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1. Introduction

The contraction mapping principle is one of the pioneering ideas of mathematics
associated with physical as well as mathematical endeavors. It was first investigated by
S. Banach [1] and shows us the root of the fixed point discussions in much of the existing
literature, such as [2,3].

We have used weak contraction to prove our results. The idea of weak contraction in
Hilbert spaces given by Alber et al. [4] and extended by Rhoades [3]. In this connection one
can see the work mentioned in [5]. Later on, Berinde [6] introduced weak contraction in
metric spaces also known by ‘almost contraction’. Weak contractions were investigated and
generalized in metric spaces and in ordered metric spaces by various researchers (see [7–16]
and references cited therein).

It is possible to find a point where we can find an approximation of the fixed point
equation d(v, Tv) = 0 and how? The answer to this question is affirmative and the
research can be observed in Eldred et al. [17] and Kirk et al. [18]. In short, the methodology
to obtain such result adopts non-self mapping in between two non intersecting sets, which
has a distance mentioned as d(A , B) where A , B are two sets such that A ∩B = ∅.

Our point of discussion deals with a problem of optimization which is at par to
the approximate solution of a fixed point equation d(v, Tv) = 0. The problem is of
global minima which has nothing to do with the establishment of such theory of best
approximation theorem while we are inclined to investigate best proximity theorems.
Some of the works deal with best approximation issues can be mentioned through [19–21].
The result is as follows:

Theorem 1 ([19]). Let A be a non-empty compact convex subset of a normed linear space X and
T : A → X be a continuous function. Then there exists v ∈ A such that

‖ v− Tv ‖= d(Tv, A ) = inf{‖ Tv−κ ‖: κ ∈ A }.
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The point v does not ensure the extremum of ‖ v− Tv ‖.
The results discussed in the paper are associated with the equation

d(v, Tv) = d(A , B),

where the required identification of A , B, d(A , B) has been done already. The minima
are realized through a mapping T : A → B. It is better to mention that a fixed point of the
mapping T can be there with the condition A ∩B 6= ∅.

The idea of contraction using coupling of mappings first seen in Bhaskar et al. [22]
though first realized in Guo et al. [23]. Couple best proximity results are also discussed in
some of the work of [24–26]. V. Sankar Raj [27] obtained an interesting result on best proxim-
ity for weakly contractive non-self mappings. Many discussions related with the existence
of fixed point through the consideration of order relation with the underneath metric and
of best approximation are investigated in [2,20,27–38]. Contraction mapping procedures
have been also continuously employing in differential equations and integral equations as
cornerstone instruments to prove the existence of related solutions (see [39–41]). A large
number of initial and boundary value problems can be converted to nonlinear integral equa-
tions (both Fredholm and its special case-Volterra nonlinear equations). Sidorov et al. [42]
constructed the solution of nonlinear Volterra operator-integral equations in the sense
of Kantorovich.

In this paper, we investigate the coupled proximity point in ordered metric spaces asso-
ciated with a weak inequality. Inspired by the work of Luong and Thuan [43], in Section 2,
we discuss some of the prerequisites for the mathematical approach towards our results.
In Section 3, two propositions and two theorems are the points of discussion in which
the blending of partial order and weak inequalities can be found. As a consequence of
Section 3, we obtain some coupled fixed point results in Section 4. As an application of the
results obtained, we investigate the existence of solution to Fredholm nonlinear integral
equation in Section 5. In the last section, we provide a suitable illustration which satisfies
the coupled best proximity point result.

2. Preliminaries

Some fundamental discussions to reach our main results are as follows:
Let (Ω, $) be a partially ordered metric space (POMS), where Ω = (X , �), X is a

non-empty set endowed with a partial order � and $ is a metric induced on X .
Unless otherwise specified, it is assumed throughout this article that A and B are

two non-empty subsets of the metric space.

$(A , B) = inf {$(v, ϑ) : v ∈ A and ϑ ∈ B},
A0 = {v ∈ A : $(v, ϑ) = $(A , B) for some ϑ ∈ B},
B0 = {ϑ ∈ B : $(v, ϑ) = $(A , B) for some v ∈ A }.

It is to be noted that, for every v ∈ A , there exists ϑ ∈ B0 such that $(v, ϑ) =
$(A , B) and conversely, for every ϑ ∈ B0 there exists v ∈ A0 such that $(v, ϑ) =
$(A , B).

In the following we give some notation and notions:

• Best Proximity Point: BPP
• Coupled Best Proximity Point: CBPP
• Coupled fixed Point: CFP
• Proximally generalized coupled weal contraction: PGCWC



Axioms 2021, 10, 73 3 of 23

Definition 1 ([27]). Let A and B be two non-empty subsets of a metric space (X , $) with
A0 6= ∅. Then the pair (A , B) is said to have the P-property if, for any v1, v2 ∈ A0 and
ϑ1, ϑ2 ∈ B0,

$(v1, ϑ1) = $(A , B)
$(v2, ϑ2) = $(A , B)

}
⇒ $(v1, v2) = $(ϑ1, ϑ2).

In [28], Abkar and Gabeleh show that every non-empty, bounded, closed and convex
pair of subsets of a uniformly convex Banach space has the P-property. Some non-trivial
examples of a non-empty pair of subsets that satisfies the P-property are given in [28].

Definition 2. A mapping T : A → A is said to be increasing if for all v1, v2 ∈ A ,

v1 � v2 =⇒ Tv1 � Tv2.

Definition 3 ([31]). A mapping T : A −→ B is said to be proximally increasing if for all
u1, u2, v1, v2 ∈ A,

v1 � v2
$(u1, Tv1) = $(A , B),
$(u2, Tv2) = $(A , B)

⇒ u1 � u2.

One can see that, for a self-mapping, the notion of proximally increasing reduces to
that of increasing mapping.

Definition 4. A mapping T : A −→ B is said to be proximally increasing on A0 if for all
u1, u2, v1, v2 ∈ A0,

v1 � v2
$(u1, Tv1) = $(A , B),
$(u2, Tv2) = $(A , B)

⇒ u1 � u2.

Definition 5. An element v∗ ∈ A is said to be BPP of the mappingT : A −→ B if $(v∗, Tv∗) =
$(A , B).

Definition 6 ([22]). A mapping T : A ×A −→ A is said to have the mixed monotone property
if T is monotone non-decreasing in its first argument and is monotone non-increasing in its second
argument; that is, if

v1, v2 ∈ A , v1 � v2 =⇒ T(v1, ϑ) � T(v2, ϑ), for all ϑ ∈ A ;

and
ϑ1, ϑ2 ∈ A, ϑ1 � ϑ2 =⇒ T(v, ϑ1) � T(v, ϑ2), for all v ∈ A .

Definition 7 ([25]). A mapping T : A ×A −→ B is said to have proximal mixed monotone
property if T(v, ϑ) is proximally non-decreasing in v and is proximally non-increasing in ϑ; that
is, for all v, ϑ ∈ A

v1 � v2
$(u1, T(v1, ϑ)) = $(A , B),
$(u2, T(v2, ϑ)) = $(A , B)

⇒ u1 � u2

and
ϑ1 � ϑ2
$(v1, T(v, ϑ1)) = $(A , B),
$(v2, T(v, ϑ2)) = $(A , B)

⇒ v2 � v1,
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where v1, v2, ϑ1, ϑ2, u1, u2, v1, v2 ∈ A .

One can see that, if A = B in the above definition, the notion of the proximal mixed
monotone property reduces to that of the mixed monotone property.

Definition 8. A mapping T : A ×A −→ B is said to have proximal mixed monotone property
on A0 ×A0 if for all v, ϑ ∈ A0

v1 � v2
$(u1, T(v1, ϑ)) = $(A , B),
$(u2, T(v2, ϑ)) = $(A , B)

⇒ u1 � u2

and
ϑ1 � ϑ2
$(v1, T(v, ϑ1)) = $(A , B),
$(v2, T(v, ϑ2)) = $(A , B)

⇒ v2 � v1,

where v1, v2, ϑ1, ϑ2, u1, u2, v1, v2 ∈ A0.

Definition 9 ([26]). An element (v∗, ϑ∗) ∈ A ×A , is called a CBPP of the mapping T : A ×
A −→ B if $(v∗, T(v∗, ϑ∗)) = $(A , B) and $(ϑ∗, T(ϑ∗, v∗) = $(A , B).

The following results of [25] are required in the sequel.

Lemma 1 ([25]). Let (Ω, $) be a POMS and A , B be non-empty subsets of X . Assume A0 6= φ.
A mapping T : A ×A → B has the proximal mixed monotone property with T(A0 ×A0) ⊆ B0
such that

v0 � v1 and ϑ0 � ϑ1
$(v1, T(v0, ϑ0)) = $(A , B),
$(v2, T(v1, ϑ1)) = $(A , B)

⇒ v1 � v2,

where v0, v1, v2, ϑ0, ϑ1 ∈ A0.

Lemma 2 ([25]). Let (Ω, $) be a POMS and A , B be non-empty subsets of X . Assume A0 6= φ.
A mapping T : A ×A → B has the proximal mixed monotone property with T(A0 ×A0) ⊆ B0
such that

v0 � v1 and ϑ0 � ϑ1
$(ϑ1, T(ϑ0, v0)) = $(A , B),
$(ϑ2, T(ϑ1, v1)) = $(A , B)

⇒ ϑ1 � ϑ2,

where v0, v1, ϑ0, ϑ1, ϑ2 ∈ A0.

3. Main Results

In our results, we use the following class of functions.
Our assumption is that the set of all functions φ : [0, ∞) → [0, ∞) denoted by Υ,

which satisfy

(iφ) φ is assumed to be continuous and φ(t) = 0 iff t = 0
(iiφ) φ satisfied subadditivity property for all t, s ∈ [0, ∞).

The set of all functions ψ : [0, ∞) −→ [0, ∞) denoted by Ξ satisfies the following property
(iψ) ψ holds continuity and ψ(t) = 0 iff t = 0.

Γ denotes the set of all functions β : [0, ∞) −→ [0, ∞) such that
(iiβ) β is bounded on any bounded interval in [0, ∞),
(iiiβ)β is continuous at 0 and β(0) = 0.

To prove our main result, we introduce the proximally generalized coupled weak
contraction mapping as follows:
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Definition 10. Let (Ω, $) be a POMS and A , B be non-empty subsets of X . A mapping T :
A ×A → B is said to be proximally generalized coupled weak contraction on A , satisfying
v1 � v2 and ϑ1 � ϑ2

ζ($(T(v1, ϑ1), T(v2, ϑ2)) ≤
1
2

χ($(v1, v2) + $(ϑ1, ϑ2))− ξ(
d(v1, v2) + $(ϑ1, ϑ2)

2
), (1)

where v1, v2, ϑ1, ϑ2, u, v ∈ A and ζ ∈ Υ, χ ∈ Ξ and ξ ∈ Γ.

Example 1. Suppose that X = {(0, 1), (0,−1), (1, 0), (−1, 0)} and
$ =

√
(v2 −v1)2 + (ϑ2 − ϑ1)2 with usual order.

Take A = {(0, 1), (1, 0)} and B = {(0,−1), (−1, 0)}. Define T : A × A → B as
T(v1, vi) = (0, −1) and T(v2, vi) = (−1, 0) for i = 1, 2 and v1 = (0, 1), v2 = (1, 0).

Take ζ(t) = t, χ(t) = t2 and ξ(t) = t. Here it is not difficult to see that T is PGCWC on A ,
satisfying v1 � v2 and ϑ1 � ϑ2.

Example 2. Suppose that X = R and $ = |v− ϑ| with usual order.
Take A = {−1, 1} and B = {−2, 2}. Define T : A ×A → B as T(v1, vi) = 2 and

T(v2, vi) = −2 for i = 1, 2 and v1 = −1, v2 = 1.
Take ζ(t) = t, χ(t) = t4 and ξ(t) = t. Here it is not difficult to see that T is PGCWC on A ,

satisfying v1 � v2 and ϑ1 � ϑ2.

Firstly, we are presenting two propositions which will help us to prove our theorems.

Proposition 1. Let (Ω, $) be a POMS and A , B be non-empty closed subsets of X induced by
metric $ such that A0 6= ∅ closed and (A , B) satisfies P-property. Suppose that T : A ×A → B
such that T(A0 ×A0) ⊆ B0 and T is satisfying proximally mixed monotone property and T is
PGCWC on A . Suppose that

ζ(v) ≤ χ(ϑ) =⇒ v ≤ ϑ, (2)

for any sequence {vn} in [0, ∞) with vn −→ t > 0,

ζ(t)− lim χ(vn) + 2 lim ξ(vn) > 0, (3)

where ζ ∈ Υ, χ ∈ Ξ and ξ ∈ Γ.
Further, suppose that there exist sequences {vn} and {ϑn} in A0 defined as vn+1 =

T(vn, ϑn), ϑn+1 = T(ϑn, vn) such that

$(vn+1,T(vn, ϑn)) = $(A , B) with vn � vn+1

and
$(ϑn+1,T(ϑn, vn)) = $(A , B) with ϑn � ϑn+1

for all n ≥ 0. Then

Ln = δn = $(vn, vn+1) + $(ϑn, ϑn+1) −→ 0, as n −→ ∞. (4)

Proof. By our assumption in the proposition, there exist sequences {vn} and {ϑn} in A0
such that

$(vn+1,T(vn, ϑn)) = $(A , B) with vn � vn+1

and
$(ϑn+1,T(ϑn, vn)) = $(A , B) with ϑn � ϑn+1

for all n ≥ 0.
As, (A , B) satisfies P-property, we have

$(vn+1, vn) = $(T(vn−1, ϑn−1), T(vn, ϑn)).
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Now, T is PGCWC on A , we have

ζ($(vn+1, vn)) = ζ($(T(vn, ϑn), T(vn−1, ϑn−1))) ≤
1
2

χ($((vn, vn−1) + (ϑn, ϑn−1)))

− ξ(
$(vn, vn−1) + $(ϑn, ϑn−1)

2
), for all n ∈ N (5)

and

ζ($(ϑn+1, ϑn)) = ζ($(T(ϑn, vn), T(ϑn−1, vn−1)))

≤ 1
2

χ($(ϑn−1, ϑn) + $(vn−1, vn)))− ξ(
$(ϑn−1, ϑn) + $(vn−1, vn)

2
), for all n ∈ N. (6)

Adding (5) and (6), we have

ζ($(vn+1, vn)) + ζ($(ϑn+1, ϑn)) ≤ χ($(vn, vn−1) + $(ϑn, ϑn−1))

− 2ξ(
$(vn, vn−1) + $(ϑn, ϑn−1)

2
), for all n ∈ N. (7)

By the 2nd property of the set of functions denoted by Υ, we have

ζ($(vn, vn+1) + $(ϑn, ϑn+1)) ≤ ζ($(vn, vn+1)) + ζ($(ϑn, ϑn+1)). (8)

From (7) and (8), we have

ζ($(vn, vn+1) + $(ϑn, ϑn+1)) ≤ χ($(vn, vn−1) + $(ϑn, ϑn−1))− 2ξ(
$(vn, vn−1) + $(ϑn, ϑn−1)

2
),

for all n ∈ N.
(9)

Take Ln = $(vn, vn+1) + $(ϑn, ϑn+1) for all n ≥ 0. Using (9), we have

ζ(Ln) ≤ χ(Ln−1)− 2 ξ(
Ln−1

2
). (10)

Since ξ(t) ≥ 0, we have ζ(Ln) ≤ χ(Ln−1). By (2), we get Ln ≤ Ln−1, that is, {Ln} is
a monotone decreasing sequence for all positive integer n. Hence there exists an r ≥ 0
such that

Ln = $(vn, vn+1) + $(ϑn, ϑn+1) −→ r as n −→ ∞. (11)

Taking limit supremum in both sides of (10), using (11), the properties of χ and ξ, and
the continuity of ζ, we obtain

ζ(r) ≤ lim χ(Ln−1) + 2 lim (− ξ(
Ln−1

2
)).

Since

2 lim (− ξ(Ln−1)) = −2 lim ξ(
Ln−1

2
),

it follows that
ζ(r) ≤ lim χ(Ln−1)− 2 lim ξ(

Ln−1

2
),

that is,

ζ(r)− limχ(Ln−1) + 2 limξ(
Ln−1

2
) ≤ 0,
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which by (3), is a contradiction unless r = 0. Therefore,

Ln = δn = $(vn, vn+1) + $(ϑn, ϑn+1) −→ 0, as n −→ ∞.

Hence the result.

Proposition 2. In addition to the hypotheses of Proposition 1 assume that X is complete. Then
the sequences {vn} and {ϑn} defined in Proposition 1 are Cauchy sequences in A0.

Proof. Using Proposition 1, we have that {δn} is a monotone decreasing sequence and
δn → 0.

Now, to prove {vn} and {ϑn} are Cauchy sequences in A0.
Suppose that one of the sequences {vn} or {ϑn} is not a Cauchy sequence. So that

there exists ε > 0 for which we can find subsequences {vn(k)}, {vm(k)} of {vn} and
{ϑn(k)}, {ϑm(k)} of {ϑn} respectively can be found considering n(k) the smallest integer for
which n(k) > m(k) ≥ k, such that

$(vn(k), vm(k)) + $(ϑn(k), ϑm(k)) ≥ ε.

which means that,

$(vn(k)−1, vm(k)) + $(ϑn(k)−1, ϑm(k)) < ε.

ε ≤rk = $(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

≤$(vn(k), vn(k)−1) + $(vn(k)−1, vm(k)) + $(ϑn(k), ϑn(k)−1) + $(ϑn(k)−1, ϑm(k))

≤$(vn(k), vn(k)−1) + (ϑn(k), ϑn(k)−1) + ε.

Putting k −→ ∞ in the above inequality and applying (4), we have

lim
k→∞

rk = lim
k→∞

[$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))] = ε. (12)

Now,

ε ≤rk = %(£n(k), £m(k)) + (#n(k), #m(k))

≤$(vn(k), vn(k)+1) + $(vn(k)+1, vm(k)+1) + $(vm(k)+1, vm(k))

+ $(ϑn(k), ϑn(k)+1) + $(ϑn(k)+1, ϑm(k)+1) + $(ϑm(k)+1, ϑm(k))

≤$(vn(k)+1, vm(k)+1) + (ϑn(k)+1, ϑm(k)+1) + δn(k) + δm(k).

where δn(k) = $(vn(k), vn(k)+1) + $(ϑn(k), ϑn(k)+1) and δm(k) = $(vm(k)+1, vm(k)) +
$(ϑm(k)+1, ϑm(k)). Using 2nd property of the set of functions denoted by Υ, we get,

ζ(rk) =ζ($(vn(k)+1, vm(k)+1) + $(ϑn(k)+1, ϑm(k)+1) + δn(k) + δm(k))

≤ζ($(vn(k)+1, vm(k)+1)) + ζ($(ϑn(k)+1, ϑm(k)+1)) + ζ(δn(k)) + ζ(δm(k)). (13)

As vn(k) � vm(k) and ϑn(k) � ϑm(k) and T is PGCWC on A , we get

ζ($(vn(k)+1, vm(k)+1)) ≤
1
2

χ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k)))− ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
). (14)

and

ζ($(ϑn(k)+1, ϑm(k)+1)) ≤
1
2

χ($(ϑn(k), ϑm(k)) + $(vn(k), vm(k)))− ξ(
$(ϑn(k), ϑm(k)) + $(vn(k), vm(k))

2
). (15)
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Using the 2nd property of the set of all functions denoted by Υ, (13), (14) and (15),
we have

ζ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k))) ≤ χ(δn(k) + δm(k)) + χ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k)))

− 2 ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
) + ζ(δn(k)) + ζ(δn(k))

≤ χ(δn(k)) + χ(δm(k)) + χ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k)))

− 2 ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
)− ξ(

δn(k)

2
)− ξ(

δm(k)

2
).

Taking limit supremum in both sides of the above inequality, using (12) and (13),
the properties of χ and ξ, contiunuity of ζ, we have

ζ(ε) ≤lim χ(0) + lim χ($(vn(k), vm(k))

+ $(ϑn(k), ϑm(k))) + 2 lim (− ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
)

≤lim χ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k))) + 2 lim (− ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
)

+ lim (− ξ(0)) + lim (− ξ(0)).

Since

2 lim (− ξ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k)))) = −2 lim ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
),

it follows that,

ζ(ε) ≤ lim χ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k)))− 2 lim ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
),

that is,

ζ(ε)− lim χ($(vn(k), vm(k)) + $(ϑn(k), ϑm(k))) + 2 lim ξ(
$(vn(k), vm(k)) + $(ϑn(k), ϑm(k))

2
) ≤ 0,

which is a contradiction due to (3). Therefore, {vn} and {ϑn} are Cauchy sequences
in A0.

Theorem 2. Let (Ω, $) be a POMS and A , B be non-empty closed subsets of complete set X
induced with metric $ such that A0 6= ∅ closed and (A , B) satisfies P-property. Suppose that
T : A ×A → B such that T(A0 ×A0) ⊆ B0 and T satisfies the proximal mixed monotone
property and T is PGCWC on A . Suppose that

ζ(v) ≤ ψ(ϑ) =⇒ v ≤ ϑ, (16)

for any sequence {vn} in [0, ∞) with vn −→ t > 0,

ζ(t)− lim χ(vn) + 2 lim ξ(vn) > 0, (17)

where ζ ∈ Υ, χ ∈ Ξ and ξ ∈ Γ.
Assume that there exist (v0, ϑ0) and (v1, ϑ1)in A ×A such that v1 = T(v0, ϑ0) with

v0 � v1 and ϑ1 = T(ϑ0, v0) with ϑ0 � ϑ1.
Further, suppose that either

(a) T is continuous or
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(b) if {vn}, {ϑn} are non-decreasing sequences in X such that vn −→ v and ϑn −→ ϑ then
vn � v, ϑ � ϑn for all n ≥ 0.

Then, T has a CBPP, that is, there exists (v, ϑ) ∈ A0 ×A0 such that

$(v, T(v, ϑ)) = $(A , B) and $(ϑ, T(ϑ, v)) = (A , B).

Proof. By the conditions of the Theorem 2, there exist elements (v0, ϑ0), (v1, ϑ1) ∈
A0 ×A0 such that

$(v1, T(v0, ϑ0)) = $(A , B) with v0 � v1, and

$(ϑ1, T(ϑ0, v0)) = $(A , B) with ϑ1 � ϑ0.

As T(A0 ×A0) ⊆ B0, there exists an element (v2, ϑ2) ∈ A0 ×A0 such that

$(v2, T(v1, ϑ1)) = $(A , B), and

$(ϑ2, T(ϑ1, v1)) = $(A , B).

By the use of Lemmas 1 and 2, we obtain v1 � v2 and ϑ2 � ϑ1. Iterating in the same
way, we can construct the sequences {vn} and {ϑn} in A0 such that

$(vn+1, T(vn, ϑn)) = $(A , B) for all n ≥ 0 with v0 � v1 � v2 � v3 � . . . � vn. (18)

$(ϑn+1, T(ϑn, vn)) = $(A , B) for all n ≥ 0 with ϑ0 � ϑ1 � ϑ2 � ϑ3 � . . . � ϑn. (19)

Then
$(vn,T(vn−1, ϑn−1)) = $(A , B), with vn−1 � vn

and
$(vn+1,T(vn, ϑn)) = $(A , B) with ϑn−1 � ϑn,

for all n ∈ N.
Using Propositions 1 and 2, we have that {Ln} is a monotone decreasing sequence,

Ln → 0 and {vn} and {ϑn} are Cauchy sequences in A0.
As X is complete, A0 ⊂ X and A0 is closed, hence A0 is also complete. So, by the

completeness of A , there are elements v∗, ϑ∗ such that vn → v∗ and ϑn → ϑ∗ as n→ ∞.
Therefore,

lim
n→∞

$((vn, ϑn), (v∗, ϑ∗)) = 0, (20)

and

lim
n→∞

$((ϑn, vn), (ϑ∗, v∗)) = 0. (21)

Let the condition (a) hold.
So, by the continuity of T,

T(vn, ϑn)→ T(v∗, ϑ∗), T(ϑn, vn)→ T(ϑ∗, v∗).

Now, from (3), (18) and the continuity of the metric $, we get

$(v∗, T(v, ϑ)) = $(A , B) and $(ϑ∗, T(ϑ, v)) = $(A , B).

Let the condition (b) hold.
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Now,

$(vn+1, T(vn, ϑn)) = $(A , B) with vn � vn+1 (22)

and

$(ϑn+1, T(ϑn, vn)) = $(A , B) with ϑn � ϑn+1. (23)

Also, vn → v and ϑn → ϑ with vn � v and ϑn � ϑ and A0 is closed. Therefore,
(v, ϑ) ∈ A0 ×A0. Since T(A0 ×A0) ⊆ B0, there exist elements T(v, ϑ), T(ϑ, v) ∈ B0.
So, there is (v∗, ϑ∗) ∈ A0 ×A0, such that

$(v∗, T(v, ϑ)) = $(A , B) (24)

and

$(ϑ∗, T(ϑ, v)) = $(A , B). (25)

By P-property of (A , B), (22), (23), (24) and (25) respectively, we have

$(vn+1, v∗) = $(T(vn, ϑn), T(v, ϑ)) (26)

and

$(ϑ∗, ϑn+1) = $(T(ϑ, v), T(ϑn, vn)). (27)

Since vn → v and ϑn → ϑ, using PGCWC property of T, we have

ζ($(vn+1, v∗)) = ζ($(T(vn, ϑn), T(v, ϑ)))

≤ 1
2

χ($(vn, v) + $(ϑn, ϑ))− ξ(
$(vn, v) + $(ϑn, ϑ)

2
) for all n,

(28)

and

ζ($(ϑ∗, ϑn+1)) = ζ(T(ϑ, v), $(T(ϑn, vn))

≤ 1
2

χ($(ϑ, ϑn) + $(v, vn))− ξ(
$(ϑ, ϑn) + $(v, vn)

2
) for all n.

(29)

Again, using the 2nd property of the set of all functions denoted by Υ, we get

ζ($(vn+1, v∗) + $(ϑ∗, ϑn+1)) ≤ζ($(vn+1, v∗)) + ζ($(ϑ∗, ϑn+1))

≤χ($(vn, v) + $(ϑn, ϑ))− 2 ξ(
$(vn, v) + $(ϑ, ϑn)

2
).

Taking n→ ∞ in the above inequality, we have

lim
n→∞

ζ($(vn+1, v∗) + $(ϑ∗, ϑn+1)) ≤ lim
n→∞

ζ($(vn+1, v∗)) + lim
n→∞

ζ($(ϑ∗, ϑn+1))

≤ lim
n→∞

χ($(vn, v) + $(ϑn, ϑ))− 2 lim
n→∞

ξ(
$(vn, v) + $(ϑ, ϑn)

2
),

that is,

ζ($(vn+1, v)) + ζ($(ϑ, ϑn+1)) ≤ 0.

It implies ζ($(vn+1, v)) ≤ 0 and ζ($(ϑ, ϑn+1)) ≤ 0. Therefore, v = v∗ and ϑ = ϑ∗

Now, using (24) and (25), we have

$(ϑ∗, T(v, ϑ)) = $(A , B) and $(ϑ∗, T(ϑ, v)) = $(A , B).
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Hence the result.

Theorem 3. In addition to the hypotheses of Theorem 2, assume that for any two elements (v, ϑ)
and (v∗, ϑ∗) in A0 ×A0, there exists (u1, v1) ∈ A0 ×A0 such that (u1, v1) is comparable to
(v, ϑ) and (v∗, ϑ∗), then T has a unique CBPP.

Proof. From Theorem 2, the set of coupled best proximity points of T 6= ∅. Assume that
there exist (v, ϑ) and (v∗, ϑ∗) in A ×A which are coupled best proximity points.

So,

$(v, T(v, ϑ)) = $(A , B), $(ϑ, T(ϑ, v)) = $(A , B) and

$(v∗,T(v∗, ϑ∗)) = $(A , B), d(ϑ∗, T(ϑ∗, v∗)) = $(A , B).

The following two cases arise:
Case I:
With the assumption of comparability of (v, ϑ), say (v, ϑ) is comparable to (v∗, ϑ∗)

where the ordering prevails in A ×A . As T is PGCWC on A to $(v,T(v, ϑ)) = $(A , B)
and $(v∗,T(v∗, ϑ∗)) = $(A , B), we have

ζ($(v, v∗)) ≤ 1
2

χ($(v, v∗) + $(ϑ, ϑ∗))− ξ(
$(v, v∗) + $(ϑ, ϑ∗)

2
). (30)

Similarly, it can be proved that

ζ($(ϑ, ϑ∗)) ≤ 1
2

χ($(ϑ, ϑ∗) + $(v, v∗))− ξ(
$(ϑ, ϑ∗) + $(v, v∗)

2
). (31)

Adding (30) and (31), we get

ζ($(v, v∗)) + ζ($(ϑ, ϑ∗)) ≤ χ($(v, v∗) + $(ϑ, ϑ∗))− 2ξ(
$(v, v∗) + $(ϑ, ϑ∗)

2
). (32)

Applying the 2nd property of the set of all functions denoted by Υ, we have

ζ($(v, v∗) + $(ϑ, ϑ∗)) ≤ ζ($(v, v∗)) + ζ($(ϑ, ϑ∗)). (33)

Using (32) and (33), we have

ζ($(v, v∗) + $(ϑ, ϑ∗)) ≤ χ($(v, v∗) + $(ϑ, ϑ∗))− 2ξ(
$(v, v∗) + $(ϑ, ϑ∗)

2
). (34)

Imposing limit supremum in both sides of the above inequality, the properties of χ
and ξ, contiunuity of ζ, we have

ζ($(v, v∗) + $(ϑ, ϑ∗)) ≤ lim χ($(v, v∗) + $(ϑ, ϑ∗)) + lim 2ξ(−($(v, v∗) + $(ϑ, ϑ∗)

2
)). (35)

Since,

lim 2ξ(−($(v, v∗) + $(ϑ, ϑ∗)

2
)) = −lim 2ξ(

$(v, v∗) + $(ϑ, ϑ∗)

2
),

From (35), we have

ζ($(v, v∗) + $(ϑ, ϑ∗))− lim χ($(v, v∗) + $(ϑ, ϑ∗)) + lim 2ξ(−($(v, v∗) + $(ϑ, ϑ∗)

2
) ≤ 0,

which lead us to a contradiction and consequently, $(v, v∗) + $(ϑ, ϑ∗) = 0, that is,
$(v, v∗) = 0 and $(ϑ, ϑ∗) = 0. Hence v = v∗ and ϑ = ϑ∗.
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Case II:
This case arises when (v, ϑ) is not comparable to (v∗, ϑ∗). So, on the assump-

tion of existence of an element (u1, v1) ∈ A0 ×A0 which is comparable to (v, ϑ) and
T(A0 ×A0) ⊆ B0, there is (u2, v2) ∈ A0 ×A0 such that

$(u2, T(u1, v1)) = $(A , B) and $(v2, T(v1, u1)) = $(A , B).

From Lemmas 1 and 2, we have

u1 � v and v1 � ϑ
$(u2, T(u1, v1) = $(A , B),
$(v, T(v, ϑ)) = $(A , B)

⇒ u2 � v

and

u1 � v and v1 � ϑ
$(v2, T(v1, u1) = $(A , B),
$(ϑ, T(ϑ, v)) = $(A , B).

⇒ v2 � ϑ.

From the above inequalities, we have u2 � v and v2 � ϑ. Iterating in the same way,
we get sequences {un}, {vn} such that

$(un+1, T(un, vn)) = $(A , B)

and

$(vn+1, T(vn, un)) = $(A , B),

with un � v, vn � ϑ for all n ∈ N. Now,

$(un+1, T(un, vn)) = $(A , B)

and

$(v, T(v, ϑ)) = $(A , B).

So, applying P-property, we have

ζ($(un+1, v)) = ζ(T(un, vn), T(v, ϑ)).

Now, using the fact that T is PGCWC on A , we have

ζ($(un+1, v)) ≤ 1
2

χ($(un, v) + $(vn, ϑ))− ξ(
$(un, v) + $(vn, ϑ)

2
). (36)

Similarly, we have

ζ($(ϑ, vn+1)) ≤
1
2

χ($(ϑ, vn) + $(v, un))− ξ(
$(ϑ, vn) + $(v, un)

2
). (37)

Adding (36) and (37), we have

ζ($(un+1, v) + $(ϑ, vn+1)) ≤ χ($(v, un) + $(ϑ, vn))− 2ξ(
$(ϑ, vn) + $(v, un)

2
). (38)

It implies

ζ($(un+1, v) + $(ϑ, vn+1)) ≤ χ($(v, un) + $(ϑ, vn)).
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Using (2) in the above inequality, we have

$(un+1, v) + $(ϑ, vn+1) ≤ $(v, un) + $(ϑ, vn).

This shows that the sequence {$(v, un) + $(ϑ, vn)} is a decreasing sequence. There-
fore, there exists l ≥ 0 such that

lim
n→∞

$(v, un) + $(ϑ, vn) = l.

Now, to prove l = 0. On the contrary, assume that l > 0. Imposing limit supremum in
both sides of (38), the properties of χ and ξ, contiunuity of ζ, we have

ζ(l) ≤ lim χ($(ϑ, vn) + $(v, un)) + lim 2ξ(−($(v, un) + $(ϑ, vn)

2
)).

But lim 2ξ(−($(v, un) + $(ϑ, vn)

2
)) = −lim 2ξ(

$(v, un) + $(ϑ, vn)

2
) and as a con-

sequence,

ζ(l)− lim χ($(ϑ, vn) + $(v, un)) + lim 2ξ(
$(v, un) + $(ϑ, vn)

2
) ≤ 0,

which is a contradiction. Therefore, l = 0, that is,

lim
n→∞

$(v, un) + $(ϑ, vn) = 0.

It implies un → v and vn → ϑ. In a similar way, we can prove that un → v∗ and
vn → ϑ∗ . Consequently, v = v∗ and ϑ = ϑ∗. Hence the theorem.

4. Consequences Related to Fixed Point Results

The results discussed in the previous section have the following consequences in the
fixed point category.

If we assume $(A , B) = 0, that is, A = B = X , we have the following theorem.

Theorem 4. Let (Ω, $) be a POMS and T : X ×X → X be a mapping having the mixed
monotone property on X such that there exist two elements v0, ϑ0 ∈ X with

v0 � T(v0, ϑ0), ϑ0 � T(ϑ0, v0).

Suppose that
ζ(v) ≤ χ(ϑ) =⇒ v ≤ ϑ, (39)

for any sequence {vn} in [0, ∞) with vn −→ t > 0,

ζ(t)− lim χ(vn) + 2 lim ξ(vn) > 0, (40)

and

ζ($(T(v, ϑ),T(u, v)) ≤ 1
2

χ($(v, u) + $(ϑ, v))− ξ(
$(v, u) + $(ϑ, v)

2
), (41)

where ζ ∈ Υ, χ ∈ Ξ and ξ ∈ Γ,v, ϑ, u, v ∈ X .
Further suppose that X is complete and any of the following conditions holds:

(a) T is continuous or
(b) If {vn}, {ϑn} are non-decreasing sequences in X such that vn −→ v and ϑn −→ ϑ then

vn � v, ϑ � ϑn for all n ≥ 0.

Then T has a CFP in X, if there exist v, ϑ ∈ X , that is, v = T(v, ϑ) and ϑ = T(ϑ, v).
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Proof. By the statement of the theorem, v0, ϑ0 ∈ X such that

v0 � T(v0, ϑ0), ϑ0 � T(ϑ0, v0).

Construct two sequences, {vn}, {ϑn} in X defined as follows

vn+1 = T(vn, ϑn) and ϑn+1 = T(ϑn, vn) for all n ≥ 0. (42)

We have to show that

vn � vn+1 (43)

and

ϑn � ϑn+1. (44)

To prove this, we use mathematical induction. Let n = 0. As v0 � T(v0, ϑ0),
ϑ0 � (ϑ0, v0) and v1 = T(v0, ϑ0), ϑ1 = T(ϑ0, v0), we have

v0 � v1 and ϑ0 � ϑ1.

So from (43) and (44), we can say that mathematical induction holds for n = 0.
Now, assume that (43) and (44) hold for for some fixed n ≥ 0.
By mixed monotone property of T and vn � vn+1 and ϑn � ϑn+1, we get

vn+2 = T(vn+1, ϑn+1) � T(vn, ϑn+1) � T(vn, ϑn) = vn+1 (45)

and

ϑn+2 = T(ϑn+1, vn+1) � T(ϑn, vn+1) � T(ϑn, vn) = ϑn+1. (46)

So, by (45) and (46), we get

vn+1 � vn+2 and ϑn+1 � ϑn+2.

So, by mathematical induction we can conclude that (43) and (44) hold for all n ≥ 0.
Therefore,

v0 � v1 � v2 . . . vn � vn+1 . . .

and

ϑ0 � ϑ1 � ϑ2 . . . � ϑn � ϑn+1 . . . .

Since vn+1 � vn and vn+1 � vn, from (39), we get

ζ($(vn+1, vn)) = ζ($(T(vn, ϑn), T(vn−1, ϑn−1))) ≤
1
2

χ($((vn, vn−1) + (ϑn, ϑn−1)))

−ξ(
$(vn, vn−1) + $(ϑn, ϑn−1)

2
), for all n ∈ N

(47)

and

ζ($(ϑn+1, ϑn)) = ζ($(T(ϑn, vn), T(ϑn−1, vn−1)))

≤ 1
2

χ($(ϑn−1, ϑn) + $(vn−1, vn)))− ξ(
$(ϑn−1, ϑn) + $(vn−1, vn)

2
), for all n ∈ N.

(48)

Adding (47) and (48), we have
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ζ($(vn+1, vn)) + ζ($(ϑn+1, ϑn)) ≤ χ($(vn, vn−1) + $(ϑn, ϑn−1))

− 2ξ(
$(vn, vn−1) + $(ϑn, ϑn−1)

2
), for all n ∈ N. (49)

By the 2nd property of the set of functions denoted by Υ, we have

ζ($(vn, vn+1) + $(ϑn, ϑn+1)) ≤ ζ($(vn, vn+1)) + ζ($(ϑn, ϑn+1)). (50)

From (49) and (50), we have

ζ($(vn, vn+1) + $(ϑn, ϑn+1)) ≤ χ($(vn, vn−1) + $(ϑn, ϑn−1))− 2ξ(
$(vn, vn−1) + $(ϑn, ϑn−1)

2
),

for all n ∈ N.
(51)

Take Ln = $(vn, vn+1) + $(ϑn, ϑn+1) for all n ≥ 0. Using (51), we have

ζ(Ln) ≤ χ(Ln−1)− 2 ξ(
Ln−1

2
). (52)

Since ξ(t) ≥ 0, we have ζ(Ln) ≤ χ(Ln−1). By (2), we get Ln ≤ Ln−1, that is, {Ln} is
a monotone decreasing sequence for all positive integer n. Hence there exists an r ≥ 0
such that

Ln = $(vn, vn+1) + $(ϑn, ϑn+1) −→ r as n −→ ∞. (53)

Taking limit supremum in both sides of (52), using (53), the properties of χ and ξ, and
the continuity of ζ, we obtain

ζ(r) ≤ lim χ(Ln−1) + 2 lim (− ξ(
Ln−1

2
)).

Since

2 lim (− ξ(Ln−1)) = −2 lim ξ(
Ln−1

2
),

it follows that

ζ(r) ≤ lim χ(Ln−1)− 2 lim ξ(
Ln−1

2
),

that is,

ζ(r)− lim χ(Ln−1) + 2 lim ξ(
Ln−1

2
) ≤ 0,

which by (3), is a contradiction unless r = 0. Therefore,

Ln = δn = $(vn, vn+1) + $(ϑn, ϑn+1) −→ 0, as n −→ ∞.

Now, we have to prove that the sequences {vn} and {ϑn} are Cauchy which is directly
following from the proof of the Proposition 2 of the Section 3. Next we prove the existence
of the couple fixed point.

Since X is complete, there exist v, ϑ ∈ X such that

lim
n→∞

vn = v and lim
n→∞

ϑn = ϑ. (54)

Now, assuming condition (a) and taking n→ ∞ in (42) and by (54), we have

v = lim
n→∞

vn = T(vn−1, ϑn−1) = T( lim
n→∞

vn−1, lim
n→∞

ϑn−1) = T(v, ϑ),



Axioms 2021, 10, 73 16 of 23

ϑ = lim
n→∞

ϑn = T(ϑn−1, vn−1) = T( lim
n→∞

ϑn−1, lim
n→∞

vn−1) = T(ϑ, v).

Therefore, v = T(v, ϑ) and ϑ = T(ϑ, v).
Finally, suppose that condition (b) holds.
As {vn} is non-decreasing, vn → v and as {ϑn} is non-increasing, ϑn → ϑ, by our

assumption, we have

vn � v and ϑn � ϑ.

Since

$(v, T(v, ϑ)) ≤ $(v, vn+1) + $(vn+1, T(v, ϑ)) = $(v, vn+1) + $(T(vn, ϑn), T(v, ϑ)).

So

ζ($(v, T(v, ϑ))) ≤ ζ($(v, vn+1) + $(T(vn, ϑn), T(v, ϑ)))
≤ ζ($(v, vn+1)) + ζ($(T(vn, ϑn), T(v, ϑ))

≤ ζ($(v, vn+1)) + χ($(vn, v) + $(ϑn, ϑ))− ξ(
$(vn, v) + $(ϑn, ϑ)

2
).

(55)

Taking n→ ∞ in (55) and using (54) and the properties of χ, ξ, we have

ζ($(v, T(v, ϑ))) = 0.

So, $(v, T(v, ϑ)) = 0.
Consequently,

v = T(v, ϑ)).

Similarly, we can establish that

ϑ = T(ϑ, v).

If we assume ζ = χ in Theorem 4, we have the following result of Luong et al. [43].

Corollary 1. Let (Ω, $) be a POMS and T : X ×X → X be a mapping having the mixed
monotone property on X such that there exist two elements v0, ϑ0 ∈ X with

v0 � T(v0, ϑ0), ϑ0 � T(ϑ0, v0).

Suppose that

ζ($(T(v, ϑ),T(u, v)) ≤ 1
2

ζ($(v, u) + $(ϑ, v))− ξ(
$(v, u) + $(ϑ, v)

2
),

where ζ ∈ Υ and ξ ∈ Γ, v, ϑ, u, v ∈ X .
Further suppose that X is complete and any of the following conditions holds:

(a) T is continuous or
(b) If {vn}, {ϑn} are non-decreasing sequences in X such that vn −→ v and ϑn −→ ϑ then

vn � v, ϑ � ϑn for all n ≥ 0.

Then T has a coupled fixed point in X , if there exist v, ϑ ∈ X , that is, v = T(v, ϑ) and
ϑ = T(ϑ, v).

If we consider ζ ∈ Υ as an identity mapping, the following corollary occurs.
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Corollary 2. Let (Ω, $) be a POMS and T : X ×X → X be a mapping having the mixed
monotone property on X such that there exist two elements v0, ϑ0 ∈ X with

v0 � T(v0, ϑ0), ϑ0 � T(ϑ0, v0).

Suppose there exists ξ ∈ Γ such that

$(T(v, ϑ),T(u, v) ≤ 1
2
($(v, u) + $(ϑ, v))− θ(

$(v, u) + $(ϑ, v)
2

),

where v, ϑ, u, v ∈ X . Further suppose that X is complete, and that any of the following
conditions holds:

(a) T is continuous or
(b) If {vn}, {ϑn} are non-decreasing sequences in X such that vn −→ v and ϑn −→ ϑ then

vn � v, ϑ � ϑn for all n ≥ 0.

Then T has a coupled fixed point in X , if there exist v, ϑ ∈ X , that is, v = T(v, ϑ) and
ϑ = T(ϑ, v).

If we take ξ(t) =
(1− k)

2
)t in the Corollary 1, we have the following result.

Corollary 3. Let (Ω, $) be a POMS and T : X ×X → X be a mapping having the mixed
monotone property on X such that there exist two elements v0, ϑ0 ∈ X with

v0 � T(v0, ϑ0), ϑ0 � T(ϑ0, v0),

such that

$(T(v, ϑ), T(u, v) ≤ k
2
($(v, u) + $(ϑ, v)),

where v, ϑ, u, v ∈ X . Further suppose that X is complete and any of the following condi-
tions holds:

(a) T is continuous or
(b) If {vn}, {ϑn} are non-decreasing sequences in X such that vn −→ v and ϑn −→ ϑ then

vn � v, ϑ � ϑn for all n ≥ 0.

Then T has a CFP in X , if there exist v, ϑ ∈ X , that is, v = T(v, ϑ) and ϑ = T(ϑ, v).

Corollary 4. In addition to hypotheses of Corollary 1, assume that for every (v, ϑ), (m, n) ∈
X ×X , there exists a (u, v) in X ×X that is, comparable to (v, ϑ) and (m, n), then T has a
unique CFP.

Corollary 5. In addition to hypotheses of Theorem 4, if v0, ϑ0 are comparable then T has a
unique CFP.

Corollary 6. In addition to hypotheses of Corollary 2, if v0, ϑ0 are comparable then T has a
unique CFP.

5. Application

The contextual discussion on the results lead us to following integral application.
Now, we study the solution of following Fredholm nonlinear integral equation:

v(p) =
∫ a

b K1(p, q)[ f (q, v(q)) + g(q, ϑ(q))]dq +
∫ a

b K2(p, q)[ f (q, ϑ(q)) + g(q, v(q))]dq + h(p)
ϑ(p) =

∫ a
b K1(p, q)[ f (q, ϑ(q)) + g(q, v(q))]dq +

∫ a
b K2(p, q)[ f (q, v(q)) + g(q, ϑ(q))]dq + h(p)

(56)

for all p, q ∈ [a, b].
We assume that K1, K2, f , g satisfy the following conditions



Axioms 2021, 10, 73 18 of 23

Assumption 1. • K1(p, q) ≥ 0 and K2(p, q) ≤ 0 for all p, q ∈ [a, b].

• There exist λ, µ > 0 such that for all v, ϑ ∈ R, v � ϑ

0 ≤ f (p, v)− f (p, ϑ) ≤ λ(v− ϑ),

and

−µ(v− ϑ) ≤ g(p, v)− g(q, ϑ) ≤ 0.

• max{λ, µ} sup
p∈[a, b]

{
∫ a

b K1(p, q)−
∫ a

b K2(p, q)} ≤ 1
2

.

Definition 11. An element (ς, τ) ∈ C(I, R) × C(I, R) is called a coupled lower and upper
solution of the integral equation (56) if ς(q) � τ(q) and

ς(p) ≤
∫ a

b
K1(p, q)[ f (q, ς(q)) + g(q, τ(q))]dq +

∫ a

b
K2(p, q)[ f (q, τ(q)) + g(q, ς(q))]dq + h(p)

and

τ(p) ≥
∫ a

b
K1(p, q)[ f (q, τ(q)) + g(q, ς(q))]dq +

∫ a

b
K2(p, q)[ f (q, ς(q)) + g(q, τ(q))]dq + h(p)

for all p ∈ [a, b].

Theorem 5. Consider the integral Equation (56) where K1, K2 ∈ C(I× I, R), f , g ∈ C(I× I, R)
and h ∈ C(I, R). Suppose that Assumption 1 is satisfied. Then the existence of a coupled lower
and upper solution for (56) provides the unique solution of (56) in C(I, R).

Proof. Let X = C(I, R). X is a partially ordered set if we define the following order
relation in X : v, ϑ ∈ C(I, R), v � ϑ ⇔ v(p) ≤ ϑ(p), for all p ∈ [a, b]. Assume that
(X , $) is a complete metric space with metric

$(v, ϑ) = sup
p∈[a, b]

|v(p)− ϑ(p)|, v, ϑ ∈ C(I, R).

Suppose {un} is a monotone non-decreasing in X that converges to u ∈ X . Then,
for every p ∈ [a, b], the sequence of real numbers

u1(p) � u2(p) � . . . � un(p) � . . .

converges to u(p). Therefore, for all p ∈ [a, b], n ∈ N, un(p) � u(p). Hence un � u for all n.
Similarly, we can verify that limit v(p) of a monotone non-increasing sequence vn(p) ∈ X
is a lower bound for all the elements in the sequence. That is, v � vn for all n. Therefore,
condition (b) of Theorem 4 holds.

Now, X ×X = C(I, R)×C(I, R) is a partially ordered set if we define the following
order relation in X ×X by (v, ϑ), (u, v) ∈ X ×X , (v, ϑ) � (u, v)⇔ v(p) ≤ u(p) and
ϑ(p) ≥ v(p), for all p ∈ [a, b]. For any v, ϑ ∈ X , max{v(p), ϑ(p)} and min{v(p), ϑ(p)},
for each p ∈ [a, b], are in X and are the upper and lower bounds of v, ϑ, respectively.
Therefore, for every (v, ϑ), (u, v) ∈ X ×X , there exists a (max{v, u}, min{ϑ, v}) ∈
X ×X that is, comparable to (v, ϑ) and (u, v).

Define T : X ×X → X by

T(v, ϑ)(p) =
∫ a

b
K1(p, q)[ f (q, v(q)) + g(q, ϑ(q))]dq +

∫ a

b
K2(p, q)[ f (q, ϑ(q)) + g(q, v(q))]dq + h(p)
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for all p ∈ [a, b]. Now we shall show that T has the mixed monotone property. Now,
for v1 � v2, that is, v1(p) ≤ v2(p), for all p ∈ [a, b], we have

T(v1, ϑ)(p)− T(v2, ϑ)(p)

=
∫ a

b
K1(p, q)[ f (q, v1(q)) + g(q, ϑ(q))]dq +

∫ a

b
K2(p, q)[ f (q, ϑ(q)) + g(q, v1(q))]dq + h(p)

−
∫ a

b
K1(p, q)[ f (q, v2(q)) + g(q, ϑ(q))]dq−

∫ a

b
K2(p, q)[ f (q, ϑ(q)) + g(q, v2(q))]dq− h(p)

=
∫ a

b
K1(p, q)[ f (q, v1(q))− f (q, v2(q))]dq +

∫ a

b
K2(p, q)[g(q, v1(q))− g(q, v2(q))]dq

≤ 0, by Assumption 1.

Therefore, T(v1, ϑ) ≤ T(v2, ϑ), for all p ∈ [a, b], that is, T(v1, ϑ) � T(v2, ϑ).
Similar cases can be proved when ϑ1 � ϑ2, that is, ϑ1 ≥ ϑ2, for all p ∈ [a, b], we have

T(v, ϑ1)(p)− T(v, ϑ2)(p)

=
∫ a

b
K1(p, q)[ f (q, v(q)) + g(q, ϑ1(q))]dq +

∫ a

b
K2(p, q)[ f (q, ϑ1(q)) + g(q, v(q))]dq + h(p)

−
∫ a

b
K1(p, q)[ f (q, v(q)) + g(q, ϑ2(q))]dq−

∫ a

b
K2(p, q)[ f (q, ϑ2(q)) + g(q, v(q))]dq− h(p)

=
∫ a

b
K1(p, q)[g(q, ϑ1(q))− g(q, ϑ2(q))]dq +

∫ a

b
K2(p, q)[ f (q, ϑ1(q))− f (q, ϑ2(q))]dq

≤ 0, by Assumption 1.

Therefore, T(v, ϑ1) ≤ T(v, ϑ2), for all p ∈ [a, b], that is, T(v, ϑ1) � T(v, ϑ2).
Thus, T(v, ϑ) is monotone non-decreasing in v and monotone non-increasing in ϑ. Now,
for v � u and ϑ � v, that is, v(p) ≥ u(p), ϑ(p) ≤ v(p) for all p ∈ [a, b], we have

$(T(v, ϑ), T(u, v)) = sup
p∈[a, b]

|T(v, ϑ)(p)− T(u, v)(p)|

= sup
p∈[a, b]

|
∫ a

b
K1(p, q)[ f (q, v(q)) + g(q, ϑ(q))]dq

+
∫ a

b
K2(p, q)[ f (q, ϑ(q)) + g(q, v(q))]dq + h(p)

− (
∫ a

b
K1(p, q)[ f (q, u(q)) + g(q, v(q))]dq

+
∫ a

b
K2(p, q)[ f (q, v(q)) + g(q, u(q))]dq + h(p))|

= sup
p∈[a, b]

|
∫ a

b
K1(p, q)[ f (q, v(q))− f (q, u(q)) + g(q, ϑ(q))− g(q, v(q))]dq

+
∫ a

b
K2(p, q)[( f (q, ϑ(q))− f (q, v(q))) + (g(q, v(q))− g(q, u(q)))]dq|

= sup
p∈[a, b]

|
∫ a

b
K1(p, q)[ f (q, v(q))− f (q, u(q))− (g(q, v(q))− g(q, ϑ(q))]dq

−
∫ a

b
K2(p, q)[( f (q, v(q))− f (q, ϑ(q)))− (g(q, v(q))− g(q, u(q)))]dq|

≤ sup
p∈[a, b]

|
∫ a

b
K1(p, q)[λ(v(q)− u(q)) + µ(v(q)− ϑ(q))]dq

−
∫ a

b
K2(p, q)[λ(v(q)− ϑ(q)) + µ(v(q)− u(q))]dq|

≤ max{λ, µ} sup
p∈[a, b]

∫ a

b
(K1(p, q)−K2(p, q))[(v(q)− u(q)) + (v(q)− ϑ(q))]dq.
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Therefore, v(q)− u(q) ≤ $(v, u), v(q)− ϑ(q) ≤ $(v, ϑ), for all q ∈ [a, b], we obtain,

$(T(v, ϑ), (u, v)) = max{λ, µ} sup
p∈[a, b]

∫ a

b
(K1(p, q)−K2(p, q))[v(q)− u(q) + v(q)− ϑ(q)]dq

≤ max{λ, µ}[$(v, u) + $(ϑ, v)] sup
p∈[a, b]

∫ a

b
(K1(p, q)−K2(p, q))dq

≤ $(v, u) + $(ϑ, v)
2

.

Let ζ, χ, ξ : [0, ∞)→ [0, ∞) be defined by

ζ(p) =
p
4

for all p ∈ [0, ∞),

χ(p) =
3
2

p for all p ∈ [0, ∞),

ξ(p) =
5
8

p for all p ∈ [0, ∞).

Therefore, for all v � u, ϑ � v, we have

ζ(T(v, ϑ), T(u, v)) =
$(T(v, ϑ) + T(u, v))

4

≤ $(v, u) + (ϑ, v)
8

=
3
4

$(v, u) + (ϑ, v)− 5
8
($(v, u) + (ϑ, v))

=
1
2

χ($(v, u) + (ϑ, v))− 5
4
× 1

2
($(v, u) + (ϑ, v))

=
1
2

χ($(v, u) + (ϑ, v))− ξ(
$(v, u) + (ϑ, v)

2
).

So,

v(p) = T(v, ϑ)(p) =
∫ a

b
K1(p, q)[ f (q, v(q)) + g(q, ϑ(q))]dq+∫ a

b
K2(p, q)[ f (q, ϑ(q)) + g(q, v(q))]dq + h(p)

and

ϑ(p) = T(ϑ, v)(p) =
∫ a

b
K1(p, q)[ f (q, ϑ(q)) + g(q, v(q))]dq+∫ a

b
K2(p, q)[ f (q, v(q)) + g(q, ϑ(q))]dq + h(p).

Hence, the system of coupled integral equation (56) possesses a unique solution.

6. Illustration

Example 3. Assume that (X = R2, $) is a complete metric space, where the metric $ is defined
as $(v, ϑ) =| v1 − v2 | + | ϑ1 − ϑ2 |, for v = (v1, ϑ1), ϑ = (v2, ϑ2) ∈ X . We
define a partial order � on X such that (v1, ϑ1) � (u1, v1) and (v2, ϑ2) � (u2, v2) if
and only if v1 ≤ u1 and v2 ≤ u2, for all (v1, v2), (u1, v1), (ϑ1, ϑ2), (u2, v2) ∈ X . Let
A = {(v, 1) : 0 ≤ v ≤ 1} ∪ {0, v) : 1 ≤ v < 2}, B = {(v, −1) : 0 ≤ v ≤ 1} ∪ {0, v) :
−2 < v ≤ −1}, A0 = {(v, 1) : 0 ≤ v ≤ 1} and B0 = B = {(v, −1) : 0 ≤ v ≤ 1}.

Let T : A ×A → B be defined as

T((v1, 1), (v2, 1)) = (
v1 + v2

2
, −1) if t = ((v1, 1), (v2, 1)) ∈ A0 ×A0.
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Therefore, it is clear that $(A , B) = 2, A0 ⊆ A and T(A0 ×A0) ⊆ B0.
Now, we show that T is satisfying the proximal mixed monotone property:
Take (v0, 1) � (v1, 1) and (ϑ0, 1) � (ϑ1, 1) in A0 ×A0 with

$((v1, 1), T((v0, 1), (ϑ0, 1))) = $(A , B)

and
$((v2, 1), T((v1, 1), (ϑ1, 1))) = $(A , B),

which implies,

v1 =
v0 + ϑ0

2
and v2 =

v1 + ϑ1

2
.

Now, we get from the order relation,

v0 + ϑ0

2
≤ v1 + ϑ1

2
.

Therefore,

v1 ≤ v2, that is, (v1, 1) � (v2, 1).

Again, take (ϑ0, 1) � (ϑ1, 1) and (v0, 1) � (v1, 1) in A0 ×A0 with

$((ϑ1, 1), T((ϑ0, 1), (v0, 1))) = $(A , B)

and
$((ϑ2, 1), T((ϑ1, 1), (v1, 1))) = $(A , B),

which also implies,

ϑ1 =
ϑ0 + v0

2
and ϑ2 =

ϑ1 + v1

2
.

Again, we get from the order relation,

ϑ0 + v0

2
≤ ϑ1 + v1

2
.

Therefore,

ϑ1 ≤ ϑ2, that is, (ϑ1, 1) � (ϑ2, 1).

So, T satisfies the proximal mixed monotone property.
Define ζ ∈ Υ, χ ∈ Ξ, ξ ∈ Γ as

ζ(t) = t2, χ(t) =

{
t2

2 , t ∈ [0, 1]
t3

2 , otherwise
and ξ(t) =

{
0, t ∈ [0, 1]
t3

2 , otherwise.

Here, it is not difficult to see that ζ(t)− lim χ(vn) + 2 lim ξ(vn) > 0.
So, all the postulates of Theorems 2 and 3 are satisfied and we can draw a conclusion that

((0, 1), (0, 1)) ∈ A ×A is the unique coupled best proximity point of T.

Note 1. As the sets A and B are not closed in the illustration, we may relax the closure property
of the sets A and B in our theorems.

Remark 1. The control functions, we have used in our results show the more general form of the
theorems mentioned in Luong and Thuan [43].
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Only the fixed point results are extracted here to represent the application for the existence of
solution of an integral equation. Some best proximity point results related to earlier publications in
the literature may also be obtained through our results.

Remark 2. The results related to fixed point proved here, are not using P-property as the property
is not needed to proved fixed point results. The space considered in our example in Section 5, is also
not satisfying P-property.
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