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Abstract—A recently growing literature discusses the topics of di-
rect yaw moment control based on model predictive control (MPC),
and energy-efficient torque-vectoring (TV) for electric vehicles with
multiple powertrains. To reduce energy consumption, the available
TV studies focus on the control allocation layer, which calculates
the individual wheel torque levels to generate the total reference
longitudinal force and direct yaw moment, specified by higher
level algorithms to provide the desired longitudinal and lateral
vehicle dynamics. In fact, with a system of redundant actuators,
the vehicle-level objectives can be achieved by distributing the
individual control actions to minimize an optimality criterion,
e.g., based on the reduction of different power loss contributions.
However, preliminary simulation and experimental studies – not
using MPC – show that further important energy savings are
possible through the appropriate design of the reference yaw rate.
This paper presents a nonlinear model predictive control (NMPC)
implementation for energy-efficient TV, which is based on the
concurrent optimization of the reference yaw rate and wheel torque
allocation. The NMPC cost function weights are varied through
a fuzzy logic algorithm to adaptively prioritize vehicle dynamics
or energy efficiency, depending on the driving conditions. The
results show that the adaptive NMPC configuration allows stable
cornering performance with lower energy consumption than a
benchmarking fuzzy logic TV controller using an energy-efficient
control allocation layer.

Index Terms—Torque-vectoring, nonlinear model predictive
control, powertrain power loss, tire slip power loss, reference yaw
rate, control allocation, weight adaptation.

I. INTRODUCTION

E LECTRIC vehicles (EVs) are the subject of intensive re-
search as they are considered a key solution to reduce air
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pollution caused by road traffic. However, the limited driving
range has been so far one of the main technical constraints to
the widespread adoption of EVs. The issue is being addressed
through the enhancement of battery technologies [1], as well
as the introduction of superfast charging stations on the road
network [2], [3]. In parallel, the efforts to increase driving range
are supported by the improvement of the energy efficiency of
electric powertrain components, and new vehicle controllers,
such as predictive energy management and optimal speed pro-
filing [4].

EVs with multiple powertrains allow torque-vectoring (TV),
i.e., individual wheel torque control to produce different longi-
tudinal tire forces on each EV side and, in turn, to generate a
so-called direct yaw moment. A wide literature shows the vehicle
dynamics benefits of TV in terms of handling and cornering
stability, see [5]–[15]. The variety of proposed TV algorithms
includes feedforward and proportional integral derivative (PID)
controllers [12], H� controllers [15], sliding mode controllers
[16], [17], linear quadratic controllers [18], and intelligent con-
trollers [19]. Owing to the increasing computational capabilities
of recent embedded platforms, model predictive control (MPC)
has become a viable solution for TV [20]–[22], even if many of
the available MPC TV implementations still use rather simplified
linearized or nonlinear prediction models.

TV can also improve energy efficiency. In fact, the wheel
torque distribution has an effect on the electric powertrain
power losses, including inverter, electric machine and mechan-
ical transmission (if present) power losses, as well as on the
longitudinal and lateral tire slip power losses, i.e., the power
losses associated with the longitudinal and lateral slip of the
tires [23]–[25]. Most of the available studies on energy-efficient
TV focus on multi-layer control structures [26]–[29], in which:
a) a top layer generates the total reference longitudinal force and
direct yaw moment to achieve a target yaw rate, independently
from any energy-efficiency consideration; and b) a bottom layer,
or control allocation layer, calculates the individual wheel torque
demands to meet the requests from the top layer, e.g., see
[30]–[36]. Given the redundancy of the electric powertrains,
the individual wheel torque distribution in b) can optimize a
secondary optimality criterion, for instance, related to energy
consumption. Some of the control allocation implementations
use MPC [28], [29].

Although the previous hierarchical arrangements are easy to
implement because of their modularity, they do not benefit from
the energy consumption effect of the top level controller. This is
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a major limitation, as recent experimental and simulation-based
research work, see [23], [24] and [37], shows that, during corner-
ing, the level of vehicle understeer (typically decided by the top
layer of the TV control structure) can have an equivalent impact
on the energy consumption as the control allocation algorithm.
The preliminary studies on this topic: i) discuss the potential
of enhancing energy efficiency by modifying the cornering
response through appropriate direct yaw moment characteristics
(energy-efficient direct yaw moment control); ii) evaluate the
impact of these techniques on powertrain and tire slip power
losses; and iii) obtain suboptimal rule-based or open-loop algo-
rithms. However, they do not propose systematic solutions based
on nonlinear optimal control. For example, Kobayashi et al.
[24] demonstrate that the minimization of the tire slip power
losses occurs if the tire slip velocity vectors are the same at the
four vehicle corners. De Filippis et al. [38] obtain an analytical
expression of the energy-efficient direct yaw moment in terms
of powertrain power losses, implying the activation of an in-
creasing number of powertrains with increasing torque demand.
In case of redundant optimal solutions from the viewpoint of
powertrain power losses, rules are set to select the best option in
terms of tire slip power losses. A quasi-static vehicle modeling
approach is used in [39] to derive rules for the calculation of a
feedforward energy-efficient direct yaw moment as a function of
torque demand, with a feedback contribution intervening only
in safety-critical conditions.

Although the previous studies show the energy saving po-
tential of shaping the reference cornering response, to be prac-
tically useful, the implementation of this approach should: i)
simultaneously account for the power losses associated with
the powertrains and tire slip; ii) be based on feedback control
structures, e.g., capable of compensating unexpected EV behav-
ior caused by the variation of system parameters or transients,
rather than using simplified feedforward or rule-based algo-
rithms; iii) integrate the reference direct yaw moment generation
and control allocation functions, to prevent conflicts between
different control layers involved in the power loss management;
and iv) provide significant operational flexibility depending on
the actual driving situation, i.e., prioritize energy efficiency
during normal driving, and vehicle safety and stability in extreme
maneuvers. In conclusion, to the best of the authors’ knowledge,
there is lack of TV control implementations systematically using
the reference cornering response as a control variable to reduce
energy consumption.

This study covers the identified gap, with the following novel
contributions:
� An implicit nonlinear model predictive control (NMPC)

implementation, integrating the direct yaw moment calcu-
lation layer with the control allocation layer, and includ-
ing consideration of the yaw rate tracking performance,
energy-efficient cornering response, and sideslip and actu-
ation constraints.

� The systematic adoption of an energy-efficient reference
yaw rate, i.e., the yaw rate to be tracked by the NMPC
in normal driving conditions provides an energy-efficient
cornering response, while a fuzzy-logic based adaptation

Fig. 1. Schematic of the implemented simulation framework.

mechanism mediates between the requirements of vehicle
stability and energy efficiency.

� An analysis of the relative significance of energy-efficient
understeer characteristics and control allocation, as well
as the benefit of considering the power loss aspects within
feedback controllers, rather than through feedforward al-
gorithms.

The manuscript is organized into six sections. Section II
presents the simulation framework for the control system evalu-
ation. Section III describes the off-line generation process of the
reference yaw rate characteristics and rear-to-total torque distri-
bution. Section IV covers the integrated and adaptive NMPC for-
mulation for energy-efficient TV. Section V discusses the results,
and compares the proposed approach with a benchmarking TV
controller from the literature. Finally, Section VI summarizes
the main conclusions.

II. SIMULATION FRAMEWORK AND HIGH-FIDELITY

SIMULATION MODEL

A. Simulation framework

The simulation framework, shown in Fig. 1, consists of:
� The virtual driver model, which tracks the reference speed

and path.
� The drivability layer, which converts the driver inputs on

the accelerator and brake pedals, pa and pb, into the total
longitudinal force demand for the electric powertrains,
Fx,ref (the actuation of the friction brakes is beyond the
scope of this study).

� The TV layer, which generates the individual powertrain
torque values, τij , where the subscript i = F,R indicates
the front or rear axles, and the subscript j = L,R in-
dicates the left or right sides. The main contribution of
this work is the NMPC TV approach (see Section IV)
of this layer, which: i) uses the energy-efficient reference
yaw rate and (when appropriate) rear-to-total torque dis-
tribution, Tr,ref,j , which will be defined in Section III; ii)
considers the different relevant power loss contributions
from the powertrains and tires; and iii) includes a fuzzy
logic algorithm for prioritizing its objectives depending
on the driving conditions. As alternatives to the NMPC
TV approach, the TV layer also includes: a) a ‘Passive’
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Fig. 2. Case study vehicle (left) and the experimentally measured efficiency
map of the installed powertrains (right).

TABLE I
MAIN VEHICLES PARAMETERS

implementation, which implies zero direct yaw moment,
i.e., the reference longitudinal force is evenly distributed
among the two EV sides; and b) a benchmarking TV
controller (see Section V.B), based on fuzzy logic.

� The high-fidelity vehicle dynamics simulation model (see
Section II.B), receiving the steering input from the driver
and wheel torque demands from the TV layer, and gener-
ating the set of vehicle variables, Θ, for the operation of
the TV system and virtual driver.

B. High-Fidelity Vehicle Model and Case Study EV

The adopted high-fidelity vehicle dynamics simulation tool is
Dynacar, developed by Tecnalia, and experimentally validated
on multiple vehicles, see [40]–[42]. The model includes the
degrees of freedom of the sprung and unsprung masses, and con-
siders suspension kinematics. The multibody approach is based
on [43], using one coordinate for each degree of freedom through
macro-joints, which leads to high computational efficiency. The
tire forces are modeled with the Pacejka magic formula, version
2006 [44].

The case study vehicle is the four-wheel-drive variant of a
lightweight EV being developed within the European Horizon
2020 STEVE project. Fig. 2 shows the reference EV, together
with the measured in-wheel direct drive powertrain efficiency
map (the same at each corner), provided by the manufacturer,
Elaphe Propulsion Technologies Ltd [45]. Relevant EV pa-
rameters are reported in Table I, and Fig. 3 defines the sign
conventions of the main variables.

III. ENERGY-EFFICIENT REFERENCE YAW RATE AND

REAR-TO-TOTAL TORQUE DISTRIBUTION

In accordance with Fig. 1, the definition of the energy-efficient
reference rear-to-total wheel torque distribution and yaw rate
characteristics is the first step in the control design process.

Fig. 3. Top view of the vehicle with indication of the sign conventions for the
main variables.

Fig. 4. Experimental power loss characteristic of the case study individual
in-wheel powertrain as a function of torque and speed (the dots indicate the
measurement points), and its approximation adopted within the NMPC formu-
lation.

A. Power Loss Contributions

In this study, the relevant sources of power loss are the pow-
ertrains, because of their efficiency characteristics, and the tires,
because of their longitudinal and lateral slips. The aerodynamic
drag is also a source of power loss, but is not affected by the
proposed NMPC TV, as the case study EV does not feature
any system that controls this variable. Likewise, the rolling
resistance of the tires is a source of power loss that cannot be
influenced by the TV control action, as it mainly depends on
the tire properties and inflation pressure [44]. Based on this,
(1) defines the total power loss contribution, PLoss,tot, that is
reduced by the proposed NMPC TV:

PLoss,tot = PLoss,PWT + PLoss,T ire,Long + PLoss,T ire,Lat
(1)

where PLoss,PWT is the total powertrain power loss, and
PLoss,T ire,Long and PLoss,T ire,Lat are the total longitudinal
and lateral slip power losses of the tires. For energy-efficient
reference yaw rate design and control assessment, the calculation
of the power loss contributions is carried out by the Dynacar
model.

The individual in-wheel powertrain power losses,
PLoss,PWT,ij (see Fig. 4) are determined from the powertrain
efficiency map, ηij(τji, ωij), reported in Fig. 2:

PLoss,PWT,ij =

⎧⎪⎨
⎪⎩
τijωij

[
1

ηij(τij ,ωij)
− 1

]
, τij > 0

τijωij [ηij (τij , ωij)− 1] , τij < 0
PLoss,PWT,res,ij (ωij) , τij = 0

⎫⎪⎬
⎪⎭ (2)
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where τij is the torque demand of the ij machine; ωij is the
angular speed of the ij wheel; andPLoss,PWT,res,ij is the power
loss of the ij powertrain when this is switched off, caused by
the cogging loss and mechanical loss contributions. Hence, at
the vehicle level, the total powertrain power loss, PLoss,PWT ,
is given by:

PLoss,PWT =
∑

i = F,R
j = R,L

PLoss,PWT,ij (3)

The total longitudinal tire slip power losses, PLoss,T ire,Long ,
are given by:

PLoss,T ire,Long =
∑

i = F,R
j = R,L

Fx,ijVslip,x,ij (4)

where Fx,ij is the longitudinal tire force at the ij corner; and
Vslip,x,ij is the longitudinal slip speed of the respective tire:

Vslip,x,ij = ωijR− Vx,ij (5)

R is the tire rolling radius, and Vx,ij is the longitudinal compo-
nent of the linear wheel speed in the tire reference system.

The total lateral tire slip power losses are given by:

PLoss,T ire,Lat =
∑

i = F,R
j = R,L

Fy,ijVslip,y,ij (6)

where Fy,ij is the lateral tire force at the ij corner; and Vslip,y,ij
is the lateral slip speed of the respective tire:

Vslip,y,ij = −Vx,ij tanαij (7)

B. Energy-Efficient Rear-to-Total Wheel Torque Distribution

Within each EV side, the rear-to-total wheel torque distribu-
tion ratio, Tr,j , is defined as:

Tr,j =
τRj

τFj + τRj
(8)

An off-line brute force algorithm calculates the value of Tr,j
that maximizes the total powertrain efficiency, ηtot,j , on the j
vehicle side:

Tr,opt,j = argTr,j
max ηtot,j (9)

ηtot,j is the ratio of the total powertrain output power, Pout,j , to
the total powertrain input power,Pin,j , on the considered vehicle
side; in particular, in traction conditions, the mathematical def-
inition of ηtot,j , based on the efficiency of the two powertrains
on the j side, is:

ηtot,j = ηtot,j (Tr,j , τreq,j , ωFj , ωRj)

=
Pout,j (Tr,j , τreq,j , ωFj , ωRj)

Pin,j (Tr,j , τreq,j , ωFj , ωRj)

=
[1 − Tr,j ] τreq,jωFj + Tr,jτreq,jωRj

[1−Tr,j ]τreq,j
ηFj([1−Tr,j ]τreq,j ,ωFj)

ωFj +
Tr,jτreq,j

ηRj(Tr,jτreq,j ,ωRj)
ωRj

(10)

where τreq,j = τFj + τRj .

Fig. 5. Energy-efficient rear-to-total wheel torque distribution ratio as a func-
tion of vehicle side torque and speed.

The brute force algorithm works under a zero tire slip ratio
assumption, i.e.,ωF,j = ωRj ≈ V/R, whereV is vehicle speed.
The output is a look-up table of Tr,opt,j = Tr,opt,j(τj , V/R),
used for the design of the vehicle controllers. Fig. 5 shows the
optimization result, which is consistent with the one in [31]. For
a given speed, low torque demand values (< 100∼150 Nm) on
the EV side imply that only one powertrain is active, while at
medium-to-high side torque demands Tr,opt,j is 0.5, indicating
an even torque distribution among the powertrains within the
same EV side. The transition between the two conditions occurs
progressively, at a torque level varying with speed.

In the NMPC TV implementations of this study, the reference
rear-to-total distribution ratios,Tr,ref,j , are defined according to
the approach in [31]:

Tr,ref,j = ξ1 + 0.5 (ξ2 − ξ3) {1 + tanh (ξ4 [τreq,j − ξ5])}
(11)

where (11) is set to follow the profile defined by the map in
Fig. 5, through appropriate parametrization of the coefficients
ξ1, …, ξ5, as a function of the current vehicle speed.

C. Reference Understeer Characteristics

This subsection: i) discusses the effect of the vehicle under-
steer characteristic on energy consumption; and ii) derives the
set of energy-efficient understeer characteristics used for the
generation of the reference yaw rate of the TV controller.

To obtain the optimal understeer characteristics, ramp steer
maneuvers with slow steering input ramps at constant EV speed
were simulated with the Dynacar model. The maneuvers were
repeated with different constant direct yaw moment values,
ranging from -900 Nm to +900 Nm in steps of 100 Nm, using
the rear-to-total torque distribution map in Fig. 5 within each
EV side. Also, to emulate the cornering response with non-zero
longitudinal acceleration, ax, at a given speed, ramp steer tests
were performed with a constant longitudinal force applied to the
EV’s center of gravity.

Figs. 6 and 7 are examples of results at V = 60 km/h and a
tire-road friction coefficient μ = 0.9. For each lateral acceler-
ation ay , Fig. 6 reports the understeer characteristics (in terms
of dynamic steering angle, δdyn, see [46], [47] for the theory)
of the case study EV with: a) even torque distribution among
all wheels. This characteristic is indicated as “Passive” in the
plot; and b) the energy-efficient rear-to-total torque distribution
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Fig. 6. Example of % variation of the powertrain power input with the
understeer characteristic (V = 60 km/h, µ = 0.9).

Fig. 7. Example of % significance of the powertrain power loss with respect
to the total TV-affected power loss (V = 60 km/h, µ = 0.9).

ratio within each side, and the optimal direct yaw moment
within the considered range, i.e., the one minimizing the power
consumption for a given ay , based on the simulations. The
resulting understeer characteristic is indicated as “Optimal” in
the plot.

The color scale in Fig. 6, obtained by interpolating the ramp
steer results, shows the percentage increment of the powertrain
power input, Pin,incr,%, for a generic point (δdyn, ay), with
respect to the optimal condition at the same ay:

Pin,incr,% (δdyn, ay) = 100
Pin (δdyn, ay)− Pin,opt (ay)

Pin,opt (ay)
(12)

where Pin(δdyn, ay) is the total input power at the dynamic
steering angle δdyn and lateral acceleration ay , while Pin,opt is
the minimum input power at the specific ay .

The influence of the understeer characteristic on the EV
energy consumption is major, with peak values of Pin,incr,%
in excess of 50%. In particular, the average difference between
the Passive and Optimal configurations amounts to 6.62% for
the considered ay range.

The important conclusion is that an energy-efficient TV con-
troller must include appropriate design of the reference under-
steer characteristic, and hence the reference yaw rate. More-
over, an energy-efficient TV controller should also be able to
determine the most appropriate reference yaw rate in transient
conditions, thus going beyond the results in Fig. 6, based on
quasi-steady-state cornering conditions.

Fig. 7 shows the significance of the powertrain power loss
over the total power loss that can be affected by TV, through the

PLoss,% parameter, indicated by the color scale of the graph:

PLoss,% (δdyn, ay) = 100
PLoss,PWT

PLoss,tot

= 100
PLoss,PWT

PLoss,PWT + PLoss,T ire,Long + PLoss,T ire,Lat
(13)

At low ay , the contribution of the electric powertrains is
the most important one, and it accounts for up to 75% of
the total relevant power loss. With increasing ay , the relative
powertrain power loss contribution progressively reduces, and,
above 5 m/s2, becomes less than 50% of the total TV-affected
power loss. This observation implies that an energy-efficient TV
controller should consider all indicated sources of power loss,
as each of them could become predominant depending on the
operating condition.

The analysis of Figs. 6 and 7 was repeated for different vehicle
speeds, emulated longitudinal accelerations, and tire-road fric-
tion coefficients, which resulted in a set of energy-efficient refer-
ence understeer characteristics, expressed as a four-dimensional
map, δdyn,ref (ay, ax, V, μ).

D. Energy-Efficient Reference Yaw Rate

The energy-efficient understeer characteristics,
δdyn,ref (ay, ax, V, μ), can be expressed in terms of actual
steering angle, δref (ay, ax, V, μ), as:

δref (ay, ax, V, μ) = δdyn,ref (ay, ax, V, μ) +
lay
V 2

(14)

Through manipulation of δref (ay, ax, V, μ), and consider-
ing the relationship between ay and ψ̇, the nominal energy-
efficient reference yaw rate maps are obtained, in terms of
ψ̇ref,nom(δ, ax, V, μ). Fig. 8 reports examples of energy-
efficient reference yaw rate profiles as functions of steering
wheel angle, for different values of vehicle speed, longitudinal
acceleration, and tire-road friction coefficient. While the depen-
dency on V and μ is evident, the effect of ax is rather limited
for the studied longitudinal acceleration values, corresponding
to normal driving conditions.

With appropriate first-order filtering to achieve the desired
reference dynamics, the nominal reference yaw rate character-
istics are used to calculate the reference yaw rate, ψ̇ref , given
as input to the TV controller described in Section IV. However,
the NMPC will be designed to allow deviations from ψ̇ref , as
during transients or EV operation with non-nominal parameters,
the reference yaw rate calculated off-line can be different from
the most energy-efficient yaw rate.

IV. NONLINEAR MODEL PREDICTIVE CONTROLLER FOR

ENERGY-EFFICIENT TORQUE-VECTORING

A. Control Structure

The overall NMPC TV structure is shown in Fig. 9. The inputs
are: i) the total force demand, Fx,ref ; ii) the steering angle, δ;
iii) the energy-efficient reference yaw rate, ψ̇ref , discussed in
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Fig. 8. Examples of nominal energy-efficient reference yaw rate profiles
as functions of steering wheel angle, for different values of vehicle speed,
longitudinal acceleration, and tire-road friction coefficient.

Fig. 9. Simplified block diagram of the NMPC TV system.

Section III; and iv) the estimated variables and vehicle param-
eters, organized in the vector Θ. The outputs are the individual
torque demands, τij .

B. Internal Model Formulation

The internal NMPC model is expressed through the following
continuous time formulation [48]:

ẋ (t) = f (x (t) ,u (t)) (15)

where the state vector x is:

x =
[
V β ψ̇ ωFL ωFR ωRL ωRR

]T
(16)

x is also part of Θ (see Fig. 1), and its current value, xin, result
of the on-board measurements and state estimation, is provided

to the controller at each time step, as initial condition for the
prediction based on the internal model. The control action is
defined as:

u = [τFL τFR τRL τRR]
T (17)

Similarly to some of the recent NMPC implementations for
TV [20], the prediction model formulation (15) includes 7 de-
grees of freedom, described by the following force and moment
balance equations.
� Longitudinal force balance:

V̇ =
1
m

{[Fx,FL + Fx,FR] cos (δ − β)

− [Fy,FL + Fy,FR] sin (δ − β) + [Fx,RL + Fx,RR]

× cosβ + [Fy,RL + Fy,RR] sinβ} (18)

� Lateral force balance:

β̇ =
1
mV

{[Fx,FL + Fx,FR] sin (δ − β)

+ [Fy,FL + Fy,FR] cos (δ − β)− [Fx,RL + Fx,RR]

× sinβ + [Fy,RL + Fy,RR] cosβ} − ψ̇ (19)

� Yaw moment balance:

ψ̈ =

1
Iz

{
[Fx,FL+Fx,FR] lF sin δ+[Fy,FL+Fy,FR] lF cos δ

− [Fy,RL + Fy,RR] lR +
[
Fx,FR cos δ

− Fy,FR sin δ + Fx,RR
]d

2

− [Fx,FL cos δ − Fy,FL sin δ + Fx,RL]
d

2

}
(20)

� ij wheel moment balance:

Iωω̇ij = τij − Fx,ijR (21)

whereβ is the sideslip angle and Iω is the mass moment of inertia
of the wheel. Aerodynamic drag and tire rolling resistance are
neglected, as they are not affected at the overall EV level by the
wheel torque distribution.

The longitudinal and lateral tire forces, Fx,ij and Fy,ij , are
given by the product of the respective tire force coefficient, μx,ij
and μy,ij , by the vertical tire load, Fz,ij :

Fx,ij = μx,ijFz,ij (22)

Fy,ij = μy,ijFz,ij (23)

A simplified version of the Pacejka magic formula has been
used, which determines the resultant total tire force coefficient,
μij :

μij (sij) = MF (sij) = D sin (Catan (Bsij)) (24)

whereMF indicates the magic formula;B,C andD are constant
magic formula coefficients, calculated to match the actual tire
characteristics; and the total slip, sij , results from the compo-
sition of the longitudinal and lateral slip components, sx,ij and
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sy,ij :

sij =
√
s2
x,ij + s2

y,ij (25)

sx,ij is defined as:

sx,ij =
Vslip,x,ij
ωijR

(26)

and sy,ij is given by:

sy,ij =
Vslip,y,ij
ωijR

(27)

where the linear longitudinal and lateral slip speeds, Vslip,x,ij
and Vslip,y,ij , are defined in (5) and (7). In the calculation of
Vslip,y,ij , simplified linearized expressions are adopted for the
tire slip angles αij :{

αFL ≈ αFR ≈ −δ + β + ψ̇lF
V

αRL ≈ αRR ≈ β − ψ̇lR
V

(28)

The longitudinal and lateral tire load coefficients, μx,ij and
μy,ij , are obtained by decomposing the tire load coefficient from
(24) according to the slip components.

μx,ij =
sx,ij
sij

μij (29)

μy,ij =
sy,ij
sij

μij (30)

The adopted tire model is a simple yet realistic formulation,
easy to tune and independent from the specific complete set
of Pacejka magic formula coefficients of the high-fidelity plant
model in Section II.B. The NMPC feedback set-up based on
the receding horizon approach tends to compensate for the
inevitable tire model mismatches, which – in any case – would
characterize the implementation on a real vehicle.
Fz,ij is calculated as the sum of the static load, F 0

z,ij , longi-
tudinal load transfer, ΔF xz , and lateral load transfer, ΔF yz,i:⎧⎪⎪⎨

⎪⎪⎩
Fz,FL = F 0

z,FL −ΔF xz −ΔF yz,F
Fz,FR = F 0

z,FR −ΔF xz +ΔF yz,F
Fz,RL = F 0

z,RL +ΔF xz −ΔF yz,R
Fz,RR = F 0

z,RR +ΔF xz +ΔF yz,R

(31)

where the static loads are:{
F 0
z,FL = F 0

z,FR = 1
2 mg lR

lF+lR

F 0
z,RL = F 0

z,RR = 1
2 mg lF

lF+lR

(32)

The longitudinal load transfer is given by:

ΔF xz =
1
2

m h ax
lF + lR

(33)

while the front and rear lateral load transfers are given by:⎧⎨
⎩

ΔF yz,F =
m ay
d

[
hRC lR
lF+lR

+ γhRoll

]
ΔF yz,R =

m ay
d

{
hRC lF
lF+lR

+ [1 − γ]hRoll

} (34)

wherehRC is the roll center height,hRoll is the distance between
the center of gravity and the roll axis, and γ is the front-to-total
suspension roll stiffness distribution.

Within the NMPC prediction model, the tire slip power losses
are obtained through (4) and (6), while a polynomial formulation
is used for the electric powertrain power losses:

Ploss,PWT

=
∑
i=F,R
j=R,L

⎡
⎢⎢⎢⎢⎢⎢⎣

p00 + p10τij + p01ωij + p20τ
2
ij + p11τijωij

+p02ω
2
ij + p30τ

3
ij + p21τ

2
ijωij + p12τijω

2
ij

+p03ω
3
ij + p40τ

4
ij + p31τ

3
ijωij

+p22τ
2
ijω

2
ij + p13τijω

3
ij + p04ω

4
ij + p50τ

5
ij

+p41τ
4
ijωij + p32τ

3
ijω

2
ij + p23τ

2
ijω

3
ij

+p14τijω
4
ij + p05ω

5
ij

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

(35) provides a good approximation of the experimental power
loss characteristic, defined in (2), see Fig. 4; in fact, with the
adopted parametrization, the root mean square (RMS) of the
power loss error across the operating range of the motor is 75 W.

C. Optimal Control Problem Formulation

The idea of nonlinear model predictive control is to use a
model of the plant to predict and optimize the future system
behavior. This optimization is achieved by applying a control
action, which is obtained by solving, at each sampling instant, a
finite horizon optimal control problem, using the current state of
the plant. The optimization yields an optimal control sequence,
and the first control in this sequence is applied to the plant.

The proposed NMPC control law minimizes the cost function
J , subject to appropriate equality and inequality constraints. The
optimal control problem is defined in discrete time as:

min
u

J (x (0) ,u (·)) := �N (x (N)) +

N−1∑
k = 0

� (x (k) ,u (k))

s.t. x (0) = xin

x (k + 1) = fd (x (k) , u (k))

x ≤ x (k) ≤ x̄

x ≤ x (N) ≤ x̄

u ≤ u (k) ≤ ū

u (·) : [0, N − 1] (36)

where �N (x(N)) is the terminal cost; N is the number of steps
of the prediction horizonHP , in this implementation equal to the
control horizon Hc, i.e., Hc = Hp = N Ts, with Ts being the
discretization time; k indicates the discretization step; x and x̄
are the lower and upper limits forx;u and ū are the lower and up-
per limits for u; x(k + 1) = fd(x(k), u(k)) is the discretized
model defined in (15), detailed in the previous subsection; and
�(x(k),u(k)) is the stage cost function associated to each time
step, defined as a least-squares function:

� (x (k) ,u (k))

=Wu,Fx
{Fx,ref − [Fx,FL + Fx,FR + Fx,RL + Fx,RR]}2

+Wu,ψ̇

[
ψ̇ref − ψ̇

]2
+Wu,αR

α2
R +Wu,PWTPLoss,PWT

2

+Wu,T ire[PLoss,T ire,Long + PLoss,T ire,Lat]
2
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+Wu,LD

[
τRL

τFL + τRL
− Tr,ref,L

]2

+Wu,LD

[
τRR

τFR + τRR
− Tr,ref,R

]2

(37)

where Fx,ref is the total force demand from the drivability
controller; αR is the rear axle slip angle; PLoss,PWT is the
total electric powertrain power loss estimated through (35); and
PLoss,T ire,Long and PLoss,T ire,Lat are the tire slip power losses
calculated through (4), (6), and the simplified version of the
magic formula of the internal model.
Wu,Fx

, Wu,ψ̇ , Wu,αR
, Wu,PWT , Wu,T ire and Wu,LD are

the cost function weights, respectively prioritizing longitudinal
force tracking, reference yaw rate tracking, rear axle slip angle
reduction, powertrain power loss reduction, tire slip power loss
reduction, and rear-to-total torque distribution tracking within
each EV side. Given the different range of the variables in (37),
each weight is expressed as the ratio of a weighting coefficient
(ru,Fx

, ru,ψ̇ , ru,αR
, ru,PWT , ru,T ire and ru,LD, referring to

the different terms of the cost function) to the square of a
corresponding scaling factor coefficient (Usc,Fx

, Usc,ψ̇, Usc,αR
,

Usc,PWT , Usc,T ire and Usc,LD), e.g., Wu,Fx
= ru,Fx

/U 2
sc,Fx

.
The scaling factor coefficient represents the maximum ex-
pected value of the respective cost function variable, i.e., the
squared ratio of the variable factor of each cost function term
to the scaling factor coefficient ranges from 0 to 1. This for-
mulation brings equivalent influence of the weighting coeffi-
cients, which are thus representative of the level of priority
assigned to the cost function terms, and offers ease of controller
tunability.

The following state and control action constraints have been
implemented in (36) as box constraints (lower and upper limits):
� Yaw rate constraint fixed for the whole prediction horizon,

based on the tire-road friction coefficient μ, i.e., |ψ̇| ≤
μg/Vin.

� Sideslip angle constraint, i.e., |β| ≤ βmax, set to 5 deg.
� Individual tire slip ratio constraints, i.e., |sx,ij | ≤
sx,max,ij , where sx,max,ij is the maximum allowed value
of longitudinal slip, set to 0.15 for the simulations of this
study.

� Individual wheel torque constraints, i.e., |τij | ≤ τmax,ij ,
where τmax,ij is the maximum powertrain torque at Vin.

D. Controller Implementation and Selection of Prediction
Horizon and Time Step

The controller was set up through the ACADO toolkit [49],
which can automatically generate code for Gauss-Newton it-
eration algorithms for fast NMPC with constraints. The se-
lected solver parameters were: multiple shooting discretization
method, fourth order Runge Kutta integrator, and qpOASES QP
optimization algorithm.

By using the ACADO toolbox, the proposed algorithm has
been implemented in real-time on a dSPACE MicroAutoBox
II unit, see Fig. 10. A sensitivity analysis was carried out to
investigate the effect of the NMPC prediction horizon, HP ,
and internal model discretization time, TS , and identify the best

Fig. 10. Implementation set-up for the proposed NMPC TV real-time assess-
ment.

Fig. 11. Effect of HP and TS on the average execution time on a dSPACE
MicroAutoBox II device: RMS of the yaw rate error, and peak value of sideslip
angle, during an obstacle avoidance from an initial speed of 56 km/h.

compromise between controller performance and computational
effort.HP ranged from 250 ms to 750 ms, while TS ranged from
10 ms to 30 ms. The implementation step of the controller, ΔT ,
i.e., the time step at which the controller updates its outputs, was
set to be larger, with appropriate and consistent margin, than the
maximum execution time on the available control hardware, and
therefore was different for each set of HP and TS .

Fig. 11 reports the average NMPC execution time as a function
of the RMS value of the yaw rate error, eψ̇ , and the peak value
of |β|, for a double lane change from an initial speed of 56 km/h
and with μ = 0.9. In all configurations, |β| is below the critical
threshold of 5 deg, set as a constraint for high tire-road friction
conditions, and therefore the controller performance should be
evaluated in terms of yaw rate tracking. As HP = 500 ms and
TS = 20 ms represent a good compromise between performance
and computational effort, with a maximum recorded execution
time of 10.81 ms, this controller set-up, indicated by the dashed
circles in Fig. 11, was selected for all the following simulations,
with ΔT = 20 ms.

E. Cost Function Weight Adaptation

The tuning of the NMPC cost function weights influences
the controller behavior. As the NMPC formulation includes two
main aspects in J (see (36) and (37)), i.e., yaw rate tracking and
power loss reduction, a fuzzy logic weight adaptation algorithm
was developed to prioritize energy efficiency during normal
driving, and yaw rate tracking as well as rear axle sideslip angle
limitation in critical conditions.
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Fig. 12. Fuzzy logic weight adaptation system membership functions.

TABLE II
ADOPTED FUZZY RULES

TABLE III
COST FUNCTION WEIGHTING COEFFICIENTS

In this proof-of-concept implementation, large values of |eψ̇|
and |β| are considered as indicators of undesirable EV behavior.
A distribution of three membership functions was chosen for
both inputs, |eψ̇| and |β|, and for the output coefficient, see
Fig. 12. Trapezoidal functions were selected for the boundaries
of each variable, while the middle one is triangular. This configu-
ration is computationally efficient (no substantial increase of the
computational time was experienced with respect to the values
in Fig. 11), while maintaining acceptable response smoothness
[50]. The corresponding rules, see Table II, were implemented
based on the authors’ experience with the system.

During the controller implementation phase, the active safety
performance of the NMPC TV system was assessed during
obstacle avoidance maneuvers (see Section V for additional
details on the test), with four cost function weight configura-
tions (see Table III), i.e., with: i) yaw rate tracking oriented
weights, which prioritize vehicle dynamics performance and
active safety; ii) energy efficiency oriented weights; iii) balanced
weights between energy efficiency and vehicle dynamics; and
iv) the fuzzy logic adaptation algorithm.

Fig. 13 shows the resulting EV trajectories for the test from an
initial speed of 56 km/h andμ = 0.9. The adaptation mechanism
provides an EV response that is very similar to that of case i),
focused on vehicle dynamics. Moreover, Table IV reports the
maximum speed – the critical speed, Vcr – at which each con-
figuration successfully completes the test, i.e., without hitting

Fig. 13. Double lane change trajectories (initial speed of 56 km/h) associated
with different tunings of the NMPC cost function weights (µ = 0.9).

TABLE IV
EFFECT OF COST FUNCTION WEIGHTS ON CRITICAL SPEED FOR

OBSTACLE AVOIDANCE

a cone. In this case, the NMPC with the adaptation mechanism
provides the same performance as the vehicle dynamics oriented
tuning, corresponding to 5 km/h and 3 km/h higher initial speeds
than for the energy-efficiency and balanced tunings. The energy-
efficiency benefits of the adaptation with respect to the vehicle
dynamics oriented tunings of the controller will be reported in
the following Section V.

V. RESULTS

In this section, the NMPC TV system is implemented in the
simulation framework defined in Fig. 1, and compared with other
controller configurations, which are introduced in Sections V.A
and V.B.

A. Analyzed EV Controller Configurations

This section analyzes the performance of the following EV
configurations:
� Passive, evenly distributing the torque among the wheels.
� Passive + LUT, providing the same total wheel torque on

the two EV sides, i.e., zero direct yaw moment, while the
rear-to-total torque distribution within each side is carried
out according to the energy-efficient map in Fig. 5.

� Fuzzy + LUT, with a direct yaw moment generated by the
fuzzy logic controller in Section V.B, while the rear-to-total
torque distribution within each side is carried out according
to the energy-efficient map in Fig. 5. This set-up is used as
benchmarking TV system in the following analyses.

� NMPC Yaw Rate, i.e., the proposed NMPC TV approach
only considering the yaw rate tracking and rear slip angle
terms in the cost function, while Wu,PWT =Wu,T ire =
Wu,LD = 0.

� NMPC PWT Losses, which, on top of the NMPC Yaw Rate
features, considers the powertrain power loss term in the
cost function, while Wu,T ire =Wu,LD = 0.
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� NMPC Tire Losses, i.e., the proposed NMPC TV ap-
proach that considers the yaw rate tracking, rear sideslip
and tire slip power loss terms in the cost function, while
Wu,PWT =Wu,LD = 0.

� NMPC Complete, i.e., the proposed NMPC TV approach
that considers yaw rate tracking, rear slip angle, powertrain
losses and tire slip power losses, without using the cost
function terms related to the rear-to-total wheel torque
distribution within each side, i.e., Wu,LD = 0.

� NMPC Complete WCA, i.e., the proposed NMPC TV
approach using all cost function terms, with constant values
of the weights.

� NMPC Complete WCA Adaptive, i.e., the proposed
NMPC TV approach using all cost function terms, and
also including the fuzzy adaptation mechanism of the cost
function weights.

B. Benchmarking TV Controller

The proposed NMPC TV is evaluated against the bench-
marking TV controller from [19], based on fuzzy logic. The
controller uses the Mamdani inference method, as it provides
intuitive tuning [51]. With respect to the membership functions,
the system considers the yaw rate error, the yaw rate derivative
error, and the sideslip angle error. The output is represented by
the wheel torque level to be applied to each side of the EV, to
generate the direct yaw moment that tracks the reference yaw
rate.

A distribution of five membership functions was chosen for
the yaw rate error and its derivative, while three membership
functions were selected for the sideslip angle. Trapezoidal func-
tions were used for the boundaries of each variable, and also
for the middle one of sideslip angle, since the controller tries to
minimize this variable, and thus accuracy is not the highest prior-
ity. The triangular functions were adopted for all other cases, as
they provide computational efficiency while maintaining smooth
response, which makes them suitable for implementation in
conventional automotive electronic control units (ECUs) [52].

C. Skidpad Tests

50 m radius skid pad simulations for μ = 0.9 and 0.7 were
run to assess the relative importance of: a) the reference yaw
rate characteristic; and b) the wheel torque control allocation.

The results in Figs. 14 and 15 were obtained by keeping the
EV at different constant speeds, each of them corresponding
to a marker in the graphs, for several laps. All controllers
using the energy-efficient reference yaw rate maps show similar
benefits, i.e., relative power input reductions ranging from 5.0%
to 6.8% with respect to the Passive configuration. The control
allocation layer of the Passive + LUT configuration can reduce
the energy consumption only up to 3.6%, with an average saving
of 1.8%, and its effect is more significant at low ay values,
corresponding to low speeds. In these conditions the electric
powertrains operate in their least efficient region; therefore, the
LUT based control allocation algorithm deactivates one of the
axles according to the map in Fig. 5, and the torque demand is

Fig. 14. Percentage power input variation for a selection of configurations,
with respect to the Passive configuration, for µ = 0.9.

Fig. 15. Percentage power input variation for a selection of configurations,
with respect to the Passive configuration, for µ = 0.7.

only provided by the rear axle, which thus operates in a more effi-
cient region. The considerable consumption difference between
the Passive + LUT and all the other controlled configurations
can be ascribed to the effect of the energy-efficient yaw rate.

In summary, the results show that during steady-state cor-
nering: i) the control allocation aspects of the TV controller,
which are the focus of the majority of the existing literature,
are less important than the reference yaw rate characteristics;
and ii) any TV controller capable of tracking the appropriate
energy-efficient reference yaw rate provides rather similar en-
ergy consumption results.

Despite the statement in ii), a sophisticated TV algorithm can
still provide energy efficiency benefits in specific quasi-steady-
state cornering conditions. In fact, as discussed in Section III, the
optimal yaw rate reference depends on μ, and thus the friction
coefficient estimation is crucial to the correct operation of the
algorithm. However, in practice, accurate μ estimation when
the EV operates below its friction limits is rather difficult to
accomplish. Therefore, a second set of skidpad tests at μ = 0.7
was simulated at a constant ax of 1 m/s2, with incorrect (μ =
0.9) and correct (μ = 0.7) friction information provided to the
TV controller, to evaluate its ability to compensate for incorrect
ψ̇ref profiles.

Fig. 16 visualizes a selection of the resulting EV trajectories.
The Fuzzy + LUT configuration is unstable, while the Passive
one is affected by significant understeer, with respect to the
NMPC TV. Fig. 17 reports the corresponding power consump-
tion results. For the cases with the incorrect yaw rate reference,
the power consumption is always greater than for the Passive
vehicle, up to∼6% at around 5 m/s2 for the NMPC Yaw Rate. In
contrast, the configurations with the correct yaw rate reference
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TABLE V
CRITICAL SPEED ACHIEVED DURING OBSTACLE AVOIDANCE

Fig. 16. Skidpad trajectories for a selection of controllers, with ax = 1 m/s2

and µ =0.7. The solid boxes indicate the motion of the cars. Left: full maneuver;
right: zoom of trajectories towards end of maneuver.

Fig. 17. Percentage power input variation for a selection of controller con-
figurations with respect to the Passive configuration, during a skidpad test with
ax = 1 m/s2 and µ = 0.7.

achieve a power saving of about 6% compared to the Passive
case almost across the entire investigated ay-range. Although
the NMPC Complete WCA Adaptive configuration receives the
same incorrect ψ̇ref , its power consumption is lower, on average
by∼2%, than for the other cases with the incorrect ψ̇ref . In fact,
the complex NMPC cost function in (36) and (37) accounts and
partially compensates for the increased tire slip power losses
caused by the inappropriate reference understeer characteristic.

D. Obstacle Avoidance

The obstacle avoidance, which is frequently used by car
makers and supplier to assess vehicle dynamics control systems,
was simulated for μ = 0.9 and 0.7, according to the ISO
3888 specification [53]. The vehicle enters the course at a set
speed, and the accelerator pedal is released. Then the driver,
i.e., the Dynacar driver model in this study, attempts to track
the reference path without hitting a cone. The test speed is
progressively increased up to its critical value, Vcr, at which
the course can no longer be successfully negotiated.

Table V reports the Vcr values for the Passive vehicle and
the controlled configurations, with the best performance being
provided by the NMPC Yaw Rate and the NMPC Complete

Fig. 18. Power loss profiles during an obstacle avoidance test, for µ = 0.9
and an initial speed of 56 km/h.

Fig. 19. Yaw rate tracking performance during an obstacle avoidance test, for
µ = 0.9 and an initial speed of 56 km/h.

Fig. 20. Motor torques profiles during an obstacle avoidance test, for µ = 0.9
and an initial speed of 56 km/h.

WCA Adaptive, achieving 61 km/h and 45 km/h with the two
friction conditions, respectively, against 54 km/h and 37 km/h
of the Passive vehicle, and 58 km/h and 43 km/h of the NMPC
Complete. The Vcr results confirm the functionality of the fuzzy
adaptation mechanism.

Figs. 18–23 report a selection of the time profiles of the
main variables during obstacle avoidance tests from 56 km/h
(μ = 0.9) and 40 km/h (μ = 0.7), which are the lowest critical
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Fig. 21. Power loss profiles during an obstacle avoidance test, for µ = 0.7
and an initial speed of 40 km/h.

Fig. 22. Yaw rate tracking during an obstacle avoidance test, for µ = 0.7 and
an initial speed of 40 km/h.

Fig. 23. Motor torques profiles during an obstacle avoidance test, for µ = 0.7
and an initial speed of 40 km/h.

speeds of the controlled vehicle for the respective μ, achieved
by the Fuzzy + LUT set-up. In particular, Figs. 18 and 21 show
the vehicle sideslip angle, powertrain power losses, the sum of
the longitudinal and lateral tire slip power losses, and the total
TV-affected power losses for four TV controller configurations.
Figs. 19 and 22 plot the yaw rate tracking performance for the
Fuzzy + LUT and NMPC Complete WCA Adaptive set-ups.
Figs. 20 and 23 show the profiles of the four wheel torques
for the NMPC Complete WCA Adaptive configuration. The
inclusion of the tire slip power loss term in the NMPC cost
function reduces the sideslip angle, as β is directly related to the
tire slip angles (see (28)), and the lateral tire slip power losses
(see (6)). As expected, the combination of all cost function terms
brings the most balanced, and therefore, most efficient result.

Tables VI and VII include the values of objective performance
indicators to assess the performance of the different configura-
tions during the two considered obstacle avoidance tests. The
adopted indicators are:
� The final vehicle speed, Vfin, i.e., the speed at the exit of

the course, which is an indicator of vehicle agility and the
level of tire slip power loss.

� The root mean square value of the yaw rate error,
RMS(eψ̇), which evaluates the yaw rate tracking perfor-
mance and vehicle agility.

� The peak absolute value of the rear axle slip angle,
|αR,max|, which assesses vehicle stability as well as tire
slip power losses.

� The normalized integral of the absolute value of the steer-
ing angle δSW :

IAδSW
=

1
tfin − tin

∫ tfin

tin
|δSW | dt (38)

where tin and tfin are the initial and final times of the
relevant part of the test, calculated when the EV enters and
leaves the obstacle avoidance course. IAδSW

assesses the
required steering effort to follow the reference path.

� The normalized integral of the absolute value of the ref-
erence direct yaw moment, Mz,ref , calculated from the
individual reference wheel torque demands:

IAMz,ref
=

1
tfin − tin

∫ tfin

tin
|Mz,ref | dt (39)

The results confirm the superior performance of the NMPC
Complete WCA Adaptive, which has the highest Vfin in both
tests (ultimate proof of reduced power loss), and consistently
good performance in all other indicators. The results also high-
light that energy-efficient TV control should account for both
powertrain and tire slip power losses to achieve energy saving
in a wide range of vehicle operation. For μ = 0.9, Vfin is
comparable for the NMPC PWT Losses and NMPC Tire Losses
configurations, while for μ = 0.7 the latter configuration is
significantly more efficient.

To show the robustness of the NMPC WCA Adaptive set-up
with respect to the Passive configuration, Table VIII reports the
values of RMS(eψ̇) and |αR,max| for obstacle avoidance tests
at μ = 0.9, from 50 km/h, with significant variations (given
the specific vehicle category) of the vehicle inertial parameters.
The results confirm that the proposed controller provides safe
performance for any inertial condition, while the Passive set-
up, which is still stable with the nominal inertial parameters,
experiences a major increase in |αR,max|, which exceeds 30 deg
for the most extreme variation of inertial parameters. Hence,
based on this analysis and the one in Figs. 16 and 17, it can
be confidently concluded that the proposed controller is robust
with respect to a very wide range of operating conditions of the
vehicle.

E. Driving Cycles

Driving cycle simulations were run to evaluate the effect of
the rear-to-total wheel torque distribution during straight-line
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TABLE VI
OBSTACLE AVOIDANCE RESULTS FOR µ = 0.9 AND 56 km/h

TABLE VII
OBSTACLE AVOIDANCE RESULTS FOR µ = 0.7 AND 40 km/h

TABLE VIII
OBSTACLE AVOIDANCE RESULTS FOR µ = 0.9 AND 50 km/h, FOR DIFFERENT INERTIAL PARAMETERS OF THE VEHICLE

operation. The selected cycles (World harmonized Light Vehi-
cles Test Procedure (WLTP), excluding the extra high speed
section; New European Driving Cycle (NEDC); ARTEMIS
road; and ARTEMIS urban, see [54]-[56]) cover a wide range
of longitudinal speeds and accelerations, corresponding to urban
and extra-urban driving conditions.

The total powertrain energy consumption, Etot, is calculated
as:

Etot = ∫ tfin

tin

∑
i = F,R
j = R,L

(τijωij + PLoss,PWT,ij) dt (40)

where (40) considers only the energy consumed by the electric
powertrains, and neglects the energy consumption of the vehicle
ancillaries, such as the lights or the air conditioning system.

The results are reported in Table IX only for the most advanced
NMPC set-up, as the energy consumption is very similar with
all controlled configurations. This outcome is expected, consid-
ering the nature of the mission profiles, involving EV operation
only in straight-line, the low torque levels, and, thus, the low
longitudinal tire slip values. Hence, the energy consumption
during the driving cycles is dominated by the powertrain power
loss characteristics.

For all schedules, the NMPC Complete WCA Adaptive leads
to reduced energy consumption with respect to the single axle
configuration, using only the rear powertrains (while the front
powertrains are switched off), and the even distribution strategy,

TABLE IX
ENERGY CONSUMPTION RESULTS ALONG A SELECTION OF DRIVING CYCLES

i.e., the Passive configuration defined in Section V.A. Depending
on the driving cycle, the saving of the NMPC TV implementation
ranges between 0.21% and 2.46%, with an average saving of
1.06%, with respect to the single axle case, and between 0.47%
and 3.18%, with an average saving of 2.04%, compared to the
even distribution configuration. The results are aligned with
those in other recent energy-efficient rear-to-total wheel torque
distribution studies [35], [36].

F. Circuit

The final test assesses the controllers in a complex scenario,
i.e., the circuit of the 2015 Formula Student Germany competi-
tion. Fig. 24 shows the vehicle path along the track, and the fixed
speed profile followed by all controller configurations, which
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TABLE X
PERFORMANCE INDICATORS OF THE EV CONFIGURATIONS ALONG THE SELECTED CIRCUIT

Fig. 24. Vehicle path along the circuit of the 2015 Formula Student Germany
competition; colors indicate the fixed speed profile along the track.

corresponds to a rather “aggressive” driving style within the
limit of handling, with peak values of lateral acceleration of
∼6 m/s2.

Table X reports the main performance indicators. The fast
driving style does not allow the LUT based control allocation
to bring substantial benefits, which is confirmed by the energy
saving of only 0.59% of the Passive + LUT with respect to the
Passive. Thanks to the adoption of an energy-efficient reference
yaw rate characteristic, the Fuzzy + LUT achieves a 3.93%
energy consumption reduction with respect to the Passive con-
figuration.

Importantly, all NMPC implementations, including the
NMPC Yaw Rate, consume less than the benchmarking Fuzzy
+ LUT set-up. In fact, although the NMPC Yaw Rate formu-
lation does not consider the power loss contributions or the
energy-efficient rear-to-total wheel torque distribution within its
cost function, it provides significantly better yaw rate tracking
performance than the Fuzzy + LUT, which is beneficial to both
active safety and consumption. The energy saving is very similar
for the NMPC PWT Losses and the NMPC Tire Losses, i.e.,
∼6-7%, while all NMPC configurations that consider all power
loss terms in l reduce the consumption by more than 9%. In
general, these results confirm the importance of the reference
understeer characteristic on the EV energy consumption.

The implementation of energy-efficient TV configurations
does not compromise the vehicle cornering response with re-
spect to the Passive vehicle; on the contrary, despite achieving
higher stability, i.e., larger values ofVcr in the obstacle avoidance
tests, the energy-efficient TV controlled configurations alleviate
the steering effort, with IAδSW

reductions ranging from 6% to
nearly 13%.

G. Summary and Discussion

The results of the extensive simulation analysis on a case-
study lightweight electric vehicle with in-wheel motors can be
summarized as follows:
� In quasi-steady-state cornering conditions, the reference

understeer characteristic has more influence on the energy
consumption than the control allocation algorithm (see Figs
14 and 15 in Section V.C). This effect is progressively more
evident with increasing lateral acceleration.

� Although the inclusion of the power loss terms in the TV
controller formulation only marginally improves the power
consumption during steady-state cornering, it significantly
enhances system robustness by compensating for the power
consumption increase caused by state estimation errors,
e.g., on the tire-road friction coefficient (see Figs. 16 and
17 in Section V.C).

� The adaptation mechanism of the cost function weights
of the nonlinear model predictive controller formulation
provides significant operational flexibility with respect to
the actual driving situation, i.e., by prioritizing energy
efficiency during normal driving, and vehicle safety and
stability in extreme maneuvers. With such mechanism, the
NMPC TV system is characterized by the same critical
speed in obstacle avoidance maneuvers as its version tuned
only for vehicle dynamics performance, i.e., 61 km/h at
μ = 0.9 and 45 km/h at μ = 0.7, against 54 km/h and
37 km/h for the Passive configuration, and 56 km/h and 40
km/h for the benchmarking Fuzzy + LUT controller (see
Section V.D).

� With respect to the Passive configuration, the most ad-
vanced control configuration proposed in this study, the
NMPC Complete WCA Adaptive, reduces energy con-
sumption by ∼2% on average during the selected driving
cycles in straight-line conditions (see Section V.E), and
∼9% along the considered circuit (see Section V.F). Also,
along the circuit, the NMPC Complete WCA Adaptive
brings a consumption reduction in excess of 5% with
respect to the Fuzzy + LUT set-up, which is a remarkable
energy saving, given that the benchmarking controller uses
energy-efficient reference yaw rate and rear-to-total wheel
torque distribution.

VI. CONCLUSION

This study presented a set of nonlinear model predictive
controllers for electric vehicles with multiple powertrains,
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targeting energy efficiency enhancement through the appropriate
control of the cornering response and wheel torque allocation,
with formulations considering powertrain power losses and tire
slip power losses, while providing the expected level of vehicle
dynamics performance.

Comprehensive results showed the significant positive impact
of the generated energy-efficient reference yaw rate map on
energy consumption in steady-state cornering conditions. Such
improvement was evident also for the benchmarking controller,
i.e., a torque-vectoring system based on a fuzzy logic implemen-
tation, coupled with an energy-efficient control allocation layer.
Nevertheless, the inclusion of the different relevant power loss
contributions in the cost function terms of the developed NMPC
formulations allows to compensate for inaccuracies, e.g., related
to the estimation of the tire-road friction coefficient in the online
generation of the energy-efficient reference yaw rate, and for the
effect of cornering transients, thus providing robustness to the
energy efficiency enhancement.

A single NMPC setting was unable to concurrently provide
the best energy consumption performance in normal driving
conditions, and the safest cornering response during emergency
maneuvers, e.g., obstacle avoidance tests. Therefore, the paper
presented an adaptation mechanism of the NMPC weights,
which was implemented in the most advanced proposed con-
troller configuration, i.e., the NMPC TV WCA Adaptive, which
provided the most significant improvements in all considered
scenarios, thanks to its operational flexibility in prioritizing the
energy efficiency or vehicle dynamics aspects.

Future developments will include the experimental assess-
ment of the developed NMPC algorithms on electric vehicle
demonstrators, and their extension to vehicle plants with addi-
tional chassis control actuators.
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