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Dynamic wavelet correlation 
analysis for multivariate climate 
time series
Josué M. Polanco‑Martínez1*, Javier Fernández‑Macho2 & Martín Medina‑Elizalde3

The wavelet local multiple correlation (WLMC) is introduced for the first time in the study of climate 
dynamics inferred from multivariate climate time series. To exemplify the use of WLMC with real 
climate data, we analyse Last Millennium (LM) relationships among several large‑scale reconstructed 
climate variables characterizing North Atlantic: i.e. sea surface temperatures (SST) from the tropical 
cyclone main developmental region (MDR), the El Niño‑Southern Oscillation (ENSO), the North 
Atlantic Multidecadal Oscillation (AMO), and tropical cyclone counts (TC). We examine the former 
three large‑scale variables because they are known to influence North Atlantic tropical cyclone activity 
and because their underlying drivers are still under investigation. WLMC results obtained for these 
multivariate climate time series suggest that: (1) MDRSST and AMO show the highest correlation 
with each other and with respect to the TC record over the last millennium, and: (2) MDRSST is the 
dominant climate variable that explains TC temporal variability. WLMC results confirm that this 
method is able to capture the most fundamental information contained in multivariate climate time 
series and is suitable to investigate correlation among climate time series in a multivariate context.

The climate system is highly dynamic and involves interactions among five main Earth system components or 
subsystems: the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the  biosphere1,2. Processes 
taking place within these components and during their interactions occur at different spatial and temporal scales, 
from molecular to planetary levels and from seconds to millions of  years1,3. These Earth system components 
interact through mass, energy and momentum exchanges creating feedback loops and chains (the cascade effect) 
despite the climate system itself being a closed system (the climate system is considered as a closed system, i.e. 
this system does not exchange mass outside of the system, although there is still exchange of  energy3,4). The cli-
mate system is also under the influence of external forcings, such as aerosol emissions from volcanic eruptions, 
changes in Earth’s orbital parameters (astronomical forcing), fluctuations of solar radiation and increases in the 
atmospheric composition of greenhouse gases due to human  activities1,5. Each subsystem affects the response 
of another, ultimately determining a climate state. Interactions among the different parts of the climate system 
generate disproportionate relations between inputs and outputs, and therefore originating a complex, non-linear 
and non-stationary dynamic  system4,6.

The complexity, nonlinearity and nonstationarity of the climate system is reflected by the resulting essential 
climate variables—ECV (variables that play a critical role in characterizing the Earth’s climate). Such climate 
variables are represented as time series, for example, of atmospheric or ocean surface temperature, ocean salin-
ity, precipitation, etc.4,7,8. In addition to the nonlinearity and nonstationarity nature of climate dynamics, time 
series of climate variables used to characterize it also have other properties irrespective of their source (i.e. 
archives of climate information come mainly from direct instrumental measurements or indirect evidence, from 
climate model simulations, and paleoclimate reconstructions). For example, typically, climate time series show 
strong autocorrelation (memory or persistence), are generally short, noisy, contain uncertainty, may be unevenly 
spaced, may contain periodic, quasi-periodic or transient signals, and are a composition of numerous packages 
of information in time-scales (i.e. multiscale phenomena)3,8–12.

A useful approach to extract information from climate time series is the application of diverse kinds of sta-
tistical methods, particularly time series analysis and signal processing  techniques3,8,13,14. Statistical data analysis 
are traditionally used in climate research in support of scientific affirmations: in order to estimate and assign 
confidence intervals around observations and predictions, to detect non-negligible noise level in climate vari-
ables and to identify fundamental relationships among  them3,10. Regarding the latter, there are a great number 
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of techniques to study the relationship between two climate time series (bivariate analysis): from the classical 
Pearson’s and Spearman’s correlation or the cross-correlation function (CCF)3,10,  binned8,15 and  synchrony8 cor-
relation to most sophisticated techniques such as kernel  methods16,17, cross-recurrence  plots18,19, and wavelet 
 correlation20,21 and wavelet  coherence22–25. In contrast, large number of techniques are not available to study the 
relationship among multiple variables.

Among the correlation techniques, the wavelet correlation either via the discrete wavelet transform (DWT) or 
especially via the continuous wavelet transform (CWT), is highly used by climatologists and paleoclimatologist 
and by other environmental research  communities11,20,22–28. The wavelet correlation via the wavelet transform 
(WT) can be seen as an “improved version” of the combination of Fourier transform and partial and slid-
ing correlations in different periods (known as windowed or short-time Fourier transform—WFT29) although 
methodologically are different. The WFT represents an inaccurate and inefficient method of time–frequency 
localization, since it imposes a scale or “response interval” into the analysis, whereas the WT is a method of 
time-frequency localization that is scale  independent22,30. The wavelet (uni and bivariate) analysis is an adequate 
and versatile mathematical tool to tackle several characteristics of climate time series, such as nonstationarity, 
in search of (quasi) periodical or oscillatory signals, and to examine multiscale phenomena. Bivariate wavelet 
analysis also permits to study the relationship between two climate time series and is particularly appropriate 
for tracking dual change in forcing by exogenous  variables20,22,24,25,28,31. However, the use of wavelet correlation 
has been limited since its inception to the bivariate case (some exceptions  are32  and33), and the study of climate 
dynamics usually involves more than two variables interacting with each other  simultaneously1,3. For this reason, 
a multivariate version of the wavelet correlation has been required.

In line with this interest, the aim of this paper is to introduce for the first time to the climate community, and 
to those of related fields, the application of wavelet local multiple correlation (WLMC)34 to analyze “dynamically” 
(i.e. through time) over different time-scales, multivariate climate time series. Particularly, to examine relation-
ships among climate variables known to be physically related to each other. This method improves our ability to 
understand the underlying mechanisms driving climate change on different timescales. Climate variables, and 
the nature of the relationship among them, change over time and thus cannot be accurately understood using 
conventional statistical methods that do not take into account their time evolution. The best approach is therefore 
to use correlation methods and computational tools that address non-stationary relationships among multiple 
climate variables, such as the wavelet local multiple correlation (WLMC)34.

The WLMC measures a non-stationary time-evolving correlation structure at different scales within a mul-
tivariate set of data, and consists of one single set of multiscale correlations along time, each of them calculated 
as the square root of the regression coefficient of determination in that linear combination of locally weighted 
wavelet coefficients for which such coefficient of determination is a  maximum34,35. The WLMC is a powerful 
statistical and computational tool that was originally developed to estimate correlation among multivariate, non-
stationary, financial time  series34,35. However, as we demonstrate in this study, the WLMC has a strong potential 
to be used with multivariate, stationary and non-stationary, climate and environmental time series as well. It is 
important to introduce this tool to the climate community since the economic and financial communities have 
poor connection with the climate community, despite some international networks and initiatives to bring them 
together (e.g. Climate Econometrics, https ://www.clima teeco nomet rics.org/). In this study we also improve 
graphical outputs of the WLMC and propose a didactic and useful way to visualize the “dominant” variable(s) 
that maximizes multiple correlation through time for a set of climate time series. This is the first time that this 
kind of graphical representation for the WLMC is presented (please look at Fig. 3 right).

This study exemplifies the use of WLMC by analyzing multivariate paleoclimate time series. Specifically, we 
examine relationships among various large-scale climate proxy reconstructions spanning the Last Millennium 
(LM) that are known to influence tropical Atlantic hurricane frequency and intensity. These variables come 
 from36,37 and represent: (1) sea surface temperatures (SST) anomalies in the main developmental region (MDR) 
for tropical cyclones (MDRSST); (2) the El Niño-Southern Oscillation (ENSO) sea surface temperature anoma-
lies (ENSOSSTs, or ENSO hereafter); (3) the Atlantic Multidecadal Oscillation (AMO) sea surface anomalies 
(AMOSSTs, or AMO hereafter); and (4) tropical cyclone counts (TCC, or TC hereafter) as a proxy of cyclone 
activity. We examine ENSO, AMO and MDR SSTs because they are known to influence North Atlantic tropical 
cyclone activity and their underlying processes are still under investigation. These climate variables have been 
invoked to explain climate dynamics inferred from paleoclimate records on previous studies; e.g. Ref.26.

Results
North Atlantic tropical cyclone activity over the past 1500 years. Figure 1 shows the climate time 
series examined in this study. Because MDRSST, AMO and TC have similar variability patterns through time, 
it is expected for them to have a relative high degree of correlation at “global” level, which can be corroborated 
by estimating the degree of correlation with each other. The correlation matrix obtained via Spearman’s rank 
correlation (Table 1) shows that the highest correlation ( r = 0.910 ) corresponds to the pair MDRSST–AMO, 
followed by the pairs AMO–TC ( r = 0.843 ) and MDRSST–TC ( r = 0.774 ). In contrast, ENSO shows an inverse 
relationship with AMO and TC (except relative to MDRSST which is direct), reflected by the negative correlation 
coefficients. This is confirmed by the pairwise comparison between ENSO and TC ( r = −0.296 ) and between 
ENSO and AMO ( r = −0.132 ). The negative correlation between ENSO and TC is expected because tropical 
cyclones can be suppressed when El Niño increases wind shear in the tropical Atlantic and warm upper tropo-
spheric temperature  anomalies38–40. On the other hand, the negative or inverse correlation between ENSO and 
AMO can be explained straightforwardly by the fact that during the negative AMO phase, both El Niño and La 
Niña events tend to be stronger than during a positive AMO  phase41. Moreover, this inverse correlation between 
ENSO and AMO can be explained by the so-called atmospheric “bridge-thermocline feedback”41,42. 

https://www.climateeconometrics.org/
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Wavelet local correlation for the bi‑variate case for MDRSST, ENSO, and AMO. The wavelet 
local multiple correlation for the bivariate case (Fig.  2) is used as proof of concept for the multivariate case 
( n > 2 ), in order to determine the extent to which the climate variables by pairs are correlated with each other 
in the time and frequency (period) domains and thus avoid using the WLMC as a “black box”. The first evident 
result for this bivariate case is that MDRSST–AMO shows the highest WLMC among the three pairwise com-
parisons, in agreement with the result above using Spearman. However, one conspicuous feature of the dynamic 
correlation methods, such as the WLMC, is that they provide the evolution of correlation in the time and period 
domains. For example, the WLMC shows that the correlation of MDRSST–AMO is high (with coefficient values 
> 0.80 ) for practically all the periods considered and during almost the full time interval of the records (CE 
500–1850), except for a small interval between CE 1400 and 1600, for the shortest scales (2–4 years). This result 
must be regarded with caution, however, because climate time series are decadally  smoothed36,37. The second 
important result is that although the correlations of MDRSST–AMO is generally high, the strength of correla-
tions tends to “oscillate” in time and nearly in all periods, indicating that the degree of correlation is not constant 
through time. This result has important implications for diagnosing the causal relationships among these vari-
ables and for understanding their underlying large-scale  dynamics36,43. Lastly, the WLMC of ENSO–MDRSST 
and ENSO–AMO shows moderate degree of correlation that is well localized in the frequency/period domain. 
As expected, the highest correlation among the variables occurs at 4–8 and 8–16 year periods, where ENSO has 
its main spectral  signature36,40. Furthermore, there is a “slowdown” in correlation at the end of the heat maps for 
both pairs (more pronounced for ENSO–AMO), and their corresponding time intervals are not exactly the same 
as for MDRSST–AMO.

WLMC for the three‑variate case for MDRSST, ENSO, and AMO. Figure 3 shows the WLMC for 
the three-variate case. We do not define a priori specific climate variable that would maximize the multiple corre-
lation for each wavelet scale (parameter ymaxr=NULL) but instead let the WLMC select one. The reason for this 
choice is that although these climate variables are expected to be correlated with each other, their causal relation-
ship in time and frequency domains remains a matter of research. The three-variate WLMC shows a significant 
level of correlation with variable coefficients (from ∼ 0.8 to ∼ 0.99 ), from short to long periods of variability, 
and for practically the full length of the records. The three-variate WLMC result is quite similar to the WLCM 
for the pair MDRSST–AMO from the bivariate case (Fig. 2). This means that the WLMC method developed  by34 
is an “inclusive” multivariate correlation tool unlike the multiple wavelet coherence, that is “exclusive”32,44,45. For 
this reason, it is important to take into account, that the WLMC retains practically all the statistically significant 
correlations between dominant variables (e.g. MDRSST and AMO from this case study), but also considers the 
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Figure 1.  Sea surface temperature (SST) for the main development region (MDR) for Atlantic tropical 
 cyclones36 (black); El Niño-Southern Oscillation (ENSO) SST (based on El Niño 3 region)37 (red); North 
Atlantic Atlantic Multidecadal Oscillation (AMO) SST averaged over the North Atlantic  ocean37 (green); Long-
term Atlantic tropical cyclone counts (TC)36 (blue). Climate variables are in anomalies ( ◦C), cover the time 
interval CE 500–1850, and the number of elements is 1350.

Table 1.  Correlation matrix estimated through Spearman’s rank correlation. Statistically significant (95%) 
correlation coefficients are in bold.

MDRSST ENSO AMO TC

MDRSST 1.000 0.155 0.910 0.774

ENSO 0.155 1.000 − 0.132 − 0.296

AMO 0.910 − 0.132 1.000 0.843

TC 0.774 − 0.296 0.843 1.000



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21277  | https://doi.org/10.1038/s41598-020-77767-8

www.nature.com/scientificreports/

MDRSST vs ENSO

Years (CE)

 0 

 0 

 0 

 0
 

 0.1 

 0.1 

 0.1 

 0.2 

 0.2 

 0.2  0
.3

 

 0
.3

 

 0.3 

 0.3 

 0.4 

 0.4 

 0.4 

 0.4 

 0.5 

 0.5 

 0.5 

 0.6 

 0.6 

 0.6 

 0.7 

 0.7 

 0.7 

 0.7 

 0.8 

 0.8 

 0.8 

 0.8 

 0.9 

 0.9 

 0.9 

 0.9 

0.2

0.4

0.6

0.8

600 800 1000 1200 1400 1600 1800

[2−4]

(4−8]

(8−16]

(16−32]

(32−64]

(64−128]

(128−256]

Smooth
P

er
io

ds
 (

Ye
ar

s)

a) MDRSST vs AMO

Years (CE)

 0.4 

 0.5  0.6 

 0.7 

 0.7 

 0.7 

 0.8 

 0.8 

 0
.8

 

 0.9 

 0.9 

 0.9 

 0.9 

0.2

0.4

0.6

0.8

600 800 1000 1200 1400 1600 1800

[2−4]

(4−8]

(8−16]

(16−32]

(32−64]

(64−128]

(128−256]

Smooth

P
er

io
ds

 (
Ye

ar
s)

b)

ENSO vs AMO

Years (CE)

 0.1 

 0.1 

 0.1 

 0.2 

 0
.2

 

 0.3  0.3 

 0.3 

 0.3 
 0.3 

 0.4 

 0
.4

 
 0

.5
 

 0.5 

 0.5 

 0.6 

 0.6 

 0.6 

 0.7 

 0.7 

 0.8 

 0.8 

 0.8 

 0.8 
 0.8 

 0.9 

 0.9 

0.2

0.4

0.6

0.8

600 800 1000 1200 1400 1600 1800

[2−4]

(4−8]

(8−16]

(16−32]

(32−64]

(64−128]

(128−256]

Smooth

P
er

io
ds

 (
Ye

ar
s)

c)

Figure 2.  Wavelet local multiple correlation (bivariate case) for climate variables MDRSST, ENSO, and AMO. 
The time-period points in blank indicate that these points are not statistically significant (outside of the 95% 
confidence interval). WLMC parameters: M = 1350/8 (168) years, window = Gaussian, and wavelet filter (wf) = 
“la8”.

MDRSST, ENSO, AMO

Years (CE)

 0.7 

 0.8 

 0.85  0.9 

 0.9 

 0.95 

 0.95 

 0.95 

0.65

0.70

0.75

0.80

0.85

0.90

0.95

600 800 1000 1200 1400 1600 1800

[2−4]

(4−8]

(8−16]

(16−32]

(32−64]

(64−128]

(128−256]

Smooth

P
er

io
ds

 (
Ye

ar
s)

a) MDRSST, ENSO, AMO

Years (CE)

MDRSST

ENSO

AMO

600 800 1000 1200 1400 1600 1800

[2−4]

(4−8]

(8−16]

(16−32]

(32−64]

(64−128]

(128−256]

Smooth

P
er

io
ds

 (
Ye

ar
s)

b)

Figure 3.  Wavelet local multiple correlation (tri-variate case) for climate variables MDRSST, ENSO, and AMO 
(left). Heat map that indicates the (“dominant”) variable(s) that maximizes the multiple correlation through 
time and scale (right) (blue, green, and red indicate MDRSST, ENSO, and AMO, respectively). The time-period 
points in blank indicate that these points are not statistically significant (outside of the 95% confidence interval). 
WLMC parameters: M = 1350/8 (168) years, window = Gaussian, wavelet filter (wf) = “la8”, and ymaxr = NULL.
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correlation among other variables (e.g. MDRSST–ENSO and ENSO–AMO). Importantly, the WLMC provides 
the “dominant” variable (the one that maximizes the multiple correlation and can be used to explain the other 
variables across each period and time interval) (Fig. 3 right). For example, for the triad MDRSST–ENSO–AMO, 
the MDRSST represents the dominant climate variable (followed to a lesser extent by AMO). This result is 
explained because SST fields are used to build MDRSST and also to estimate the climate indices of AMO and 
ENSO (see Supplementary Material  in37).

WLMC for the bi‑variate case for MDRSST, ENSO, and AMO vs. TC. The WLMC for the bivariate 
case (Fig. 4), when the TC record is included shows three interesting results. The WLMC only shows statistically 
significant correlation coefficients with relatively high coefficients (approximately greater than 0.6) for medium 
(32–64 years) and long (128–256 years) periods. This result indicates that the WLMC tool works properly since 
the TC record is smoothed multidecadally ( > 40 years) and therefore is not expected to reveal significant vari-
ability at periods lower than 40 years. The second important result is that apart from the high and statistically 
significant correlation for the pairs SSTMDR–TC and AMO–TC (please note that this result is in agreement with 
the correlation matrix presented previously in Table 1), the coefficient values tend to vary as a function of time, 
which is more evident at the periods 32–64 and 64–128 years for the pair SSMDR–TC and at the periods 32–64 
and 128–256 years for the pair AMO–TC. The tool also shows an almost complete lack of statistically significant 
correlation between ENSO and TC, except for the long-term periods between 128 and 256 years. This lack of 
correlation reflects the smoothing of the TC record ( > 40 years) relative to the main periods of ENSO variability 
(3–7 years).

WLMC for the three‑ and four‑variate cases for MDRSST, ENSO, and AMO vs. TC. Figure 5 
shows the three- and tetra-variate WLMC cases between the examined climate variables (MDRSST, ENSO 
and AMO) relative to the TC record. In these cases, the TC record is chosen to be the dependent variable 
(ymaxr=TC). The three- and tetra-variate cases confirm some of the previous results obtained for the bivariate 
case; e.g. statistically significant correlation from medium (16–32) to long (128–256) periods. An outstanding 
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Figure 4.  Wavelet local multiple correlation (bivariate case) for climate variables MDRSST, ENSO, AMO and 
TC. The time-period points in blank indicate that these points are not statistically significant (outside of the 95% 
confidence interval). WLMC parameters: M = 1350/8 (168) years, window = Gaussian, and wavelet filter (wf) = 
“la8”.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21277  | https://doi.org/10.1038/s41598-020-77767-8

www.nature.com/scientificreports/

feature observed in these WLMC heat maps is that, despite the low or lack of correlation between ENSO and TC 
over several periods, the correlation between MDRSST and AMO relative to TC is preserved. This corroborates 
that the WLMC is an “inclusive” multivariate correlation tool, as previously pointed out. This means that, at least 
with these climate variables, the tetra-variate case does not provide “extra” information to be considered.

Discussion
To summarize, this study introduces for the first time to the climate community and related fields the use of 
wavelet local multiple correlation (WLMC)34 to perform dynamic correlation analyses for multivariate climate 
time series. This method is suitable to compare time series that are linear, non-linear, non-stationary, containing 
(quasi)periodic events or transient signals, and that are a composition of numerous packages of information in 
time-scales ranging from days to millennia (i.e. multiscale phenomena).

This study exemplifies the use of WLMC to analyze a multivariate set of climate time series. Specifically, it 
examines relationships among various climate proxy reconstructions spanning the last millennium that are 
known to influence tropical Atlantic hurricane frequency and intensity. These variables come  from36,37 and rep-
resent: sea surface temperatures anomalies in the main developmental region for tropical cyclones (MDRSST); 
the El Niño-Southern Oscillation sea surface temperature anomalies (ENSO); (3) the Atlantic multidecadal 
Oscillation (AMO) sea surface anomalies; and (4) the tropical cyclone counts (TC).

The WLMC results obtained for the multivariate paleoclimate time series confirm that MDRSST and AMO 
are the highest correlated variables among the climate data examined and with respect to TC. The MDRSST is 
found to be the dominant climate variable that can be used to explain the other variables examined. We would 
like to highlight that, the WLMC method developed  by34, is an “inclusive” multivariate correlation tool. For this 
reason, it is important to take into account that the WLMC retains the statistically significant correlation between 
dominant variables (e.g. MDRSST and AMO), but also considers the correlation (statistically significant) among 
other variables (e.g. MDRSST and ENSO or ENSO and AMO). The WLMC is shown to be a suitable tool to 
investigate correlation among climate time series in a multivariate context.
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Figure 5.  Wavelet local multiple correlation (tri- and tetra-variate cases) for climate variables MDRSST, ENSO, 
AMO and TC. The time-period points in blank indicate that these points are not statistically significant (outside 
of the 95% confidence interval). WLMC parameters: M = 1350/8 (168) years, window = Gaussian, wavelet filter 
(wf) = “la8”, and ymaxr = TC.
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Methods
This section presents and discusses the methodological approach proposed and used in this study; the wavelet 
local multiple correlation (WLMC)34. We will  follow34,35,46,47 to summarize the method. Readers interested in 
obtaining more detailed information can consult these references. The WLMC method is implemented by a 
freely available R computer package called wavemulcor with its corresponding documentation to perform the 
WLMC  analysis35,47.

Local multiple regression. The WLMC is based on the notion of multiple regression and in this paper we 
use the concept of wavelet local multiple regression introduced  by34,46.

Let X be a multivariate time series of dimension n observed at times t = 1, . . . ,T . According  to34, for some 
xi ∈ X a local regression at a fixed s ∈ [1, . . . ,T] can be used to minimize the weighted sum of squared errors

where θ(x) is a given moving average weight function that depends on the time lag between observations Xt and 
Xs and fs(X−i) is a local function of {X\xi} around s. Letting s move along time, the corresponding local coef-
ficients of determination are given by

where RwSSs and TwSSs are the residual and total weighted sum of squares respectively.

Definition and estimation of the wavelet local multiple correlation. Let Wjt = (w1jt , . . . ,wnjt) 
be the wavelet coefficients for scale �j (where j = 1, . . . , J , and J indicates the maximum level of the wavelet 
transform decomposition) obtained by applying the MODWT to each time series xi ∈ X , where i = 1, . . . , n . 
Following  to34, at each wavelet scale �j the wavelet local multiple correlation coefficients ϕX,s(�j) can be estimated 
as the square roots of the regression coefficients of determination for that linear combination of variables wij , 
i = 1, .., n , where such coefficients of determination are maxima. That is, from Eq. (2)

On the other hand, since the R2 coefficient in the regression of a zi on the rest of variables in the system is 
equivalent to the square correlation between the observed and the fitted values ẑi obtained from such regression, 
according  to34, it is possible to express the consistent sample estimator of the WLMC as

where wij is chosen so that its local regression on the set of regressors {wkj , k �= i} maximizes the corresponding 
coefficient of determination and ŵij denotes the corresponding vector of fitted values.

Weight (window) functions. The wavemulcor  software35,47 used to estimate the WLMC includes six of 
the most commonly used weight functions (or windows) for averaging and smoothing: the uniform window, 
Bartlett’s triangular window, Cleveland’s tricube window, Wendland’s truncated power window, Epanechnikov’s 
parabolic window, and the Gaussian window. All six windows θ(x) satisfy 

∫ ∞

−∞
θ(x)dx = 1 and have compact 

support in | x |≤ M , where M is the length of the weight function θ(x) , except the Gaussian window that takes 
values for x ∈ (−∞,∞) .  However34, suggested that the uniform, Cleveland’s tricube and Epanechnikov’s para-
bolic windows are not recommended due to the presence of negative values in their corresponding spectral win-
dows and, he also suggested to use the Bartlett’s triangular, Wendland’s truncated power, and Gaussian windows 
because these windows are most adequate for signal extraction and smoothing and their spectral windows are 
non-negative. By default, wavemulcor35,47 uses the Gaussian window for the following reasons: it is closest to the 
uniform weights (windows) in the time domain within a certain bandwidth, its Fourier transform is also Gauss-
ian, it has near compact support in the frequency domain, and its spectral window is always  positive34.

Estimation of statistical significance. One of the main advantages of wavelet correlation obtained 
through the discrete wavelet transform (DWT), or its improved versions such as the MODWT, as compared 
to the continuous wavelet transform (CWT) is that for the (MO)DWT, it is possible to construct an analytical 
confidence interval (CI), while for the CWT it is practically impossible to do so.

In particular, for the  WLMC34,46, obtained the CI by means of the Fisher’s transform as follows.
Let ϕ̃X,s(�j) be the sample wavelet local multiple correlation (WLMC) calculated from Eq. (4). Then, from 

 [34, Theorem 1],

where Z̃j,s = arctanh(ϕ̃X,s(�j)) , Zj,s = arctanh(ϕX,s(�j)) and FN stands for the folded normal distribution. 
Thus, since ϕX,s(�j) is the correlation between weighted observations from two Gaussian variates of which T/2j 

(1)Ss =
∑

t

θ(t − s)[fs(X−i,t)− xit)]
2

(2)R2
s = 1−

RwSSs

TwSSs
, s = 1, . . . ,T ,

(3)ϕ̃X,s(�j) =

√
R2
js, j = 1, . . . , J , s = 1, . . . ,T .

(4)
ϕ̃X,s(�j) = Corr

(
θ(t − s)1/2wij, θ(t − s)1/2ŵij

)

s = 1, . . . ,T ,

(5)Z̃j,s
a
∼ FN(Zj,s , (T/2

j − 3)−1)
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are serially uncorrelated asymptotically, applying the Fisher’s transformation to ǫj such that abs(ǫj) = Z̃j,s in Eq. 
(5)34, obtained the CI for the WLMC as

where φ−1
p  is the 100p% point of the standard normal distribution.

Computational and practical aspects. In practice, the  WLMC34 method consist of the following steps 
(the R code used to generate all the figures in this paper are in the Supplementary Information (Material)): 

1. Estimation of the MODWT via the R package waveslim48 for each of the time series xi in the multivariate set 
( i = 1, . . . , n , where n is the number of time series) and all scales �j ( j = 1, . . . , J , where J is the maximum 
level of the MODWT decomposition with J ≤ log2(T) and T is the length of the time series. Note that 
although the theoretical maximum level of the MODWT decomposition is given by log2(T) , in practice J 
should be much smaller in order to avoid boundary effects since the number of feasible wavelet coefficients 
becomes critically small for higher levels). As a wavelet filter or function, we chose the Daubechies LA(8) 
(or “la8”) that is aleast asymmetric wavelet filter of length L = 849. We use LA(8)  since20 proposed this filter 
to analyze climate time series  and34,49,50 showed that the use of a relatively long wavelet filter (e.g. LA(8) 
or LA(4)) is adequate to analyse non-stationary time series but also correlation structures that are not 
stationary. We used both wavelet filters (LA(8) and LA(4)) in all the examples presented in this paper and 
the WLMC heat maps are quite similar. In addition to these wavelet filters we used other eight filters with 
different lengths: “Haar” (L=2), “d4” (L=4), “d6” (L=6), “fk8” (L=8), “bl14” (L=14), “mb16” (L=16), “la20” 
(L=20), and “fk22” (L=22) and the WLMC heat maps (results not shown, but can be obtained through the R 
code included in the Supplementary Information (Material) or upon request to the corresponding author) 
are considerably similar to the corresponding one when the “la8” is used, except for “bl14”, “mb16”, and 
“fk22” and for the longest wavelet scales (periods), which can be explained mainly due to the “excessive” 
length of these wavelet filters. As a good practice, it is highly recommendable to try several wavelet filters 
(the MODWT from the R package waveslim48 includes 21 wavelet filters that can be used in the estimation 
of the WLMC) with different lengths (L), from short, medium to long, to study the sensitivity of the wavelet 
functions in order to corroborate the stability of the WLMC.

2. Application of the rolling time window or weight function θ(x) to the MODWT components. We used 
the default Gaussian window due to the aforementioned features. However, the other two recommendable 
options, Bartlett’s triangular or Wendland’s truncated power, provide similar results. Following  to35,47, the 
recommended length of the weight function or rolling window is given by T/8, where T is the number of 
elements of time series. For the example presented in this paper we also choose a window length of T/8 (or 
168 years since T = 1350 ) years as a compromise. A shorter window length would not have had enough 
data points to study longer climate time-scales phenomena and also could introduce a high degree of vari-
ability in the time domain, and a longer window length would have isolated climate phenomena that take 
place at short time scales. However, it is highly recommendable to try different window lengths, from short, 
medium, to long sizes (see e.g.51–53). For instance, in the example presented in this paper, in addition to the 
window length of T/8 (168 years), we tried other four window lengths ( M = 42, 84, 337, and 675 years) 
and the WLMC heat maps for 84 and 337 years are quite similar (whereas the “extreme” M values of 42 and 
675 years are not very different) to that of the corresponding one with a value of M = 168 years (results not 
shown, but can be obtained through the R code included in the Supplementary Information (Material) or 
upon request to the corresponding author).

3. Estimation of local least-squares regression applied to the wavelet coefficients Wij as described  in34. At each 
wavelet level the implementation of WLMC in wavemulcor35,47 automatically chooses the variable maximizing 
the multiple correlation. Alternatively, the user may provide information about the number of the variable 
(parameter “ymaxr”) whose correlation against a linear combination of the others is to be  calculated35,47. 
This may be useful if a relationship between the variables under study is known a priori.

4. Estimation of the wavelet local multiple correlation coefficients ϕ̃X,s(�j) applying the consistent estimator in 
Eq. (3) and estimation of the confidence interval (Eq. 6) to establish the statistical significance of ϕ̃X,s(�j).

Datasets. To illustrate the WLMC method, we analyse the dynamic relationship among three large-scale cli-
mate variables closely related to each other and to tropical Atlantic cyclone activity from a multivariate perspec-
tive. These climate variables (Fig. 1) are based on paleoclimate reconstructions and cover the interval CE 500–
185036,37. They represent: (1) a record of sea surface temperature (SST) anomalies ( ◦ C) from the main developed 
region (MDR) for tropical  cyclones36. The MDRSST record shows interannual to multidecadal scale variability 
and reflects the “favourability” of the local thermodynamic environment to tropical cyclones  formation36,54–56. 
However, we are aware that there has been a considerable debate as to how SST should be viewed in relation to 
North Atlantic TC  activity57,58. For  instance58–60, showed that hurricane frequency is strongly correlated with the 
so-called “relative SST”, i.e. the difference between SSTs averaged over the MDR (MDRSST) and global tropical 
mean SSTs, and that the “relative SST” is a good predictor of North Atlantic TC counts. (2) The El Niño-South-
ern Oscillation (ENSO) SST anomalies ( ◦ C) (the El Niño 3 region)37, which is governed by large-scale ocean 
dynamics and coupled ocean-atmosphere interactions from seasonal to interannual variability. ENSO reduces 
Atlantic TC activity since ENSO induces changes in tropospheric vertical wind shear and the temperature of 
the upper  troposphere36,38,40,61. (3) The North Atlantic Multidecadal Oscillation (AMO) sea surface tempera-
ture anomalies ( ◦ C) averaged over the North Atlantic  ocean37. AMO induces changes in tropical atmospheric 

(6)CI1−α(ϕX,s(�j)) = tanh
[
Z̃j,s ± φ−1

1−α/2/
√

T/2j − 3
]
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circulation which alter the tropospheric vertical shear in the MDR, and positive (warm) and negative (cold) of 
the AMO can decrease or increase the effect of ENSO on Atlantic TC  activity40,62,63. This case study also aims 
at examining how these large-scale climate variables (MDRSST, ENSO, and AMO) are correlated with Atlantic 
tropical cyclone activity for the interval CE 500–1850. To address this aspect, we use annual paleo-hurricane 
reconstructions of TC counts (smoothed ∼ 40 years)  from36 (Fig. 1). We are aware that there are other climate 
variables (e.g. the North Atlantic Oscillation—NAO, the stratospheric Quasi-Biennial Oscillation—QBO, the 
Atlantic Meridional Overturning Circulation—AMOC, among others) that have influence on Atlantic tropical 
cyclone activity, but we have limited our analysis for the following four reasons: (1) the ultimate goal of this case 
study is to exemplify the use of a novel statistical and computational tool, the wavelet local multiple correlation 
(WLMC), to analyse multivariate climate time series; (2) availability of data spanning the time interval in ques-
tion; (3) paleoclimate reconstructions are complex and it can be problematic (from a technical or methodologi-
cal point of view) to combine data sets from different studies and archives, and (4) these climate variables have 
been invoked to explain climate dynamics inferred from paleoclimate  records26.

Data availability
In this study we have used previously released, freely available datasets. The datasets were obtained  from36,37. 
These are freely available at http://www.meteo .psu.edu/holoc ene/publi c_html/Natur e09/index .htm and http://
www.meteo .psu.edu/holoc ene/publi c_html/suppl ement s/Multi proxy Spati al09/resul ts/, and in the open reposi-
tory https ://githu b.com/jomop o/WLMC_clima te_time_serie s. In case of any difficulty in obtaining the datasets 
mentioned above, the corresponding author can provide the data used upon request.

Code availability
R codes to produce the figures are available at the open repository https ://githu b.com/jomop o/WLMC_clima 
te_time_serie s and as Supplementary Information (please look at the Additional information). In case of any 
difficulty in obtaining the R code mentioned above, the corresponding author can provide the code used upon 
request.
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