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Abstract In this paper, we show that a minimally coupled
3-form endowed with a proper potential can support a regu-
lar black hole interior. By choosing an appropriate form for
the metric function representing the radius of the 2-sphere,
we solve for the 3-form field and its potential. Using the
obtained solution, we construct an interior black hole space-
time which is everywhere regular. The singularity is replaced
with a Nariai-type spacetime, whose topology is dS2 × S2,
in which the radius of the 2-sphere is constant. So long as
the interior continues to expand indefinitely, the geometry
becomes essentially compactified. The 2-dimensional de Sit-
ter geometry appears despite the negative potential of the
3-form field. Such a dynamical compactification could shed
some light on the origin of de Sitter geometry of our Universe,
exacerbated by the Swampland conjecture. In addition, we
show that the spacetime is geodesically complete. The geom-
etry is singularity-free due to the violation of the null energy
condition.
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1 Introduction: regular black holes

Singularities are commonplace in general relativity, as
established by the singularity theorems [1–4]. In partic-
ular, singularities tend to form during gravitational col-
lapse and thus black holes harbor singularities. For exam-
ple, a Schwarzschild black hole has a spacelike singularity,
which lies in the future of an infalling observer. Reissner–
Nordström black holes and Kerr black holes, on the other
hand, possess timelike singularities. Curvature (as measured
by, e.g., the Kretschmann invariant) becomes increasingly
large as one approaches the singularity, which indicates that
new physics could come into play near it. That is, quantum
gravitational effect is usually expected to cure spacetime sin-
gularities.

We do not yet have a fully working theory of quantum
gravity, but black holes without singularity – “regular black
holes” – have been studied in great detail, mostly as phe-
nomenological models. In fact, it is interesting to investigate
how regular black hole solutions can be obtained even at the
classical level, in the presence of some matter fields. Ad hoc
though it may be to consider somewhat exotic fields, such
as 1-form potential within nonlinear electrodynamics, this
at least gives us some comfort that in the regime of quan-
tum gravity, a plethora of new fields that could be excited at
higher energy scales would indeed couple to gravity to “reg-
ularize” black hole singularities, albeit most likely in a more
complicated manner.

The first regular exact black hole solution in general rel-
ativity is a charged black hole supported by nonlinear elec-
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trodynamics [5]. Its metric is given by

ds2 = −
[

1 − 2mr2

(r2 + q2)3/2 + q2r2

(r2 + q2)2

]
dt2

+
[

1 − 2mr2

(r2 + q2)3/2 + q2r2

(r2 + q2)2

]−1

dr2 + r2d�2,

(1)

where d�2 is the standard metric on a 2-sphere, and m, q are
related to the mass and charge, respectively. This solution
behaves like a Reissner–Nordström black hole asymptoti-
cally as r → ∞. Like Reissner–Nordström, this black hole
also has two horizons. The presence of the inner (Cauchy)
horizon is the reason why singularity theorem does not apply
– the theorem requires the underlying spacetime to be glob-
ally hyperbolic (of course, even when the premise of the theo-
rem is false, it does not mean that the spacetime is guaranteed
to be singularity free, as shown by the Reissner–Nordström
black hole). The interior spacetime below the inner horizon
is static, with a regular origin at r = 0. This is, in fact, a
charged version of the well-known Bardeen solution [6,7].

How about higher form fields1? Let us consider a 3-
form field A (by which we mean that the potential is a 3-
form, which means the analogues “Faraday tensor” or field
strength, F = dA, is a 4-form). In the absence of a nontriv-
ial potential V in the Lagrangian (not to be confused with
the 3-form potential A), it behaves like a cosmological con-
stant2 [10]. In fact, we consider such a form field because
it is well-motivated, and its roles in cosmology have been
widely investigated. Indeed those fields have been proven
to be useful in string cosmology [11,12], the pre-big-bang
scenario [13] and quantum cosmology [14]. More recently,
they have been widely analysed in the paradigm of inflation
[15–21]. Likewise, primordial non-gaussianity induced by
one or several 3-forms has been analysed in [22–24]. Most
importantly, this scenario has been successfully fitted to the
current Planck data. The 3-forms have been proven to be
proliferous: they are also able to describe the late-time accel-
eration of the Universe [18,19], which does not come as a
big surprise, as a potential free 3-form mimics a cosmologi-
cal constant [10]. What is truly innovative about 3-forms in
what refers to the late-time Universe is that they can mimic
a phantom dark energy with a standard kinetic term as long

1 As far as exterior geometry is concerned, due to the no-hair theorem,
static black holes in n-dimensional spacetime (either asymptotically
flat, de Sitter or anti-de Sitter) cannot admit p-form charge for p � 4
(in our terminology), at least when there is no nontrivial potential [8,9].
2 It is true that the presence of a potential breaks the gauge invariance
present initially in the theory but likewise this happens for the inflaton
field; i.e. the kinetic term is invariant under a translation as long as
the potential is constant, however, as soon as the scalar field potential
is switched on, such an invariance is gone. The same happens with a
Proca field.

as the 3-form potential is positive and a decreasing function
of the contracted square of the 3-form [25,26].

Given that p-forms are ubiquitous in string theory, which
is one of the candidates for quantum gravity, it is interesting
to investigate whether 3-form can help to remove black hole
singularities, in addition to its utility in cosmology. Indeed,
axionic field Hμνρ , which is the field strength of a 2-form
field, can regularize flat (i.e. of planar or toral topology)
locally asymptotically anti-de Sitter black holes [27]. Pre-
viously, it was shown that axion, without nontrivial poten-
tials, does not affect the exterior metric of an asymptotically
flat black hole spacetime. Furthermore, the field strength van-
ishes in that case [28]. See also Ref. [29] in which black holes
in higher dimensions with p-form fields are investigated.

For the case of 3-form, we find that with a certain choice
of the potential V , which is not that complicated, 3-form
field can give rise to an interior solution which is regular.
However, unlike the aforementioned charged Bardeen black
hole, our solution has only one horizon, so that the interior
is a cosmological spacetime with time extending eternally
into the infinite future, instead of a static “core”. Even more
surprisingly, as we will discuss in more detail in the Dis-
cussion section, its topology is dS2 × S2, with the size of
the 2-sphere being constant as the de Sitter part expands,
effectively giving rise to some sort of compactification. This
is different from the Frolov–Markov–Mukhanov model in
which a Schwarzschild interior transits into a 4-dimensional
de Sitter spacetime [30,31]. That is to say, in our case the sin-
gularity is replaced by a Nariai-type universe [32,33]. Similar
regular black holes can also be formulated in loop quantum
gravity, specifically in the so-called “μ̄-type scheme” [35–
38]. In this paper, we show that such a resolution of black
hole singularity is attainable at the classical level, supported
by 3-form fields. Furthermore, we hope that this toy model
could hint at possible singularity avoidance in a realistic grav-
itational collapse, with 3-form fields activated by sufficiently
large curvature, as we will explain. We will also show that
the spacetime is geodesically complete and the reason why
the singularity is avoided is due to the violation of the null
energy condition.

Our manuscript is structured as follows: in Sect. 2 we
briefly review how some black hole interior geometries
can be interpreted as a cosmological spacetime, taking
Schwarzschild interior as an example. Then, in Sect. 3 we
compute the equations of motion for a 3-form minimally
coupled to Einstein’s gravity. We then study the solutions in
detail in Sect. 4. Finally we conclude in Sect. 5 with some
discussions.

123



Eur. Phys. J. C           (2021) 81:278 Page 3 of 11   278 

2 Black hole interior and Kantowski–Sachs spacetime

Inside the event horizon, the spacetime of a static and
spherically symmetric black hole can be described by the
Kantowski–Sachs anisotropic cosmology [39,40]:

ds2 = −dt2 + a(t)2dR2 + r2
s b(t)

2d�2
2 , (2)

wherea(t) andb(t) are dimensionless scale factors. We intro-
duce a parameter rs , which has a length dimension, to denote
the radius of the event horizon. For example, the interior
metric of the Schwarzschild spacetime

ds2
S = −

(rs
r

− 1
)−1

dr2 +
(rs
r

− 1
)
dR2 + r2d�2

2 (3)

can be rewritten in the form of the metric (2) after redefining
the timelike variable r → r(t). For the Schwarzschild metric,
the exact expressions of the scale factors can be obtained by
defining a new time variable η(t), such that [40]

t

rs
= η + sin η cos η, (4)

and the scale factors can be written as

a(t) = tan η(t), b(t) = cos2 η(t). (5)

Note that the two scale factors satisfy

b = 1

1 + a2 , (6)

and this relation is independent of the choice of the timelike
variable.

Near the event horizon where t/rs → 0, the scale factors
of the Schwarzschild interor can be approximated as

Event horizon: a(t) ≈ t

2rs
, b(t) ≈ 1 − t2

4r2
s
. (7)

On the other hand, the singularity takes place when t/rs →
π/2. At the singularity, the scale factors behave as

Singularity: b(t) ≈ 1

a(t)2 ≈
[

3

2

(
π

2
− t

rs

)]2/3

. (8)

The motivation of this work is to construct a regular black
hole interior geometry by including 3-form fields with suit-
able potentials. We are interested in those solutions that can
recover the Schwarzschild interior near the horizon (t/rs →
0), while deviate from it when t/rs increases in a way that the
singularity is replaced with a regular geometry. We want to
recover the Schwarzschild interior near the horizon since we
envision that in a more realistic model in which a black hole

is formed in a gravitational collapse, 3-form fields, and pos-
sibly higher form fields in string theory only get activated at
sufficiently large energy scales, i.e., when curvature is large
enough. For a sufficiently massive black hole, the curvature
at the horizon can be very small, so it makes sense to require
such a boundary condition.

3 Equations of motion

We consider a 3-form field Aμνρ minimally coupled to Ein-
stein’s general relativity (GR). The action can be written as

S =
∫

d4x
√−g

[
R

2κ
− 1

48
F2 − V

(
A2

)]
, (9)

where κ = 8πG is the gravitational constant, and the field
strength Fμνρσ is defined by

Fμνρσ = 4∇[μAνρσ ]
= ∇μAνρσ − ∇σ Aμνρ + ∇ρ Aσμν − ∇ν Aρσμ . (10)

In the action (9), the scalar invariants F2 and A2 are defined
by F2 ≡ Fμνρσ Fμνρσ and A2 ≡ Aμνρ Aμνρ , respectively.
Furthermore, R is the Ricci scalar of the spacetime and the 3-
form field is subject to a potential V (A2). The Einstein equa-
tion can be obtained by varying the action (9) with respect to
the metric gμν :

Rμν − 1

2
gμνR = κTμν , (11)

where Rμν and Tμν are the Ricci tensor and the energy-
momentum tensor of the 3-form, respectively. The latter can
be written explicitly as

Tμν = 1

6
Fμαβγ Fν

αβγ + 6
∂V

∂A2 Aμαβ Aν
αβ

−gμν

[
1

48
F2 + V

(
A2

)]
. (12)

In the Kantowski–Sachs spacetime, whose metric is given
by Eq. (2), the non-vanishing components of the form field
can be expressed as

ARθφ = r2
s a(t)b(t)2χ(t)ERθφ ,

FtRθφ = d

dt

[
r2
s a(t)b(t)2χ(t)

]
ERθφ , (13)

where ERθφ is the Levi-Civita tensor defined on a (R × S2)
spatial metric ds2

h = dR2 + d�2
2, and χ(t) quantifies the

dynamics of the form field. We then have

A2 = 6χ2 , F2 = −24 (χ̇ + Haχ + 2Hbχ)2 , (14)
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where Ha ≡ ȧ/a and Hb ≡ ḃ/b are the Hubble parameters
associated with the two scale factors, with dot denoting the
derivatives with respect to t . In the Kantowski–Sachs space-
time, the equations of motion can be obtained as follows:

H2
a + Ḣa − 2H2

b − Ḣb + HaHb − 1

r2
s b

2 = 0 , (15)

χ̈ + (
Ḣa + 2Ḣb

)
χ + (Ha + 2Hb) χ̇ + dV

dχ
= 0 , (16)

1

κ

(
3H2

b + 2Ḣb + 1

r2
s b

2

)
= χχ̈ + χ̇2

2
+ 2χχ̇ (Ha + 2Hb)

+ χ2
(
H2
a

2
+ 2H2

b + Ḣa + 2Ḣb + 2HaHb

)
+ V (χ) .

(17)

In addition, the Hamiltonian constraint of the system is given
by

H2
b + 2HaHb + 1

r2
s b

2 = κ

2
(χ̇ + Haχ + 2Hbχ)2 + κV (χ) .

(18)

It should be emphasized that, unlike the standard scalar field
which is minimally coupled to gravity, the kinetic term of
the 3-form (see the right-hand side of Eq. (18)) contains the
contributions of Ha and Hb.

4 Regular black hole supported by 3-form

In the context of GR minimally coupled with 3-form fields,
the intuitive approach to obtain black hole solutions is to start
with assuming some particular potentials V (χ), then solve
the field equations to get the solutions. This method has been
utilized in Ref. [41], to obtain spherically symmetric solu-
tions. Some of these solutions can be interpreted as black
holes by identifying the existence of event horizons (worm-
hole solutions were also found in [42]). The others can be
interpreted as naked singularities in which there is no event
horizon in the spacetime. However, the analysis regarding the
black hole solutions conducted in Ref. [41] only focuses on
the exterior region of the spacetime. It is not clear how such
black hole solutions behave inside the horizons. Since we are
interested in formulating regular black hole solutions in this
theory, we will mainly focus on the spacetime inside the event
horizon, which, as we have mentioned, can be described by
the Kantowski–Sachs metric (2).

To construct regular black hole solutions, we will not
assume a particular 3-form potential at the beginning, as
apposed to the method used in Ref. [41]. Instead, we will
consider a particular choice of the scale factor b(t), such that
instead of going to zero at a finite t (the singularity in the

Schwarzschild black hole takes place at t/rs = π/2), it has
a non-zero minimum value bm satisfying 1 > bm > 0. Using
Eqs. (15), (16), (17), and inserting proper initial conditions
near the event horizon whereb ≈ 1, we can solve Ha(t),χ(t),
V (t) numerically. After obtaining the solutions, one has to
check whether the constraint equation (18) is satisfied.

The scale factor b(t) of our interest, which could appear
in regular black hole models, is

b(t) = 1

(x + 1)2

{
x+exp

[
− (x+1) t2

8r2
s

+c4(x)

(
t

rs

)4
]}2

,

(19)

where c4(x) < 0 is a constant coefficient. The inclusion of
this coefficient is to justify the initial conditions, which will
be presented later. The parameter x > 0 is dimensionless and
it directly determines bm as follows

bm =
(

x

1 + x

)2

. (20)

Note that the scale factor b(t) given by Eq. (19) satisfies
b(t) ≈ 1 − t2/4r2

s when t/rs → 0. Therefore, the scale
factor b(t) reduces to the Schwarzschild counterpart near
the horizon (see Eq. (7)). From now on, we will rescale the
timelike coordinate as t/rs �→ t , for the sake of simplicity.

As we have mentioned, the coefficient c4(x) is related to
the justification of the initial conditions. First, we assume
that at the initial point t = ti near the horizon, where ti 	 1,
the 3-form field χ(t) and its derivative is given by

κχ(ti ) = t3
i , κχ̇(ti ) = 3t2

i . (21)

With this assumption, the second and the third terms of
Eq. (16) are of the order of ti near the horizon, provided
that the leading order of Ha(ti ) is 1/ti (see Eq. (7)). In order
to ensure the smallness of the contributions from the 3-form
field near the horizon, we have to further ensure that gener-
ically, the first and the last terms in Eq. (16), that is, χ̈ and
dV/dχ , are small near the horizon. Given that the kinetic
terms of the right-hand side of Eqs. (17) and (18) are gener-
ically of the order of t4

i near the horizon, we find that it is
necessary to take into account the series expansion of Ha(t)
near ti , up to the third order term. Therefore, the initial con-
dition for Ha(ti ) reads

Ha(ti ) = 1

ti
+ ti

3
+ 23

180
t3
i . (22)

The coefficient c4(x) is thus fixed:

c4(x) = −3x2 + 13x + 10

384
. (23)
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Fig. 1 The results of the
regular black hole model given
by Eq. (19) for x = 4 (blue) and
x = 3 (magenta), respectively.
The red curves are the results of
the Schwarzschild spacetime.
Top-left: b(t) (solid) and Hb(t)
(dashed). Top-right: ln a(t)
(solid) and Ha(t) (dotted). The
3-form field χ(t) and the
potential V (χ) are shown in the
bottom-left and bottom-right
panels, respectively. The vertical
dashed line (t = π/2) stands for
the singularity in the
Schwarzschild black hole. Note
that we have rescaled t/rs → t .
In addition, the gravitational
constant is set to κ = 1 in these
plots. Likewise for the plots
below

Furthermore, the initial condition for the potential V (ti ) is
given according to the constraint equation (18).

We rescale the gravitational constant such that κ = 1 for
simplicity. The numerical results are shown in Fig. 1. The
blue and magenta curves represent the results of the regular
black hole with x = 4 and x = 3, respectively. The red
curves correspond to the Schwarzschild interior spacetime,
in which the singularity is labeled by the vertical dashed line
(t = π/2). It can be seen that in the regular black hole model,
the 3-form field χ increases in t and approaches its maximum
value χm , which corresponds to the local minimum Vm of
the potential. Also, in the regular black hole model, Ha(t)
approaches a constant when t → ∞. More precisely, Ha(t)
and the potential can be approximated as

Ha(t) → 1

bm
, κV → κVm = 1

b2
m

(
1 − κχ2

m

2

)
,

when t → ∞ . (24)

Therefore, the scale factor a(t) would be exponentially grow-
ing in t when t → ∞.

In fact, one can also express the scale factor b in terms
of a, such that the result can be presented in a coordinate-
independent way. In Fig. 2, the scale factor b is shown as a
function of a for the regular black hole model with x = 3
and x = 4, in magenta and blue, respectviely. Note that the
two scale factors of the Schwarzschild metric satisfy b =
1/(1 + a2) and they are shown by the red curve.

In Fig. 3, we show the Ricci scalar R (left) and the
Kretschmann scalar K (right) of the regular black hole.
Again, the red curve in the right panel shows the Kretschmann
scalar of the Schwarzschild black hole (KSch = 12/b6). Note
that the Ricci scalar of the Schwarzschild spacetime is iden-
tically zero since it is a vacuum solution.

Fig. 2 The scale factor b as a function of a is shown. The magenta and
blue curves correspond to x = 3 and x = 4 respectively. The red curve
shows the result of the Schwarzschild spacetime: b = 1/(1 + a2)

It is surprising that when b → bm , the interior spacetime
is asymptotically a 2-dimensional de Sitter spacetime times
a 2-sphere, dS2 × S2. The reason why a dS2 chart appears
accompanied by a negative 3-form potential can be appreci-
ated by writing down the trace of the Einstein equation:

R = − κT

= κ

[
2 (χ̇ + Haχ + 2Hbχ)2 + 4V − 3χ

dV

dχ

]
. (25)

Even though the potential is negative, the first term in the
second line of Eq. (25) also contributes. In the asymptotic
limit (t → ∞), Eq. (25) becomes

R = κ
(

2H2
a χ2

m + 4Vm
)

= 4

b2
m

, (26)

where we have used Eq. (24) in the last equality. This result
can be interpreted as the 3-form field itself behaving as an
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Fig. 3 The Ricci scalar R and
the Kretschmann scalar K of the
regular black hole model (the
magenta and blue curves
correspond to x = 3 and x = 4
respectively), compared to the
Schwarzschild case in red. The
Ricci scalar is of course
identically zero in the
Schwarzschild case, hence not
shown in the plot

effective cosmological constant, which compensates the neg-
ative contribution from the potential term.

4.1 Spacetime structure when b → bm

After obtaining the interior geometry of a black hole solu-
tion, it is important to investigate the structure of the interior
geometry, such as the causal structure of the spacetime. After
adopting the following rescalings: t/rs → t , R/rs → R,
the metric line element when b → bm can be written as

ds2 = −dt2 + e2HatdR2 + b2
md�2

2 . (27)

Since Ha → 1/bm in this limit, the metric (27) is essentially
the Nariai solution at large t limit [32,33]. In fact, the full
Nariai spacetime could be a self-consistent solution in full
quantum gravity [34]. We would like to emphasize that, while
in Refs. [35–38], the authors have shown that similar regular
black holes can be formulated within effective models of
loop quantum gravity, our result here is obtained in classical
general relativity. To scrutinize the causal structure, let us
focus on the t-R plane. Introducing a new coordinate dr̄ =
e−Hatdt , the t-R sector of the metric (27) reads

ds2 = e2Hat
(
dR2 − dr̄2

)
. (28)

Then, we introduce a new set of coordinates

ū = eĀ(R+r̄) , v̄ = −e− Ā(R−r̄) , (29)

such that

dūd v̄ = Ā2e2 Ār̄
(
dR2 − dr̄2

)
, (30)

where Ā is a positive constant. Finally, we define a set of
timelike and spacelike coordinates: T̄ = (ū − v̄)/2 and X̄ =
(ū+ v̄)/2, such that −dT̄ 2 +d X̄2 = dūd v̄. The line element
becomes

ds2 = Ā−2exp
[
2

(
Hat − 2 Ār̄

)] (
−dT̄ 2 + d X̄2

)
, (31)

and we have

T̄ 2 − X̄2 = e2 Ār̄ . (32)

When b → bm , we have t → ∞ and r̄ → 0. Therefore,
the surface b = bm is a spacelike surface, on which T̄ 2 −
X̄2 = 1. The causal structure of the interior spacetime can be
illustrated by the Penrose diagram, which is shown in Fig. 4.
See also the results in Ref. [35].

Singularity theorems require various assumptions, such
as globally hyperbolicity and energy conditions. Indeed, the
reason why the singularity can be avoided in this model is
because the null energy condition is violated. Intuitively,
the violation of energy conditions effectively gives rise to
a “repulsive force” in the interior spacetime, preventing the
formation of spacetime singularities. To see the violation
explicitly, we recall that the null energy condition is defined
as

� := Tμνk
μkν � 0 , (33)

where kμ is a null vector. To check that the null energy con-
dition holds, one has to check that � � 0 for all null vectors.
On the other hand, to show that it does not hold, it suffices to
show a counter-example. To this aim, let us choose the null
vector

kμ = (a(t), 1, 0, 0) . (34)

The expression of � can be written explicitly as

� = a2χ
dV

dχ
. (35)

Since in our regular black hole model, the 3-form field χ is
positive and dV/dχ is negative, the null energy condition is
therefore violated (� < 0). The violation of the null energy
condition in this model can be seen in Fig. 5.

Let us summarize several geometrical properties of the
interior spacetime:

– Singularity theorem: In many regular black hole models,
there is an inner Cauchy horizon [6,31,43–47]. That is

123



Eur. Phys. J. C           (2021) 81:278 Page 7 of 11   278 

Fig. 4 Left: The causal structure of a maximally extended
Schwarzschild black hole, where our coordinate covers inside the event
horizon (yellow colored region), where the time coordinate varies from
t = 0 (horizon) to t = π/2 (singularity). Right: The effects of the
3-form field is to modify the solution near the putative singularity. The

areal radius approaches a constant and the singularity is replaced by the
topology dS2 × S2 (red colored region). Therefore, one can interpret
that the internal structure will evolve to a spacelike future infinity rather
than a spacelike singularity

the reason why several regular black hole models are free
from the singularity theorem [48]. Due to the existence
of the Cauchy horizon, the global hyperbolicity is not
satisfied, and therefore, even without violating the null
energy condition, a black hole can be free from singu-
larity. However, in our case, there is no Cauchy horizon,
but the singularity theorem is violated due to the explicit
violation of the null energy condition.

– Free frommass inflation: There is neither an inner Cauchy
horizon nor another white hole horizon. The usual prob-
lem with the second horizon is the instability issue due
to the infinite blue-shift of modes [49]; hence, the true
geometry must be non-perturbatively investigated and
the final results may indicate there exists a curvature sin-
gularity [50–54]. However, in our example, there is no
unstable horizon. This can be a minimal modification of
the interior geometry of a black hole which resolves the
singularity problem.

– Dynamical compactification: One interesting observa-
tion is that the four-dimensional geometry seems to
be dynamically compactified into a two-dimensional de
Sitter spacetime times a sphere with a constant size.
Although this is beyond the scope of this paper, one may
further investigate whether there can be a compactifica-
tion process from higher dimensions to four dimensions.
If the 3-form field or another field can realize such a pro-
cess, this can not only solve the singularity problem, but
also the compactification problem of string theory.

– De Sitter-like phase from negative potential: The appar-
ent potential of the 3-form field is negative-definite, but
after all arrangements, the interior geometry looks like a
de Sitter phase (though with the aforementioned “com-
pactification”). This might shed some light on the origin

Fig. 5 The null energy condition is violated in the regular black hole
model (� := Tμνkμkν < 0). The blue and the magenta curves corre-
spond to x = 4 and x = 3, respectively

of the de Sitter geometry of our Universe, a problem exac-
erbated by the Swampland conjecture [56–58].

4.2 Geodesic equations

In general relativity, there are two distinct notions of space-
time singularities. The first type is curvature singularities, in
which curvature invariants diverge. In the context of the sin-
gularity theorems, however, it is a different notion of singu-
larity that appears – that of geodesic incompleteness. Math-
ematically, it is possible to have geodesic incompleteness
without curvature singularity. For example, one can remove
a point by hand in a Minkowski spacetime. However, physi-
cally, if there is geodesic incompleteness, then one typically
suspects that it arises because of strong gravitational field
that “breaks” the spacetime. Therefore it is expected that
geodesic incompleteness should accompany curvature sin-
gularity in realistic settings.

In any case, despite already showing that curvature is
bounded in our black hole interior, let us now investigate the
properties of geodesic equations and show geodesic com-
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pleteness explicitly. The geodesic equations of the metric (2)
contain the following constants of motion:

ε ≡ −gμνu
μ

(
∂

∂R
)ν

, L ≡ gμνu
μ

(
∂

∂φ

)ν

, (36)

where u denotes the 4-velocity of the particle. ε and L can be
interpreted as the conserved energy and the angular momen-
tum along the geodesic, respectively. With the metric (2), the
above equations (36) can be written as

ε = −a(t)2 dR
dτ

, L = b(t)2 dφ

dτ
. (37)

Considering the equatorial motion (θ = π/2), the geodesic
equation reads

−δ = −
(
dt

dτ

)2

+ ε2

a(t)2 + L2

b(t)2 , (38)

where δ = 0 and δ = 1 corresponds to lightlike and timelike
geodesics, respectively. The numerical calculations of the
proper time elapsed during the journey from the event horizon
(t = 0) to a spacelike surface inside the black hole (t = t f )
is shown in Fig. 6. The blue curves and the red curves are
the results in the regular black hole model (x = 4) and those
in the Schwarzschild black hole, respectively. We split the
discussions into the following three cases:

• ε = 0: The result is shown by the solid curves (ε = 0,
δ = L = 1) in Fig. 6. For the regular black hole model,
we consider the limit b(t) → bm and a(t) → eHat . In
this limit, the proper time when b → bm can be solved
as

τ ≈ t√
δ + L2

b2
m

. (39)

Therefore, when t → ∞, the proper time τ diverges
linearly in t .

• ε 
= 0 and δ + L2/b2
m 
= 0: The result is shown by the

dashed curves (ε = δ = L = 1) in Fig. 6. In the reg-
ular black hole model, when t → ∞, the term ε2/a2

is negligible compared with the δ + L2/b2
m term. There-

fore, the approximated proper time τ in this limit reduces
to Eq. (39). When t → ∞, the proper time τ diverges
linearly in t as well.

• ε 
= 0 and δ + L2/b2
m = 0: The result is shown by the

dotted curves (ε = 1, δ = L = 0) in Fig. 6. For the
regular black hole, the approximated proper time in the
limit t → ∞ can be solved as

τ ≈ eHat

εHa
. (40)

Fig. 6 The proper time τ elapsed during the journey from the event
horizon (t = 0) to a spacelike interior surface labeled by t = t f . The
red curves are the results in the Schwarzschild spacetime, in which
the singularity is labeled by the vertical dashed line (t f = π/2). The
blue curves, on the other hand, are the results in the regular black hole
spacetime with x = 4. Solid, dashed, and dotted curves correspond
to ε = 0; ε 
= 0 and δ + L2/b2

m 
= 0; ε 
= 0 and δ + L2/b2
m = 0,

respectively

Therefore, the proper time τ diverges exponentially in t .

We have shown that in the regular black hole model, when-
ever the particles reach t → ∞ (b → bm), their proper
time always diverges. Therefore, particles, no matter mas-
sive or massless, would take infinite proper time or affine
parameter to reach the surface b = bm . This ensures the
geodesic completeness, as well as the regularity of the space-
time. In Ref. [55], the authors introduced a classification of
non-singular black holes based on the behaviors of spacetime
geodesics. According to the behavior of geodesic congru-
ences in this model, the asymptotic non-singular geometry
belongs to the case B.II in their classification.

Before closing this section, we would like to emphasize
that although there is a degree of freedom to tune in the 3-
form potential, not all kinds of regular black hole models are
attainable in the setup considered in this paper. For exam-
ple, given the fact that the Kantowski–Sachs metric can only
describe the interior cosmological spacetime, this setup is
not able to describe regular black holes which contain inner
event horizons, such as the model mentioned in Eq. (1), the
self-dual black hole [59,60], and the regular black holes in
the context of non-commutative geometry [43]. The original
spacetime singularities in some of these models are replaced
with a regular de Sitter core. The Kantowski–Sachs space-
time is not able to completely describe the spacetimes of
these models inside the exterior event horizon. In addition, in
several effective regular black holes formulated within loop
quantum gravity [61–64], the singularity is replaced with a
spacelike transition surface, which connects two asymptot-
ically Schwarzschild spacetimes. One characteristic of this
type of “bouncing” solutions is that the transition surface
can be reached by an infalling particle in its finite proper
time, which is not the case for the 3-form model obtained in
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this paper.3 In fact, for a bouncing model expressed by the
Kantowski–Sachs metric, the transition surface is character-
ized by a minimum value of the scale factor b, and the other
scale factor a reaches its maximum at the transition surface.
It should be stressed that these types of regular black holes do
not exist in the 3-form theory considered in this paper. This
can be directly seen from the equations of motion. More pre-
cisely, the transition surface resembles a “bouncing” property
of the scale factors in the sense that

Ha = Hb = 0 , Ḣa < 0 , Ḣb > 0 , (41)

at the transition surface. However, it can be easily seen from
Eq. (15) that such a solution does not exist in the 3-form
theory considered in this work, because Eq. (15) is unlikely
to be satisfied at the transition surface.

5 Discussion

In this work we have shown that 3-form field with an appro-
priate choice of the potential could support regular black
holes whose interior is a cosmological spacetime with topol-
ogy dS2 ×S2, i.e. a Nariai spacetime. Interestingly the radius
of the 2-sphere part is constant (which is governed by the free
parameter x > 0 in the scale factor, Eq. (19)), so as the de
Sitter part continues to expand exponentially, we have effec-
tively a dynamical compactification – the universe inside the
black hole becomes essentially 2-dimensional at late time.
Such kind of dynamical compactification could provide some
hints on the origin of the de Sitter geometry of our Universe.

As we have mentioned in the bulk of the paper (Sec. 4),
another way of obtaining black hole solutions is to start
with assuming some particular potentials V (χ), then solve
the field equations to get the corresponding solutions. The
authors of Ref. [41] have used this method to obtain spher-
ically symmetric solutions in this theory. Some of the solu-
tions can be interpreted as black holes by identifying the
existence of event horizons. The others can be interpreted as
naked singularities in which there is no event horizon in the
spacetime. However, the analysis regarding the black hole
solutions conducted in Ref. [41] only focuses on the exterior
region of the spacetime. Since we are interested in formu-
lating regular black hole solutions in this theory, we have
mainly focussed on the spacetime inside the event horizon
in this work. Therefore, the approach we have followed and
the one used in [41] can be seen as complementary.

We stress also that our result is completely classical. How-
ever, one might postulate some relations with quantum grav-

3 In fact, the behavior of the scale factor b(t) in our case is qualitatively
analogous to the loitering effect in cosmology, where the scale factor
reaches a minimum value in an infinite cosmic time [65].

ity. In a more realistic (and more complicated) model of
black hole interior, it is perhaps reasonable to expect that
as curvature grows inside a black hole towards the putative
singularity, new physics would eventually enter. This might
include new fields such as p-forms, which would then pre-
vent the singularity from forming, in a similar manner that
our simple model is singularity-free. One might ask: if there
is no singularity, why would there be large curvature in the
first place to trigger form fields? The likely answer is that
in a more realistic situation one has to take into account the
entire dynamical process of gravitational collapse. As matter
is crushed into a small region, curvature gets larger. In the
standard picture the singularity eventually forms. Our pro-
posal is that the singularity formation is avoided when the 3-
form is activated by sufficiently large curvature (sufficiently
large energy scales). In other words our current solution that
considers a pre-existing black hole is only a first step to check
that 3-forms can indeed regularize black hole interior.

Having obtained the regular black hole spacetime, it is nat-
ural to ask whether the spacetime is stable against small per-
turbations, or would it form other singularities through some
dynamical collapsing processes? This is beyond the scope of
the present paper and we plan to address this issue elsewhere.
However, we can still highlight an important point regarding
the stabilities of the solution. Unlike many regular black hole
solutions, our solution has no inner horizon, and is therefore
free from mass inflation instability (which might end in yet
another singularity). Although the null energy condition is
violated, this is not too much of a concern in a cosmological
spacetime [66,67], so it is a small price to pay for resolving
the singularity.

Interestingly, it has been proposed that spacetime is funda-
mentally 2-dimensional at short distances or higher energies
[68–72]. If the essential features in our simple classical model
is representative of what one may find in black hole inte-
rior when curvature is sufficiently large, then this provides a
dynamical compactification scheme to realize the proposed
“dimensional reduction” [69].

In view of its many applications to cosmology, and now
its ability to regularize black hole interior, 3-form field is
well-motivated and deserves to be studied more closely for
its other utilities in theoretical physics.
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