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Abstract: Smart grid endpoints need to use two environments within a processing system (PS), one
with a Linux-type operating system (OS) using the Arm Cortex-A53 cores for management tasks,
and the other with a standalone execution or a real-time OS using the Arm Cortex-R5 cores. The
Xen hypervisor and the OpenAMP framework allow this, but they may introduce a delay in the
system, and some messages in the smart grid need a latency lower than 3 ms. In this paper, the Linux
thread latencies are characterized by the Cyclictest tool. It is shown that when Xen hypervisor is used,
this scenario is not suitable for the smart grid as it does not meet the 3 ms timing constraint. Then,
standalone execution as the real-time part is evaluated, measuring the delay to handle an interrupt
created in programmable logic (PL). The standalone application was run in A53 and R5 cores, with
Xen hypervisor and OpenAMP framework. These scenarios all met the 3 ms constraint. The main
contribution of the present work is the detailed characterization of each real-time execution, in order
to facilitate selecting the most suitable one for each application.

Keywords: virtualization; Xen hypervisor; system-on-chip; latency; Cyclictest; interrupt; OpenAMP;
multiprocessing

1. Introduction

Multicore systems are currently very popular, due to the possibilities they offer [1].
On the one hand, in a homogeneous multicore, all the CPUs have the same architecture.
They are used when the application needs more CPU power to manage its workload. On
the other hand, in a heterogeneous multicore, the cores may have different architectures
and they allow having different OSs in different cores.

Smart grid endpoints need to have a hybrid node where real-time tasks and non-
real-time ones coexist in the same device. There are two solutions for this: virtualization,
which is used in homogeneous multicores, and multicore frameworks, which are used in
heterogeneous multicores.

Virtualization requires a hypervisor, a layer of software used as an interface between
the device and the OS. It controls virtual machines and allots resources to the physical plat-
form on which it is installed [2]. Hypervisors are commonly used in multicore embedded
platforms [3-12]. Xen is a widely used one on system-on-chip (SoC) platforms.

Virtualization has multiple benefits. First, as it enables sharing of physical resources,
the cost is highly reduced in electronics and, therefore, for power consumption. Second, it
increases the system’s security, thanks to its ability to isolate the virtual machines (VMs).
Moreover, it eases the management of the tasks and allows the user to exploit the desired
computational resources [13].

However, hypervisors do not allow for using the general-purpose and real-time
processing cores at the same time. Therefore, if hard timing constraints are needed, a
multicore framework is another solution. It supports having an OS in the general-purpose
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cores, and another OS in real-time cores, facilitating the management between them. In
this way, real-time tasks can be run on a more deterministic core, while a Linux OS can
manage them from the other cores. However, the integration of Xen or OpenAMP in
the architecture could also introduce a delay [14]. OpenAMP is a widely used multicore
framework on SoC platforms.

In a smart grid, it is mandatory to achieve latency of less than 3 ms [15] when gen-
erating, transmitting and processing generic object-oriented substation events (GOOSEs)
and sampled value (SV) messages in electrical substations. Therefore, it is essential to
characterize the latencies introduced by the Xen hypervisor and the OpenAMP framework
and check which one meets this time requirement better.

In this context, Cyclictest is executed, which is a tool to measure the difference between
a thread’s intended wake-up time and the time at which it actually wakes up, in four
scenarios: (1) a Linux OS running on the four A53 cores, (2) a Linux OS running on the four
Ab3 cores with stress, (3) a Linux OS running on Xen’s DomU and (4) a Linux OS running
on Xen’s DomU with stress in Dom0. It is shown that these scenarios are not suitable for
real time, so another test scenario has been evaluated, where the latency of handling, in the
PS part, an interrupt generated on the PL side is measured. The GPIO interrupt latencies
in six scenarios are: (1) a standalone application running on an A53 core, (2) a standalone
application running on an R5 core, (3) a standalone application running on a Xen domain
while a Linux OS is running on Xen Dom0 without stress, (4) a standalone application
running on an R5 core while a Linux OS is running on the A53 cores using OpenAMP
without stress, (5) a standalone application running on a Xen domain while a Linux OS
is running on Xen Domo0, stressing it, and (6) a standalone application running on an R5
core while a Linux OS is running on the A53 cores using OpenAMP stressing the A53 cores.
Then, we evaluated if these scenarios meet the 3 ms latency constraint.

Some related works are found in [16-18]. The first and second studies measure and
compare the latency introduced by virtualization with the Cyclictest tool. In the first
part of this article, similar measurements are made with similar results. The other study
measures some latencies introduced by OpenAMDP, as is carried out in the second part of
this study. However, they use different tools and measure different latencies to the ones
analyzed in this work. Our work adds the connection between PL and PS and evaluates
latency for complex systems with real-time FPGA circuits connected to a multiprocessor
system managed by a hypervisor or multicore framework. The multiprocessor is composed
of real-time software and management software on Linux. This way, we make precise
measurements based on an embedded logic analyzer. The study concludes that it is feasible
to use these systems for a smart grid, even for the most critical communications.

Below, Section 2 describes the multicore embedded systems, Section 3 describes the
Xen hypervisor and the OpenAMP framework, Section 4 shows the methodology and
tools used for the measurements, Section 5 summarizes the results and Section 6 concludes
the article.

2. Multicore Embedded Systems

Symmetric multiprocessing (SMP) systems have multiple CPUs with the same archi-
tecture. They are always homogeneous multicore designs. The CPUs share all or a part of
the memory space. Typically, a single OS is used, running on all the CPUs, so that the work
is divided between them. Therefore, SMP is usually used when an embedded application
needs more CPU power to manage its workload.

An asymmetric multiprocessing (AMP) system has multiple CPUs, each of which may
have a different architecture. Each has its own address space, and each may run a different
OS. AMP is typically used when different CPU architectures are needed for specific tasks.
In an AMP system, a different OS can be run on each core as the task requires.

Multiprocessor system-on-chip (MPSoC) devices combine, on the one hand, a PS part
with Quad Arm Cortex-A53, for general-purpose application processing, and Dual Arm



Energies 2021, 14, 3322

3o0f14

Cortex-R5F, for real-time applications processing, and, on the other hand, a PL part with
an FPGA. This makes these devices flexible and powerful.

In a smart grid, the generation, transport and use of some data must be carried out
with deterministic characteristics. When the equipment performs data switching tasks
using MPSoC-type circuits, the data routing at high speed and in real time is carried out by
employing specific circuits in the PL part. Usually, the management and configuration of
these IPs are carried out through software executed within general-purpose OSs in the PS.

Endpoints are circuits that receive and transmit information and, in addition, have
to make use of it through deterministic software. When they are developed, the previous
configuration is no longer valid since this software cannot be executed within Linux-type
OSs. In these cases, the software architecture becomes more complex. It is necessary to
use two environments within the PS, one with a Linux-type OS using the A53 cores for
management tasks, and the other one with a standalone execution or with a real-time OS,
such as FreeRTOS, using the R5 cores. This is the scenario contemplated in the present
work. The need for both software environments on a single MPSoC requires higher-level
software to perform monitoring tasks.

When a hybrid embedded system is needed, there are two main possibilities: virtual-
ization, if the architecture is SMP, and multicore frameworks, if the architecture is AMP. In
this paper, the Xen hypervisor is used for evaluating the latencies introduced when using
the virtualization technique, and OpenAMP is used as a multicore framework.

Therefore, hypervisors and multicore frameworks are helpful to have two different
OSs in the same device. This facilitates the coexistence of real-time and non-real-time tasks.
However, this software may increase the latencies, and a smart grid needs very specific
time restrictions for some applications.

The International Electrotechnical Commission (IEC) has developed the IEC 61850
standard to overcome the interoperability issues in automated substations in industrial and
measurement equipment from different vendors [15]. Layer-2 messages are used to provide
services that require delivering high-speed (low-delay) messages [19]. Depending on the
type of messages and their application, the maximum time requirement is set from 3 ms to
more than 500 ms. GOOSE and SV messages are the most critical messages and must be
generated, transmitted and processed in less than 3 ms even in worst-case scenarios.

The latency measures presented in this work attempt to assess compliance with this
time requirement in equipment where three data processing environments exist in parallel:

*  Electronic circuits in PL where the latency is usually fixed or limited.

e  Software executed on real-time processors (R5).

*  Software executed on processors not prepared for real time (A53) and within OSs
without deterministic characteristics (Linux).

The use of hypervisors and multicore frameworks may have drawbacks, such as a
significant code footprint, some execution overhead or the need for hardware virtualization
in the processor in the case of hypervisors [20]. One of the most relevant disadvantages is
the introduction of latencies. They are defined as the difference between the theoretical
schedule and the actual one. Latencies introduced by the OS have been widely studied [21].
However, latencies introduced by hypervisors [22-25] or multicore frameworks [18] have
often been overlooked.

3. Xen Hypervisor and OpenAMP Framework to Secure Smart Grid
Multiprocessing Endpoints

3.1. Multicore Frameworks and OpenAMP

In heterogeneous multicore architectures, it is helpful to have a framework to handle
the interaction of OSs in life cycle management, inter-operating system messaging, power
management and resource sharing [26].

Multicore frameworks support an AMP multicore architecture and have a very small
memory footprint and execution time overhead. Nevertheless, core workloads are not
isolated from each other and it is difficult to control and debug the boot sequence [20]. The
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main objectives of these frameworks are inter-core communication using remote processor
messaging (RPMsg) and remote processor life cycle management using remoteproc to
facilitate control of the boot order. OpenAMP is an extended multicore framework in
embedded systems.

OpenAMP is a framework developed by the Multicore Association (MCA). It provides
the software components needed to develop software applications for AMP systems,
such as life cycle management (LCM) and inter-processor communication capabilities for
managing remote computer resources. It also provides a library that can be used with a
real-time operating system (RTOS) or standalone software environments.

OpenAMP uses the Libmetal library to access devices, handle interrupts and request
memory across different operating environments. It is available for Linux, FreeRTOS
and bare-metal systems. The OpenAMP library provides the implementation for RPMsg,
virtualization module (VirtIO) and remoteproc, which are implemented in an upstream
Linux kernel [27]. The VirtI0 module manages the shared memory. It is a virtualized
communication standard for network and disk device drivers. It provides a communication
interface for upper-layer software by virtualizing the slave device [18]. Remoteproc is a
software interface module that allows the LCM of the slave processors. It allocates system
resources and creates virtI0 devices. RPMsg is a software interface that provides inter-
process communications (ICP) between kernel drivers and remote processors.

One leading technology for AMP architectures is dual-core shared resources. Another
one is the dual-core boot method, which means that the slave processor is booted under
the control of the master processor. The last one is the dual-core communication method,
which means that dual cores have the right to read and write to the same memory area [28].

3.2. Virtualization and Xen Hypervisor

Virtualization consists of a representation of some hardware resources so that differ-
ent guests can share them. Thus, resources and energy consumption are saved and the
management of different applications becomes easier. In addition, it enables easier and
faster application migration and the secure placement of antagonistic applications [29].

There are three virtualization levels: complete or hardware virtualization machine
(HVM), para-virtualization (PV) and static partitioning or core virtualization [30], which
consists of a combination of the previous ones. On the first level, it is possible to run an
OS inside a virtual machine, as the hardware architectures have the needed support for
virtualization. However, when HVM is not supported by the platform, PV is used. To
run a PV guest, some of the privileged routines and instructions of the OS kernel need
to be replaced by calls to the hypervisor. Although most hardware allows virtualization,
PV is still used for some applications to get a better performance [16]. Owing to the
restrictions of computing resources in embedded systems, static partitioning is the most
suitable virtualization for them [14].

Virtualization requires a virtual machine monitor (VMM) or hypervisor. This is a
software layer used as the interface between the OS and the physical device. It handles
the distribution of physical resources and manages the guest machines or guest OS. Some
other reasons for using a hypervisor in embedded systems are increasing security levels by
isolating the different VMs and having different OSs on a single device.

There are two kinds of hypervisors: type 1 and 2. On the one hand, type 1 hypervisors
run directly on hardware. They host an OS and handle resources and memory allocation
for the VMs. On the other hand, type 2 hypervisors run over a host OS, which provides
drivers and services for the hypervisor hosting a virtualized guest OS. Type 1 hypervisors
give higher performance and versatility and type 2 hypervisors offer simpler management
but lower efficiency.

However, a hypervisor supposes the integration of a new layer in the architecture,
which may affect the system’s capabilities when responding to events, and it may involve
higher latencies [14]. Nonetheless, measuring the performance when building the virtual-
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ization is not a simple task. Different OSs need to be installed, the hardware and software
need to be configured and the merit figures need to be measured.

There are multiple hypervisors in the market, such as Xen, KVM or Jailhouse. Xen
is widely used in embedded systems [16] and is open source. Furthermore, it enhances
the security and reliability of the system. It is a type 1 hypervisor and uses a combination
of hardware virtualization and para-virtualization to achieve the best performance. For
example, while HVM technology is used for CPU and memory, I/O is often handled using
PV [16].

Each VM has one or more virtual CPUs (vCPUs) assigned and each vCPU is seen as
a single physical CPU core by the VM’s OS. Xen's Credit Scheduler synchronizes all the
vCPUs. This is a fair share algorithm based on proportional scheduling [31]. A specific
credit value is assigned to each domain depending on its weight. Thus, if each domain is
given the same number of credits, they will have the same fraction of processor resources.
The credits of the running domains are deducted periodically. When the credit value is
negative, the domain is over priority. Otherwise, it is under priority. Xen usually allocates
just one vCPU to each domain when this is carried out and it contains the information
related to scheduling and event channels.

Xen guests or virtual machines are called domains. Each guest runs its isolated OS
and applications. Dom0 is the first domain created by the Xen hypervisor and it runs a
Linux OS as a special PV guest. Xen uses the device tree to see the hardware and loads the
corresponding drivers. When it finds the hypervisor node, Dom0 can initialize the needed
backends. This domain is privileged, since it can access physical resources and manage
other domains with XenControlTools. The rest of the domains are called DomU and do
not have privileges. They can run any OS that has been ported to Xen, but they can only
be created while Dom0 is running [16]. These domains cannot directly access the physical
hardware on the machine. In an I/O operation, DomUs cooperate with Dom0 by using
a ring buffer for the packet transmission and another one for the packet reception. Xen
implements these based on event channels and grant tables. The latter ones are mechanisms
to share or transfer memory pages between domains. Xen saves the grants in a reference
table and passes the grant references to other domains. It signals these I/O requests by
the event channels using hypercall. The target domain checks the event channels when
it is scheduled and delivers the pending event by invoking the corresponding interrupt
handler [31].

Some studies concluded that Xen introduces much larger latencies than other hyper-
visors, and these latencies are not due to the scheduler. The authors of [16] state, on the
one hand, that the high latency inside Xen guests is related to the mechanism that routes
the timer interrupts from the hypervisor to the guest. On the other hand, it says that Xen
enforces a minimum period for the timer interrupts. Therefore, the delay is generated
by overhead in the interrupt forwarding mechanism and the mechanism used to handle
the guest’s timers. In this paper, the latency of handling an interrupt is characterized in
different scenarios with a standalone application in OpenAMP and Xen, after showing that
Linux thread latencies do not meet the 3 ms constraint with Linux in Xen DomU.

4. Proposed Methodology to Measure Latencies Introduced by Xen When
Time-Critical Software Runs in Linux

To measure the latencies, the scenarios in Figures 1 and 2 have been implemented on
the ZCU102 board, based on a Zynq UltraScale+ MPSoC. This board is populated with the
Zynq UltraScale+ XCZU9EG-2FFVB1156E MPSoC which combines a powerful PS and PL
into the same device. The PS block has three major processing units: Cortex-A53 application
processing unit (APU), Cortex-R5 real-time processing unit (RPU) and Mali-400 graphics
processing unit (GPU). The Zynq UltraScale+ MPSoC also has a DDR memory controller
and high-speed serial I/O (HSSIO) interfaces, supporting some protocols, such as USB 3.0.
In addition, the PS-side Gigabit Ethernet MAC (GEM) implements a 10/100/1000 Mb /s
Ethernet interface.
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Figure 1. Scenario 1: Linux OS.

Xen

Figure 2. Scenario 2: Xen Linux Dom0 + Linux DomU.

The scenarios have been built with Petalinux tools [32]. Petalinux tools allow for
installing the Xen hypervisor on the board and configuring it. First, a Petalinux project was
created using the corresponding board support package (BSP) for the board. Then the Xen
hypervisor was enabled in the root file system (rootfs) configuration and included in the
device tree. Dom0’s arguments indicate that this domain is run in a virtual console called
hypervisor virtual console 0 (hvc0). Dom0 is allocated in the 0 x 80,000 memory address.
The DomU is created from Dom0. The stress-ng, a tool to stress the system, and the rt-tests,
a group of programs to test different real-time Linux features, must also be included in
order to be able to use them later.

Cyclictest is part of the rt-tests packages, and it measures the scheduling latency
accurately and repeatedly [33]. It can measure latencies in real-time systems caused by the
hardware, the firmware and the OS. It is a Linux tool, so it can just be used in a Linux OS. It
starts executing a non-real-time master thread, and this starts some threads with a real-time
priority. The real-time priority threads are woken up by an expiring timer periodically. The
calculated latency is the difference between the programmed and effective wake-up times.

It is interesting to characterize the latencies in a stressful situation to see the worst-
case latency. Stress-ng stresses the system in various ways. It exercises some physical
subsystems and OS kernel interfaces. It also has some CPU-specific stress tests.

In scenarios 1 and 2, Cyclictest was run. In the first scenario (Figure 1), Linux OS is
running on the four A53 cores. In the second scenario (Figure 2), the Xen hypervisor is
installed on the four A53 cores and then distributes the VCPUs as the user demands. Each
core can create 8 VCPUs, so 32 VCPUs can be created in total in this scenario. In this case,
in the second scenario, one VCPU is given to Dom0, and DomU is executed on Xen, and it
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uses four VCPUs. Dom0 distributes the physical resources to the different VMs or domains,
so it needs to be created before the others. Each DomU is a VM where user applications
can be run.

Cyclictest has been run for the scenarios above, with one measurement thread per
core, each running as SCHED_FIFO priority 95, and with all memory allocations locked.
The SCHED_FIFO scheduling class is a real-time feature specified by a portable operating
system interface (POSIX). The processes of this class can use the CPU for as long as
they want, but they depend on the needs of higher-priority real-time processes. Each
measurement was made for 24 h without stress, and while stress-ng was stressing the
system with four overloads exercising the CPU sequentially through all the methods.
While Cyclictest runs on Xen DomU, the stress-ng command runs in Xen Dom0 to stress
the kernel.

5. Results When Time-Critical Software Runs in Linux

Tables 1 and 2 summarize the results of the maximum and average Linux thread
latencies measured with Cyclictest for scenarios 1 and 2, with and without stress. The
Linux thread latency is significantly bigger in the scenarios with the hypervisor. In addition,
the stress increases that latency. It is also remarkable that hypervisors increase the average
delay and the maximum, reaching very high peaks. Figures 3 and 4 show the results of
Tables 1 and 2 graphically.

Avg. latency (us)

1000

ﬂ?ﬂﬁjji”

cpu0 cpul cpu2 cpu3 vcpul vcpul vcpu2 vcpu3

[N
o

Stress

without stress

Linux Xen DomU

H without stress  ® Stress

Figure 3. Average thread latency in each CPU and vCPU in Linux and Xen DomU with stress and
without stress.

Table 1. Linux thread latency in Linux (Figure 1).

Without Stress With Stress
CPU Avg. (us) Max. (us) Avg. (us) Max. (us)
0 5 69 9 177
1 5 63 8 250
2 5 44 9 129
3 5 11 10 67
Average 5 47 9 156
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Table 2. Linux thread latency on Xen DomU: Linux (Figure 2).
Without Stress With Stress
vCPU Avg. (us) Max. (us) Avg. (us) Max. (us)
0 14 275 118 109,592
1 15 129 261 103,871
2 16 104 81 102,803
3 13 128 546 103,520
Average 15 159 252 104,947

Max. latency (us)

109.592 103.871 102.803 103.520

1000000
100000
10000
177 250 129
1000 67 275
129 104 128
69 63 a4
100 — _a— o a

_am—

: N
1

cpul cpul cpu2 cpu3 vcpul vcpul vcpu2 vcpu3

-

Stress
without stress

Linux Xen DomU

B without stress M Stress

Figure 4. Maximum thread latency in each CPU and vCPU in Linux and Xen DomU with stress and
without stress.

On the one hand, these graphics show that the average latency is double in Linux
with stress than in Linux without stress and it is multiplied by 10 when the hypervisor
is used in a stress situation. On the other hand, they show that the maximum latency is
triple in Linux with stress than in Linux without stress. It is multiplied by 1000 when
the hypervisor is used and the system is stressed. This high increase in the Xen DomU
with stress situation could be problematic for some applications, limiting the processes
where the latency must be controlled. When this latency is too high, not all the tasks
are schedulable. Nevertheless, the worst-case latency is critical for a real-time system, so
the significant increase in the maximum latency when the hypervisor is used in a stress
situation is meaningful information.

The worst-case latency of this scenario does not meet the 3 ms requirement for GOOSE
and SV messages in the smart grid. The authors of [34] present similar measures and also
conclude that Xen, with its default configuration, is not suitable for real-time applications.
Therefore, the interrupt handling delay has been measured in scenarios that use standalone
as the real-time part, instead of Linux.

6. Proposed Methodology to Measure Latencies Introduced by Xen and OpenAMP
When Time-Critical Software Runs as Standalone

The scenarios in Figures 5-8 have been implemented on the same board as scenarios 1
and 2.
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Standalone application

Figure 5. Scenario 3: standalone A53.

DomU: Standalone

Xen

Figure 6. Scenario 6: Xen Linux Dom0 + standalone DomU.

Standalone application

Figure 7. Scenario 4: standalone R5.

Standalone
OpenAMP
rproc rpmsg rpmsg
virtio virtio

Figure 8. Scenario 5: OpenAMP Linux A53 + standalone R5.
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In these scenarios, the GPIO interrupt latency has been measured from the PL side of
the board. A hardware design has been made with a PS block, an AXI GPIO and an AXI
Timer in Vivado (Figure 9):

1.  Inthe PL part, the axi_timer_1 generates an interrupt.

2. This interrupt is included in the pl_ps_irq0 input of the PS block.

3. Inthe PS part, when the interrupt of the second step is handled, the axi_gpio_0 output
signal is set to a logical one.

4. The output signal of the axi_gpio_0 block and the interrupt signal generated by the
axi_timer_1 are connected to the embedded logic analyzer, so that when they are
debugged, they can be displayed in the hardware manager.

Then, inside the microprocessor, in the application that is executed in the Cortex-R5
core, the following steps are carried out:

1. Initialize all the peripherals.

2. Handle the interrupt when it is set.

3. In the interrupt service routine (ISR), the first action is writing in the axi_gpio_0.
Therefore, when the interrupt is handled, the axi_gpio_0 output signal is set to a
logical one.

Then the application is executed in each scenario. We see in the hardware manager
the output of the axi_gpio_0, written in the ISR, being triggered a specific time after
the interrupt signal has been activated. Thus, we can calculate the latency between the
activation of the interrupt signal generated in PL and the moment this signal is handled in
the PS.

system_ila_0

2yng_ultra_ps_e 0 ps8_0_axi_periph
‘ - pr0DE0[0:0]
M_AXI_HPMo_FPD + [ £ 4500_Ax1
1pmO_pd_ack § g
M_AXLHPMI_FPD [i | g——=facLK
pmi_fpd_ack o . System ILA
{1 _ps_i1q0(0:0] ®
Pl ) AGLK
UltraSCALE* s, W st
Zynq UlraScale+ MPS0C ) ACLK —n Mo1_/

MOO_ARESETN gy Moz

T

MOL_ACLK

gpio_io_o[0:0]>
M1 ARESETN axi_aresetn

rst_ps8_0_99M

Mo2_ACLK
AXTGPIO

M02_ARESETN

AXT Tnterconnect
axi_timer_1

Processor System Resef

—freeze pamop=
3

s_axi_ack

S_axi_aresetn

AXI Timer

Figure 9. Hardware IP block design in Vivado.

These measurements were carried out in four different scenarios ,as shown in Figures 5-8.
The two last scenarios have been evaluated in a non-stress and in a stress situation. For
stressing the system, the stress-ng tool was used. The system was stressed from the
management part (Dom0 in the case of Xen and the Linux OS in the case of OpenAMP).
The system was stressed with four overloads exercising the CPU that worked sequentially
through all the methods for overloading the CPU.

In the first scenario, there is not an OS, and the application runs directly on the
hardware, on a Cortex-A53 core (Figure 5), the general-purpose one. In the second, the
application runs directly on the hardware too, on a Cortex-R5 core (Figure 7), the real-time
processing one. In the third, a Linux OS runs on the four Cortex-A53, which are the cores
used for general-purpose application processing, while the bare-metal application runs on
one of the Cortex-R5s (Figure 8). In the fourth scenario, Xen runs on the four Cortex-A53
cores, and a Linux OS runs on Xen Dom0, while the bare-metal application runs on another
domain (Figure 6).

The scenarios with Xen and OpenAMP have been built with Petalinux tools. Xen is
configured in the same way as in scenarios 1 and 2. For the scenarios with OpenAMP,
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this framework must also be enabled and included in the device tree. When configuring
OpenAMP, the application’s executable must be added to the project, in order to run it
later in the remote processor. The communication with the R5 core and its execution were
managed from the Linux OS running on the A53 cores. The stress-ng tool must also be
included in the Petalinux project.

When some determined time constraints are needed, interrupts are essential. Inter-
rupts are commonly used in many utilities of the MPSoC boards and measuring them can
be helpful in many applications. Additionally, it is interesting to characterize the latencies
in a stressful situation to see the worst-case latency. Stress-ng forces the system in various
ways. It exercises some physical subsystems and OS kernel interfaces. It also supports
some CPU-specific stress tests. The stress-ng command runs in Xen Dom0 to stress the
kernel in the scenario of Figure 6 and in the Linux part in the scenario of Figure 8.

7. Results When Time-Critical Software Runs as Standalone

Table 3 summarizes the average, standard deviation and maximum values of measured
GPIO interrupt latencies. The measurement has been done 30 times in each scenario.
Figure 10 shows the violin diagram of these results.

Table 3. Interrupt latency for 3 to 6 scenarios (Figures 5-8).

Scenario Avg. (us) Dev. (us) Max. (us)

Real-time software running on A53
Standalone A53 1925 145 2230
Xen+Standalone DomU 3996 230 4630
Xen+Standalone DomU stress 4347 465 5210

Real-time software running on R5
Standalone R5 2568 130 2890
OpenAMP+Standalone 3300 198 3630
OpenAMP+Standalone stress 3521 691 5690

Latencies

5000 ~

4000 ~

3000 A

2000 A I

1000 4

Latency (ns)

Standalone Xen Xen Standalone  OpenAMP OpenAMP
A53 Standalone Standalone R5 Standalone Standalone
stress stress
Real-time software running on A53 Real-time software running on R5

Figure 10. Interrupt latency for 3 to 6 scenarios (Figures 5-8).
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First, these results show that the latency is more considerable in the R5 cores (Figure 7)
than in the A53 cores (Figure 5) and both are low, in the order of 2 or 3 microseconds. The
R5 cores are supposed to be deterministic always, as they are designed to process real-time
applications. The maximum or worst-case latencies are not much bigger than the average,
so they do not seem problematic. They are low latencies that allow deterministic operation
in the range of 3 ms.

Comparing the OpenAMP+Standalone (Figure 8) and the standalone R5 (Figure 7)
scenarios shows that the OpenAMP framework increases the latency, although it continues
to be low. The maximum value is just 330 ns higher than the average. The Xen hypervisor
(Figure 6) also increases the interrupt latency compared to the Standalone A53 scenario
(Figure 5). There is a more significant difference (634 ns) between the average and the
maximum value, as it is run in the general-purpose cores. The stress affects the deviation,
incrementing it in the scenarios with Xen (Figure 6) and OpenAMP (Figure 8), especially
the one with OpenAMP.

In scenarios 1 and 2 (Figures 1 and 2), the latencies are not within reasonable limits,
but in scenarios 3 to 6 (Figures 5-8) they are. This allows for using these solutions in the
endpoints of the smart grid.

8. Conclusions

Smart grid endpoints need a Linux-type OS in the A53 cores for management tasks
and a standalone execution or a real-time OS in the R5 cores to make a deterministic use of
data from other nodes in the smart grid. The Xen hypervisor and the OpenAMP framework
support this, but they may introduce a delay in the system. GOOSE and SV messages used
in the smart grid are the most critical and must be generated, transmitted and processed
in less than 3 ms. Therefore, it is critical to characterize the delays introduced by Xen and
OpenAMP software. There are many studies about the use of hypervisors in embedded
systems and the latencies introduced by OSs, however, there are not enough research works
about the delays due to hypervisors or multicore frameworks.

In this paper, latencies introduced by the Xen hypervisor are evaluated in Linux
systems. The thread latency is measured with the Cyclictest tool. This was carried out
without stress and during a test induced by the stress-ng utility. This was carried out in a
Linux OS scenario without a hypervisor and in Xen DomU running a Linux OS. The results
show that the Linux thread latency is more significant with a hypervisor than without it.
IN addition, the hypervisors increase the average delay and the maximum, reaching very
high peaks that could be problematic for some applications. The stress test increases these
latencies even more. The worst-case latencies obtained, with a statistical average between
all the CPU or vCPU maximum latencies, are 47 ps in Linux without stress, 156 ps in Linux
with stress, 159 ps in Xen DomU without stress and 104,947 us in Xen DomU with stress.
Using the Xen hypervisor in a stressful situation multiplies the maximum thread latency by
1000. This can be problematic for some applications with real-time requirements, limiting
the processes where the latency must be controlled. In real-time systems, the worst-case
latency must be kept below specific maximum values, so this increase is very significant. It
has been shown that when the Xen hypervisor is used, Linux is not suitable for the smart
grid as it does not meet the 3 ms timing constraint.

Then, standalone execution as the real-time part was evaluated, measuring the delay
to handle an interrupt created in PL. The measurement was carried out using the integrated
logic analyzer (ILA) on the PL side. This measurement was made in six scenarios: (1) a
standalone application running on an A53 core, (2) a standalone application running on
an R5 one, (3) a standalone application running on a Xen domain while a Linux OS is
running on Xen Dom0 without stress, (4) a standalone application running on an R5 while
a Linux OS is running on the A53 cores using OpenAMP without stress, (5) a standalone
application running on a Xen domain, while a Linux OS is running on stressed Xen Dom0
and (6) a standalone application running on an R5 core, while a Linux OS is running on the
AB3 cores, using OpenAMP and stressing the A53 cores. In all these cases, the maximum
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latency is below 3 ms. This allows the use of those solutions when the 3 ms constraint
needs to be ensured in the entire smart grid.

In the future, it would be interesting to evaluate hybrid systems where a Linux OS
runs on the A53 cores and FreeRTOS runs on the R5 cores. This way, the interferences that
the coexistence of two different OSs in the same device may induce could be analyzed.
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