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Abstract

Title: Intelligent and self-adaptive strategies for improved energy management in
fleets of vehicles.

In the last years, the automotive industry is undergoing a major
transformation. Internal combustion vehicles are being replaced by more
sustainable electrified vehicles. Despite the higher number of light vehicles, electric
buses are surging faster than any other type of vehicle. The investment cost
of electrified buses is higher than conventional diesel buses. However, the lower
operation costs of electrified vehicles, has opened up new challenges to improve the
energy efficiency further. One of the main challenge is the efficient management
of the available power sources. Hybrid and fuel cell buses have a broader number
of degrees of freedom compared to battery electric buses, due to the multiple
onboard power sources. The power sources energy division is performed based on
the energy management strategy.

To achieve and ensure the compensation of the initial extra cost, the total
cost of ownership optimization minimizing the operation costs is crucial. The new
trend of digitalization makes possible to perform the correct total cost of ownership
management, by means of monitoring the vehicles operation and tracing the
evolution throughout the vehicle lifetime. In addition, the available operation data
of a whole fleet elevates the management level to the fleet level. The fleet level point
of view opens up new degrees of freedom to explore. The new degrees of freedom
together with the unlimited computational resources by means of digitalization
cloud computing, allows to go a step further in the energy management field.

The main challenge of this thesis is "to obtain an integrated solution to
manage energetically a fleet of vehicles optimizing the total cost of ownership
of the whole fleet, while ensuring that the vehicle service requirements are fulfilled
in terms of the planned battery lifetime by means of learning based energy
management strategy". To face this challenge on the one hand, a novel learning
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Abstract

based energy management strategy based on the adaptive neuro-fuzzy inference
system technique conscious of the battery aging has been developed. Learning
based energy management strategies allow to merge the short-term power/energy
management to obtain close results to the dynamic programming operation,
together with the buses battery state of health long-term management.

On the other hand, a hierarchical fleet energy management strategy has been
proposed, which integrates the learning based energy management strategy as a
holistic approach for the fleet and vehicle management. Within the framework
of this approach, new degrees of freedom have been discovered and applied from
the fleet level point. The first bus-to-route fleet management adapts each bus
operation to each route. The second route-to-bus fleet re-organization, manages
the most critical buses batteries lifetime. The third technique updates the learning
based energy management strategy to adapt the operation to the new conditions
of the bus throughout the fleet lifetime.

The learning based energy management strategy has been evaluated under
different scenarios. The obtained results have shown close results to the dynamic
programming optimization. The real-time validation of the learning based energy
management strategy has been performed in a hardware-in-the-loop, which proves
the ability to run the learning based energy management strategy in real-time.
The developed solution for plug-in hybrid electric buses has been demonstrated to
be directly applicable for fuel cell hybrid electric buses.

The developed hierarchical fleet energy management strategy has been studied
in two case studies. The first case study a fleet of buses with LTO battery chemistry
without replacement has been analyzed. As second case study, a fleet of buses with
NMC battery chemistry with periodically planned battery replacements has been
evaluated. For these two scenarios, a fleet buses battery lifetime evaluation plan
has been defined. The correct compliance of the developed battery lifetime plan
together with the fleet energy management techniques application of bus-to-route,
route-to-bus and energy management strategy update, ensure improving the total
cost of ownership of the whole.

Key words: Fleet energy management, energy management strategy,
battery, fuel cell, dynamic programming, neuro-fuzzy, plug-in hybrid
electric bus, fuel cell electric bus.
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Laburpena

Titulua: Estrategia adimentsu eta auto-moldakorrak auto floten energia
kudeaketa aurreratuentzat.

Autoen industria eraldaketa sakona jasaten hari da azkeneko urteetan.
Errekuntza autoak ordezkatzen ari dira auto elektrifikatu jasangarriagoengatik.
Auto arinen kopurua handiagoa izan arren, autobus elektrikoan dira azkarren
garatzen hari den teknologia. Autobus elektrifikatuen inbertsioa, diesel
autobusena baino handiagoa da, aldiz, autobus elektrifikatuen operazio kostu
baxuek, energia efizientzia hobetzeko erronka berriak sortu dira. Erronka
nagusietako bat energia iturrien kudeaketa efizientea da. Arlo honetan, autobus
hibrido eta hidrogenozko autobusek, bateriadun autobusek baino askatasun maila
gehiago dituzte, autobusetan daramaten energia iturri anizkoitzengatik. Energia
iturrien energia zatiketa energia kudeaketa estrategiekin gauzatzen da.

Hasierako inbertsioaren konpentsazioa ziurtatzeko, jabetzaren guztizko
kostuaren optimizazioa operazio kostuak murrizten, ezinbestekoa da.
Digitalizazioaren joera berriak jabetzaren guztizko kostuen kudeaketa
ahalbidetzen du, ibilgailuen operazioa monitorizatuz eta hauen bizitza osoan
zehar. Gainera, flota osoaren operazio datuak izatea ahalbidetzen du kudeaketa
maila flota mailara igotzea. Flota mailako ikuspuntuak, kudeaketa energetikorako
askatasun gradu kopuruak handitzen ditu. Askatasun gradu berriek, hodeiko
errekurtso konputazional "mugagabeekin" batera, aurrera pausu bat ematea
ahalbidetzen dute kudeaketa energetikoaren alorrean.

Tesi honen erronka nagusia, "autoen flota bat energetikoki kudeatzeko soluzio
integrala bat lortzea, flota mailako jabetzaren guztizko kostua optimizatuz,
ziurtatzen planifikatutako baterien bizitzak lortzen direla, ikasketan oinarritutako
energia kudeaketa estrategikoen bidez". Erronka hau gauzatzeko alde batetik,
ikasketan oinarrituriko energia kudeaketa estrategia berri bat garatu da,
inferentzia sistema neuro-lauso moldakorra den teknikaz baliatuz, baterien
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degradazioaz kontziente dena. Ikasketan oinarrituriko energia kudeaketa
estrategiek ahalbidetzen dute epe motzeko potentzia/energia kudeaketa gauzatzea
programazio dinamikoaren pareko emaitzak lortuz, autobusen baterien bizitzaren
epe luzeko kudeaketarekin bateratzea.

Bestaldetik, floten kudeaketa energetikoa gauzatzeko estrategia jerarkiko bat
proposatu da, ikasketan oinarrituriko estrategia integratzen duena, flota eta
ibilgailu mailako kudeaketa holistikoa egiteko. Garatutako egitura honekin,
flota mailako askatasun maila berriak aurkitu eta aplikatu dira. Lehenengo
autobusa-ibilbide floten kudeaketa teknika, autobusaren operazioa ibilbide
bakoitzera egokitzen du. Bigarren ibilbide-autobusera floten kudeaketa teknika,
flotaren berrantolaketa kudeatzen du, autobus baterien bizitza kritikoenak
orekatuz. Hirugarren flota mailako teknika ikasteko energia kudeaketa estrategia
eguneratzen du, autobusen bizitza osoan zehar ematen diren egoera berriei
operazioa moldatzeko.

Ikasketan oinarrituriko estrategia energetikoa, egoera ezberdinetan ebaluatu
egin da. Lortutako emaitzak programazio dinamikoaren antzeko emaitzak izan
dira. Ikasketan oinarrituriko estrategia energetikoaren denbora-errealeko erabilera
frogatu egin da, hardware begizta batetan. Autobus entxufagarrientzat garatu
den ikasketan oinarrituriko estrategia energetikoaren aplikagarritasun zuzena
hidrogenozko autobusetan frogatu da.

Floten kudeaketa energetikoa gauzatzeko estrategia jerarkiko bi ikasketa
kasuetan analizatu egin da. Lehenengo kasua LTO bateria duten autobus flota
bat analizatu da, zeinean bateria aldaketarik ez den ematen. Bigarren kasua NMC
bateria duten autobus flota bat analizatu da, zeinean bateria aldaketak ematen
diren. Bi ikasketa kasu hauetarako, flotaren baterien bizitza plan bat garatu da.
Plan honen betetze zuzena ematen bada, floten kudeaketa tekniken batera, flotaren
jabetzaren guztizko kostuaren hobetzea ziurtatzen da.

Hitz gakoak: Flota energia kudeaketa, energia kudeaketa estrategia,
bateria, erregai pila, programazio dinamikoa, neuro-lausoa, autobus
hibrido entxufagarriak, hidrogenozko autobus hibridoak.
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Resumen

Título: Estrategias inteligentes y auto-adaptativas para gestión energética
mejorada en flotas de vehículos.

La industria de la automoción esta sufriendo una gran transformación. Los
vehículos de combustión están siendo reemplazados por vehículos electrificados más
sostenibles. A pesar del mayor número de vehículos ligeros, los autobuses eléctricos
son el tipo de vehículo que más rápido está creciendo. El coste de inversión de
los autobuses electrificados es mayor comparado a los autobuses convencionales de
diesel. Sin embargo, los menores costes de operación de los vehículos electrificados,
han creado nuevos retos para la mejora de la eficiencia energética. Uno de los
mayores retos es la correcta gestión de las fuentes de alimentación disponibles. En
este sentido, los autobuses híbridos y autobuses de hidrógeno tienen más grados
de libertad, debido a las múltiples fuentes de alimentación abordo del vehículo. La
división energética de las fuentes de alimentación es llevada a cabo por la estrategia
de gestión energética.

Para lograr y asegurar la compensación de la inversión inicial, la optimización
del coste total de propiedad minimizando los costes de operación es crucial. La
nueva tendencia de digitalización posibilita realizar la correcta gestión del coste
total de propiedad, monitorizando la operación de los vehículos y trazando la
evolución a lo largo de la vida del vehículo. La disponibilidad de los datos de
operación de toda la flota posibilita elevar el nivel de gestión a nivel de flota. El
punto de visto a nivel de flota crea nuevos grados de libertad para explorar. Los
nuevos grados de libertad junto con los recursos computacionales ilimitados debido
a la computación en la nube, posibilita dar un paso adelante en el campo de la
gestión energética.

El objetivo principal de esta tesis es "obtener una solución integral para
gestionarl energéticamente una flota de vehículos optimizando el coste total de
propiedad, mientras se asegura que la planificación de vida útil de las baterías se
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cumple por medio de estrategias de gestión energéticas basadas en el aprendizaje.
Para hacer frente a este reto por un lado se ha desarrollado una innovadora
estrategia de gestión energéticas basada en el aprendizaje aplicando la técnica
neuro-difusa y consciente de la vida de la batería. Las estrategias de gestión
energéticas basadas en el aprendizaje posibilitan la gestión a corto plazo de la
potencia/energía obteniendo resultados próximos a la programación dinámica,
junto con la gestión a largo plazo del estado de salud de la baterías.

Por otro lado, se ha propuesto una estrategia energética jerárquica de gestión
de flotas que integra la estrategia de gestión energética basada en el aprendizaje
para gestionar de una manera holística tanto la flota como el vehículo. En el
marco de este método, se han descubierto nuevos grados de libertad y aplicados
desde el punto de vista de la gestión de flota. La primera técnica de gestión
de flota denominada autobús-a-ruta, adapta la operación de cada autobús para
cada ruta. La segunda técnica denominada ruta-a-autobús, toma decisiones para
la re-organización de la flota gestionando de este modo las vidas de baterías
de autobuses más críticas. La tercera técnica de gestión de flota actiualiza
las estrategias de gestión energéticas basadas en el aprendizaje para adaptar la
operación de los autobuses a lo largo de la vida.

La estrategia de gestión energética basada en el aprendizaje ha sido analizado
en diferentes escenarios. Los resultados obtenidos son cercanos a los obtenidos
mediante la programación dinámica. Se ha validado la operación de la estrategia
en tiempo real en un "hardware-in-the-loop". Se ha demostrado la aplicació directa
de la solución desarrollada para autobuses híbridos enchufables en autobuses de
hidrógeno.

La estrategia energética jerárquica de gestión de flotas se ha analizado en dos
casos de estudio. El primer caso de estudio se ha analizado una flota de autobuses
con la química de baterías LTO evitando reemplazos. En el segundo caso de
estudio se ha analizado una flota de autobuses con la química de baterías NMC con
reemplazos periódicos planificados. Para estos dos casos de estudio se ha realizado
una planificación de evaluación de vida de las baterías. El correcto cumplimiento
del plan de vida de las baterías junto con la aplicación de las técnicas de gestión
energética aseguran la mejora del coste total de propiedad de toda la flota.

Palabras clave: Gestión energética de flota, estrategia de gestión
energética, batería, pila de combustible, programación dinámica,
neuro-difuso, autobús híbrido enchufable, autobús de hidrógeno.
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AFC Alkaline Fuel Cell

ANFIS Adaptive Neuro Fuzzy Inference System

BMS Battery Management System

BEB Battery Electric Bus

BOL Beginning Of Life

BT Battery

CC Constant Current
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CV Constant Voltage
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EG Electric Generator

EMS Energy Management Strategy

xi



Abbreviations

EOL End Of Life

EU European Union

EV Electric Vehicle

EM Electric Motor

ESS Energy Storage System

FC Fuel Cell

FCHEB Fuel Cell Hybrid Electric Bus

FEC Full Equivalent Cycles

FL Fuzzy-Logic

GS Gen-Set

GPS Global Position System

GHG Greenhouse Gas

HIL Hardware-in-the-Loop

HDV Heavy-Duty Vehicle

HEB Hybrid Electric Bus

HEV Hybrid Electric Vehicle

HESS Hybrid Energy Storage System

ICE Internal Combustion Engine

ITS Intelligent Transportation System

LCO Lithium Cobalt Oxide

LMO Lithium Manganese Oxide

LFP Lithium Nickel Cobalt Aluminium Oxide

LTO Lithium Titanate Oxide

MCFC Molten Carbonate Fuel Cell

NMC Lithium Nickel Manganese Cobalt Oxide

xii



Abbreviations

NCA Lithium Nickel Cobalt Aluminium Oxide

OB Optimization-Based

OER Oxygen Excess Ratio
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PEMFC Proton Exchange Membrane Fuel Cell
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P-HEB Plug-in Hybrid Electric Bus

RB Rule-Based

RMSE Root Mean Square Error
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SOC State of Charge

SOFC Solide Oxide Fuel Cell

SOH State of Health
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xiii





List of Symbols

Symbol Description Unit

acyc(k) Vehicle acceleration
[
m
s2

]
α(k) Vehicle slope angle [◦]

αcha Recharging time constant [−]

αH2 Hydrogen mass consumption cost function weigth [−]

βH2 Fuel cell oxygen excess ratio cost function weigth [−]

CBT Battery pack nominal capacity [Ah]

CBTkWh Battery cost
[
e

kWh

]
Cfuel/t Annual fuel price

[
e
l

]
CkW/t Referential annual power cost of the grid

[
e
kW

]
CkWh/t Referential annual energy cost of the grid

[
e

kWh

]
crf Rolling coefficient [−]

cx Drag coefficient [−]

4mFICE(U(k)) Fuel mass consumption determined by the split
factor

[
kg
s

]

4xref State of charge current difference from a reference
state of charge

[−]

xv



List of Symbols

dr Discount rate [%]

DRBT/t Depreciation rate of the Battery (BT) per year
[

%
year

]
dwdrsft(k) Angular acceleration of the drive-shaft

[
rad
s2

]
dwwh(k) Angular acceleration of the wheel

[
rad
s2

]
EBT Energy of the battery pack [kWh]

Echa Energy absorbed from the grid [kWh/day]

Echarged Charged energy definition [kWh]

ηEM(k) Efficiency of the electric motor [%]

ηTr Efficiency of transmission [%]

Eusable Battery usable energy [kWh]

Fa(k) Aerodynamic drag force [N ]

Fg(k) Gravitational force [N ]

fH2 Daily hydrogen consumption
[
kg
day

]

Fi(k) Inertial force [N ]

fICE Daily fuel consumption
[

l
day

]
Fr(k) Rolling resistance force [N ]

Af Frontal area of the vehicle [m2]

FT (k) Force acting on the wheels [N ]

g Gravity constant
[
m
s2

]
γ Final drive ratio [−]

γBT Battery lifetime [years]

γcal Battery cycling lifetime [years]

γcyc Battery calendar lifetime [years]

IBT (k) Current to be provided by the battery pack [A]

xvi



List of Symbols

IBTmax Maximum current limit of the battery pack [A]
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General introduction

Transport is one of the most impacting sectors regarding Greenhouse Gas (GHG)
emissions. In 2016, it caused 20% of GHG emissions in Europe. With the
goal of tackling the road transport emissions, the automotive industry has had
a mind shift looking for more sustainable and emission free alternative solutions.
In this regard, city buses are positioned as potential candidates for alternative
technologies market, due to favorable operational characteristics.

The urban road transport decarbonization process is being addressed with the
integration of the available commercial solutions of full-electric and hybrid buses
solutions. One of the main challenge regarding the technology election is based
on the efficient utilization of the power sources and Energy Storage System (ESS)
according to the power demand level. In this regard Hybrid Electric Buses (HEBs)
have a wider number of degrees of freedom compared to Battery Electric Buses
(BEBs), since they are composed of two or more power sources. This allows to
have the control of the available power sources based on the Energy Management
Strategy (EMS), which manages the operation.

In addition to the higher number degrees of freedom, the developments on
HEBs pave the way for the oncoming Fuel Cell Hybrid Electric Buses (FCHEBs)
integration. The architectural similarities between the HEB and FCHEB makes
HEB an ideal intermediate step solution. These similarities allow to apply directly
HEBs developments regarding energy management into FCHEBs. The current
FCHEB technological maturity and market penetration level, holds back the
massive integration. However, it is foreseen a hydrogen technology price decrease,
with the hydrogen market penetration growth. In a near future the scenario of
road transport, due to the variety of integrated technological solutions, will be
composed of mixed fleets.

Not only FCHEBs integration is a challenging process, but also HEBs
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integration. The main challenge is the higher investment costs beside conventional
diesel buses. On the pro side, the lower operational costs of HEBs, together with
the high yearly driven distances, compensate the manufacturing extra costs. As
a result, the Total Cost of Ownership (TCO) economic performance improvement
indicator plays a key role in the transport electrification process.

Breaking down the TCO calculation and identifying the energy efficiency
related factors, the operation cost and carbon-taxes cost factors are the costs that
are considered to be manageable. As it has been aforementioned the operation
costs are manageable by means of the HEBs degrees of freedom and the ability to
manage those variables with the EMS.

The integration of the new developments of digitalization into the automotive
industry allows a continuous monitoring of the operation of the vehicles, cloud data
storage, and cloud-computing. The "unlimited" data storage and resources allow
to develop more sophisticated and advanced EMSs based on artificial intelligence.
In addition to that, the available operation data of all the vehicles enables to
analyze the different energetic behaviors and opens new ways and levels to further
improve the TCO.

On the one hand, the learning based EMSs open up new possibilities of
management. Learning based EMSs permits to consider and combine consumption
minimization short-term objectives with other long-term targets that directly
impact to the TCO. A crucial long-term target that affects on the TCO is the
battery lifetime and respective number of replacements. The BT lifetime is shorter
than the bus service lifetime. This fact demands replacement of the BT to fulfill
the bus service requirements. By means of the learning based EMS the BT lifetime
can be managed together with the consumption minimization.

On the other hand, the capability to monitor the vehicles operation of a fleet
allows to step up an upper level point of view, the fleet level. The fleet level enables
to develop fleet management techniques. The current available fleet management
approaches are focused on traffic jam avoidance, vehicle diagnostics, itinerary
planning, and charging scheduling. Fleet energy management is identified as a gap
in the literature with potential for further improvement of the TCO at fleet level.
This upper level management development combined with the new possibilities of
the learning based EMSs for optimizing and managing the TCO at vehicle and
fleet levels are identified as the main challenges to be tackled. The main challenge
of this Ph.D. thesis is:
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To obtain an integrated solution to manage energetically a fleet of vehicles
optimizing the TCO the whole fleet, while ensuring that the vehicle service

requirements are fulfilled in terms of the planned battery lifetime by means of
learning based energy management strategies.

To face this identified challenge, the objective of this Ph.D. thesis is:

To develop a methodology to optimize and manage the total cost of
ownership for fleets of vehicles

Besides the main objective of this thesis, other particular objectives proposed
in the present study are:

• Developing an artificial intelligence learning based energy management
strategy for plug-in hybrid electric buses conscious of the battery aging.

• Validating the replicability and develop a learning based energy management
strategy for fuel cell hybrid electric buses conscious of the battery and
fuel-cell aging.

• Exploring and applying the new degrees of freedom derived from the fleet
level point of view.

This document is structured in 5 chapters.

In the first chapter, the state-of-the-art review of electrified buses focusing
on hybridization is presented. The analysis is performed from the powertrain,
vehicle management, and fleet management standpoints. Furthermore, available
commercial solutions are reviewed. Finally, the main gaps identified in the
literature are also reported. The identified gaps are the baseline to define the
research plan adopted in this Ph.D. thesis.

In the second chapter, the novel hierarchical EMS for TCO management
at fleet level is introduced. The hierarchical architecture is composed of three
levels. The inner part contains the online learning based EMS. In this level, the
management of the available power sources is carried out onboard the bus. The
onboard integrated EMS is designed at the immediate upper level in the cloud.
Based on a neuro-fuzzy technique, the EMS is defined learning from the global
optimal solutions. In the highest management level, the operation of the whole
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fleet is optimized based on the fleet TCO. The decisions taken define the fleet
re-organization and the online operation EMS update throughout the bus lifetime.
These decisions are based on the evaluated battery lifetime of the fleet, aiming at
meeting the planned TCO requirements.

In the third chapter, the proposed vehicle level EMS design and real-time
implementation onboard the bus are thoroughly described and analyzed. The
novel approach of the vehicle level EMS is a learning-based EMS. The developed
solution is a particular contribution of the Ph.D. thesis as depicted in Fig. 1.
This advance EMS is composed of a dynamic programming global optimization
technique and the neuro-fuzzy based learning technique. The basis of the utilized
techniques are introduced in this chapter. The novel learning based EMS has
been evaluated into two case studies: a Plug-in Hybrid Electric Bus (P-HEB) and
a FCHEB. The results obtained with the two topologies have been analyzed and
compared.

In the fourth chapter the proposed novel hierarchical EMS methodology for
the TCO management at fleet level is thoroughly described and evaluated. The
vehicle level analysis is elevated to fleet level in this chapter. This analysis is the
main contribution of the present Ph.D. thesis, as shown in Fig. 1. The fleet level
energy management covers the identified gap in the literature. Two fleets of buses
case studies are analyzed throughout the whole lifetime, evaluating every stage
of the hierarchical EMS. The obtained results of the two fleets are analyzed and
compared.

In the fifth chapter the general conclusions and contributions of this Ph.D.
thesis are presented. To lend continuity to the research, some possible future lines

Figure 1: Energy Management hierarchy.
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related to the topic addressed in this Ph.D thesis are presented.

To provide an overview of the content and facilitate the comprehension of the
document structure, the Ph.D. organization is depicted in Fig. 2.

Figure 2: Ph.D thesis organization.
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Summary
In this first chapter the state-of-the-art review of electrified buses is presented.

The analysis is performed from the powertrain, vehicle management, and fleet
management standpoints. Furthermore, available commercial solutions are
reviewed. Finally, the main gaps identified in the literature are also reported.
These gaps serve as a baseline to define the research plan adopted in this Ph.D
thesis.
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1.1 Introduction
The growing concern in regard to GHG emissions issue has derived on a mind shift
in the automotive industry, looking for more sustainable and greener solutions.
The road transport was responsible of the 72.1% of total transport GHG emissions
in 2016, as depicted in Fig. 1.1-A [1].

Figure 1.1: European public urban transport pollution and utilization
breakdown.

Light duty vehicles have been in the spotlight, almost neglecting the
Heavy-Duty Vehicle (HDV) impact. HDVs emit a quarter of the road transport
GHG emissions as depicted in Fig. 1.1-B. In addition, despite the more restrictive
standards regarding GHG emissions (EURO VI) limiting the Internal Combustion
Engine (ICE) operation, HDV emissions have been constantly growing between
from 1990 to 2010 [2].

The more restrictive EURO VI GHG emission standards are limiting the

Figure 1.2: EURO standard GHG emission limitations.
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transport emissions nearly to zero, as depicted in Fig. 1.2. Moreover, due to
the high pollution concentration in some cities, zero emissions zones have been
implemented with a tendency to increase over the years.

Analyzing the level of pollution impact of lorries and buses is different. The
most worrying zones are urban areas, due to the high pollution and congestion
levels, where commonly buses are running around 16 hours a day. Moreover,
buses are the most used type of public transport, with nearly 56% of journeys in
Europe in 2014, as shown in Fig. 1.1-C [3]. The European bus fleets lay out, still
in 2015, was composed of nearly 50% of the vehicles with Euro III or older ICEs
[4]. Moreover, nowadays about the 98% of the lorries in Europe rely on diesel
[5]. To fulfill the scheduled reduction of 30% of CO2 emissions for HDVs by 2030,
from the CO2 levels of 2019 [5], a renewal of the road transport fleets to a more
sustainable fleet is needed.

The transport decarbonization challenge is seen to be spearheaded by public
transport, owing to the favorable driving characteristics [6]. As a result, several
studies have been performed on the subject of analyzing the available alternative
technologies, pointing out hybrid electric buses (HEBs) and full electric buses as
the most viable options [7–9]. The fact that buses are running in a predefined
route facilitates the battery sizing and driving range issue. Moreover, these type
of buses are much more efficient than diesel buses in stop-and-go operation mode.

Among the available alternative technologies, HEBs are found as the
intermediate step between conventional and BEB, having the closest
manufacturing costs to conventional diesel buses and offering improved energy
efficiencies [7–10]. However, due to the reduced energy storage system and
the resulting constrained use of it, HEBs show similar polluting behavior to
conventional buses regarding the environmental footprint [10]. Therefore, the
target for the full decarbonization of urban road transport must be addressed
with the deployment of the available full electric buses solutions.

The lithium-ion BTs price decrease (price drop of around 79% since 2010 [11])
has placed BEBs as the widespread storage system solution [8, 9], in regard to full
electric buses. However, to reach the zero-emissions target of public transport,
wider range of solutions are required to meet the most demanding and longer
routes requirements [12, 13]. In this respect, FCHEBs are suitable solutions for
covering these kind of routes. The main drawback of FCHEBs is still the lack of
hydrogen refueling stations and the high price of the Fuel Cells (FCs).

The closest solution to FCHEBs and the main competitors of full electric buses
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are P-HEB, due to the technical characteristics and lower manufacturing cost [14–
16]. The larger BT capacities than in HEBs and the additional flexibility degree
of charging allow to harness the BT utilization, increasing the zero emission zone
range. In addition, the advances in P-HEBs will pave the way for the oncoming
FCHEBs implementation, as the topologies and degrees of freedom are similar,
being the developed P-HEBs EMSs applicable directly on FCHEBs [17, 18].

All the aforementioned powertrains have in common the higher investment
costs beside conventional diesel buses, making the integration of alternative
solutions a challenging process. On the pro side, the lower operational costs
of P-HEBs and BEBs, together with the high yearly driven distances help to
compensate the manufacturing extra costs [6, 9, 10, 19] This fact is yet not the
case for the FCHEBs. To evaluate the offset cost, the TCO calculation plays a
key role on the transport electrification process [9, 12].

The TCO calculation is determined with known conditions, which vary
throughout the bus lifetime and generate uncertainties on the TCO, as it has been
evidenced in the literature [12, 20, 21]. The main reason is the high sensitivity
of the TCO to the operational aspect [9, 12, 21]. A technical proposal is the
continuous monitoring of the vehicles operation, by means of the new opportunities
of digitalization. Indeed, this monitoring allows to have the fleet overall view,
having an additional degree of freedom and point of view to process, analyze, and
make decisions, with the aim of managing and further improving the overall fleet
TCO.

Digitalization is the process of providing vehicles with sensors to acquire
information, storing this information in the cloud, and analyzing the data [22].
This new trend enables to monitor the energetic operation of each vehicle from a
local and fleet point of view. Consequently, the decision making for the fleet TCO
management can be carried out from an upper level of the whole fleet overview.
Based on this decision, the lower level decision making for the EMS design of each
bus is performed from the fleet and local points of view. The main challenge for
the TCO management at fleet level and the digitalization is the large data volume
to be managed by fleet managers. Consequently, new automated and advanced
tools are needed for the data analysis and decision making, becoming a thriving
area of research [23, 24].
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1.2 Electric and Hybrid Electric Buses
Nowadays automotive manufacturers have shifted the production focus to more
efficient and sustainable solutions. Electrification of vehicles is being the tendency
that most of the automotive manufacturers are adopting. Consequently new
powertrains and ESSs solutions have been developed [25]. However, the new
technology adoption has not progressed directly from ICE based vehicles to
pure Electric Vehicles (EVs). There has been a transitional technology, Hybrid
Electric Vehicle (HEV). This technology is more efficient and less polluting than
combustion vehicles and with a smaller ESS than EVs.

As an overview, among the available alternative technologies, HEB are found
as the intermediate step between conventional and BEB, having the closest
manufacturing costs to conventional diesel buses and offering improved energy
efficiencies [7–10]. Hybrid is a term used to refer to vehicles powered by at least
two power sources. The most usual combination is composed by an ICE and an
Electric Motor (EM) connected to a battery. This combination takes advantage
of both conventional ICE vehicles and BEBs. HEBs have a superior mileage
beside BEBs, as a result of the combination of two or more power sources. As a
consequence of this combination, HEBs have more flexibility to supply the power
demand compared to conventional and BEBs. This flexibility allows to operate the
ICE in the optimal conditions, reducing the fuel consumption beside conventional
vehicles [14, 24]. However, due to the reduced ESS and the resulting constrained
use of it, HEBs show similar polluting behavior to conventional buses regarding
the environmental footprint [10]. Setting the target for the full decarbonization of
urban road transport, it has to be addressed with the deployment of the available
full electric buses solutions.

Among the full electric solutions BEBs and FCHEBs are found. As it has
been aforementioned, BEBs are actually commercially available and widespread
solution. With the aim of covering all type of routes a wider range of solutions
is needed. At this point FCHEBs are the near future solution for covering the
most demanding routes. However, nowadays P-HEBs are the best alternative
to FCHEB. The powertrains similarities provide both architectures similar
characteristics. The current developments on P-HEB are an investment for the
FCHEBs, since they are directly applicable.

The recent technological developments on vehicle electrification has broaden
the possible solutions. This makes to have a wide range of different electric and
hybrid vehicles powertrains. In addition, regarding the ESS size, ICE, and EM
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rate, different hybridization levels are identified in the literature. Therefore, in
the following sections the classifications concerning powertrain and hybridization
levels are detailed, finishing with an overview of available commercial hybrid and
electric buses.

1.2.1 Powertrain Architectures

In the literature, HEBs composed of a Gen-Set (GS) and a BT are generally
grouped into three categories [14], regarding the powertrain elements (power
electronics, power sources and propulsion systems) architecture.

• Parallel Hybrid Electric Buses: EM and the ICE are rotating at the same
speed imposed by the wheels.

• Series Hybrid Electric Buses: The series configuration is only driven by an
EM.

• Series-Parallel Hybrid Electric Buses: This configuration is a combination of
both parallel and series.

Following with the hybrid buses, but this time composed of a FC and a
BT pack, two powertrain types are differentiated. The classification has been
determined following the previous HEBs classification criteria of categorizing the
powertrains based on the powertrain elements. The most simple structure is the
series FCHEB, working as a range extender. The parallel FCHEB has an increased
flexibility, since both the FC and the BT are able to provide the power demand.

Finally, in the case of BEBs, powertrains architectures can be classified by the
type of transmission, by the locations and the number of EMs or by combinations
of ESSs [26]. Therefore, in the following subsections the three HEBs powertrain
architectures are described and an overview of the main Electric Buses (EBs)
architectures is carried out.

1.2.1.1 Series Hybrid Buses

Series Hybrid Electric Bus (SHEB) is considered to be a purely EB with a range
extender. Therefore the series powertrain architecture integrates an EM to drive
the vehicle. The energy is provided by an ESS and a GS (composed by an ICE
and a electric generator), which is used to extend the driving range of the ESS,
as shown in Figure 1.3. All the elements are electrically connected to a DC bus
through power electronics (inverters and converters). Consequently the power split
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is determined based on the power demand. This electrical connection allows to
increase the operation modes, summarized in Fig. 1.3 as 7 different operation
modes.

Figure 1.3: Series powertrain architecture.

This powertrain architecture includes several advantages. The ICE operation
is independent of the traction motor. Thereby, the ICE is designed to operate in
the optimal operation conditions, increasing the efficiency and reducing the fuel
consumption. The ICE drives the generator to generate electricity, determined
by the power demand. The generator charges the ESS and powers the EM. This
gives the opportunity to make a more intensive use of the ESS, avoiding deep
cycles. The electric drive allows to operate without any mechanical transmissions,
decreasing the mechanical looses [14, 27, 28].

The advantage of having more flexibility to supply the electricity becomes a
drawback, as the three machines (EM, ICE and generator) need to be designed to
supply the full power of the vehicle. This impacts directly on the price, weight,
and size. In highway operation, owing to electrical losses, the overall efficiency is
reduced. Thus, SHEB are the most efficient for stop-and-go urban and city driving
[28].

1.2.1.2 Parallel Hybrid Buses

In contrast to SHEBs, Parallel Hybrid Electric Buses (PHEBs) are considered to
be conventional combustion vehicles with an additional path. Therefore, an ICE
and an EM drive the vehicle, as shown in Fig. 1.4. Both machines are connected
to a mechanical transmission, rotating simultaneously. Consequently, the torque
demand is determined by the torque split factor. To increase the operating modes,
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both machines can supply either individually or coupled. Compared to the SHEB
operation modes, the PHEB is less flexible, showing 5 operation modes as indicated
in Fig. 1.4.

Figure 1.4: Parallel powertrain architecture.

The parallel configuration strengths, opposite to the series configuration,
derive from the highway operation. In high rotation speed or cruising during
long distances the efficiency is improved. The flexibility of having two traction
machines, allows to downsize the EM, as the torque demand can be provided by
both machines.

Weaknesses of PHEBs, are mainly related to the limitation of the ESS use. ESS
can only be charged by regenerative breaking and cruising operation. The ESS is
subjected to deeper cycles. The efficiency is lower at low rotational speeds. This
kind of architecture has been widely adopted by European vehicle manufacturers
[29].

1.2.1.3 Series-Parallel Hybrid Vehicles

The series-parallel architecture combines both aforementioned configurations,
having all elements of both configurations, as shown in Fig. 1.5. Therefore,
the mechanical and electrical connections are doubled. This configuration gives
the electrical and mechanical flexibilities of SHEB and PHEB respectively. The
number of operation modes are the same as the SHEB. However, the number of
paths for the power transmission are higher.

As a result of the combination of both configurations, there are multiple
operating modes. The extra flexibility of this type of powertrain is the main

14



1.2 Electric and Hybrid Electric Buses

Figure 1.5: Series-parallel powertrain architecture.

advantage. However, the control algorithm is more complex, due to the several
operating modes and energy flows to obtain the best energetic performance [14].
Moreover, the amount of extra elements increases also the cost.

1.2.1.4 Series Fuel-Cell Hybrid Electric Buses

Series FCHEBs architecture is composed of a FC and a BT in series, as shown in
Fig. 1.6. The FC acts as a range extender, feeding the BT at constant power.
The constant and stable power operation of the FC is the best, owing to the
FC low dynamics. On the contrary the power peaks are provided by the BT.
In addition, the FC reaches the maximum efficiency at partial loads [30]. The
operation flexibility is very limited and just 2 operation modes are possible, as

Figure 1.6: Series Fuel-Cell Hybrid Electric Bus powertrain architecture.
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shown in Fig. 1.6.

The series FCHEB configuration is very simple. The complexity of the EMS
is low, since there is not a power split to manage. This type of configuration
is usually a non plug-in one. The BT is charged from the regenerative energy
recovery and from the FC continued supply of hydrogen [30]. It is noteworthy the
efficiency decrease, due to the fact that the BT is in the middle between the FC
and the EM.

1.2.1.5 Parallel Fuel-Cell Hybrid Electric Buses

The parallel FCHEBs have the same power elements as the series FCHEB, but
the distribution is different. In this type of architecture, the FC and the BT are
connected in parallel, as shown in Fig. 1.7. Both power elements can fulfill the
power demand. The common operation of this type of architecture is based on
supplying the power to the EM and auxiliaries by the FC system and the transient
power is provided by the BT system. Due to the less use of the BT, the size is
smaller than the series FCHEB topology. The operation modes are the same as
the series HEB, having 7 operation modes, as depicted in Fig. 1.7.

Figure 1.7: Parallel Fuel-Cell Hybrid Electric Bus powertrain architecture.

It is the most common architecture found in the literature. The reached
efficiency is higher than the series architecture [30]. It is usually equipped with
a plug-in. On the contrary to the series architecture, the EMS requires a much
more complex design, with the aim of fulfilling the energy demand in the most
efficient way [31]. In addition, apart from the hydrogen consumption efficiency,
the FC safe operation has to be managed.
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1.2.1.6 Electric Buses

Figure 1.8 depicts the 3 main powertrains with their corresponding operation
modes.

Figure 1.8: A Single Motor (optional gearbox) B Dual Motor C Dual energy
storage system.

- Single Motor without gearbox: This is the simplest and widely employed
powertrain by automotive manufacturers. There is absence of gears, commonly
merging the EM, the main reduction gear, and differential in a compact package.
The absence of gears enables to reach higher speed without mechanical help as
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depicted in Fig. 1.9 zone a [26]. High torques are given at low speeds in zone b,
being the highest torques given in zone c at zero speed. On the contrary, the ICE
has run at idle speed (around 800 rpm) with the clutch help. Beside ICE, the EM
can achieve an efficiency of the 85%. However, when driving at low speed, the EM
can only provide a portion of its maximum power, needing to increase the EM size
[26].

To
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a

b
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d

Figure 1.9: Electric Motor Torque-Speed Efficiency Map.

- Single Motor with gearbox: The previously mentioned EM oversize at low
speeds drawback is improved with this architecture. The behavior at low speed
improves providing the EM with 2 gears. Consequently, the fuel economy is
increased around 2-5% [26].

- Dual Motor : Providing the EB powertrain with 2 or more EMs, the layout
flexibility increases. In addition, this powertrain either with 2 or 4 EMs, it allows
to run in front, rear, or all wheel-drive [26].

- Dual ESS: This powertrain is a combination of high energy density ESS
(commonly batteries) and high power density ESS (commonly Ultra-Capacitors
(UCs)). This type of powertrain allows to use batteries with lower power density
and higher energy density, overcoming the power need with the UCs [32].

1.2.2 Hybridization Levels

Hybridization level is determined by the ratio between the power provided by the
ESS and the total power demand of the bus. Therefore, this level is directly related
to the size of the ESS, EM and ICE. In Fig. 1.10, the five hybridization levels
identified in the literature with their main characteristics are shown [29, 33, 34].
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Figure 1.10: Hybridization levels.

An overview of the five hybridization levels with their main characteristics is
made in the following lines:

- Micro-Hybrid:

The micro-hybrid level presents the lowest hybridization level. The main function
of the ESS is to turn on the ICE. It does not provide neither assistance nor
traction to the wheels. When the bus stops, the ESS supplies the power auxiliaries
demand. The process for cranking again the ICE is by pressing the clutch. The
only way of recharging the ESS is given during driving through regenerative
braking. Therefore, the ESS is sized for meeting the start-stop function. Further
developments for this hybridization level include switching off the ICE while
driving at constant speed (sailing) on the highway [29].

- Mild-Hybrid:

This hybridization level acquires the micro-hybrid characteristics, adding an extra
function. Beside micro-hybrid buses, this hybridization level integrates an extra
motor having the ability to assist the drive train. This extra function helps to
minimize the fuel consumption, assisting the drivetrain when the fuel consumption
is high, especially during acceleration. The only way of recharging the ESS is both
by regenerative braking or actively by the ICE. As a result, the ESS is sized related
to the power requirements for meeting the assisted drive demands [29].
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- Full-Hybrid:

As well as the aforementioned mild-hybrid bus, this hybridization level also obtains
the lower hybridization level’s functions. Additionally, this hybridization provides
pure electric driving, being able to operate at zero emission mode. For this extra
function, a higher EM and ESS size is needed. The electric operation is used when
the ICE operation efficiency is low (at low speed). The way of recharging the
battery is identical to the mild-hybrid bus, regenerative braking and actively by
the ICE. As a result, the pure electric driving range is very limited. The best
operation performance is obtained from urban driving [29].

- Plug-in-Hybrid:

Plug-in-hybrid buses are placed on the highest hybridization level. The functions
of this hybridization level are identical to the ones of full-hybrid buses. However,
the ESS size is increased significantly beside lower hybridization levels. This is
due to a more charging flexibility degree, as the ESS can be charged either during
driving (regenerative braking and ICE charging) or directly from the grid. As a
result, the pure electric driving mode range is extended.

- Fuel-Cell Hybrid Electric:

Entering to the zero emission zone, at the top of the hybridization level
classification, hydrogen buses are found. This type of buses are grouped inside
the full electric buses group, since the bus is operated based on hydrogen and
BTs. Giving that green hydrogen is used and the electricity to recharge the BTs is
generated from renewable energy sources, the FCHEB is a zero emission vehicle.

- Battery Electric:

The pure electric bus is placed on the opposite side of the combustion. The pure
electric bus has zero emissions full operation. Consequently, the ESS has the
largest size and it could be charged by regenerative braking or directly from the
grid.
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1.3 Power Sources for Transport Electrification
As a result of the wide range of different buses architectures and hybridization
levels, there exists an appropriate power source device for each solution. The
power sources are core elements for BEBs and HEBs. In the case of BEBs, the
BT is the most expensive part with 50% of the bus cost. For FCHEB and HEBs
the BT is a significant part of the cost, reaching values of 39% of the cost of the
bus [35]. Furthermore, power sources have shorter lifetime than power electronic
systems. This way, they are a bottleneck in the lifetime of the bus. Moreover, BT
pack replacements are required and this affects significantly the operation costs
during the vehicle lifetime [36, 37], increasing the TCO. Therefore, it can be said
that the BT lifetime is closely related to the vehicle operation. Therefore, the
appropriate selection and sizing is crucial for EBs and HEBs design [29].

Depending on the application of the type of bus, different ESSs are selected.
Commonly, power sources for transport electrification are optimized for energy or
power purposes. The power source used for energy applications are electrochemical
(BTs) and chemical (FCs) power sources. On the contrary, in the case of power
applications, the most used ones are electrochemical (BTs) and electrical (UC)
ESSs. However, a single power source has difficulties to meet both requirements:
energy and power. As a result, new Hybrid Energy Storage System (HESS)
concepts have been developed.

Electrochemical ESSs are the oldest form of electricity storage and power
source for transport electrification. BTs developments have been mainly driven

Figure 1.11: ESSs commonly used for EBs.
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by researching on different ways to increase the energy density. Starting with
lead-acid cells in the 1850s’, nickel-cadmium cells in 1890s’ and nickel metal hybrid
cells in 1960’s. Finally, adopting lithium-ion battery as the current storage system
chemistry since 1991 [38], as shown in Figure 1.11 [29]. This adoption was driven
by two main factors: technical characteristics and cost reductions (nearly 79 %
drop from 2010 to 2017 [11]). Regarding technical characteristics, lithium element
is the most electropositive (-3.04 V) as well as the lightest (equivalent weight
M=6.94 g/mol and specific gravity =0.53 g/cm3) metal [39]. Moreover, lithium
batteries do not present memory effect and the self-discharge rate is very low.
Those advantages leads lithium BTs to become the widely adopted technology by
vehicle manufacturers.

In the following lines, the utilized ESSs in the automotive industry are
reviewed: Lithium batteries, UC, HESSs and FCs are detailed.

1.3.1 Lithium-ion Batteries

Lithium-ion batteries are classified as rechargeable or secondary batteries. In
lithium-ion batteries electricity is stored in chemical form and the electricity it
is produced through an electrochemical reaction process. Lithium-ion batteries
are basically composed of two electrodes (anode and cathode), an electrolyte, a
separator and a case [40]. Most of the EBs and HEBs applications require high
energy densities. As a result, researchers have carried out new combinations of
cathode, anode and electrolyte primary functional components, to obtain higher
energy densities. Therefore, "lithium-ion batteries" is an umbrella term for a
variety of material combinations used to form batteries [29]. Anode mostly
is composed of graphite carbon (C) - which allows to reach higher potentials.
However, for applications that require longer lifetimes and safer levels, lithium
titanate (LTO) is used, instead of C anodes [29, 41].

Lithium-ion batteries are classified acccording to each cathode and anode
material. The cathode materials usually contain manganese (LMO), cobalt (LCO),
iron-phosphate (LFP), or mixtures such as LiNiMnCo (NMC) and LiNiCoAlO2

(NCA). This classification is shown in Table 1.1, with an overview of the main
characteristics.

In the following lines, a study of the aforementioned lithium-ion BTs is carried
out.
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Table 1.1: Lithium-ion different chemistries.

CATHODE LCO LMO NCA LFP NMC NMC

ANODE C C C C C LTO

Optimized for Energy Power Energy Power Energy Cycle Life

Nominal Voltage [V] 3.6 3.7 3.65 3.2-3.3 3.6-3.7 2.3

Specific Energy [Wh/kg] 175-240 100-150 175-240 60-120 150-220 70-75

Specific Power [W/kg] 1000 4000 1000 4000 1000 4000

Safety risk Highest Moderate Serious Unreactive Moderate Moderate

Buses [33, 34] - - - BYD Enviro Iveco E-WAY Solaris

Mercedes eCitaro

- Lithium Cobalt Oxide (LCO):

LCO is the most mature (starting in 1991) and the first commercial lithium-ion
battery [42]. It is normally not used in vehicle applications, though its energy
density is relatively good. It is relatively expensive, due to the high cost of cobalt.
However, the main disadvantage for EBs implementation is that LCO is the most
reactive and has the lowest thermal runaway temperature (150◦C) of lithium-ion
batteries [42]. At elevated temperatures, LCO decomposes and produces oxygen,
reacting exothermically with organic materials within the cell [41].

- Lithium Manganese Oxide (LMO):

LMO is less expensive and significantly more tolerant to abuse than LCO [42]. The
oxygen release is minimum, the thermal response being determined by the anode
and electrolyte reactions. Thus, stable electrolytes at high voltages are used. Due
to its characteristics, LMO is more commonly used in EV applications than LCO.
As an example Tesla is using this type of chemistry [43].

- Lithium Nickel Cobalt Aluminium Oxide (LFP):

Although LFP batteries have low specific energy, their specific power is high. LFP
operating voltage range is lower than other cathode chemistries composed with
a C anode. This leads to a lifetime increase. In addition, it does not release
oxygen. Consequently, it is the safest lithium-ion battery and widely used by
vehicle manufacturers [41, 42].

- Lithium Nickel Manganese Cobalt Oxide (NMC):

NMC is safer and less expensive than LCO. The capacity is defined by the upper
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voltage cut off, which is usually acceptable. This chemistry has high energy
densities and it is commonly used for energy purpose applications. Therefore,
NMC is used for EBs applications [42].

- Lithium Nickel Cobalt Aluminium Oxide (NCA):

NCA main advantage is the high specific energy density. However, as the voltage
operation range is high, NCA is about as safe as LCO. Nevertheless, some vehicle
manufacturers use this chemistry for their high energy density [42].

- Lithium Titanate Oxide (LTO):

LTO main advantage is the high specific power density. It has the lowest voltage,
which allows to reach the highest lifetime. LTO BT specific energy density is
low and it is the most expensive chemistry. However, it is a very widely used
technology [42].

1.3.2 Ultra Capacitors

UCs have the capacity to store and deliver energy at high currents in a short period
of time. Therefore, they have very high specific power densities (approximately
1000-2000 W/kg) with an efficiency up to 95%. However, the energy density of
UCs is much lower than lithium-ion batteries, as shown in 1.11. They have the
longest lifetime period of the ESSs [40]. Moreover, as UCs are not very sensitive
to temperature, they require minimal maintenance and can face long operation
periods. These features fit with some HEBs and EBs applications, such as those
that need extra power for rapid acceleration or hilling, regenerative braking energy
storage, and fast charging. As a result, UCs are widely used as ESS by vehicle
manufacturers [29, 33, 34, 40].

As well as lithium-ion batteries, there exist two different UC classes,
Electric Doubled-Layer Capacitor (EDLC) and pseudo-capacitors. EDLC are
the most used ones, as they have higher power density than pseudo-capacitors.
Pseudo-capacitors store the energy in the electrochemical form, having higher
energy density than EDLCs. However, due to the chemical reactions, the lifetime
decreases [44].

As it has been aforementioned, UCs are widely used by vehicle manufacturers.
As an example the micro-hybrid Mazda-6 model uses a UCs, to enable regenerative
braking on 12 V start-stop systems. Regarding buses applications, the ADL
Enviro400 mild bus and the ADL Enviro400H full hybrid bus are equipped with
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UCs [29, 33, 34, 40].

1.3.3 Hydrogen Fuel-Cells

FCs are electrochemical elements that covert the chemical fuel in electricity
without a combustion process. Hydrogen FCs are the most popular and
commercially available on the market; however, methanol or ethanol have been
also used as fuels. The process for producing electricity is called electrolysis.
From a combination of hydrogen and oxygen, electricity is produced [45].

Different classifications criteria are defined in the literature according to the
different parameters of FC, such as the electrolyte type, type of exchanged ion,
type of reactants, operating temperature or pressure. Commonly, the most used
classification criteria is based on the electrolyte type, as it has been seen in Tab.
1.2 [45–47].

The first FC type is Alkaline Fuel Cell (AFC) that works at relatively low
temperature, low weight and simple operation. The second FC is Phosphoric Acid
Fuel Cell (PAFC) working at higher temperatures (150-200 ºC) than the AFC.
This allows to combine the electrical system with heat recovery, thus increasing
the efficiency. However, the power density is low [47]. The most flexible and
promising technology is the Proton Exchange Membrane Fuel Cell (PEMFC).
This technology has the lowest operation temperature (between 65-85ºC) and the
highest power density [45, 47]. Finally, Molten Carbonate Fuel Cell (MCFC) and
Solide Oxide Fuel Cell (SOFC) technologies are the FC with the highest operation
temperature. The high operation temperature allows to reach a total combined
efficiency (electricity and heat) of 85% and 75-80% for the MCFC and SOFC
respectively.

Table 1.2: FC classification according to the electrolyte.

Fuel-Cell Operation Power Fuel cell Lifetime Application Fuel

Type Temperature [žC] Density Efficiency [hours] Area Options

AFC 50-230 High 50-60 >10000 Space Hydrogen

PAFC 150-220 Low 40-50 >40000 Distributed power Hydrogen, Natural Gas, Diesel

PEMFC 65-85 Very high 30-70 >40000 Transport, portable Hydrogen, Natural Gas, Diesel

MCFC 600-700 Medium 40-60 >40000 Distributed power Hydrogen

SOFC 500-1000 Low 40-70 >30000 Base load power Hydrogen, Natural Gas, Diesel

From the different technologies, for buses applications, the PEMFC is the best
technological choice and the only one used in transport applications. The low
operation temperature with the high power density combination allows to operate
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a FC on board the bus. The main drawbacks of this FC are the need of platinum
as a catalyst, the difficulty of water management and the use of pure hydrogen as
fuel [47].

The development of FCHEBs have gained market attraction in the last few
years. Nowadays, the main bus manufacturers have developed or they are
manufacturing FCHEB models. Caetano bus manufacturer has developed with
Toyota the 12 meters H2 City Gold bus. Solaris has also developed the Solaris
Urbino 12 hydrogen bus with around 300 km driving range. Finally, Van Hool has
also a FCHEB solution in its A330 FC bus model.

1.3.4 Hybrid Storage Systems

There is no power source meeting all the EB requirements. Therefore combinations
and hybridizations of different ESSs are done to broaden the EBs capabilities.
These hybridizations are electronically combined. These combinations are
commonly made to increase both power and energy characteristics [40].
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1.4 Commercially Available Electrified Solutions
A market research has been performed, aiming at having an overview of the
commercially available electrified buses. The widest range of solutions have been
encountered for BEBs and HEBs. However, there is a clear growing tendency of
the available FCHEBs solutions.

1.4.1 Battery Electric Buses

Table 1.3 depicts the great step forward that BEBs have faced in the last years.
The report [48] gives the global main manufacturers whole report. The ESSs sizes
are within the range of 94-380 kWh, with a driving range up to 560 km. Most

Table 1.3: Full Electric Buses market overview.

OEM Model
Bus ESS Electric Charging Sold

Architecture Type Size [kW] Range [km] Technology Units

Proterra Catalyst FC DM 2 gears

or

SM PM 2 gears

LTO 94-126 80-100

PLG/PTG/WRL 100Catalyst CR NMC 220-330 220-310

Catalyst E2 440-660 405-560

BYD 8 meters

DM LFP

160 200

PLG 80 in Europe in

2015-2016

Double decker 340 240

10.8 meters 320 260

12 meters 270-380 210-300

18 meters 270 170 PLG/PTG

Yutong Yutong E12 SM LFP 324 - PLG
35.000 in

2015-2016

Zhongtong Bus LCK6122EVG SM LFP 350 250 PLG
20.000 in

2015-2016

Solaris Urbino 9.9 SM
LFP/

LTO

160 200

PLG/PTG

5

Urbino 12 SM/DM 240 266 93

Urbino 18 SM 240 185 5

Volvo 7900 SM 2 Gears LFP 76 96 PTG 11

Irizar ie2 NaNiCl (ZEBRA) 376 250 PLG 13

Van Hool Exqui.City 18m SM LFP 215 120 PLG/PTG 40

VDL Bus & Coach Citea LLE-99 NMC 180 -

PTG 67Citea SLF - 120 LTO/NMC 63-240 -

Citea SLF - 180 NMC 63-180 -

Optare Solo EV

LFP

270

PLG

56

Metrocity EV
205

13

Versa EV 13

Metrodecker - - -
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of the buses are pulled by a single motor. However, there is a growing tendency
of developing dual motor buses with 2 gears, with the aim to improve the EMs
efficiency. The plug-in charging technology still dominates. However, due to the
fast charging boost, the pantograph solution is growing rapidly.

Regarding the ESS, as the BEBs need larger batteries for higher driving ranges,
there is no bus with UCs. The main utilized ESS chemistries are similar to the
ones utilized in HEBs, being the safest LFP and LTO. However, due to the high
energy density characteristics to achieve higher driving ranges, some manufactures
use NMC.

1.4.2 Hybrid Electric Buses

Table 1.4 depicts the current market overview with the main manufacturers of
HEBs solutions. The most adopted bus architecture is the series because it is
more suitable than the parallel architecture for stop-and-go city driving, as it is
pulled by an EM. On the contrary, the parallel architecture is mainly pulled by
an ICE, having the best efficiency at high speeds. As a result, it is more suitable
for extra urban routes than the series architecture, making use of the EM at low
speeds. It is noteworthy that the buses with the largest ESS (ESS range 19-32
kWh) are plug-in HEBs, as there is a more intensive use of the ESS. Consequently,
this hybridization level has the highest fuel savings - up to 75%.

Most of the full-hybrid buses power sources are UCs within a range of 0.4-0.5
kWh. This hybridization level does not need to be recharged from the grid, as
the regenerative braking and the GS in the case of series configuration is sufficient

Table 1.4: Hybrid Electric Buses market overview.

OEM Model
Bus Hybridization ESS Fuel

Architecture Level Type Size [kWh] Savings [%]

Man Lion’s City Hybrid Series Full Hybrid UC 0.4 30

Mercedes-Benz Citaro G Bluetec Hybrid Series Full Hybrid UC 2 [Ah] 8.5

Vectia Veris.12 Hybrid+ Series Plug-in LTO 24

Volvo 7900 Hybrid Parallel Plug-in LFP 19 75

Solaris Urbino 18 DIWA Hybrid Parallel Full Hybrid UC 0.5 20

Iveco Urbanaway bus Series Full Hybrid LFP 11 40

Orion Hybrid Electric Bus Series Plug-in Li 32

Scania Citywide LE Hybrid Parallel Full Hybrid Li 1.2 20-25
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to recharge the ESS. Regarding the ESS chemistry, the most used ones are the
safest, NMC, LTO and LFP.

1.4.2.1 Fuel-Cell Hybrid Electric Buses

The available solutions for FCHEBs are fewer compared with the available
solutions for HEBs and BEBs, as shown in Tab. 1.5 [33, 34, 49]. However in the
last years, bus manufacturers are starting to bet for hydrogen solutions. All the
buses have PEMFCs with power ranges between 70 kW up to 120 kW. Regarding
the BT chemistry, LTO is the most utilized BT type, due to high power density.
The BT capacities are ranged from 24 kWh up to 30 kWh.

Table 1.5: Hybrid Electric Buses market overview.

OEM Model
Fuel Cell ESS Motor

Module Module power [kW] Chemistry Energy [kWh] type

Solaris Urbino 12 Hydrogen Ballard FCmove-HD 70 LTO 30 In-wheel

Daimler EVO Bus Citaro Fuel Cell hybrid 12 AFCC 2x60 - - -

Caetano Citaro G Bluetec Hybrid Toyota FC - LTO 29-44 Central PEM

Van Hool A330 fuel cell Ballard FCveloCity-HD 85 - 24-36 Central PEM
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1.5 Energy Management Strategies
The hybrid bus operation rely strongly on the suitable and efficient power/torque
split among the available sources. The complex energy division calculation is
solved based on the EMS, focusing on the maximization of the overall efficiency
and minimization of the operation costs [24]. A management strategy is defined as
an algorithm, which is a set of instructions or laws regulating the overall operation
and power flow of the system. Fig. 1.12 [50, 51] depicts the different levels of the
management architecture of vehicles with the evaluation period and the application
of each level.

Figure 1.12: Management architechture of vehicles.

In the following lines, an overview from the innermost to the outermost level
is described:

- Local Control System: The function of the local control system is to generate
switching signals, to control the modulation. These high speed switching signals
are generated by microprocessors according to the torque/current input [50].

- Power Management System: This management level determines the power
set points between the multiple power sources according to the operation limits.
To prevent the multiple power sources misuse, policies are applied (such as ESS
over-discharging and over charging method and motor current and power limits).
Power management system’s inputs came from the LEMS [50].

- Vehicle Level Energy Management Strategy: Vehicle level energy
management strategy level has a longer time frame evaluation period than the
aforementioned levels and it is the outermost level of the architecture. This level
is the one which plans the vehicle dynamics, operation targets and power sources
split factor. The strategic planning is applied to each individual local bus [50].
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The vehicle level EMS plays a key role to ensure the correct system performance
in terms of fuel economy and GHG emissions, in each local vehicle. Therefore,
transport EMSs have been topic of interest for several years, with the aim of
improving the energy efficiency of each vehicle [14].

1.5.1 Energy Management Strategies Classification

Traditionally in the literature the proposed EMSs at vehicle level have been
classified as Rule-Based (RB) and Optimization-Based (OB) EMSs, as shown
in Fig. 1.13 [15, 51]. As a brief overview, on the one hand, RB EMSs are
generally designed for specific driving cycles and operating conditions, having
limited adaptability to the real changing conditions. On the other hand, despite
the good results achieved with OB EMSs, the future driving conditions need to
be known or predicted and commonly they require high computational efforts,
making more difficult the online on-board implementation [14, 15, 24]. Therefore,
the effective design of an EMS is a complex task, since in real driving conditions
the energy uncertainties and disruptions are tough to predict [15, 52]. In the
following lines a review of the different EMSs is carried out.

1.5.1.1 Rule-Based Energy Management Strategies

These strategies rely on a set of rules to take actions on controllable sources. These
rules are designed based on human expertise, intuition, and/or mathematical
models, commonly with the drawback of not having prior knowledge of the driving
cycle. The main advantage of these strategies is the low computational cost,
being widely used for real-time EMSs. Rule-based strategies are divided into two
subgroups, deterministic and fuzzy logic methods.

Figure 1.13: EMS strategies classification.
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Deterministic methods require a wide knowledge of the application, as they
are based on the human experiences and knowledge[28, 51]. These methods
are suitable for low levels of hybridization. However, as the rules are obtained
from selected driving cycles, they are not optimal solutions for real-life driving
conditions [24]. The most used RB techniques are thermostat control, power
control and state machine. Want et. al [53] proposed three different EMSs
for PHEBs, pure electric, charge-depleting and charge-sustaining, managing the
energy based on thresholds. Similarly, a RB EMS with a look up table was
proposed in [54].

For more complex models or even for those systems that cannot be modeled,
Fuzzy-Logic (FL) is an appropriate solution. These methods are also based on
predefined rules, implemented in a map-based format. Therefore, the improvement
margin is wider than with deterministic methods [24, 51]. FL is performed based
on the following three main steps:

1. Fuzzification: scalar values are transformed to fuzzy values.

2. Inference engine: fuzzified measurements are used to evaluate the control
rules stored in the fuzzy rule-base.

3. Defuzzification: the fuzzified response is processed to obtain a crisp value.

In the literature plenty of FL EMSs have been proposed [55–59] for energy
management in hybrid vehicles with energy storage system (ESS) based on SC
[60], BT [61] and hybrid ESS [62]. Herrera et. al proposed a FL EMS for a P-HEB
and tested it into a Hardware-in-the-Loop (HIL) platform in real time, aiming at
evaluating the real-time operation of the FL [58]. Chen et. al developed a FL
EMS for FCHEBs, with the aim of maintaining the BT State of Charge (SOC),
satisfying the FC dynamic constraints [57].

1.5.1.2 Optimization Based Energy Management Strategies

The OB strategies rely on analytical or numerical algorithms to take actions,
resulting being more accurate than rule-based approaches [24]. These algorithms
are based on minimization/maximization of a cost function to obtain the global
optimum of a predefined driving cycle. The optimization method can be split into
two subgroups [24, 51]: off-line and on-line optimization methods.

Off-line optimization methods are usually used as benchmarks or design
purposes, as they are off-line implemented to a fixed driving cycle. It is noteworthy
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the Dynamic Programming (DP) approach from the different off-line optimization
methods. The main reason for this is because it is commonly used as a baseline
for different proposed approaches [24, 28, 51, 63, 64]. Since OB off-line methods
cannot be applied online, in the literature there exist several approaches that use
optimization techniques to design RB EMSs and implement them in real-time
[65–69].

It is noteworthy the proposed EMS by Liang et. al based on correctional DP,
for P-HEBs targeting to combine fuel efficiency improvement and drivability [65].
Based on multi-objective genetic algorithms, Herrera et. al proposed an EMS for
managing a P-HEB with hybrid ESS, BT and UC, aiming at optimizing the daily
operating cost [69].

On the contrary, on-line optimization methods are considered as sub-optimal
problems. This is due to the fact that the optimizations are applied
instantaneously, instead of applying the whole predefined route. For a wider
optimization, some optimization methods include driving profile predictions,
varying the effectiveness of the accuracy of the prediction model [24,
51]. Nowadays, these driving profile prediction models have been improved
implementing the recent advances in Intelligent Transportation System (ITS)
[15]. These new techniques are based on acquiring traffic or road condition
information via telematics from sources such as Vehicle-to-Vehicle (V2V) or
Vehicle-to-Infrastructure (V2I) [24, 28].

Johannesson et. al developed model predictive control to define the optimal
split factor and schedule the charging and discharging of the ESS [70]. Similarly,
also based on model predictive control, Guo et. al proposed a bi-level EMS to
decouple the components into two levels [71]. The outer level defines the optimal
speed and the inner level defines the optimal split factor of the power sources.

1.5.1.3 Learning Based Energy Management Strategies

Nowadays, a new trend is to provide vehicles with sensors, enabling to monitor
the operation of each vehicle. This process is known as vehicles digitalization and
lies on the data acquisition, data storage, computation and data analysis in the
cloud [22, 24]. The cloud-computing system allows to have "unlimited" resources,
widening possibilities of optimizing the EMS through global methods [24]. In
addition, by means of cloud-computing, historical operation data exploitation is a
valuable input to provide enough information and further improve the EMS design
[24, 72, 73]. As a result, learning based EMSs have been emerged, learning from a
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data-base and gaining the ability to self-adapt to changing real driving conditions
[15].

In the literature, several learning based EMSs have been published. Khayyam
et. al [74] proposed an EMS based on 3 fuzzy controls tuned based on a hybrid
adaptive neural-fuzzy inference system (ANFIS) genetic algorithm. Ozatay et.
al [73] developed a cloud based system, aiming at feeding back the driver the
optimized driving guidelines. A data-base with the optimal speed profile operation
by means of dynamic programming (DP) was used to train neural networks and
implement it in the vehicle as EMS [75–77]. In addition, Tian et. al improved
this approach by implementing two neuro-fuzzy systems, one for the target state
of charge (SOC) and another for the genset output [16].

Based on the Global Position System (GPS) information, Chen et. al developed
a hierarchical clustering technique for identifying the driving cycle to determine
the EMSs to apply [78]. The EMSs are designed specifically for each route. Yang
et. al [79] exploited the compiled information offline, aiming at clustering 6
different driving behaviors and modelling them based on a Markov chain. The
online part was based on a super vector machine, for identifying the recognized
driving behaviors and applying the developed EMS for each driving behavior. Hu
et. al [15] developed a deep reinforcement learning based EMS, learning from
the torque and SOC operation. Liu et. al developed a Markov chain combined
Q-learning technique, used to speed-up the markov chain [80] and a reinforcement
learning algorithm with the aim to minimize the fuel consumption [81].

1.5.2 Energy Management Strategies Trends

Focusing on P-HEBs and FCHEBs, several EMSs have been proposed in the
literature for different purposes, such as the thermal energy management [10, 82],
optimal sizing of ESSs [58] and fuel economy [62, 83].

A wider range of conditions will allow to learn from the changing conditions,
improving the EMS adaptiveness to driving disruptions. However, the majority
of the existing literature aim to improve the operation costs of the P-HEBs and
FCHEBs, mostly focused on fuel or hydrogen efficiency, limiting the BT or the
PEMFC lifetime [30, 84, 85]. Despite the BT prices have been decreasing, they
still have a great impact on the TCO [30, 37, 86]. Due to this fact, health conscious
EMSs are gaining popularity in the EMS design.

BT pack replacements are required aiming at meeting the buses planned service
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lifetime. These replacements affect significantly to the operation costs during
the vehicle lifetime [36, 37], increasing the TCO. Concerning BTs, some studies
pointed out values up to 39 % of the BT price on the buses total price [35].

These replacements are previously planned for the TCO determination and
they have to be met [87]. Therefore, aiming at minimizing the operation costs as
well as meeting the BT and/or PEMFC aging constraints, BT lifetime has to be
managed, with the aim of optimizing and further improving the TCO.

For bus manufacturers, the developed initial EMS for fulfilling the efficiency
operation goals is a significant point. Due to this fact, the majority of the existing
literature aiming at improving the operation costs of P-HEBs and FCHEBs are
focused on fuel or hydrogen efficiency, limiting the BT and FC lifetime [30, 84, 85].
However, the conditions used for the initial EMS vary throughout the bus lifetime.
Therefore, an update of the initially designed EMS will adapt the EMS to new
situations.

For the correct updating of the EMS, the continuous operation monitoring is
needed. This need is fulfilled with the new vehicles digitalization trend, which
allows to have the possibility to analyze the current operation and take action to
correct it, if required [86].

The operation information with the needed BT and PEMFC advanced
knowledge will allow to manage the BT and PEMFC lifetime, going a step further
on the EMS. In this regard, new techniques for managing the BT aging are
needed, due to the fact that BT replacements are directly related to the TCO.
Consequently, the operation management conscious of the BT aging will allow to
further improve the TCO. In the following lines, the state-of-the-art review of the
available BT aging conscious EMS for P-HEBs and FCHEBs are presented.

1.5.2.1 BT Aging Conscious Energy Management Strategies for
P-HEBs

A suitable and efficient P-HEBs power split among the GS and the BT becomes
a complex problem due to the several variables to be considered such as road
conditions, remaining energy and economic issues in the short and long term.
Furthermore, if the BT aging management is included in the optimization
problem, it becomes even more complex. To solve this issue, advanced techniques
and knowledge of the BT and its end application are needed to determine an
efficient and techno-economic trade-off between minimizing fuel consumption and
managing BT usage [86, 88].
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The BT lifetime is affected by two degradation methods: calendar aging and
cycling of the BT [89]. On the one hand, the calendar aging is determined by fixed
years. When the BT arrives to the calendar aging years limit, it arrives to the BT
End Of Life (EOL). Therefore, it is a degradation that is not manageable during
the operation. On the other hand, cycling degradation is given by the different
stress factors. The identified main stress factors are temperature, middle SOC,
C-rate charging, C-rate discharging and depth of discharge (DOD) [88, 89]. These
factors are manageable and have to be maintained within the operation constraints
provided by the manufacturer or managed according to the BT utilization.

The P-HEBs BT temperature has to be maintained constant within the
recommended operation levels with the help of the heating and cooling system.
The correct temperature operation of the BT avoids unexpected fast degradation.
The temperature management rises the auxiliary consumption, but this extra
consumption can be optimized [86]. Regarding C-rate levels, as long as that
the defined operation charging and discharging maximum and minimum C-rates
are fulfilled, there is not extra degradation owing due to this factor. Finally,
DOD and middle SOC have to be managed, aiming at maximizing or minimizing
the BT lifetime. Dealing with hybrid propulsion systems, several EMSs have
been proposed in the literature with a multi-objective strategy to minimize fuel
consumption, the capacity loss and extend the BT lifetime [90, 91].

To maximize the lifetime of the hybrid system, many researchers have explored
health-conscious EMSs to take care of the potential degradation of the BT system.
For instance, Ravey et. al applied genetic algorithm to optimize the parameters
of a fuzzy logic controller according to a cost function [92]. Instead of designing
a set of rules for the fuzzy-logic, the optimization-based EMS solve the health
management problem by finding the optimal solution of the cost function. In
another research, Santucci et. al presented a model predictive control for a parallel
HEV with HESS [93]. This HESS consists of both UC and BT, where the UC is
used for absorbing the power peaks. To quantify the improvements obtained by
the ESS hybridization, BT degradation is evaluated. Jin et. al developed a fuzzy
logic controller where the BT aging is evaluated [94]. A real-time management
strategy based on model predictive control has been proposed by Gomozov et.
al, in which the BT power variation and SOC limits are considered in the cost
function to minimize its degradation [95]. Sockel et. al proposed a model predictive
control EMS based on future behaviors predictions enhancing the BT lifetime of
plug-in hybrid electric vehicles [96]. Recent approaches such as the one proposed
by Xie et. al developed a pontryagin’s minimum principle based EMS taking into
account the trade-off between BT degradation and fuel consumption minimization.
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[88]. Using the desired SOC reference constructed with the optimal Depth of
Discharge (DOD), the trade-off between BT degradation and fuel consumption is
optimized based on a model predictive control.

In the recent proposed approaches, BT aging management have gained
importance in the EMS design. On the contrary, as it is stated in [30], the health
conscious EMS design is still a challenging issue. Most of the researchers propose
an initial EMS designed for the bus initial conditions with a set of boundaries.
These boundaries focus on the instantaneous power/energy management of the
hybrid powertrains, without considering any updates of the EMS within the bus
lifetime. Throughout the bus lifetime, bus conditions vary and the BT SOH must
be evaluated periodically. In this context, BT aging conscious EMS has to be
updated and re-designed according to this new status [30].

In this regard, multi-objective strategies have been proposed, such as the
works proposed by Ma et. al and Herrera et. al [69, 97]. Based on genetic
algorithms, they tune the fuzzy-logic membership functions taking into account the
BT degradation. Yue et. al [30], proposed a health conscious EMS update based
on SOH decision-making. In this research, the update and EMS re-optimization
are done also based on GA. Other researchers have modeled the DP cost function
with the aiming at minimizing the BT degradation. However, DP computation is
heavy for online implementation [30] reason why DP is mostly used for evaluation,
comparison and as analysis tool [30, 98, 99].

The reviewed strategies do not consider the state of health (SOH) of the BT
as an input. The SOH is a valuable information, which enables the maximization
of the BT lifetime in a long-term scope [86]. As it has been aforementioned, the
BT State of Health (SOH) and degradation are closely related to the DOD. High
SOCs directly lead to a faster BT degradation. P-HEBs initial SOCs are the
highest reached SOCs during the operation. This is the reason for not defining the
initial SOC at 100% and setting at lower levels -around 80-90% SOCs-. Having
a fixed initial SOC, the final SOC definition determines the DOD. The DOD
and consequently the final SOC are directly linked to the trade-off between fuel
consumption and BT degradation. As a result, the correct design of an optimal
final SOC is critical for the lifetime BT management [88].
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1.5.2.2 BT Aging Conscious Energy Management Strategies for
FCHEBs

The reviewed advances in P-HEBs are indirectly paving the way for the oncoming
FCHEBs implementation, as the topologies and degrees of freedom are similar.
The developed EMS for P-HEBs are directly applicable on FCHEBs [17, 18]. The
direct application of the P-HEBs EMSs developments with the expected TCO
drop around 30-50% for FCHEBs by 2030 are helping to increase hydrogen bus
popularity [12].

Setting the starting point at the P-HEBs, BT aging conscious EMSs
state-of-the-art, the management techniques and BT knowledge apply directly
FCHEBs aging conscious EMSs. However, if the FC aging management is included
in the problem, it becomes even more complex. As a quick answer to this problem,
a fair balance between the BT and FC utilization has to be determined, based on
advanced techniques, knowledge of the PEMFC, BT and the bus application.

Focusing on the PEMFC stress factors, the load dynamics is the most critical
factor regarding its lifetime management. Under load changes in the PEMFC,
the chemical reactions inside the FC are accelerated. The chemical reactions,
acceleration leads into an oxygen consumption increase and a stack voltage
decrease. The element that controls the oxygen injection into the cathode is the
compressor, the auxiliary element of PEMFC that consumes the most of the energy
(up to 20%) and causes the voltage drop when more oxygen is needed [100]. The
needed oxygen is measured by the Oxygen Excess Ratio (OER). In the literature,
it is known that the highest FC output power is achieved between 2 and 2.5
OER [81, 100]. However, a bigger OER does not mean a better condition, as
the compressor parasitic consumption increases, reducing the FC output power.
Therefore, in the current literature, a steady OER value of 2 is considered as
optimal [101]. The OER drop could be transformed in an oxygen starvation, with
a consequent hot spot or burn on the surface of a membrane, causing permanent
PEMFC damage [100, 101].

To tackle this problem, the OER in the cathode has to be maintained greater
than 1, with an accurate control of the air-feed system. However, the OER control
during transient state, is delimited by the manifold and air compressor dynamics,
the delivered power increase limitation and a correct management of the demanded
power is a crucial issue [100–102] .

In the literature, several approaches have been proposed. Fletcher et. al
proposed an EMS based on the optimal operation obtained with stochastic DP
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optimization. Aiming at enhancing the FC lifetime, the cost function was modeled
taking into account the cell degradation [84]. Sundström and Stefanopoulou
presented a deterministic DP based EMS, taking into account the SOC, OER
of the FC and the hydrogen consumption in the cost function [102]. Yue et. al
published a thorough review of published health conscious energy management
strategies for FC hybrid electric vehicles, concluding that a gap exists between
implemented ageing mechanisms and BT and PEMFC lifetime aging conscious
EMS [30]. Wang et. al have carried out a wide of different works in the filed of
FC hybrid electric powertrains, with the aim to maximize FC lifetime [103–105].
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1.6 Fleet Management Techniques
In the recent years, automotive industry is equipping smart vehicles with a set of
sensors to monitor operation variables [23]. In addition, vehicle interconnection
and data compilation and transmission through the cloud have been developed.
These smart vehicle features and extra elements have allowed to go a step further
in the energy management hierarchy, adding an additional higher level comparing
with the aforementioned management levels architecture of vehicles shown in
Figure 1.12 [50, 51].

Fleet management is identified as the highest level of the management
hierarchy. Its main objective is to analyse, process and make decisions based
on the processed data. The data volume needed for the analysis is high, therefore,
this level has the longest evaluation time frame (weeks or even years). In contrast
to the vehicle level EMS [50, 51], the fleet management has a wider scope and
manages the whole fleet. As a result, it is the outermost level of evaluation. A
wider scope allows to compare the behavior of each vehicle in the fleet, learning
from those with the best energetic behavior. Thus, the aim is to improve the
whole fleet energy efficiency, reducing the operation and maintenance costs. The
current vehicle level EMS design approaches are commonly optimized once and
no comparisons are made with other vehicles. The fleet management level allows
to collect the data from all vehicles from a fleet and identify the vehicles with the
best energetic behavior.

In the literature, several fleet management system approaches have been
identified, with different purposes [14, 24]. However, no information has been
found about fleet energy management techniques in the literature. The main
identified purposes are focused on the following areas: traffic jams avoidance,
vehicle diagnostics, itinerary planning and charging regulation and scheduling [24].

The first use of telematics was focused on vehicle positioning. Thong
et. al developed a pioneering fleet management system for location accuracy
improvement and exploit this information to avoid traffic jams [106]. In addition
to that, in [107], Balaji et. al developed a smart traffic lights time optimization
approach to avoid traffic jams. Likewise, HomChaudhuri et. al proposed a
hierarchical control for management with two levels of sharing information. The
higher level is based on the traffic lights information and traffic information
(provided by the surrounding vehicles). This information is used to predict the
velocity and choose the target velocity with the best fuel efficiency. The lower
level based on this information controls the power split factor of the hybrid vehicle
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by applying the energy consumption minimization strategy [108].

In the automotive industry, vehicle diagnostics for predictive maintenance
has been the driving force in digitalization implementation. J. Grantner et.
al proposed an intelligent vehicle health diagnostics method based on fuzzy
logic, updating the fuzzy rules from cluster extraction of the fleet data [109].
In regards to the fleet BT data exploitation Haycock et. al proposed a BT
monitoring approach, aiming at evaluating the BT utilization and improving the
TCO regarding the leasing economic model [110]. Likewise, Barré et. al proposed
a methodology for clustering EVs according to each operation, with the aim of
improving the BT state of health (SOH) estimation [111]. Nuhic et. al developed
a battery SOH monitoring with degradation prognosis that learns from fleet data
[112].

Other topic of research, based on data exploitation is the green itinerary
planning. In the literature, several approaches have been proposed [113–116].
It is worth mentioning the approach of Mehar et. al proposing an extension of
the EcoDrive green itinerary planning service [115] for EVs providing several paths
taking into account the following information: (i) Road cartography: elevation, (ii)
Driving perturbations: traffic congestions, unexpected events and driver habits,
(iii) Vehicle features: weight, BT type and engine efficiency map, (iv) Weather
conditions: air friction, wind speed and temperature.

Recharging infrastructure optimization at fleet level has also been a topic of
research, particularly applied to urban mobility, due to the fact that the profiles
are predefined. The compilation and process of the information of the recharging
operation widens the opportunities of the recharging management. Qin et. al
exploited the compiled information with the aim of minimizing the charging station
queues [117]. In an attempt to go a step further on recharging management, Hill
et. al proposed a vehicle-to-grid (V2G) fleet model. This model shows that with
BT operation monitoring, the shallow cycles are avoided. Consequently, the BT
lifetime increases, making more profitable the V2G at fleet level. Lastly, Rogge
et. al [6] addressed the challenges of range limitation and required charging time,
developing a methodology for the charging infrastructure planning.

With regards to fleet data exploitation, in [118], Wittmann et. al proposed
a holistic framework. This approach covers from the fleet tracks data acquisition
to the evaluation. The data is acquired from a smart phone application and a
data logger. Consequently, this data is processed filtering the tracks and ordering
them according to the selected features such as distance, average speed and driving
behavior. Finally, the data is evaluated making use of different developed tools. It
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is noteworthy the developed data analysis tool used to simulate electric vehicle’s
energy consumption. However, this approach is not focused on a methodology for
fleet energy management.
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1.7 Conclusions and Main Gaps Found in the
Literature

In the present state-of-the-art, the background knowledge in the topic of electrified
buses have been reviewed. This last section has the intention to collect and
highlight the challenges of the field of urban road transport electrification and
the main gaps the literature, with the aim of exploiting new resources by means
of the digitalization. The identified highlights and gaps serve as basis for the
developments of this Ph.D thesis.

Firstly, the different available bus types according to the powertrain
architecture and hybridization level have been analyzed. This analysis allows
to explore the main components of the powertrain and acquire the basic
knowledge for identifying the degrees of freedom for each topology. Among the
available powertrains, P-HEBs and FCHEBs have been identified as the most
promising technologies with the highest number of degrees of freedom for their
control pursuing the efficiency improvements. The higher BT size allows to
increase the power sources utilization flexibility. Therefore, this Ph.D thesis
developments have been addressed towards P-HEBs and FCHEBs powertrains
efficiency improvements.

The appropriate ESS selection for the different hybridization levels and
powertrain architectures is crucial for the TCO improvement. From the available
ESS portfolio, for the specific P-HEBs and FCHEBs applications, lithium-ion BTs
and FCs have been identified. On the one hand, regarding the lithium-ion existing
chemistries LFP, NMC and LTO are the most used ones. From the aforementioned
three options, LFP has been dismissed, for being a BT optimized for power
purpose, but with worse technical characteristics than the LTO BT. Therefore, in
this Ph.D thesis NMC energy application BT and LTO power application BT have
been selected for the studied powertrains. On the other hand, the FC selection
among the available technologies has been a straight forward decision, since the
only viable technology for the FCHEB is the PEMFC. Based on the market
research for the FCHEB application, LTO BT technology has been selected.

The higher upfront costs beside conventional buses hinders the integration of
P-HEBs and FCHEBs. The main attractiveness of these type of buses is their
lower operational costs, that together with the high yearly driven distances help
to compensate the initial investment cost. The way to evaluate the offset cost
is based on the TCO calculation, which plays a key role in the electrified buses
integration viability study.
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Nowadays, digitalization appears as a new trend that allows to acquire
information, store this information in the cloud, analyze and compute this data
in the cloud with "unlimited" resources. Targeting to explore and exploit the
new digitalization opportunities, a state-of-the-art review has been carried out
analyzing the existing different management techniques. The operation monitoring
of the vehicle allows to analyze the efficiency behavior into depth. The combination
of the capability to have operation data and new learning based EMSs allows to
optimize the operation further. The learning based EMSs permit to consider and
combine consumption minimization short-term objective with the long-term BT
lifetime management.

Optimizing the TCO of the vehicle and the BT lifetime further and respective
BT replacements management are crucial. The management combination of
the short-term and long-term managements has been identified as a gap in the
literature. In addition, the proposed EMSs are designed based in the bus initial
conditions with a set of boundaries focused on the instantaneous power/energy
management. Due to the lack of a short and long-term management combination,
no updates are considered throughout the bus lifetime. The bus conditions vary
and BT SOH has to be evaluated periodically, needing tools to combine the
short-term and long-term management.

For covering this gap, learning based EMSs have been identified as the main
candidates to exploit cloud-computing resources. By means of cloud-computing,
DP global optimizations of the routes and the data motorization can be
performed. Afterwards, real-time replication of the global optimization and
onboard integration is achieved, designing FL EMSs based on neuro-fuzzy
technique. For covering the long-term target, not only the fuel or hydrogen
consumption has been taken into account, but also BT and/or PEMFC lifetime.
In this regard, the identified learning based EMS has utilized and extend aiming
at developing a learning-based BT aging conscious EMS. The manageable stress
factors of the BT and/or PEMFC have been determined.

Finally, this state-of-the-art review shows a clear gap for fleet energy
management techniques. A need of developing tools to manage fleets energetically
in regard to fleet energetic efficiency improvement and further optimize the TCO,
with the aim of exploiting the upcoming opportunities in this thriving area of
research. In this regard, an energetic fleet management methodology to optimize
and manage the TCO for fleets of vehicles should be developed.
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Fleet Level Hierarchical Energy

Management Strategy

Summary
In this chapter, the proposed fleet level hierarchical EMS is introduced.

A specific case study is also presented, in which the proposed approach has
been evaluated. This case study is composed of 10 routes, evaluating different
powertrains. The plug-in hybrid electric and fuel cell hybrid electric bus
powertrains are defined with the respective battery aging models. To energetically
and economically evaluate the presented case study, a fleet simulation tool has been
developed in MATLAB, which is detailed in this chapter. Finally, the utilized total
cost of ownership economic model is described.
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2.1 Structure of the Hierarchical Energy
Management Strategy

In this section, the proposed fleet level TCO optimization methodology is
introduced. An outlook of the developed hierarchical decision maker and different
management levels from the inside out is carried out. The proposed hierarchical
decision maker from the fleet to the bus scheme, shown in Fig. 2.1, is composed
of three levels. It pursues the energetic management of a fleet of vehicles from the
fleet commissioning until the fleet service lifetime, aiming at optimizing the TCO
of the whole fleet.

Figure 2.1: Proposed hierarchical decision maker from the fleet to the bus
scheme.

The inner and first level is integrated in each vehicle. The online operation
onboard of each vehicle is carried out. This level is composed of the EMS,
which manages in real-time the vehicle sources and loads to obtain the required
performance by the driver. The onboard integrated EMS is fuzzy-logic strategy.
It aims to manage the split-factor of the available power sources of the bus. Each
EMS implemented in each vehicle is designed according to the upper levels.

The online EMS design is based on the offline optimization and strategy design
at vehicle level. As the name of the level indicates, this second level is offline
and remotely performed in the cloud. Concerning the EMS design structure, on
the one hand, the optimization used for feeding the learning technique is a DP
global optimization method. Each vehicle operation is optimized with the aim of
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maximizing the efficiency and optimizing the TCO according to each route. On
the other hand, the learning technique part is based on a neuro-fuzzy learning
technique, which is used for automatically tuning and determining the rules of the
online fuzzy-logic strategy. In this way, the online EMS is designed with the aim
of replicating the optimal operation obtained from the DP optimization.

The optimization modeling allows to design an EMS based on the TCO and
BT aging analysis, since the operation obtained from the DP optimization is used
as a reference for the EMS design in terms of the available power sources split
factor usage. The decision for the optimization scenario definition is taken on the
offline data exploitation and decision making at fleet level, performed as well in the
cloud. This decision for the optimization modeling is made based on the outlook
of the whole fleet and affects to the inner levels. The compiled fleet operation data
is processed and analyzed. And based on the current status of the fleet in terms
of TCO and BTs SOH, decisions are taken for further improving the TCO.

The proposed hierarchical EMS has been evaluated in a specific case study
composed of 10 routes and for 3 different bus powertrains presented in Sec. 2.2.
With the aim of energetically evaluating fleets of vehicles with the proposed EMS,
a dedicated simulation platform has been developed. The bus models integrated
in the simulation platform are introduced in Sec. 2.3, with the respective BT cells
aging models in Sec. 2.4. This simulation is in depth described in Sec. 2.5. It
enables to make studies at vehicle level and at fleet level, consequently allowing to
evaluate the technical and economical range of improvement in both levels. Finally,
the TCO is presented in Sec. 2.6, a calculation for economically evaluating the
case study.

The briefly introduced online operation and offline optimization and strategy
design at vehicle level are further detailed and evaluated in Chapter 3.
Continuously in Chapter 4, the offline data exploitation and decision making at
fleet level is explained and evaluated in depth.
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2.2 Studied Fleet Scenario Overview
The analysis of this thesis has been in reliance of a fleet composed of 10 buses
running on the routes shown in Fig. 2.2. The urban routes have been generated
from a data-base of standardized driving cycles and adapted to a bus driving
behavior [119].

Each driving profile represents one round-trip of the length shown next to every
route reference. The daily operation of each bus is considered to be 16 hours.
This operation varies, with the aim of fulfilling the planned daily round-trips. In
Tab. 2.1 the routes round-trip distance, mean speed, aggressiveness and duration
characteristics are given.

Table 2.1: Routes characteristics.

Route Distance Mean speed Aggressiveness Duration
[km] [km/h] [m/s2] [s]

1 14.25 26.77 0.07 1917
2 20.44 25.57 0.07 2879
3 9.18 13.84 0.20 2387
4 13.63 20.58 0.14 2385
5 15.48 17.80 0.09 3129
6 18.58 27.00 0.05 2479
7 32.17 28.23 0.04 4103
8 29.63 28.53 0.05 3741
9 17.29 23.45 0.08 2655
10 12.16 17.77 0.16 2465

As a brief analysis of the routes, the following information is noteworthy. Route
3 is the shortest route with 9.18 km each round-trip with the lowest mean speed
and the highest aggressiveness. The high aggressiveness is a sign of route in the
city center, being a route composed of acceleration and deceleration peaks. The
shortest route in kilometers is not matching with the shortest in duration. Route 1
is accomplished in the shortest time. It has a mixture of acceleration, decelerations
and cruising speed.

The longest route with the highest time to be accomplished is route 7.
As analyzed before, the shortest route corresponds to the lowest mean speed.
However, route in this case route 8 has the highest mean speed but it is not the
longest. Route 7 takes more time to fulfill the route and consequently, covers
longer distance. It is noteworthy that both routes have low aggressiveness (low
acceleration and deceleration repetitions) and high cruising speeds, a characteristic
that increases the mean speed and driven distance.

In this thesis, three type of buses have been modeled: LTO BT based P-HEB,
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Figure 2.2: Fleet routes speed profiles.

NMC BT based P-HEB, and LTO BT and PEM fuel cell based FCHEB. The
component’s models are described in Section 2.3. Regarding the power sources,
the powertrain elements have been designed according to bus data [31, 86, 87].

The LTO chemistry BT pack has been chosen for bus model 1 with the aim of
evaluating a power purpose BT pack. This type of BT chemistry has longer lifetime
than NMC chemistry, as shown later in Fig. 2.13. The technical characteristics are
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shown in Tab. 2.2. With the aim of studying a BT pack for energy application, bus
model 2 has been equipped with a NMC BT. The characteristics of this P-HEB
are shown in Tab. 2.3.

Table 2.2: Bus model 1: LTO BT based P-HEB.

Elements Parameters Units
Electric Motor Power 196.5 kW
Auxiliary demand minimum/maximum 12/18 kW
Genset Power 160 kW

Battery Pack

Chemistry LTO -
Series cells 260 -
Cells branches 2 -
Battery pack mass 266 kg
Power charge/discharge 168/192 kW
Energy 23.92 kWh

Table 2.3: Bus model 2: NMC BT based P-HEB.

Elements Parameters Units
Electric Motor Power 196.5 kW
Auxiliary demand minimum/maximum 12/18 kW
Genset Power 160 kW

Battery Pack

Chemistry NMC -
Series cells 162 -
Cells branches 1 -
Battery pack mass 166 kg
Power charge/discharge 96/192 kW
Energy 23.98 kWh

In addition to the two P-HEBs, a FCHEB has also been considered. This
powertrain has been used with the aim of proving the replication of the developed
EMSs for the P-HEB in the FCHEB. In Tab. 2.4, bus model 3 characteristics are
shown.

Table 2.4: Bus model 3: LTO and PEM fuel cell based FCHEB.

Elements Parameters Units
Electric Motor Power 196.5 kW
Auxiliary demand minimum/maximum 8/16 kW

Fuel Cell

Type PEM -
Fuel Cell Power 2x60 kW
Fuel Cell auxiliary consumption 500 W
Oxygen excess ratio upper limit (nlim

O2
) 1.7 -

Stack Cells (ncell) 381 -

Battery Pack

Chemistry LTO -
Series cells 305 -
Cells branches 2 -
Battery pack mass 312 kg
Power charge/discharge 196/224 kW
Energy 28.06 kWh
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2.3 Bus Models
The electrical model of the powertrain elements has been developed for the
quasi-static simulation method. This simulation method is a non causal,
discrete-state model where the signals flow from the drive cycle through the
powertrain elements one way [63]. Therefore, the used formulation has been
based on backward or "effect-cause" approach. The power is calculated at each
discrete step following a predefined speed profile going upstream through the
vehicle components [27]. To standardize the power flow direction, the adopted
sign convention has been positive power when there is an electrical power demand
or mechanical traction and negative when there is an electrical power absorption
or mechanical braking.

The developed P-HEB and FCHEB models with each respective EMS are
shown in Figs. 2.3 [87] and 2.4 [31] respectively. Each element of each powertrain
is described in the following lines.

Figure 2.3: P-HEB powertrain model scheme.

Figure 2.4: FCHEB powertrain model scheme.

2.3.1 Bus Dynamics

Bus dynamics are calculated in the same way for both powertrains, P-HEB and
FCHEB. In the quasi-static simulation, the inputs to the vehicle model are the
speed vcyc(k) [m

s
], acceleration acyc(k) [m

s2 ] and the slope angle α(k) [◦] of the
predefined route [27]. From these profiles, the backward simulation is applied,
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starting from the calculation of the force acting on the wheels (FT [N ]), at each
discrete state k defined as follows [27, 120]:

FT (k) = Fa(k) + Fg(k) + Fi(k) + Fr(k) (2.1)

where Fa(k) [N ] is the aerodynamic drag force, Fg(k) [N ] the gravitational force,
Fi(k) [N ] the inertial force and Fr(k) [N] the rolling resistance force (depicted in
Fig. 2.5), at each discrete state k. They are defined as follows:

α

FT

Fg

mtot . g

Fr

Fa
Vcyc

Figure 2.5: Forces acting on the bus during driving.

Fa(k) = 0.5 · ρair · Af · cx · v2
cyc(k) (2.2)

Fg(k) = mtot · g · sin(α(k)) (2.3)

Fi(k) = mtot · acyc(k) (2.4)

Fr(k) = crf ·mtot · g · cos(α(k)) (2.5)

where the parameters are defined in Tab. 2.5.

The total mass of the vehicle can be defined as:

mtot = mveh +mBT +mpass · npass (2.6)

where mveh [kg] is the empty bus weight, mBT [kg] is the BT weight, mpass [kg] is
the average weight per person (assumed to be 75 kg) and npass is the number of
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Table 2.5: Bus model characteristics.

Parameter Symbol Value Unit

Air density ρair 1.1 kg
m3

Curb weigth mveh 12500 kg
Drag coefficient cx 0.8 −
Frontal area Af 8.67 m2

Gravity constant g 9.81 m
s2

Rolling coefficient crf 0.008 −
Wheel radius rwh 0.487 m

passengers (considered to be as reference case 35 passengers of a maximum of 70
passengers) [120].

From the bus dynamic model calculation, the outputs are the wheel rotational
speed wwh(k)

[
rad
s

]
, angular acceleration dwwh(k)

[
rad
s2

]
and the required torque in

the wheel Twh(k) [Nm] calculated as follows:

wwh(k) = vcyc(k)
rwh

(2.7)

dwwh(k) = acyc(k)
rwh

(2.8)

Twh(k) = FT (k) · rwh (2.9)

2.3.2 Transmission Model

The transmission consists on the elements placed between the motor and the drive
wheel axle. For the case of P-HEB and FCHEB configurations, the tractive force
is the EM. Since the EM is more flexible than the ICE in a wider rotational speed
ranges, there is no need of a gear-box. It is connected to the transmission through
a final drive ratio. The final drive ratio transforms a certain rotational speed into
a different speed, with the aim of making the most of the EM efficiency [27].

The inputs are the outputs of the dynamic model, i.e., wwh(k), awh(k) and
Twh(k). As a result, the rotational speed of the drive-shaft wdrsft(k)

[
rad
s

]
,

acceleration of the drive-shaft dwdrsft(k)
[
rad
s2

]
and the required torque in the

drive-shaft Tdrsft(k) [Nm] are recalculated as shown in the following lines:
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wdrsft(k) = wwh(k) · γ(k) (2.10)

dwdrsft(k) = dwwh(k) · γ(k) (2.11)

Tdrsft(k) = Twh(k)[+]
γ(k) · ηTr

+ Twh(k)[−] · ηTr
γ(k) (2.12)

where γ [−] is the final drive ratio and ηTr [%] the efficiency of transmission model
[27].

As it has been aforementioned, the traction is only provided by the EM TEM(k)
[Nm]. The EM power supply is divided between the BT and GS in the case of the
P-HEB and between the BT and FC in the case of the FCHEB, needing to feed
the total power demand Pdem(k) [W ].

TEM(k) = Tdrsft(k) + dwdrsft(k) · JEM (2.13)

Pdem(k) = wdrsft(k) · TEM(k) (2.14)

where JEM
[
m
s3

]
is the electric motor jerk.

2.3.3 Split Factor

The information obtained from the transmission model sets the required tractive
demand in the backward model. This demand has to be satisfied by each
vehicle, combining as energetically and economically efficient as possible the power
sources. The combination of the power sources use is determined by the split
factor according to the integrated EMS in the bus. For the P-HEB and FCHEB
configurations, the power Pdem(k) has to be split in a different way.

As it has been aforementioned, the P-HEB and FCHEB configurations are only
driven by the EM. In this case, the split factor is defined by the power demand
Pdem(k) [W ], as the series configuration is electrically coupled by the electric DC
bus. This factor is divided in the case of the P-HEB between the BT power
PBT (k) [W ] and the GS power PGS(k) [W ], as represented in Eq. 2.15. The
GS is composed by an ICE (speed controlled) and an electric generator (torque
controlled).
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Pdem(k) =
{
PGS(k) = Pdem(k) · (1− U(k))
PBT (k) = Pdem(k) · U(k) (2.15)

In the case of the FCHEB, the split factor is divided between the BT power
PBT (k) [W ], and the FC power PFC(k) [W ], as represented in Eq. 2.16.

Pdem(k) =
{
PFC(k) = Pdem(k) · (1− U(k)) [W ]
PBT (k) = Pdem(k) · U(k) [W ] (2.16)

2.3.4 Electric Motor

As it has been aforementioned, both power train configurations use the EM for
traction purposes. The efficiency of the EM ηEM(k) [%] is calculated by means
of the wdrsft(k) and TEM(k) parameters, based on the efficiency map shown in
Fig. 2.6 [121]. The EM model output is the required electric power PEM(k) [kW ]
defined as follows [120]:

Figure 2.6: EM efficiency map.

When wdrsft(k) > 0 and TEM(k) > 0, (traction mode):

PEM(k) = wdrsft(k) · TEM(k)
103 · ηEM(k)(wdrsft(k), TEM(k)) (2.17)

When wdrsft(k) > 0 and TEM(k) < BT0, (regenerative mode):

PEM(k) = wdrsft(k) · TEM(k) · ηEM(k)(wdrsft(k), TEM(k))
103 (2.18)
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2.3.5 Genset

The GS is a power element of the P-HEB and composed of an ICE and an electric
generator. Both elements are mechanically connected by a clutch. The GS has
been modeled based on efficiency and consumption maps. The dynamics related
to the GS are not addressed in this thesis.

The GS model in this thesis has been obtained from a commercial diesel motor
of VOLVO used in hybrid buses applications and commercial EG for transport
applications, and their efficiency maps are shown in Figs. 2.7 and 2.8B respectively
[121]. From the interpolation of fuel consumption map shown in Fig. 2.8A, the
instantaneous fuel mass flow mfICE(k)

[
kg
s

]
consumed at each discrete state k is

calculated as follows [27, 120],

mfICE(k) = f(wdrsft(k), TICE(k)) (2.19)

Figure 2.7: EG efficiency map.

The GS operation has been previously optimized in a prior research to identify
the most efficient operation points for the whole power operation range of the GS
as shown in Fig. 2.9 [120, 121].

The GS model input is the power target PGS(k) [kW ] determined by the
split factor of Eq. 2.17. Fig. 2.9 curve has been included in the model to
obtain (depending on the power demanded to the GS input and including the
inverter efficiency) the instantaneous targets for the ICE rotational speed and
corresponding mechanical torque [120, 121].
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Figure 2.8: ICE fuel consumption and efficiency maps.

Figure 2.9: GS optimal operation curve and efficiency map.

2.3.6 Fuel Cell

The FC system consists of a FC stack, an air compressor and other auxiliary
balancesof plant devices, such as power conditioning units, humidifier and cooling
module [101]. The FC model has been obtained from [102]. The air compressor
is modeled as a single element, since it is the auxiliary element that consumes the
most. In this model it is fed directly from the FC. Therefore, in the FC output
power curve shown in Fig. 2.10A [31], the air compressor power consumption has
been considered. Other auxiliaries have been taken into account with a constant
power consumption reaching 500 W.

The backward simulation technique, the input of the FC model is the power
to be provided by the FC PFCout(k) [W ], defined by the EMS with the split factor
determination. Derived from the FC output power, (by means of FC output power
curve shown in Fig. 2.10A) FC output current is obtained IFCout(k) [A]. Derived
from the FC output current, by means of the hydrogen consumption and FC
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Figure 2.10: Fuel-cell model. A: FC output current and output power. B: FC
hydrogen consumption. C: FC efficiency. D: FC oxygen excess ratio.

system efficiency curves (shown in Figs. 2.10B and C, respectively) the hydrogen
consumption WH2 [g/s] and FC system efficiency are obtained.

The FC stack current Istack(k) [A] is calculated as follows:

Istack(k) = 2 · F ·WH2(k)
ncellFC ·MH2

(2.20)

where F is the Faraday’s constant, ncellFC the number of cells in the stack and
MH2

[
g
mol

]
is the molar mass of hydrogen.

In the literature, it is known that the highest FC output power is achieved
between 2 and 2.5 OER [100]. However, a bigger OER does not mean a better
condition, as the compressor parasitic consumption increases, reducing the FC
output power. Therefore, in the current literature, a steady OER value of 2 is
considered as optimal [101].

Under load changes of the FC, the chemical reactions inside the FC are
accelerated. The chemical reactions acceleration lead into an oxygen consumption
increase and stack voltage decrease. This issue could derive in an oxygen
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starvation, with a consequent hot spot or burn in the surface of a membrane,
causing permanent FC damage [100, 101].

To tackle this problem the OER in the cathode has to be maintained greater
than 1, with an accurate control of the air-feed system. However, the OER control
during transient state is delimited by the manifold and air compressor dynamics.
These dynamics have been considered based on the FC cathode OER map, shown
in Fig. 2.10D [100–102].

2.3.7 Auxiliary Loads

The auxiliary loads containing the air conditioning, air compressor, cooling pump,
power steering and lights are represented as a minimum and maximum mean
consumption: 12 kW and 18 kW for the P-HEB and 8 kW and 16 kW for the
FCHEB. The FCHEB auxiliaries are lower, due to the heat recovery system
implementation. The auxiliary loads can be powered by the BT and the GS for
the P-HEB and by the BT and FC for the FCHEB.

2.3.8 Battery

Both buses, powertrains use the same BT model. The BT cell is represented by an
ideal open circuit voltage source (VOCBT [V ]) in series with the internal resistance
(RBTcell [Ω]). It has been assumed that a string contains ncellBT BT cells in series
and the BT pack groups mcellBT strings in parallel [120].

Figure 2.11: Battery pack electric model.

For the state of charge (SOC) estimation of the BT (SOCBT (k)), the Coulomb
counting method has been used [122]. In this modeling, the BT current (IBT (k)[A])
is calculated at each sampling (k), as follows:
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IBT (k) = UBT (SOCBT (k))
2 ·RBT

−

√
UBT (SOCBT (k))2 − 4 ·RBT · PBT (k)

2 ·RBT

(2.21)

where UBT (k) [V ] is the BT pack equivalent open-circuit voltage and RBT (k) [Ω]
is BT pack the equivalent internal resistance of the BT, at pack level. The BT
model input is the BT pack power target PBT (k) [W] generated by the EMS split
factor.

The SOC is updated at each sample as follows:

SOCBT (k + 1) = SOCBT (k)− IBT (k + 1)
CBT · 3600 · 100 (2.22)

where CBT [Ah] is the BT pack nominal capacity.

The parameters for the cells modeling are shown in Tab. 2.6. NMC and LTO
type chemistries have been chosen due to the application characteristics. NMC
chemistry is mostly used for energy applications, since the specific energy is high,
149 Wh/kg. On the contrary, LTO chemistry is used for power applications with
lower specific energy, in this case 90 Wh/kg.

Table 2.6: Electrical parameters of BT cells.

Nickel Manganese Cobalt Oxide (NMC) [86, 123, 124] Lithium titanate oxide (LTO) [121, 125]

Nom. voltage 3.7 V Nom. voltage 2.3 V

Nom. capacity 40 Ah Nom. capacity 20 Ah

Int. resistance 0.8 mΩ Int. resitance 0.53 mΩ

Max C-rate disch/ch 8/4 C-rate Max C-rate disch/ch 8/7 C-rate

Specific energy 149 Wh/kg Specific energy 90 Wh/kg

Calendar lifetime 8 years Calendar lifetime 15 years

2.4 BT Lifetime Estimation
In this section the BT lifetime (γBT [years]) and the method of the calculation
of the number of replacements are described. For this calculation, BT calendar
degradation and BT cycling degradation methods have been taken into account.

γBT = min
[
γcal, γcyc

]
(2.23)
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where γcal [years] is the number of years by means of the calendar degradation
and γcyc [years] the degradation by means of the BT operation. The calendar
degradation is a fixed value for each chemistry, and these values are given in Tab.
2.6. However, the BT cycling degradation has to be evaluated based on the process
described in the following lines.

BT cycling degradation is calculated based on a Rainflow cycle counting
algorithm [126] and Wöhler curve-based method [120]. The Wöhler curve-based
method is a fatigue analysis commonly used for BT aging estimations [127–129].

The Wöhler method lies on the number of NEievt events -in this case DOD-
that can occur until the BT reaches its EOL

The lifetime lost (LLievt) calculation is done by the relation of the accounted
(NEievt) and the maximum number of events (NEmax

ievt ) that the BT can withstand,
expressed as follows:

LLievt = NEievt
NEmax

ievt

(2.24)

The NEievt are accounted by means of the Rainflow algorithm (Fig. 2.12 [120]),
with steps of 1% of DOD.

Figure 2.12: Rainflow charging/discharging cycle counting algorithm.

The NEmax
ievt are extracted from Wöhler curves of NMC and LTO chemistries

shown in Fig. 2.13 and extracted from [130]. For the Wöhler curve of the NMC
chemistry, the number of Full Equivalent Cycles (FEC) from 0 to 30 has been
limited to 10000 based on our knowledge. In this way, the micro-cycles will be
limited.
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Figure 2.13: LTO and NMC Wöhler curves.

For determining the total lifetime loss (LL) in the whole range of DODs (from
0 to 100%), the sum of all the events in the cycling evaluated period has to be
calculated as follows [120]:

LL =
∑
ievt

LLievt (2.25)

Finally, considering the evaluated SOC profile’s time period with the inversion
of LL, the total cycling lifetime (γcyc) can be calculated, typically defined in years:

γcyc = 1∑100
ievt=1

(
NEievt

NEmax
ievt

) (2.26)

2.5 Fleet simulation platform
The introduced P-HEB and FCHEB models have been implemented into a vehicle
and fleet simulation platform developed in the framework of this Ph.D thesis. The
graphic interface of this platform is shown in Fig. 2.14 which is the main window.

This simulation platform serves as a tool that allows evaluating a fleet of
vehicles from the energetic and economic point of view. Therefore, this platform
gives the flexibility to evaluate different routes and P-HEB, FCHEB and BEB
vehicle types.
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In the main window of the fleet simulation platform, as depicted in Fig. 2.14,
the route information to evaluate is shown. In here, the available information of
the routes to analyze are the distance, maximum speed, aggressiveness, energy
demand, minimum and maximum SOC, fuel or hydrogen consumption, BT
consumption and BT aging.

Figure 2.14: Developed fleet simulation platform.

From the available routes, the fleet simulation platform allows to create
mixed fleets and analyze the vehicle operation with different EMSs, auxiliary
consumption levels, charger powers or mean number of passengers. Once
the fleet operation is obtained, it gives the ability to analyze the obtained
techno-economically.

2.6 Total Cost of Ownership
Both the P-HEB and FCHEB have higher investment costs than conventional
buses. However, as it has been aforementioned, the high yearly driven distances
of buses and the lower operational costs help to compensate the BT, FC and
manufacturing extra costs [6, 9, 10, 19]. The solution feasibility study has to be
determined based on the calculation of the TCO, as it is the economic performance
indicator, which includes the cost of investment, insurance, infrastructure,
maintenance, driver, operation, carbon-taxes and EOL [12, 121, 131].
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From the above-mentioned factors forming the TCO, two different groups have
been differentiated from the energetic manageability point of view: fixed and
manageable costs. Figure 2.15 shows both groups of factors. Once the bus is
under operational conditions, on the one hand, cost of investment, insurance,
infrastructure, maintenance and driver costs have been taken as constant, since
they cannot be managed from an energetic point of view. On the other hand,
operation costs can be managed with direct impact on the carbon taxes. As
shown in Figure 2.15, the previously analyzed degrees of freedom regarding the
P-HEB [86] and FCHEB [31] controllability are the fuel or hydrogen consumption,
the power and energy charging costs, the energy storage system utilization and
the consequent number of replacements.

Figure 2.15: Total cost of ownership fixed and manageable costs overview.

The variables that differentiate the P-HEB and FCHEB in terms of TCO are
the fuel and hydrogen consumption respectively. The TCO calculation for the
P-HEB and FCHEB is described in the following lines.

The TCO calculation for P-HEB, TCOP−HEB
[

e
lifetime

]
, has been carried out

based on the aforementioned manageable costs obtaining the following equation
[9, 19],

TCOP−HEB =
T∑
t=1

(fICE · Cfuel/t ·Devfuel + Echa · CkWh/t) ·Opyear
(1 + dr)T +

+ CkW/t · Pcha + CBTkWh · EBT ·DRBT/t

(1 + dr)T

(2.27)

where T is the scenario duration (years), t the current year, fICE
[

l
day

]
the

fuel consumption, Cfuel/t
[
e
l

]
the annual fuel price, Echa[kWh/day] the energy
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absorbed from the grid, CkWh/t

[
e

kWh

]
the referential annual energy cost of the

grid, Opyear
[
day
year

]
the yearly operation days, CkW/t

[
e
kW
/year

]
the annual cost of

the power, Pcha [kW ] the power of the charger, CBTkWh

[
e

kWh

]
the BT initial price,

EBT [kWh] the BT pack energy, DRBT/t

[
%
year

]
depreciation rate of the BT per year

and dr[%] the discount rate.

The fuel consumption, fICE [l/day], is obtained with:

fICE =
∑p
k=1mfICE(k) · kcs

ρfuel
· nround−trips day

[
l

day

]
(2.28)

where p is the driving cycle length in seconds, kcs [−] the global factor to cold
starts, ρfuel [kg/l] the volumetric density of diesel and nround−tripsday [−] the
number of completed round trips in a day.

The energy absorbed from the grid Echa[kWh/day] is calculated from the
recharged power and the power of the charger Pcha [kW ] is calculated based utilized
power in the charger. Finally, the BT replacements number is calculated following
the methodology presented in Sec. 2.4.

The TCO calculation for the FCHEB, TCOFCHEB

[
e

lifetime

]
, is calculated in

the same way for the P-HEB, replacing the fuel consumption by the hydrogen
consumption as follows:

TCOFCHEB =
T∑
t=1

(fH2 · CH2/t ·DevH2 + Echa · CkWh/t) ·Opyear + CkW/t · Pcha
(1 + dr)T +

+ CBT · EBT ·DRBT/t

(1 + dr)T

[
e

lifetime

]
(2.29)

The hydrogen consumption fH2 [kg/day] is obtained from the following
equation:

fH2 =
p∑

k=1
WH2(k) · nround−trips

[
kg

day

]
(2.30)

Finally, in Table 2.7 the applied techno-economic parameters for the TCO
calculations are summarized [7, 10, 13, 121, 132–138].
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Table 2.7: Total cost of ownership parameters.

Acronym Value Unit Reference

Global factor to cold starts kcs 1.15 − [120]
Volumetric density of diesel ρfuel 0.832 kg/l [120]
Fuel cost Cfuel 0.95 e/l [135]
Diesel fuel price development Devfuel 2.3 %/year [135]
Hydrogen cost (1% market penetration) CH2 11.12 e/kg [138]
Hydrogen cost (10% market penetration) CH2 8.16 e/kg [138]
Hydrogen cost (30% market penetration) CH2 7.51 e/kg [138]
Hydrogen cost (75% market penetration) CH2 6 e/kg [13, 138]
Hydrogen cost (ideal scenario) CH2 5 e/kg [13]
Hydrogen price development Devfuel Fixed - [138]
Energy electricity cost CkW h 0.139 e/kWh [135]
Power electricity cost CkW 25.9 e/kW/year [10]
Electricity price development DevElect 3.7 %/year [135]
Yearly operation days Opyear 330 e/kW/year [134]1

Bus service life PF leetEOL 12 year [10]
NMC BT low cost scenario CBT kW h 550 e/kWh [137]
NMC BT medium cost scenario CBT kW h 800 e/kWh [121, 133]
NMC BT high cost scenario CBT kW h 1000 e/kWh [136]
LTO BT low cost scenario CBT kW h 700 e/kWh [137]
LTO BT medium cost scenario CBT kW h 1000 e/kWh [121, 133]
LTO BT high cost scenario CBT kW h 1500 e/kWh [136]
BT depreciation rate DRBT/t -20 % in 12 years [132, 137] 1

Discount rate dr 2.2 % [135]

1 Own estimation
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3
Vehicle Level Artificial

Intelligence Learning Based
Energy Management Strategy

Summary
This chapter presents the proposed vehicle level energy management strategy

design and real-time implementation. The optimization and artificial intelligence
based learning techniques background and method are explained. For evaluating the
vehicle level energy management strategy, two case studies have been analyzed. On
the one hand, the plug-in hybrid electric bus energy management strategy has been
evaluated in simulation and in a hardware-in-the-loop platform for a specific route.
On the other hand, the developed energy management strategy has been replicated
for a fuel cell hybrid electric bus and analyzed with a different route.
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3.1 Structure of the Vehicle Level Energy
Management Strategy

The proposed vehicle level EMS is an intelligent and adaptive battery aging
conscious EMS, aiming at making compatible the fuel and hydrogen consumption
with the management of the BT lifetime. This approach is split into two main
blocks, the offline learning based EMS design and the online operation level as
shown in Fig. 3.1.

It is composed of two levels, as it has been aforementioned in Sec. 2.1. The
offline learning based EMS design shown at the left hand of Fig. 3.1 is composed
of a DP optimization and a learning based neuro-fuzzy technique. The aim of the
EMS design is to first optimize the operation of a bus driving on a specific route
and generate a data-base with the different auxiliary consumptions. Hence, the
EMS is designed by means of a neuro-fuzzy technique trained and tested with the
generated optimized data-sets.

The core of the online operation level is a fuzzy-logic based EMS, as shown
in the right hand of Fig. 3.1 [87]. The EMS is composed of different fuzzy-logic
structures, divided by the length-ratio. Each structure is used according to the
placement of the bus in the route. The EMS defines the optimized GS power for
the P-HEB or FC power for the FCHEB defining the corresponding power split
factor.

In Sec. 3.2 the offline optimization and strategy design at vehicle level is

Figure 3.1: Vehicle level energy management strategy structure.
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described. This section is split into two subsections. First, the DP global
optimization and cost functions are defined. It is worth mentioning here, that a
specific cost function has been develop for the P-HEB and another for the FCHEB.
Following the optimization technique definition, the neuro-fuzzy based learning
method is explained. The same learning technique inputs have been used for all
the bus models. However, the output for the P-HEB is the GS power and for the
FCHEB the FC power. In Sec. 3.3 the online operation is presented in detail.

Once the proposed strategy has been described, the chapter is completed by
evaluation dedicated sections. The vehicle level EMS is evaluated for the P-HEB
topology in Sec. 3.4 and for the FCHEB topology in Sec. 3.5. The P-HEB
EMS has also been tested into a HIL platform, with the aim of testing the
real-implementation of the proposed approach.
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3.2 Offline Optimization & Strategy Design at
Vehicle Level

At this stage, the EMS is designed offline, based on a DP optimization and a
neuro-fuzzy technique. The objective of the learning based EMS design is to
develop a replication of the DP optimal operation of the bus operating in a specific
route, by means of the split factor of the power sources.

3.2.1 Dynamic Programming Optimization

DP global optimization has been used to determine buses optimal operations
and performances, which implies less emissions and efficiency optimization, using
Bellman’s DP algorithm [139]. This approach has been commonly used as a
baseline for benchmarking the proposed new EMSs for HEVs and for off-line
optimization [24, 64].

Two cost functions and optimization constraint scenarios have been defined,
one for P-HEBs and the other one for FCHEBs.

P-HEB cost function and constraints

The optimization for the P-HEB problem is based on the fuel consumption
minimization and BT utilization management. This management is carried out
based on the following cost function (JP−HEB) :

JP−HEB = minuk∈Uk

N−1∑
k=0
4mfICE(U(k)) · (4xref · wx) · Ts (3.1)

where 4mFICE(U(k)) is the fuel mass consumption (determined by the torque
power split factor U ), 4xref the SOC current difference from a reference SOC and
wx the weight applied to the SOC difference factor. All the calculations are carried
out at each time step (Ts=1 s), within the urban route length (N ). The dynamic
system has been modeled with a single state variable, BT SOC, achieving the best
trade-off between accuracy and computational efficiency [140]. The implemented
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constraints are explained in the following lines:



x(0) = x0

x(end) = xfinal
x(kf )ε[xf,min, xf,max]
u(kf )ε[uf,min, uf,max]
x(k)εχ(k) ⊂ <n
u(k)εχ(k) ⊂ <m

(3.2)

where x(0) sets the initial SOC, x(end) sets the final SOC, x(kf ) and u(kf ) set the
SOC and split factor boundary of the optimization and x(k) and u(k) constraint
the SOC and split factor values to real values.

The split factor at the initial point, is set from U = [−1, 1]. For the case of
series configuration considered in this study, the power demand (Pdem [W]) is split,
as shown in Eq. 3.3. This factor determines the power split between the BT power
(PBT [W]) and the GS power (Pgenset [W]).

Pdem(i) =
{
PGenset(i) = Pdem(i) · (1− U(i))
PBT (i) = Pdem(i) · U(i) (3.3)

Based on this equation, U = 1 defines full electric mode; U < 1 & U > 0
defines hybrid mode; U = 0 defines full ICE mode and U = −1 defines full ICE
mode recharging the BT.

In the first stage, the operation of the bus in a specific driving cycle is optimized
in terms of efficiency and cost, based on DP [139]. Optimizations are carried
out using different auxiliary consumption demands, in the range starting from
the minimum to the maximum of the mean auxiliary power demands. These
optimizations give the information of the optimal split factor between the GS and
the BT to fulfill the power demand for each auxiliary consumption.

In addition, the following powertrain constraints are defined in the bus model
optimization [87]:


IBTmin

≤ IBT (k) ≤ IBTmax

TGSmin
≤ TGS(k) ≤ TGSmax , ωGSmin

≤ ωGS(k) ≤ ωGSmax

TEMmin
≤ TEM(k) ≤ TEMmax , ωEMmin

≤ ωEM(k) ≤ ωEMmax

(3.4)
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where IBT (k), TGS(k), ωGS(k), TEM(k) and ωEM(k) represent respectively the BT
current, GS torque, GS rotational speed, EM torque and EM rotational speed with
each respective limits at each discrete state k.

FCHEB cost function and constraints

The cost function for the FCHEB has been developed with the aim of
minimizing the hydrogen consumption and the OER variation, and hence to
maximize the FC lifetime. Indeed, the start-stop cycles, idling time, load variation
and high and low current FC demand are managed based on this cost function.

JFCHEB = minuk∈Uk

N−1∑
k=0

(WH2(U(k)·αH2)+βH2·4λO2(k))·Ts 4λO2 =
{
λO2 , λO2 < λlimO2

0, λO2 ≥ λlimO2

(3.5)

where WH2(U(k)) is the hydrogen mass consumption (determined by the power
split factor U ), λO2(k) the OER of the fuel cell, and αH2 and βH2 are the respective
weights. All the calculations are carried out at each time step k (Ts=1 s), within
the urban route length (N ). The split factor at the initial point is set from U =
[−1, 1]. For the case of parallel configuration, this factor determines the power
split between the BT and FC. The implemented constraints are the same defined
in Eq. 3.2

The split factor is limited in the range of U = [−1, 1]. In the case of the
FCHEB configuration, the power demand (Pdem [W]) is split, as shown in Eq. 3.6,
between the BT power (PBT [W]) and the FC power (PFC [W]).

Pdem(i) =
{
PFC(i) = Pdem(i) · (1− U(i))
PBT (i) = Pdem(i) · U(i) (3.6)

Based on this equation, U = 1 defines full electric mode (only BT); U < 1
& U > 0 defines hybrid mode; U = 0 defines full FC mode and U = −1 defines
full FC mode recharging the BT. In addition, the following powertrain operation
constraints have been defined in the bus model optimization:


IBTmin

≤ IBT (k) ≤ IBTmax

PFCmin
≤ PFC(k) ≤ PFCmax

TEMmin
≤ TEM(k) ≤ TEMmax , ωEMmin

≤ ωEM(k) ≤ ωEMmax

(3.7)

72



3.2 Offline Optimization & Strategy Design at Vehicle Level

where SOC(k), IBT (k), PFC(k), TEM(k) and ωEM(k) represent the battery SOC,
battery current, FC power, electric motor torque and electric motor rotational
speed with each respective limits at each discrete state k.

Final SOC definition

For the DP optimizations, the proposed approach is focused on P-HEBs and
FCHEBs. The initial SOC in the literature is set as 85 % [120]. The final
SOC has been established based on the level of demand of the route, with the
goal of recharging the BT to reach the initial SOC within the recharging time.
The recharging time tcha[s] has been determined according to the route distance
Lroute[km], as follows,

tcha = Lroute · αcha (3.8)

where αcha is a constant empirically obtained for each bus technology that aims
to achieve a BT depletion among all the route. For the case of the LTO BT, αcha
has been determined as 9 and for the NMC BT it has been determined as 22.

Once the recharging time is set, the energy to be charged, Echa[kWh], is
calculated as follows:

Echarged = Pcha · 1000 · tcha

3600 − Pmaxaux · 1000 tcha

3600 (3.9)

where Pmaxaux [kW ] is the maximum auxiliary consumption with the aim of
calculating the energy to be charged in the worst scenario.

The usable energy Eusable [kWh] in the BT is calculated based on the BT
energy EBT [kWh], current BT SOH, SOHBT [%], BT utilization constant, ζBT ,
and initial SOC, x0 [%], as follows:

Eusable =
(
EBT ·

SOHBT

100 · ζBT
)
· x0

100 (3.10)

Finally, the maximum discharged energy in the BT is calculated with the
difference of Eqs. 3.10 and 3.9, the final SOC xfinal [%] is calculated as follows:

xfinal = Eusable − Echarged
EBT · SOHBT

100
· 100 (3.11)
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Having the constraint and optimal operation defined, a data-base is built,
with the different auxiliary consumptions, within the minimum and maximum
auxiliary consumptions, with steps of 1 kW. The decision of optimizing the
operation for different auxiliary consumption was based on a previous study
[86], since the auxiliary power consumption was identified as a critical factor for
buses management. In this way, for each route a data-base with global optimal
operations is built.

3.2.2 Neuro-fuzzy Learning Technique

The training procedure has been carried out based on a neuro-fuzzy technique,
more specifically on the ANFIS learning technique from MATLAB. From this
point on, the learning technique is denominated ANFIS. The training process has
been performed following the intelligent decision maker process shown in Fig. 3.2.

Figure 3.2: Intelligent Decision Maker.

In the data preparation stage, the previously built data-base in the
optimization stage explained in Sec. 3.2 is preprocessed. The data-base is
composed of the determined ANFIS training inputs and outputs. From the
previously developed work [141], the number of inference systems have been
reduced from 5 to 3, having the SOC, the length-ratio and the power demand
as inputs and the GS power or FC power as the output. The output definition,
determined the split factor between the available power sources for the P-HEB
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and FCHEB applications respectively. The inputs reduction has been carried out
based on a variable correlation study, dismissing those variables with correlation.
Each input and output of the described data-base is firstly normalized within [0, 1].

The normalized data-base is split into different stages, divided in accordance to
the route distance ratio and the amount of data of each set. A first approach has
been carried out with 10 % length-ratio steps division. For having homogeneous
data-sets, for those sets larger than the others, the 10 % distance ratio has been
split into two 5 % step sets.

Once the data is processed, the ANFIS initial fuzzy-logic design has been
generated based on subtractive-clustering technique of the datasets [142]. At this
second data sub-clustering, the initial membership function design, number of
outputs and rules are defined.

At the ANFIS learning stage, the initial membership functions and rules are
trained based on the ANFIS technique, with the aim of tuning the membership
functions and refining the proposed first rules. It is worth mentioning that from
the obtained optimal operations, around 80% is used for the training process and
20% for the testing process of the developed ANFIS based EMS.

ANFIS technique was developed by Jang and improved by Sugeno and Kang
[143, 144]. This technique is used for learning from a data-base and tuning the
fuzzy inference system [74]. In this work the aforementioned data-base has been
used for the learning and tuning process. The technique for the ANFIS tuning
stage is a hybrid learning algorithm in conformity with back-propagation and
least-squares-type methods, as shown in Fig. 3.3. The main reasons for using the
hybrid method have been the training speed, the error avoidance with the support
of the second algorithm and the smarter networks training based on supervised
learning [74].

The ANFIS architecture is composed of 5 layers. The nodes x, y and z in layer
1 represent the system inputs that are the SOC, the length-ratio and the power
demand respectively. The node in layer 5 refers to the system output GS power or
FC power for the P-HEB and FCHEB applications respectively. The reduction of
inputs, i.e., from 5 to 3, speeds up the learning process, maintaining the accuracy
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Figure 3.3: ANFIS architecture.

level. The output of each layer is expressed in Eq. 3.12.



O
1
i = µAi = e

−
(

x−a
b

)2

, i = 1, 2, 3
O

2
i = ωi = µAi

(x) · µBi
(y) · µCi

(z), i = 1, 2, 3
O

3
i = ω̄i = ωi∑i

j=1 ωi
, i = 1, 2, 3

O
4
i = ω̄iFi = ω̄i(pix+ qiy + riz +mi), i = 1, 2, 3

O
5
i = F = ∑3

j=1 ω̄ifi =
∑3

j=1 ωifi∑3
j=1 ωi

(3.12)

Layer 1 O1
i = µAi is an adaptive layer where the fuzzification process is carried

out according to the chosen membership function type, in this case Gaussian
functions. In Eq. 3.12, x is one of the input variables and {a, b} are the parameters
defining the bell-shaped node. Layer 2 O2

i = ωi is a fixed layer where each rule
weight is determined multiplying each node by the input signals. Layer 3 O3

i = ω̄i
is a fixed layer where each rule weight is normalized with the sum of all rules.
Layer 4 O4

i = ω̄ifi is an adaptive layer where p, q, r,m fuzzy set design parameters
are determined. Layer 5 O5

i = F is a fixed layer where the output is computed,
also known as sugeno defuzzification process [143].

Finally from the intelligent decision maker, the designed sugeno type
fuzzy-logic EMS is obtained. From this point on, the designed fuzzy-logic EMS is
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denominated ANFIS based EMS. The ANFIS based EMS is implemented in the
vehicle for managing the power sources in real-time. The online EMS operation is
explained in the following section.
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3.3 Online Operation at Vehicle Level
At this level, the ANFIS based EMS is operated in real-time onboard the bus.
The inputs for the EMS are the current power demand, the current length-ratio
and the current BT SOC. Based on the EMS power split factors are determined:
the GS and BT for the P-HEB and the FC and BT for the FCHEB.

The ANFIS based EMS is composed of four steps, as shown in Fig. 3.4.

Figure 3.4: ANFIS based EMS structure.

In the first step the length-ratio is checked. Based on this information, the
corresponding FL structure is defined. According to the current FL structure
defined in the second step, in a third step, depending on the current power demand,
length-ratio and SOC of the BT, the split factor (U) is determined, with the aim
of fulfilling the power demand. For the case of the P-HEB, the GS output power
is determined and for the FCHEB, the FC output power is determined. This EMS
is executed every second.

To ensure the correct operation of the buses, in the last step the operation
constraints are applied. In the case of the P-HEB, the constraints shown in Eq.
3.4 are applied.

As regards the FCHEB, the constraints shown in Eq. 3.7 have been defined
for a safe operation.
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3.4 EMS Evaluation in a Plug-in Hybrid Electric
Bus Case-Scenario

In this section, the developed and previously presented vehicle level EMS is
evaluated for a P-HEB application. This evaluation has been carried out for
the P-HEB with LTO BT (with characteristics described in Tab. 2.2), driving on
route 4, which is depicted in Fig. 3.5.

Figure 3.5: Route 4 speed profile.

In the subsequent first subsection, the learning based EMS offline design
process is carried out. The optimized DP operation for the different auxiliary
consumptions is used as data-set for the ANFIS technique. The ANFIS based
training and testing for the aforementioned route are analyzed.

The designed ANFIS based EMS based on the offline learning based approach
has been validated at simulation level in Matlab and experimentally in a HIL
platform. The simulations and emulations have been performed in a core i7-6600
CPU with 2.60 GHz and 2.80 GHz with 8 GB of RAM memory computer.

3.4.1 Learning based Energy Management Strategy
Evaluation

A data-base has been generated applying the DP optimization for route 4 and
obtaining the optimal profiles for the following variables: power demand, BT SOC
and output GS power. In addition to these optimized variables, the length-ratio
is used as a reference in the training process.

The obtained optimal profiles for the 16 kW mean auxiliary consumption case
are shown in Fig. 3.6. The length-ratio splits the optimized data into data-sets
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and it is used as an input variable to identify the bus placement at every sample
time. The power demand and BT SOC are the other two inputs that compose
the data-base. The output variable is the GS output power, the variable that
determines the split factor of the P-HEB.

With the same approach applied for the 16 kW auxiliary consumption, the

Figure 3.6: Route 4 with 16 kW mean auxiliary consumption: power demand,
BT SOC and GS power output profiles, all split by the length-ratio.
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complete data-base is generated with the optimal operation of 7 optimizations,
for different mean auxiliary consumptions. The mean auxiliary consumptions are
comprised between the minimum and the maximum auxiliary consumptions, 12
kW and 18 kW respectively.

Therefore, the example of the optimization process shown in Fig. 3.6 is
repeated for the 7 mean auxiliary consumptions. From this optimization, 7
optimized SOC profiles, power demands and output GS powers are obtained, for
the 7 mean auxiliary consumptions. The length-ratios is used as a reference in
all variables. These 7 optimizations conform the previously stated data-base.The
obtained 7 optimal SOC profiles are shown in Fig. 3.7. They are actually used as
a reference when evaluating the developed EMS accuracy.

Figure 3.7: DP optimized SOC profiles for different auxiliary consumptions.

Once the data-base is generated, the data-sets have to be determined. For
this decision, the amount of data for each 10% length-ratio step is analyzed. For
the present case study, the total amount of data reaches 16,688 data points. In
Tab. 3.1, the amount of data for each data set is given in the second column.
It is noteworthy that the data is homogenized for all the data-sets. When the
data-sets are determined, the ANFIS based EMS is designed based on the training
and testing process of the ANFIS learning technique. For this, from the divided
data-sets, part of the data is used for the training process (around 80%) and the
rest is used for test (around the 20%). The way to evaluate the training and
testing process is by means of the Root Mean Square Error (RMSE), calculated
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as follows:

RMSE =
√√√√ 1
n

n∑
i−1

(yi − ỹi)2 =
√
MSE =

√√√√ 1
n

n∑
i−1

(PGSout(k)− PGStarget(k))2 (3.13)

where n stands for the number of training epochs, PGSout(k) is the obtained GS
power and PGStarget(k) is the GS power training target.

Table 3.1: Training, testing and data errors.

Length
Ratio [%]

All Data Training Data Testing Data
Data Data RMSE Data RMSE

[100-90) 1,603 1,336 0.035 267 0.059
[90-80) 1,680 1,400 0.029 280 0.043
[80-70) 1,617 1,348 0.015 269 0.028
[70-60) 1,897 1,581 0.018 316 0.028
[60-50) 1,659 1,383 0.023 276 0.031
[50-40) 1,435 1,196 0.010 239 0.050
[40-30) 1,897 1,581 0.040 316 0.052
[30-20) 1,617 1,348 0.016 269 0.041
[20-10) 1,680 1,400 0.011 280 0.014
[10-0) 1,603 1,336 0.029 267 0.040

Regarding the EMS evaluation, as it has been aforementioned, most of the
data is used for the training process. The RMSE evaluation shows a higher error
for the testing than for the training, as shown in Tab. 3.1. This is a regular result
in the training and testing that indicates that the training overfitting is avoided.
The obtained trained FL structures are shown in Appendix B for this particular
case study as example of the length-ratio from 100% to 90%.

With the aim of validating the developed ANFIS based EMS accuracy, a
Matlab simulation has been performed. The achieved improvement and the ability
to replicate DP operation applying the ANFIS based EMS has been evaluated
for the different existing mean auxiliary consumptions. On the one hand, the
proposed EMS has been compared with the DP global optimization results to
benchmark the ANFIS based EMS. On the other hand, it has been compared
with the Charge-Depleting Charge-Sustaining (CD-CS) EMS to show the achieved
improvement compared with a commercially and non-advanced solution.

The obtained fuel consumptions with the mentioned 3 approaches (ANFIS
based EMS, DP optimization and CD-CS) are shown in Tab. 3.2. It should be
noted that for the 7 auxiliary consumption the ANFIS based EMS has the same
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behavior in terms of fuel consumption, remaining higher that the DP optimization
and lower than the CD-CS EMS.

The obtained difference from the DP optimization to the proposed ANFIS EMS
approach is within the range of 7.14-10.99 %. At this point, it is worth mentioning
that the obtained results in terms of fuel consumption with the ANFIS based EMS
are really close to the DP optimal fuel consumption. Regarding the percentage
decrease comparing the CD-CS EMS and the ANFIS EMS, it ranges from 5.25 %
up to 6.86 %. This evaluation justifies the range of improvement at vehicle level
for all the mean auxiliary consumption applying the ANFIS, proving the stability
to reach fuel consumption minimization compared with the CD-CS EMS.

Table 3.2: Fuel efficiency technical evaluation of route 4 with all the possible
auxiliary consumptions.

Mean Auxiliary
consumption [kW]

fuel consumption [l/100 km] DP
Error
[%]

ANFIS vs
CD-CS
diFF. [%]

DP
optimization

ANFIS
based EMS

CD-CS
EMS

12 30.48 33.83 36.32 10.99 6.86
13 31.82 34.82 37.07 9.43 6.07
14 33.17 36.66 38.20 10.52 4.03
15 34.50 37.54 39.66 8.81 5.35
16 35.85 38.81 40.96 8.26 5.25
17 37.16 40.05 42.56 7.78 5.90
18 38.49 41.24 43.63 7.14 5.48

In addition to the obtained fuel consumption minimization results shown in
Tab. 3.2, a power demand and split analysis for the 16 kW auxiliary consumption
has been performed. First, the P-HEB ANFIS based EMS management power
split between the BT and GS has been analyzed and depicted in Fig. 3.8. It is
important to highlight that the at some points GS provides higher power than
the required for fulfilling the power demand. This behavior is due to the highest
efficiency at high powers. The power exceed is used to recharge the BT. Regarding
the BT behavior, it covers the lowest power demands and helps the GS to fulfill
the demand when it is too high to be provided only by the GS.

With the aim of evaluating the capability of the ANFIS based EMS to follow
the optimized GS output power and obtained optimal SOC by the DP profile,

The capability of the ANFIS based EMS to follow the optimized GS output
power and BT SOC has been analyzed in route 4 with a mean auxiliary
consumption of 16 kW. This analysis aims to evaluate the trained and tested
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Figure 3.8: Power demand split between the BT and GS.

Figure 3.9: GS output power response for the DP optimization and for the
ANFIS EMS.

rules and membership functions behavior.
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The obtained GS output response of the ANFIS based EMS compared to the
DP optimization is shown in Fig. 3.9. In this figure two zooms have been done
(Fig. 3.9 A and B) to evaluate in an easier way. It is worth noting that the achieved
GS output power with the ANFIS based EMS replicates the DP optimization over
all the route. This replication behavior allows to reach a similar fuel consumption
compared to the DP optimization.

The SOC profile comparison is another key point to check the developed EMS
capability of replicating the DP operation. In Fig. 3.10, the obtained DP SOC
profile compared to the ANFIS EMS with the obtained error are shown. The
achieved similar behaviors between the DP and ANFIS EMSs, as shown in Fig.
3.10. The obtained maximum error difference has been up to 0.41 % with a mean
error of -0.048 %.

Figure 3.10: DP SOC profile compared to ANFIS based EMS and error.

3.4.2 Real-Time experimental validation of the Learning
based Energy Management Strategy

The objective of this subsection is to present the validation results that
demonstrate that the developed fuzzy-logic based EMS are implementable and
can be executed in real-time, which is crucial for its future application in real
vehicle [145]. The direct implementation and validation of the EMS at bus level
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is a costly and time consuming process. HIL approach is an intermediate step in
the implementation and validation process between the simulation and the real
application [58]. The HIL platform allows to validate the EMS implemented into
a Management Unit, operating the emulated P-HEB power flows in real-time.

The developed HIL platform [58] allows a flexible and reduced cost
experimental validation [146]. The power flows on the 700 V DC busbar of the
powertrain of the considered P-HEB are emulated and controlled by the Emulation
Unit in the HIL platform, as shown in Fig. 3.11. This emulation allows to
validate the proposed learning based EMS implemented in the Management Unit
in real-time, before the integration in the bus, as an intermediate step.

Figure 3.11: Architecture of the HIL platform (up) and picture of the test-bench
(down).

The developed HIL is composed of scaled converters up to 18 kW, 700 V DC bus
and a crowbar, shown in Fig. 3.11. The traction and auxiliary consumption power
demands are emulated with converter 1. Regarding the power components, the GS
is emulated by converter 2 and the BT is emulated with converter 3, configured
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to inject and absorb power to/from the DC busbar. It is the only converter
configured in voltage control mode in order to maintain constant the voltage in
the DC busbar. With the aim of carrying out the power sources management in
real-time, the developed FL EMS has been implemented into the Management
Unit.

The system power request in the DC busbar is determined according to
the power calculation from the driving profile in Fig. 3.5 and the auxiliary
consumption. This information is processed by the Emulation Unit that is
communicated with the power components based on a communication network
under MODBUS TCP/IP protocol.

The previously described EMS, implemented in the Management unit,
determines the GS and BT power split factor according to the current power
demand, length-ratio and SOC of the BT. The power demand information flow is
communicated via TCP/IP protocol to the GS and BT, with the aim of fulfilling
the traction and auxiliary consumption power demand.

For performing the emulations a core i7-6600 CPU with 2.60 GHz and 2.80 GHz
with 8 GB of RAM memory computer has been used, where the management and
emulation units have been implemented.

3.4.2.1 Learning Based Energy Management Strategy Real-Time
Validation

The emulated bus has been the aforementioned P-HEB with 16 kW auxiliary
consumption, running on the described route 4.

For describing the power behavior with the proposed EMS approach, two time
frames have been chosen and zoomed from the whole round-trip, as shown in Fig.
3.12 and 3.13. It is worth noting that the provided power with the GS is above
the demanded power when the power demand is high, as shown in Fig. 3.12. The
ICE best efficiency is given at high power rates. Therefore, the DP optimization
and consequently the ANFIS based EMS replicates this behavior. The GS use is
divided optimally within the whole round-trip. Please take note that it is assumed
that the GS withstands the required power dynamics.

Regarding the battery power, it fulfills the power demand when the demand
is low. In addition, the BT provides the required power peaks that the GS is not
able to fulfill.
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Figure 3.12: Power demand and provided power with the GS using the ANFIS
based EMS experimental results.

Figure 3.13: Power demand and provided power with the battery using the
ANFIS based EMS experimental results.
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3.4.2.2 Learning Based Energy Management Strategy Experimental
Comparison

For further analyzing the ANFIS based EMS, the obtained results have been
compared with the DP optimization results and with the experimental results
obtained with a CD-CS EMS. This comparison allows to evaluate the effectiveness
of the ANFIS based EMS and its improvement range compared to the conventional
EMS solutions.

Firstly, SOC profile is compared with the one obtained with the DP
optimization. As it is observed in Fig. 3.14, the proposed EMS follows the DP
optimization SOC profile with a mean error of 0.14 %, due to the energy demand
difference between the optimization and emulation. The maximum obtained error
has been up to 1.06 %. It should be emphasized that the DP optimization and
the developed ANFIS based EMS discharge the BT around all the round trip.

Figure 3.14: Battery SOC profile (up) and error (down) for the DP optimization
and ANFIS EMS experimental results.

Regarding the GS utilization within the DP and ANFIS based EMS
comparison, in Fig. 3.15, two time frames have been chosen, to compare and
evaluate. The GS utilization among the route is replicated closely to the optimal
operation. This behavior allows also to replicate the SOC depletion, as shown in
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Figure 3.15: GS power operation of the ANFIS based EMS experimental results
compared to the DP optimal operation.

Fig. 3.14.

With reference to the CD-CS EMS, this EMS uses the BT until the minimum
SOC target is reached. After reaching the minimum SOC, all the power demand
is provided by the GS and the SOC is sustained, as shown in Fig. 3.16.

Finally, the power sources behavior has been analyzed, applying the CD-CS,
which results are depicted in Figs. 3.17 and 3.18. In the first part, the P-HEB is
driven in BT depleting mode and in the last part with the GS in charge sustaining
mode. It may be noted that the reduced BT power demands in the CD-CS, as it
is used just for covering the power demand.

The obtained results for the ANFIS based EMS and CD-CS EMS have been
analyzed in terms of fuel consumption and then compared to DP. The obtained fuel
consumption with DP global optimization has been of 35.85 l/100km. Compared
to the ANFIS based EMS, which offers a consumption of 38.61 l/100km, a
difference of 7.41 % has been obtained.

Finally, it may be noted that the proposed approach decreases the fuel
consumption of 7.3% compared to the CD-CS strategy. The experimentally
obtained fuel consumption value in the HIL platform, has been 41.65 l/100km,

90



3.4 EMS Evaluation in a Plug-in Hybrid Electric Bus Case-Scenario

calculated based on the GS efficiency maps.

Figure 3.16: Battery SOC profile for the CD-CS EMS experimental results with
the DP optimal solution.

Figure 3.17: Experimentally obtained power demand and GS power for the
CD-CS experimental results.
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Figure 3.18: Power demand and provided power with the BT for the CD-CS
EMS experimental results.
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3.5 EMS Replication and Evaluation in a Fuel
Cell Hybrid Electric Bus Case-Scenario

The objective of this section is to replicate the proposed ANFIS based EMS for a
parallel FCHEB considering the parameters listed in 2.4, as shown in Fig. 3.19.
As it has been aforementioned in Sec. 1.5.2.2, the advances in P-HEBs in terms of
EMS, as the topologies and degrees of freedom are similar and directly applicable
on FCHEBs.

Figure 3.19: Energy management strategy design and operation for FCHEB.

The EMS replication has been tested in two scenarios. The first scenario has
been performed with route 4 with a mean auxiliary consumption of 16 kW. The
evaluation of the same scenario allows to directly compare both topologies in
techno-economic terms. Therefore, a technical analysis for the FCHEB powertrain
is carried out. In addition to that, a TCO comparison of the P-HEB and FCHEB
with different market penetration hydrogen costs is performed, to evaluate the
viability of the FCHEB.

With the aim of validating a route for which the data-sets have to be adjusted
and homogenized, as a second case study, applying route 1, has been studied. This
route’s speed profile is shown in Fig. 3.20. For this case study, all the possible
mean auxiliary consumptions from 8 kW to 16 kW have been evaluated.

The EMS has been applied with a step of 1 second.
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Figure 3.20: Route 1 speed profile.

3.5.1 FCHEB technical evaluation and TCO comparison

The first FCHEB case study has been carried out, considering route 4. The
developed ANFIS based EMS has been evaluated in technical and economic terms
with the results of the FCHEB in different hydrogen price scenarios. These results
have been compared and comparing them with the P-HEB in Subsec. 3.4.1.

Beginning with the power demand split analysis between the available sources,
the obtained FC and BT power demands are together shown in Fig. 3.21. Owing
to the slower dynamics of the FCs, the power provided by the FC has a constant
behavior, avoiding to be switched-off. Since the BT chemistry is LTO with high
c-rates, it provides the power peaks. It is noteworthy the FC power increases with
the aim of fulfilling the highest power demand, maintaining the OER within the
determined operation levels, which is further explained below.

Following with the OER analysis, a comparison between the optimized DP
operation and ANFIS based EMS results are shown in Fig. 3.22 A and B
respectively. The DP optimization is managed to maintain the OER within the
determined limits during the entire the route. On the contrary, in the ANFIS
based EMS, as shown in Fig. 3.22, 3 points are below 1, reaching the 0 value. The
FC operates outside the operating range 3 seconds in total. The obtained mean
OER values for the DP optimization and ANFIS based EMS respectively are 1.75
and 1.74, both within the operation range.

The obtained SOC profile with the ANFIS based EMS replication of the DP
optimal SOC profile is evaluated in Fig. 3.23. The evaluation has been done
together with the obtained error, got from the comparison with the DP SOC
profile as baseline. It is important to highlight the high error at the beginning
of the route. These are the points where the OER dropped to the 0 value. The
behavior of the ANFIS based EMS tries to correct and match the optimal SOC
profile providing three power peaks at the starting point as it has been examined
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Figure 3.21: ANFIS based EMS power demand split between the BT (up) and
the FC (down).

in the power provided by the FC in Fig. 3.21. The SOC correction is reached
along the route. After this deviation, the SOC profile is corrected and the error
is minimized. The highest error is 0.738% when the main deviation occurs at the
beginning of the route. The obtained mean error is 0.055%.

This behavior is further analyzed in the SOC analysis.

To further validate the ANFIS based EMS, the FC current response has been
analyzed. As examined before, it should be emphasized the higher deviation at
the beginning of the route, as shown in Fig. 3.24. A zoom has been done in
Fig. 3.24 A, to analyze the FC power deviation. The power provided by the FC
managed by the ANFIS based EMS is above the optimized one. This behavior
occurs when the developed EMS mismatches an input data and gives the wrong
FC power response. Once the DP obtained optimal SOC profile is stabilized, the
FC power replication accuracy is improved. In a second zoom in Fig. 3.24 B, the
developed ANFIS based EMS replicates the DP optimization FC power.
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Figure 3.22: OER graphical result for the A DP optimization and B for the
ANFIS based EMS.

Finally, once the technical side has been evaluated, a TCO comparison between
the P-HEB and FCHEB in route 4 has been performed. Regarding the BT cost
for the P-HEB and FCHEB with LTO BT, the medium cost scenario has been
analyzed (1000e/kWh). Regarding the hydrogen cost, 5 different cost scenarios
have been analyzed, to evaluate FCHEB readiness and competitiveness level. The
first 4 scenarios of hydrogen costs have been determined according to the market
penetration level, studying the 1%, 10%, 30% and 75% hydrogen technology
penetration levels. The last studied scenario has been set to the ideal price as
documented in [13].

The TCO comparison results are shown in Fig. 3.25. The P-HEB TCO has
been taken as a baseline to directly compare the viability of the FCHEB. The
current scenario with a 1% hydrogen market penetration is far from being a viable
solution. Indeed, the FCHEB solution is 59.68% more expensive than the P-HEB
solution. As the hydrogen price decreases with the increasing hydrogen market
penetration, the margin between the P-HEB and the FCHEB reduces, until the
75% of market penetration is reached. Below this point, the FCHEB is a cheaper
solution compared to the P-HEB. The ideal hydrogen cost scenario at 5e/kg
shows the FCHEB as an attractive solution, being 15.34% less expensive than the
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Figure 3.23: DP SOC profile compared to ANFIS based EMS (up) and error
(down).

Figure 3.24: fuel-cells current response for the DP optimization and for the
ANFIS based EMS.
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P-HEB solution. The obtained results have been compared to the study in [13],
confirming the feasibility of FCHEBs at 6e/kg.

Figure 3.25: TCO comparison in route 4 for the PHEB and FCHEB.

3.5.2 FCHEB ANFIS based EMS Evaluation

A second FCHEB case study has been performed in route 1. This driving cycle
is shown in Fig. 3.20. This additional case study has been chosen, due to the
particularity of the number of data-sets. This situation is given when the route
speed profile is composed of urban and extra-urban cycles (see routes 1, 2, 5 and
9). There, the amount of data is larger at low speeds, hence the 10 % of the
length-ratio is larger in time than the cycle parts at high speeds. In this case, the
amount of data in each data-set has been homogenized, splitting into 2 steps of 5
% length-ratio the initially considered 10 % steps length-ratio.

For this particular route 1, an example for the 16 kW mean auxiliary
consumption DP optimal operation is shown in Fig. 3.26. It is is important
to stress that in this route, the length-ratio is split into 14 data-sets. In this case,
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the data-base is composed of the power demand, BT SOC and length-ratio inputs
and the FC power as output.

Figure 3.26: Route 1 with 16 kW mean auxiliary consumption: power demand,
BT SOC and FC output power profiles, all split by the length-ratio.

This particular optimization case for the 16 kW mean auxiliary consumption
has been replicated for all the mean auxiliary consumptions between the minimum
and the maximum value, 8 kW and 16 kW respectively, with a power step of 1
kW. A total of 9 optimizations have been performed and data-base has been built.
In Fig. 3.27, the obtained optimal operation SOC trajectories for different mean
auxiliary consumptions are shown. The initial SOC has been set at the same level,
i.e., 85%, and the final SOC has been calculated for fulfilling the charging features
following the process explained in Subsec. 3.2.1.

99



Vehicle Level Artificial Intelligence Learning based Energy
Management Strategy

Figure 3.27: DP optimized SOC profiles for different auxiliary consumptions.

For the training data preparation, based on the length-ratio, a first approach
of 10% steps was defined to divide the database composed of 17,244 data-points
into 10 different training data sets. However, to have a more equally distributed
training data sets, for the ranges comprised within 100-90, 60-50, 50-40 and 10-0
an additional step of 5% has been determined, as shown in Tab. 3.3. This decision
was made, since these training datasets were identified as weak points. As a result,
the accuracy of the tuned fuzzy-logic strategy was improved.

After the training data sets determination, in Tab. 3.3, it is shown the amount
of data used for training and testing based on each data-set. For this process,
different training and testing percentages were determined. In this case 90% of
the data was used for training and 10% of the data was used for testing. This
modification has been done due to the obtained lower errors.

The training process performance has been measured by means of the RMSE,
as in the previous P-HEB case. However, for the FCHEB powertrain, this value
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Table 3.3: Training, testing and all data errors.

Length
Ratio [%]

All Data Training Data Testing Data
Data Data RMSE Data RMSE

[100-95) 1,008 882 0.096 126 0.111
[95-90) 1,359 1,189 0.046 170 0.047
[90-80) 1,503 1,202 0.048 301 0.088
[80-70) 1,269 1,015 0.028 254 0.074
[70-60) 1,323 926 0.024 397 0.050
[60-55) 972 680 0.031 292 0.069
[55-50) 1,107 969 0.044 138 0.047
[50-45) 1,269 1,015 0.048 254 0.060
[45-40) 972 851 0.032 121 0.061
[40-30) 1,323 1,158 0.035 165 0.071
[30-20) 1,269 1,110 0.053 159 0.101
[20-10) 1,503 1,315 0.045 188 0.079
[10-5) 1,359 1,189 0.059 170 0.071
[5-0) 1,008 882 0.078 126 0.083

is calculated as follows:

RMSE =
√√√√ 1
n

n∑
i−1

(yi − ỹi)2 =
√
MSE =

√√√√ 1
n

n∑
i−1

(PFCout(k) − PFCtarget(k))2 (3.14)

where n stands for the number of training epochs, PFCoutput(k) the obtained FC
power and PFCtarget(k) the FC power training target.

The obtained errors are shown in Tab. 3.3. It is notably the higher error for
the testing than for the training. This is the same conclusion as in the P-HEB
training. As it has been aforementioned, this behavior indicates that the training
overfitting is avoided.

From this point, the operation of this second FCHEB case scenario. For this
case study, 14 kW mean auxiliary consumption has been chosen, being at the 2
kW below the maximum (as for the P-HEB scenario). The first step to evaluate
the ANFIS based EMS has been to analyze the obtained power split between
the available sources. Focusing on the power profile, it is interesting to note
that the steady state of the power provided by the FC. On the contrary, the BT
provides all the power peaks, as the dynamics are faster than the ones of the FC.
This behavior has also been observed, when evaluating route 4 for the FCHEB
powertrain. Again a power peak is shown at the beginning of the route, to correct
the SOC and another one for fulfilling the high power demand at the end of the
route. As it is later analyzed, this causes the OER drop.
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Figure 3.28: Power demand split between the BT and the FC.

The FC dynamics are limited by the OER map (shown in Fig. 2.10 D). The
OER has been examined for the 14 kW mean auxiliary consumption, shown in
Fig. 3.29. It is significant to note that with the developed DP cost function the
OER lower limit is exceeded once and twice applying the ANFIS based EMS. In
the case of the ANFIS based EMS, this OER drop is caused owing to the higher
power requests to the FC. The obtained mean OER results have been 1.73 and
1.72 for the DP optimization and ANFIS based EMS respectively.

As it has been done in the previous EMS evaluations, for this case study the
SOC operation has also been compared to the DP obtained optimal SOC profile.
In the first part of the power profiles, as shown in Fig. 3.28, there is a FC power
peak. This power peak causes a deviation of the ANFIS profile compared to the
optimal DP SOC profile. This behavior happens, due to an incorrect interpretation
of the input data into the trained and tested ANFIS based structure. However,
this is corrected along the route and finally the desired final SOC is reached.

For having a more accurate evaluation, the error has also been calculated, based
on the DP and ANFIS SOC profile differences. The obtained results are shown in
Fig. 3.30, having a mean error of -0.092 % and a maximum error of -0.286 %.

Together with the SOC profile evaluation, the FC current obtained with the
DP optimization and with the ANFIS based EMS have been compared in Fig.
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Figure 3.29: OER graphical result for the DP optimization (A) and for the
ANFIS based EMS (B).

3.31. The FC current obtained from the ANFIS based EMS follows the obtained
optimal FCs utilization from the DP optimization. It is noteworthy the higher
power provided by the ANFIS based EMS. This higher FCs utilization generates
consequently a higher fuel consumption.

The aforementioned two points where the OER dropped to 0 have been zoomed
in Fig. 3.31. The same behavior has been identified at the beginning of the route
in the previous case study (route 4), which is shown in Fig. 3.31 A. However, the
FC current replication is corrected along the route. The other point where the
OER is dropped to 0 is zoomed in Fig. 3.31 B. However, this current increase is
given following the optimal the optimal profile.

To evaluate the hydrogen consumption minimization cost function aspect and
the OER in depth, all the possible mean auxiliary consumptions have been
analyzed and the results are sum up in Tab. 3.4. On the one hand, there is
a higher hydrogen consumption for the ANFIS based EMS. This confirms the
examined behavior in Fig. 3.31, since a higher FC current output provided by
the ANFIS based EMS has been observed. As it has been stated the obtained DP
result is the best achievable result, since this optimization is a global optimization.
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Figure 3.30: DP SOC profile compared to ANFIS based EMS (up) and error
(down).

However, the ANFIS based EMS allows to have close results to the DP optimal
operation. On the other hand, the OER for the ANFIS based EMS is close to the
DP optimal, following the hydrogen consumption behavior.

Table 3.4: Hydrogen consumption and OER technical evaluation of Route 1 with
all the possible auxiliary consumptions for the DP optimization and ANFIS based
EMS.

Mean Auxiliary
consumption

[kW]

Hydrogen consumption [kg/100km] Oxygen Excess Ratio
DP

optimization
ANFIS

based EMS
DP

optimization
ANFIS

based EMS
8 3.55 3.90 1.76 1.67
9 3.79 4.19 1.71 1.69
10 4.00 4.29 1.78 1.72
11 4.23 4.47 1.75 1.73
12 4.48 4.83 1.72 1.72
13 4.7 4.94 1.72 1.70
14 4.94 5.22 1.72 1.72
15 5.18 5.26 1.73 1.72
16 5.42 6.49 1.74 1.75
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Figure 3.31: Fuel cells current response for the DP optimization and for the
ANFIS based EMS.
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3.6 Conclusions
In this chapter, a novel adaptive neuro-fuzzy inference system (ANFIS) that learns
from and replicates the optimal operation of the DP global optimization has been
proposed. The ANFIS artificial intelligence learning technique is a solution that
makes use of the solutions offered by the transport digitalization, since it is based
on a continuous monitoring, data processing and actuation.

The proposed ANFIS based EMS has been validated at simulation and
hardware-in the loop level. The ANFIS based EMS has been applied in two
different powertrains, the plug-in hybrid electric bus and the fuel cell hybrid electric
bus.

The main qualitative conclusions of the chapter are summarized below:

• The ANFIS based EMS allows to reproduce the optimal operation onboard
the vehicle. It manages the power sources determining the optimal power
split factor, learned from the DP optimization of a specific route. The
replication allows to adapt to each route and not only to reach close fuel
consumption results to the optimal operation, but also the BT lifetime
management. In the studied scenarios, the proposed ANFIS based EMS
improves the vehicle level operation. Benefits in technical and economic
terms have been obtain, improving the fuel or hydrogen consumption and
supervising and managing the BT lifetime.

• The ANFIS technique tunes the fuzzy-sets and defines the rules of a
fuzzy-logic energy management strategy. This process allows to reduce
the EMS design complexity, since the design process is automatized. This
avoids the utilization of complex design methods or human based expertise
designs. The critical part of this energy management strategy design is on
the operation optimization and data-base generation and process.

• The ANFIS technique provides a fuzzy-logic based EMS. This
strategy has been implemented and tested in real-time operation in
a hardware-in-the-loop platform, showing the capability to successfully
manage the operation. This is a crucial point, since the EMS has to be
run in real-time onboard the bus.

• It has been proven that the plug-in hybrid electric buses developments are
directly implementable into the fuel cell hybrid electric buses. In this way,
the developed ANFIS based EMS designed for the plug-in hybrid electric bus
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has been replicated for a fuel cell hybrid electric bus, replacing the genset
output power by the fuel-cell output power. In the analyzed scenarios,
the optimal operation obtained with the DP optimization replication has
been achieved. Regarding the hydrogen consumption results and fuel-cell
dynamics management, results close to the optimal operation have been
obtained. This replication demonstrates that all the developments for
the plug-in hybrid electric buses will pave the way for the oncoming fuel
cell hybrid electric buses, finding viable solutions to further optimize their
operation and improve the energy efficiency.
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Fleet Level Decision Maker for
Energy Management based on

Battery Aging

Summary
In this chapter the novel hierarchical energy management strategy for TCO

management, studied in the previous chapter at vehicle level is elevated at fleet
level. The decisions are made from the fleet level point of view to optimize the
whole fleet TCO based on the three levels hierarchical decision maker. The outer
part is the offline route-to-bus data exploitation and decision maker, to establish
the DP optimization design. The next level is the offline optimization bus-to-route,
where the neuro-fuzzy learns from the global optimal solutions. Finally, the trained
fuzzy-logic strategy is used to manage the online operation. This fleet is then
re-organized and the online operation energy management strategy is updated
throughout the buses lifetime. These decisions are made based on the evaluated
battery lifetime of the fleet, to meet the planned TCO requirements.
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4.1 Fleet Level Energy Management Strategy
The main contribution of this Ph.D. thesis lies on an approach for the energy
management of a whole fleet, based on the hierarchical decision maker and
management structure presented in Chapter 2 [87]. In this chapter, the fleet
management methodology is thoroughly described. As shown in Figure 4.1, it is
divided into several levels and stages. In a first classification, two offline levels and
one online level are distinguished.

Figure 4.1: Fleet management methodology.

The fleet upper level goal is to manage and improve the operation energy
efficiency of the whole fleet, taking decisions based on the whole fleet TCO picture.
This approach allows to take decisions with a wider view, which offers additional
degrees of freedom further optimize the TCO.

Going deeper into the proposed available degrees of freedom, two TCO
management techniques have been differentiated, as shown in Fig. 4.2 [87]: the
bus-to-route and the route-to-bus approaches. The bus-to-route approach is given
in Stage 1 and lies on a short-term improvement to fulfill the efficiency goals of
fuel or hydrogen consumption minimization. This optimization is carried out to
optimize the bus according to the route. Once the bus fleet has been operated
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for a defined period of time, operation data will be available and the initial bus
conditions will be different. At this point, in Stage 4, the route-to-bus long-term
improvement takes place. The compiled historical data is exploited to improve
the optimization process. Besides, bus conditions are updated and decisions are
made according to the new SOH of the BTs and TCO planning. These decisions
are made to fix the operation to the TCO plan. The decisions can imply a
fleet re-organization or EMS updating for a combined management of the fuel
or hydrogen consumption and BT lifetime.

Figure 4.2: TCO fixed and manageable costs based on the degrees of freedom
from the energetic manageability point of view.

Once the degrees of freedom have been defined, the whole methodology of Fig.
4.1 is thoroughly explained in the following lines.

Stage 1: Bus-to-route EMS design

In the first stage, the bus-to-route optimization scenario is defined and the fleet
expected urban route profiles are analyzed. Once the fleet structure and operation
are defined, the optimization itself is performed and the ANFIS learning based
EMS is designed. The optimization and the EMS design is personalized for each
bus, to optimize the operation at vehicle level in each route.

Stage 1.1: Expected Urban Route Profiles

In stage 1.1, the optimization scenario is defined and the expected urban route
profiles are analyzed.

Regarding the optimization scenario definition, the explained constraints in
Subsec. 3.2.1 for each bus are applied. In addition to that, the current bus
BT SOH has to be updated for the new optimization scenarios. Regarding the
cost function, for the P-HEB γBT (in Subsec. 3.2.1 Eq. 3.10) and 4SOCrefwSOC ,
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variables must be defined to manage the BT lifetime, as explained in Subsec. 3.2.1
(Eq. 3.1). For the case of the FCHEB, the variables to determine are α and β, to
prioritize the hydrogen consumption or the FC OER management respectively, as
explained in Subsec. 3.2.1 (Eq. 3.5).

According to the available data, the mean auxiliary consumptions and mean
passengers are updated, if the studied tendency has changed. At this stage, a
crucial point for the scenario definition is the final SOC determination, since this
variable allows to manage the BT lifetime. Following the procedure introduced in
Sec. 3.2.1, the final SOC of each route is determined.

Depending on the fleet status, two pathways are identified to determine the
scenario to be optimized. The first path is given when a fleet is commissioned.
In this case, there is no compiled fleet operation data and the SOH of the buses
BTs are at 100%. At this point, the optimization scenario cost functions γBT and
4SOCrefwSOC for the P-HEB are defined as 1. For the FCHEB, α and β are
defined as 1 and 0. This pathway in both powertrains allows to use the whole
BT capacity in the optimization, harnessing the BT utilization and minimizing
the fuel or hydrogen consumption. The fleet operation is evaluated analyzing the
daily operation time, round trips, driven distance, and the yearly driven distance.

The second path is given, when the fleet has been operating for a period of time
and operation data is available. In this case, the first step is to update the buses
BT SOH. According to the decisions taken in stages 3.4 and 4 (further explained
below), the γBT and 4SOCrefwSOC for the P-HEB and α and β for the FCHEB
are updated.

Stage 1.2: Dynamic Programming Operation Optimization

Once the optimization scenario is defined, in stage 1.2, each bus operation is
optimized for each route according to the DP optimization technique. From the
pursued optimizations with the chosen mean auxiliary consumptions, the data-base
is generated.

For the P-HEB powertrain, the data-base is generated with the power demand,
BT SOC profile, length ratio, and GS output power. The variables for generating
the FCHEB powertrain data-base are the same, replacing the GS output power
for the FC output power. This data is used for the training and testing part of
the ANFIS based EMS.

Stage 1.3: ANFIS Learning based EMS design
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In stage 1.3, the EMS is designed with the ANFIS learning technique. The
data-base generated in stage 1.2 is first processed and divided into data-sets
according to the length ratio. For both topologies, power demand, BT SOC profile,
and length ratio are the input variables. The output variable is the GS output
power for the P-HEB and the FC output power for the P-HEB.

Stage 1.4: Fleet Fuzzy-Logic Update and Implementation

As a final step of stage 1, the developed FL EMS is implemented in each bus.
This last stage is the bridge between the offline optimization and strategy design
at vehicle level and the online operation level.

Stage 2: Fleet operation

In this stage, the implemented EMSs in each bus are operated in their
corresponding routes.

The digitalization new techniques allow a continuous monitoring of the buses
operation. The most important variables to be registered from the energy
management point of view are summarized.

• Driving speed: it allows to analyze the driving cycle and behavior that each
driver of the fleet is completing in all the routes. The information of the
driving cycle improve the energy efficiency without changing the driver’s
driving behavior.

• Power demand: it concerns the power derived from the tractive force and the
auxiliary power demand. It is a very representative variable for generating
the optimization data-base.

• Buses auxiliary consumption: it is the variable that mostly influences the
power demand variation [86]. This variable generate the optimization
data-base.

• Buses passenger flow: it is the second most affecting variable in the power
demand variation [86]. This variable also allows to generate the optimization
data-base.

• Fuel or hydrogen mass flow: they are key factors that have direct impact
on the TCO. Besides, they are good indicators for evaluating the EMSs
effectiveness.

• BT power demand and SOC: they are crucial indicators for evaluating the
BT lifetime.
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• OER: it is a vital indicator to be managed in order to manage the FC lifetime
for FCHEBs.

Stage 3: Fleet data exploitation

In stage 3, the obtained data from the fleet operation is processed for the
subsequent fleet data analysis. Based on this analysis, EMS update and/or
route-to-bus fleet decision making approach is performed.

Stage 3.1: Fleet operation data

In this stage, a time period has to be set, to collect enough data for the
processing stage. This watching period can be set from weeks to years, depending
on the data analysis type. This stage is the bridge between the online operation
level and the offline data exploitation and decision making at fleet level. The
evaluated period is known as the period until the evaluation point, which is the
moment in which the fleet BT aging is evaluated and decisions are made. The
evaluation point is described below and thoroughly analyzed in Appendix A.

Stage 3.2: Data processing

The collected data of the previous stage has to be processed, to get valuable
information. The factors to be processed are the monitored bus speed, auxiliary
consumption, passenger flow, power demand, fuel or hydrogen mass flow, BT power
demand, BT SOC and, FC OER.

This data is processed, to acquire additional information for the analysis and
decision making stages. On the one hand, the speed, auxiliary consumption,
passenger flow, and power demand define the new optimization scenario. On the
other hand, the fuel or hydrogen mass flow, BT power demand, BT SOC, and FC
OER variables are used for making decisions for the new optimization scenario.

The new information obtained from the data processing is crucial for the
following stages. From the speed cycle, the mean speed, maximum speed,
acceleration, and route distance are obtained. Mean speed and route distance for
evaluate the route demand level and the fleet BT lifetime plan (further explained
below).

Finally, the fuel or hydrogen consumptions are calculated and the BT lifetime
is processed.

Stage 3.3: Data analysis
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At this stage, an analysis of the whole fleet is performed by checking the
planned TCO goals fulfillment. The first goal is to respect the fuel and hydrogen
consumption limits constrained by the fleet operator. The second goal is to respect
the planned buses BT lifetime.

Stage 3.4: Energy management decision making

Based on the data analysis, in the energy management decision making stage,
the new updated EMS design is decided. This stage receives inputs from stage
3.3 and stage 4. From stage 3.3, the bus new operating conditions are received.
These new conditions are the ones refereed to the new scenario to be optimized,
such as the buses BT SOH at the evaluation point and decisions made for the new
optimization final SOC.

From stage 4, based on the fleet management procedure, the new routes
re-organization is obtained and the bus re-optimization target is set for the new
optimization scenario definition. The re-optimization target is set based on the
final SOC, which is modified and determined with the γBT constant in Eqs. 3.10
and 3.11. The constant γBT , as it has been aforementioned is used to manage the
BT lifetime.

The optimization decisions are made based on the TCO plan to increase or
decrease the estimated buses BT lifetime, by adjusting the γBT . On the one hand,
in order to increase the BT lifetime of a bus, the BT utilization must be decreased,
increasing γBT (γBT > 1) and consequently increasing the final SOC target. In
case the final SOC matches the initial SOC, the BT utilization is constrained with
the 4SOCref by means of the wSOC . On the other hand, for the bus BT lifetime
to be decreased, γBT is decreased (γBT < 1) and BT utilization is harnessed,
consequently decreasing the optimization final SOC target.

For the FCHEB topology, as explained in the cost function in Eq. 3.5, the OER
level is managed adjusting α and β weights. Increasing α, hydrogen consumption
is minimized. On the contrary, when increasing β above α value, hydrogen
consumption increases.

Stage 4: Route-to-bus Fleet Decision Making

The route-to-bus stage is the stage dealing with the fleet management itself and
it takes place at the evaluation point. It receives inputs from the data analysis of
stage 3.3 and it calculates an output for the energy management decision making.
At this point, it is decided according to the current lifetime of the BTs of the whole
fleet and the buses BT lifetime estimation, whether an EMS update is enough or
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a re-organization of the fleet is required. The fleet management procedure is
implemented in 4 steps as follows.

1- Fleet buses BT lifetime evaluation plan and technical targets
definition: In this step, the lifetime of all the BTs of buses from the whole fleet
is estimated and the bus BT lifetime plan for the whole fleet is developed. The
BT lifetime plan is crucial for making the most of each element of the powertrain
and exploit all the degrees of freedom to improve the TCO.

When no BT lifetime plan is developed and applied, two situations are identified, as
depicted in Fig. 4.3A. The identified scenarios are characterized by the PFleetEOL
fleet service lifetime, ΨaboveEOL BT lifetime above PFleetEOL and ΨbelowEOL BT
lifetime of above. Both scenarios (ΨaboveEOL and ΨbelowEOL) have to be corrected
because they influence negatively on the fleet TCO.

On the one hand, when bus BT lifetime is above (ΨaboveEOL) the fleet lifetime
horizon (PFleetEOL), the BT utilization is misused comparing to the initial forecast.
Therefore, this causes an extra fuel or hydrogen consumption. In addition to that,
as shown in Fig. 4.3B, the BT SOH at the fleet EOL point (PFleetEOL) is half of the
begining BT SOH. In this case, an EMS updating is needed in the evaluation point
Peval. The EMS is updated in order to fit the fleet EOL point and the BT EOL,
maximizing the BT utilization and minimizing the GS or FC and consequently

Figure 4.3: A: Fleet BT aging scenarios, B: BT lifetime above expected scenario
and C: Battery lifetime below expected scenario.
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fuel or hydrogen consumption.

On the other hand, when the bus BT lifetime is below (ΨbelowEOL) the fleet lifetime
horizon (PFleetEOL), as shown in Fig. 4.3C, the GS or FC is underused and the
battery is overused, increasing the number of planned BT replacements. As an
example, in this specific case, the EMS is not updated and therefore, the bus
service operation has 4 replacements. On the contrary, if the EMS is updated at
the evaluation point, the number of BT replacements is reduced to 2. To correct
the identified cases and managing the fleet buses BT lifetime and make the most
of the fleet TCO, the BT lifetime evaluation plan development is crucial.

The BT lifetime evaluation plan definition is summarized in Fig.4.4. As a first
step, from the fleet BT aging scenario, the buses lifetime (busnΨ busmΨ ), the
minimum (minΨ), and the maximum (maxΨ) buses BT lifetime and fleet EOL
point (PFleetEOL) have to be identified, as depicted in Fig. 4.4A.

The next step consists in defining the evaluation point based on the fleet
buses BT aging years. Three evaluation point techniques have been analyzed and
presented in Appendix A. As a conclusion, the best results have been obtained
applying the evaluation point definition based on the fleet BT aging years. The
procedure to follow for the evaluation point definition based on the fleet BT aging

Figure 4.4: Fleet buses BT lifetime evaluation plan development.
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years is depicted in Fig. 4.4B. The buses BT lifetime evaluation point is defined
in the half of the BT lifetime for the bus with the minimum BT aging. The EOL
of the BT is limited at 80% of BT SOH or by the calendar degradation.

To conclude the development of the fleet buses BT lifetime plan, the BT lifetime
horizon plan has to be defined. This horizon Ψhorizon sets the fleet buses BT lifetime
target. It is obtained based on the fleet buses estimated BT lifetime median, as
indicated in Fig. 4.4C.

2- Fleet TCO evaluation: Before the fleet is re-organized and/or the EMS
updating decisions are made, the current fleet TCO status has to be calculated
and analyzed. This TCO calculation is performed between the fleet commissioning
or last evaluation point and the current fleet evaluation point. This information
is valuable for the next steps decisions.

3- Fleet routes re-organization: Fleet routes re-organization decisions are
made, to balance the BT lifetime of the buses with the best and the worst SOH.
The decisions are made based on the fleet buses BT lifetime picture, shown in
Fig. 4.5. The fleet buses BT lifetime picture, depicted in Fig. 4.5, contains the
information of the estimated buses BT lifetime, BT SOH at the evaluation point,
cycle and daily driven distances and the mean route speed.

The routes are grouped, facilitating the decision maker process. They are grouped
into three groups: least demanding, most demanding, and average demanding
groups. The least and the most demanding routes are those in which the BT
lifetime are a 20% above or below from the BT lifetime horizon plan. It is
considered that those BT lifetimes cannot be corrected by only adjusting or
updating the EMS. Those routes require additional decisions. The rest of the
routes are grouped in the average demand.

Figure 4.5: Fleet buses battery lifetime picture.

The most demanding and less demanding routes are the routes that are
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re-organized to fit to the BT lifetime horizon. The re-organization process is
executed in the following way. The buses with the best SOH are exchanged for
the most demanding lines and the buses with the worst SOH are exchanged for
the least demanding lines. In the buses of the re-organized routes and the ones
grouped in the average demand the EMSs have to be updated.

4- EMS update decision maker based on the buses BT aging: Once
the route-to-bus decisions has been made, all the routes are re-optimized with the
DP and the buses BT lifetimes are estimated in order to stick to the buses BT
lifetime horizon goal. The route-to-bus EMS design decision is made to meet the
predefined BT aging targets and improve the TCO of the whole fleet. In this way
the short-term management to minimize the fuel or hydrogen consumption and
the long-term BT lifetime management are merged.

The explained novel fleet management methodology stages have been evaluated
in two different case studies. To evaluate different fleet case scenarios, a fleet of
P-HEBs with LTO BT chemistry and a fleet of P-HEBs with NMC BT chemistry
have been studied. These P-HEBs characteristics have been presented in Tabs.
2.2 and 2.3 respectively.

The fleet management methodology has been evaluated following the
methodology itself. First, the expected urban route profiles analysis is performed.
The obtained operation with the ANFIS based EMS for each bus driving in
specific routes is analyzed and both fleets are compared. Once the fleet scenario
is determined, the designed ANFIS based EMSs in the bus-to-route stage are
evaluated in techno-economic terms. After that, the obtained fleets operation
is processed and analyzed the route-to-bus fleet decision making. In this point,
the multiple steps that contains the fleet management stage are performed and
evaluated: starting from the fleet BT lifetime evaluation plan development, fleet
TCO evaluation, fleet routes re-organization, and EMS update based on the buses
BT aging.

4.2 Expected Urban Route Profiles Analysis
In this section, the expected urban route profiles analysis is performed following
the first pathway described in Stage 1.1. At this point, each daily operations,
round trips, distances, and yearly driven distances are analyzed.

The studied lithium-ion BT chemistries have their characteristics. LTO BT
has higher charging c-rates compared to the NMC BT. Owing to this fact, the
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LTO BT pack can be charged at a higher power, up to 168 kW, compared with
the NMC BT pack that can be charged up to 96 kW. According to the maximum
charging power, the tcha constant is 22 for the NMC BT and 9 for the LTO BT.
This is translated into a longer charging time for the fleet of buses with NMC BTs
compared with the fleet of buses with LTO BTs.

In Tables 4.1 and 4.2, the fleet characteristics with LTO chemistry and NMC
chemistry are shown. Starting from the daily operation, it is worth mentioning
that all the routes are operated around 16 hours in both fleets, except the route 7
that it is operated 17.18 hours with NMC and 17.12 hours with LTO. The main
reason for the longer operation time is that it is the longest route with 32.17 km.
The NMC fleet operates over a longer period of time, but with less round-trips,
owing to the longer time needed to recharge the buses BT.

The charging time having the constraint of around 16 hour daily operation,
it has direct influence on the number of round-trips and consequently the daily
kilometers covered by each bus. The two fleets are analyzed at the same time,
since the routes are the same, however with different charging times and powers.

Table 4.1: Route characteristics of the fleet with LTO chemistry.

Route Distance Mean Fleet of buses with LTO chemistry
speed Daily Round Daily Yearly

[km] [km/h] operation [hours] trips distance[km] distance[km]
1 14.25 26.77 16.51 29 413 136,000
2 20.44 25.57 16.20 19 388 128,000
3 9.18 13.84 16.48 24 220 73,000
4 13.63 20.58 16.05 23 314 104,000
5 15.48 17.80 16.37 18 279 92,000
6 18.58 27.00 16.21 22 409 135,000
7 32.17 28.23 17.12 14 450 149,000
8 29.63 28.53 16.74 15 445 147,000
9 17.29 23.45 16.43 21 363 120,000
10 12.16 17.77 16.47 23 280 92,000

The route with the highest number of round trips completed is the first route
with 26 and 29 round trips accomplished in one day for the buses with NMC and
LTO respectively. It is the shortest route in terms of duration, as shown in Tab.
2.1.

Regarding the daily and yearly distances, they are correlated. The yearly
operation has been set at 330 days. It is important to underline that at this
characteristic, route 8 has the longest yearly driven distance for the bus with
NMC BT and route 7 has the longest yearly driven distance for the bus with LTO
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Table 4.2: Route characteristics of the fleet with NMC chemistry.

Route Distance Mean Fleet of buses with NMC chemistry
speed Daily Round Daily Yearly

[km] [km/h] operation [hours] trips distance[km] distance[km]
1 14.25 26.77 16.19 26 370 122,000
2 20.44 25.57 16.73 18 368 121,000
3 9.18 13.84 16.58 23 211 70,000
4 13.63 20.58 16.47 22 300 99,000
5 15.48 17.80 16.13 17 263 87,000
6 18.58 27.00 16.13 20 372 123,000
7 32.17 28.23 17.18 12 386 127,000
8 29.63 28.53 16.1 14 414 137,000
9 17.29 23.45 16.43 19 329 108,000
10 12.16 17.77 16.76 22 267 88,000

BT. This is due to the fact that route 8 has one less daily round trip in the case
of the bus with NMC BT compared with the bus with LTO BT. On the contrary,
regarding route 7 round trips, 2 less daily round trips are fulfilled by the bus with
NMC BT.

Figure 4.6: Fleets yearly distance and daily operation time comparison.

Finally, the fleets are compared in terms of yearly driven distance and daily
operation time in Fig. 4.6. It should be noted that making the comparison with
the yearly distance medians, the fleet of buses with LTO covers 8.3% kilometers
more that the fleet of buses with NMC (102,100 less covered kilometers) having
the same daily operation time median (16.45 hours). This is a significant point,
since the fleet of buses with NMC can lead to the need of an additional bus to
offer the same service level than the fleet of buses with LTO.
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4.3 Bus-to-Route EMS Operation Evaluation
Once the fleet scenario operation has been analyzed, in the bus-to-route EMS
design stage, the ANFIS based EMSs are developed for each bus of the fleet. The
main objective of the developed EMS is to improve the overall efficiency of each
bus, as performed at the vehicle level in the previous chapter. However, in this
chapter, the study has been extended to the fleet level.

The evaluation is proceed from the fleet commissioning point to the evaluation
point for the P-HEBs fleet of buses with LTO and the P-HEBs fleet with NMC.
For both fleets, the fuel consumption improvement has been compared with the
DP global optimization and with a simple CD-CS EMS. This comparison has been
performed for evaluating the proposed ANFIS based EMS range of improvement
compared with the most optimal solution and a commercially well known EMS.

For the P-HEB fleet with LTO BT chemistry, the obtained fuel consumption
results are shown in Tab. 4.3. As a link with the chapter 3, the obtained
fuel consumption and range of improvement for route 4 in Subsec. 3.4.1 and
in this subsection is the same. It is worth underlining that a fuel consumption
minimization has been achieved in all the routes compared with the CD-CS EMS,
obtaining differences between 4.26% and 7.05%. The obtained fuel consumption
errors of the ANFIS based EMS compared with the optimized operation with the
DP, ranges from 6.10%, up to 11.13%.

The operation study has been extended to the BT SOC profiles comparison for

Table 4.3: Fuel consumption evaluation of the fleet based on P-HEBs with LTO
BT.

Buses
Fuel consumption [l/100 km] DP

Error
[%]

ANFIS vs
CD-CS
diff. [%]

DP
optimization

ANFIS
based EMS

CD-CS
EMS

1 31.78 34.41 36.33 8.28 5.43
2 36.32 38.71 40.62 6.58 4.82
3 48.53 53.93 56.28 11.13 4.26
4 35.85 38.81 40.96 8.26 5.25
5 39.69 42.66 46.89 7.48 9.45
6 31.32 33.41 35.58 6.67 7.05
7 32.31 34.28 36.73 6.10 6.90
8 33.10 35.13 36.99 6.13 5.16
9 36.98 39.53 41.81 6.90 5.61
10 40.56 44.08 46.89 8.68 6.18
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all the routes and obtained training RMSE results. In Fig. 4.7 the obtained DP
optimal SOC profiles are compared to the ones obtained with the developed ANFIS
based EMS. It is important to emphasize the capability of the ANFIS based EMS
to replicate the DP optimized SOC profiles. The obtained ANFIS training RMSE
results are comprised between 0.063 and 0.15, being accurate results for replicating
the optimal SOC.

In Tab. 4.4, the obtained fuel consumption results for the P-HEB fleet with
NMC BT chemistry are shown. First, comparison has been done with the DP
global optimization in order to have a benchmark of the routes. The overall errors
are low, ranging from 6.08 % to 11.19 % error. In addition to this, to evaluate the
improvement of the proposed ANFIS based EMS performances has been compared
with a CD-CS EMS. In the evaluation, fuel consumption minimization is achieved
in all the routes, ranging from 4.44 % to 9.59 %. In this way, the bus-to-route
EMS is technically validated and proved that substantial fuel savings are achieved
in both fleets with close results to the DP reference.

Table 4.4: Fuel efficiency evaluation of the fleet based on P-HEBs with NMC BT.

Buses
Fuel consumption [l/100 km] DP

Error
[%]

ANFIS vs
CD-CS
diff. [%]

DP
optimization

ANFIS
based EMS

CD-CS
EMS

1 32.01 34.55 36.39 7.94 5.19
2 36.58 38.92 40.71 6.40 4.50
3 48.69 54.14 58.08 11.19 7.02
4 36.02 38.81 41.35 7.75 6.34
5 39.90 42.50 46.78 6.51 9.59
6 31.54 33.52 35.94 6.28 6.97
7 32.59 34.57 37.01 6.08 6.82
8 33.36 35.45 37.06 6.27 4.44
9 37.24 39.98 41.93 7.36 4.76
10 40.75 44.04 47.24 8.07 7.01

The capability of the ANFIS based EMS to replicate the DP optimal SOC
profiles has also been proved. The developed ANFIS based EMSs follow the
optimal paths with small errors (RMSEs of up to 0.22 % as it can be observed
in Fig. 4.8). This global optimization replication allows to achieve both, fuel
consumption minimization and BT aging management.
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Figure 4.7: Buses SOC profiles comparison and RMSEs for DP and ANFIS based
EMS in all the routes with LTO BT.
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Figure 4.8: Buses SOC profiles comparison and RMSEs for DP and ANFIS based
EMS in all the routes with NMC BT.
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4.4 Route-to-Bus Fleet Level Decision Making
In this section, the proposed route-to-bus decision making stage 4 is evaluated. In
this stage, the proposed fleet energy management is analyzed. This evaluation is
performed following the Stage 4 fleet energy management procedure steps.

4.4.1 Fleet Buses Battery Lifetime Evaluation Plan and
Technical Targets Definition

The fleet buses BT lifetime evaluation plan has been developed based on the
evaluation point definition based on the years. This technique sets the evaluation
point at the half of the estimated minimum bus BT lifetime applied to both fleets
BT lifetime plan development.

4.4.1.1 Evaluation point and battery plan definition of the fleet with
LTO

The bus-to-route operation of the previous section has been processed to estimate
the fleet BT lifetime, obtaining the fleet picture shown in Fig. 4.9. Based on
the obtained median of the buses BT lifetime, the buses BT lifetime horizon has
been set to 12 years. This median is calculated based on the estimated buses
BT lifetime. This lifetime horizon matches with the fleet service EOL, avoiding
completely BT replacements.

Figure 4.9: LTO based fleet BT lifetime initial picture.

The fleet buses BT lifetime varies from 7.81 to 15 years. On the one hand,
the difference between the fleet service lifetime of 12 years and the bus with the
minimum BT lifetime estimation is below 5 years (for the bus number 7). On
the other hand, the difference between the fleet service lifetime and the bus with
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the maximum BT lifetime estimation is 3 years above (for the bus number 3).
Both cases need a BT operation correction. Based on the minimum bus BT
lifetime of 7.81 years (limited by bus 7), the evaluation point has been set to 3.9
years. However, due to the evaluation time step, which is one week, it has been
approximated to 3.78 years for all the buses of the fleet.

The fleet status at the evaluation point is shown in Tab. 4.5. All the buses of
the fleet have the SOH above 90%. Bus 7 is the closest bus to this value, having
90.01% SOH, even though it is the bus with the longest driven distance. The bus
with the shortest driven distance, bus 10, matches with the highest SOH.

Table 4.5: LTO based fleet buses BT status at the evaluation point based on years.

Bus Years SOH Kilometers
1 3.78 93.29 515,000
2 3.78 92.65 484,000
3 3.78 94.66 274,000
4 3.78 94.12 391,000
5 3.78 93.20 347,000
6 3.78 92.75 509,000
7 3.78 90.01 561,000
8 3.78 90.93 554,000
9 3.78 93.29 452,000
10 3.78 94.37 349,000

4.4.1.2 Evaluation point and battery plan definition of the fleet with
NMC

For the case study of the fleet of P-HEBs with NMC BT chemistry, the buses BT
lifetime fleet status is shown in Fig. 4.10. Based on the minimum BT lifetime
of 2.33, the evaluation point has been established in the middle of that lifetime,
being 1.17 years and corresponding to the bus number 7.

As in the previous scenario, all the other routes are above 90% of SOH as it
can be observed in Tab. 4.6. This BT SOH status allows the buses BT lifetime
correction and management to fix to the buses BT lifetime planned horizon. In
the previous BT lifetime horizon, BT replacements were avoided. On the contrary,
in this case the BT lifetime horizon, based on the fleet buses BT lifetime median
has been set to 4 years.

127



Chapter 4. Fleet Level Decision Maker for Energy Management
based on Battery Aging

Figure 4.10: NMC based fleet BT lifetime initial picture.

Table 4.6: NMC based fleet BT status at the evaluation point based on years.

Bus Years SOH Kilometers
1 1.17 93.10 159,000
2 1.17 94.03 150,000
3 1.17 96.50 84,800
4 1.17 96.26 120,000
5 1.17 94.69 107,000
6 1.17 91.94 157,000
7 1.17 89.90 173,000
8 1.17 91.48 171,000
9 1.17 94.38 140,000
10 1.17 96.68 108,000

4.4.2 Fleet TCO Evaluation

The TCO of the fleet is updated in every BT lifetime evaluation point. The period
starts at the fleet commissioning instant until the defined evaluation point. The
obtained fleet TCO applying the ANFIS based EMS has been compared with a
fleet operating with the CD-CS EMS.

At this point, no BT replacements are required and all the buses have the
same initial BT cost. Therefore, this price has been excluded from the TCO
calculation, since it is constant for all buses. The factors taken into account in
the TCO calculation have been the fuel cost and the recharging energy and power
costs.

The P-HEB fleet with LTO BT chemistry has been firstly evaluated, as depicted
in Fig. 4.11. The TCO calculation period has been understood between the fleet
commissioning until the evaluation point at the year 3.78. It should be emphasized
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that for all the routes the operation cost has been minimized with the ANFIS based
EMS, decreasing operation cost from 4.11% up to 7.56%. The whole fleet TCO
has been improved a 5.06 % applying the ANFIS based EMS.

Following the previous procedure, the P-HEB fleet with NMC BT chemistry
has been also evaluated, as shown in Fig. 4.12. The evaluation period in this
case has also been understood between the fleet commissioning to the evaluation
period, defined at the year 1.17. All the buses TCO has been decreased and savings
are reached with the ANFIS EMS compared with the CD-CS EMS. The obtained
improvements are ranging from 3.8 % and 7.64 %.

The overall fleet TCO has also been evaluated in the defined time period with
an improvement of 4.77 %. It is important to note that a higher improvement has
been achieved in the fleet with LTO compared with the fleet with NMC. The main
reason for this difference is the evaluation period, which has been longer for the

Figure 4.11: TCO comparing ANFIS based EMS with the CD-CS EMS of the
fleet with LTO.
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Figure 4.12: TCO comparing ANFIS based EMS with the CD-CS EMS of the
fleet with NMC.

LTO case (3.78 years compared with 1.17 years).

Longer operations are better when main minimization target is the fuel or
hydrogen consumption. However, in the long-term operation projection, the BT
costs play a key role on the fleet TCO. Therefore, according to the current fleet BT
lifetime estimation picture, decisions have to be made. In this way, the short-term
bus overall efficiency is improved, combined with the long-term fleet buses BT
lifetime management.

4.4.3 Fleet Routes Re-Organization

Putting the focus on the long-term operation and fleet buses BT lifetime, in this
section, the fleet routes re-organization is performed. This routes re-organization
is pursued to manage the buses with the most critical BT SOH. These buses
are those where the BT lifetime estimation is far above or below from the buses
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BT lifetime horizon. An EMS update is not enough to correct the BT lifetime.
Therefore, a routes re-organization has to be applied.

4.4.3.1 Routes Re-Organization of the Fleet with LTO

The BT lifetime picture of the fleet with LTO chemistry is shown in Fig. 4.13. The
grouping process of the least demanding, most demanding, and average demanding
routes has been performed with the information of the cycle daily distance, mean
route speed and routes grouping. The buses with a BT lifetime estimation 20%
below (BT lifetime estimation < 9.6 years) or above (BT lifetime estimation >

14.4 years) the defined BT lifetime horizon of 12 years have been grouped in the
least or most demanding routes respectively. The rest of the lines within the 20%
threshold have been grouped as average demanding.

Figure 4.13: BT SOH evaluation and lifetime estimation of the LTO based fleet.

The least demanding routes, in this case, lines 3 and 10, match with the routes
that have the shortest cycle and daily driven distance and the lowest average speed.
The most demanding routes are the routes that have the longest cycle and daily
distance and the higher average speed, identifying routes 7 and 8 in this group
and being line 7 the most demanding one. The main reason for being the line 7
the most demanding route in comparison with line 8, is the longer cycle length.
The longer cycle length depletes more the BT and consequently, degrades more
the BT. Finally, the remaining routes with an average BT degradation within the
20% BT lifetime horizon threshold have been grouped in the average demanding
class.

In Table 4.7, the routes re-scheduling is sum-up. Bus 3 that was operating in
line 3 has been exchanged for the most demanding line 7. Bus 7 that was operating
in the most demanding route has been exchanged for the least demanding route
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3. The same decisions have been applied for the subsequent the most and the
least demanding lines, 8 and 10 respectively. In the buses driving in the average
demanding routes, the EMS has been updated, but they do not require routes
re-organization for achieving the buses BT lifetime target of 12 years.

Table 4.7: Buses and routes exchanging of the LTO based fleet.

Group Bus number Current line Exchanged for line

Best SOH
3 3 7

10 10 8

Worst SOH 7 7 3

8 8 10
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Figure 4.14: BT lifetime, BT consumption and yearly driven distance correlation
for the fleet with LTO chemistry.

For the fleet with LTO chemistry the correlation is studied in Figs. 4.14
and 4.15. This study helps to understand and identify the correlation between
the different factors that affect to the BT lifetime. First, the BT lifetime, BT
consumption, and yearly driven distance have been correlated in Fig. 4.14. The
influence of each parameter affecting to the BT lifetime can be evaluated. It
is worth highlighting that the yearly driven distance is more critical than an
aggressive use of the BT and a high BT consumption per kilometer, if the BT
is operated within the operation limits. This is explained by the higher number
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Figure 4.15: BT lifetime, mean speed and yearly driven distance correlation for
the fleet with LTO chemistry.

of performed cycles and because the DOD degradation factor has a more negative
effect in the degradation rather than the high c-rates. The buses with the lowest
BT lifetime are those that have higher yearly driven distances with deeper cycles
and lower BT consumption (lower c-rates). The correlation of BT lifetime, mean
speed, and yearly driven distance is shown in Fig. 4.15. It is important to
highlight that the longest routes match with the highest mean speeds. Higher
driven distances involve a higher use of the BT, reducing the lifetime consequently.

4.4.3.2 Routes Re-Organization of the Fleet with NMC

For the fleet with NMC chemistry, the detailed BT lifetime is shown in Fig. 4.16,
which varies from the previous LTO based fleet. Based on the buses BT lifetime
estimation in Fig. 4.16, buses re-organization is performed. To make the most of
the BT, the median of the fleet buses BT lifetime has been set as the BT lifetime
horizon of 4 years.

In Fig. 4.16, the least demanding, most demanding and average demanding
routes have been grouped. In contrast to the LTO bus fleet, due to the the applied
FEC constraint in the NMC BTWöhler, the least demanding line in NMC bus fleet
is the tenth route and not the third one. The least demanding routes match with
those routes that have the shortest cycle and daily driven distance and the lowest
average speed, in this case lines 3, 4 and 10. Only route 5 has lower mean speed and
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Figure 4.16: BT SOH evaluation and lifetime estimation of the NMC based fleet.

shorter driven distance than line 4. However, line 5 has a lower BT lifetime, due to
the higher aggressiveness than the other routes. The most demanding routes are
those with a longer cycle, daily distance, and a higher average speed, identifying
routes 6, 7 and 8 in this class. The main reason for this fact, in comparison
with lines 6 and 8, is the longer cycle length, that depletes more the BT and
consequently degrades more the BT. Finally, the remaining routes that have an
average BT degradation, have been grouped in the average demanding class. In
the buses that operate in these routes, the EMS have been updated, but they do
not participate in the route re-organization process, since for achieving the buses
BT lifetime target of 4 years their current BT lifetime is within the 20% threshold
of the lifetime horizon target.

In Table 4.8, the routes re-scheduling is sum-up. Bus number 10 that was
operating in line 10 has been exchanged for the most demanding line 7. Bus
number 7 that was operating in the most demanding route, has been exchanged
for the least demanding route 10. The same decisions have been applied for the
second and third most and least demanding lines, 3, 4, 6 and 8 respectively. Bus
number 3 has been exchanged for line 8, bus number 8 for line 3, bus number 4
has been exchanged for line 6 and bus number 6 for line 4.

In Figs. 4.17 and 4.18, the correlation between the buses operation factors
affecting to the BT lifetime degradation has been also analyzed. As studied in
the fleet of buses with LTO chemistry, first the BT lifetime, BT consumption, and
yearly driven distance have been correlated in Fig. 4.17. The obtained picture
follows the same pattern as the fleet of buses with LTO chemistry with lower BT
lifetimes. The lowest buses BT lifetime is again given in the highest yearly driven
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Table 4.8: Buses and routes exchanging of the NMC based fleet.

Group Bus number Current line Exchanged for line
3 3 8

Best SOH 4 4 6
10 10 7
6 6 4

Worst SOH 7 7 10
8 8 3

distances routes, since the BTs degrade faster owing to the number and depth of
the cycles. As shown in Fig. 4.18, the BT lifetime, mean speed, and yearly driven
distance correlation follows a very linear pattern, being directly correlated the
mean speed, BT lifetime, and yearly driven distance. The longest routes are the
extra urban routes with higher mean speeds than the urban routes. The deeper
cycles of the extra urban routes affects in a negative way the BT degradation.

4.4.4 EMS Update Decision Maker based on Buses
Battery Aging: Technical Analysis

The fleet of buses with LTO chemistry and the fleet of buses with NMC
chemistry EMS update have been technically analyzed and compared. In the
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Figure 4.17: BT lifetime, BT consumption and yearly driven distance correlation
for the fleet with NMC chemistry.
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technical evaluation, the fuel consumption, and BT lifetime have been analyzed.
Furthermore, the obtained technical results for both fleets have been compared.

For the long-term route-to-bus EMS update, two separate technical analyses
have been carried out: first, the technical fuel consumption analysis of the whole
fleet and second the buses BT lifetime study of the whole fleet.

The objective is to highlight the importance of updating the EMS with the
DP optimization, to make the most of the proposed hierarchical EMS. Therefore,
the updated EMS and the non-updated results are technically compared for both
fleets, i.e. the fleet of buses based on LTO BT and the fleet of buses based on
NMC BT.

4.4.4.1 EMS Update Decision Maker based on Fuel Consumption
Technical Impact

The evaluation, in terms of fuel consumption of the two fleets are shown in Tables
4.9 and 4.10. The tendency of the obtained results for the two fleets has been
an increase on fuel consumption compared to the not updated fleet. The highest
fuel consumption increase matches in both fleets with the buses that have the
worst BT SOH. On the contrary, the buses that have been exchanged for a less
demanding route have improved their fuel consumption. In spite of the obtained
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Figure 4.18: BT lifetime, mean speed and yearly driven distance correlation for
the fleet with NMC chemistry.
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results in terms of fuel consumption, in Subsection 4.4.5, a fleet level overall TCO
improvement is shown.

As regards the fuel consumption of the LTO based fleet, the obtained results
are shown in Tab. 4.9. It highlights that only the buses that have been exchanged
for the less demanding to the most demanding lines (bus 3 and 10) and bus 4 have
reduced the fuel consumption. All these three buses have the estimation of BT
lifetime above the BT lifetime horizon (bus 3 25%, bus 4 15%, and bus 10 21%
above the BT lifetime horizon) and have been corrected to decrease and fit the BT
lifetime target. For these buses, the BT utilization is increased, minimizing the
fuel consumption. The re-scheduled buses and exchanged for the least demanding
routes 7 and 8 have the highest fuel consumption increase. This fuel consumption
increase is due to the exchange for the least demanding to the most demanding
routes, with an increase of 74.71 % and 31.25 % respectively. The remaining buses
BT lifetime estimation was below the BT lifetime horizon, needing to increase the
fuel usage in order to manage the BT lifetime to the 12 years target.

In the case of the NMC based fleet, most of the buses BT lifetime estimation
are above the BT lifetime horizon, buses 3, 4, 5, 9 and 10. All these buses, except
4, have a fuel consumption decrease. In this scenario, the buses that have been
exchanged for a more demanding route (buses 6, 7 an 8) except exchanged bus
6 have a fuel consumption increase. The opposite scenario is identified in the
exchanged buses for less demanding routes (buses 3, 4 and 10). In this case,
all the buses have a fuel consumption decrease except bus 4. The identified two
exceptions matches with a exchange for the route 4 and 6, showing the opposite
behavior in terms of fuel consumption. On the one hand, route 4 is in the lower
edge of the least demanding group, having the lower BT lifetime estimation of the

Table 4.9: Fuel consumption of the LTO based fleet.

Buses
Fuel consumption [l/100 km] DP

Error
[%]

Non-
updated
diff. [%]

Non-update
EMS

DP
Re-optimization

Updated
EMS

1 35.29 40.38 42.34 4.85 +19.98
2 39.81 47.04 47.80 1.62 +20.07
3 55.18 38.96 40.48 3.90 -26.64
4 39.86 35.85 38.55 7.53 -3.29
5 44.10 44.92 46.93 4.47 +6.42
6 34.52 40.24 41.79 3.85 +21.06
7 35.95 60.58 62.81 3.68 +74.71
8 36.42 45.22 47.80 5.70 +31.25
9 40.43 43.76 45.51 4.00 +12.56
10 44.84 41.22 42.34 2.71 -5.58
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Table 4.10: Fuel consumption of the NMC based fleet.

Buses
Fuel consumption [l/100 km] DP

Error
[%]

Non-
updated
diff. [%]

Non-update
EMS

DP
Re-optimization

Updated
EMS

1 35.11 38.26 40.68 6.33 +14.7
2 39.85 43.81 46.40 5.91 +15.19
3 54.57 34.89 37.01 6.08 -38.35
4 39.31 37.68 39.40 4.56 +0.23
5 43.45 37.94 40.51 6.77 -7.00
6 34.64 32.77 35.72 9.00 -3.07
7 39.19 39.32 42.52 8.14 +8.15
8 36.66 42.01 46.76 11.31 +24.21
9 40.58 36.32 38.75 6.69 -4.61
10 44.28 37.20 38.99 4.81 -12.71

group. On the other hand, route 6 is on the top edge of the most demanding lines
group, having the longest BT lifetime estimation of the group. Being in the edges
of both groups makes to have an opposite behavior in these two buses. Buses 1 and
2 are below the BT lifetime horizon in the average demanding group. To correct
and fulfill the BT lifetime target of 4 years the fuel consumption is increased.

It is important to highlight the higher fuel consumption for the LTO based bus
fleet than for the NMC based bus fleet. The higher fuel consumption is due to the
higher BT lifetime increase to meet the BT lifetime horizon of 12 years for LTO
comparing with the 4 years NMC BT lifetime horizon.

Figure 4.19: Fleets fuel consumption comparison.

Regarding the fleets fuel consumption comparison shown in Fig. 4.19, it is
worth stressing the close median fuel consumption. The fuel consumption increase
is higher in the case of the LTO based fleet (10.27%) than for the NMC based fleet
is (0.95%). The reasoning follows the aforementioned explanation, the BT aging
years to be corrected for the LTO based fleet are greater.
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Table 4.11: Fleet BT aging technical evaluation of both fleet.

Buses LTO BT lifetime [years] Non-
updated
diff. [%]

Buses NMC BT lifetime [years] Non-
updated
diff. [%]

Non-update
EMS

Updated
EMS

Non-update
EMS

Updated
EMS

1 11.92 12.35 +3.61 1 3.54 4.35 +22.88
2 10.81 12.15 +12.40 2 3.9 4.37 +12.05
3 15.0 12.01 -22.01 3 6.87 4.14 -39.74
4 13.85 12.77 -7.80 4 6.17 4.22 -31.60
5 11.65 12.15 +9.61 5 4.37 4.07 +6.86
6 10.82 12.22 +12.94 6 3.03 4.24 +39.93
7 7.81 12.07 +54.55 7 2.31 4.07 +76.19
8 8.7 12.07 +38.74 8 2.74 4.24 +54.75
9 11.98 12.36 +3.17 9 4.33 4.24 -2.08
10 14.59 12.35 -15.35 10 6.96 4.09 -41.24

4.4.4.2 EMS Update Decision Maker based on Battery Aging
Technical Impact

The applied updated EMS behavior in terms of BT lifetime management has been
analyzed. The evaluation period has started in the SOH evaluation point to the
end of the fleet service life. The obtained results are shown in Table 4.11. The
overall buses BT lifetime of the fleet has increased up to 76.19 %. However, in those
buses that have been exchanged for the most demanding lines, the BT lifetime has
been reduced.

Updating the EMSs of the LTO and NMC based fleets the BT lifetime targets
of 12 and 4 years respectively are fulfilled. On the contrary not updating the EMSs,
buses 3, 4, 5, 9 and 10 for the NMC based fleet and buses 3 and 10 for the LTO
based fleet met the goal. These buses again match with the buses with the fuel
consumption reduction. To sum up, the non-updated EMS have random results,
as they were initially designed for specific conditions, and these conditions have
changed throughout the bus lifetime. Therefore, to ensure the BT management,
the EMS needs to be updated.

In Fig. 4.20, both fleets BT lifetime are compared. The obtained median values
indicated with the red line are close compared to the non-updated and updated
EMS. In the case of the NMC based fleet, the median lifetime has increased 4.37%.
For the case of the LTO based fleet has an increase of 3.48%. Median values so
close means that the BT lifetime management is applicable. As conclusion, the
fleet BT lifetime median is a good indicator for the fleet buses BT lifetime horizon
target definition.
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Figure 4.20: Fleets BT aging comparison.

4.4.5 EMS Update Decision Maker based on Buses
Battery Aging: TCO Evaluation

After the technical evaluation, a TCO analysis has been performed. The TCO
has been evaluated from the SOH evaluation point to the buses BT EOL. For the
TCO evaluation of the whole fleet, the medium BT cost scenario has been applied.
After this, the three cost scenarios defined in Tab. 2.7 have been analyzed for the
route-to-bus and fleet TCO improvement rate analysis.

4.4.5.1 TCO evaluation of the Fleet with LTO Chemistry

The LTO based bus fleet TCO at vehicle level has been improved within the
range of 1.14 % and 31.84 %, as shown in Fig. 4.21. This improvement has been
obtained applying the proposed fleet management methodology. However, those
buses that have been exchanged for the most demanding lines (routes 3 and 10)
have increased their TCO at vehicle level. However, this is compensated with the
avoidance of BT replacement on those buses operating in the initial period on the
most demanding lines by means of the fleet manager. It is must be emphasized
the operation modification for bus 7. To reach the service life target, the operation
has been changed to start and finish nearly at the same SOC. This is the reason
for having low energy and power costs.

To analyze the improvement and demonstrate the need to exchange buses, an
evaluation for the exchanged and non-exchanged buses has been carried out, as
shown in Fig. 4.22. For this analysis, low, medium, and high BT cost scenarios
(LTO cost scenarios described in Tab. 2.7) have been studied in the 4 buses where
exchanging has been applied. It is important to acknowledge that in the three
cost scenarios an improvement is achieved, ranging from 4.19% to 5.62%.
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Figure 4.21: TCO of the non-updated and updated buses of the LTO based fleet.

Figure 4.22: TCO analysis of non-exchanged and exchanged buses of the LTO
based fleet.
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Figure 4.23: LTO based fleet TCO analysis of the non-updated/non-exchanged
and updated/exchanged buses.

Regarding the fleet total TCO improvement analysis, the three price scenarios
have also been evaluated as depicted in Fig. 4.23. With the proposed approach,
the buses BT lifetime requirements are met and a TCO improvement has been
achieved. In the low, medium and high BT price scenario a fleet TCO improvement
of 3.85%, 4.38% and 5.62% has been achieved respectively .

4.4.5.2 TCO evaluation of the Fleet with NMC Chemistry

The scenario from the evaluation point until the buses EOL has been evaluated,
being defined at 12 years.

For the case of NMC based fleet, an improvement from 0.4 % to 29.27 % has
been obtained, as shown in Fig. 4.24. As happened for the LTO based fleet,
those buses that have been exchanged for the most demanding lines (routes 3, 4
and 10) have increased their TCO. The rest of the buses TCO has been improved
managing their BT lifetimes.

As it has been done for the LTO bus fleet, to analyze the improvement and
demonstrate the need to exchange some buses, an evaluation of exchanged and
non-exchanged buses has been carried out and depicted in Fig. 4.25. For this
analysis low, medium, and high BT cost scenarios for NMC have been studied
with the 6 buses that have been exchanged. It is important to underscore that in
the three cost scenarios an improvement is achieved, ranging from 2.72% to 3.06%.
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Figure 4.24: TCO of the non-updated and updated buses of the NMC based
fleet.

Figure 4.25: TCO analysis of non-exchanged and exchanged buses of the NMC
based fleet.
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The whole fleet TCO improvement has been represented in Fig. 4.26. In the
three BT price scenarios, a TCO improvement has been achieved. The achieved
fleet TCO improvement for the low, medium and high BT price scenarios, has
been of 1.84%, 2.1%, and 2.3% respectively.

Figure 4.26: NMC based fleet TCO analysis of the non-updated/non-exchanged
and updated/exchanged buses.
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4.5 Conclusions
In this chapter a hierarchical EMS for TCO management at fleet level has been
proposed. The proposed approach is based on a hierarchical decision maker with
a management composed of three levels. The upper level is the offline data
exploitation and decision making at fleet level, to perform the fleet energetic
management with the upper fleet level point of view executed in the cloud. The
fleet level makes the decisions for the next lower level, the offline optimization, and
strategy design at vehicle level. This intermediate level optimizes the operation
and designs the ANFIS based EMS for each bus also in the cloud. Finally, at
the lower level, in the online operation level, the developed ANFIS based EMS is
operated onboard on each bus in real time. This lower level, to determine the split
factor of the available power sources in the bus in the most efficient way.

As a result, three fleet management techniques have been defined. The
bus-to-route vehicle level management, the route-to-bus fleet re-organization, and
the route-to-bus fleet buses energy management strategy update. Performing the
first technique bus-to-route vehicle level management, the fleet of buses can be
adapted to the optimal operation of each route. The second route-to-bus fleet
re-organization technique, performs a buses re-organization. The third technique
updates the online EMS throughout the bus lifetime. These decisions are made
based on the developed BT lifetime evaluation plan of the fleet, to meet the planned
TCO requirements. The proposed hierarchical EMS has been analyzed in two
fleets: LTO BT based fleet and NMC BT based fleet.

The conclusions are summarized as follows:

• The proposed bus-to-route approach to adapt each bus operation to each
route from the initial moment to the end of the fleet service life, replicating
the DP optimal operation by means of the ANFIS based EMS. This EMS
improves the local efficiency of each bus composing the fleet. In the studied
two case studies, technical and economic improvements have been obtained
in both fleets, obtaining close results to the DP optimal operation in terms
of fuel consumption.

• The route-to-bus fleet re-organization is applied once the fleet operation
arrives to the defined evaluation point, targeting to balance the critical BT
lifetimes of the buses. The buses with the BT lifetime estimation 20% above
the BT lifetime horizon and the buses with the BT lifetime estimation 20%
below the BT lifetime horizon are exchanged for manage the BT lifetimes.

145



Chapter 4. Fleet Level Decision Maker for Energy Management
based on Battery Aging

Fleet re-organizations have been performed in two different fleet (LTO and
NMC) scenarios. In the first scenario, a LTO based fleet of vehicles without
replacements has been studied. On the contrary, in the second scenario,
a NMC based fleet of vehicles with periodically planned replacements has
been analyzed. Three BT cost scenarios have been defined, to analyze
different future scenarios. In the analyzed scenarios, the re-organized fleet
TCO has been improved compared to the non-re-organized fleet. The
fleet re-organization,consequently, provides the possibility to balance those
buses with the worst and best BT SOHs, avoiding unnecessary extra BT
replacements or buses arriving to the fleet service EOL with a high BT
SOH.

• As a secondary fleet energy management measure, the EMS update has been
proposed. The ANFIS based EMS update allows to combine the short-term
overall vehicle efficiency targets with the long-term BT lifetime objective. In
this way, the management takes advantage of all the available resources to
improve the TCO of the whole fleet further. As a conclusion, when managing
a fleet of vehicles, the fuel consumption minimization is a key factor for
short-term management. However, for the whole fleet TCO improvement,
the long-term buses BT lifetime must be considered.
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Summary
In this final chapter the main conclusions, key findings, and contributions of

the present Ph.D. thesis in the field of the fleet energy management are collected.
Finally, future research are pointed out.



Chapter 5. Conclusions and Future Research Lines

5.1 Conclusions
Energy management at vehicle and fleet level has been studied. The focus has
been on the road public transport electrification, more specifically on fleet of
buses. The digitalization new trend that allows to have additional information
of the operation, increased computational resources or decentralized management
structures. These new resources make possible to integrate advance energy
management strategies and widen the degrees of freedom to optimize the total
cost of ownership of a whole fleet. The total cost of ownership is a key aspect
to manage to make the best use of the available resources onboard the bus. In
this scope, two main potential candidates for the present and near future public
transport electrification solutions have been studied: Plug-in Hybrid Electric Buses
and Fuel-Cell Hybrid Electric Buses.

The most relevant gaps in the state-of-the-art regarding fleet energy
management can be split into two. On the one hand, the digitalization
for managing energetically a fleet of vehicles for the total cost of ownership
improvement by means of learning based energy management strategies. On
the other hand, the exploration and application of the new discovered degrees
of freedom derived from the fleet level point of view.

To address an aforementioned first gap, a novel adaptive neuro-fuzzy inference
system learning based energy management strategy conscious of the battery
aging has been developed for the vehicle level energy management. This
learning based energy management strategy allows to combine the short-term
and long-term management. On the one hand, the instantaneous power/energy
short-term management to achieve close results to the dynamic programming
optimal operation. On the other hand, the buses battery state of health long-term
management evolution.

The adaptive neuro-fuzzy inference system technique takes advantage of the
data acquisition, data storage, and cloud computing solutions provided by the
digitalization. It allows to directly learn from the optimized scenario in different
operating conditions, adapting the buses operation to each route and managing
the power sources in an efficient way.

To address the second gap, a hierarchical fleet energy management strategy,
that includes the adaptive neuro-fuzzy inference system energy management
strategy as part of the hierarchical architecture has been proposed. The fleet
energy management strategy allows to apply the discovered new degrees of
freedom from the fleet level point of view. The primary bus-to-route fleet
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management, aiming to adapt each bus operation to each route. The route-to-bus
fleet re-organization has been proposed as the secondary fleet management
approach, aiming at balancing the most critical buses batteries lifetime. As a
third technique, the bus-to-route adaptive neuro-fuzzy inference system energy
management strategy update has been identified. This update allows to take
advantage of continuous motorization solutions offered by the digitalization and
update the operation to the new conditions of the bus throughout the fleet lifetime.

Therefore, the main contribution of this Ph.D. thesis is the development of
a hierarchical energy management strategy at fleet level to optimize the total
cost of ownership of a whole fleet, allowing to ensure the minimum operating
cost of vehicles while ensuring the buses battery lifetime for the planned battery
replacement horizon.

The adaptive neuro-fuzzy inference system learning based energy management
strategy evaluation at vehicle level has been tested in different scenarios. The
adaptive neuro-fuzzy inference system technique enables to replicate and obtain
really close results to the dynamic programming optimal operation. Therefore,
the obtained results in terms of fuel consumption and battery aging are really
close to the optimal ones. The real-time validation of the adaptive neuro-fuzzy
inference system based energy management strategy has been performed in a
hardware-in-the-loop platform, which proves the ability to run the adaptive
neuro-fuzzy inference system based energy management strategy in real-time.

The similarity of the series plug-in hybrid electric bus powertrain to the parallel
fuel cell hybrid electric bus powertrain allows to directly apply the developed
solutions in both types of vehicles. In this way, it has been demonstrated that
the solution for the series plug-in hybrid electric bus powertrain is applicable
for the parallel fuel cell hybrid electric bus powertrain. The direct application
paves the way and provides solutions for the oncoming fuel-cell hybrid electric
buses, facilitating their integration and reducing the offset costs compared to other
technologies.

The upper fleet level point of view offers new degrees of freedom, allowing to
fulfill the fleet buses battery lifetime evaluation plan. Three techniques have been
developed, the bus-to-route, the fleet re-organization, and the adaptive neuro-fuzzy
inference system energy management strategy update. The primary bus-to-route
fleet management, optimize each bus operation for each route in the fleet. The
secondary fleet re-organization exchanges the buses with the best and worst battery
state of health, aiming at managing the battery degradation in new routes. As
third management technique, the update of the fleet adaptive neuro-fuzzy inference
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system energy management strategy update has been proposed. This technique
is applied to the whole fleet to fulfill the battery lifetime target with the lowest
operation costs.

The developed hierarchical fleet energy management strategy has been
analyzed in two case studies: a fleet of buses with LTO battery chemistry and
a fleet of buses with NMC battery chemistry. These two case studies have allowed
to provide and analyze solutions for a fleet of vehicles without battery replacements
and a fleet of vehicles with periodically planned battery replacements. For these
two scenarios, first, a fleet buses battery lifetime evaluation plan has been defined,
based on the fleet battery lifetime estimation. The correct compliance of the
developed battery lifetime plan ensures improving the total cost of ownership of
the whole.

As a general conclusion, it can be stated that the present Ph.D. thesis has
contributed to the topic of energy management, providing solutions for the vehicle
and fleet level total cost of ownership improvement, ensuring the minimum
operation costs and managing the battery lifetime according to the developed
fleet battery lifetime plan. In this regard, evaluations in different scenarios
with different battery chemistries, such as LTO and NMC, and with different
powertrains, plug-in hybrid electric buses and fuel-cell hybrid electric buses, have
been performed. All these scenarios have been analyzed based on the developed
Digi e-FLeet simulation platform (registered as software license). This simulation
platform allows to study different vehicle types, battery chemistries, and routes.
As outputs, the fleet operation and the total cost of ownership are obtained. It
is important to underline that the obtained results are closely related to the case
studies and developed bus models. In this way, the conclusions have been related
to the qualitative results and not to the quantitative results.

150



5.2 Future Work

5.2 Future Work
From the work developed in the Ph.D. thesis, future research have been:

• The integration of the battery state of health information as an input in
the ANFIS based energy management strategy. Optimizations of different
state of health levels have to be performed and included in the data-base
used for the learning process. This will allow to develop a self adaptive
energy management strategy conscious of the battery state of health. This
development is under the process to be patented.

• The energy management strategies analysis with a more reliable genset
dynamic model and characterized fuel cell model. This integration will allow
to take a step closer to the results that will be obtained in a real operation. It
is worth mentioning that the obtained results in this Ph.D. thesis are closely
related to the case studies and considered bus models and reference data.
So, the results are highly dependent on input data. In this regard, the more
reliable inputs, the more realistic will be the quantitative results.

• The fuel-cell aging factors have been analyzed and taken into account for the
development of the fuel-cell hybrid electric bus ANFIS energy management
strategy. However, the lifetime management margin of the fuel-cell was
not possible to quantify. The implementation of a fuel-cell aging to the
methodology will allow to integrate the fuel-cell lifetime in the battery
evaluation plan and manage it throughout the bus lifetime.

• The developments of this Ph.D. thesis have been related to hybrid buses,
that have more degrees of freedom owing to the multiple power sources
onboard. Regarding the battery electric buses the degrees of freedom
are more constrained, limited to the charging and auxiliary consumption
efficiency improvement. The continuous monitoring of the digitalization
allows to follow closely the auxiliary elements behavior and consumption.
Having the auxiliary consumption information will make possible to develop
auxiliary elements models. In this regard, the energy management of the
auxiliary elements has been identified as a potential point to increase the
degrees of freedom. The auxiliary consumption management will allow to
improve the overall efficiency of the bus, consequently reducing the energy
consumption, recharging time and maximizing the battery lifetime.

• Following the current trend of the development and implementation of new
buses solutions, in a near future, a mixed fleet scenario is foreseen. Therefore,
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an extended evaluation of the proposed hierarchical fleet energy management
strategy on a mixed fleet scenario is proposed.

152



A
Fleet Buses Battery Aging

Evaluation Points Definition for
Route-to-Bus Applications



Appendix A. Fleet Buses Battery Aging Evaluation Points Definition
for Route-to-Bus Applications

A.1 Fleet Buses Battery Evaluation Point
Definition

The battery aging evaluation point definition is crucial, since it is the point
where the route-to-bus fleet management approach is performed. At this point,
the long-term management decisions are made. The BT aging management
is considered a long-term management and it has to be performed having the
sufficient margin to correct and fulfill the predefined lifetime target. The starting
point is with the fleet BT aging scenario, as depicted in Fig. A.1A. In this scenario,

Figure A.1: A: Fleet BT aging scenarios, B: Evaluation point definition based
on years evaluation, C: Evaluation point definition based on SOH evaluation and
D: Evaluation point definition based on kilometers evaluation.

Figure A.2: NMC based fleet BT lifetime initial picture.
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the buses lifetime (busnΨ busmΨ ), minimum (minΨ) and maximum (maxΨ) bus BT
lifetimes have to be estimated and fleet EOL point (PFleetEOL) has to be defined.
With this information, the fleet buses BT lifetime estimation heat map has to
be built. In this heat map, the estimated BT lifetimes of the fleet is shown, as
depicted in Fig. A.2.

Once the route-to-bus evaluation point has been defined, all the routes are
re-optimized with DP and the buses BT lifetimes are estimated, to ensure that
the buses fulfill the BT lifetime target.

Analyzing the fleet BT lifetime, three evaluation point definition techniques
have been studied for the NMC based fleet, with the aim to evaluate the best
solution to define the evaluation point. The NMC based fleet allows to study a fleet
with multiple replacements. The three evaluation point definition techniques are
the following ones: years evaluation, SOH evaluation and kilometers evaluation,
which are shown in Fig. A.1 B, C and D respectively.

Evaluation point definition based on fleet BT aging years: When defining
the evaluation point based on the buses operating years, the bus with the minimum
BT aging (minΨ) has to be identified. The evaluation point for all the fleet is
defined the half of the minimum BT aging bus, as shown in Fig. A.1B. The EOL
of the BT is limited at 80% of BT SOH or calendar degradation, as explained in
Sec. 2.4.

Evaluation point definition based on fleet BT aging SOH: The second
evaluation point definition method has been based on the SOH monitoring. In this
case, the buses with the minimum and maximum BT agings (minΨ and maxΨ)
have to be identified. The evaluation point is defined for each bus in the half
of SOH, except for those that have to be exchanged. The exchange process is
performed for two buses. The bus with the minimum BT aging evaluation point
is defined in the half of the SOH. At this point, the evaluation point for the bus
with the maximum BT aging is defined. The bus with the best BT SOH will
have a greater SOH than the half. Both buses are evaluated and the routes are
exchanged.

Evaluation point definition based on fleet BT aging kilometers: The last
evaluation point definition is carried out based on the fleet kilometers. Again the
buses with the minimum and maximum BT agings (minΨ and maxΨ) have to be
identified, however, the estimation has to be done in kilometers. Based on the fleet
operation planning, route to drive in, number of round trips and daily operation,
the lifetime operation kilometers are calculated. This operation information is
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used to estimate the kilometers to be performed, until the BT arrives to the EOL.
The evaluation point is defined for each bus in the half of the estimated kilometers
to be performed without replacements, except for those that have to be exchanged.
As it has been explained in the previous case, the exchange of the buses has to be
performed for two buses. The bus with the minimum BT SOH sets the evaluation
point for the bus to be exchanged. As in the case study for the SOH evaluation
point definition, both buses are evaluated and the routes are exchanged.

A.1.1 Evaluation Point Definition Based on Fleet Battery
Aging Years

The first case scenario is the one in which the evaluation point is defined by the
years. The evaluation point has been established in the year 1.17, since this year
the bus 7 (bus with the minimum BT lifetime estimation) arrives to the half of
SOH.

In Tab. A.1, it is shown the fleet buses battery status at the evaluation point
based on the years.

Table A.1: NMC based fleet BT status at the evaluation point based on years.

Bus Years SOH Kilometers

1 1.17 93.10 159,000
2 1.17 94.03 150,000
3 1.17 96.50 84,800
4 1.17 96.26 120,000
5 1.17 94.69 107,000
6 1.17 91.94 157,000
7 1.17 89.90 173,000
8 1.17 91.48 171,000
9 1.17 94.38 140,000
10 1.17 96.68 108,000

The TCO of each bus has improved from 0.4 % up to 29.27 %, as shown in
Fig. A.3, except for the exchanged buses. More specifically the buses that have
been exchanged for the most demanding lines (routes 3, 4 and 10) have increased
their own TCO. However, the BT aging estimation of the buses operating in the
most demanding routes in the initial period have been corrected with the buses
exchange. The exchange and EMS update have allowed to replace the BTs at the
predefined point..

For analyzing the range of improvement and demonstrate the need for exchange
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Figure A.3: TCO of non-updated and updated buses.

Figure A.4: TCO evaluation exchanged and non-exchanged buses.
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the buses, an evaluation of the exchanged and non-exchanged buses has been
carried out, as shown in Fig. A.4. Low, medium and high BT cost scenarios
(NMC cost scenarios described in Tab. 2.7) have been studied in the 6 buses
where exchanging has been applied. It is imporatnt to note that in the three cost
scenarios an improvement is achieved, ranging from 2.29% up to 2.62%.

Regarding the overall fleet TCO improvement analysis, the three price
scenarios have been evaluated. In the proposed approach, the buses BT lifetime
requirements and TCOmodel are achieved. The obtained TCO at fleet level results
for the low, medium, and high BT price scenarios an improvement of 1.84%, 2.1%
and 2.3% has been achieved respectively.

A.1.2 Evaluation Point Definition Based on Fleet Battery
Aging State of Health

In the second case study, the evaluation point has been defined according to the
SOH. The evaluation point has been carried out when the buses BT lifetime arrive
at the half of the BT SOH EOL for each bus. Following the previous evaluation
point definition, the buses that have to be exchanged for the most demanding lines
are excluded. This is the case for buses 3 and 8 at year 1.19, buses 4 and 6 at year
1.34 and bus 10 and 7 at year 1.24, as shown in Tab. A.2.

Table A.2: Fleet buses battery status at the evaluation point based on SOH.
Bus Years SOH Kilometers

1 1.63 90.36 242,000
2 1.70 91.22 245,000
3 1.19 92.23 96,900
4 1.34 91.59 155,000
5 2.57 91.80 265,000
6 1.34 90.76 203,000
7 1.12 90.99 175,000
8 1.19 90.71 196,000
9 1.85 91.09 249,000
10 1.24 96.40 117,000

Compared to the previous evaluation point definition technique, an additional
bus to the exchanged buses for a more demanding line (buses 3, 4 and 10) has
worsen the TCO, the 9. bus. The obtained improvement ranges are comprised
between 0.6 % up to 26.84 %, as shown in Fig. A.5. Even thought worse results
than in the previous study have been obtained, an improvement of the TCO in
the exchanged buses is achieved compared to the non-exchanged buses. These
improvement are comprised between 0.22% up to 0.78%, evaluating the different
BT price scenarios.
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Figure A.5: TCO of non-updated and updated buses.

Figure A.6: TCO evaluation exchanged and non-exchanged buses.
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The overall fleet TCO improvement obtained for the low, medium and high
BT price scenarios has been of 0.04%, 0.33%, and 0.55% respectively.

A.1.3 Evaluation Point Definition Based on Fleet Battery
Aging Kilometers

In the last case study, the evaluation point is defined by the kilometers. The
kilometers evaluation requires the study performed in Subsec. 4.2, to determine
the kilometers to operate each bus. According to this operation, the kilometers
performed by each bus until the BT arrives to the BT EOL is estimated. From the
estimated kilometers for each BT lifetime, the evaluation point has been defined in
the half of kilometers. The buses that have been exchanged are excluded from this
evaluation point, to perform the exchange of buses and manage the BT lifetime.
This is the case for buses 3 and 8 at year 1.4, buses 4 and 6 at year 1.48 and bus
10 and 7 at year 1.17, as shown in Tab. A.3.

Table A.3: Fleet buses battery status at the evaluation point based on kilometers.

Bus Years SOH Kilometers

1 1.72 89.86 234,000
2 1.87 90.39 239,000
3 1.40 95.81 102,000
4 1.48 95.22 154,000
5 1.21 89.86 203,000
6 1.48 89.80 200,000
7 1.17 89.90 173,000
8 1.40 89.74 205,000
9 1.70 91.83 203,000
10 1.17 96.68 108,000

Analyzing the TCO of each bus, more buses have worsen the TCO compared to
the previous two techniques. Applying this technique, in addition to the exchanged
buses 3, 4 and 10 for worse routes, buses 1, 5 and 9 have worsen their individual
TCO. However, at fleet level an improvement comprised from 0.46 % to 29.52 %
has been obtained, as depicted in Fig. A.7.

As analyzed in the previous two case studies, an evaluation for the exchanged
and non-exchanged buses has been carried out, as shown in Fig. A.8. For this
analysis, the same BT cost scenarios have been studied in the 6 buses where
exchanging has been applied. It is should be emphasized that in the three cost
scenarios an improvement is achieved, ranging from 0.89% up to 1.32%.
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Figure A.7: TCO of non-updated and updated buses.

Figure A.8: TCO evaluation exchanged and non-exchanged buses.
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Appendix A. Fleet Buses Battery Aging Evaluation Points Definition
for Route-to-Bus Applications

With the last technique, even though the worst results have been obtained
compared to the previous scenarios, still an improvement of the TCO at fleet
level has been obtained. In addition, the planned BT replacements have been
achieved. The obtained overall fleet TCO improvement for the studied three BT
price scenarios, low, medium, and, high, have been of 0.12%, 0.4%, and 0.62%
respectively.

A.1.4 Conclusions

After the three techniques evaluation, the evaluation point definition based on the
fleet BT aging years technique has resulted in being the most effective technique. It
is important to highlight that it is the technique defining the earliest the evaluation
point. This early evaluation allows to manage and correct the fleet BT lifetimes
without a high fuel consumption increase.
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Appendix B. Adaptive Neuro-Fuzzy Inference System Energy
Management Strategy

B.1 Adaptive Neuro-Fuzzy Inference System
Energy Management Strategy Generated
Membership-Functions and Rules

Figure B.1: Power demand, battery state of charge, and length ratio.
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B.1 Adaptive Neuro-Fuzzy Inference System Energy Management
Strategy Generated Membership-Functions and Rules

Figure B.2: Rules
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