic, there are contagions
from both exposed to susceptible and from infectious to susceptible. The delays of the
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vaccination and expected achievable immunity as well as the transmission rates are model
parameters which can be updated for different experiments, [37–39].

The paper is organized as follows: Section 2 is devoted to present the new mentioned
proposed discrete susceptible-exposed-infectious-recovered (SEIR) epidemic model with
delayed double-dose linear feedback vaccination. Section 3 discusses the non-negativity
and boundedness of the solution under any given finite non-negative initial conditions,
as well as the existence and components of the disease-free equilibrium point and its
stability properties. It is also proved that the endemic equilibrium point does not exist
for the proposed model in Section 4. Section 5 presents and discusses some examples of
the proposed model related to the evolution of the COVID-19 pandemic. Finally, a set of
illustrative concluding remarks ends the paper. Some auxiliary technical results are proved
in Appendix A which are supported by general necessary mathematical results given or
proved in [40–44].

2. The Discrete SEIR Epidemic Model Subject to Two Vaccination Doses

Note that the rationale of the sampling period interpretation is unity, typically one
day or one week for a correct practical use of the model. The model parameters should be
expressed in values of dimensionality being the inverse of the sampling period units. The
SEIR epidemic model equations may be rewritten equivalently as follows:

Sk+1 = (ak − βk Ik − βe
kEk)Sk −V2,k−d2 −V1,k−d1−d2 (1)

Ek+1 = (1− µ)Ek + (βk Ik + βe
kEk)Sk (2)

Ik+1 = (1− γ)Ik + µEk (3)

Rk+1 = Rk + γIk + V2,k−d2 + V1,k−d1−d2 (4)

V2,k−d2 = Kk−d2 ρ2Sk−d2 (5)

V1,k−d1−d2 = Kk−d1−d2 ρ1Sk−d1−d2 (6)

for any integer k ∈ Z0+ = Z+ ∪ {0} and any given finite initial conditions S0 ≥ 0, E0 ≥ 0,
I0 ≥ 0 and R0 ≥ 0 and Sk = Ek = Ik = Rk = 0 for k ∈ Z−, where S, E, I and R are the
susceptible, exposed, infectious and recovered subpopulations, respectively. The forcing
terms of Equations (5) and (6) are the two doses of vaccination on the susceptible which are
generated via linear feedback and which are subject to integer delays d1 + d2 (first dose)
and d2 (second dose), respectively, with respect to each current sampling instant, where
min(d1, d2) > 0. In the above model:

– ak is the average recruitment rate proportional to the susceptible at the kth sampling
instant related; for instance, to the rates of births and a is a constant reference value
for the above sequence; for instance, its average over the whole time period under
study and typically it might be unity.

– βk and βe
k are, respectively, the average transmission rates of the infectious and

exposed subpopulations at the k− th sampling instant.
– γ is the average recovery rate.
– µ is the average incubation rate.
– Kk is the vaccination rate (a feedback control gain) which can be eventually depending

on the sampling instants. It is assumed in the sequel that {Kk}∞
0 ⊂ [0, 1].

– ρ1, ρ1 + ρ2 are parameters in (0, 1] which quantify the average effectiveness (or
efficiency) of the respective doses. In particular, ρ2 gives the extra effectiveness
obtained from the injection of the second dose. In this context, ρ1 + ρ2 ∈ [0, 1]
and ρ1 + ρ2 = 1 refer to the ideal situation, unattainable in practice, of 100 percent
effectiveness of the combined injection of the two doses. Note that ρ1 = ρ2 =
ρ1 + ρ2 = 0 refers to the worst case where the vaccination is fully superfluous.

Typically, we can consider two different transmission rates for the exposed and in-
fectious since the exposed are not usually identified to be allocated under quarantine or
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isolation, and furthermore, it has been argued that the infective periods are, in general,
of distinct time length for both stages in the case of COVID-19 pandemic. It turns out
that these transmission rates can be time varying, in general, since the transmission rates
can depend on the intervention measures and on the social customs in the geographic
area under study. Note that, even if the vaccination is performed under the same gain K
for both doses, it can be considered that the effectiveness if only the first injected dose is
smaller than if both of them are injected. Therefore, it can be typically argued that ρ2 > 0
leads to ρ1 + ρ2 > ρ1. It can also be pointed out that the proposed discrete-time model
corresponds to the backward Euler discretization on the continuous –time SEIR model
given by:

.
S(t) = ν(t)S(t)− (β′ I(t) + β′eE(t))S(t)−V1

′(t− d1 − d2)−V2
′(t− d2).

E(t) = −µ′E(t) + (β′ I(t) + β′eE(t))S(t)
.
I(t) = µ′E(t)− γ′ I(t)
.
R(t) = γ′ I(t) + V1

′(t− d1 − d2) + V2
′(t− d2)

whose discretization is given by

Sk+1 = Sk + hνkSk − (hβ′ Ik + hβ′eEk)Sk − hV1,k−d1−d2
′ − hV2,k−d2

′

= (1 + hν)Sk − (hβ′ Ik + hβ′eEk)Sk − hV1,k−d1−d2
′ − hV2,k−d2

′

Ek+1 = Ek − hµ′Ek + (hβ′ Ik + hβ′eEk)Sk = (1− hµ′)Ek + (hβ′ Ik + hβ′eEk)Sk
Ik+1 = Ik + hµ′Ek − hγ′ Ik = (1− hγ′)Ik + hµ′Ek
Rk+1 = Rk + hγ′ I(t) + hV1,k−d1−d2

′ + hV2,k−d2
′

so that the discretized and the proposed discrete-time model are equivalent if the following
correspondence is performed

ak = 1 + hνk
β = hβ′, βe = hβ′e

V1,k−d1−d2 = hV1,k−d1−d2
′, V2,k−d2 = hV2,k−d2

′

µ = hµ′, γ = hγ′

However, the model is originally set up in discrete-time instead as the discretization
of a continuous-time one. One of the daunting challenges to counteract the epidemic
spreading is the design of the vaccination functions. The control theory provides a frame-
work to systematically design them in order to fulfill with a prescribed control objective.
Thus, an output feedback approach is adopted in this work and discussed in the sequel.
However, control theory has developed many analytical tools that allows one to face this
problem by using other approaches such as state feedback and feedback linearization [2],
output-controllability [19], optimal control [21], impulsive control [22], sliding mode [23]
and lockdown and quarantine [18,28], to cite just a few.

The model (1)–(6) may be compacted after replacing the vaccination controls (5)–(6) in
the susceptible and recovered subpopulations dynamics, which result in:

Sk+1 = aSk − K
(
ρ2Sk−d2 + ρ1Sk−d1−d2

)
+ uk (7)

Ek+1 = (1− µ)Ek + (βk Ik + βe
kEk)Sk (8)

Ik+1 = (1− γ)Ik + µEk (9)

Rk+1 = Rk + γIk + K
(
ρ2Sk−d2 + ρ1Sk−d1−d2

)
− gk (10)

uk = [ak − a− βk(Ik + λe
kEk)]Sk + gk (11)

gk =
(
K− Kk−d2

)
ρ2Sk−d2 +

(
K− Kk−d1−d2 ρ1

)
Sk−d1−d2 (12)

for any integer k ∈ Z0+, where λe
k = βe

k/βk and K and a are reference values for the
vaccination rate gain and recruitment, for instance, the estimated average values of their
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asymptotic limits if they converge. In particular, a scalar discrete function of the form of the
susceptible subpopulation (7) is discussed in detail in Appendix A from the points of view
of stability and convergence to a limit. Those auxiliary results based on a similar discrete
Equation (7) subject to (11) are then used to discuss the stability of the proposed epidemic
model.

3. Non-Negativity, Stability and Disease-Free Equilibrium Point

The following result which relies on boundedness, convergence and non-negativity of
the solution is direct by summing up (7) to (10) (or (1) to (4)) by considering (7) to (11) (or
(1) to (6)):

Theorem 1. The following properties hold:

(i) Assume that N0 = S0 + E0 + I0 + R0 = 1. Then, the total population Nk = Sk + Ek + Ik +
Rk = 1; ∀k ∈ Z0+ if ak ≡ 1.

(ii) Nk = 1 + ∑k−1
j=0

(
aj − 1

)
Sj; ∀k ∈ Z0+

(iii) {Sk}∞
k=0 is non-increasing, and then bounded and convergent, if

V2,k−d2 + V1,k−d1−d2 = Kk−d2 ρ2Sk−d2 + Kk−d1−d2 ρ1Sk−d1−d2 ≥ (ak − βk(Ik + λe
kEk)− 1)Sk; ∀k ∈ Z0+ (13)

leading to

1 + Sk−1 ∑k−1
j=0

(
aj − 1

)
≤ Nk ≤ 1 + S0 ∑k−1

j=0

(
aj − 1

)
; ∀k ∈ Z0+ (14)

and, if the average value of the sequence {ak}∞
k=0 is unity, then there exists the limit lim

k→∞
Nk =

N0 = 1. {Sk}∞
k=0 is strictly decreasing if the inequality in (13) is strict.

(iv) {Sk}∞
k=0 is non-negative if and only if

V2,k−d2 + V1,k−d1−d2 = Kk−d2 ρ2Sk−d2 + Kk−d1−d2 ρ1Sk−d1−d2 ≤ (ak − βk(Ik + λe
kEk))Sk ; ∀k ∈ Z0+ (15)

provided that the infectious transmission rate is sufficiently small according to βk ≤ ak
Ik+λe

kEk
;

∀k ∈ Z0+ which is guaranteed if βk ≤ ak
(1+λe

k)Nk
; ∀k ∈ Z0+.

(v) Assume that µ ∈ [0 , 1), γ ∈ [0 , 1) and that (15) holds. Then, any sequence trajectory
solution of (1)–(4) subject to (5)–(6) is non-negative.

Proof. If ak = 1; ∀k ∈ Z0+ then N0 = S0 + E0 + I0 + R0 = 1 implies directly that
Nk = Sk + Ek + Ik + Rk = N0 = 1; ∀k ∈ Z0+ by summing up (1) to (4). The same
calculations prove Property (ii) in the general case. To prove, Property (iii), note from (3)
that, under the given constraint, {Sk}∞

k=0 is non-increasing so that (14) holds directly from
Property (ii) since:

Sk+1
Sk

= ak − βk(Ik + λe
kEk)−

V2,k−d2 + V1,k−d1−d2

Sk
≤ 1; ∀k ∈ Z0+ (16)

Note that {Sk}∞
k=0 is also bounded and convergent since it is non-increasing and its

initial condition is finite by hypothesis. Property (iv) follows directly by replacing (15)
with (1) subject to S0 ≥ 0 and to βk ≤ ak

Ik+λe
kEk

(guaranteed if βk ≤ ak
(1+λe

k)Nk
); ∀k ∈ Z0+

since Vk ≥ 0; ∀k ∈ Z0+. If, addition, µ ∈ [0 , 1), γ ∈ [0 , 1) then from (2)–(4) and
{Sk}∞

k=0 ⊂ R0+ = R+ ∪ {0} yields {Ek}∞
k=0 ⊂ R0+, {Ik}∞

k=0 ⊂ R0+ and {Rk}∞
k=0 ⊂ R0+,

since the initial conditions of all the subpopulations are non-negative. Property (v) is
proved. �
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Remark 1. The non-negativity property of the susceptible of Theorem 1 (iv) is a necessary constraint
for a well-posedness of the model. Note that the condition of sufficiently smaller transmission rate
of the Infectious βk ≤ ak

(1+λe
k)Nk

; ∀k ∈ Z0+, which guarantees according to Theorem 1 (iv)

that the sequence of susceptible is non-negative if S0 ≥ 0 and the vaccination satisfies (15), is
reasonable since the transmission rate decreases as the total population increases in the popular class
of true-mass action epidemic models. The property of the susceptible sequence being non-increasing
[Theorem 1 (iii)] describes appropriately the disease growing since it starts until its first maximum
peak.

Remark 2. It turns out the need of the assumption {Kk}∞
0 ⊂ [0, 1] for the vaccination gain

sequence since the daily vaccination (or, in general, the one for the used sampling period in the
model parameterization) is proportional to the susceptible subpopulation. Therefore, note that the
condition (13) for {Sk}∞

k=0 to be non-increasing requires the necessary condition:

ρ2Sk−d2 + ρ1Sk−d1−d2 ≥ (ak − βk(Ik + λe
kEk)− 1)Sk; ∀k ∈ Z0+ (17)

to be fulfilled by the vaccination gain unity, which is the maximum possible one, provided that
the existing stock vaccines covers such a need. Note that the above condition always holds if
{Sk}∞

k=0 is non-negative and ak ≤ βk
(

Ik + λe
kEk
)
+ 1; ∀k ∈ Z0+ and it also holds if {Sk}∞

k=0 is
non-negative, ak > βk

(
Ik + λe

kEk
)
+ 1; ∀k ∈ Z0+. This second condition is guaranteed by under

unity vaccination gain:

(ρ1 + ρ2)min
(
Sk−d2 , Sk−d1−d2

)(
ak − βk

(
Ik + λe

kEk
)
− 1
)
Sk

≥ 1; ∀k ∈ Z0+ (18)

In practice,
min

(
Sk−d2

, Sk−d1−d2

)
Sk

is slightly greater than unity if the susceptible sequence is
decreasing since d1 and d1 + d2 are typically delays of one and three weeks, in the case of SARS-
CoV-2 which do not affected significantly the variation of the susceptible population levels. In
addition, ak − βk

(
Ik + λe

kEk
)
− 1 is typically close to zero for small infection levels compared

to the susceptible population values. Therefore, for reasonable vaccine efficacies, (18) holds if
ak > βk

(
Ik + λe

kEk
)
+ 1; ∀k ∈ Z0+.

Note that the condition (15) for the susceptible sequence {Sk}∞
k=0 to be non-negative requires

the necessary condition to be fulfilled by some maximum possible vaccination gain rate K ≤ 1 (since
this feature would ensure that it holds for any lower effort as well), that is,(

ak − βk
(

Ik + λe
kEk
))

Sk ≥ 0; ∀k ∈ Z0+ which holds if S0 ≥ 0 if βk ≤ ak
Ik+λe

kEk
; ∀k ∈ Z0+

which is guaranteed if βk ≤ ak
(1+λe

k)Nk
; ∀k ∈ Z0+.

The existence of a disease- free equilibrium point is discussed in the subsequent result:

Theorem 2. Assume that ρ1 + ρ2 ≤ 1, βk ≤ ak
Ik+λe

kEk
(guaranteed if βk ≤ ak

(1+λe
k)Nk

); ∀k ∈ Z0+,

{ak}∞
k=0 → a(≤ 1) , {Kk}∞

k=0(⊂ [0, 1])→ K and assume also that the constraints (13) and (15)

hold. Then, there is a disease-free equilibrium point xd f =
(

Sd f , 0, 0, Rd f = Nd f − Sd f

)T
, being

in general dependent on the initial conditions, with Sd f ≥ 0 and Rd f = Nd f − Sd f , where
{Nk}∞

k=0 → Nd f , such that Sd f = 0 if K 6= a
ρ1+ρ2

.

Proof. Note that {Kk}∞
k=0(⊂ [0, 1])→ K implies that K ∈ [0, 1]. Note also that Ed f = 0

and Id f = 0 are trivial solutions of (2) and (3) if {Sk}∞
k=0 is bounded. It follows furthermore

that {Sk}∞
k=0 is non-increasing and bounded from Theorem 1 (iii), {ak}∞

k=0 → a(≤ 1) and
(13) holds. As a result, if furthermore, (15) holds then {Sk}∞

k=0(⊂ R0+)→ Sd f (≥ 0) with
Sd f = 0 if K 6= a

ρ1+ρ2
subject to the assumed constraint ρ1 + ρ2 ≥ 1 since K ∈ [0, 1]. Note

that
Nk+1 = akSk + Ek + Ik + Rk = Nk + (ak − 1)Sk (19)
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implies that Nk+1 − Nk = (ak − 1)Sk and {ak}∞
k=0 → 1 implies that {Nk}∞

k=0 → Nd f and
{Rk}∞

k=0 → Rd f = Nd f − Sd f since {Ek}∞
k=0 → Ed f = 0 and {Ik}∞

k=0 → Id f = 0 . �

The subsequent result gives conditions for both the infection and the susceptibility to
asymptotically vanish implying convergence of the solution to a disease-free equilibrium
point without susceptible individuals. Some supportive auxiliary results used in its proof
are given in Appendix A.

Theorem 3. Assume that the constraint (15) holds, so that any solution sequence is non-negative
for non-negative initial conditions. Assume also that the first assumptions below, and, furthermore,
at least one of the assumptions 2 to 5 below also holds:

(1) µ ∈ [0, 1), γ ∈ [0, 1), ρ1 + ρ2 ≤ 1, Kk ≤ ak
Ik+λe

kEk
(guaranteed if βk ≤ ak

(1+λe
k)Nk

);

∀k ∈ Z0+, {ak}∞
k=0 → a(≤ 1) , {βk}∞

k=0 → β ,
{

λe
k
}∞

k=0 → λe , {Kk}∞
k=0 → K .

(2) Either the constraint (13) holds with strict inequality for all k ∈ Z0+ and K 6= a
ρ1+ρ2

.

(3) K ∈ (0, min(K̄, 1)), where:

K̄ = sup
{

y ∈
(

a− 1
ρ1 + ρ2

,
1 + a

ρ1 + ρ2

)
: y < 1/ f (y)

}
(20)

f (y) = sup
θ∈(0,2π)

√√√√ (ρ2(cos(θd2)− 1) + ρ1(cos(θ(d1 + d2))− 1))2 + (ρ2sin(θd2) + ρ1sin(θ(d1 + d2)))
2

1 + (a− (ρ1 + ρ2)y)
2 − 2(a− (ρ1 + ρ2)y)cosθ

(21)

and
|Kk − K| = o

(
‖x̂k‖−1

)
; |ak − a| = o

(
‖x̂k‖−1

)
(22)

where x̂k =
(

xk, xk−1, . . . , xk−d2 , . . . , xk−d1−d2

)T .

(4) a ∈ (0, 1), K ∈
[

0, 1/ sup
θ∈[0,2π)

∣∣∣∣∣ρ2e−iθd2 + ρ1e−iθ(d1+d2)

eiθ − a

∣∣∣∣∣
)

(23)

and (22) holds.

(5) a ∈ (0, 1), K ∈

0,

(
c−d1

1 − a
)

c1

ρ1 + ρ2c2

 (24)

Then, there exists a globally asymptotically stable disease-free equilibrium point xd f =(
0, 0, 0, Rd f = Nd f

)T
and {Nk}∞

k=0 → Nd f .

Proof. The above assumptions 1 and 2 guarantee that {Sk}∞
k=0 → 0 , and that {Sk}∞

k=0
is bounded, from Theorem 1 and Theorem 2 for any given non-negative finite initial
conditions. Note also that, from (2) and (3), {Ek}∞

k=0 → 0 and {Ik}∞
k=0 → 0 since µ ∈ [0, 1)

and γ ∈ [0, 1).
In addition, any of the assumptions 3 or 4, together with the properties {Ek}∞

k=0 → 0
and {Ik}∞

k=0 → 0 guarantees that {Sk}∞
k=0 → 0 , and {Sk}∞

k=0 is bounded, for any given
non-negative finite initial conditions from Theorem A1 [(i)–(ii)] and Corollary A1 of
Appendix A. The same result also holds under the assumption 5 according to Theorem A3
(i) of Appendix A.

Thus, the disease-free equilibrium point xd f =
(

0, 0, 0, Rd f = Nd f

)T
exists under the

joint assumptions 1 and 2 and under the assumption 1 jointly with one of the assumptions
3 to 5. Now, note that

Since {βkSk}∞
k=0 → βSd f = 0 , Equations (2) and (3) can be compacted as follows:
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[
Ek+1
Ik+1

]
=

[
1− µ + λe

kβkSk βkSk
µ 1− γ

][
Ek
Ik

]
=

[
1− µ + λeβSd f βSd f

µ 1− γ

][
Ek
Ik

]
+

[
β
(

λe
kSk − λeSd f

)
β
(

Sk − Sd f

)
0 0

][
Ek
Ik

]
=

[
1− µ 0

µ 1− γ

][
Ek
Ik

]
+

[
βλe

kSk βSk
0 0

][
Ek
Ik

]
; k ∈ Z0+

(25)

Note that the spectral radius r of the matrix
[

1− µ 0
µ 1− γ

]
is max(1− µ, 1− γ) < 1

since µ ∈ [0, 1) and γ ∈ [0, 1) and the above matrix is a convergent matrix. Since there is
some matrix norm of arbitrary close value to the spectral radius there exist some positive

real constants ε ≤ δ0 − 1 + min(µ, γ) and r ≤ δ0 < 1 such that
∥∥∥∥[ 1− µ 0

µ 1− γ

]∥∥∥∥ ≤ δ0.

In addition, since {βkSk}∞
k=0 → βSd f = 0 and

{
λe

k
}∞

k=0 → λe and a decreasing nonnega-

tive real sequence {δ1k}∞
k=0 → 0 having a strictly decreasing subsequence

{
δ1Nnk

}∞

k=0
→ 0

such that for any given δ1Nnk
, there exists a non-negative integer Nnk such that∥∥∥∥[ βλe

kSk βSk
0 0

]∥∥∥∥ ≤ δ1Nk ; j = Nnk , Nnk+1, . . . , Nnk+1−1 such that
{

Nnk

}∞
k=0 is strictly

increasing. Thus, one gets from (25) that:∥∥∥∥∥
[

ENnk+1

INnk+1

]∥∥∥∥∥ ≤ δ
Nnk+1−Nnk
0

∥∥∥∥∥
[

ENnk
INnk

]∥∥∥∥∥+ δ1Nk

nk+1−1

∑
j=nk

δ
nk+1−1−j
0 ; k ∈ Z0+ (26)

so that

{∥∥∥∥∥
[

ENnk
INnk

]∥∥∥∥∥
}∞

k=0

has a strictly decreasing subsequence which converges to zero

for any given finite non-negative initial conditions. In view of (2)–(3), that property
also implies that {Ek}∞

k=0 → 0 and {Ik}∞
k=0 → 0 for any given non-negative finite initial

conditions and then (25) is globally asymptotically stable. Since it has been already proved

that {Sk}∞
k=0 → 0 then xd f =

(
0, 0, 0, Rd f = Nd f

)T
is globally asymptotically stable and

{Nk}∞
k=0 → Nd f . �

The next result gets condition for which the stationary model has a stable infective
substate, irrespective of the susceptible being zero at the equilibrium point or not. It is
found that there exists a critical transmission rate under which the stationary substate of the
infective model is globally asymptotically stable. Under the extra conditions from Theorem
3, the critical transmission rate becomes infinity since the susceptible subpopulation is
zero at the disease-free equilibrium point. As a result, the disease-free equilibrium point
is globally asymptotically stable for any value of the transmission rate, and there is no
endemic attractor.

Theorem 4. Assume µ ∈ [0, 1) and γ ∈ [0, 1). Then, the stationary infective substate (25)
has stable characteristic roots if β ∈ [0, βc ), where βc = µγ

(µ+λeγ)Sd f
so that it is globally

asymptotically stable.
In addition, if the conditions of Theorem 2 hold with K 6= a

ρ1+ρ2
then βc = +∞.

The stable solution sequence is guaranteed to be, furthermore, non-negative for any non-
negative finite initial conditions if all the conditions of Theorem 3 hold.

Proof. If {βkSk}∞
k=0 → βSd f = s and

{
λe

k
}∞

k=0 → λe , then the characteristic Equation of
(25) is:

λ2 + bλ + c = 0 (27)
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where
b = b(s) = µ + γ− (2 + λes) (28)

c = c(s) = (1− µ + λes)(1− γ)− µs (29)

Note that b(0) = µ + γ − 2 < 0 and c(0) = (1− µ)(1− γ) > 0. The coefficients
of the polynomial defining the characteristic equation for s = 0, ordered in decreasing
order, have two changes of sign. According to Descartes’ rule of signs, such a polynomial
has either two or zero positive real roots. Note that by simple inspection or, equivalently,
according to the unforced part of (25), the characteristic Equation (27) has in fact two
positive real characteristic roots for s = 0 within the unit complex circle centered at zero
which are λ1 = 1− µ and λ2 = 1− γ. Now, by inspection, b(s) = b(0)− λes < 0 for all
s ≥ 0. It is now discussed a valid range of non-negative values of s which guarantees that
c(s) = c(0) + (λe(1− γ)− µ)s remains to be positive. Write by convenience s = σµγ

µ+λeγ .
Then, c(s) > 0 if and only if ĉ(σ) > 0, where: ĉ(σ) = (µ + λeγ)c(s) = (µ + λeγ)c(0)−
σµγ(µ− λe(1− γ)) > 0 for any real σσ if λe ≥ µ/(1− γ) with the eventual negative real
values having no interest since s ≥ 0 and, if λe < µ/(1− γ) then ĉ(σ) > 0 if

σ <
µ + λeγ

µ− λe(1− γ)

(1− µ)(1− γ)

µγ
=

µ + λeγ

µ + λeγ− λe

(
1− µ− γ

µγ
+ 1
)
= 1 + σ0

for some real σ0 > 0. In both cases, that is, irrespective of λe, c(s) > 0 if s = σµγ
µ+λeγ and

σ ∈ [0, 1]. Since there are two real positive characteristic roots for s = 0 from Descartes
rule of signs (since b(0) < 0 and c(0) > 0) and since the characteristic roots are continuous
functions of the argument s and b(s) < 0 and c(s) > 0 for s = σµγ

µ+λeγ with σ ∈ [0, 1],

one concludes that the characteristic roots are real (and positive) if s = βSd f <
µγ

µ+λeγ . It
remains now to prove that those real positive roots are within the open unit circle. The two
(real) within the complex open circle or radius unity centered at the origin of the complex
plane if and only if both roots of (27), subject to (28)–(29), are within the open unit circle
centered at zero in the complex plane, namely if and only if:

−1 < λ1,2 =
2−µ−γ+λes±

√
(2−µ−γ+λes)2+4(µs−(1−µ+λes)(1−γ))

2 < 1 (30)

equivalently, if and only if,

µ + γ− λes− 4< −
√

λe2 s2 + (γ− µ)2 + 4µs + 2λes(γ− µ)

≤
√

λe2 s2 + (γ− µ)2 + 4µs + 2λes(γ− µ) < µ + γ− λes
(31)

equivalently, if and only if,√
λe2 s2 + (γ− µ)2 + 4µs + 2λes(γ− µ) < min(µ + γ− λes , 4 + λes− µ− γ) = µ + γ− λes (32)

since the last equality follows directly since µ, γ ∈ (0, 1). Taking the squares in both sides
of (32) yields that it is equivalent to

λe2
s2 + (γ− µ)2 + 4µs + 2λes(γ− µ) < λe2

s2 + (µ + γ)2 − 2λes(µ + γ) (33)

and also equivalent to

(γ− µ)2 + 4µs + 2λes(γ− µ) < (µ + γ)2 − 2λes(µ + γ) (34)

and, furthermore, equivalent to

(γ− µ)2 + 4µs + 4λesγ < (µ + γ)2 (35)
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which holds if and only if

s = βSd f <
µγ

µ + λeγ
(36)

Since s = βSd f ≥ 0, the constraint (36) implies that the characteristic Equation (27) of
the stationary infective substate (25) has stable roots if β ∈ [0, βc ), where βc =

µγ
(µ+λeγ)Sd f

.

Now, assume that all the conditions of Theorem 2 hold. Since Sd f = 0 if K 6= a
ρ1+ρ2

then βc = +∞ if K 6= a
ρ1+ρ2

and the stationary infective substate (25) has stable roots if
β ∈ [0, +∞ ).

In addition, any solution is non-negative for all time if (15) and assumption 1 plus any
of the four remaining assumptions 2 to 5 of Theorem 3 holds (according to Theorem 3).
Thus, the joint non-negativity and global asymptotic stability of the disease-free stationary
solution, under any finite non-negative initial conditions, are guaranteed for β ∈ [0, +∞ )
since Sd f = 0 (Theorem 3). �

Note that the Descartes rule of signs used in the proof of Theorem 4 is supported by
the fact that for s = 0 both characteristic roots are real, positive and stable, so that the
possibility of having no positive root is excluded by such a value of the argument s, and
the fact that the characteristic roots are continuous functions of s, so that they continue to
be within the positive region of the unity circle centered at zero as the argument increases.

Note also that the proposed model is claimed for its usefulness for short-term predic-
tions in the evolution phase when the disease is blowing up. It is neither considered that
vaccination is available for use nor that there is immunity lost allowing to increase again
the susceptible numbers after a certain delay. Therefore, the evolution of the susceptible
subpopulation is given by a decreasing sequence. It is now proved that the proposed model
does not have an endemic equilibrium point.

4. Nonexistence of Endemic Equilibrium Point

It is now discussed under which reasonable conditions an endemic equilibrium point
xend = (Send, Eend( 6= 0), Iend( 6= 0) , Rend)

T either exists or it does not exist. As a final
result, it is concluded that the endemic equilibrium point cannot exist.

Consider the following possible cases:
Case 1 (Send > 0). Combining (2) and (3) for stationary limiting model parameters

for an assumed to exist endemic equilibrium point leads to provided that Eend 6= 0 and
Send 6= 0:

Iend =
µ

γ
Eend (37)

Send =
γµ

β(µ + λeγ)
> 0 (38)

which, replaced in (1) and after cancelling common factors with Send > 0, results in the
resulting constraint:

Send = [a− β(Iend + λeEend)− K(ρ1 + ρ2)]Send (39)

leads to

Eend =
a− 1− K(ρ1 + ρ2)

β(µ + γλe)
γ (40)

if
a 6= β(Iend + λeEend) + K(ρ1 + ρ2) (41)

so that Eend > 0 (and also Iend > 0 from (37)) if and only if K < a−1
ρ1+ρ2

≤ 1 and 1 <

a ≤ 1 + ρ1 + ρ2 ≤ 2. If K = a−1
ρ1+ρ2

and 1 ≤ a ≤ 1 + ρ1 + ρ2 then Eend = Iend = 0 so that
the equilibrium point is, in fact, a disease-free one. By considering also the stationary
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recovered, one gets after cancelling the stationary recovered Rk+1 = Rk = Rend in both
sides of (4) that the subsequent constraint should hold:

γIend + K(ρ1 + ρ2)Send = µEend + K(ρ1 + ρ2)Send = 0 (42)

which contradicts that Send > 0 and Eend > 0. As a result, no endemic equilibrium point
exists with Send > 0. Since (42) can only hold with Eend = Send = 0 then, it only could
eventually be true for the disease-free equilibrium point. Thus, Case 1 is unfeasible for the
existence of an endemic equilibrium point.

Case 2 (Send ≥ 0). Note that (40) holds with, which includes also Send > 0 of Case 1 if

a = β(Iend + λeEend) + K(ρ1 + ρ2) = β

(
µ

γ
+ λe

)
Eend + K(ρ1 + ρ2) (43)

provided that

Eend =
a− K(ρ1 + ρ2)

β(µ + γλe)
γ (44)

provided that

K <
a

ρ1 + ρ2
≤ 1; a ≤ ρ1 + ρ2 (45)

with Send = 0, and

Iend =
µ

γ
Eend =

a− K(ρ1 + ρ2)

β(µ + γλe)
µ (46)

However, again, after cancelling Rk+1 = Rk = Rend in both sides of (4), one gets that
the subsequent constraint should hold:

γIend + K(ρ1 + ρ2)Send = µEend + K(ρ1 + ρ2)Send = 0 (47)

which implies that Send = Eend = Iend = 0 (which only holds if K = a
ρ1+ρ2

), and it is in fact
a disease- free equilibrium point. In this case, one also has that Nend = Rend. Thus, Case 2
is unfeasible for the existence of an endemic equilibrium point.

Remark 3 (basic reproduction number). In biological terms, it is possible to re-interpret the
condition of asymptotic stability around the disease-free equilibrium point in terms of the basic
reproduction number, which indicates the number of secondary infectious individuals generated
from one primary infectious one, defined by

R =
β

βc
=

β(µ + λeγ)Sd f

µγ
(48)

It turns out that R < 1 is exactly identical to β < βc, that is, if the transmission rate is
smaller than its critical value βc then, equivalently, the basic reproduction number is smaller than
unity. That asymptotic stability condition, in the two mentioned equivalent forms, are related to the
asymptotic extinction of the disease. It can be commented that such a condition is not related to the
transient disease evolution but to its steady-state which is the disease-free equilibrium in this case.
We can also to define a sample-dependent effective reproduction number as follows:

Rk =
β
(
µ + λe

kγ
)
Sk

µγ
; k ∈ Z0+ (49)

whose meaning and evolution should not be confused with that of the basic reproduction number.
This number can be greater than one at the beginning of the disease transmission (even if R < 1)
but Rk → R as k→ ∞ . Note also from (1) that Rk decreases faster (since Sk decreases faster) if
vaccination is programmed than in the vaccination-free case. The effective reproduction number is
usually periodically checked to elucidate the particular intervention measures to be taken depending



Vaccines 2021, 9, 398 12 of 26

on the disease transmission evolution. It can be also pointed out that R = 1 is related, in common
situations associated with epidemic models, to the confluence of the disease-free equilibrium point
with the endemic one while, for R < 1, the disease-free equilibrium point is unstable and the
endemic equilibrium point is an attractor for the solutions. According to the former discussion
in this subsection, this model, which is proposed for short-term predictions, does not evaluate the
influence possible endemic steady states of the disease so that the central discussion is related to the
case when R < 1.

5. Simulation Results

This section contains some simulation examples devoted to study the application of
the two-doses vaccination to counteract the spread of the COVID-19 pandemic. To this
end the case of Italy borrowed from [45], where the discrete-model dynamics is confronted
with actual data from Italy, will be considered. Thus, we have a discrete-time COVID-19
model serving as benchmark for the vaccination control. The model is parameterized by:

β = 0.2, βe =
β

1.3
, µ =

1
6

, γ = 0.04

so that λe = 0.7692. The sampling time is one day so that the units of the parameters are
in days−1. The initial conditions are S0 = 0.9999, E0 = 0.0001, I0 = 0, R0 = 0 implying
that the total population is normalized to unity, without loss of generality. Notice that
almost all the population is susceptible and a small fraction of the population is exposed
at the beginning. The parameters of the vaccination are d1 + d2 = 21 days and d2 = 7
days; therefore, separation between the two doses is of two weeks. The values of the doses
effectiveness are given by ρ1 = 0.66 and ρ2 = 0.3 in such a way that the total effectiveness of
the two doses ρ = ρ1 + ρ2 is 96%, in accordance with the average effectiveness of available
vaccines. The natural recruitment rate is a = 1, since the natural growth of the population
may be rejected when it comes to the epidemic spreading description due to the small
number of children affected. The Figure 1 displays the dynamics of the model without
vaccination.
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Figure 1. Dynamics of the model for COVID-19 pandemic.

It is remarkable in Figure 1 how the number of infectious reaches a peak at around
the 50% of the total population. Now vaccination is applied with a gain of K = 0.01,
corresponding to the 1% of the susceptible vaccinated every day. The vaccination is applied
starting at different moments of the epidemic spreading in order to observe the effect of
vaccination in the epidemic dynamics. Thus, Figure 2 displays the effect of vaccination
when it is applied since the beginning of the spreading.
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Figure 2. Dynamics of the model when two-doses vaccination is applied from the beginning.

It is observed from Figures 1 and 2 how the application of vaccination reduces the
peak of the infectious while increasing the pace at which susceptible become immune,
as expected. In addition, the Figure 3 illustrates the effect of starting the vaccination at
different moments of the spreading ranging from the beginning, 29 days and 59 days
after the first day of simulation. It can be seen in Figure 3 how the effect of vaccination in
spreading is higher the sooner vaccination is applied when cases are detected. Thus, vacci-
nation is useful for preventing new outbreaks and reducing their severity. If vaccination is
applied when there is a relatively large number of cases among the population, the peak
is not reduced ostensibly. Figure 4 displays the values of vaccination actions V1 and V2
corresponding to this situation. It is deduced from Figure 4 that the feedback vaccination
provides a lower number of vaccinated individuals when it starts at advanced stages of the
spread due to a smaller number of susceptible individuals. Therefore, this kind of action is
especially recommendable when the spread is at its initial steps. Figure 4 also shows that
vaccination V1 has larger values than V2 due to the differences in effectiveness defined by
the parameters ρ1 and ρ2.

Finally, Figure 5 displays the dynamics of the model for different values of the vacci-
nation gain. As it could have been expected, the larger the vaccination action is, the smaller
peak is attained. Naturally, the reduction in the peak is achieved at the expense of a higher
vaccination effort as Figure 6 shows. It can also be observed in Figures 4 and 6 the effect of
delay in the control action, where a value of zero vaccination is provided during the first
days of simulation due to the delay.
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Figure 3. Effect of vaccination starting time on the infectious.



Vaccines 2021, 9, 398 14 of 26

Vaccines 2021, 9, x FOR PEER REVIEW 15 of 29 
 

at advanced stages of the spread due to a smaller number of susceptible individuals. 

Therefore, this kind of action is especially recommendable when the spread is at its ini-

tial steps. Figure 4 also shows that vaccination 1V  has larger values than 2V  due to the 

differences in effectiveness defined by the parameters 1  and 2 . 

 

Figure 3. Effect of vaccination starting time on the infectious. 

  

Figure 4. Vaccination actions corresponding to different starting times. 

Finally, Figure 5 displays the dynamics of the model for different values of the vac-

cination gain. As it could have been expected, the larger the vaccination action is, the 

smaller peak is attained. Naturally, the reduction in the peak is achieved at the expense 

of a higher vaccination effort as Figure 6 shows. It can also be observed in Figures 4 and 

6 the effect of delay in the control action, where a value of zero vaccination is provided 

during the first days of simulation due to the delay. 

0 50 100 150

time (days)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

In
fe

c
ti
o
u

s
, 

I

Start time = 0 days

Start time = 29 days

Start time = 59 days

0 50 100 150

time (days)

0

0.5

1

1.5

2

2.5

3

V
a

c
c
in

a
ti
o

n
, 

V
2

10
-3

Start time = 0 days

Start time = 29 days

Start time = 59 days

0 50 100 150

time (days)

0

1

2

3

4

5

6

7

V
a

c
c
in

a
ti
o

n
, 

V
1

10
-3

Start time = 0 days

Start time = 29 days

Start time = 59 days

Figure 4. Vaccination actions corresponding to different starting times.

Vaccines 2021, 9, x FOR PEER REVIEW 16 of 29 
 

 

Figure 5. Dynamics of the infectious for different values of the vaccination gain. 

 
 

Figure 6. Vaccination actions for different values of the control gain K. 

Figure 7 shows the effect of changing the interval of time between the application of 

the two doses. It is assumed that the effectivity does not change with the period in be-

tween them. The vaccination gain K = 0.01 is used while the initial conditions are those 

indicated at the beginning of this section. Moreover, d2 = 7 days and d1 + d2 range from 10 

to 21 days. It is observed in Figure 7 that if the second dose maintains effectivity regard-

less the dose sparing, it is better to administer it as soon as possible. However, in the real 

world, the effectivity of the second dose may depend on when this is applied. There are 

no data on how the effectivity depends on the dose sparing or these are scarce, [46]. 

Therefore a more accurate simulation on the effect of dose sparing is not carried out in 

this work. 

0 50 100 150

time (days)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

In
fe

c
ti
o
u

s
, 

I

K = 0.005

K = 0.010

K = 0.015

0 50 100 150

time (days)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
a

c
c
in

a
ti
o

n
, 

V
2

10
-3

K = 0.005

K = 0.010

K = 0.015

0 50 100 150

time (days)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

V
a

c
c
in

a
ti
o

n
, 

V
1

K = 0.005

K = 0.010

K = 0.015

Figure 5. Dynamics of the infectious for different values of the vaccination gain.
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Figure 6. Vaccination actions for different values of the control gain K.

Figure 7 shows the effect of changing the interval of time between the application of
the two doses. It is assumed that the effectivity does not change with the period in between
them. The vaccination gain K = 0.01 is used while the initial conditions are those indicated
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at the beginning of this section. Moreover, d2 = 7 days and d1 + d2 range from 10 to 21 days.
It is observed in Figure 7 that if the second dose maintains effectivity regardless the dose
sparing, it is better to administer it as soon as possible. However, in the real world, the
effectivity of the second dose may depend on when this is applied. There are no data on
how the effectivity depends on the dose sparing or these are scarce, [46]. Therefore a more
accurate simulation on the effect of dose sparing is not carried out in this work.
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Figure 7. Dynamics of the infectious for different time periods between the two doses.

Moreover, Figure 8 compares the evolution of the infectious when two doses with a
spacing of 14 days is applied (K = 0.1) in contrast of applying a single dose with a double-
vaccination gain (K = 2× 0.01 = 0.02). The Figure 8 shows that with respect to the evolution
of the infectious the administration of a single dose to a broader population alleviates the
peak of infectious in comparison to promptly applying the second dose in order to increase
the overall effectiveness of the vaccine. This behavior is behind the decision of the UK
government of prioritizing the first dose to as many people as possible while delaying the
second dose, [46].

Vaccines 2021, 9, x FOR PEER REVIEW 17 of 29 
 

 

Figure 7. Dynamics of the infectious for different time periods between the two doses. 

Moreover, Figure 8 compares the evolution of the infectious when two doses with a 

spacing of 14 days is applied (K = 0.1) in contrast of applying a single dose with a dou-

ble-vaccination gain (K = 2x0.01 = 0.02). The Figure 8 shows that with respect to the evo-

lution of the infectious the administration of a single dose to a broader population alle-

viates the peak of infectious in comparison to promptly applying the second dose in or-

der to increase the overall effectiveness of the vaccine. This behavior is behind the deci-

sion of the UK government of prioritizing the first dose to as many people as possible 

while delaying the second dose, [46]. 

 

Figure 8. Comparison in the evolution of the number of infectious between the administration of a 

double dose (K = 0.01) or a single dose to a broader population (K = 0.02). 

The basic properties of the model discussed in Sections 3 and 4 can also be corrobo-

rated in the previous examples. Thus, the number of exposed and infectious always 

converges to zero so that the model converges to the disease-free equilibrium point. This 

happens because there is no endemic point for this model as discussed in Section 4. The 

Figure 9 displays a longer simulation for the model with K = 0.001 and different initial 

conditions. It is shown in Figure 9 that the model always converges to the globally-stable 

disease-free equilibrium point given by 1,0  dfdfdfdf RIES  and all the subpopula-

tions remain non-negative at all time. These properties are indeed guaranteed by Theo-

0 50 100 150 200 250

time (days)

0

0.05

0.1

0.15

0.2

0.25
In

fe
c
ti
o
u

s
, 

I
d

1
+d

2
 = 10 days

d
1
+d

2
 = 14 days

d
1
+d

2
 = 17 days

d
1
+d

2
 = 21 days

0 50 100 150 200 250

time (days)

0

0.05

0.1

0.15

0.2

0.25

In
fe

c
ti
o
u

s
, 

I

double-dose

single-dose

Figure 8. Comparison in the evolution of the number of infectious between the administration of a
double dose (K = 0.01) or a single dose to a broader population (K = 0.02).

The basic properties of the model discussed in Sections 3 and 4 can also be corroborated
in the previous examples. Thus, the number of exposed and infectious always converges
to zero so that the model converges to the disease-free equilibrium point. This happens
because there is no endemic point for this model as discussed in Section 4. The Figure 9
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displays a longer simulation for the model with K = 0.001 and different initial conditions.
It is shown in Figure 9 that the model always converges to the globally-stable disease-free
equilibrium point given by Sd f = Ed f = Id f = 0, Rd f = 1 and all the subpopulations
remain non-negative at all time. These properties are indeed guaranteed by Theorems 1
and 2 since µ, γ ∈ [0, 1) and β = 0.2 < 1.66 = max

(
ak

Ik+λe
kEk

)
is small enough; therefore,

(15) holds, and the model trajectory solution is non-negative according to Theorem 1 and
converges to the disease-free equilibrium point according to Theorem 2 since K = 0.001 6=
1.04 = a

ρ1+ρ2
. In addition, Theorem 3 also ensures that the disease-free equilibrium point

is globally stable since Condition 1 from Theorem 3 is satisfied, Condition 2 also holds as
K = 0.001 6= 1.04 = a

ρ1+ρ2
and Equation (13) holds as Figure 10 depicts. Therefore, the

disease-free equilibrium point is concluded to be globally asymptotically stable.
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Figure 9. Dynamics of the model for different initial conditions and K = 0.001.
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It can be pointed out that different alternative theoretic methods for stability analysis
of dynamic systems in the presence of delays can be found, for instance, in [47–49] and
some of the references therein.

6. Concluding Remarks

A new discrete SEIR model has been presented in this paper subject to two delayed
doses of feedback vaccination controls on the susceptible. It is also assumed that there exists
a transmission rate from the exposed to the susceptible and that the transmission rates
exposed-susceptible and infectious-susceptible may eventually be distinct. The second
idea is based on the knowledge that the later period in the asymptomatic incubation
phase of the infection in the COVID-19 pandemic is also infective as it is the first phase
of the infectious period. The first idea of using two vaccination doses is based on the
administration mechanisms of some of the recently approved vaccines for COVID-19. Such
two doses are applied with a certain interval, and the immunity effect is delayed in respect
to each current picked- up sample on the model, while it is also assumed that both doses
can have, in general, different effectiveness. It is assumed, in particular, that the second
dose has an incremental benefit on the injection of the first single dose. The effectiveness
degrees of both doses as well as the delays can be adjusted in the experimental tests since
they are model parameters. The non-negativity properties of the solution under finite
non-negative initial conditions, its boundedness and the disease-free equilibrium point
as well as its stability properties are also investigated. The non-negativity of the solution
can become lost for large-enough transmission rates, but it is kept for low and moderate
values of the transmission rates. The proposed model has been numerically tested through
numerical examples for COVID-19 parameterizations.
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Appendix A

Appendix A.1 Some Auxiliary Technical Results

Theorem A1. Consider the difference equation:

xk+1 = axk − K
(
ρ2xk−d2 + ρ1xk−d1−d2

)
+ uk; k ∈ Z0+ (A1)

with ρ1, ρ2 ∈ R+, a ∈ R, K ∈ R, nonnegative(integer) delays d1 > 0 and d1 + d2 > d1, and
initial conditions x−d1−d2 = x−d2 = 0 and x0 ∈ R and eventually subject to a bounded forcing
sequence {uk}∞

k=0 ⊂ R. Then, the following properties hold:

(i) The unforced difference Equation (A1), i.e., if {uk}∞
k=0 ≡ 0, is globally asymptotically

stable, so that {xk}∞
k=0 is bounded and {xk}∞

k=0 → 0 for any given finite x0 ∈ R, if K ∈(
max

(
a−1

ρ1+ρ2
, −K̄

)
, min

(
1+a

ρ1+ρ2
, K̄
))

and, in particular, K ∈ [0, K̄) under the restriction
K ∈ R0+ = R+ ∪ {0}, where:

K̄ = sup
{

y ∈
(

a− 1
ρ1 + ρ2

,
1 + a

ρ1 + ρ2

)
: y < 1/ f (y)

}
with f : R0+ → R0+ de f ined by :

f (y) = sup
θ∈(0,2π)

√√√√ (ρ2(cos(θd2)− 1) + ρ1(cos(θ(d1 + d2))− 1))2 + (ρ2sin(θd2) + ρ1sin(θ(d1 + d2)))
2

1 + (a− (ρ1 + ρ2)y)
2 − 2(a− (ρ1 + ρ2)y)cosθ

(ii) The unforced difference Equation (A1) is globally asymptotically stable for any given finite
x0 ∈ R, so that {xk}∞

k=0 is bounded and {xk}∞
k=0 → 0 for any finite x0 ∈ R, if |a| < 1 and

K ∈ (−K̄, K̄), were K̄ = 1/ sup
θ∈[0,2π)

∣∣∣∣ ρ2e−iθd2+ρ1e−iθ(d1+d2)

eiθ−a

∣∣∣∣.
(iii) Assume that either the conditions of Property (i) or those of Property (ii) hold and that

{uk}∞
k=0 → 0 . Then, {xk}∞

k=0 is bounded and {xk}∞
k=0 → 0 for any given finite initial

condition x0.
(iv) Assume that either the conditions of Property (i) or those of Property (ii) hold and that

{uk}∞
k=0 is bounded. Then, {xk}∞

k=0 is bounded for any given finite initial conditions.

Proof. By using the one-step-ahead and the one-step-backward operators q and q−1 defined,
respectively, by qxk = xk+1 and q−1xk+1 = xk, one can compactly rewrite (A1) as follows
by defining K1 = Kρ1 and K2 = Kρ2:(

q− a + K2q−d2 + K1q−(d1+d2)
)

xk = uk (A2)

The characteristic equation of the unforced system (A1) is derived from the left-hand-
side of (A2) by taking into account the formal analogy between the z-transform operator
and the one-step-ahead one and also multiplying the result by the factor zd1+d2 to avoid
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the concourse of mixed contributions of the forward and backward operators. As a result,
the characteristic equation of (A2) becomes:

p′(z)= zd1+d2
(

z− a + K2z−d2 + K1z−(d1+d2)
)

= zd1+d2
(

z− a + K1 + K2 + K2

(
z−d2 − 1

)
+ K1

(
z−(d1+d2) − 1

))
= 0

(A3)

The polynomial p′(z) is stable if its zeros are within |z| < 1 and the circle is centered
at the origin of unity radius. In view of (A.3), since zd1+d2 has a zero of multiplicity d1 + d2
in the center z = 0 of the open circle |z| < 1, the stability condition holds if

p(z) = z− a + K1 + K2 + K2

(
z−d2 − 1

)
+ K1

(
z−(d1+d2) − 1

)
(A4)

has all its zeros in the open complex circle |z| < 1. Note that ρi = Ki/K(i = 1, 2) so that
one gets from (A4) that:

p(z) = p0(z) + p̃(z) (A5)

p0(z) = z− a + (ρ1 + ρ2)K ; p̃(z) = K
(

ρ2

(
z−d2 − 1

)
+ ρ1

(
z−(d1+d2) − 1

))
(A6)

is stable if −1 < a− (ρ1 + ρ2)K < 1 and if, in addition, | p̃(z)| < |p0(z)| for any z ∈ C on
the circumference |z| = 1, i.e., on the boundary of the circle |z| ≤ 1: This follows from
the Rouché′s theorem of zeros [40–43], which establishes that if all the zeros of p0(z) lie
in |z| < 1 (i.e., they are stable) and | p̃(z)| < |p0(z)| on |z| = 1, which is trivially a Jordan
curve, then all the zeros of q(z) = p0(z) + p̃(z) are also in |z| < 1 since q(z) has the same
number of zeros in |z| < 1 as p0(z). The condition | p̃(z)| < |p0(z)| on |z| = 1 is identical
to the following implicit constraint:

|K|−1 > sup
θ∈[0,2π)

∣∣∣∣∣∣
ρ2

(
e−iθd2 − 1

)
+ ρ1

(
e−iθ(d1+d2) − 1

)
eiθ − a + (ρ1 + ρ2)K

∣∣∣∣∣∣ (A7)

after writing any complex number z with |z| = 1 as z = eiθ for some θ ∈ [0, 2π). By
inspecting (A7), we note that, for θ = 0, p̃(0) = 0 so that θ = 0 may be removed from the
test (A7) so that by using cos(−θ) = cosθ and sin(−θ) = −sinθ; ∀θ ∈ [0, 2π), we get:

1 > |K| sup
θ∈(0,2π)

√√√√ (ρ2(cos(θd2)− 1) + ρ1(cos(θ(d1 + d2))− 1))2 + (ρ2sin(θd2) + ρ1sin(θ(d1 + d2)))
2

(cosθ − a + (ρ1 + ρ2)K)
2 + sin2θ

(A8)

Then, Property (i) follows from (A8) combined with−1 < a− (ρ1 + ρ2)K < 1, which jointly
ensure that the unforced difference Equation (A1) has the property that {xk}∞

k=0 → 0 for
any finite x0 by defining f : R0+ → R0+ by

f (y) = sup
θ∈(0,2π)

√√√√ (ρ2(cos(θd2)− 1) + ρ1(cos(θ(d1 + d2))− 1))2 + (ρ2sin(θd2) + ρ1sin(θ(d1 + d2)))
2

1 + (a− (ρ1 + ρ2)y)
2 − 2(a− (ρ1 + ρ2)y)cosθ

(A9)

and by noting that sup{y ∈ R0+ : y < (1/ f (y))} 6= ∅. The vaccination gain constraint is
simplified to K ∈ [0, K̄) in the particular case that K ∈ R0+ since the general constraint
K ∈

(
max

(
a−1

ρ1+ρ2
, −K̄

)
, min

(
1+a

ρ1+ρ2
, K̄
))

implies that −K̄ < 1−a
ρ1+ρ2

, that is, K̄ > a−1
ρ1+ρ2

.

Since, furthermore, K̄ < a+1
ρ1+ρ2

, it follows that min
{

a+1
ρ1+ρ2

, K̄
}
= K̄ and if K ∈ R0+ then the

vaccination gain constraint is simplified to K ∈ [0, K̄). Moreover, {xk}∞
k=0 is bounded since

any convergent sequence is bounded. Since {xk}∞
k=0 is bounded and {xk}∞

k=0 → 0 for any
finite x0 then the unforced difference Equation (A1) is globally asymptotically stable.
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To prove Property (ii), rewrite (A5) as p(z) = p01(z) + p̃1(z) where

p01(z) = z− a; p̃1(z) = K
(

ρ2z−d2 + ρ1z−(d1+d2)
)

(A10)

By using the same arguments that those in the proof of Property (i), it is found that
the zeros of p(z) are in |z| < 1 if −1 < a < 1 and

|K|−1 > sup
θ∈(0,2π)

∣∣∣∣∣ρ2e−iθd2 + ρ1e−iθ(d1+d2)

eiθ − a

∣∣∣∣∣ (A11)

after the replacement of (A7) by (A11). As a result, the unforced difference Equation (A1) is
globally asymptotically stable.

To prove, Property (iii), we first obtain from (A1) the following extended dynamic
system of dimension d1 + d2 + 1:

x̂k+1 = Âx̂k + ûk (A12)

subject to initial conditions x−i = 0 for i = 1, 2, . . . , d1 + d2, where

x̂k =
(

xk, xk−1, . . . , xk−d2 , . . . , xk−d1−d2

)T ; ûk = (uk, 0, . . . , 0, . . . , 0)T (A13)

Â =


a 0 . . . 0 −Kρ2 0 . . . 0 −Kρ1
1 0 0 0 0
...

...
. . . ...

...
0 0 0 1 0

 (A14)

First note that all the eigenvalues of Â are stable under the conditions of either Property
(i) or Property (ii) since if {xk}∞

k=0 → 0 if {uk}∞
k=0 ≡ 0 then {x̂k}∞

k=0 → 0 if {ûk}∞
k=0 ≡ 0 so

that the unforced discrete dynamic system (A12) is globally asymptotically stable. Now,
from recursive calculation using (A12), one gets:

x̂k+N = ÂN x̂k +
k+N−1

∑
i=k

Âk+N−i−1ûi; k, N ∈ Z0+ = Z+ ∪ {0} (A15)

If {uk}∞
k=0 → 0 then, for any given ε ∈ R+, there exists N = N(ε) such that ‖ûi‖ =

|ui| ≤ ε; ∀i(∈ Z0+) ≥ N. Then, for some α̂ ∈ (0, 1) such that the complex circle centered at
z = 0 of radius α̂ contains all the eigenvalues of Â, one gets:

‖x̂k+Nk
‖ ≤ Mα̂Nk‖x̂k‖+ ∑∞

i=k Mα̂k+Nk−i−1‖ûi‖ ≤ Mα̂Nk‖x̂k‖+ M
εk

1− α̂
(A16)

for some (norm-dependent) real constant M ≥ 1, for any given k ∈ Z0+ and any given
strictly decreasing sequence {εk}∞

k=0 ⊂ R0+, with ε0 = ε, and some corresponding strictly
increasing sequence of integers {Nk}∞

k=0 such that Nk = Nk(εk). Since {εk}∞
k=0 → 0 and

α̂Nk → 0 as k→ ∞ then there exists the limit lim
k→∞

x̂k+Nk
= 0, so that lim

k→∞
xk+Nk

= 0 as

well, if x0 is finite, and then {xk}∞
k=0 → 0 and, since this sequence is convergent, it is also

bounded. Property (iii) has been proved.
Property (iv) follows by noting that the first inequality of (A16) partially holds if

{uk}∞
k=0 is bounded in the weakened form:

‖x̂k‖ ≤ Mα̂k‖x̂0‖+ ∑∞
i=0 Mα̂k−i−1‖ûi‖ ≤ Mα̂k‖x̂0‖+

Mε

1− α̂
≤ M‖x̂0‖+

C
1− α̂

< +∞; ∀k ∈ Z0+ (A17)

lim sup
k→∞

‖x̂k‖ ≤
Mε

1− α̂
< +∞ (A18)
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for any given k ∈ Z0+ and some real constant +∞ > C ≥ sup
i≥0
‖ûi‖ = sup

i≥0
|ûi|. �

Corollary A1. Consider the difference equation:

xk+1 = akxk − Kk
(
ρ2xk−d2 + ρ1xk−d1−d2

)
; k ∈ Z0+ (A19)

subject to initial conditions x0 ∈ R and x−i = 0 for i = 1, 2, . . . , d1 + d2 and assume that
the limiting difference equation:

xk+1 = axk − K
(
ρ2xk−d2 + ρ1xk−d1−d2

)
(A20)

resulting from (A19) as {ak}∞
k=0 → a and {Kk}∞

k=0 → K satisfies the conditions of the
unforced Equation of system (A1) of Theorem A1 (i) and Theorem A1 (ii). Assume also that

|Kk − K| = o
(
‖x̂k‖−1

)
; |ak − a| = o

(
‖x̂k‖−1

)
(A21)

Then, {xk}∞
k=0 is bounded and {xk}∞

k=0 → 0 for any given finite initial conditions so that
the difference Equation (A19) is globally asymptotically stable.

Proof. Equation (A19) is of the form of Equation (A1) with

uk = (ak − a)xk − (Kk − K)
(
ρ2xk−d2 + ρ1xk−d1−d2

)
(A22)

and {uk}∞
k=0 → 0 under (A21). Thus, the proof is direct from Theorem A1 (iii). �

Corollary A2. Consider the difference Equation (A19) with x0 ≥ 0 and {ak}∞
k=0 ⊂ [0, 1], define

αk = 1− ak and assume that {αk}∞
k=0 → 0 , ∑∞

k=0 αk = +∞ and Kk = K− µk
ρ2xk−d2

+ρ1xk−d1−d2
;

∀k ∈ Z0+, with {µk}∞
k=0 ⊂

[(
ρ2xk−d2 + ρ1xk−d1−d2

)
K ,+∞

)
being subject to the subsequent

constraints:
∑∞

k=0
(
µk −

(
ρ2xk−d2 + ρ1xk−d1−d2

)
K
)
< +∞; µk = 0 if xk−d2 xk−d1−d2 = 0, and µk =

o
((

ρ2xk−d2 + ρ1xk−d1−d2

)−1
)

. Then, {xk}∞
k=0 is bounded and {xk}∞

k=0 → 0 for any given finite
nonnegative initial conditions so that the difference Equation (A19) is globally asymptotically stable.

Proof. The difference Equation (A19) is written equivalently as:

xk+1 = (1− αk)xk + µk − K
(
ρ2xk−d2 + ρ1xk−d1−d2

)
(A23)

with αk = 1− ak; ∀k ∈ Z0+, {ak}∞
k=0 → 1 since {αk}∞

k=0 → 0 and αk ≥ 0, µk ≥ 0; ∀k ∈ Z0+,

∑∞
k=0 αk = +∞ and ∑∞

k=0 µk < +∞ since µk = o
((

ρ2xk−d2 + ρ1xk−d1−d2

)−1
)

. Thus, it

follows from Venter theorem [44] that {xk}∞
k=0 → 0 , and the sequence boundedness follows

as a consequence of its convergence. �

Theorem A2. Consider the difference equation:

xk+1 = akxk + bk (A24)

with x0 ≥ 0, where the following constraints hold:

ak = 1 + ãk, bk = b + b̃k; b > 0; ∀k ∈ Z0+ (A25){
ãj
}∞

j=0 ⊂ [0, ã] ⊂ [0, +∞),
{

b̃j

}∞

j=0
⊂ [0, +∞) (A26)

ãk+1 <
ãk

ak + bk/xk
; ∀k ∈ Z0+, ∑∞

k=0 b̃k < +∞ (A27)
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Thus, the following properties hold:

(i) If x0 6= 0 then {xk}∞
k=0 is unbounded. If b = 0 and the remaining above conditions hold,

then {xk}∞
k=0 is bounded.

(ii) If x0 6= 0,
{

ãj
}∞

j=0 ⊂ [−1, 0], |ãk+1| >
|ãk |

ak+bk/xk
, b > 0,

{
b̃j

}∞

j=0
⊂ [0, +∞) and

∑∞
k=0 b̃k < +∞ then a necessary condition for {xk}∞

k=0 → 0 is ∑k
j=0 ãj = −∞. The result

still holds if {xk}∞
k=0 → x(> 0) .

Proof. One gets recursively from (A24) and (A25) that

xk+1 − x0 − (k + 1)b = ∑k
j=0

(
ãjxj + b̃j

)
(A28)

From the first inequality of (A27), (A24) and D′Alembert criterion for convergence of
series on non-negative terms, one gets:

ãk+1xk+1 <
ãkxk

akxk + bk
xk+1 <

ãkxk
xk+1

xk+1 = ãkxk ⇒∑k
j=0 ãjxj < +∞; ∀k ∈ Z0+ (A29)

so that ãkxk → 0 as k→ ∞ . Now, (A29) together with the second condition of (A27) and
(A28) leads to:

0 ≤ xk+1 − x0 − (k + 1)b < +∞; ∀k ∈ Z0+ (A30)

the non-negative lower-bound in (A30) arising from the non-negativity of the right-hand-
side of the equality (A28). The relations (A30) lead to

0 ≤ lim sup
k→∞

(xk+1 − x0 − (k + 1)b) < +∞ (A31)

and also (A24) subject to (A26) and x0 ≥ 0 implies that {xk}∞
k=0 ⊂ clR0+ = R0+ ∪ {+∞}.

This concludes that +∞ ≤ lim sup
k→∞

xk = +∞ from (A31) and b > 0, which implies that there

exists the limit lim
k→∞

xk = +∞ (otherwise, lim sup
k→∞

xk would be finite) and then the sequence

{xk}∞
k=0 is unbounded. If b = 0 and the remaining constraints (A25)–(A27) hold then (A31)

is modified to 0 ≤ lim sup
k→∞

(xk+1 − x0) < +∞ implying that x0 ≤ lim sup
k→∞

(xk+1) < +∞

which concludes that {xk}∞
k=0 is bounded. Property (i) has been proved. To prove Property

(ii), note that under the alternative given conditions, if {xk}∞
k=0 → 0 , then one gets from

(A28), by taking into account that ∑∞
k=0 b̃k = Cb < +∞ and D′Alembert’s criterion for

divergence of series, that

−∞ = − lim
k→∞

(x0 + kb) = ∑∞
k=0

(
ãkxk + b̃k

)
≤ Cb + ∑∞

k=0 ãkxk ⇒∑∞
k=0|ãk|xk = +∞

(A32)
and also (∑∞

k=0|ãk|)sup
k≥0

xk = +∞. Since {xk}∞
k=0 is still non-negative and convergent, then

it is bounded, and 0 < sup
k≥0

xk < +∞ if ∑∞
k=0|ãk| = +∞ and the result is easily seen to still

hold if {xk}∞
k=0 → x(> 0) . The proof of Property (ii) is complete. �

Appendix A.2 A More Detailed Expansion of the Squared Numerator of (A9)

Note that Equation (A9) is of the form:

f (y) = sup
θ∈(0,2π)

g(θ, d1, d2, ρ1, ρ2, y) (A33)
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for each given quadruple (d1, d2, ρ1, ρ2), where:

g(θ, d1, d2, ρ1, ρ2, y) =

√
n(θ, d1, d2, ρ1, ρ2)

d(θ, ρ1, ρ2, y)
(A34)

whose squared right-hand-side numerator n(θ, d1, d2, ρ1, ρ2) is expanded as follows:

n(θ, d1, d2, ρ1, ρ2)

= (ρ2(cos(θd2)− 1) + ρ1cos(θ(d1 + d2))− 1)2 + (ρ2sin(θd2) + ρ1sin(θ(d1 + d2)))
2

= 2
(
ρ2

2 + ρ2
1
)
− 2ρ2

2cos(θd2)− 2ρ2
1cos(θ(d1 + d2)) + 2ρ1ρ2(1− cos(θd2)− cos(θ(d1 + d2)))

+2ρ1ρ2[sin(θd2)(sin(θd2)cos(θd1) + cos(θd2)sin(θd1)) + cos(θd2)(cos(θd2)cos(θd1)− sin(θd2)sin(θd1))]
= 2

(
ρ2

2(1− cos(θd2)) + ρ2
1(1− cos(θ(d1 + d2)))

)
+ 2ρ1ρ2(1 + cos(θd1)− cos(θd2)− cos(θ(d1 + d2)))

(A35)

which leads to the following nested particular cases:

(a) If d1 = d2 then, one gets by using 1− cos(2θd2) = 2sin2θd2 that:

n(θ, d1, d1, ρ1, ρ2) = 2
(

ρ2
2(1− cos(θd2)) + 2ρ1(ρ1 + ρ2)sin2(θd1)

)
(b) If d1 = d2 and ρ1 = ρ2 then

n(θ, d1, d1, ρ1, ρ1) = 2
(

ρ2
1(1− cos(θd2)) + 4ρ2

1sin2(θd2)
)

(c) If d1 = d2 = 0 or ρ1 = ρ2 = 0 then

n(θ, 0, 0, ρ1, ρ1) = n(θ, d1, d1, 0, 0) = 0

(d) If θ = 0 then n(0, d1, d1, ρ1, ρ1) = 0 which is not evaluated in the supremum over
(0, 2π) in (A.33). Note that the constraint y < 1/ f (y) to calculate K in Theorem A1
always holds since 1/ f (y) = +∞ for θ = 0, 2π since n(0, d1, d1, ρ1, ρ1) = 0 so that
it has not to be accounted for in the supremum evaluation as Theorem A1 formally
establishes.

Appendix A.3 A Fast and Simple Delay-Dependent Stability Test Based on Rouché′s Theorem of
Zeros Within Open Circles Contained in the Unit Circle

Theorem A3. The following properties hold:

(i) Let a ∈ (0, 1) and consider a circle |z| ≤ σ of center z = 0 and of radius σ ∈ (a , a + ε] for

some real ε > 0. Assume that 0 < K < (σ−a)σd1+d2

ρ1+ρ2σd1
. Then, the unforced difference Equation

(A1) has all its zeros in a < |z| < σ. As a result, if a < 1 and 0 < ε ≤ 1− a then the
unforced difference Equation (A1) has all its zeros in a < |z| < 1 so that it is stable.

(ii) Let ci = ci(d1, d2) ∈ R+ for i = 1, 2, be chosen such that ad1 < c1 ≤≤ σd1 ≤ c2 (implying
that lnc1

lnσ − d2 < d1 ≤ lnc2
lnσ . Then, the unforced difference Equation (A1) has its zeros in

|z| < σ if

0 ≤ K <

(
c−d1

1 − a
)

c1

ρ1 + ρ2c2
.

Proof. One has from the first identity of (A3) that:

p′(z) = p′0(z) + p̃′(z) (A36)
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where:
p′0(z) = zd1+d2(z− a); p̃′(z) =

(
ρ2zd1 + ρ1

)
K (A37)

Consider a circle |z| ≤ σ of center z = 0 and of radius σ ∈ (a , a + ε] for some real
ε > 0. Any point of the circumference |z| = σ, i.e., the boundary of the circle |z| ≤ σ, is
given by z = σeiθ for some θ ∈ [0 , 2π) with i =

√
−1 being the complex unity. It turns

out that all the zeros of p′0(z), which are z = a and z = 0 (with multiplicity d1 + d2), are in
|z| < σ. From Rouché′s theorem, all the zeros of p′(z) are in a < |z| < σ if

σd1+d2

√
(σcosθ − a)2 + σ2sin2θ > K

√(
ρ2σd1cosd1θ + ρ1

)2
+ ρ2

2σ2d1sin2d1θ;
θ ∈ [0, 2π)

(A38)

or,

σ2(d1+d2)
(

σ2 + a2 − 2aσcosθ
)
> K2

(
ρ2

1 + ρ2
2σ2d1 + 2ρ1ρ2σd1cos(d1θ)

)
; θ ∈ [0, 2π) (A39)

The following cases can arise:

Case a) If d1 is even then for θ ∈ [0, 2π):

σ2(d1+d2)
(
σ2 + a2) > K2 max

θ∈[0,2π)

(
ρ2

1 + ρ2
2σ2d1 + 2

(
ρ1ρ2σd1 + aσ2(d1+d2)

)
cos(θ)

)
= K2

(
ρ2

1 + ρ2
2σ2d1 + 2

(
ρ1ρ2σd1 + aσ2(d1+d2)

))
= K2

(
ρ1 + ρ2σd1

)2
+ 2aσ2(d1+d2)

(A40)

or, equivalently,
K
(

ρ1 + ρ2σd1
)
< σd1+d2(σ− a)

Case b) If d1 is odd then for θ ∈ [0, 2π):

σ2(d1+d2)
(
σ2 + a2) > K2 max

θ∈[0,2π)

(
ρ2

1 + ρ2
2σ2d1 + 2

(
ρ1ρ2σd1 − aσ2(d1+d2)

)
cos(d1θ)

)
= K2

(
ρ2

1 + ρ2
2σ2d1 + 2

∣∣∣ρ1ρ2σd1 − aσ2(d1+d2)
∣∣∣) (A41)

which is still guaranteed under the above condition which is equivalent to 0 <

K < σd1+d2 (σ−a)
ρ1+ρ2σd1

. The proof of Property (i) is complete. To prove Property (ii), note

that if c1 ≤ σd1+d2 ≤ σd1 ≤ c2 then |a| < 1/cd1
1 < σ. Those constraints guarantee

that 0 < K <

(
c
−d1
2 −a

)
c1

ρ1+ρ2c2
implies that 0 < K < σd1+d2 (σ−a)

ρ1+ρ2σd1
which proves Property

(ii) as a direct consequence of Property (i). �
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