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En primer lloc desitge donar les gràcies al meu director Javier Fernández
de Bobadilla pel seu gran suport i dedicació. També vull agrair immensament
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tutoria d’aquesta tesi.
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Però, sobretot, gràcies als meus benvolguts pares, pel seu amor incondi-
cional i suport vital des de sempre, per la seua confiança, comprensió i paciència
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Resumen

En esta tesis doctoral se aportan contribuciones a la teoŕıa de singularidades,
aśı como a la teoŕıa de clases caracteŕısticas de variedades singulares. La
primera parte de esta tesis se centra en el estudio de singularidades que apare-
cen en la imagen de aplicaciones. Los principales objetos de estudio en la
teoŕıa de singularidades de aplicaciones son los gérmenes de aplicación, y uno
de los objetivos de esta teoŕıa es la clasificación de dichos gérmenes. En esta
dirección, D. Mond formuló una conjetura muy relevante en el área. Aunque
algunos casos de esta conjetura han sido resueltos, el caso general aún per-
manece abierto a d́ıa de hoy. La conjetura relaciona dos importantes invari-
antes anaĺıticos de gérmenes de aplicación de (Cn, 0) a (Cn+1, 0) de distinta
naturaleza, estos son la Ae-codimensión y el número de Milnor en la imagen
µI . Dado f : (Cn, 0) → (Cn+1, 0) un germen de aplicación con singularidad
inestable en 0 y con (n, n+ 1) en el rango de buenas dimensiones de Mather,
la conjetura establece que Ae-codim(f) es menor o igual que µI(f), y con
igualdad cuando f es un germen de aplicación casi-homogéneo. La conjetura
de Mond se conoce para los siguientes casos: para n ≤ 2, para gérmenes de
aplicación de tipo fold, y para gérmenes de corrango 1 con Ae-codimensión
1. Una de las dificultades de esta conjetura es determinar µI , ya que por
su naturaleza topológica es dif́ıcil de calcular en general. El caṕıtulo 3 y el
caṕıtulo 4 de esta tesis doctoral están dedicados a la obtención fórmulas que
permiten calcular de forma efectiva µI para ciertos gérmenes de aplicación.
En el caṕıtulo 3, probamos una fórmula para el número de Milnor en la ima-
gen µI de gérmenes de aplicación de corrango 1, mientras que en el caṕıtulo
4 obtenemos dos fórmulas para el número de Milnor en la imagen µI en el
caso de gérmenes de aplicación casi-homogéneos de (Cn, 0) a (Cn+1, 0), con
n = 4 y 5. Estas últimas fórmulas se basan en un resultado introducido por
T. Ohmoto que involucra clases caracteŕısticas de espacios singulares, dando
lugar a fórmulas que permiten calcular fácilmente el número de Milnor en la
imagen. Estas fórmulas son obtenidas a través la interacción entre la teoŕıa
de singularidades de aplicaciones y la teoŕıa de clases caracteŕısticas, y mues-
tran un claro ejemplo de la utilidad de estas clases para el estudio de espacios
singulares.

Las clases caracteŕısticas fueron introducidas en la década de 1930 por E.
Stiefel como parte de la teoŕıa de la obstrucción en el estudio de fibrados vec-
toriales de variedades lisas. Estas clases son clases de cohomoloǵıa que miden
la trivialidad del fibrado vectorial. En los años siguientes, se definieron difer-
entes clases caracteŕısticas para fibrados vectoriales, y estas se generalizaron
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para variedades singulares. Las clases caracteŕısticas de variedades singulares
son clases de homoloǵıa que recuperan, para el caso no singular, la clase car-
acteŕıstica de cohomoloǵıa correspondiente tomando el producto cap con la
clase fundamental. Uno de los principales intereses en la teoŕıa de clases carac-
teŕısticas de espacios singulares es la comparación de distintas clases de cierto
espacio singular. Por un lado, con el objetivo de unificarlas. Por otro lado,
para estudiar qué información captura la diferencia entre dos clases distintas
sobre la variedad singular. Una de las técnicas para definir estas clases es
mediante el uso de transformaciones naturales. Estas trasformaciones parten
de cierto funtor que depende de la clase caracteŕıstica y llegan al funtor de
homoloǵıa de Borel-Moore. Además, esta transformación natural tiene un el-
emento distinguido en el funtor de partida de modo que la transformación
aplicada a este elemento, recupera la clase caracteŕıstica de cohomoloǵıa cor-
respondiente para el caso no singular.

J. P. Brasselet, J. Schürmann y S. Yokura, respondiendo a una pregunta
formulada por R. MacPherson sobre la teoŕıa de unificación de clases carac-
teŕısticas de espacios singulares, definen la clase de homoloǵıa de Hirzebruch
Ty,∗ como una transformación natural a través de teoŕıa de Hodge. Esta trans-
formación parte del funtor relativo de Grothendieck de variedades algebraicas
y llega al funtor de homoloǵıa de Borel-Moore, y recupera, para el caso no
singular, la importante clase caracteŕıstica de cohomoloǵıa de Hirzebruch T ∗y .

La clase de Hirzebruch T ∗y para variedades no singulares, nace del teorema
de Hirzebruch-Riemman-Roch generalizado (g-HRR) probado por F. Hirze-
bruch. Este teorema, en términos de la clase de Chern y la clase de Hirze-
bruch T ∗y , recupera para distintos valores de y los siguientes invariantes: Para
y = −1, la caracteŕıstica de Euler, para y = 0, el género aritmético y, para
y = 1, la signatura de la variedad. La clase cohomológica de Hirzebruch T ∗y (Y )
es una generalización a clases caracteŕısticas de estos tres invariantes, es decir,
se especializa en la clase total de Chern (para y = −1), en la clase total de
Todd (para y = 0) y en la L-clase de Thom-Hirzebruch (para y = 1). En
los años 1980, M. Goresky y R. MacPherson introducen la homoloǵıa de in-
tersección dando lugar a la noción de signatura para una variedad singular.
Además, M. Goresky y R. MacPherson generalizan la L-clase caracteŕıstica
de Thom-Hirzebruch para espacios singulares, conocida como la L-clase de
Goresky-MacPherson.

J. P. Brasselet, J. Schürmann y S. Yokura formularon la siguiente conje-
tura: La clase de homoloǵıa de Hirzebruch Ty,∗ coincide, para y = 1, con la
L-clase de Goresky-MacPherson para variedades algebraicas complejas y com-
pactas que son de homoloǵıa racional. Esta conjetura es la generalización a
clases caracteŕısticas del importante Teorema del Índice de Hodge. Este teo-
rema calcula la signatura de una variedad algebraica compacta lisa a través
de los números de Hodge. Aśı pues, la conjetura de Brasselet-Schürmann-
Yokura establece una generalización del Teorema del Índice de Hodge in-
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cluso para variedades de homoloǵıa racional, dando aśı una comprensión de
la L-clase de Goresky-MacPherson a través de la teoŕıa de Hodge. En el
caṕıtulo 5, probamos la conjetura de Brasselet-Schürmann-Yokura para var-
iedades proyectivas, y este trabajo compone el resultado principal de esta tesis
doctoral.

Esta tesis se divide en cinco caṕıtulos. El caṕıtulo 1 se corresponde a una
introducción de esta tesis doctoral. En el caṕıtulo 2 se presentan los prelim-
inares necesarios para los resultados principales que se exponen en los restantes
tres caṕıtulos. La sección 2.1 del caṕıtulo 2, está dedicada a los preliminares
sobre teoŕıa de singularidades de aplicaciones necesarios para el desarrollo de
los caṕıtulos 3 y 4. En la sección 2.5 se introduce la teoŕıa de clases carac-
teŕısticas y se presentan las clases que involucran los caṕıtulos 4 y 5. El resto
de secciones del caṕıtulo de preliminares están dedicadas a las nociones y re-
sultados principales utilizados en el caṕıtulo 5. En estas secciones se incluyen
teoŕıa de Hodge clásica, la teoŕıa de t-estructuras, teoŕıa de haces perversos,
el Teorema de Descomposición y la teoŕıa de hiperresoluciones cúbicas.

En el caṕıtulo 3, probamos la primera fórmula obtenida para el número
de Milnor en la imagen. Esta fórmula es una versión de la clásica fórmula de
Lê-Greuel para el número de Milnor de la imagen dando lugar a un método
recursivo para calcularlo.

Para un germen de aplicación f : (Cn, 0) → (Cn+1, 0) con n > 1, A-finito
(con singularidad inestable en 0) de corrango 1, y g : (Cn−1, 0)→ (Cn, 0) otro
germen de aplicación que es el corte transversal de f con respecto a una forma
lineal genérica p : Cn+1 → C. Entonces, la suma de los números de Milnor en
la imagen µI(f) y µI(g) de f y g, respectivamente, es igual a

µI(f) + µI(g) = #Σ(p|Xs),

donde #Σ(p|Xs) denota el número de puntos cŕıticos de la restricción p|Xs de
p a la imagen Xs de una perturbación estable fs de f .

Para el caso n = 1, la fórmula correspondiente es la siguiente

µI(f) +m0(f)− 1 = #Σ(p|Xs),

donde m0(f) es la multiplicidad de la curva parametrizada por f . Este trabajo
es un trabajo conjunto con el Prof. Juan José Nuño Ballesteros.

En el caṕıtulo 4, se expone el segundo trabajo de esta tesis doctoral que
combina la teoŕıa de singularidades de aplicaciones con la teoŕıa de clases
caracteŕısticas. En este caṕıtulo damos dos fórmulas que calculan el número
de Milnor en la imagen para gérmenes de aplicación de (Cn, 0) a (Cn+1, 0)
casi-homogéneos y A-finitos, para n = 4 y 5, en términos de los pesos y grados
asociados a la aplicación. Este es un trabajo en colaboración con el Prof.
Guillermo Peñafort.
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Las fórmulas se basan en un enfoque topológico que se remonta a R. Thom
que conecta la geometŕıa de aplicaciones singulares con ciertas clases de carac-
teŕısticas. T. Ohmoto adaptó estas técnicas probando la existencia de fórmulas
que calculan el número de Milnor en la imagen para gérmenes de aplicación
casi-homogéneos en términos de sus pesos y grados, para n ≤ 5. Estas fórmulas
predichas por T. Ohmoto tienen una forma espećıfica; son funciones racionales
con denominador conocido, y cuyo numerador se obtiene del truncamiento del
n-ésimo grado de la serie llamada polinomio de Segre-MacPherson-Thom. Esta
serie tiene coeficientes bα ∈ Q, y nuestro objetivo fue encontrar estos coefi-
cientes con la siguiente técnica: Para un germen de aplicación fijado f , hay
una forma de calcular µI(f) con del software Singular, a través de los resul-
tados obtenidos por J. Fernández de Bobadilla, J. J. Nuño y G. Peñafort sobre
la conjectura de Mond. Conociendo el valor de µI(f), los pesos w y los gra-
dos d de f , se pueden determinar algunas relaciones entre los coeficientes bα.
Tomando suficientes f con los valores conocidos de µI(f) y (w, d), se puede
determinar el bα deseado. Usamos esta técnica para recuperar las fórmulas
para n = 2 y 3 obtenidas previamente, por D. Mond y T. Ohmoto usando
diferentes técnicas, respectivamente, y para determinar las nuevas fórmulas
para n = 4 y 5. El desaf́ıo para los casos n = 4 y 5 fue encontrar los ejem-
plos para calcular los bα debido a lo siguiente: Por un lado, los gérmenes de
aplicación que son demasiado simples no aportan nueva información sobre los
bα. Por otro lado, los candidatos demasiado degenerados pueden dificultar el
cálculo de µI , o la verificación de la A-finitud.

En el caṕıtulo 5, desarrollamos el trabajo principal de esta tesis doctoral,
donde probamos junto al Prof. Javier Fernández de Bobadilla el caso proyec-
tivo de la conjetura de Brasselet-Schürmann-Yokura para variedades de ho-
moloǵıa racional.

Como mencionamos anteriormente, la conjetura establece que la clase de
Hirzebruch (para y = 1) coincide con la L-clase de Goresky-MacPherson
para variedades algebraicas complejas y compactas que son de homoloǵıa
racional. La clase de homoloǵıa de Hirzebruch Ty,∗ es la generalización para
variedades singulares de la clase de cohomoloǵıa de Hirzebruch T ∗y , definida
para variedades lisas. La clase de Hirzebruch se generalizó al caso singular
definiendo una transformación natural Ty,∗ del funtor de Grothendieck rela-
tivo K0(var/−) de variedades algebraicas complejas al funtor de homoloǵıa
de Borel-Moore HBM

∗ (−,Q). Además, esta transformación, para diferentes
valores de y, unifica las siguientes transformaciones para variedades singu-
lares: Para y = −1, esta transformación recupera la transformación de Chern-
Schwartz-MacPherson, generalizando la clase Chern. Para y = 0, la transfor-
mación da lugar a la versión singular de la clase de Todd, la transformación de
Baum-Fulton-MacPherson Todd. Para y = 1, la clase de Hirzebruch especial-
iza en la L-transformación de Cappell-Shaneson, introducida por S. E. Cap-
pell, J. L. Shaneson y S. Weinberger como una generalización de la L-clase de
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Goresky-MacPherson que extiende la L-clase de Thom-Hirzebruch para el caso
singular. Además, para una variedad algebraica compleja Y , la transformación
Ty,∗ satisface que esta aplicada a la clase identidad [Y → Y ] ∈ K0(var/Y ),
especializa para y = −1, en T−1,∗(Y ) = cSM∗ (Y ) la clase (racionalizada) de
Chern-Schwartz-MacPherson de Y , para y = 0, en T0,∗(Y ) = tdBFM∗ (Y ) la
clase de Baum-Fulton-MacPherson Todd de Y , si Y tiene singularidades tipo
du Bois, y para y = 1, tenemos la conjetura de Brasselet-Schürmann-Yokura:
Si Y es una variedad algebraica compleja compacta y de homoloǵıa racional,
entonces

T1,∗(Y ) = L∗(Y ),

donde L∗(Y ) es la L-clase de Goresky-MacPherson de Y .

Además, J. P. Brasselet, J. Schürmann y S. Yokura definen una transfor-
mación natural sd definida del funtor K0(var/−) al funtor de cobordismo
ΩK(−) (K un subcuerpo de R) de K-complejos de haces acotados, coho-
mológicamente construibles y auto-duales, cumpliendo la siguiente igualdad
de transformaciones naturales: L∗ ◦ sd = T1,∗, esto es, que el siguiente dia-
grama sea commutativo:

K0(var/−) ΩK(−)

H2∗(−;Q)

sd

T1,∗ L∗

En este caṕıtulo, probamos para variedades proyectivas, el siguiente re-
sultado también conjeturado por J. P. Brasselet, J. Schürmann y S. Yokura.
Además, este resultado implica la conjetura de Brasselet-Schürmann-Yokura
después de aplicar la L-transformación de Cappell-Shaneson L∗:

Si Y es una variedad algebraica compleja, compacta y de homoloǵıa racional,
entonces tenemos la siguiente igualdad en ΩR(Y )

sdR([Y → Y ]) = [ICY ]

donde ICY es el complejo de haces de cohomoloǵıa de intersección en Y ,
ΩR(Y ) es el grupo de cobordismo de R-complejos de haces acotados coho-
mológicamente construibles y auto-duales y sdR denota la transformación sd
en ΩR(Y ).

En la demostración de la conjetura de Brasselet-Schürmann-Yokura para
variedades proyectivas nos basamos en la combinación del profundo Teorema
de Descomposición y la teoŕıa clásica de Hodge, aśı como la teoŕıa de hiperres-
oluciones cúbicas. La prueba se organiza de la siguiente forma: En la sección
5.1, obtenemos una identidad en K0(var/Y ) expresando la clase identidad
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[Y → Y ] como una suma alternada de clases de variedades lisas procedente de
una variedad semi-simplicial aumentada a Y . Esta suma alternada permite
calcular sdR([Y → Y ]), donde la clase del complejo de haces de cohomoloǵıa de
intersección [ICY ] aparece en la expresión obtenida junto con otros términos.
El objetivo es probar que la suma de términos adicionales, aparte de [ICY ], que
aparecen en la expresión obtenida de sdR([Y → Y ]) se anulan. Para demostrar
esto usamos ciertas sucesiones exactas de haces perversos que se obtienen en
la sección 5.2. Para probar que estas sucesiones de haces perversos son exactas
utilizaremos una sucesión espectral de haces perversos asociada a la variedad
semi-simplicial que degenera en la segunda página de la sucesión espectral. Es
en este paso donde se necesita la hipótesis de proyectividad, debido al uso de
secciones hiperplanas.
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Chapter 1

Introduction

In this Ph.D. thesis, we give some contributions to the singularity theory, as
well as to the theory of characteristic classes of singular varieties. The first
part of this work is focused on the study of singularities appearing in the image
of mappings. The main objects of study in the theory of singularities of map-
pings are map-germs, and one of the goals in this theory is their classification.
In this direction, D. Mond in [64] formulated a relevant conjecture relating
two important analytical invariants of map-germs from (Cn, 0) to (Cn+1, 0) of
different nature, they are the Ae-codimension and the image Milnor number
µI . The conjecture states that the Ae-codimension is less than or equal to
µI , and with equality for weighted-homogeneous map-germs. The conjecture
is proved for some particular cases: for n ≤ 2, fold map-germs, and corank 1
map-germs with Ae-codimension 1. One of the difficulties of this conjecture is
to determine µI which is hard to compute in general by its topological nature.
Chapter 3 and Chapter 4 are devoted to obtain formulas computing µI . In
Chapter 3, we give a formula for µI for corank 1 map-germs, while in Chapter
4 we obtain two formulas for µI for weighted-homogeneous map-germs from
(Cn, 0) to (Cn+1, 0) with n = 4 and 5. The latter formulas connect the theory
of singularities of mappings with the theory of characteristic classes. They are
based on a result formulated by T. Ohmoto [69] which involves characteris-
tic classes of singular spaces, giving rise to very simple computable formulas
for µI . These formulas are an example of the usefulness of the characteristic
classes to the study of singular spaces.

The classical characteristic classes were introduced in the 1930s by E.
Stiefel as a part of the obstruction theory in the study of vector bundles
of smooth manifolds. These classes are cohomology classes that measure the
triviality of the vector bundle. Several characteristic classes were defined and
were generalized to singular varieties. The characteristic classes of singular
varieties are usually homology classes that recover in the non-singular case
the corresponding cohomological characteristic class by capping with the fun-
damental class. One of the main goals in the theory of characteristic classes of
singular spaces is to compare different ones in order to unify them, as well as
studying what information captures the difference between two classes about
the singular variety. One of the techniques to define these classes for singular
varieties is by using natural transformations from certain functor depending on
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Chapter 1. Introduction

the characteristic class to the homology functor. Moreover, this natural trans-
formation has a distinguished element in the source functor for which recovers
the corresponding cohomology characteristic class for the non-singular case. In
[9], the authors answered a question formulated by R. MacPherson about the
unification of characteristic classes. They defined the Hirzebruch homology
class Ty,∗ as a natural transformation from the relative Grothendieck group
of algebraic varieties to the Borel-Moore homology functor, which recovers
for the non-singular case the important Hirzebruch cohomology characteristic
class. Moreover, this class unifies three relevant characteristic classes defined
as natural transformations, for different values of y. For a distinguished ele-
ment in the Grothendieck group, the same authors formulated the following
conjecture: The Hirzebruch homology class for y = 1 applied to its distin-
guished element coincides with the Goresky-MacPherson L-class for compact
complex algebraic varieties that are rational homology manifolds. In Chapter
5, we prove the conjecture for projective varieties which composes the main
work of this Ph.D. thesis.

This Ph.D. thesis is divided in the following chapters. In Chapter 2, we
introduce the preliminaries needed for the main results.

In Chapter 3, we prove the first formula given for the image Milnor number.
This formula is a version of the Lê-Greuel formula [34, 47] for the image Milnor
number which provides a recursive method to compute it.

For an A-finite corank 1 map-germ f : (Cn, 0) → (Cn+1, 0) with n > 1,
and g : (Cn−1, 0) → (Cn, 0) another map-germ which is the transverse slice
of f with respect to a generic linear form p : Cn+1 → C, that is, g has image
(X ∩H, 0), where (X, 0) is the image of f and H = p−1(0), the sum of their
image Milnor numbers µI(f) and µI(g) is equal to

µI(f) + µI(g) = #Σ(p|Xs),

where #Σ(p|Xs) is the number of critical points of the restriction p|Xs : Xs →
C to the image Xs of a stable perturbation fs of f . In the case of n = 1, the
formula is

µI(f) +m0(f)− 1 = #Σ(p|Xs),

where m0(f) is the multiplicity of the curve parametrized by f . This work is
a joint work with Prof. Juan José Nuño Ballesteros.

Chapter 4 is devoted to the second work which combines the theory of
singularities of mappings with the theory of characteristic classes. We give two
formulas which compute the image Milnor number for weighted-homogeneous
map-germs from (Cn, 0) to (Cn+1, 0), for n = 4 and 5, in terms of the weights
and degrees associated to the mapping. This is a work in collaboration with
Prof. Guillermo Peñafort.

The formulas are based on a topological approach that goes back to R.
Thom [80] connecting the geometry of singular maps to certain characteristic
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classes. T. Ohmoto in [69], adapted these techniques to show the existence
of formulas computing the image Milnor number for weighted-homogeneous
map-germs in terms of weights and degrees (for n ≤ 5). These formulas have a
specific form; they are rational functions with known denominator, whose nu-
merator is obtained from the n-th degree truncation of the Segre-MacPherson
Thom polynomial series. This series has coefficients bα ∈ Q, and our goal was
to find these coefficients by using the following technique: For fixed map-germ
f , there is a way to compute µI(f) with the software Singular, based on
results in [25]. Having the value of µI(f) and the grading (w, d) of f at hand,
one can determine some relations between the coefficients bα. And, sampling
enough f , one can determine the desired bα. The challenge was to find these
examples: On one hand, map-germs that are too simple do not yield new
information about the bα. On the other hand, degenerate candidates can be
too complicated to compute their µI , or to check A-finiteness. We use this
approach to recover the formulas for n = 2 and 3 given, respectively, by D.
Mond and T. Ohmoto using different techniques, and to derive new ones for
n = 4 and 5.

In Chapter 5, we develop the main work of this Ph.D. thesis. We prove
together with Prof. Javier Fernández de Bobadilla the projective case of the
Brasselet-Schürmann-Yokura conjecture for rational homology manifolds for-
mulated in [9]. As we mentioned previously, the conjecture states that the
Hirzebruch homology class (for y = 1) coincides with the Goresky-MacPherson
L-class for compact complex algebraic varieties that are rational homology
manifolds. The Hirzebruch homology class Ty,∗ is the generalization for sin-
gular varieties the Hirzebruch cohomology class T ∗y , defined for smooth mani-
folds. This homology class starts from the generalized Hirzebruch-Riemman-
Roch Theorem (g-HRR) proved by F. Hirzebruch for Y non-singular, which
computes the χy-characteristic of Y in terms of the Chern classes and the
Hirzebruch cohomology class T ∗y (Y ). The (g-HRR) computes the Euler char-
acteristic (for y = −1), the arithmetic genus (for y = 0), and the signature
(for y = 1). Moreover, the Hirzebruch class T ∗y (Y ) specializes in the total
Chern class (for y = −1), the total Todd class (for y = 0), and the Thom-
Hirzebruch L-class (that is the L-polynomial in the Pontrjagin classes) (for
y = 1). In [9], the Hirzebruch class was generalized to the singular case by
defining a natural transformation Ty,∗ from the relative Grothendieck functor
K0(var/−) of complex algebraic varieties to the Borel-Moore homology func-
tor HBM

∗ (−,Q). It satisfies that, for different values of y, unifies the following
transformations: For y = −1, it recovers the Chern-Schwartz-MacPherson
transformation, which gives a generalization of the Chern class given by [52].
For y = 0, it recovers the singular version of the Todd class, the Baum-
Fulton-MacPherson Todd transformation [5] For y = 1, it recovers the Cappell-
Shaneson L-transformation, introduced by S. E. Cappell, J. L. Shaneson and
S. Weinberger in [15] as a generalization of the Goresky-MacPherson L-class
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[30] which extends the Thom-Hirzebruch L-class for the singular case. Fur-
thermore, for a complex algebraic variety Y , the transformation Ty,∗ satisfies
that, it applied to the identity class [Y → Y ] ∈ K0(var/Y ), specialices for
y = −1, T−1,∗(Y ) = cSM∗ (Y ) is the (rationalized) Chern-Schwartz-MacPherson
class of Y , for y = 0, T0,∗(Y ) = tdBFM∗ (Y ) is the Baum-Fulton-MacPherson
Todd class of Y , if Y has du Bois singularities, and for y = 1, we have the
Brasselet-Schürmann-Yokura conjecture: If Y is a compact complex algebraic
variety that is a rational homology manifold, then

T1,∗(Y ) = L∗(Y ),

where L∗(Y ) is the Goresky-MacPherson L-class of Y .
Furthermore, there is a natural transformation sd defined in [9] from

K0(var/−) to the cobordism functor ΩK(−) of cohomologically constructible
bounded self-dual K-complexes (K a subfield of R) of sheaves, satisfying L∗ ◦
sd = T1,∗.

In this chapter, we prove, for projective varieties, the following result also
conjectured by J. P. Brasselet, J. Schürmann and S. Yokura in [9] implying the
BSY-conjecture after applying the Cappell-Shaneson L-transformation L∗:

If Y is a compact complex algebraic variety that is a rational homology
manifold, then we have the equality

sdR([Y → Y ]) = [ICY ] ∈ ΩR(Y ),

where ICY is the intersection cohomology sheaf complex on Y , and ΩR(Y )
cobordism group for R-complexes and sdR denotes the transformation sd in
ΩR(Y ).

The proof is organized as follows: In Section 5.1, we obtain an identity
in K0(var/Y ) expressing the class [Y → Y ] as an alternate sum of classes
of smooth varieties coming from a semi-simplicial variety over Y . This al-
ternate sum allows to compute sdR([Y → Y ]) where [ICY ] appears in the
obtained expression together with other terms. In order to show that the sum
of extra terms vanishes, we use certain exact sequences of perverse sheaves
obtained in Section 5.2. To obtain the exact sequences of perverse sheaves
we use the degeneration at the second page of a spectral sequence of perverse
sheaves associated with the semi-simplicial variety. It is at this step where the
projectivity assumption is needed, due to the use of hyperplane sections.

In [27], we prove in collaboration with Prof. M. Saito the general case of
the Brasselet-Schürmann-Yokura conjecture for rational homology manifolds.
However, this work will not be included as a part of this Ph.D. thesis.
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Chapter 2

Preliminaries

In this chapter, we give the main results and definitions used in Chapter 3,
Chapter 4, and Chapter 5. Section 2.1.1 is based on the theory of singularities
of mappings under which are Chapter 3 and Chapter 4. In Section 2.5, we
expose the theory of characteristic classes of singular varieties which will be
needed in Chapter 4 and Chapter 5. The rest of the sections in this chapter
are devoted to the basics used in Chapter 5.

2.1. Singularities of mappings

Here we introduce the main definitions and results used in Chapter 3 and
Chapter 4. This section is based primarly on the general reference the theory
of singularities of mappings [66]. The rest of the references used here will be
indicated in the corresponding section.

2.1.1. Map-germs

Here, we expose the basics about the main objects in the theory of singularities
of mappings, they are the map-germs. For more details about the general
theory of map-germs see [66, 2.1].

Let X and Y be two topological spaces, and let S ⊂ X.

Definition 2.1.1. Two subsets X1 and X2 of X have the same germ at S if
there is a neighborhood U of S in X, such that X1 ∩U = X2 ∩U . A set-germ
at X is an equivalence class of subset under this relation.

Definition 2.1.2. Let f : U → Y and g : V → Y be two maps, where U and
V are open neighborhoods of S in X. We say that f and g have the same
germ at S, if there is a neighborhood W ⊂ U ∩ V of S in X, such that f and
g coindice on W . A map-germ at S is an equivalence class under this relation.

We denote the set-germ of X1 at S by (X1, S), and X1 is called the rep-
resentative of the set-germ. The map-germ is denoted by f : (X,S) → Y or
f : (X,S) → (Y, T ) if f(S) ⊂ T ⊂ Y . For a map-germ f : (X,S) → Y , each
member f : U → Y of the class is called a representative.

A germ at one point set is called mono-germ, and a germ at a finite set
with more than one point is called multi-germ.

5
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Definition 2.1.3. A map-germ f : (X,S)→ Y is continuous if there exists a
continuous representative f : U → Y .

Let f : (X,S)→ (Y, T ) be a continuous map-germ, and let g : (Y, T )→ Z
be a map-germ. The composition g◦f : (X,S)→ Z is the germ of g◦f : U → Z
at S. A map-germ φ : (X,S) → (Y, T ) is called a homeomorphism if there
exists a representative φ : U → V which is a homeomorphism, for U and V
open neighborhoods of S and T in X and Y , respectively. Equivalently, φ is
invertible as a continuous map-germ.

Let Fn be the affine space, where F is either R or C. By convention, a
smooth mapping will mean any mapping f : A→ Fp, where A ⊂ Fn is an open
subset, which is differentiable of class C∞ in the case F = R or holomorphic
(complex analytic) in the case F = C. However, we only consider the complex
case.

A continuous mapping f : X → Y between manifolds is smooth if for every
x ∈ X there exists charts φ : U → A in X and ψ : V → B in Y such that
x ∈ U ⊂ f−1(V ) and the mapping ψ ◦ f ◦ φ−1 : A → B is smooth. Hence,
a map-germ f : (X,S) → Y is smooth if there is a smooth representative
f : U → Y .

A smooth map-germ φ : (X,S)→ (Y, T ) is a diffeomorphism if there exists
a representative φ : U → V, where U, V are open neighborhoods of S and T
in X and Y , respectively, which is a diffeomorphism. The rank of a smooth
mapping at a point is the rank of the differential at that point. The rank of
a map-germ f : (X,S) → (Y, T ) at x ∈ S is the rank of the differential of a
representative of f at x. If the dimension of the domain is less than or equal
to the dimension of the target, the corank of a map-germ is the dimension of
the kernel of the differential at x of a representative; if greater than or equal,
the corank is the dimension of the cokernel of the differential at x.

2.1.2. The A-equivalence of map-germs

We define an important equivalence relation in the study of map-germs, this
is the A-equivalence of map-germs.

Definition 2.1.4. Let f : (X,S) → (Y, y) and g : (X ′, S′) → (Y ′, y′) be
smooth map-germs. They are left-right-equivalent if there exist map-germs
of diffeomorphism φ : (X,S) → (X ′, S′) and ψ : (Y, y) → (Y ′, y′) such that
g = ψ ◦ f ◦ φ−1. That is, the following diagram is commutative:

(X,S)

φ
��

f // (Y, y)

ψ
��

(X ′, S′)
g // (Y ′, y′)

6
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By taking charts in X and Y , any map-gem from X to Y is right-left-
equivalent to a map-germ f : (Cn, S) → (Cp, 0). Hence, since the source and
target are fixed the equivalence can be seen as a group action. Let A =
Diff(Cn, S) × Diff(Cp, 0) be the group of pairs (ϕ,ψ) such that ϕ : (Cn, S) →
(Cn, S) and ψ : (Cp, 0) → (Cp, 0) are map-germs of diffeomorphisms. Then,
f : (Cn, S) → (Cp, 0) and g : (Cn, S) → (Cp, 0) are A-equivalent if they are in
the same A-orbit. We denote by On the ring of function germs from (Cn, S)
to C.

For a map-germ f : (Cn, S)→ (Cp, 0) where S = {x1, . . . , xr} is a finite set
of points, and for each k ≥ 0. The k-jet of f at S is

jkf := (jkf(x1), . . . , jkf(xr)),

where jkf(xi) is the k-jet of f at xi, that is, the degree k Taylor polynomial of
f at xi without its constant term. The Taylor polynomial of f is determined
by partial derivatives of order ≤ k of the component functions of f at xi, so
the k-jet can be thought of as simply recording these partial derivatives.

Definition 2.1.5. Let f : (Cn, S) → (Cp, 0) a map-germ. We say f is k-
determined for A-equivalence if whenever the k-jet at S of another map-germ
g coincides with that of f , we have that f and g are A-equivalent, and finitely
determined if it is k-determined for some k ∈ N.

2.1.3. The Ae-codimension of a map-germ

We define an important analytical invariant, the Ae-codimension. It measures
the obstruction of an unfolding of a map-germ to be versal. We introduce the
concepts of unfolding, stability and Ae-codimension of a map-germ.

Definition 2.1.6. Let f : (Cn, S) → (Cp, 0) be a map-germ. A d-parameter
unfolding of f is a map-germ

F : (Cn × Cd, S × {0})→ (Cp × Cd, 0)

of the form

F (x, u) = (f̃(x, u), u)

such that f̃(x, 0) = f(x). If we denote the map x 7→ f̃(x, u) by fu, then the
above condition becomes simply f0 = f . We call fu a d-parameter deformation
of f .

Two d-parameter unfoldings F , G : (Cn × Cd, S × {0}) → (Cp × Cd, 0)
of f : (Cn, S) → (Cp, 0) are equivalent if there exist map-germs of diffeomor-
phisms

ϕ : (Cn × Cd, S × {0})→ (Cn × Cd, S × {0})

7
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and
ψ : (Cp × Cd, 0)→ (Cp × Cd, 0)

which are themselves unfoldings of the identity in Cn and Cp, respectively,
such that G = ψ ◦ F ◦ ϕ−1.

Definition 2.1.7. An unfolding F : (Cn×Cd, S ×{0})→ (Cp×Cd, 0) of f is
trivial if it is equivalent to f×id, i.e. the constant unfolding (x, u) 7→ (f(x), u).

Definition 2.1.8. A map-germ f : (Cn, S)→ (Cp, 0) is stable if every unfold-
ing of f is trivial.

Let F : (Cn × Cd, S × {0}) → (Cp × Cd, 0) be a d-parameter unfolding of
f . Let

h : (Cl, 0)→ (Cd, 0)

be a map-germ, such that v 7→ h(v) = u. We define G := h∗F an l-parameter
unfolding of f as

G : (Cn × Cl, S × {0})→ (Cp × Cl, 0)

given by (x, v) 7→ (f(x, h(v)), v). The unfolding G is called the unfolding in-
duced from F by h.

Definition 2.1.9. An unfolding F : (Cn × Cd, S × {0}) → (Cp × Cd, 0) of
f : (Cn, S) → (Cp, 0) is versal if every unfolding of f is A-equivalent to h∗F
for some mapping h.

By Definition 2.1.8, a map-germ f : (Cn, S) → (Cp, 0) is stable if every
unfolding of f is trivial. Hence, the map-germ f is stable if every deformation
is trivial. Then, if ft is a 1-parameter deformation of f , there should exist
deformations φt and ψt, such that

ft = ψt ◦ f ◦ φ−1
t .

We define

ID(f) := {dft
dt
|t=0 : F (x, t) = (ft(x), t) any 1-parameter unfolding of f}

the space of all infinitesimal deformations of f .

Definition 2.1.10. Let f : (Cn, S)→ (Cp, 0) be a map-germ, we define

TAef = { d
dt

(ψt ◦ ft ◦ ϕ−1
t )|t=0 : ϕ0 = id and ψ0 = id},

and the quotient

T 1
Aef =

ID(f)

TAef
.
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Definition 2.1.11. The Ae-codimension of f is

Ae − codim(f) := dimC T
1
Aef

Definition 2.1.12. A map-germ f : (Cn, S)→ (Cp, 0) is A-finite if

dimC T
1
Aef <∞.

The following important theorem known as Mather’s infinitesimal criterion
for finite determinacy was proved by J. N. Mather in [57]. A proof of this
theorem can be found in [66, Theorem 6.2]:

Theorem 2.1.13. A map-germ f is finitely determined if, and only if, it is
A-finite.

Proposition 2.1.14. A map-germ f : (Cn, S)→ (Cp, 0) is stable if, and only
if, T 1

Aef = 0.

The converse of this proposition was proved by J. N. Mather in [58]. A
proof of this proposition can be found in [66, Proposition 3.5, Theorem 3.2.].

We give below an alternative definition for Ae-codimension in terms of
vector fields.

Let f : X → Y be a smooth mapping, hence the differential of f is the
mapping

df : TX → TY,

such that df(v) = dxf(v), for each v ∈ TxX. A vector field on X is a section
ξ : X → TX of the tangent bundle. The set of vector fields on X is denoted
by θX , and it has structure of OX -module, where OX is the set of smooth
functions from X to C.

Definition 2.1.15. Let f : X → Y be a smooth mapping. A vector field along
f is a smooth mapping ξ : X → TY , such that π ◦ ξ = f , where π : TY → Y
is the canonical projection.

The set of vector fields along f is denoted by θ(f), and it has structure of
OX -module. Notice that if ξ ∈ θX and η ∈ θY , then df ◦ ξ and η ◦ f are vector
fields along f .

Lemma 2.1.16. If ϕt and ψt are parameterised families of diffeomorphisms,
then

d

dt
(ψt ◦ ft ◦ ϕ−1

t )|t=0 = df ◦ (
dϕt
−1

dt
|t=0) + (

dψt
dt
|t=0) ◦ f

See a proof of this lemma in [66, Lemma 3.2].
The derivatives dϕt

dt |t=0 and dψt
dt |t=0 determine germs of vector fields on

(Cn, S) and (Cp, 0), respectively. The set of all germs of vector fields on
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(Cn, S) is denoted by θn := θCn,S . Moreover, there is a canonical identification
between θ(f) and ID(f), see Section 3.2 in [66].

We consider the following mappings:

tf : θn → θ(f)

defined by ξ 7→ df ◦ ξ, and

ωf : θn+1 → θ(f)

the map η 7→ η ◦ f .

Corollary 2.1.17. For any map-germ f : (Cn, S)→ (Cp, 0), then

TAef = tf(θn) + ωf(θp),

and

T 1
Aef =

θ(f)

TAef
.

Theorem 2.1.18. Let f : (Cn, S) → (Cp, 0) be a map-germ. A d-parameter
unfolding of f ,

F : (Cn × Cd, S × {0})→ (Cp × Cd, 0),

F (x, u) = (x, fu(x)) is versal if, and only if,

T 1
Aef + C{∂fu

∂u1
|u=0, . . . ,

∂fu
∂ud
|u=0} = θ(f).

This relevant theorem was proved by J. Martinet in [56]. This means that
the Ae-codimension of f is the minimum number of parameters needed to
obtain a versal unfolding.

2.1.4. Stable singularity types of mappings

We introduce the notion of stable singularity type appearing in a stable map-
ping. This section is based on [69] and [66].

Definition 2.1.19. Two map-germs f : (Cn+s, 0) → (Cp+s, 0), g : (Cn, 0) →
(Cp, 0) are stably A-equivalent if f is A-equivalent to the trivial unfolding
g × id(Cs,0).

Denote by η the equivalence class under this relation, and it will be called
an A-singularity type.

Let f : X → Y be a smooth map. We define the set

η(f) := {x ∈ X : the germ of f at x is stably A-equivalent to η},

its closure η(f) ⊂ X is called the singular locus of f of type η.

10



2.1. Singularities of mappings

Remark 2.1.20. If the map f : X → Y is locally stable, that is, if the map-
germ f : (X, f−1(y))→ (Y, y) is stable for each y ∈ Y . Then, η(f) consists of
the stable singularities of type η.

Definition 2.1.21. A multi-singularity is an ordered set

η := (η1, . . . , ηr)

of mono-singularities ηi of map-germs (Cn, 0) → (Cp, 0). We distinguish the
first entry η1 from others.

For a stable map f : X → Y , we set

η(f) :=

{
x1 ∈ η1(f) :

tas
∃x2, . . . , xr ∈ f−1(f(x1)) s.t. xi 6= xj ,

f at xi is of type ηi, 2 ≤ i ≤ r

}
,

and we call the closure η(f) ∈ X the multi-singularity locus of type η in the
source. The image is

f(η(f)) :=

{
y ∈ Y :
sad

∃x1, . . . , xr ∈ f−1(y), s.t. xi 6= xj ,
f at xi is of type ηi, 1 ≤ i ≤ r

}
,

we call the closure f(η(f)) ⊂ Y the multi-singularity locus of type η in the
target. The restriction map

f : η(f)→ f(η(f))

is finite-to-one on the critical locus. Let deg1η be the degree of this map, then

deg1η = the number of η1 appearing in the tuple η.

Let f : X → Y be a stable map, and let η be a stable type. We define

ηo(f) := η(f) \ (
⊔
ξ(f)) ⊂ X

where
⊔
ξ(f) runs all types ξ such that ξ ⊂ η. The restriction map

f : ηo(f)→ f(ηo(f))

over the stratum ηo(f) is deg1η-to-one. Hence, the source X is decomposed in
a disjoint union of multi-singularities types ηo(f), and the image f(X) ⊂ Y is
decomposed in the corresponding strata of their images.

In order to introduce the remark below, we give the following important
theorem due to J. N. Mather in [59]:

11
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Theorem 2.1.22 (Mather’s nice dimensions). Proper stable mappings from
an n-dimensional manifold N to a p-dimensional manifold P are dense in the
set of proper mappings from N to P if, and only if, the pair (n, p) satisfies
one of the following conditions:

n <
6

7
p+

8

7
and p− n ≥ 4,

n <
6

7
p+

9

7
and 3 ≥ p− n ≥ 0,

p < 8 and p− n = −1,

p < 6 and p− n = −2,

or

p < 7 and p− n ≥ −3.

If (n, p) satisfies one of these conditions, we say that the pair (n, p) is in
the range of “Mather’s nice dimensions”.

Remark 2.1.23. If f is a stable map, or f : (Cn, 0)→ (Cp, 0) anA-finite germ,
or has corank 1 and n ≤ p, or (n, p) in the Mather’s nice dimensions. Then,
the stratification of the image of f by stable types is a Whitney stratification
(see Definition B.3. [66]).

This remark follows for instance by [66, Remark 5.3, Corollary 7.5].

2.1.5. The image Milnor number of a map-germ

Here we introduce the main object of study in Chapter 3 and Chapter 4. This
is the image Milnor number associated to an A-finite map-germ from (Cn, 0)
to (Cn+1, 0).

Definition 2.1.24. A stabilisation of a map-germ f : (Cn, 0) → (Cn+1, 0) is
a 1-parameter unfolding F : (Cn × C, 0) → (Cn+1 × C, 0) such that, there
exists a representative F̃ : U → V × T of F , such that the mapping fs : Us =
F̃−1(V × {s})→ V is locally stable, for all 0 6= s ∈ T .

Proposition 2.1.25. Let f : (Cn, 0) → (Cn+1, 0) be an A-finite map-germ,
and assume (n, n+ 1) in Mather’s nice dimensions or f has corank 1. Then,
f admits a stabilisation.

See a proof of the above proposition in [66, Corollary 5.4].

We need the notion of stable perturbation of a map-germ. In order to
define this, we introduce the following theorem which is a simple consequence
of Thom–Mather first isotopy lemma the proof can be found in [29, Theorem
II. 5.2]. See [66, Theorem 5.7] for a more general statement.

12



2.1. Singularities of mappings

Theorem 2.1.26. Let F : (Cn × C, 0) → (Cn+1 × C, 0) be a stabilisation of
an A-finite map-germ f : (Cn, 0)→ (Cn+1, 0), with (n, n+ 1) in Mather’s nice
dimensions, and let F̃ : X → Y × T be a representative of F :

1. There exists ε > 0 such that the image Im(f0) is stratified transverse to
the sphere Sε′, for all ε′ with 0 < ε′ ≤ ε.

2. There exists δ > 0, such that for |s| < δ, the image Im(fs) is stratified
transverse to Sε.

3. The map π : Im(F̃ )∩ (Bε × (Bδ \ {0}))→ Bδ \ {0} is locally trivial fiber
bundle.

Let F̃ be a representative of F , and ε, δ as in Theorem 2.1.26. The following
theorem holds:

Theorem 2.1.27. The diagram

F̃−1(Im(F̃ ) ∩ (Bε × (Bδ \ {0}))) Im(F̃ ) ∩ (Bε × (Bδ \ {0}))

Bδ \ {0}

F̃

is locally trivial family of mappings.

For all pairs s1, s2 ∈ Bδ \ {0}, fs1 : f−1
s1 (Bε) → Bε and fs2 : f−1

s2 (Bε) →
Bε are left-right equivalent, that is, if there are homeomorphisms ϕ and ψ
such that fs1 = ψ−1 ◦ fs2 ◦ ϕ. A member of this family is called a stable
perturbation of f . The image Xs of a stable perturbation fs of f , is called the
disentanglement of f . Theorem 2.1.27 follows from the Thom–Mather second
isotopy lemma [29, Theorem II. 5.8] (see also [66, 5.5]).

In [64], D. Mond proved the following important theorem:

Theorem 2.1.28. Let f : (Cn, S)→ (Cn+1, 0) be an A-finite map-germ with
(n, n + 1) in Mather’s nice dimensions. Then, the disentanglement Xs of f
has the homotopy type of a wedge of n-spheres.

The number of such n-spheres is called the image Milnor number of f , and
it is denoted by µI(f).

D. Mond also in [64] formulated a relevant conjecture relating the image
Milnor number with the Ae-codimension (see Section 2.1.3) of an A-finite
map-germ. To introduce the conjecture, we need the notion of weighted-
homogeneous map-germ from (Cn, 0) to (Cn+1, 0).

Definition 2.1.29. Let f : (Cn, 0)→ (Cn+1, 0) be a map-germ

f(x) = (f0(x), . . . fn(x)).

13
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We say that f is weighted-homogeneous with weights w = (w1, . . . , wn) and
degrees d = (d0, . . . , dn), if each fi is a weighted-homogeneous polynomial of
degree di with weights w. This means that

fi(λ
w1x1, . . . , λ

wnxn) = λdifi(x1, . . . , xn),

for all λ ∈ C∗.

Conjecture 2.1.30 (Mond’s conjecture). Let f : (Cn, 0) → (Cn+1, 0) be an
A-finite map-germ with (n, n+ 1) in Mather’s nice dimensions. Then

µI(f) ≥ Ae-codim(f),

with equality in the weighted-homogeneous case.

The conjecture is known to be true in some cases. It holds for n ≤ 2
[65],[64]. For fold map-germs, by work of K. Houston [41]. And for singularities
of corank 1 with Ae-codimension 1, by work of T. Cooper, D. Mond and R.
W. Atique [17].

2.1.6. Multiple point spaces of corank 1 map-germs

In this section, we give the definitions and main results about multiple point
spaces of corank 1 map-germs developed by T. Marar and D. Mond in [54].

Consider f : (Cn, 0) → (Cp, 0) (n < p) a corank 1 map-germ. We can
choose coordinates in the source and the target, such that f is written in
prenormal form, that is:

f(z, y) = (fn(z, y), . . . , fp(z, y), y), z ∈ C, y ∈ Cn−1.

Let Ik(f) be the ideal generated by (k − 1)(p − n + 1) functions ∆
(j)
i ∈

On+k−1, 1 ≤ i ≤ k−1, n ≤ j ≤ p. Each ∆
(j)
i is a function only of the variables

z1, . . . , zi+1, y such that:

∆
(j)
1 (z1, z2, y) =

fj(z1, y)− fj(z2, y)

z1 − z2
,

and for 1 ≤ i ≤ k − 2,

∆
(j)
i+1(z1, . . . , zi+2, y) =

∆
(j)
i (z1, . . . , zi, zi+1, y)−∆

(j)
i (z1, . . . , zi, zi+2, y)

zi+1 − zi+2
.

Definition 2.1.31. The k-th multiple point space is Dk(f) = V (Ik(f)), the
zero locus in (Cn+k−1, 0) of the ideal Ik(f).

14
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If f is stable, then, set-theoretically, Dk(f) is the Zariski closure of the set
of points (z1, . . . , zk, y) ∈ Cn+k−1 such that:

f(z1, y) = . . . = f(zk, y), zi 6= zj , for i 6= j,

(see [54, 68]). But, in general, this may be not true if f is not stable. For
instance, consider the cusp f : (C, 0)→ (C2, 0) given by f(z) = (z2, z3). Since
f is one-to-one, the closure of the double point set is empty, but

D2(f) = V (z1 + z2, z
2
1 + z1z2 + z2

2).

This example also shows that the k-th multiple point space may be non-
reduced in general.

The following theorem is main result of Marar-Mond in [54] which states
that the k-th multiple point spaces can be used to characterize the stability
and the A-finiteness of f (see [54, 2.12]):

Theorem 2.1.32. Let f : (Cn, 0)→ (Cp, 0) (n < p) be a corank 1 map-germ.
Then:

1. f is stable if, and only if, Dk(f) is smooth of dimension p − k(p − n),
or empty, for k ≥ 2.

2. f is A-finite if, and only if, for each k with p− k(p− n) ≥ 0, Dk(f) is
either an ICIS of dimension p − k(p − n) or empty, and if, for those k
such that p− k(p− n) < 0, Dk(f) consists at most of the point {0}.

The following construction is also due to Marar-Mond in [54] and gives a
refinement of the types of multiple points.

Definition 2.1.33. Let P = (r1, . . . , rm) be a partition of k, that is, r1 +
. . .+ rm = k, with r1 ≥ · · · ≥ rm. Let I(P) be the ideal in On−1+k generated
by the k −m elements zi − zi+1 for r1 + . . .+ rj−1 + 1 ≤ i ≤ r1 + . . .+ rj for
j = 1, . . . ,m. Define the ideal Ik(f,P) = Ik(f) + I(P) and the k-th multiple
point space of f with respect to the partition P as Dk(f,P) = V (Ik(f,P)).

Definition 2.1.34. We define a generic point of Dk(f,P) as a point

(z1, . . . , z1, . . . , zm, . . . , zm, y),

(zi iterated ri times, and zi 6= zj if i 6= j) such that the local algebra of f at
(zi, y) is isomorphic to C[t]/(tri), and such that

f(z1, y) = . . . = f(zm, y).

If f is stable, then Dk(f,P) is equal to the Zariski closure of its generic
points (see [54]).

The following corollary extends Theorem 2.1.32 to the multiple point spaces
with respect to the partitions (see [2.15,[54]]):
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Corollary 2.1.35. If f is A-finite (resp. stable), then for each partition
P = (r1, . . . , rm) of k satisfying p−k(p−n+1)+m ≥ 0, the germ of Dk(f,P)
at {0} is either an ICIS (resp. smooth) of dimension p− k(p−n+ 1) +m, or
empty. Moreover, those Dk(f,P) for P not satisfying the inequality consist at
most of the single point {0}.
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2.2. Hodge Theory

In this section, we give an overview of classical Hodge theory. The name of
this theory is devoted to W. Hodge [40], who introduced the pure Hodge struc-
tures. Later, P. Deligne in [21] and [22], provided the notion of mixed Hodge
structure. Here, we give introduce these structures which will be relevant in
the proof of the main result in Chapter 5. For a comprehensive reference
consider [71].

2.2.1. Pure Hodge structures

Let H be a finite dimensional K-vector space (K = Q or R), and let HC :=
H ⊗ C be its complexification.

Definition 2.2.1. A K-pure Hodge structure of weight k on H is a direct
sum decomposition, the Hodge decomposition

HC =
⊕
p+q=k

Hp,q

such that Hp,q = Hq,p, where ·̄ denotes the complex conjugation.

The numbers
hp,q := dimCH

p,q

are called the Hodge numbers of the Hodge structure H.

Definition 2.2.2. Let H and H ′ be two K-pure Hodge structures of weight k.
A morphism of pure Hodge structures of weight k is a linear map h : H → H ′

of K-vector spaces whose complexification hC := h ⊗ idC : HC → H ′C maps
Hp,q to H ′p,q.

The classical result below follows from Hodge’s Decomposition Theorem
[40] which carries a pure Hodge structure on the cohomology groups of compact
Kälher manifolds.A proof of this theorem can be found in [71, Corollary 1.13]:

Theorem 2.2.3. Let X be a compact Kälher manifold. The k-th cohomology
group Hk(X;K) is a pure Hodge structure of weight k. If f : X → Y is a
holomorphic map between compact Kälher manifolds, then

f∗ : Hk(Y ;K)→ Hk(X;K)

is a morphism of pure Hodge structures of weight k.

Definition 2.2.4. Let H be a pure Hodge structure of weight k. The Hodge
filtration F • on HC is a decreasing filtration given by

F p :=
⊕
r≥p

Hr,k−r.

17
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Conversely, let H be a finite dimensional K-vector space. Consider

HC ⊃ · · · ⊃ F p ⊃ F p+1 ⊃ . . .

a decreasing filtration on the complexification HC of H, with the property
that F p ∩ F q = 0 if p+ q = k + 1. Then, it defines a pure Hodge structure of
weight k on H by setting

Hp,q := F p ∩ F q.

Hence, we obtain an equivalent definition of pure Hodge structure in terms
of filtrations:

Definition 2.2.5 (bis). Let H be a finite dimensional K-vector space. A pure
Hodge structure of weight k is a decreasing filtration F • on the complexifica-
tion HC of H satisfying F p ∩ F q = 0, if p+ q = k + 1.

Definition 2.2.6 (bis). If H and H ′ are pure Hodge structures of the same
weight k, a linear map h : H → H ′ is called a morphism of pure Hodge struc-
tures if hC : HC → H ′C satisfies

hC(F p(HC)) ⊂ F p(H ′C),

for all p.

Remark 2.2.7. If h : H → H ′ is a morphism of pure Hodge structures, then
the vector spaces Kerh, Imh, and Cokerh have canonically induced pure
Hodge structures of the same weight.

Proposition 2.2.8. Let h : H → H ′ be a morphism of pure Hodge structures.
Then, hC is strictly compatible with the Hodge filtration F •, that is,

hC(F p(HC)) = F p(H ′C) ∩ ImhC,

for all p.

Corollary 2.2.9. The category HS of pure Hodge structures is an abelian
category.

Definition 2.2.10. Let H be a pure Hodge structure. The Weil operator
C : HC → HC is defined by

C(u) := ip−qu

for every u ∈ Hp,q.

Definition 2.2.11. A polarization of a pure Hodge structure H of weight k
is a bilinear form

Q : H ⊗H → R

that is (−1)k-symmetric, and it satisfies:

18
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1. The orthogonal complement of Fm is F k−m+1,

2. The hermitian form on HC given by

Q(Cu, v̄)

is positive-definite.

A pure Hodge structure that admits a polarization is said to be a polarizable
Hodge structure.

Example 2.2.12 (Hodge-Riemann bilinear relations). Let X be a compact
Kälher manifold of dimension n, and let η be an ample line bundle on X.
Define the primitive part Pn−r of Hn−r(X;K) by

Pn−r := Ker(ηr+1 : Hn−r(X;K)→ Hn+r+2(X;K)).

and it is a polarizable pure Hodge structure of weight n − r. The following
results hold:
The classical Hard-Lefschetz Theorem: For r ≥ 0

ηr : Hn−r(X;K) ' Hn+r(X;K).

The Primitive Lefschetz Decomposition: For r ≥ 0, there is a direct sum

decomposition

Hn−r(X;K) =
⊕
l≥0

ηlPn−r−2l,

where the summands are mutually orthogonal with respect to the bilinear form∫
X
− ∧− ∧ ηr.

The Hodge-Riemann bilinear relations: For k ∈ Z, the Hodge-Riemann bilin-

ear form is a bilinear form

Q(α, β) = (−1)k(k−1)/2

∫
X
α ∧ β ∧ ηn−k, [α], [β] ∈ Hk(X;C)

that is (−1)k-symmetric. The two Hodge-Riemann relations are:

1. Q(Hp,q, Hr,s) = 0 if (r, s) 6= (q, p),

2. For u ∈ P k ∩ Hp,q(X;C), ip−qQ(u, ū) = Q(Cu, ū) = (u, u) and hence
> 0 if u 6= 0.
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2.2.2. Mixed Hodge structures

Definition 2.2.13. A mixed K-Hodge structure (K = Q or R) is a finite
dimensional K-vector space H endowed with an increasing weight filtration
W•, and a decreasing Hodge filtration F • on HC which has the additional
property that it induces a pure K-Hodge structure of weight k on each graded
piece

GrWk (H) = Wk/Wk−1.

To a mixed Hodge structure (H,W•, F
•) one associates (mixed) Hodge

numbers defined by

hp,q(H) = dimCGr
p
FGr

W
p+q(HC).

We say that the mixed Hodge structure is graded-polarizable if the GrWk (H)
are polarizable pure Hodge structures.

Definition 2.2.14. A linear map h : H → H ′ between two mixed Hodge
structures is a morphism of mixed Hodge structures if h is compatible with
the two filtrations F • and W•, that is,

h(Wk(H)) ⊂Wk(H
′) for all k,

and

hC(F p(HC)) ⊂ F p(H ′C) for all p.

As a consequence of this definition, we have the following corollary:

Proposition 2.2.15. A morphism h : H → H ′ with H and H ′ pure Hodge
structures of weights k and k′, respectively. If k 6= k′, the morphism h is the
zero morphism.

Proposition 2.2.16. Let h : H → H ′ be a morphism of mixed Hodge struc-
tures. Then, h is strictly compatible with the filtrations W• and F •, that is,

h(Wk(H)) = Wk(H
′) ∩ Imh

for all k, and

hC(F p(HC)) = F p(H ′C) ∩ ImhC,

for all p.

Corollary 2.2.17. The category MHS of mixed Hodge structures is abelian.

In [21], P. Deligne proved the following fundamental result which shows
that the cohomology groups of complex algebraic varieties have canonical
mixed Hodge structures. For more details see [71, Part III, Theorem 5.33]:
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Theorem 2.2.18. Let X be a complex algebraic variety of complex dimension
n. There is a canonical mixed Hodge structure on the cohomology groups
Hk(X;K), for all k. Furthermore, if f : X → Y is a morphism of complex
algebraic varieties, the induced homomorphism on cohomology is a morphism
of mixed Hodge structures.

The cohomology groups Hk(X;K) have the following weights depending
on if the variety X is non-singular, compact or general:

non-singular compact general

k ≤ n [k, 2k] [0, k] [0, 2k]

k ≥ n [k, 2n] [2k − 2n, k] [2k − 2n, 2n]

Table 2.1: Weights on Hk(X;K)
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2.3. Perverse sheaves and the Decomposition Theo-
rem

This section is mainly devoted to introduce the notion of perverse sheaf as
well as the deep and important Decomposition Theorem which composes one
of the central tools in Chapter 5. We give the standard properties about
the six functor formalism for bounded derived categories of sheaves, that is,

Grothendieck’s six operations Rf∗, Rf!,f
∗, f !, RHom, and

L
⊗. For comprehen-

sive references see [7], [31] or [3]. Then, we give the basics about the theory of
perverse sheaves developed by A.A. Beilinson, J. N. Bernstein, P. Deligne and
O. Gabber in [6]. For generalities about t-structures see [3] or [61]. Finally,
we give the main results about the Decomposition Packadge developed in [6],
[21], [22] (see also [18]). For generalities about additive and abelian categories
see [28]. For triangulated categories and derived categories see [7, V.5], [3] or
[61].

2.3.1. Functors in the derived category

Here we give the standard properties about Grothendieck’s six functors in the
derived category. Let X be a complex algebraic variety and let K be a subfield
of R.

Definition 2.3.1. A K-complex of sheaves F on X is called cohomologically
locally constant if the associated local cohomology sheaves are locally constant.
Let X be a Whitney stratification of X. The complex F is called cohomo-
logically constructible with respect to X if, for each stratum Xj , F|Xj , is
cohomologically locally constant and has finitely generated stalk cohomology.

We denote by Cbc(X) the full subcategory, of the category of bounded K-
complexes of sheaves Cb(X), consisting of the cohomologically constructible
bounded K-complexes of sheaves on X. Similarly, we denote by Db

c(X) the
full subcategory of the bounded derived category Db(X), consisting of all
cohomologically constructible bounded K-complexes of sheaves (see [81], [82],
[31]). In this section, we restrict ourselves to the categories Cbc(X) and Db

c(X).

Let f : X → Y be a continuous map, and let F ∈ Ob(Cbc(X)). In the
category Cbc(X), we have defined the following functors: the direct image f∗,
the direct image with proper supports f!, the inverse image f∗, Hom(F ,−),
F ⊗−,.

See for instance [3] for the definitions of the functors Hom(F ,−), F ⊗−.
For the definitions of the functors f∗, f! and f∗ see [7, VI] or [3].

In the cohomologically constructible bounded derived category Db
c(X), the

corresponding right derived functors of the functors Hom(F ,−), f∗ and f∗ are

22



2.3. Decomposition Theorem

the following: RHom(F ,−), Rf∗ and f∗, respectively (see [3, 2.4.3]). In the
case of the functor f!, we have the derived functor Rf! (see [7, V.7,VI] or [3,
3.1]). In [81], J. L. Verdier introduced a functor in Db

c(X), this is the inverse
image functor f ! (see for instance [7, VI] or [3, 3.2]). For the functor F ⊗ −,

the corresponding functor in Db
c(X) is a left derived functor F

L
⊗ − (see [3,

2.4.3]), but in our case it coincides with F ⊗−, since K is a field (see [31]).

We give below the standard properties relating the six functors: Rf∗, Rf!,
f∗, f !, RHom(F ,−) and F ⊗ −. For comprehensive references see[7, V,VI],
[31] or [3].

Theorem 2.3.2. Let f : X → Y and g : Y → Z be two continuous maps.
Then,

1. (g ◦ f)∗ = f∗ ◦ g∗, R(g ◦ f)∗ = Rg∗ ◦Rf∗.

2. (g ◦ f)! = f ! ◦ g!, R(g ◦ f)! = Rg! ◦Rf!.

A proof of this theorem can be found in [7, V, Theorem 10.6].

Remark 2.3.3. Let F ∈ Ob(Db
c(X)) and G ∈ Ob(Db

c(Y )). If i : X ↪→ Y is
the inclusion map, then we have the following two properties: If X is open in
Y , then

f !G ' f∗G, (2.1)

and if X is closed in Y , then

Rf!F ' Rf∗F . (2.2)

Proposition 2.3.4. Let

T Z

X Y

f̄

π̄ π

f

be a cartesian diagram of spaces. For any F ∈ Ob(Db(Z)), then

Rπ̄∗f̄
!F ' f !Rπ∗F . (2.3)

For a proof of this proposition see for instance [7, V, Propostion 10.7].

The following properties come from the adjointness between the above
functors: The functors Rf∗ and f∗, Rf! and f !, and RHom(F ,−) and F ⊗
− are adjoints, respectively (see [7, V], [3]). For generalities about adjoint
functors see [43].

Theorem 2.3.5 (Verdier duality). Let f : X → Y be a continuous map, and
let F ∈ Ob(Db

c(X)), G ∈ Ob(Db
c(Y )). In Db

c(Y ), we have the canonical iso-
morphism

RHom(Rf!F ,G) ' Rf∗RHom(F , f !G). (2.4)
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The above theorem was obtained by J. L. Verdier in [81]. See also [7, V,
Theorem 7.17] for a proof.

Corollary 2.3.6. Let f , F , and G be as in Theorem 2.3.5. Then, there is a
canonical isomorphism in Db

c(X)

Hom(Rf!F ,G) ' Hom(F , f !G). (2.5)

Proposition 2.3.7. Let F ,G,H ∈ Ob(Db
c(X)), then we have a canonical

isomorphism

RHom(F ⊗ G,H) ' RHom(F , RHom(G,H)). (2.6)

A proof of this result can be found in [7, V, Proposition 10.2].

Corollary 2.3.8. Let F ,G,H ∈ Ob(Db
c(X)), we have a canonical isomor-

phism in Db
c(X)

Hom(F ⊗ G,H) ' Hom(F , RHom(G,H)) (2.7)

Definition 2.3.9. Let f : X → {pt} be the map to a point. The dualizing
complex is an object DX in Db(X), defined by

DX := f !Rpt.

Definition 2.3.10. Let F ∈ Ob(Db
c(X)). The Borel-Moore-Verdier dualizing

functor is
D(F) := RHom(F ,DX).

Theorem 2.3.11. Let F ∈ Ob(Db
c(X)). Then, there is a canonical isomor-

phism
can : F → D(D(F)) (2.8)

For more details about the canonical isomorphism can see [7, V, 8.9].

The following proposition is an important consequence of Verdier duality.
See for instance [3, Proposition 3.4.5] for a proof.

Proposition 2.3.12. Let f : X → Y be a continuous map and let F ∈
Ob(Db

c(X)), G ∈ Ob(Db
c(Y )). Then, there are canonical isomorphisms

D(Rf!F) ' Rf∗(D(F)), D(f∗G) ' f !(D(G)).

Then, the functors Rf∗ and Rf! are dual to each other, as well as the
functors f∗ and f !.

Definition 2.3.13. A self-dual complex is a pair (F , α) where F ∈ Ob(Db
c(X))

and α : F → D(F) is an isomorphism.

Remark 2.3.14. Let (F , α) be a self-dual complex, and let f : X → Y be
a proper map. Then, we have Rf∗ ' Rf! and, by Proposition 2.3.12, Rf∗
commutes with the Borel-Moore-Verdier duality functor, that is,

D(Rf∗F) ' Rf∗(D(F)).

Hence, (Rf∗F , Rf∗(α)) is a self-dual complex on Y .

24



2.3. Decomposition Theorem

2.3.2. t-structures

We give the notion of t-structure on a triangulated category and overview the
main properties. An example of t-structure is the perverse structure which
will be exposed in this section. The original construction of perverse sheaves
in [6] is given by the machinery of triangulated categories introduced by J. L.
Verdier in [82]. For the proofs of the results below see for instance [3, 7].

Definition 2.3.15. A t-structure on a triangulated category D is a pair
(D≤0, D≥0) of strictly full subcategories D≤0 and D≥0 of D, such that, by
setting D≤n := D≤0[−n] and D≥n := D≥0[−n]:

1. HomD(A,B) = 0 if A ∈ D≤0 and B ∈ D≥1,

2. D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0, and

3. for any object A in D, there exists a triangle

A′ −→ A −→ A′′
[1]−→

with A′ ∈ D≤0 and A′′ ∈ D≥1.

A triangulated category D together with a t-structure will be called a
t-category.

Remark 2.3.16. If (D≤0, D≥0) is a t-structure, then so is (D≤n, D≥n), that
is, the shifted t-structure.

Definition 2.3.17. The full subcategory

C := D≤0 ∩D≥0

of D is called the heart of the t-structure.

Proposition 2.3.18. Let D be a t-category.

1. The inclusion D≤n ↪→ D has a right adjoint functor τ≤n : D → D≤n, that
is, there exists canonical morphisms τ≤nA → A such that the induced
map

HomD≤n(A, τ≤n(B)) −→ HomD(A,B)

is an isomorphism for all A ∈ D≤n and B.

2. The inclusion D≥n ↪→ D has a left adjoint functor τ≥n : D → D≥n, that
is, there exists canonical morphisms A → τ≥nA such that the induced
map

HomD≥n(τ≥nA,B) −→ HomD(A,B)

is an isomorphism for all A and B ∈ D≥n.
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3. For any object A in D, there is a distinguished triangle:

τ≤nA −→ A −→ τ≥n+1A
[1]−→

Remark 2.3.19. Let D be a t-category.

• Let A be an object in D. The following properties are equivalent:

1. A ∈ D≤n (respectively, A ∈ D≥n),

2. the canonical morphism τ≤n : D → D≤n (respectively,
τ≥n : D → D≥n) is an isomorphism,

3. τ≥n+1(A) = 0 (respectively, τ≤n(A) = 0).

• Let A′ −→ A −→ A′′
[1]−→ be a distinguished triangle in D. If A′, A′′ ∈

D≤0 (respectively, A′, A′′ ∈ D≥0), then A ∈ D≤0 (respectively, A ∈
D≥0).

Notice that, for any A in t-category D and integers n, m:

τ≤n(A[m]) ' τ≤n+m(A)[m],

τ≥n(A[m]) ' τ≥n+m(A)[m].

Proposition 2.3.20. For any integers n ≤ m, there is a unique isomorphism

τ≥mτ≤n(A) ' τ≤nτ≥m(A).

Proposition 2.3.21. The heart C of a t-structure is an abelian category.

The notion of cohomology groups can be extended to any t-category by
using the trunctation functors τ≤ and τ≥ as follows:

Definition 2.3.22. The functor

tH0 := τ≥0τ≤0 : D → C

is called the cohomology functor of the t-structure. Moreover, we set

tH i := tH0 ◦ [i],

that is, tH i(A) = tH0(A[i]) = (τ≥iτ≤i(A))[i] for any object A in D.

Proposition 2.3.23. Let A′ −→ A −→ A′′
[1]−→ be a distinguished triangle in

a t-category D, then the cohomology functor tH0 induces a long exact sequence

· · · −→ tH−1(A′′) −→ tH0(A′) −→ tH0(A) −→ tH0(A′′) −→ tH1(A′) −→ . . . .
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Remark 2.3.24. If 0 −→ A −→ B −→ C −→ 0 is a short exact sequence in
C, then there exists a unique morphism C → A[1] such that

A −→ B −→ C
[1]−→

is a distinguished triangle in D.

Example 2.3.25 (The standard t-structure). Let C(X) be the abelian cate-
gory of K-complexes (K subfield of R) of sheaves on X, and let D(X) be the
corresponding derived category. Then

D≤0 := {F ∈ Ob(D(X)) : Hi(F) = 0, i > 0}

and
D≥0 := {F ∈ Ob(D(X)) : Hi(F) = 0, i < 0}

yields a t-structure on D(X), see Example 7.1.3 in [3]. It is called the standard
t-structure. The truncation functors are defined by

τ≤0(F) = {· · · −→ F−1 −→ F0 −→ ker(d0) −→ 0 . . . }

and

τ≥0(F) = {· · · −→ 0 −→ coker(d−1) −→ F1 −→ F2 −→ . . . }.

The heart of the standard t-structure is

D≤0 ∩D≥0 = {· · · −→ 0 −→ H0(F) −→ 0 −→ . . . },

and it is equivalent to the category C(X).

The perverse t-structure

Definition 2.3.26. The perverse t-structure is defined by

pD≤0(X) := {F ∈ Ob(Db
c(X)) : dimC supp−j(F) ≤ j,∀j ∈ Z},

and

pD≥0(X) := {F ∈ Ob(Db
c(X)) : dimC cosuppj(F) ≤ j,∀j ∈ Z},

where, for the inclusion i : {x} ↪→ X, the support and cosupport are defined
by

suppj(F) := {x ∈ X : Hj(i∗(F)) 6= 0},

and
cosuppj(F) := {x ∈ X : Hj(i!(F)) 6= 0},

respectively.
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Definition 2.3.27. A complex F ∈ Ob(Db
c(X)) is called a perverse sheaf if

F ∈ Perv(X) := pD≤0(X) ∩ pD≥0(X),

that is, if F is in the heart of the perverse t-structure.

The generalities about t-structures introduced in Section 2.3.2, can be
translated into the following properties:

There exist perverse truncations pτ≤0 and pτ≥0 that are adjoints to the
inclusions pD≤0(X) ↪→ Db

c(X) and pD≥0(X) ↪→ Db
c(X), respectively, that is,

for every integer n,

HompD≤n(X)(F , pτ≤n(G)) = HomDbc(X)(F ,G), (2.9)

if F ∈ pD≤n(X), and

HompD≥n(X)(
pτ≥n(F),G) = HomDbc(X)(F ,G), (2.10)

if G ∈ pD≥n(X).

Definition 2.3.28. The i-th perverse cohomology of F is defined as

pHi(F) := pτ≤0
pτ≥0(F [i]).

Proposition 2.3.29. The following properties hold:

1. F ∈ Perv(X) if, and only if, pH0(F) = F , and pHi(F) = 0, for i 6= 0.

2. For every distinguished triangle

A −→ B −→ C [1]−→

in Db
c(X), there is an associted long exact sequence in Perv(X):

· · · → pHi−1(C)→ pHi(A)→ pHi(B)→ pHi(C)→ pHi+1(A)→ . . . .

3. If A, C ∈ Perv(X), and A −→ B −→ C [1]−→ is a distinguished triangle
in Db

c(X), then B ∈ Perv(X).

Remark 2.3.30. Let F , G ∈ Ob(Db
c(X)).

• F ∼= 0 if, and only if, pHi(F) = 0.

• Let u : F → G be a morphism in Db
c(X). Then, u is a quasi-isomorphism

if, and only if
pHi(u) : pHi(F)→ pHi(G)

is an isomorphism of perverse sheaves for every i ∈ Z.
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Since K is a field, by the Universal Coefficient Theorem (see for instance
[61, 5.4]), then

cosuppj(F) = supp−j(F).

Remark 2.3.31. A complex F is in pD≤0(X) if, and only if, D(F) ∈ pD≥0(X),
and the Borel-Moore-Verdier duality functor D(−) (see Definition 2.3.10) pre-
serves perverse sheaves. Moreover, there are canonical isomorphisms of func-
tors:

pτ≤0 ◦ D ' D ◦ pτ≥0,
pτ≥0 ◦ D ' D ◦ pτ≤0,

and

D ◦ pHi ' pH−i ◦ D.

2.3.3. The intersection cohomology complex

In [30], M. Goresky and R. MacPherson introduced the intersection homology,
and defined the intersection cohomology complex IC•Y of a topological pseu-
domanifold Y . In [31], the same authors showed a second construction of IC•Y
considering it as an object in the derived category of sheaves, conjectured by
P. Deligne (I thank J. P. Brasselet for this historical remark). This complex is
called the intersection cohomology sheaf complex. This construction works in
the context of stratifications and sheaf theory, and it produces intersection ho-
mology groups for pseudomanifolds and algebraic varieties. Furthermore, the
intersection cohomology sheaf complex is characterized under some axioms.
For a detailed account about this see [30], [31], [7] or [3].

We focus here on the complex algebraic context. Let Y be a complex
algebraic variety of complex dimension n. The variety Y admits a Whitney
stratification making Y into an oriented topological pseudomanifold of real
dimension 2n with all strata of even real dimension. Consider Yj the strata
of a stratification Y of Y where codimC(Yj) = j. We use Deligne’s indexing
convention, that is, we consider the intersection cohomology sheaf complex
shifted by [−n], we denote this by ICY . In the following, we call the complex
ICY the intersection cohomology complex of Y .

The intersection cohomology complex ICY in the derived category Db
c(Y )

is uniquely characterized up to canonical isomorphism by the following axioms:

(AX1) (ICY )|Y \Σ ' RY \Σ[n] where Σ is the singular locus of Y .

(AX2) Hk(ICY ) = 0 for all k < −n.

(AX3) For all y ∈ Yj , Hk(ICY )y = 0 for all k ≥ −n+ j and j ≥ 1.

(AX4) For all y ∈ Yj , with iy : {y} ↪→ Y the inclusion, Hk(i!yICY )y = 0 for all
k ≤ n− j and j ≥ 1.
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The intersection cohomology complex ICY is an object in Perv(Y ), and
it is a self-dual complex, that is, ICY ' D(ICY ) (see Definition 2.3.13). Fur-
thermore, this complex was generalized for local systems: Let L be a local
system on Y \ Σ. The intersection cohomology complex ICY (L) associated
with L is such that satisfies the corresponding axioms (AX1) - (AX4) taking
L[n] instead of RY \Σ[n].

Remark 2.3.32. An object P ∈ Perv(Y ) is simple if it has no non-trivial
sub-objects. P is semi-simple if it is isomorphic to a direct sum of simple
objects. Moreover, P ∈ Perv(Y ) is simple if, and only if P ' ICY ′(L′) for
some closed subvariety Y ′ of Y , and some simple local system L′ defined on
an open subvariety of the regular part of Y ′. Hence, a semi-simple perverse
sheaf P is a finite direct sum of such simple objects. Notice that, if Y ′ and
Y ′′ are distinct closed subvarieties of Y ,

HomD(Y )(IC
′
Y (L′), IC ′′Y (L′′)) = 0.

By Axiom (AX1), the intersection cohomology complex ICY ' RY [n],
if Y is non-singular. There are another type of varietes satisfying that the
intersection cohomology complex is quasi-isomorphic to the constant sheaf,
they are the rational homology manifolds:

Definition 2.3.33. A topological space Y is a rational homology manifold of
real dimension n if Hi(Y, Y \ {y};Q) is equal to Q if i = n, and 0 if i 6= n.

Proposition 2.3.34. A complex algebraic variety Y is a rational homology
manifold if, and only if, the link of every point in Y is a rational homology
sphere.

Theorem 2.3.35. If Y is complex algebraic variety which is rational homology
manifold, then

ICY ' QY [dimC Y ].

The proofs of the above two results can be found in [61, Proposition 6.6.2]
and [61, Theorem 6.6.3], respectively.

As a consequence of the theory of mixed Hodge modules developed by
M. Saito [74], [75], [76] (see also [18]) one can obtain that the intersection
cohomology of a complex algebraic variety carries a mixed Hodge structure.
This result was originally proved by J. Steenbrink and S. Zucker in [78] for
the curve case and by F. El Zein in [23], [24] for the general situation. For a
developed and detailed references about this consider for instance [71] or [61].
As a particular case, we have the following theorem:

Theorem 2.3.36. If Y is a compact complex algebraic variety that is a ra-
tional homology manifold. Then, the k-th cohomology group Hk(Y ;Q) of Y
carries a pure (polarizable) Hodge structure of weight k, for every k ∈ Z.

For the general theory of pure and mixed Hodge structures see Section 2.2.
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2.3.4. Decomposition Packadge

The Decomposition Theorem was proved in [6] for C-coefficients. For R- and
Q-coefficients follows from [20]. In this section, we give the results of the
Decomposition Packadge for R-coefficients which will be used in Chapter 5.
The Decomposition Theorem was re-proved later by M. Saito, using the theory
of Hodge modules in [75], [74], [76], and also by M. A. de Cataldo and L.
Migliorini in [18].

Let ε : Z → Y be a projective morphism of complex algebraic varieties,
with Z non-singular of dimension d. Let η ∈ H2(Z;R) be the first Chern
class of an η-ample line bundle on X. The class η corresponds to a map of
complexes

η : RZ → RZ [2],

and it induces a map η : Rε∗RZ → Rε∗RZ [2]. After taking perverse cohomol-
ogy, we obtain a map of perverse sheaves on Y :

η : pHi(Rε∗RZ [d])→ pHi+2(Rε∗RZ [d]).

Iterating, we have maps of perverse sheaves

ηi : pH−i(Rε∗RZ [d])→ pHi(Rε∗RZ [d]), (2.11)

for every i ≥ 0.

The Decomposition Packadge is composed by the following three theorems:
the relative Hard Lefschetz Theorem, the Decomposition Theorem, and the
Semi-simplicity Theorem. The corresponding theorems state the following
(see [18]):

Theorem 2.3.37 (Relative Hard Lefschetz Theorem). Let ε and η as above.
For every i ≥ 0, the induced map by η of perverse cohomologies (2.11), i.e.,

ηi : pH−i(Rε∗RZ [d])
∼=−→ pHi(Rε∗RZ [d])

is an isomorphism. In particular, by setting

P−iη (Rε∗RZ [d]) := Ker(ηi+1 : pH−i(Rε∗RZ [d])→ pHi+2(Rε∗RZ [d])),

we have equalities:

pH−i(Rε∗RZ [d]) =
⊕
l≥0

ηlP−i−2l
η (Rε∗RZ [d]) (2.12)

pHi(Rε∗RZ [d]) =
⊕
l≥0

ηi+lP−i−2l
η (Rε∗RZ [d]) (2.13)

for i ≥ 0.
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The term
P−iη (Rε∗RZ [d]) ⊂ pH−i(Rε∗RZ [d])

is called the primitive part of the perverse cohomology pH−i(Rε∗RZ [d]). The
decompositions (2.12) and (2.13) are called the primitive decomposition of
pH−i(Rε∗RZ [d]) and pHi(Rε∗RZ [d]), respectively.

Theorem 2.3.38 (The Decomposition Theorem). Let ε be as above, there is
a non-canonical isomorphism in Db

c(Y ):

Rε∗RZ [d] '
⊕
i

pHi(Rε∗RZ [d])[−i], (2.14)

The sum appearing in the decomposition is finite, the perverse cohomolo-
gies run all the degrees forM ≤ i ≤M , whereM is the defect of semi-smallness
of ε. However, since the value of M is not relevant in the tratement of the
Decomposition Theorem in Chapter 5, then we only consider M as a certain
integer. See [18] for more details about semi-smallness and the Decomposition
Theorem.

Theorem 2.3.39 (The Semi-simplicity Theorem). Each pHi(Rε ∗RZ [d]) is a
semi-simple object in Perv(Y ), i.e., if Y is the set of connected components
of strata of Y in a stratification of ε, there is a canonical isomorphism in
Perv(Y ):

pHi(Rε∗RZ [d]) '
⊕
S∈Y

ICS(Li,S), (2.15)

where the local systems Li,S on S are semi-simple (see Remark 2.3.32).

The collection of subvarieties S appearing in (2.15) are called the set of
supports of ε with some associated non-zero local system Li,S .

Remark 2.3.40. If ε : Z → Y is a resolution of singularities of Y , by Theorem
2.3.38 and Theorem 2.3.39, there is a stratification of Y such that the inter-
section cohomology complex ICY is a direct summand of the decompositions
(2.14) and (2.15). That is,

Rε∗RZ [d] ' ICY ⊕ (contribution from singularities of Y ). (2.16)
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2.4. Theory of Cubical Hyperresolutions

In this section, we give an overview of the theory of cubical hyperresolu-
tions due to F. Guillén, V. Navarro Aznar, P. Pascual-Gainza, and F. Puerta
in [35]. The cubical hyperresolutions will be one of the central tools appearing
throughout Chapter 5. The results and definitions appearing in this section
are based on [71, Part III, Chapter 5].

2.4.1. Semi-simplicial varieties and cubical varieties

Definition 2.4.1. The semi-simplicial category 4 is the category with objects
the ordered sets {0, . . . , n}, for n ∈ N, and with morphisms strictly increasing
maps.

Notice that the morphisms of the semi-simplicial category 4 are obtained
as composition of maps δj : {0, . . . , k} → {0, . . . , k + 1} defined by δj(p) = p,
for p < j, and δj(p) = p+ 1, for p ≥ j. Then, the semi-simplicial category can
be seen as the category of ordered sets [k] and with morphisms generated by
the face maps. This information can be captured in a diagram:

{0} {0, 1} {0, 1, 2} {0, 1, 2, 3} . . .δ1
δ0

δ0

δ2
δ1

δ0

δ3

δ1

δ2

Definition 2.4.2. The cubical category � is the category with objects the
finite subsets of N, and for which Hom(I, J) consists of a single element if
I ⊂ J , and empty if else.

Set [k] := {0, . . . , k}. The n-truncated semi-simplicial category 4n is the
full sub-category of 4 whose objects are the [k] with k ∈ [n− 1]. The cubical
category �n is the full sub-category of � whose objects are the subsets of
[n− 1],

Definition 2.4.3. A semi-simplicial object (co-semi-simplicial) in a category
C is a contravariant functor K• : 4 → C (co-variant functor C• : 4 → C). A
morphism between such objects is to be understood as a morphism of corre-
sponding functors.

We define cubical objects, co-cubical objects in a similar way. We get
an n-(co)semi-simplicial object by replacing 4 by 4n, and similarly for n-
(co)cubical-object.

In particular, for the face maps δj , we define objects

Kn := K•[n], Cn := C•[n]

in C, and morphisms
dj := K(δj), dj = C(δj).
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If the category is additive, we can consider

δn :=
n∑
j=0

(−1)jdj : Kn → Kn−1, δn :=
n∑
j=0

(−1)jdj : Cn → Cn+1

and define complexes in C:

CK• := {. . . K1 K0},
δ1 δ0

CC• := {C0 C1 . . . }.δ0 δ1

For a cubical object X and I ⊂ N finite, we define

XI := X(I), dIJ := X(I ↪→ J) : XJ → XI , I ⊂ J.

Let K be an object in C, a constant semi-simplicial object K is obtained
by setting Kn = K for all n, and taking the identity for the corresponding
maps.

Definition 2.4.4. An augmentation of a semi-simplicial object K• to constant
semi-simplicial object Y is a morphism

ε : K• → Y

of semi-simplicial objects.

If the category C is the category of topological spaces, we speak of a semi-
simplicial space, if C is the category of complex algebraic varieties, we speak
of a semi-simplicial complex algebraic variety, etc.

Definition 2.4.5. Let K• be a semi-simplicial space. Using the convention
that every strictly increasing map f : [q] → [p] has geometric realizations
|f | : ∆q → ∆p, the geometric realization of K• is

|K•| :=
∞∐
p=0

∆p ×Kp/R,

where the equivalence relation R is generated by identifying (s, x) ∈ ∆ ×Kq

with (|f |(s), y) ∈ ∆p × Kp, if x = K(f)y for all strictly increasing maps
f : [q]→ [p].

The topology on |K•| is the quotient topology under R obtained from the
direct product topology. There is a natural augmentation

K• → |K•|

defined by sending x ∈ Kn to the equivalence class of (x, zn), where zn is the
barycenter of ∆n.
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Example 2.4.6. Let Y =
⋃n
i=0 Yi be a variety with irreducible components

Y0, . . . , Yn. Let X∅ := Y , and XI :=
⋂
i∈I Yi for I ⊂ [n] non-empty. The

maps dIJ : XJ → XI are given by the inclusions I ⊂ J . This defines an
(n+ 1)-cubical variety. For n = 2, the 3-cubical variety is

X{12} X{2}

X{012} X{02}

X{1} X∅

X{01} X{0}

(2.17)

Remark 2.4.7. Any (k + 1)-cubical variety X can be considered as a mor-
phism of k-cubical varieties Y → Z where ZI = XI and YI = XI∪{k} for
I ⊂ [k − 1]. In particular, a 1-cubical variety is the same as a morphism of
varieties.

Remark 2.4.8. Every (n + 1)-cubical variety X gives rise to an augmented
n-semi-simplicial variety X• → Y captured in the following diagram:

. . . X3 X2 X1 X0 Y

The objects are

Xk :=
∐

|I|=k+1

XI , k = 0, . . . , n.

The morphisms are the following: For each inclusion β : [s]→ [r] and I ⊆ [n]
with cardinality |I| = r + 1, writting I = {i0, . . . , ir}, i0 < · · · < ir, then the
morphisms are

X(β)|XI := dJI

where J = {iβ(0), . . . , iβ(s)} ⊂ I.

For all I ⊆ [n], we have a well-defined map d∅I : XI → X∅ = Y . So, we
have an augmentation of the above semi-simplicial variety.

Definition 2.4.9. Let X be a cubical variety, and let ε : X• → X∅ be its
asociated augmented semi-simplicial variety, the continuous map

|ε| : |X•| → X∅,

is the geometric realization of the cubical variety X.
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2.4.2. Sheaves on semi-simplicial spaces and their cohomology

Consider the category with objects the pairs (X,F) where X is a topological
space and F is a sheaf onX, and morphisms the pairs (f, f#) : (X,F)→ (Y,G)
where f : X → Y is a continuous map and f# : G → f∗F is a sheaf homorphism
on Y .

Definition 2.4.10. A sheaf on a semi-simplicial space X• is a semi-simplicial
object (X•,F•) in the above category which consists of a family of pairs
(Xk,Fk), where Fk is a sheaf on Xk, and, for increasing morphisms β : [n]→
[m], the morphisms are pairs (X(β), X(β)#) where X(β) : Xm → Xn and
X(β)# : Fn → X(β)∗Fm satisfying (X(β) ◦ X(γ))# = X(β)# ◦ X(γ)#, for
any increasing map γ : [m]→ [l]. That is, it is covariant functor in the second
factor.

Example 2.4.11. Let X• be a semi-simplicial space, define the constant sheaf
RX• on the semi-simplicial space X•. Taking the family of constant sheaves
RXk over Xk and morphisms X(β)# : RXn → X(β)∗RXm for ingreasing maps
β : [n]→ [m].

Let Y be a topological space, and let F be a sheaf on Y . For each y ∈ Y ,
let Fy be the stalk of F at y. The Godement sheaf CGdm(F) of F is defined
by taking for open subset U ⊆ Y , sections CGdm(F)(U) :=

∏
y∈U Fy, and for

open subsets U ⊆ V , restriction maps CGdm(F)(V ) → CGdm(F)(U). There is
a resolution of the sheaf F ,

0 F C0
Gdm(F) C1

Gdm(F) . . .d0 d1 d2

by taking C0
Gdm(F) := CGdm(F), and CiGdm(F) := CGdm(Coker di−1) for i > 0.

It is called the Godement resolution of F .

Consider ε : X• → Y a semi-simplicial space augmented to Y and F• a
sheaf on X•. Notice that the sheaves ε∗CqGdm(Fp) form a double complex of
sheaves on Y ; and its associated simple complex defines

Rε∗F• := s[ε∗C•Gdm(F•)].

Definition 2.4.12. A semi-simplicial space ε : X• → Y augmented to Y is
said to be of cohomological descent if the natural map

ε# : RY → Rε∗RX•

is a quasi-isomorphism.

36



2.4. Cubical hyperresolutions

2.4.3. Cubical hyperresolutions

Definition 2.4.13. Let Y be a variety and let D be a closed subvariety of
Y . A semi-simplicial resolution of the pair (Y,D) is a semi-simplicial variety
ε : X• → Y augmented to Y satisfying the following properties:

1. All maps Xk → Y are proper, and Xk is smooth for all k.

2. ε is of cohomological descent.

3. The inverse image of D on each irreducible component Xi
k is: either all

of Xi
k, or empty, or a divisor with simple normal crossings on Xi

k.

Definition 2.4.14. A cubical variety is a cubical hyperresolution of Y if its as-
sociated semi-simplicial variety ε : X• → Y augmented to Y is a semi-simplicial
resolution.

Remark 2.4.15. Let X be a n-cubical variety, and let ε : X• → X∅ be its
associated augmented semi-simplicial variety. Let C•(X) be the cone of the
morphism RX∅ → Rε∗RX• . Then, the n-cubical variety X is of cohomological
descent if and only if the cone C•(X) is acyclic.

Construction of Cubical Hyperresolutions

Definition 2.4.16. 1. A proper modification of a variety Y is a proper
morphism f : Ỹ → Y such that there exists an open dense set U in Y
for which the morphism f induces an isomorphism f−1(U)→ U .

2. A resolution of Y is a proper modification f : Ỹ → Y such that Ỹ is
smooth.

3. The discriminant of a proper morphism f : Ỹ → Y is the minimal closed
subset ∆(f) of Y such that the morphism f induces an isomorphism
Ỹ \ f−1(∆(f))→ Y \∆(f).

The following theorem was proved independently by D. Abramovich and
J. de Jong in [1], and F. A. Bogomolov and T. G. Pantev in [8], respectively:

Theorem 2.4.17. Let Y be an (irreducible) algebraic variety and let D be
a closed subset of Y . Then, there exists a resolution f : Ỹ → Y which is a
projective morphism and such that the inverse image f−1(D) of D in Ỹ is a
simple normal crossings divisor.
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Lemma-Definition 2.4.18. Let f : Ỹ → Y be a proper modification with
discriminant D. The discriminant square of f is the commutative diagram

f−1(D) Ỹ

D Y

j

g f

i
(2.18)

and let X be the corresponding 2-cubical variety. Then, the associated semi-
simplicial variety of X is of cohomological descent.

Definition 2.4.19. The discriminant of a proper morphism f : Y → Z of
cubical varieties is the smallest closed cubical variety D of Z such that f
induces isomorphisms YI \ f−1(DI)→ ZI \DI for all I.

Notice that we can construct a discriminant square for a proper morphism
between k-cubical varieties as in Lemma-Definition 2.4.18 between ordinary
varieties.

Definition 2.4.20. Let f : Y → Z be a proper morphism of cubical varieties
with discriminant D and let T be a closed cubical subspace of Z. Then, we call
f a resolution of (Z, T ) if YI is smooth, f−1

I (TI) consists of certain components
of YI and divisors with simple normal crossings on some other components of
YI , and dim f−1

I (DI) < dimZI for all I.

Theorem 2.4.21. Let Z be an n-cubical variety and let T be a closed cubical
subvariety. Then, there exists a resolution f : Y → Z of (Z, T ).

The proof of this theorem can be found in [71, Theorem 5.25].

Theorem 2.4.22. For any variety Y of dimension n and any Zariski closed
subset T with dense complement, there exists an (n+1)-cubical hyperresolution
X of (Y, T ) such that dimXI ≤ n− |I|+ 1.

This theorem is proved in [71, Theorem 5.26], and it gives an explicit
construction of a cubical hyperresolution of (Y, T ). Since this construction will
be used to prove Lemma 5.1.1 in Chapter 5, we explain below this construction
of a cubical hyperresolution and illustrate it with two examples.

The construction of the hyperresolution is given step by step. The first
step is to choose a resolution π : Ỹ → Y of (Y, T ) with discrimiant D

X
(1)
{0,1} = π−1(D) Ỹ = X

(1)
{0}

X
(1)
{1} = D Y = X

(1)
∅

π
(2.19)
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and consider this as a 2-cubical variety which is of cohomological descent. The
hypothesis of induction is the following: After k steps, we obtain a (k + 1)-

cubical variety X(k) which is proper, of cohomological descent, with X
(k)
∅ = X,

X
(k)
I smooth for all non-empty I ⊆ [k − 1] and dimX

(k)
I ≤ n − |I| + 1 for all

I ⊆ [k], and the inverse image of T in X
(k)
I is a union of irreducible components

of X
(k)
I and a simple normal crossings divisor.

We proceed to construct the next step: Consider X(k) as a morphism
f (k) : Y (k) → Z(k) of k-cubical varieties. Notice that ZI is smooth for I 6= ∅
and Y (k) is possibly singular. Let T (k) be the inverse image of T in Y (k).
We choose a resolution πY (k) : Ỹ (k) → Y (k) of (Y (k), T (k)) and construct its
discriminant square

E(k) Ỹ (k)

D(k) Y (k)

π
Y (k)

(2.20)

where D(k) is the discriminant of the resolution πY (k) , and E(k) is the inverse
image of D(k) in Ỹ (k). Then, we can find the following commutative square

E(k) Ỹ (k)

D(k) Z(k)

(2.21)

through the composition of π
(k)
Y with Y (k) → Z(k). Square (2.21) can be seen

as a (k + 2)-cubical variety X(k+1). Indeed, for all I ⊆ [k − 1], we set

X
(k+1)
I := Z

(k)
I , X

(k+1)
I∪{k} := Ỹ

(k)
I , X

(k+1)
I∪{k+1} := D

(k)
I , X

(k+1)
I∪{k,k+1} := E

(k)
I .

(2.22)

Furthermore, dimX
(k+1)
I ≤ n − |I| + 1 for all I ⊆ [k + 1] and X(k+1) is

of cohomological descent (see the proof of [71, Theorem 5.26]). Notice that in
the last step, all terms appearing in the (n+ 1)-cubical variety are smooth for
I 6= ∅. So, this construction gives a hyperresolution of (Y, T ).

Example 2.4.23. Let Y be a complex surface with only one isolated singu-
larity y. We obtain a hyperresolution of Y following the above construction.
First, consider a resolution of singularities π : Ỹ → Y of (Y, y), with discrim-
inant D = {y} and E := π−1(y) the exceptional divisor with simple normal
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crossings. The discriminant square of π is

E Ỹ

{y} Y

π
(2.23)

By Lemma-Definition 2.4.18, the square (2.23) is a 2-cubical varietyX(1) which
is of cohomological descent.

We introduce the following notation: For E =
⋃
i∈I Ei, we set E(k) :=⊔

|J |=k EJ , where EJ =
⋂
j∈J Ej , J ⊆ I.

By taking X(1) as a morphism f (1) : Y (1) → Z(1) of 1-cubical varieties

Y (1) and Z(1), where Y
(1)
∅ = {y}, Y (1)

0 = E, and Z
(1)
∅ = Y , and Z

(1)
0 = Ỹ ,

respectively. Notice that Z(1) is smooth for I 6= ∅, and Y (1) is not smooth.

We choose a resolution Ỹ (1) → Y (1) of Y (1), where Ỹ (1) is Ỹ
(1)
∅ = {y} the

resolution of (Y
(1)
∅ , {y}) and Ỹ

(1)
{0} = E(1) the resolution of (Y

(1)
{0} , E(2)). So,

the discriminant square of πY (1) is

E(1) E Ỹ

E(2) t E(2) E(2)

{y} {y} Y

{y} {y}

(2.24)

then, we obtain the following 3-cubical variety

E(1) Ỹ

E(2) t E(2) E(2)

{y} Y

{y} {y}

(2.25)

whose associated semi-simplicial variety augmented to Y is

E(2) t E(2) E(1) t E(2) t {y} Ỹ t {y} t {y} Y.
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By Theorem 2.4.22, the semi-simplicial variety (2.25) is a cubical hyperreso-
lution of Y .

Example 2.4.24. Let Y be a normal complex 3-fold with Σ1 the singular
locus of Y of dimension 1. Consider Σ1 with r connected components and
with only one special point {y}. We construct a hyperresolution of Y step by
step. First, consider a resolution of singularities π : Ỹ → Y of Y with simple
normal crossing exceptional divisor E = π−1(Σ1). The discriminat of π is Σ1,
then the discriminant square is the following 2-cubical variety

E Ỹ

Σ1 Y

π
(2.26)

Since the 1-cubical variety Y (1) (that is E → Σ1) is not smooth, we continue
with the second step of the construction. We introduce some notation: For
E = ∪i∈IEi, we set E(k) :=

⊔
|J |=k EJ , where EJ =

⋂
j∈J Ej , J ⊆ I, El :=⋃

|L|=lEL in E and El(k) :=
⊔
|J |=k E

l
J with J ⊆ L.

Consider the normalization of (Y (1), T (1)), where T (1) is the 1-cubical va-
riety E2 → {y}, and its discriminant square is

E(1) E Ỹ

E2(1) E2

Σ1(1) Σ1 Y

⊔r
i=1{yi} {y}

(2.27)

Since the 2-cubical variety

E2(1) E2

⊔r
i=1{yi} {y}

π
(2.28)

is not smooth, we continue with a last step of the construction, and we obtain
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the 4-cubical variety

⊔2
i=1E(2) E(2)⊔6

i=1E(3)
⊔3

i=1E(3)⊔r
i=1{yi} {y}⊔r

i=1{yi} {y}

−→

E(1) Ỹ

E2(1) E2

Σ1(1) Y⊔r
i=1{yi} {y}

(2.29)
which is a cubical hyperresolution of Y .
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2.5. Characteristic classes of singular varieties

This section is devoted to the theory of characteristic classes which involves
Chapter 4 and Chapter 5. The theory of characteristic classes started as a part
of the obstruction theory in the study of vector bundles of smooth manifolds.
Later, these classes were generalized to singular spaces in several ways. In
Section 2.5.1, we introduce the theory of characteristic classes of vector bundles
and smooth manifolds, and exhibit some examples of these classes. In Section
2.5.2 characteristic classes of singular spaces will be introduced, as well as
the corresponding singular characteristic classes generalizing the ones in the
previous section. We focus on the main ones that will appear in Chapter 4
and Chapter 5.

2.5.1. Characteristic classes of vector bundles

The classical characteristic classes were introduced by E. Stiefel [79] in the
1930s as part of the obstruction theory. They are cohomology classes of the
base space of a vector bundle that measure the obstruction of the existence
of linearly independent sections of the vector bundle, that is, the triviality of
the vector bundle.

A characteristic class of a vector bundle over a topological space X is
an assignment from the set of isomorphism classes of vector bundles over X
to the cohomology group of X. Let Vect(−) be the contravariant functor
of isomorphism classes of vector bundles over a topological space, and let
H∗(−;R) be the contravariant cohomology functor with coefficient ring R.
The caracteristic classes of vector bundles are defined as follows:

Definition 2.5.1. A characteristic class of vector bundles is a natural trans-
formation

cl∗ : Vect(−)→ H∗(−;R),

which assigns to a vector bundle ξ : E → X a cohomology class

cl∗(E) := cl∗(ξ) ∈ H∗(X;R)

on the base space X of the vector bundle ξ : E → X.

One of the most fundamental characteristic classes of vector bundles are
Chern classes. They are defined axiomatically as follows:

The Chern class c∗ is an assignation to a complex vector bundle ξ : E → X
a cohomology class

ci(E) ∈ H2i(X;Z),

satisfying the following axioms:
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(A1) c0(E) := 1 and ci(E) = 0 for i > rank(E).

c∗(E) := 1 + c1(E) + · · ·+ crank(E)(E) ∈ H∗(X;Z)

is called the total Chern class of E.

(A2) (Naturality) Let f : Y → X be a map, then

c∗(f∗E) = f∗(c∗(E)).

(A3) (Wu product) Let ξ : E → X and η : F → X be two complex vector
bundles, then

c∗(E ⊕ F ) = c∗(E) ∪ c∗(F ).

(A4) (Normalization) The total Chern class c∗(γ1
n(C)) of the tautological line

bundle γ1
n over Pn(C) is

c∗(γ1
n(C)) = 1− g,

where g ∈ H2(Pn(C);Z) is the Poincaré dual of the hyperplane Pn−1(C) ⊂
Pn(C).

In the theory of vector bundles, the Chern classes are useful to reduce
computations using line bundles through the following theorem, the splitting
principle:

Theorem 2.5.2. Let ξ : E → X be a complex vector bundle of rank n over
a paracompact space X. There is an associated space F (E) to E and a map
f : F (E)→ X such that:

1. The vector bundle f∗(E) is a direct sum of complex line bundles, that is

f∗(E) = L1 ⊕ L2 ⊕ · · · ⊕ Ln. (2.30)

2. The map f∗ : H∗(X)→ H∗(F (E)) is injective.

The first Chern classes of the line bundles Li appearing in Equation (2.30)
are called the Chern roots αi of E.

A proof of this theorem can be found in [37, Proposition 3.3].

There is another characteristic class defined through the Chern classes,
they are the Pontrjagin classes p∗. This class p∗ is an assignation to a real
vector bundle ξ : E → X a cohomology class

pi(E) ∈ H4i(X;Z)

defined by (−1)ic2i(E ⊗ C), where ck is the k-th Chern class.
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Characteristic classes of smooth manifolds

Let X be a smooth manifold. A characteristic class cl∗(TX) of the tangent
bundle TX of X is called a characteristic cohomology class cl∗(X) of the
manifold X. We denote by

cl∗(X) := cl∗(TX) ∩ [X] ∈ HBM
∗ (X;R)

the corresponding characteristic homology class of the manifold X, with [X]
the fundamental class in Borel-Moore homology of X.

Furthermore, the characteristic number #(X) of X is defined as

#(X) := deg(cl∗(X)) =

∫
X
cl∗(TX) ∩ [X].

For X a compact complex manifold, the Gauss-Bonet-Chern Theorem
states that the characteristic number associated to the Chern class c∗(X) of
X

e(X) =

∫
X
c∗(TX) ∩ [X] (2.31)

is the Euler characteristic e(X) of X.

In [38], F. Hirzebruch answering affirmatively a question of J. P. Serre, gave
the called Hirzebruch-Riemann-Roch: For X a non-singular complex projec-
tive variety, and E a holomorphic vector bundle over X, then

χ(X,E) =

∫
X

(ch∗(E)td∗(TX)) ∩ [X], (2.32)

where χ(X,E) is the Euler-Poincaré characteristic of E. Here

ch∗(E) :=

rank E∑
j=1

eβj

is the Chern character, and

td∗(TX) :=

dimX∏
i=1

αi
1− e−αi

,

is the Todd class, where βj and αi are the Chern roots of E and TX, respec-
tively. Moreover, when E is a trivial line bundle, the Hirzebruch-Riemann-
Roch theorem recovers the arithmetic genus χ(X) of X.

Furthermore, in [39], F. Hirzebruch proved the Hirzebruch’s Signature The-
orem. This theorem states that there are unique polynomials in the Pontrjagin
classes p∗, called the Thom-Hirzebruch L-classes L∗, satisfying that for any
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closed oriented manifold X of dimension divisible by 4, the evaluation of these
classes in the fundamental class of X recovers its signature. That is:

σ(X) =

∫
X
L∗(TX) ∩ [X], (2.33)

where σ(X) is the signature of X (i.e. the signature of the intersection form
associated to X).

The Hirzebruch cohomology class

In this section, we introduce the Hirzebruch cohomology class of smooth man-
ifolds. One of the special features of this characteristic class is that it depends
on an indeterminate y, such that for different values of y, this class specializes
in three different characteristic classes.

In [38], F. Hirzebruch proved the generalized Hirzebruch Riemann-Roch
theorem, which recovers for different values of y, the Gauss-Bonnet-Chern
theorem, the Hirzebruch Riemann-Roch theorem, and Hirzebruch’s Signature
theorem introduced in the previous section:

Theorem 2.5.3 (g-HRR). Let X be a non-singular complex projective variety
and E a holomorphic vector bundle over X. The χy-characteristic of E equals
to

χy(X,E) =

∫
X
T ∗y (TX)ch(1+y)(E) ∩ [X] ∈ Q[y],

with

ch(1+y)(E) :=

rank(E)∑
j=1

eβj(1+y)

and

T ∗y (TX) :=

dim(X)∏
i=1

αi(1 + y)

1− e−αi(1+y)
− αiy.

Here βj and αi are the Chern roots of E and TX, respectively.

The Hirzebruch cohomology class T ∗y (X) := T ∗y (TX) specializes in the
following three characteristic cohomology classes of TX:

For y = −1,
T ∗−1(X) = c∗(X)

the total Chern class of X.
For y = 0,

T ∗0 (X) =: td∗(X)

the total Todd class of X.
For y = 1,

T ∗1 (X) = L∗(X)
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the total Thom-Hirzebruch L-class of X.

The g-HRR theorem for a trivial line bundle E specializes in the following:

For y = −1, Gauss-Bonnet-Chern Theorem:

e(X) =

∫
X
c∗(X) ∩ [X]

the Euler characteristic of X.
For y = 0, Hirzebruch Riemann-Roch Theorem:

χ(X) =

∫
X
td∗(X) ∩ [X]

the arithmetic genus of X.
For y = 1, Hirzebruch’s Signature Theorem:

σ(X) =

∫
X
L∗(X) ∩ [X]

the signature of X.

2.5.2. Characteristic classes of singular varieties

Characteristic classes of manifolds were generalized in several ways to the sin-
gular case. For a singular complex algebraic variety X, its tangent bundle is
not available because of the existence of singularities. Characteristic classes
of singular varieties are usually homology classes which, in the non-singular
case, recover the corresponding characteristic cohomology class by capping
with the fundamental class. Indeed, they can be seen as natural transforma-
tions from a functor depending on the characteristic class to the homology
functor. The first characteristic class of singular complex varieties formu-
lated as natural transformations was the Chern-Schwartz-MacPherson class
transformation [51] (Section 2.5.2). After this, P. Baum, W. Fulton, and R.
MacPherson [5] defined a singular version of the Todd class (Section 2.5.2).
Later, S. E. Cappell, J. L. Shaneson and S. Weinberger in [15] (see also [14]
and [84]) introduced a homology L-class transformation recovering the Thom-
Hirzebruch L-class for the non-singular case (Section 2.5.2).

As we defined in the previous section, the characteristic classes of vec-
tor bundles are natural transformations from the functor Vect(−) of vector
bundles to the cohomology functor H∗(−;R). This naturality motivates the
following definition of characteristic classes for singular varieties.

Definition 2.5.4. A characteristic class (for singular varieties) is a natural
transformation

cl∗ : A(−)→ HBM
∗ (−;R)
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from a suitable covariant functor A(−) depending on the choice of cl∗ to the
Borel-Moore homology functor HBM

∗ (−;R). This transformation satisfies the
following two properties:

1. There is always a distinguished element 1X ∈ A(X), such that the char-
acteristic class of the singular variety X is defined by

cl∗(X) := cl∗(1X).

2. It satisfies the following normalization condition:

cl∗(1X) = cl∗(TX) ∩ [X],

when X is a smooth manifold.

The characteristic class cl∗ should be seen as a homology class version of
the characteristic number of the singular variety X:

#(X) := cl∗(pt∗1X) = pt∗(cl∗(1X)) ∈ H∗({pt};R) = R,

where pt : X → {pt} is a constant map. Moreover, the normalization condition
recovers, for X smooth, the characteristic number of X:

#(X) =

∫
X
cl∗(TX) ∩ [X].

The Chern-Schwartz-MacPherson class

The Chern-Schwartz-MacPherson characteristic class comes from the unifica-
tion of two different generalizations for singular varieties of the Chern class
of smooth manifolds. In [77], M. H. Schwartz generalized the Chern class via
obstruction theory. In [51], proving a conjecture formulated by P. Deligne
and A. Grothendieck, a generalization of the Chern class via natural trans-
formations was obtained by R. MacPherson. Then, J. P. Brasselet and M. H.
Schwartz in [10] showed that the distinguished value of this natural transfor-
mation coincides with the definition of M. H. Schwartz via Alexander duality.

Let X be a complex algebraic variety. A constructible function α : X → Z
is a function on X given by a finite sum α =

∑
i ni1Wi , where ni ∈ Z, Wi a

subvariety of X, and 1Wi is the characteristic function of Wi. Denote by F (X)
the abelian group of constructible functions on X. The integral of α is defined
by ∫

X
α :=

∑
i

χ(Wi),
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where χ is the Euler characteristic taking Borel-Moore homology. For a mor-
phism f : X → Y , the push-forward f∗ : F (X)→ F (Y ) is defined by

f∗(α)(y) :=

∫
f−1(y)

α.

The group of constructible functions define a covariant functor F (−) from
the category of complex algebraic varieties and proper morphisms to the cate-
gory of abelian groups. In [51], R. MacPherson proved the following theorem:

Theorem 2.5.5. There is a unique natural transformation

c∗ : F (−)→ HBM
2∗ (−;Z)

from the constructible function functor F (−) to the Borel-Moore homology
functor HBM

2∗ (−;Z) in even degrees, satisfying:

1. The distinguished element is the characteristic function 1X ∈ F (X) of a
complex algebraic variety X, and

2. if X is non-singular, then c∗(1X) is the Poincaré dual of the total Chern
cohomology class:

c∗(1X) = c∗(TX) ∩ [X].

Definition 2.5.6. The class cSM∗ (X) := c∗(1X) is called the Chern-Schwartz-
MacPherson class of X.

By considering the map from X to a point, we obtain

e(X) = deg(cSM∗ (X)) =

∫
X
cSM∗ (X),

that is, a singular version of the Gauss-Bonnet-Chern theorem.

Segre-Schwart-MacPherson class

After defining the Chern-Schwartz-MacPherson class, another characteristic
class was given defined through the Chern-Schwartz-MacPherson class and
the total Chern class.

Let i : X ↪→ M be a closed embedding of a complex algebraic variety
X in a complex manifold M . The Segre-Schwartz-MacPherson class of the
embedding i is defined by

sSM(X,M) := c∗(i∗TM)−1 ∩ cSM∗ (X).
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The Baum-Fulton-MacPherson Todd class

P. Baum, W. Fulton, and R. MacPherson in [5] defined a generalization for
singular varieties of the Todd class, by proving the following theorem:

Theorem 2.5.7. There is a unique natural transformation

td∗ : G0(−)→ HBM
2∗ (−;Q)

from the Grothendieck functor G0(−) of coherent sheaves (see Chapter II in
[36]) to the Borel-Moore homology functor HBM

2∗ (−;Q). It satisfies

1. for a complex algebraic variety X, the distinguished element is 1X :=
[OX ] ∈ G0(X), that is, the class of the structure sheaf.

2. If X is non-singular,

td∗([OX ]) = td∗(TX) ∩ [X].

Definition 2.5.8. The class td∗(X) := td∗([OX ]) is called the Baum-Fulton-
MacPherson Todd class of X.

Considering the mapping from X to a point, we obtain the singular version
of the Riemann-Roch theorem:

χ(X) =

∫
X
td∗(X).

The Cappell-Shaneson L-class

M. Goresky and R. MacPherson developed the intersection homology theory
in [30] and [31]. Using this theory, they defined a homology class L∗(X) for
a stratified space X with even codimensional strata, such that if X is non-
singular, it recovers the Thom-Hirzebruch L-class of X by capping with its
fundamental class:

L∗(X) = L∗(TX) ∩ [X].

S. E. Cappell, J. L. Shaneson and S. Weinberger in [15] (see also [14],
[84]) using some topological aspects of perverse sheaves, introduced a ho-
mology L-class transformation L∗. It is a natural transformation from the
cobordism functor ΩK(−) of self-dual cohomologically constructible bounded
K-complexes (K a subfield of R) of sheaves to the rational homology functor
H2∗(−;Q). Moreover, for a compact complex algebraic variety X, the trans-
formation L∗ applied to the intersection cohomology complex ICX (see 2.3.3)
recovers the Goresky-MacPherson definition of L-class.

In Chapter 5, we use the Cappell-Shaneson interpretation of the L-class. In
order to introduce the Cappell-Shaneson transformation, we define the cobor-
dism group ΩK(X) (K a subfield of R) on a compact complex algebraic variety
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X. The group ΩK(X) was introduced in [14]. A problem with the ambiguity
of mapping cones related with the definition in [14] was improved in [85] (see
[9]). First, we define the cobordism group given in [85]. After this, we give
some relations between this definition with another definition of cobordism
introduced in [27].

Let X be a compact complex algebraic variety. Consider (F , α) a self-dual
complex of sheaves on X, that is (F , α) is a pair such that F ∈ Ob(Db

c(X))
and the morphism α : F → D(F) is an isomorphism. The functor D(−) is the
Borel-Moore-Verdier dualizing functor (see Definition 2.3.10). It satisfies that

α = ±can ◦ D(α),

that is, if the following diagram

F D(F)

D(D(F))

α

can D(α)

is either commutative or anti-commutative, respectively (for can see (2.8)).
The self-dual complex (F , α) is called symmetric if α = can ◦ D(α) and skew-
symmetric if α = −can ◦ D(α).

Definition 2.5.9. Let (F , α) and (F ′, α′) be two self-dual complexes on X.
Then, they are isomorphic if there is an isomorphism β : F → F ′ such that
the following diagram

F F ′

D(F) D(F ′)

β

'
α α′

D(β)

'

commutes.

In order to define the cobordism relation, we consider the following octa-
hedral diagram (Oct) in Db

c(X):

F2 G2

d.t.

� H1 �

d.t.

G1 F1

v′[1]

u′

[1]

[1]

u

v

F2 G2

�

d.t H2 d.t

�

G1 F1

v′[1]

[1]

u′

[1]

u

v

(2.34)
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where the morphisms marked [1], are of degree one, the triangles marked
with d.t are distinguished and the ones marked � are commutative. The two
composite morphisms from H1 to H2 (via G1 and G2) have to be the same.
Similarly for the two composite morphisms from H2 to H1 (via F1 and via
F2).

Consider the octahedral diagram (RD(Oct)) given by the application of the
Borel-Moore-Verdier duality functor D and a rotation by 180o about the axis
connecting upper-left and lower-right corner. That is, the following octahedral
diagram:

D(F2) D(G1)

d.t.

� D(H2) �

d.t.

D(G2) D(F1)

D(u′)[1]

D(v′)

[1]

[1]

D(v)

D(u)

D(F2) D(G1)

�

d.t D(H1) d.t

�

D(G2) D(F1)

D(u′)[1]

D(v′)

[1]

[1]

D(v)

D(u)

(2.35)

Moreover, by applying again D with the above rotation to the obtained
octahedral diagram (RD(Oct)) we have the octahedral diagram (D(D(Oct))),
that is the one obtained from (Oct) by application of D2. The octahedral (Oct)
is called symmetric or skew-symmetric if there is an isomorphism α : (Oct)→
(RD(Oct)) of octahedral diagrams, such that

RD(α) ◦ can = α or − RD(α) ◦ can = α

as morphisms of octahedral diagrams, respectively. Here can is the canonical
isomorphism can : (Oct)→ (D(D(Oct))) of octahedral diagrams.

Notice that the isomorphism α : (Oct)→ (RD(Oct)) gives (skew)-symmetric
self-dual complexes (F1, α1) and (F2, α2) in the corners corresponding to F1

and F2. We say that ((Oct), α) is an elementary cobordism between (F1, α1)
and (F2, α2). This relation of elementary cobordism is reflexive and symmetric
(Remark 6.2, [85]).

Definition 2.5.10. Let (F , α) and (F ′, α′) be two self-dual complexes on X.
We say that (F , α) is cobordant to (F ′, α′) if there is a sequence

(F , α) = (F0, α0), (F1, α1), . . . , (Fr, αr) = (F ′, α′)

such that (Fi, αi) is elementary cobordant to (Fi+1, αi+1), for i = 0, . . . , r− 1.

Thus, by definition of cobordism, the cobordism relation is an equivalence
relation.
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Definition 2.5.11. The symmetric cobordism group ΩK+(X) of self-dual K-
complexes on X is the quotient of the monoid of isomorphism classes of co-
homologically constructible bounded symmetric self-dual complexes by this
cobordism relation. Similarly for the skew-symmetric cobordism group ΩK−(X)
replacing in the above definition symmetric by skew-symmetric.

The sum in ΩK+(X) and ΩK−(X) is given by the direct sum. They are
abelian groups, since (F , α) ⊕ (F ,−α) is cobordant to 0 (see [85], [9]). We
denote by ΩK(X) := ΩK+(X)⊕ ΩK−(X).

The following proposition was proved by B. Youssin in [85, Example 6.6],
which will be relevant in Chapter 5 simplifying computations.

Proposition 2.5.12. Let (F , α) be a (skew-) symmetric self-dual complex on
X. Then, (F , α) is elementary cobordant to the (skew-) symmetric self-dual
complex (pH0(F), pH0(α)).

For the definition of the 0-th perverse cohomology pH0(F) of F see Section
2.3.2.

Remark 2.5.13. By Remark 2.3.14, if (F , α) is a (skew-) symmetric self-
dual complex on X, then the corresponding pair after applying the functor
Rf∗ to (F , α) is a (skew)-symmetric self-dual complex on Y , for f : X → Y a
proper morphism. Moreover, the functor Rf∗ induces a group homomorphism
f∗ : ΩK±(X)→ ΩK±(X) defined by [(F , α)] 7→ [(Rf∗F , Rf∗(α))].

After expose the definition of cobordism through elementary cobordisms
given by B. Youssin in [85], we introduce the notion of cobordism given in [27].
In [27], the self-dual complexes are considered by taking pairings F⊗F → DX
instead of isomorphisms F '→ D(F). And, the notion of directly cobordim is
introduced. In a proposition below, we will show that two elementary cobor-
dant self-dual complexes are directly cobordant.

Let X be a compact complex algebraic variety, and let K be a subfield of
R. For F , G ∈ Ob(Db

c(X)), a morphism

S : F ⊗ G → DX ,

where DX is the dualizing complex on X (see Definition 2.3.9), is a called a per-
fect pairing if the corresponding morphism α : F → D(G) given by adjuntion
(see Corollary 2.3.8) is an isomorphism in Db

c(X).

Definition 2.5.14. A pair (F , S) is called a self-dual complex if F ∈ Ob(Db
c(X))

and S : F ⊗ F → DX is a perfect pairing.

Remark 2.5.15. Notice that Definition 2.3.13 of self-dual complex is equiv-
alent to this one, by using Corollary 2.3.8. That is, by the canonical isomor-
phism

Hom(F ⊗ F ,DX) ' Hom(F , RHom(F ,DX)).
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We say that the perfect pairing S : F ⊗F → DX is symmetric if S ◦ ι = S
and skew-symmetric if S◦ι = −S, for ι : F⊗F → F⊗F the involution defined
by

u⊗ v 7→ (−1)ijv ⊗ u,
where u ∈ F i, and v ∈ F j . A self-dual complex (F , S) is called symmetric (or
skew-symmetric) if the pairing S is symmetric (or skew-symmetric).

Remark 2.5.16. Since we are using Deligne’s indexing convention, if Z is
smooth of complex dimension d, then DZ = KZ [2d] and ICZ = KZ [d]. Con-
sidering K = R, then the canonical pairing given by usual real number multi-
plication

σZ : RZ [d]⊗ RZ [d]→ RZ [2d]

defines a perfect pairing which is symmetric for d even, and skew-symmetric
for d odd.

Definition 2.5.17. Let (F , S), (F ′, S′) be two self-dual complexes. We say
that (F , S) is directly cobordant to (F ′, S′) if there is a commutative diagram
in Db

c(X)

G F ′

F G′

ρ′

π π′

ρ

(2.36)

together with a perfect pairing S′′ : G ⊗ G′ → DX , such that

S ◦ (π ⊗ idF ) = S′′ ◦ (idG ⊗ ρ) : G ⊗ F → DX ,
S′ ◦ (ρ′ ⊗ idF ′) = S′′ ◦ (idG ⊗ π′) : G ⊗ F ′ → DX ,

(2.37)

and the morphism of mapping cones cone(ρ′)→ cone(ρ) induced (non-canonically)
by (π, π′) is an isomorphism in Db

c(X).

Proposition 2.5.18. The self-dual complex (F , S)⊕(F ,−S) is directly cobor-
dant to 0.

Proof. Considering in the diagram (2.36) F := 0, (G, S) = (G′, S′) := (F , S),
(F ′, S′) := (F , S) ⊕ (F ,−S), together with ρ′ := (id, id) and π′ := (id,−id)
the proposition holds.

Proposition 2.5.19. The self-dual complex (F , S) is directly cobordant to the
self-dual complex (pH0(F), pH0(F)(S)).

Proof. Notice that pH0(F)(S) is a perfect pairing induced by S, since pH0

commutes with the Borel-Moore-Verdier duality functor D. We have the fol-
lowing commutative diagram

pτ≤0F F

pH0(F) pτ≥0F
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and a perfect pairing S′′ : pτ≤0F⊗pτ≥0F → DX induced by the perfect pairing
S, and the proposition is satisfied.

Remark 2.5.20. Let (F , S) be a self-dual complex. For a proper morphism
f : X → Y , the induced pairing by

Tr ◦Rf∗(S) : Rf∗F ⊗Rf∗F → DY

is also a perfect pairing by Verdier duality (see Theorem 2.3.5), where the
morphism Tr: Rf!f

! → id is the trace morphism defined by adjuntion.

Definition 2.5.21. Let (F , S), (F ′, S′) be two self-dual complexes. We say
that (F , S) is (directly) cobordant to (F ′, S′) if there are (Fi, Si), for i =
1, . . . , r, such that (F0, S0) = (F , S), (Fr, Sr) = (F ′, S′), and (Fi−1, Si−1) is
directly cobordant to (Fi, Si) for any 1 ≤ i ≤ r.

The condition of directly cobordism is reflexive and symmetric. By Defi-
nition 2.5.21, this relation is an equivalence relation.

The symmetric (directly) cobordism group ΩK+(X) is defined to be the
quotient of the monoid of isomorphism classes of symmetric self-dual com-
plexes on X which is divided by this cobordism relation. The skew-symmetric
(directly) cobordism group ΩK−(X) is defined in the same way replacing sym-
metric by skew-symmetric. The sum in ΩK+(X) and ΩK−(X) is given by the
direct sum. Hence, they are abelian groups, since

[(F , S)] + [(F ,−S)] = 0.

We define ΩK(X) := ΩK+(X)⊕ ΩK−(X).

Proposition 2.5.22. If (F1, α1) is elementary cobordant to (F2, α2), then
there are perfect parings S1 and S2 associated to α1 and α2, respectively, such
that (F1, S1) is directly cobordant to (F2, S2).

Proof. Since (F1, α1) and (F2, α2) are self-dual complexes, we have perfect
pairings

S1 : F1 ⊗F1 → DX and S2 : F2 ⊗F2 → DX .

In order to show that the pairs (F1, S1) and (F2, S2) are directly cobordant,
we consider the octahedral diagram (2.34) and the isomorphism of octahedral
diagrams α : (Oct)→ (RD(Oct)): We have a commutative diagram

H2 F2

F1 H1

ρ′

π π′

ρ

,

and an isomorphism β2 : H2 → D(H1), hence we have a perfect pairing

S′′ : H2 ⊗H1 → DX
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satisfying

S1 ◦ (π ⊗ idF1) = S′′ ◦ (idH2 ⊗ ρ) (2.38)

and

S2 ◦ (ρ′ ⊗ idF2) = S′′ ◦ (idH2 ⊗ π′). (2.39)

Indeed, by the isomorphism α : (Oct)→ (RD(Oct)) we have a commutative
diagram

H2 D(H1)

F1 D(F1)

β2

π D(ρ)

α1

then α1 ◦ π = D(ρ) ◦ β2. Considering the natural isomorphism

φ1 : Hom(H2 ⊗F1,DX) ' Hom(H2,D(F1)),

coming from adjuntion, we have

φ1(S1 ◦ (π ⊗ idF1)) = α1 ◦ π = D(ρ) ◦ β2 = φ1(S′′ ◦ (idH2 ⊗ ρ)).

Then, the desired equality (2.38) follows. Similarly for (2.39). Furthermore,
we have the morphism of distinguished triangles

G1 H2 F2 s

G1 F1 H1 s

ρ′

π π′

[1]

u ρ [1]

hence the morphism of mapping cones cone(ρ′)→ cone(ρ) is an isomorphism.

After giving the definition of cobordism group, we introduce the Cappell-
Shaneson L-transformation given in [15] (see also [14], [84]) defined from the
cobordism functor ΩK(−) to the homology functor H2∗(−;Q) for rational co-
efficients :

Theorem 2.5.23. There is a unique a natural transformation

L∗ : ΩK(−)→ H2∗(−;Q)

with distinguished element [(ICX , α)] ∈ ΩK(X) the cobordism class of the in-
tersection cohomology complex on X. If X is non-singular,

L∗([(KX [dimCX], α)]) = L∗(TX) ∩ [X].
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The Cappell-Shaneson L-class of the intersection cohomology complex ICX
satisfies L∗([(ICX , α)]) = L∗(X), where L∗(X) is the Goresky-MacPherson
homology L-class. See [14], [13], and [15] for more details.

The degree of L0([(F , α)]) is the signature of the induced pairing

H0(X;F)⊗K R×H0(X;F)⊗K R→ R,

by definition, the signature is 0 if the pairing is skew-symmetric. In particular,
for the intersection cohomology complex ICX , we have

σ(X) =

∫
X
L∗([(ICX , α)]),

this is the singular version of Hirzebruch’s signature theorem.

The Hirzebruch homology class

The Chern-Schwartz-MacPherson, the Baum-Fulton-MacPherson Todd, and
the Cappell-Shaneson transformations generalize for singular varieties the Chern
classes, Todd classes and Thom-Hirzebruch L-classes, respectively. As we
showed in Section 2.5.1, the Hirzebruch cohomology class unifies these three
characteristic classes of vector bundles. Nevertheless, it is natural to ask if
there is a characteristic homology class for singular varieties which unifies
the Chern-Schwartz-MacPherson, the Baum-Fulton-MacPherson Todd, and
the Cappell-Shaneson classes. MacPherson’s formulated this question in [52].
The difficulty of this problem is that the source covariant functors of these
three natural transformations are all different.

In [9], J. P. Brasselet, J. Schürmann, and S. Yokura answered MacPher-
son’s question. They defined a Hodge-theoretical natural transformation, de-
pending on an indeterminate, from the relative Grothendieck functor of com-
plex algebraic varieties to the Borel-Moore homology functor with rational
coefficients.

Let X be a complex algebraic variety. E. Looijenga in [49] and F. Bittner
in [7] introduced the relative Grothendieck group of complex algebraic varieties
over X, denoted by K0(var/X).

The relative Grothendieck group K0(var/X) over X is the quotient of
the free abelian group of isomorphism classes of morphisms to X, denoted by
[Y → X], modulo the following additivity relation:

[Y → X] = [Z → X] + [Y \ Z → X] (2.40)

for Z ⊂ Y a closed subvariety of Y . For a morphism f : X ′ → X, the push-
forward

f∗ : K0(var/X ′)→ K0(var/X)

is defined by f∗([Y → X ′]) := [Y → X].
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J. P. Brasselet, J. Schürmann and S. Yokura in [9] proved the following
theorem:

Theorem 2.5.24. There is a unique natural transformation with respect to
proper maps,

Ty,∗ : K0(var/−)→ HBM
2∗ (−;Q)[y] (2.41)

such that, for X non-singular complex algebraic variety,

Ty,∗([X → X]) = T ∗y (TX) ∩ [X],

that is, Ty,∗([X → X]) of the class of the identity map of X recovers the
Hirzebruch cohomology class of X.

Definition 2.5.25. The class Ty,∗(X) := Ty,∗([X → X]) is called the Hirze-
bruch homology class of X.

In [9], the authors showed that the Hirzebruch natural transformation
(2.41), unifies the Chern-Schwartz-MacPherson trasformation (for y = −1),
the Baum-Fulton-MacPherson Todd transformation (for y = 0), and the
Cappell-Shaneson L-transformation (for y = 1):

Theorem 2.5.26. For y = −1, there is a unique natural transformation

ε : K0(var/−)→ F (−) (2.42)

such that, for X non-singular, ε([X → X]) = 1X . And the following diagram
is commutative:

K0(var/−) F (−)

HBM
2∗ (−;Q)

ε

T−1,∗ cSM∗ ⊗Q (2.43)

For y = 0, there is a unique natural transformation

γ : K0(var/−)→ G0(−) (2.44)

such that, for X non-singular, γ([X → X]) = [OX ]. And the following dia-
gram is commutative:

K0(var/−) G0(−)

HBM
2∗ (−;Q)

γ

T0,∗ td∗ (2.45)
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For y = 1, there is a unique natural transformation

sd : K0(var/−)→ ΩK(−) (2.46)

such that, for X non-singular, sd([X → X]) = [KX [dimCX]]. And the follow-
ing diagram is commutative:

K0(var/−) ΩK(−)

H2∗(−;Q)

sd

T1,∗ L∗ (2.47)
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Chapter 3

A Lê-Greuel formula for the image

Milnor number

This chapter is devoted to my first work in the theory of singularities of map-
pings. We obtain a version of the Lê-Greuel formula for the image Milnor
number of corank 1 map-germs, which provides a recursive method to com-
pute it. Our proof is based on the Marar’s formula that computes the Euler
characteristic of the disentanglement of a corank 1 map-germ, in terms of the
Milnor numbers of the multiple point spaces associated with the germ. This
is a joint work with Prof. Juan José Nuño Ballesteros, [67].

The Lê-Greuel formula [34, 47] provides a recursive method to compute
the Milnor number of an isolated complete intersection singularity (ICIS).
Let (X, 0) be a d-dimensional ICIS defined as the zero locus of a map-germ
g : (Cn, 0) → (Cn−d, 0). The Milnor fibre Xs := g−1(s), for s a generic value
in Cn−d, has the homotopy type of a wedge of d-spheres, and the number of
such spheres is called the Milnor number µ(X, 0) of (X, 0). If d > 0, we can
consider p : Cn → C a generic linear projection, with H = p−1(0), such that
(X ∩H, 0) is a (d− 1)-dimensional ICIS. Then, the Lê-Greuel formula states:

µ(X, 0) + µ(X ∩H, 0) = dimC
On

(g) + J(g, p)
, (3.1)

where (g) is the ideal in On generated by the components of g, and J(g, p) is
the Jacobian ideal of (g, p), that is, the ideal generated by the maximal minors
of the Jacobian matrix. Note that Xs is smooth, and if p is generic enough,
then the restriction p|Xs : Xs → C is a Morse function, and the dimension
appearing in the right hand side of (3.1) is equal to the number of critical
points of p|Xs .

We prove the following version of the Lê-Greuel formula: Let f : (Cn, 0)→
(Cn+1, 0) be an A-finite corank 1 map-germ with n > 1. Let p : Cn+1 → C
be a generic linear form, then f can be seen as a 1-parameter unfolding of
another map-germ g : (Cn−1, 0) → (Cn, 0) which is the transverse slice of f
with respect to p, that is, g has image (X∩H, 0), where (X, 0) is the image of f
and H = p−1(0). The disentanglement Xs of a stable perturbation fs of f (see
Section 2.1.5) is not smooth, but it has a natural Whitney stratification given
by the stable types (see Section 2.1.4). If p is generic enough, the restriction
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p|Xs : Xs → C is a Morse function on each stratum. The Lê-Greuel type
formula for the image Milnor number states:

µI(f) + µI(g) = #Σ(p|Xs), (3.2)

where the right hand side of equation is the number of critical points of p|Xs
on all the strata of Xs. The case n = 1, we have

µI(f) +m0(f)− 1 = #Σ(p|Xs), (3.3)

where m0(f) is the multiplicity of the curve parametrized by f . This makes
sense, since µ(X, 0) = m0(X, 0)− 1 for a 0-dimensional ICIS (X, 0).

In Section 2.1.5, we introduced Mond’s conjecture (Conjecture 2.1.30)
which relates the image Milnor number with the Ae-codimension of an A-
finite map-germ. We feel that this Lê-Greuel type formula for the image
Milnor number could be useful to prove the conjecture. Indeed, it would be
enough to prove that the module which controls the number of critical points
of a generic linear function is Cohen-Macaulay and then, use an induction
argument on the dimension n, see [25] for details about Mond’s conjecture in
this direction.

3.1. Marar’s formula and multiple point spaces

Here we expose Marar’s formula [53] which relates the Euler characteristic of
the disentanglement associated to a stable perturbation of a corank 1 map-
germ with the corresponding multiple point spaces. We base on Section 2.1.6
for the Marar-Mond construction of the k-th multiple point spaces for corank
1 map-germs.

Definition 3.1.1. Let M be a Q-vector space upon which Sk acts. Then the
alternating part of M , denoted by AltkM , is defined to be

AltkM := {m ∈M : σ(m) = sign(σ)m, for all σ ∈ Sk}.

Given a topological space X on which Sk acts, the alternating Euler charac-
teristic is defined by

χalt(X) :=
∑
i

(−1)i dimQ Altk(Hi(X,Q)).

The following theorem is proved by V. Goryunov and D. Mond in [33, 2.6]
and it allows to compute the image Milnor number of f in terms of the k-th
multiple point spaces Dk(f) which are invariant under the action of the k-th
symmetric group Sk.
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Theorem 3.1.2. Let f : (Cn, 0) → (Cn+1, 0) be a corank 1 map-germ, fs be
a stable perturbation of f , for s 6= 0, and let Xs be the disentanglement of f .
Then,

Hn(Xs,Q) ∼=
n+1⊕
k=2

Altk(Hn−k+1(Dk(fs),Q)). (3.4)

By Theorem 2.1.28, the disentanglement Xs has the homotopy type of a
wedge of n-spheres, hence the image Milnor number µI(f) is the rank of the
homology group Hn(Xs,Q), that is,

µI(f) = dimQHn(Xs,Q). (3.5)

By Equation (3.4) and (3.5), then

µI(f) =
n+1∑
k=2

dimQ Altk(Hn−k+1(Dk(fs),Q)). (3.6)

By [46, Corollary 2.8], we can compute the alternating Euler characteristic
of Dk(fs) as follows: For each partition P = (r1, . . . , rs), we set

β(P) =
sign(P)∏
i αi!i

αi
,

where αi := #{j : rj = i} and sign(P) is the number (−1)k−
∑
i αi . Then,

χalt(Dk(fs)) =
∑
|P|=k

β(P)χ(Dk(fs,P)). (3.7)

By Theorem 2.1.32 and Corollary 2.1.35, the spaces Dk(fs) and Dk(fs,P)
are Milnor fibres of the ICIS Dk(f) and Dk(f,P), respectively. Then, they
have the homotopy type of a wedge of spheres of real dimension dimDk(f) =
n− k + 1 and dimDk(f,P), respectively. Thus,

dimQ Altk(Hn−k+1(Dk(fs),Q)) = (−1)n−k+1(χalt(Dk(fs))− 1), (3.8)

and
χ(Dk(fs,P)) = 1 + (−1)dimDk(f,P)µ(Dk(f,P)). (3.9)

Substituting (3.7), (3.8), and (3.9) in Equation (3.6), we obtain the following
version of Marar’s formula [53]:

µI(f) =
n+1∑
k=2

∑
|P|=k

(−1)n−k+1β(P)(1 + (−1)dimDk(f,P)µ(Dk(f,P))), (3.10)

where the coefficients β(P) = 0 when the sets Dk(f,P) are empty, for k =
2, . . . , n+ 1.
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3.2. Lê-Greuel type formula

Let f : (Cn, 0)→ (Cn+1, 0) be an A-finite corank 1 map-germ. Let p : Cn+1 →
C be a generic linear projection, such that H = p−1(0) is a generic hyperplane
through the origin in Cn+1. We can choose linear coordinates in Cn+1 such
that p(y1, . . . , yn+1) = y1. Then, we choose the coordinates in Cn in such a
way that f is written in the form

f(z, y1, . . . , yn−1) = (h1(z, y1, . . . , yn−1), h2(z, y1, . . . , yn−1), y1, . . . , yn−1),

for some holomorphic functions h1, h2. Notice that f can be seen as a 1-
parameter unfolding of the map-germ g : (Cn−1, 0)→ (Cn, 0) given by

g(z, y1, . . . , yn−2) = (h1(z, y1, . . . , yn−2, 0), h2(z, y1, . . . , yn−2, 0), y1, . . . , yn−2).

We say that g is the transverse slice of f with respect to the generic hyper-
plane H. If f has image (X, 0) in (Cn+1, 0), then the image of g in (Cn, 0) is
isomorphic to (X ∩H, 0).

Let fs be a stable perturbation of f , and Xs its disentanglement. Since
f has corank 1, Xs has a natural Whitney stratification given by the stable
types associated to fs (see Remark 2.1.20). Indeed, the strata in Xs can be
described as the following submanifolds in terms of the multiple point spaces
and the partitions:

Mk(fs,P) := εk(Dk(fs,P)0) \ εk+1(Dk+1(fs)),

where Dk(fs,P)0 is the set of generic points of Dk(fs,P), εk : Cn+k−1 → Cn+1

is the map (z1, . . . , zk, y) 7→ fs(z1, y) and P runs through all the partitions
of k with k = 2, . . . , n + 1. We can choose the generic linear projection
p : Cn+1 → C in such a way that the restriction to each stratum Mk(fs,P) is
a Morse function. In other words, such that the restriction p|Xs : Xs → C is a
Morse function on each stratum, this is one of the conditions of be a stratifed
Morse function in the sense of [32]. We will denote by #Σ(p|Xs) the number
of critical points on all the strata of Xs.

Theorem 3.2.1. Let f : (C, 0) → (C2, 0) be an injective map-germ. Let
p : C2 → C be a generic linear projection, then

#Σ(p|Xs) = µI(f) +m0(f)− 1,

where m0(f) is the multiplicity of f .

Proof. After a change of coordinates, we can assume that f has the form

f(t) = (tk, cmt
m + cm+1t

m+1 + . . . ),
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where k = m0(f), m > k and cm 6= 0. The stable perturbation fs is an
immersion with only transverse double points, then its disentaglement Xs has
only two strata: M2(fs, (1, 1)) is a 0-dimensional stratum composed by the
transverse double points, and M1(fs, (1)) is a 1-dimensional stratum given by
the smooth points of Xs. Notice that the number of double points of fs is
the delta invariant of the plane curve, δ(X, 0), which is equal to µI(f) by [65,
Theorem 2.3].

Let p : C2 → C be a generic linear projection, such that p|Xs is a Morse
function on each stratum. Then:

#Σ(p|Xs) = #M2(fs, (1, 1)) + #Σ(p|M1(fs,(1))) = µI(f) + #Σ(p|M1(fs,(1))).

Since fs is a local diffeomorphism on the stratum M1(fs, (1)), the number of
critical points of p|M1(fs,(1)) is equal to the number of critical points of p ◦ fs.
Notice that the points of M2(fs, (1, 1)) can be excluded by the genericity of
p. Assume that p(x, y) = Ax+By with A 6= 0. Then p ◦ fs is a morsification
of the function

p ◦ f(t) = Atk +B(cmt
m + cm+1t

m+1 + . . .)

The number of critical points of p◦fs is equal to µ(p◦f) = k−1 = m0(f)−1,
which proves the formula.

In order to prove the case for n > 1, we consider the following notation
introduced in [53] and [50], respectively: Let P be a partition of k, we denote
by ρP the mapping given by the composition of the mappings: the inclusion
Dk(fs,P) ↪→ Dk(fs), the projection Dk(fs)→ Us and the stable perturbation
fs.

Remark 3.2.2. Let P = (a1, . . . , ah) be a partition of k, with ai ≥ ai+1. If
y is a generic point of Dk(fs,P ′), where P ′ = (b1, . . . , bq), with bi ≥ bi+1 and

P < P ′ then #ρ−1
P (ρP ′(y)) is the coefficient of the monomial xb11 x

b2
2 . . . x

bq
q in

the polynomial
∏
i≥1(xai1 + xai2 + . . . xaiq ).

Lemma 3.2.3. Let hk be the k-th complete symmetric function in variables
x1, . . . , xq, i.e., hk is the sum of all monomials of degree k in the variables
x1, . . . , xq. Then

hk =
∑
P

1∏
i≥1 αi!i

αi

∏
i≥1

(xi1 + . . .+ xiq)
αi ,

where P runs through the set of all ordered partitions of k.

Theorem 3.2.4. Let f : (Cn, 0) → (Cn+1, 0) be an A-finite corank 1 map-
germ with n > 1. Let p : Cn+1 → C be a generic linear projection that defines
a transverse slice g : (Cn−1, 0)→ (Cn, 0). Then,

#Σ(p|Xs) = µI(f) + µI(g).
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Proof. By Marar’s formula (3.10):

µI(f) + µI(g) =

n+1∑
k=2

(−1)n−k+1
∑
|P|=k

β(P)(1 + (−1)dimDk(f,P)µ(Dk(f,P)))+

+
n∑
k=2

(−1)n−k
∑
|P|=k

β(P)(1 + (−1)dimDk(g,P)µ(Dk(g,P))).

If dimDk(f,P) > 0, then dimDk(f,P) = 1+dimDk(g,P), and if dimDk(f,P) =
0, then Dk(g,P) = ∅. Then, we can divide the formula into two parts, the first
one for partitions with dimDk(f,P) = 0, and the second one for partitions
with dimDk(f,P) > 0:

µI(f) + µI(g) =
n+1∑
k=2

(−1)n+k−1
∑
|P|=k

dimDk(f,P)=0

β(P)(1 + µ(Dk(f,P)))

+

n∑
k=2

(−1)n+k−1
∑
|P|=k

dimDk(f,P)>0

β(P)(−1)dimDk(f,P)(µ(Dk(f,P)) + µ(Dk(g,P)))

If dimDk(f,P) = 0, the Milnor number of Dk(f,P) is

µ(Dk(f,P)) = deg(Dk(f,P))− 1,

where deg is the degree of the map-germ that defines the 0-dimensional ICIS
Dk(f,P). Notice that deg(Dk(f,P)) can be seen as the number of critical
points of p̃|Dk(fs,P).

Choosing coordinates such that p(y1, . . . , yn+1) = y1, we denote by p̃ :
Cn+k−1 → C the projection onto the first coordinate. Then:

Dk(g,P) = Dk(f,P) ∩ p̃−1(0).

By the Lê-Greuel formula for ICIS [34, 47],

µ(Dk(f,P)) + µ(Dk(g,P)) = #Σ(p̃|Dk(fs,P)).

It is easy to check that (−1)dimDk(f)sign(P)(−1)dimDk(f,P) = 1 for any
partition P. Thus, we get:

µI(f) + µI(g) =
n+1∑
k=2

∑
|P|=k

#Σ(p̃|Dk(fs,P))

γ(P)
,

where γ(P) =
∏
i αi!i

αi .
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Let P be a partition of k, if |P ′| = k and P ′ ≥ P then any critical point of
p̃|Dk(fs,P ′) is a critical point of p̃|Dk(fs,P). This implies

#Σ(p̃|Dk(fs,P)) =
∑
|P ′|=k
P ′≥P

α(P,P ′)#Σ(p̃|Dk(fs,P ′)0),

where α(P,P ′) is defined by

α(P,P ′) :=
#ρ−1
P (ρP ′(y))

#ρ−1
P ′ (ρP ′(y))

for a generic point y in Dk(fs,P ′). We can see α(P,P ′) as the number of
times that a generic point of Dk(fs,P ′) appears repeated in Dk(fs,P). By
Remark 3.2.2 and Lemma 3.2.3, we have

µI(f) + µI(g) =
n+1∑
k=2

∑
|P|=k

#Σ(p̃|Dk(fs,P))

γ(P)

=
n+1∑
k=2

∑
|P|=k

∑
|P ′|=k
P ′≥P

α(P,P ′)
γ(P)

#Σ(p̃|Dk(fs,P ′)0)

=

n+1∑
k=2

∑
|P ′|=k

∑
|P|=k
P≤P ′

#ρ−1
P (ρP ′(y))

γ(P)

 #Σ(p̃|Dk(fs,P ′)0)

#ρ−1
P ′ (ρP ′(y))

=
n+1∑
k=2

∑
|P ′|=k

#Σ(p̃|Dk(fs,P ′)0)

#ρ−1
P ′ (ρP ′(y))

=
n+1∑
k=2

∑
|P ′|=k

#Σ(p|Mk(fs,P ′)),

which is nothing but the number of critical points of p|Xs .

3.3. Examples

In this section, we give two examples to illustrate the formulas obtained in
Theorem 3.2.1 and Theorem 3.2.4. Moreover, we explain the procedure fol-
lowed for n > 1 for computing examples.

Example 3.3.1. (The singular plane curve E6) Consider the singular plane
curve E6, given by the parameterization

f(z) = (z3, z4)
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and let

fs(z) = (z3 + sz, z4 +
5

4
sz2)

be a stable perturbation of f , for s 6= 0.

Figure 3.1: The curve E6 and its stable perturbation for fixed s < 0

Let M2(fs, (1, 1)) be the 0-dimensional stratum of Xs = Im(fs). It is
composed by three points, they correspond to three transverse double points.
Let M1(fs, (1)) be the 1-dimensional stratum. If we compose fs with p(z, u) =
z there are two critical points in a neighborhood of the origin, then

#
∑

p|Xs = 5.

p

Figure 3.2: Critical points in Xs

Now, since the multiplicity of f ism0(f) = 3, and the image Milnor number
of f is µI(f) = 3,

µI(f) +m0(f)− 1 = 5

as predicted by the formula.

Now, we explain the technique for the case of n > 1. Let f : (Cn, 0) →
(Cn+1, 0) be an A-finite corank 1 map-germ written in prenormal form

f(z, y) = (h1(z, y), h2(z, y), y)

with z ∈ C, and y ∈ Cn−1.

Consider fs a stable perturbation of f , and its image Xs. First, we calcu-
late the number of critical points of the restriction of p to Xs, for the generic
linear projection p(y1, . . . , yn+1) = y1. We divide the image set Xs in strata
of different dimensions given by stable types, which correspond to the sets
Mk(fs,P). The n-dimensional stratum, M1(fs, (1)), is composed of the regu-
lar part of fs. Then, the restriction p|M1(fs) has not critical points.
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The (n − 1)-dimensional stratum is composed of M2(fs, (1, 1)). In order
to obtain the critical points, we will work with the inverse image of the map
εk : Cn+k−1 → Cn+1, given by (z1, . . . , zk, y) 7→ fs(z1, y) for k = 2, that is,
D2(fs, (1, 1)) = D2(fs). The double point space D2(fs) is a subset of Cn+1,
but we take a projection of D2(fs) in the first n variables. We denote by D(fs)
the projection of the double point space in Cn. The double point space D(fs)
is a hypersurface in Cn given by the resultant of Ps and Qs with respect to
z2, where

Ps =
h1,s(z2, y)− h1,s(z1, y)

z2 − z1

and

Qs =
h2,s(z2, y)− h2,s(z1, y)

z2 − z1
.

This gives the defining equation of D(fs), denoted by λs(x, z) = 0.

To compute the critical points of the set D(fs), we take the linear projec-
tion p̃(z, y1, . . . , yn−1) = yn−1. Note that the hypersuface D(fs) also contains
the critical points of the other k-dimensional strata, with k < n − 1. Then,
it will be enough to compute critical points here, in order to obtain all the
critical points.

We have that (z, y1, . . . , yn−1) is a critical point of p̃|D(fs)
if λs(z, y) = 0

and J(λs, p̃)(z, y) = 0, where J(λs, p̃) is the Jacobian determinant of λ and p̃.

If a critical point of p̃|D(fs)
corresponds to an m-multiple point, then we

will have m critical points in D(fs) for each one in the image of fs. Thus,
once the critical points of each type are obtained, we have to divide by the
multiplicity of the point. In this way, we obtain the number of critical points
of p in the image of fs. Then, we will compute separately the image Milnor
numbers of f and g in order to check the formulas.

Example 3.3.2. (The germ F4 in C3) Let

f(z, y) = (z2, z5 + y3z, y)

be the germ F4, and let

fs(z, y) = (z2, z5 + ysz3 + (y3 − 5ys− s)z, y)

be a stable perturbation of f , for fixed s 6= 0. By [55], f is a 1-parameter
unfolding of the plane curve A4, that is

g(z) = (z2, z5),

indeed g is the transverse slice of f .

Let M3(fs, (1, 1, 1))∪M2(fs, (2)) be the 0-dimensional strata of Xs. In our
case, there are not triple points and there are three cross-caps in M2(fs, (2)).
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Figure 3.3: The surface F4 and its stabe perturbation for a fixed s > 0

Let M2(fs, (1, 1)) be the 1-dimensional stratum of Xs. Let D2(fs) be the
double point curve in C3 and, projecting in the first two coordinates, we have
the double point curve in C2, denoted by D(fs).

We compute the resultant of Ps and Qs respect to z2, where Ps and Qs are
the divided differences. The double point curve of fs in C2 is the plane curve

λs(z, y) = −s− 5sy + y3 + syz2 + z4.

The critical points of the restriction p|D(fs) are given by λs(z0, y0) = 0 and
J(λs, p̃)(z0, y0) = 0, where p̃(z, y) = y.

~

λs

p

Figure 3.4: Cusps and tacnodes in the double point curve

Nine critical points are obtained. Three of these points are cusps in gy,s
which correspond to the three cross-caps of fs. Then, the other six critical
points in p̃|λs(z0,y0)=0

correspond to three tacnodes in gy,s which are represented

in the double point curve when a vertical line is tangent at two points of D(fs).
So, each two of these critical points in λs correspond to one tacnode of gy,s in
M2(fs, (1, 1)). Note that in the Fig. 3.4 there are only two tacnodes, that is
because the other is a complex tacnode.

Finally, in the 2-dimensional stratum M1(fs, (1)) there are not critical
points. So, the number of critical points in Xs is #Σp|Xs = 6, three cusps,
three tacnodes and zero triple points. Then,

#Σp|Xs = C + J + T
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where C, J, T are the numbers of cusps, tacnodes and triple points of gy,s,
respectively. By [55], the image Milnor number of f is

µI(f) = C + J + T − δ(g).

Since g is a plane curve, we have that µI(g) = δ(g) (see [65]). Then,

#Σp|Xs = C + J + T = µI(f) + µI(g).

71



Chapter 3. Image Milnor number formulas

72



Chapter 4

Image Milnor number for weighted-

homogeneous map-germs

This chapter is based on my second work which combines the theory of singu-
larities of mappings with the theory of characteristic classes of singular spaces.
We obtain two formulas (for n = 4 and 5) for the image Milnor number of
weighted-homogeneous map-germs from (Cn, 0) to (Cn+1, 0) in terms of the
weigths and the degrees associated to the mapping. This work is in collabo-
ration with Prof. Guillermo Peñafort Sanchis [70].

In Section 2.1.1, we show that a map-germ is stable if its A-class does
not change after a small perturbation, and it is A-finite if stability fails at
most on an isolated point. Some common invariants associated to A-finite
map-germs are the 0-stable invariants, the Ae-codimension and the image
Milnor number µI . The 0-stable invariants count the number of appearances of
particular stable singularity types, the Ae-codimension measures the number
of parameters of a versal unfolding and µI counts the rank in the middle
dimension of the homology of the image of a stable perturbation.

All these invariants are hard to compute directly from the definition, but
many of them can be computed as dimensions of suitable vector spaces. This
applies for many of the 0-stable invariants and for the Ae-codimension (see
Section 4.4), but not so far for µI . This work is devoted to establish formulas
of a different nature for µI in the case of weighted-homogeneous map-germs,
extending results of T. Ohmoto and D. Mond. Apart from being interesting
on their own, the formulas for µI bring us closer to the proof of Mond’s
conjecture, see Conjecture 2.1.30, which claims that Ae-codim ≤ µI , with
equality in the case of weighted-homogeneous map-germs. Thanks to results
from [25], it suffices to check the statement of the conjecture for a family
of finitely determined map-germs with unbound multiplicity. Given such a
family, one can compute its Ae-codimension via the already known formula,
the only part missing is the µI computation. It is worth mentioning that
the possibility of finding a formula that computes µI as the dimension of a
vector space prior to proving Mond’s conjecture is unlikely. This is because
there is already a candidate for such a formula found in [25] but, as explained
there, proving that it actually computes µI is equivalent to proving Mond’s
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conjecture.

T. Ohmoto in [69] has adapted these techniques to show the existence
of formulas computing the 0-stable invariants and the image Milnor number,
for weighted-homogenenous map-germs, for n ≤ 5, in terms of weights and
degrees. The formulas are conjectured to exist for arbitrary n (see [44, 45, 69]),
while the expressions for 0-stable invariants follow easily from their Thom
polynomials, the image Milnor number formulas are harder to obtain.

The µI formulas predicted by T. Ohmoto in [69] are rational functions
with known denominator, whose numerator is obtained from the n-th degree
truncation of the Segre-MacPherson Thom polynomial tpSM(αimage) series (see
Section 4.2). Adapting R. Rimányi’s restriction method [72] which allows to
compute Thom polynomials, T. Ohmoto determined tpSM(αimage) up to degree
three, recovering the µI formula for n = 2 due to D. Mond [63], and giving
the formula for n = 3.

The series tpSM(αimage) has coefficients bα ∈ Q and variables s0 and ci.
If F : (Cn, 0) → (Cn+1, 0) is a weighted-homogeneous mapping with grading
(w, d), then the image Milnor number µI(F ) depends on the evaluation on
certain functions s0(w, d), ci(w, d) of the n-th truncation of tpSM(αimage). Our
goal is to find the bα up to degree n in the followging way: For fixed F ,
we compute µI(F ) with the software Singular, based on results in [25]. In
Section 4.2, we show that using the value of µI(F ), and the weights and
degrees (w, d) of F , one can find relations between the coefficients bα. Sampling
enough map-germs F , one can determine the desired bα (see Section 4.2).
Notice that this interpolative method does not involve the characteristic classes
construction of T. Ohmoto’s approach. We recover the formulas for n = 2, 3,
and obtain the rest of the cases, that is, for n = 4 and 5.

The first steps of the process are easy, consisting only on sampling sin-
gularities found in the literature. Indeed, a surprisingly big portion of the
interpolation can be completed just by sampling different gradings of stable
map-germs. The challenge starts once the information coming from known
singularities has been exhausted. On one hand, too simple mappings do not
give new information about the bα (for example, the case of n = 4 requires
sampling at least one map-germ with quintuple points, while the case of n = 5
requires considering no less than three map-germs of corank two). On the
other hand, degenerate candidates can be too complicated to compute their
µI , or to check A-finiteness. The difficulty of this work strives on navigating
between these two extremes. In a series of remarks, we emphasize on the key
strategies that have made our interpolative approach successful.

4.1. Formulas for µI and #η

In this section we list the formulas for the image Milnor number µI and 0-
stable invariants #η of an A-finite weighted-homogeneous germ F : (Cn, 0)→
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(Cn+1, 0), for n = 4 and 5 (see Definition 2.1.29). The expressions depend on
some coefficients ck,n and s0,n of Chern and Landweber-Novikov classes associ-
ated to F (and not on the classes themselves). For the shake of completeness,
these classes are introduced briefly in Section 4.2, the proofs being found in
subsequent sections.

Image Milnor number for n = 4 and 5

T. Ohmoto has shown that, for weighted-homogeneous map-germs, the image
Milnor number µI can be expressed in terms of the weights and degrees for
n ≤ 5. The restriction n ≤ 5 comes from what follows: certain results are
only known for Morin singularities, that is, for stable corank 1 map-germs. In
dimensions n ≤ 5, all stable germs have corank 1. This suggests that Ohmoto’s
work (and also the methods of the present paper) should work for corank 1
singularities of higher dimensions.

The µI expression for n = 2 was obtained by D. Mond in [63] with a
different approach. T. Ohmoto in [69] recovers the formula for n = 2 and
obtains the one for n = 3. The following theorem, whose proof will be given
in Section 4.3, includes the two remaining cases.

Theorem 4.1.1. Let F : (Cn, 0) → (Cn+1, 0) be a weighted-homogeneous A-
finite map-germ with weights w = (w1, . . . , wn) and degrees d = (d0, . . . , dn).
If n = 4, then

µI(F ) =
1

σ4

( 1

2!
(−s0 + c1)σ3 +

1

3!
(s2

0 − c2
1 − c2)σ2

+
1

4!
(−s3

0 − 2s2
0c1 + s0c

2
1 + 16s0c2 + 2c3

1 − 10c1c2)σ1

+
1

5!
(s4

0 + 5s3
0c1 + 5s2

0c
2
1 − 50s2

0c2 − 5s0c
3
1 − 20s0c1c2

+ 60s0c3 − 6c4
1 + 34c2

1c2 − 64c1c3 + 108c2
2 + 4c4)

)
.

If n = 5, then

µI(F ) = − 1

σ5

( 1

2!
(−s0 + c1)σ4 +

1

3!
(s2

0 − c2
1 − c2)σ3 +

+
1

4!
(−s3

0 − 2s2
0c1 + s0c

2
1 + 16s0c2 + 2c3

1 − 10c1c2)σ2

+
1

5!
(s4

0 + 5s3
0c1 + 5s2

0c
2
1 − 50s2

0c2 − 5s0c
3
1 − 20s0c1c2

+ 60s0c3 − 6c4
1 + 34c2

1c2 − 64c1c3 + 108c2
2 + 4c4)σ1

+
1

6!
(−s5

0 − 9s4
0c1 − 25s3

0c
2
1 + 110s3

0c2 − 15s2
0c

3
1 + 270s2

0c1c2

− 240s2
0c3 + 26s0c

4
1 + 16s0c

2
1c2 + 24s0c1c3 − 1138s0c

2
2 + 336s0c4

+ 24c5
1 − 156c3

1c2 + 276c2
1c3 + 108c1c

2
2 − 396c1c4 + 600c2c3)

)
.
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The coefficients σk, ck and s0 are determined by w and d as follows: For
fixed n, set

σk = σk,n =
∑

1≤j1<...<jk≤n
wj1 · . . . · wjk ,

for k = 1, . . . , n. To obtain the ck = ck,n, we set

δk = δk,n =
∑

0≤i1<...<ik≤n
di1 · . . . · dik ,

for k = 1, . . . , n+ 1. Then,

ck,n =
∑

0≤i≤k
(−1)k−iδi

∑
|α|=k−i

wα,

with the usual multi-index notation for α. Finally, s0 = s0,n is the rational
function

s0 =
δn+1

σn
.

Zero-stable invariants

For any fixed n, certain stable multi-germs types appear, at most, on isolated
points in the target of the stable multi-germs F : (Cn, S)→ (Cn+1, 0). Such a
stable type η is called a 0-stable type for the dimensions (n, n+ 1). Whenever
a map-germ F is stabilised, the target of the stable perturbation exhibits a
certain number of multi-germs of type η. If F is A-finite, this number is
independent of the chosen stabilisation and it is A-invariant. This number
is called the 0-stable invariant #η(F ) (see Section 2.1.4). We write #η for
#η(F ) if there is no risk of confusion.

As in the case of the image Milnor number, T. Ohmoto shows the existence
of expressions for the 0-stable invariants of weighted-homogeneous map-germs
in terms of σn, s0 and ck, for n ≤ 5. By [69, Theorem 5.3], the 0-invariants
admit the expression

#η(F ) =
[tp(η)]n

deg1(η)w1 . . . wn
.

The coefficient deg1(η) is determined by the repetitions of branches defining η
(see Section 2.1.4) and [ω]n stands for the coefficient of the n-th degree term
of ω. The only non-trivial task is to obtain the Thom polynomial tp(η) in the
ck and s0, which can be acomplished based on works R. Rimányi [72, 73] and
M. E. Kazarian [44, 45].

For completeness, we start with the formulas for n ≤ 3, due to Ohmoto.

We use the following notation: the Ai represent the Morin singularities,
that is, A0 is a regular map, A1 a cross-cap, and so on. The product of Ai
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4.1. Formulas for µI and #η

stands for a stable multi-germ whose branches are the factors in the product.
For instance, A2

0A1 consists of two regular branches and a cross-cap.
The only 0-stable invariant for n = 1 is the number of double points:

#A2
0 =

s0 − c1

2!σ1
.

For n = 2, the number of triple points and cross-caps are:

#A3
0 =

s2
0 − 3s0c1 + 2c2

1 + 2c2

3!σ2
,

#A1 =
c2

σ2
.

Finally, for n = 3 the invariants are the number of quadruple points and
number of transverse incidences of a curve of cross-caps with a regular branch:

#A4
0 =

1

4!σ3
(s3

0 − 6s2
0c1 + 11s0c

2
1 + 8s0c2 − 6c3

1 − 18c1c2 − 12c3),

#A0A1 =
1

σ3
(s0c2 − 2c1c2 − 2c3).

The invariants for n = 4, are the number of quintuple points, the inci-
dence of two regular branches and surface of cross-caps, and the number of A2

singularities:

#A5
0 =

1

5!σ4
(s4

0 − 10s3
0c1 + 35s2

0c
2
1 + 20s2

0c2 − 50s0c
3
1 − 110s0c1c2

− 60s0c3 + 24c4
1 + 144c2

1c2 + 216c1c3 + 48c2
2 + 144c4)

#A2
0A1 =

1

2!σ4

(
s2

0c2 − 5s0c1c2 − 4s0c3 + 6c2
1c2 + 14c1c3 + 4c2

2 + 12c4

)
#A2 =

1

σ4

(
c1c3 + c2

2 + 2c4

)
.

The Thom polynomials which lead to the above expressions are obtained by
dividing Kazarian’s polynomials mη by a certain correction coefficient, see [44,
2, 5] for details.

For n = 5, the invariants are the incidence of three regular branches and a
3-space of cross-caps, the incidence a regular branch with a curve of A2, and
the incidence of two three-spaces of cross-caps:

#A6
0 =

1

6!σ5

(
s5

0 − 15s4
0c1 + 5s3

0(17c2
1 + 8c2)− 15s2

0(15c3
1 + 26c1c2 + 12c3)

+ 2s0(137c4
1 + 607c2

1c2 + 164c2
2 + 738c1c3 + 432c4)

− 120(c5
1 + 10c3

1c2 + 10c1c
2
2 + 25c2

1c3 + 12c2c3 + 38c1c4 + 24c5)
)
,
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#A3
0A1 =

1

3!σ5

(
(s3

0c2 − 3s2
0(3c1c2 + 2c3) + 2s0(13c2

1c2 + 7c2
2 + 24c1c3

+ 18c4)− 24(c3
1c2 + 4c2

1c3 + 3c2c3 + 2c1(c2
2 + 4c4) + 6c5)

)
,

#A0A2 =
1

σ5

(
s0(c2

2 + c1c3 + 2c4)− 3(c2
1c3 + 2c2c3 + c1(c2

2 + 4c4) + 4c5)
)
,

#A2
1 =

1

σ5
(s0c

2
2 − 2c2

1c3 − 4c1c
2
2 − 8c2c3 − 10c1c4 − 12c5).

In this case, the polynomials mη cannot be found in Kazarian’s paper; they are
obtained by putting together Theorem 5.3 and the corresponding ingredients
from the lists about residual classes Rη and classes nη from [44].

Relations between 0-stable invariants in corank 1

To better relate the corank with the weights and degrees, we restrict ourselves
to map-germs in prenormal form. For a given A-class of rank r, we only
consider the representatives F : (Cn × Cr, 0)→ (Cn+1 × Cr, 0) of the form

(z, y) 7→ (fy(z), y), y ∈ Cr.

Consider the germ

fy1,...,yk : (Cn+k, 0)→ (Cn+1+k, 0),

obtained by making the parameters yk+1, . . . , yr equal to zero. To such an F ,
and a 0-stable type η : Cn+k → Cn+1+k, we associate the number

#η = #η(fy1,...,yk)

if fy1,...,yk is A-finite, and #η =∞ otherwise.

Observe that only the #η of stable types η : Cn+r → Cn+1+r are A-
invariants of F . The numbers #η for lower dimensional η are just numbers
that come in handy.

Proposition 4.1.2. Let F : (Cn, 0) → (Cn+1, 0) be an A-finite weighted-
homogeneous map-germ of corank 1 in prenormal form, with 2 ≤ n ≤ 5.
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4.1. Formulas for µI and #η

If fy1,...,yn−2 is A-finite, then

#An+1
0 (F ) = #An0 (fy1,...,yn−2)

(d0 − nw1)(d1 − nw1)

nw1wn

#An−2
0 A1(F ) = #An−3

0 A1(fy1,...,yn−2)
(d0 − (n− 1)w1)(d1 − (n− 1)w1)

(n− 2)w1wn

#An−2
0 A1(F ) = #An0 (fy1,...,yn−2)

n(n− 1)w1

wn

#An−4
0 A2(F ) = #An−3

0 A1(fy1,...,yn−2)
(n− 3)w1

wn
#A0A2(F ) = 2#A2

1(F ).

Proof. The proof is a case by case calculation. We ilustrate the procedure but
omit the actual computations as they are simple but too long to be included
here. Each formula is obtained as follows: Take the corresponding expressions
for #η(F ) and #η′(fy1,...,yn−2) in terms of ci,n, s0,n and ci,n−1, s0,n−1, respec-
tively. Now compare the result of expanding the previous expressions in terms
of weights and degrees taking into account the following two things: since F
is a corank 1 mapping, the grading can be taken of the form (w1, . . . , wn) and
(d0, d1, w2, . . . , wn). Since f0 is a slice of F , its grading is (w1, . . . , wn−1) and
(d0, d1, w2, . . . , wn−1). The formula #A0A2(F ) = 2#A2

1(F ) depends only on
the observation about the grading of corank 1 map-germs.

The following diagram indicates when the vanishing of an invariant implies
the vanishing of another.

A2
0

//
__

��

A3
0

//
aa

!!

A4
0

//
cc

##

A5
0

//
cc

##

A6
0

A1
// A0A1

// A2
0A1

//
cc

##

A3
0A1

A2

##

cc

// A0A2

A2
1

��

OO

(4.1)

For instance, #A2
0(f0) = 0 implies #A3

0((fy, y)) = 0, but not the other way
around. As another example, for a map-germ F : (C5, 0) → (C6, 0) given by
F (z, y1, . . . , y4) = (fy1,...,y4(z), y1, . . . , y4), the following things are equivalent:

#A0A2(F ) = 0,

#A2
0A1(fy1,y2,y3 , y1, y2, y3) = 0,

#A4
0(fy1,y2 , y1, y2)) = 0.
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Chapter 4. Image Milnor number formulas

Remark 4.1.3. These relations do not hold in higher corank, as the sin-
gularities P̂1 and N̂1 from Table 4.5 show. One checks that #A2

1(P̂1) = 2,
#A0A2(P̂1) = 6, #A2

1(N̂1) = 40 and #A0A2(N̂1) = 84.

Remark 4.1.4. The relations between the invariants #η(F ) and #η(fy1,...,yn−2)
are found by brute force and only for certain cases. However, the expressions
for ck,n and s0,n can be studied in greater generality.

If F is a weighted-homogeneous 1-parameter unfolding, and hence dn = wn,
from the geometric construction giving rise to the functions σ, s0 and ck follows

ck,n(w1, . . . , wn, d0, . . . , dn−1, wn) = ck,n−1(w1, . . . , wn−1, d0, . . . , dn−1),

for all k, and that

s0,n(w1, . . . , wn, d0, . . . , dn−1, wn) = s0,n−1(w1, . . . , wn−1, d0, . . . , dn−1).

In the case general case of mappings with wn 6= dn, the previous equalities
suggest the existence of a function q(w, d) in variables w and d satisfying

ck,n(w, d) = ck,n−1(w1, . . . , wn−1, d0, . . . , dn−1) + (dn − wn)q(w, d).

Indeed, a little combinatorics shows

ck,n = ck,n−1 + (dn − wn)

k−1∑
i=0

(−1)iwinck−i−1,n−1

and

s0,n = s0,n−1
dn
wn

.

4.2. Image Milnor number formulas

Here, we give some theoretical background appearing in T. Ohmoto’s work
[69] and explain our methods used to prove formulas in Theorem 4.1.1. The
method is illustrated in detail for n = 2 and briefly for n = 3.

Characteristic classes and image Milnor number

Our interpolation method is based entirely on Proposition 4.2.1, which is an
immediate consequence of Ohmoto’s Theorem 4.2.2. Notice that Proposition
4.2.1 expresses µI in terms of weights and degrees, exclusively. This allows for
the interpolation method to be applied blindly, independently of its origins in
the theory of characteristic classes.

For α = (α0, . . . , αn) we let ‖α‖ = α0 +
∑n

k=1 kαk and cα = sα0
0 cα1

1 . . . cαnn .
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4.2. Image Milnor number formulas

Proposition 4.2.1. There are unique bα ∈ Q, with 0 6= α ∈ N6, such that any
A-finite weighted-homogeneous map-germ F : (Cn, 0)→ (Cn+1, 0), with n ≤ 5,
satisfies

µI(F ) = (−1)n
∑
‖α‖≤n bαc

ασn−‖α‖

σn
. (4.2)

The remaining of the section is devoted to explaining how Proposition
4.2.1 derives immediately from the following result proved by T. Ohmoto in
[69, Theorem 6.20]:

Theorem 4.2.2 (Ohmoto’s Theorem). Let F : (Cn, 0)→ (Cn+1, 0) be A-finite
and n ≤ 5. The Euler characteristic of the image of a stable perturbation Fy
of F is

χ(Im(Fy)) =
[c(E0) · tpSM(αimage)(c(F ))]n

[cn(E0)]n
. (4.3)

Observe that the left hand side of Equation (4.2) is

µI(F ) = (−1)n(χ(Im(Fy))− 1).

Now we proceed to describe the ingredients in the right hand side of Formula
(4.3).

Let ` be the dual tautological line bundle over P∞. Associated to the
grading (w, d), there are the two bundles

E0 := `⊗w1 ⊕ · · · ⊕ `⊗wn and E1 := `⊗d0 ⊕ · · · ⊕ `⊗dn .

The cohomology of P∞ is isomorphic to the polynomial ring Z[a] and,
under this isomorphism, the total Chern class of ` is c(`) = 1 + a. From this
we obtain the total Chern classes

c(E0) =
n∏
j=1

(1 + wja) and c(E1) =
n∏
i=0

(1 + dia).

One can construct a universal map F̃ : E0 → E1 whose restriction to each
fiber is A-equivalent to F [69]. By abuse of notation, one writes c(F ) for the
total chern class c(F̃ ) = c(F̃ ∗TE1 − TE0) of the virtual normal bundle. One
checks that

c(F ) =

∏n
i=0(1 + dia)∏n
j=1(1 + wja)

.

The functions σj(w, d), δi(w, d) and ck(w, d) from Section 4.1 are precisely the
coefficients in the graded decompositions

c(E0) = 1 + σ1a+ · · ·+ σna
n,

c(E1) = 1 + δ1a+ · · ·+ δn+1a
n+1,

c(F ) = 1 + c1a+ c2a
2 + c3a

3 + . . . .
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Chapter 4. Image Milnor number formulas

The term tpSM(αimage) is the Segre-MacPherson Thom polynomial of the
constructible function αimage. This is an extension of the classical Thom poly-
nomial in the following sense:

The classical Thom polynomial [80] of a stable mono-singularity type
η : (Cn, 0) → (Cn+k, 0) is the unique polynomial tp(η) ∈ Z[c1, c2, . . . ] such
that, for any stable map f : Mm → Nm+k, the following holds

Dual[η(f)] = tp(η)(c(f)).

The left hand side of the equality is the Poincaré dual of the fundamental class
of the closure of the singularities of type η exhibited by f . The right hand
side is the evaluation of tp(η) in the total Chern class c(f) := c(f∗TN −TM)
of the virtual normal bundle of f .

For multi-singularity types η, the definition was extended by M. E. Kazar-
ian [44] to Thom polynomials tp(η) depending on further variables sI . They

satisfy the analogous property Dual[η(f)] = tp(η)(sI(f), c(f)). Here, the class
sI(f) is the Landweber-Novikov class of f , it is defined by

sI(f) = f∗f∗(c1(f)i1c2(f)i2 . . . ),

for the multi-index I = (i1i2 . . . ). The 0-th Landweber-Novikov class of f is

s0(f) = f∗f∗(1) =
ctop(f

∗TN)

ctop(TM)
.

For simplicity, we consider the evaluation of tp(η) in the Chern classes ci(f)
and the class s0(f). In particular, the universal map above gives

s0(F ) =
cn+1(E1)

cn(E0)
= s0a.

The Segre-MacPherson Thom polynomial tpSM(η) is the unique series in
s0, ci satisfying the following similar property [69]:

Dual (i∗s
SM(η(f),M)) = tpSM(η)(s0(f), c(f)),

where sSM(η(f),M) is the Segre-Schwartz-MacPherson class of the embedding

i : η(f) ↪→M (see Section 2.5.2).
The Segre-MacPherson Thom polynomial has the form

tpSM(η) = tp(η) + higher degree terms.

The definition of Segre-MacPherson Thom polynomials extends to certain con-
structible functions α, so that tpSM(1η) = tpSM(η). For f : M → N , there is
such a constructible function αimage, determined by 1f(M) = f∗(αimage).

Finally, [c(E0) · tpSM(αimage)(s0(F ), c(F ))]n stands for the n-th degree part
of the series c(E0) · tpSM(αimage)(s0(F ), c(F )) in the variable a (note that,
by abuse of notation, the term tpSM(αimage)(s0(F ), c(F )) appears in [69] as
tpSM(αimage)).

82



4.2. Image Milnor number formulas

How to obtain the µI formulas

We write the multi-indices α ∈ N6 of Proposition 4.2.1 only up to their last
non zero entry. For example, we write (0, 1) for α = (0, 1, 0, 0, 0, 0).

Our strategy is based on the following simple interpolation idea: pick
any A-finite map-germ F , with known image Milnor number. Every possible
weigths w and degrees d of F determine values σk, s0 and ck, and the formula
yields a linear equation in the variables bα. The data

τ(F ) := (w, d, µI(F ))

will be called a sample of F . The bα are determined after sampling singular-
ities as many times as the number of bα, provided that each sample gives an
equation which is independent from the preceding ones.

The initial cases are somehow trivial, because the literature contains enough
singularities to complete the interpolation. The difficulties arise in n ≥ 4, due
to the lack of A-finite map-germs with known µI . The key points of our inter-
polation strategy are contained in Remarks 4.2.3 and 4.2.4, Proposition 4.2.5
and 4.4.4.

Ohmoto’s formula for n = 2 (see [69, Example 6.21]) can be rewriten as

µI(F ) =
1

σ2

( 1

2!
(−s0 + c1)σ1 +

1

3!
(s2

0 − c2
1 − c2)

)
.

To recover the formula, we need to determine the six bα with ‖α‖ ≤ 2, hence
we must find six samples giving rise to independent equations. Again, all
maps will be chosen in prenormal form. Since the computations involved
often become hard, we want to sample the simplest singularities first.

We start in corank 0, that is, with d1 = w1 and d2 = w2. Since corank 0
map-germs are regular, we know µI(F ) = 0. Replacing d1 and d2 by w1 and
w2, the formula (4.2) reads

0 =
d0((b02 + b11 + b2)d0 + (b01 + b1)(w1 + w2))

w1w2
. (4.4)

The regular map
R : (z, y) 7→ (0, z, y)

admits samples τ1(R) = ((1, 1), (1, 1, 1), 0) and τ2(R) = ((1, 1), (2, 1, 1), 0). By
substitution, it follows

b02 + b11 + b2 = b01 + b1 = 0.

Remark 4.2.3. Different samples of a same singularity may give independent
equations. Observe the following:

1. this is exactly what happened with τ1(R) and τ2(R), and it will continue
to happen for all higher degrees.
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Chapter 4. Image Milnor number formulas

2. However, let (w, d) and (w′, d′) be two gradings of a map-germ F . If
(w′, d′) = λ(w, d), for λ ∈ Q, then the samples τ1(F ) = (w, d, µI(F ))
and τ2(F ) = (w′, d′, µI(F )) give rise to the same equation on bα. This
is because the coefficients of each bα in Formula (4.2) are homogeneous
rational functions of degree zero in the weights and degrees.

3. Two representatives F and F ′ of the same A-class may produce different
sets of samples. For example, the representative (z, z, y) in the A-class
of R admits τ1(R) as a sample but not τ2(R). The map (z2, z, y) admits
the opposite combination. An strategy to find better representatives is
to eliminate monomials in the coordinate functions. For instance, the
cross-cap (z2, z3 +yz, y) is 2-determined and by eliminating the z3 term,
the resulting representative admits more samples.

We claim that no further independent equations can be found by sampling
the regular map R. This is because for any bα, satisfying the above equations,
the right hand side of equation (4.4) vanishes. Having exhausted R, we must
move to the case where d1 6= w1, and the simpler such singularities are the
map-germs of corank 1.

Every singular map-germ has #A1 > 0, but we still want to start with
the simpler ones, having #A3

0 = 0 and #A1 as low as possible. Consider the
cross-cap, parameterised as

A1 : (z, y) 7→ (z2, yz, y),

and the samples
τi(A1) = ((1, i), (2, i+ 1, i), 0).

The samples τ1(A1) and τ2(A1) give equations

0 = 8b1 + 6b01 + 16b2 + 12b11 + 9b02 + b001

and
0 = 9b1 + 6b01 + 18b2 + 12b11 + 8b02 + b001,

respectively. We show now that no more independent equations can be ob-
tained from map-germs having #A1 = 1 and #A3

0 = 0. The idea is to look at
the expressions of these invariants for corank 1 germs:

#A1 =
(d0 − w1)(d1 − w1)

w1w2
, #A3

0 =
(d0 − 2w1)(d1 − 2w1)

6w2
1

#A1.

If #A1 does not vanish, the condition #A3
0 = 0 implies d0 = 2w1 or d1 = 2w1

and, by a permutation of the coordinate functions of the map-germ, we may
choose d1 = 2w1. Replacing d1 by 2w1 in the expression #A1 = 1, we obtain
w2 = d0 − w1. Eliminating four of the bα by means of the previous equations
and impossing the conditions d1 = 2w1 and d2 = w2 = d0 − w1, we obtain a
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closed expression for µI , independent of the remaining bα. This means that
the last two bα cannot be found by taking samples satisfying such conditions.
This illustrates another key point of the interpolation strategy:

Remark 4.2.4. The numbers #η may be used to decide whether a singularity
has been exhausted.

Since the cross-cap is the only singular stable mono-germ for dimensions
(2, 3), from now on we need to take non-stable map-germs into account. A
known singularity with #A1 = 2 and #A3

0 = 0 is

S1 : (z, y) 7→ (z2, z3 + y2z, y).

It is well known that S1 has Ae-codimension one and, since Mond’s conjecture
holds for n ≤ 2 (see [65, 19]), this number is precisely µI(S1).

After one sampling of S1, one checks easily that we need a sample with
#A3

0 6= 0. The interpolation is finished after sampling Mond’s map-germ

H2 : (z, y) 7→ (z3, z5 + yz, y),

which has µI(H2) = 2.
Table 4.1 contains numbers associated to the interpolation samples. Hor-

izontal lines separate changes in corank. The number d0 is only included for
τ1(R) and τ2(R), because it does not carry any clear geometric information
about the rest of singularities. The ∞ symbol means that #A2

0 is not well
defined for the corresponding slice. For higher n, there will be too many asso-
ciated numbers, and we will include only the essential ones, based on Diagram
(4.1).

Sample d0 #A2
0 #A1 #A3

0

τi(R), i = 1, 2 i 0 0 0

τi(A1), i = 1, 2 ∞ 1 0

τ(S1) 1 2 0

τ(H2) 4 2 1

Table 4.1: Numbers associated to the samples for n = 2.

The µI formula for (C3, 0)→ (C4, 0) (see [69, Example 6.22]) reads

µI(F ) = − 1

σ3

( 1

2!
(−s0 + c1)σ2 +

1

3!
(s2

0 − c2
1 − c2)σ1+

+
1

4!
(−s3

0 − 2s2
0c1 + s0c

2
1 + 16s0c2 + 2c3

1 − 10c1c2)
)
.

Observe that, from the bα with ‖α‖ ≤ 3 to be found, we already know the
ones with ‖α‖ ≤ 2. This leaves us with the seven unknown bα.
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The first equations are obtained automatically from the following result,
based on sampling trivial unfoldings of stable singularities of smaller dimen-
sions.

Proposition 4.2.5. Let F : (Cn, 0) → (Cn+1, 0) be a weighted-homogeneous
stable map-germ and let (w, d) be a grading of F . With the notations above,
the coefficients bα satisfy

0 =
∑

‖α‖≤n+r

bαc
α
( n+r−‖α‖∑

k=0

(
k

r

)
σn+r−‖α‖−k

)
,

for all r ≥ 0.

Proof. Observe that any trivial r-parameter unfolding of F is also stable and
admits the grading ((w, 1, . . . , 1), (d, 1, . . . , 1)). The result follows putting to-
gether Proposition 4.2.1, Remark 4.1.4 and the equality

σ`,n+r(w, 1, . . . , 1) =
∑̀
k=0

(
k

r

)
σ`−k(w).

Applying this property to the (w, d) from τ1(R), τ1(A1) and τ2(A1) with
r = 1, we obtain three independent equations.

Notice that, for r = 1, the equation from τ2(R) is not independent of the
one from τ1(R). The sample τ3(A1) which did not produce an independent
equation for n = 2, does give a new equation for n = 3, that is, for r = 1. We
have used the singularities from Table 4.2 to finish the interpolation. That is,
Houston’s and Kirk’s singularities P1 and P2 [42], and Sharland’s singularity
B̂3 [2].

Label Map-germ µI

P1 (z(z3 + y), z(z2 + x), y, x) 1

P2 (z(z4 + y), z(z2 + x), y, x) 2

B̂3 (y2 + xz, z2 − xy, y(y2 + z2) + z(y2 − z2), x) 33

Table 4.2: Singularities sampled beside R and A1 for n = 3.

From the diagram (4.1), it follows that the crucial invariants are the ones
in Table 4.3.

Notice that the singularities in Table 4.2 have corank 1, with the exception
of Sharland’s singularity B̂3 of corank 2. However, the interpolation method
can be completed without resort to corank 2 map-germs. We may use the
singularity

F : (z, y, x) 7→ (z4 − xz, (y + z)5 + xz2, y, x).
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Sample #A1 #A0A1 #A4
0

τ1(R) 0 0 0

τi(A1), i = 1, 2, 3 1 0 0

τ(P1) 3 2 0

τ(P2) 2 3 0

τ(B̂3) 5 16 1

Table 4.3: Numbers associated to the samples for n = 3.

The previous map-germ of corank 2 was included in order to avoid justifying
that F is A-finite with µI(F ) = 52. Criteria for A-finiteness and computation
of µI will be discussed in Section 4.4.

4.3. µI formulas for n = 4, 5

Here we give the steps to prove Theorem 4.1.1. The same interpolation idea
used for n = 2, 3 applies just as fine for n = 4, 5 but, as far we know, the
examples found in the literature do not suffice to complete the associated
system of equations.

As it turns out, it is not always easy to produce A-finite singularities
giving new independent equations. One has to bear in mind that checking A-
finiteness and computing µI are often computationally unfeasible tasks. For
A-finiteness, we use a geometric criteria based on multiple points. For µI , we
first compute the Ae-codimension (for which commutative algebra algorithms
exist), then we justify that the germ satisfies Mond’s conjecture, ensuring the
equality of µI and the computed Ae-codimension.

The µI formula for n = 4

From Proposition 4.2.5 applied to R and A1, for r = 2, we find five independent
equations from τ1(R) and τi(A1), for i = 1, . . . , 4. One can check that no more
samples from singularities #A1 = 1 can be used.

Our next move is to consider the stable singularity

A2 : (z, y, x, t) 7→ (z3 + tz, yz2 + xz, y, x, t)

with samples

τi(A2) = ((1, i+ 1, 2, i), (3, i+ 2, i+ 1, 2, i), 0).

Three new equations arise from τ1(A2), τ2(A2) and τ3(A2). One checks that
map-germs with #A2 ≤ 1 and #A2

0A1 = 0 do not provide new information.
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Chapter 4. Image Milnor number formulas

Also, nothing new comes from map-germs that the authors could find in the
literature. We consider the new map-germs

L1 : (z, y, x, t) 7→ (z4 − tz, (y + z)6 + xz, y, x, t),

L2 : (z, y, x, t) 7→ (z4 + xz2 + tz, (y + z)5 + (x2 + ty)z, y, x, t),

which have #A5
0 = 0 and µI(L1) = 39 and µI(L2) = 87. At this point, it is not

possible to obtain further equations if #A5
0 = 0. We take another map-germ

L3 : (z, y, x, t) 7→ (z5 − tz, (y + z)7 + xz, y, x, t),

whith µI(L3) = 178. To avoid disrupting the flow of the explanation, the µI
values and A-finiteness of L1, L2 and L3 will be justified in Section 4.4. The
singularities Li were not our first candidates for the interpolation. In Remark
4.4.4 we explain what brought us to them.

At this stage, one can check that it is necessary to introduce map-germs
of corank 2. For instance, Sharland’s

D̂1 : (z, y, x, t) 7→ (y2 + xz + (x2 + t)y, yz, z2 + y3 + t2y, x, t),

which is known to have µI(D̂1) = 27 [2]. This finishes the proof of Theo-
rem 4.1.1 for n = 4, except from the claimed A-finiteness and image Milnor
numbers of L1, L2 and L3.

Remark 4.3.1. If one does not care about introducing more map-germs of
corank 2, L1 and L2 can be interchanged by Sharland’s Ê1 and K̂1 [2]. It is
however unavoidable to study the A-finiteness and the µI of at least one new
map-germ. This is because the system of equations cannot be closed without
resorting to a map-germ with #A5

0 6= 0, such as L3.

Here, we include the table with the numbers associated to the interpolation
samples for completeness.

The µI formula for n = 5

There are 19 unknown bα to be determined. We will need six new map-germs
and to stablish their A-finiteness and µI values.

Again, Proposition 4.2.5 is applied a number of times, in this case to τ1(R),
τi(A1), for i = 1, . . . , 5, and τi(A2), for i = 1, . . . , 4. Next samples need to
satisfy #A2 > 1 and hence they cannot be stable. By a similar argument,
at least three map-germs of corank 2 will be necessary to close the formula.
These will be Sharland’s map-germs [2], M̂1,1, P̂1 and N̂1

1 with image Milnor
numbers 13, 24, and 1400, respectively, and coordinate functions as in Table
4.5.

1There seems to be a typo in Sharland’s parameterisation of N̂1. Our term x4y replaces
her x2y, inconsistent with the claim that N̂1 unfolds Ê1.
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4.3. µI formulas for n = 4, 5

Sample #A1 #A2 #A2
0A1 #A5

0

τ1(R) 0 0 0 0

τi(A1), i = 1, . . . , 4 1 0 0 0

τi(A2), i = 1, 2, 3 ∞ 1 0 0

L1 15 8 12 0

L2 12 12 12 0

L3 24 15 60 3

D̂1 ∞ 9 0 0

Table 4.4: Numbers associated to the samples for n = 4.

Label Map-germ

M̂1,1 (y2 + xz + (x2 + s)y, yz + ty, z2 + y3 + s2y, x, t, s)

P̂1 (y2 + (x+ s)z, z2 + xy, y3 + s2y + z3 + yz2 + tz, x, t, s)

N̂1 (y3 + (x4 + t)y + xz, (y + s)z, z2 + y5 + s3y2 + (t2 + s4)y, x, t, s)

Table 4.5: Sharland’s singularities of corank 2.

Once M̂1,1, P̂1 and N̂1 are included, no other known singularity will con-
tribute an independent equation. We produce the new non-stable map-germs
of corank 1 found in Table 4.6, whose A-finiteness and µI are determined case
by case. Again, the singularities L̃i and Qi were not our first examples for the
interpolation. We shall explain the details in the following section.

Label Map-germ µI(F )

L̃2 (z4 + tz + xz2 + s3z, (y + z)5 + x2z + tyz + s2z3, y, x, t, s) 321

L̃1 (z4 − tz + s2z2, (y + z)6 + xz + s3z3, y, x, t, s) 149

Q1 (z4 + tz2 + tyz + s3z, (y + z)7 − xz + s4z3, y, x, t, s) 711

Q2 (z5 − xz + tz2 + s2z, (y + z)5 + sz3 + xz, y, x, t, s) 144

Q3 (z5 + (x2 + t)z − sz2 + xz3, (y + z)6 + sxz − tz2, y, x, t, s) 654

Q4 (z8 − xz + syz3, (y + z)6 + tz − sz2, y, x, t, s) 862

Table 4.6: Some new A-finite singularities.

This finishes the interpolation for n = 5. Table 4.7 contains the numbers
associated to the samples.
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Chapter 4. Image Milnor number formulas

Sample #A1 #A2 #A0A2 #A3
0A1 #A6

0

τ1(R) 0 0 0 0 0

τi(A1), i = 1, . . . , 5 1 0 0 0 0

τi(A2), i = 1, . . . , 4 ∞ 1 0 0 0

τ(L̃2) 12 12 0 0 0

τ(L̃1) 15 8 24 0 0

τ(Q1) 18 15 60 0 0

τ(Q2) 16 12 24 4 0

τ(Q3) 20 30 60 20 0

τ(Q4) 35 24 90 120 3

τ(M̂1,1) 3 6 0 0 0

τ(P̂1) 5 6 6 0 0

τ(N̂1) 5 33 84 0 0

Table 4.7: Numbers associated to the samples for n = 5.

4.4. A-finiteness, stabilisations and image Milnor
number

The remaining map-germs whose A-finiteness we must justify have corank 1
and can be studied in terms of their multiple point spaces, thanks to work by
T. Marar and D. Mond [54] (see Section 2.1.6).

The criterion of Theorem 2.1.32 has been used for L1, L2, L3, L̃1, L̃2

and Q1, . . . , Q4, by means of a Singular [83] implementation of the divided
differences.

Our methods to compute the image Milnor number require finding stable
unfoldings or stabilisations of F . Stable unfoldings are easier to obtain, by
means of a well known procedure due to J. N. Mather in [60]. We have used
stable unfoldings of L1, L2, L3, L̃1, L̃2 and Q1.

Remark 4.4.1. In certain cases, stable unfoldings are too complicated for the
computations we need to perform. For these maps it is worth spending some
time in finding a stabilisation (see Definition 2.1.24).

We do not know a method to produce stabilizations other than just trial
and error, but a candidate can be checked to be a stabilization in the following
way:

Let Jy be the relative jacobian ideal of Ik(F), i.e. the ideal generated by
the divided differences of an unfolding F(z, y) = (Fy(z), y). To be precise,
Jy is generated by the maximal minors of the matrix of partial derivatives,
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4.4. A-finiteness, stabilisations and µI

only with respect to z, of the generators of Ik(F). Inspection of the divided
differences gives the equality

Dk(F) ∩ {y = y0} = Dk(Fy0).

By Theorem 2.1.32, the germ Fy0 is stable for all y0 6= 0 if, and only if,

Dk(F) ∩ V (Jy) ⊆ {y = 0}.

This can be checked with the help of Singular, as follows.

Proposition 4.4.2. With the previous notations, F is a stabilization of F0 if
and only if y ∈

√
Jy + Ik(F).

This method has been used to find stabilizations (C6, 0) → (C7, 0) of Q2,
Q3 and Q4 mapping (z, y, x, t, s, u), respectively, to(

z5 + u2z3 + tz2 + (s2 − x)z, (y + z)5 + sz3 + (u4 + x)z, y, x, t, s, u
)
,(

z5 + (u2 + x)z3 − sz2 + (x2 + t)z, (y + z)6 − tz2 + (u5 + sx)z, y, x, t, s, u
)
,(

z8 + syz3 + u6z2 − xz, (y + z)6 + u2z4 + sz2 + tz, y, x, t, s, u
)
.

This covers the required techniques to check A-finiteness and find stabi-
lization and stable unfoldings. Because of its topological nature, computing µI
directly is a hard task; we do it via Mond’s conjecture (see Conjecture 2.1.30).

Our strategy to compute µI for a weighted-homogeneous germ is based on
results from [25] and consists on computing Ae-codim(F ) first and then jus-
tifying that Mond’s conjecture holds for F . The Ae-codimension of weighted-
homogeneous A-finite map-germs can be computed with Singular, as fol-
lows: let F : (Cn, 0)→ (Cn+1, 0) be an A-finite map-germ. Let g ∈ On+1 be a
function-germ such that g = 0 is a reduced equation for the image of F , and
let J(g) be the jacobian ideal of g. Then

Ae-codim(F ) = dimC
(f∗)−1(J(g) · On)

J(g)
.

To check that Mond’s conjecture holds for F , let F : (Cn×Cr, 0)→ (Cn+1×
Cr, 0) be either a stable unfolding or a stabilisation of F . Let G be an equation
of the image of F and G be an equation of the image of F which specialises to
G. Let

Mz(G) =
J(G)

Jz(G)
,

where J(G) is the jacobian ideal and Jz(G) the relative jacobian ideal of G, for
z ∈ Cn+1.

The following result was proved by J. Fernández de Bobdadilla, J. J. Nuño
and G. Peñafort in [25, Theorem 6.1]:
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Chapter 4. Image Milnor number formulas

Theorem 4.4.3. Let F and Mz(G) be as above. If Mz(G) is a Cohen-
Macaulay module, then F satisfies Mond’s conjecture.

We have used this criterion on stable unfoldings of our new samples,
with the exception of Q2, Q3 and Q4 where computations became unfeasi-
ble. Mond’s conjecture for these three examples was checked by means of the
stabilisations above, instead of stable unfoldings.

Remark 4.4.4. As pointed out before, the new singularities used for inter-
polation in the cases n = 4 and 5 were not our first candidates. Observe
that not all choices of (w, d) have A-finite map-germs associated to them (for
instance, all (w, d) for which the µI formula predicts a non-integer value).
The first A-finite germs we found had extremely high Ae-codimension, mak-
ing impracticable to check Mond’s conjecture for them. Our strategy was as
follows:

1. Assume that Mond’s conjecture holds for these maps.

2. Use their conjectured values of µI to obtain a candidate µI formula.

3. Use a computer to find weights and degrees (w, d) with small (conjec-
tured) µI values and such that they determine enough linearly indepen-
dent equations.

4. Try to findA-finite candidates for these (w, d) and check that they satisfy
Mond’s conjecture.

5. Reproof the µI formula by sampling these new examples.
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4.4. A-finiteness, stabilisations and µI

The µI formula for n = 4 expressed in weights and degrees.

As a curiosity, we include the expanded formula for the image Milnor number
µI(F ) of anA-finite weighted-homogeneous map-germ F : (Cn, 0)→ (Cn+1, 0),
for n = 4, given in Theorem 4.1.1 in terms of its weights w = (w1, . . . , w4) and
degrees d = (d0, . . . , d4). The formula is as follows:

µI(F ) =
1

120w5
1w

5
2w

5
3w

5
4

(d4
0d

4
1d

4
2d

4
3d

4
4 + 5d3

0d
3
1d

3
2d

3
3d

3
4w1w2w3(d0 + d1 + d2 + d3

+ d4 − w1 − w2 − w3 − w4)w4 + 5d2
0d

2
1d

2
2d

2
3d

2
4w

2
1w

2
2w

2
3(d0 + d1 + d2 + d3

+ d4 − w1 − w2 − w3 − w4)2w2
4 − 5d0d1d2d3d4w

3
1w

3
2w

3
3(d0 + d1 + d2 + d3

+ d4 − w1 − w2 − w3 − w4)3w3
4 − 6w4

1w
4
2w

4
3(d0 + d1 + d2 + d3 + d4 − w1

− w2 − w3 − w4)4w4
4 − 120w5

1w
5
2w

5
3w

5
4 − 50d2

0d
2
1d

2
2d

2
3d

2
4w

2
1w

2
2w

2
3w

2
4(d0d1

+ (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2

+ d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2

2 − (d0 + d1

+ d2 + d3 + d4 − w1 − w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3)w4 + w2
4)− 20d0d1d2d3d4w

3
1w

3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3 − w4)w3
4(d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4

− (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2

2

− (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3)w4 + w2
4) + 34w4

1w
4
2w

4
3(d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3 − w4)2w4
4(d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4

− (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2

2

− (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3)w4 + w2
4) + 108w4

1w
4
2w

4
3w

4
4(d0d1 + (d0 + d1)d2 + (d0 + d1

+ d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2

4)2

+ 60d0d1d2d3d4w
3
1w

3
2w

3
3w

3
4(d0d1d2 + (d1d2 + d0(d1 + d2))d3 + (d2d3

+ d1(d2 + d3) + d0(d1 + d2 + d3))d4 − (d0d1 + (d0 + d1)d2 + (d0 + d1

+ d2)d3 + (d0 + d1 + d2 + d3)d4)w1 + (d0 + d1 + d2 + d3 + d4)w2
1

− w3
1 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4

− (d0 + d1 + d2 + d3 + d4)w1 + w2
1)w2 + (d0 + d1 + d2 + d3 + d4

− w1)w2
2 − w3

2 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1

+ d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3
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+ d4 − w1)w2 + w2
2)w3 + (d0 + d1 + d2 + d3 + d4 − w1 − w2)w2

3 − w3
3

− (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4

− (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2

+ w2
2 − (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2

3)w4 + (d0 + d1

+ d2 + d3 + d4 − w1 − w2 − w3)w2
4 − w3

4)− 64w4
1w

4
2w

4
3(d0 + d1 + d2

+ d3 + d4 − w1 − w2 − w3 − w4)w4
4(d0d1d2 + (d1d2 + d0(d1 + d2))d3

+ (d2d3 + d1(d2 + d3) + d0(d1 + d2 + d3))d4 − (d0d1 + (d0 + d1)d2

+ (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4)w1 + (d0 + d1 + d2 + d3

+ d4)w2
1 − w3

1 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1

+ d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1)w2 + (d0 + d1 + d2

+ d3 + d4 − w1)w2
2 − w3

2 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3

+ (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2)w3 + (d0 + d1 + d2 + d3

+ d4 − w1 − w2)w2
3 − w3

3 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3

+ (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4

− w1 − w2)w3 + w2
3)w4 + (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w2

4

− w3
4) + 4w4

1w
4
2w

4
3w

4
4(d0d1d2d3 + (d0d1d2 + d0d1d3

+ (d0 + d1)d2d3)d4 − (d0d1d2 + d0d1d3 + (d0 + d1)d2d3 + d0d1d4

+ (d0 + d1)d2d4 + (d0 + d1 + d2)d3d4)w1 + (d0d1 + (d0 + d1)d2

+ (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4)w2
1 − (d0 + d1 + d2 + d3

+ d4)w3
1 + w4

1 − (d0d1d2 + (d1d2 + d0(d1 + d2))d3 + (d2d3 + d1(d2 + d3)

+ d0(d1 + d2 + d3))d4 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1

+ d2 + d3)d4)w1 + (d0 + d1 + d2 + d3 + d4)w2
1 − w3

1)w2 + (d0d1 + (d0 + d1)d2

+ (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1+

w2
1)w2

2 − (d0 + d1 + d2 + d3 + d4 − w1)w3
2 + w4

2 − (d0d1d2 + (d1d2 + d0(d1

+ d2))d3 + (d2d3 + d1(d2 + d3) + d0(d1 + d2 + d3))d4 − (d0d1 + (d0 + d1)d2

+ (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4)w1 + (d0 + d1 + d2 + d3

+ d4)w2
1 − w3

1 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1

+ d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1)w2 + (d0 + d1 + d2

+ d3 + d4 − w1)w2
2 − w3

2)w3 + (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3

+ (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1

+ d2 + d3 + d4 − w1)w2 + w2
2)w2

3 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3
3 + w4

3 − (d0d1d2 + (d1d2 + d0(d1 + d2))d3 + (d2d3 + d1(d2 + d3)
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+ d0(d1 + d2 + d3))d4 − (d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0

+ d1 + d2 + d3)d4)w1 + (d0 + d1 + d2 + d3 + d4)w2
1 − w3

1 − (d0d1

+ (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2

+ d3 + d4)w1 + w2
1)w2 + (d0 + d1 + d2 + d3 + d4 − w1)w2

2 − w3
2 − (d0d1

+ (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2

+ d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2

2)w3 + (d0 + d1

+ d2 + d3 + d4 − w1 − w2)w2
3 − w3

3)w4 + (d0d1 + (d0 + d1)d2 + (d0 + d1

+ d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3 + w2
3)w2

4 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w3
4 + w4

4)

− 5w1w2w3w
2
4(d3

0d
3
1d

3
2d

3
3d

3
4 + 2d2

0d
2
1d

2
2d

2
3d

2
4w1w2w3(d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3 − w4)w4 − d0d1d2d3d4w
2
1w

2
2w

2
3(d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3 − w4)2w2
4 − 2w3

1w
3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3 − w4)3w3
4 − 16d0d1d2d3d4w

2
1w

2
2w

2
3w

2
4(d0d1 + (d0 + d1)d2 + (d0 + d1

+ d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2

4)

+ 10w3
1w

3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3 − w4)w3

4(d0d1

+ (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1

+ d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2

2

− (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3)w4 + w2
4))− 5w1w2w

2
3w4(d3

0d
3
1d

3
2d

3
3d

3
4

+ 2d2
0d

2
1d

2
2d

2
3d

2
4w1w2w3(d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3 − w4)w4

− 4d2
0d

2
1d

2
2d

2
3d

2
4w1w2w3w

2
4 − d0d1d2d3d4w

2
1w

2
2w

2
3(d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3 − w4)2w2
4 − 2w3

1w
3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3 − w4)3w3
4 + 4w3

1w
3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3

− w4)2w4
4 − 16d0d1d2d3d4w

2
1w

2
2w

2
3w

2
4(d0d1 + (d0 + d1)d2 + (d0 + d1

+ d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1

+ d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2

3

− (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2
4) + 10w3

1w
3
2w

3
3(d0 + d1 + d2

+ d3 + d4 − w1 − w2 − w3 − w4)w3
4(d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3

+ (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3

+ d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2

3 − (d0 + d1

+ d2 + d3 + d4 − w1 − w2 − w3)w4 + w2
4) + 4w3

1w
3
2w

3
3w

4
4(d0d1 + (d0 + d1)d2
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+ (d0 + d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1

+ w2
1 − (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2

2 − (d0 + d1 + d2 + d3 + d4

− w1 − w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2

4))

+ 20w3
1w

3
2w

2
3w

2
4(d2

0d
2
1d

2
2d

2
3d

2
4 − w2

1w
2
2w

2
3(d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3 − w4)2w2
4 − 3w1w2w3w

2
4(d0d1d2d3d4 − w1w2w3(d0 + d1 + d2 + d3

+ d4 − w1 − w2 − w3 − w4)w4)− w2
1w

2
2w

2
3w

2
4(d0d1 + (d0 + d1)d2 + (d0

+ d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2

4)

− 3w1w2w
2
3w4(w1w2w3(−d1 − d2 − d3 − d4 + w1 + w2 + w3 − w4)w4

+ d0(d1d2d3d4 − w1w2w3w4)))− 5w1w2(w1 + w2)w3w4(d3
0d

3
1d

3
2d

3
3d

3
4

+ 2d2
0d

2
1d

2
2d

2
3d

2
4w1w2w3(d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3 − w4)w4

− 4d2
0d

2
1d

2
2d

2
3d

2
4w1w2w3w

2
4 − d0d1d2d3d4w

2
1w

2
2w

2
3(d0 + d1 + d2 + d3 + d4

− w1 − w2 − w3 − w4)2w2
4 − 2w3

1w
3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2

− w3 − w4)3w3
4 + 4w3

1w
3
2w

3
3(d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3

− w4)2w4
4 − 16d0d1d2d3d4w

2
1w

2
2w

2
3w

2
4(d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3

+ (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1

+ d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2

3

− (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2
4) + 10w3

1w
3
2w

3
3(d0 + d1

+ d2 + d3 + d4 − w1 − w2 − w3 − w4)w3
4(d0d1 + (d0 + d1)d2 + (d0 + d1

+ d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2

4)

+ 4w3
1w

3
2w

3
3w

4
4(d0d1 + (d0 + d1)d2 + (d0 + d1 + d2)d3 + (d0 + d1 + d2

+ d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1 − (d0 + d1 + d2 + d3

+ d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1 − w2)w3 + w2

3

− (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2
4)

− 4w1w2w
2
3w4(d2

0d
2
1d

2
2d

2
3d

2
4 − w2

1w
2
2w

2
3(d0 + d1 + d2 + d3 + d4 − w1

− w2 − w3 − w4)2w2
4 − 3w1w2w3w

2
4(d0d1d2d3d4 − w1w2w3(d0 + d1 + d2

+ d3 + d4 − w1 − w2 − w3 − w4)w4)− w2
1w

2
2w

2
3w

2
4(d0d1 + (d0 + d1)d2 + (d0

+ d1 + d2)d3 + (d0 + d1 + d2 + d3)d4 − (d0 + d1 + d2 + d3 + d4)w1 + w2
1

− (d0 + d1 + d2 + d3 + d4 − w1)w2 + w2
2 − (d0 + d1 + d2 + d3 + d4 − w1

− w2)w3 + w2
3 − (d0 + d1 + d2 + d3 + d4 − w1 − w2 − w3)w4 + w2

4)))).
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Chapter 5

The Brasselet-Schürmann-Yokura

conjecture on L-classes

In this chapter, we develop the main work of this Ph.D. thesis. Prof. Javier
Fernández de Bobadilla and I, proved the Brasselet-Schürmann-Yokura con-
jecture for projective varieties [26]. This conjecture is a conjecture of charac-
teristic classes of singular varieties which states that the Hirzebruch homology
class Ty,∗ (for y = 1) coincides with the Goresky-MacPherson L-class for com-
pact complex algebraic varieties that are rational homology manifolds.

In Section 2.5.2, we introduced the Hirzebruch homology characteristic
class Ty,∗. This class is defined as a natural transformation from the relative
Grothendieck functor K0(var/−) of complex algebraic varieties to the Borel-
Moore homology functor HBM

2∗ (−,Q) with rational coefficients (see Theorem
2.5.24).

The Hirzebruch class Ty,∗ unifies, for different values of y, the following
characteristic classes (see Theorem 2.5.26): for y = −1, the Chern-Schwartz-
MacPherson transformation (see Theorem 2.5.5), for y = 0 the Baum-Fulton-
MacPherson Todd transformation (see Theorem 2.5.7), and for y = 1, the
Cappell-Shaneson L-transformation (see Theorem 2.5.23).

Furthermore, the transformation Ty,∗ applied to the distinguished element
[Y → Y ] ∈ K0(var/Y ), that is Ty,∗(Y ) := Ty,∗([Y → Y ]), specializes: for
y = −1, in the (rationalized) Chern-Schwartz-MacPherson class of Y , for
y = 0, in the Baum-Fulton-MacPherson Todd class of Y , if Y has du Bois
singularities, and, for y = 1, J. P. Brasselet, J. Schürmann and S. Yokura
conjectured the following equality of characteristic classes:

Theorem 5.0.1 (The BSY-conjecture). If Y is a compact complex algebraic
variety that is a rational homology manifold, then

T1,∗(Y ) = L∗(Y ),

where L∗(Y ) is the Goresky-MacPherson L-class of Y .

In the 1980s, M. Goresky and R. MacPherson introduced the intersection
homology, and a notion of signature for singular varieties was given (see Sec-
tion 2.3.3 and Section 2.5.2). The Brasselet-Schürmann-Yokura conjecture
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Chapter 5. The BSY-conjecture

is the characteristic class version of the important Hodge Index Theorem,
which computes the signature of a compact complex algebraic manifold in
terms of Hodge numbers. Hence, this conjecture establishes a generalization
of Hodge’s Index Theorem for higher-degree homology groups giving rise a
Hodge-theoretical realization of the Goresky-MacPherson L-class even if the
variety is a rational homology manifold.

The conjecture was previously solved for the following special cases: In [11],
S. E. Cappell, L. G. Maxim, J. Schürmann and J. L. Shaneson solved it for
varieties with isolated singularities that are hypersurfaces in an smooth alge-
braic variety. In [12], the same authors proved the case for X = Y/G, where Y
is a projective G-manifold and G is a finite group of algebraic automorphisms.
L. G. Maxim and J. Schürmann in [62] gave a proof for simplicial projective
toric varieties. In the projective case, the degree 0 case holds by a direct
consequence of Saito’s intersection cohomology Hodge Index Theorem (details
can be found in M. Banagl’s paper [4]). M. Banagl in [4], showed the case
for normal projective complex 3-folds at worst canonical singularities, trivial
canonical divisor, and H1(X;OX) 6= 0.

Let ΩK(−) be the cobordism functor of cohomologically constructible bounded
self-dual K-complexes (K a subfield of R) of sheaves (see Section 2.5.2). By
Theorem 2.5.26, there is a natural transformation

sd : K0(var/−)→ ΩK(−) (5.1)

such that, for Y non-singular, sd([Y → Y ]) = [KY [dimC Y ]], and

K0(var/−) ΩK(−)

H2∗(−;Q)

sd

T1,∗ L∗ (5.2)

In this chapter, we prove the following result also conjectured in [9] imply-
ing the BSY-conjecture:

Theorem 5.0.2. If Y is a projective complex variety that is a rational ho-
mology manifold, then we have the equality

sdR([Y → Y ]) = [ICY ] ∈ ΩR(Y ),

where ΩR(Y ) is the cobordism group of cohomologically constructible bounded
self-dual R-complexes, sdR denotes the natural transformation sd in ΩR(Y )
and ICY is the intersection cohomology complex on Y (see Section 2.3.3).

Since the Cappell-Shaneson L-transformation applied to the intersection
cohomology complex ICY recovers the Goresky-MacPherson L-class L∗(Y )
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(see Section 2.5.2), the previous theorem, implies the Brasselet-Schürmann-
Yokura conjecture for projective varieties by using the commutative diagram
(5.2).

The proof of Theorem 5.0.2 is organized in the following steps: First, to
compute the left-hand side of Theorem 5.0.2, we obtain an identity in the
Grothendieck group K0(var/Y ) expressing the class [Y → Y ] as an alternate
sum of classes of smooth varieties coming from a semi-simplicial resolution of
Y (Section 5.1). The expression obtained for sdR([Y → Y ]) includes the class
[ICY ] together with other terms. The goal is to show that the extra terms
vanish. The second step is to obtain exact sequences coming from a spectral
sequence of perverse sheaves associated with the semi-simplicial resolution
(Section 5.2) which give an identity in ΩR(Y ) giving rise to the desired van-
ishing (Section 5.3). To obtain the exact sequences, we prove the degeneration
at the second page of this spectral sequence where the projectivity assump-
tion is needed. Our proof of the degeneration uses classical Hodge theory, and
the ideas resemble the way that M. A. A. de Cataldo and L. Migliorini used
classical Hodge theory for their proof of the Decomposition Theorem in [18]
(see also Section 2.3.4).

An important intermediate step that is needed is the fact that the classes of
certain cohomologically constructible complexes together with perfect pairings
in the cobordism group are independent of the perfect pairing as long as the
cohomologically constructible complex and the pairing satisfy certain Hodge
theoretic compatibility properties. This is Lemma 5.3.6 and the proof is based
on a representation theory argument that may be of some utility elsewhere.

Let us make precise here what we do mean by “proof based on classical
Hodge theory”: Our proof uses the Decomposition Theorem for R-coefficients
in the form as in Theorem 2.3.38, that is: Let ε : Z → Y be a projective
morphism from a smooth complex projective variety Z of dimension d. Then,

Rε∗RZ [d] ∼=
M⊕

i=−M

pHi(Rε∗RZ [d])[−i], (5.3)

where M is a positive integer, and pHi(−) denotes the i-th cohomology functor
for the perverse t-structure introduced in Section 2.3.2. Moreover, the perverse
sheaves pHi(Rε∗RZ [d]) are semi-simple (see Theorem 2.3.39).

As we mentioned in Chapter 2, the Decomposition Theorem was proved
originally in [6] for C-coefficients. For R-coefficients, the equation (5.3), and
even its analogue for Q-coefficients follows from [20]; then the semi-simplicity
of the perverse sheaves pHi(Rε∗RX) can be obtained by an argument involv-
ing the exactness of the scalar extension functor from the abelian category of
R-perverse sheaves to the abelian category of C-perverse sheaves. The De-
composition Theorem in the form we need was re-proved later by M. Saito,
using Hodge modules, and also by M. A. de Cataldo and L. Migliorini. M. A.
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Chapter 5. The BSY-conjecture

de Cataldo and L. Migliorini’s proof is geometric and rests in classical Hodge
theory in the sense that it only uses the formalism of perverse sheaves and
Hodge theory as developed in [21], [22].

We also use the theory of cubical hyperresolutions using the treatment in
Section 2.4). Given the Decomposition Theorem as stated above, the theory
of cubical hyperresolutions and generalities in perverse sheaves, our proof only
needs fairly elementary Hodge theory computations (see Section 2.2).

In [27], we prove in collaboration with M. Saito Theorem 5.0.2 in the
general case of compact complex algebraic varietes that are rational homology
manifolds, using the theory of mixed Hodge modules. However, this proof will
not be covered in this chapter.

5.1. An identity in the relative Grothendieck group
of algebraic varieties

Let Y be a compact complex algebraic variety of dimension n. In this section,
we prove that the class [Y → Y ] in the relative Grothendieck group K0(var/Y )
of complex algebraic varieties over Y (see Section 2.5.1), can be expressed as
a sum of classes [Xk → Y ] ∈ K0(var/Y ) for Xk non-singular varieties using
cubical hyperresolutions (see Definition 2.4.14). We will denote by [X] the
class [X → Y ] ∈ K0(var/Y ) for simplicity.

Lemma 5.1.1. There exists an (n+ 1)-semi-simplicial resolution

ε : X• → Y, (5.4)

such that in the relative Grothendieck group K0(var/Y ) over Y , the following
identity holds:

[Y ] = [Ỹ ] + [
n⊔
i=1

X0,i] +
n∑
k=1

(−1)k[Xk], (5.5)

where X0 = Ỹ
⊔

(
⊔n
i=1X0,i), and Ỹ → Y is a resolution of singularities of Y

which restricts to an isomorphism over the regular locus of Y .

Proof. We prove the equality (5.5) following the procedure to construct a
cubical hyperresolution given in Section 2.4.3 combined with the application
of the additive relation (2.40) in K0(var/Y ) in each step of the construction.

In the first step, we choose a resolution of singularities π : Ỹ → Y of
Y which restricts to an isomorphism over the regular locus of Y . For the
discriminant D := Σ of π, we consider its discriminant square (see Lemma-
Definition 2.4.18 and also (2.19)). Since the discriminant square is cartesian
and the map D → Y is a closed inclusion, then we have the inclusion E :=
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π−1(D) → X̃. By applying the additive relation (2.40) to this diagram, and
by taking into account that Ỹ \ E ' Y \D, the following identity holds

[Y ] = [Ỹ ] + [D]− [E]. (5.6)

Suppose now, we are in the (k + 1)-th step of the construction. Consider the
(k + 1)-cubical variety obtained in the k-th step as a morphism f (k) : Y (k) →
Z(k) between k-cubical varieties. We choose a resolution Ỹ (k) of Y (k) and
consider its discriminant square (2.20). Notice that the k-cubical varieties
Y (k) and Z(k) are the k-cubical variety E(k−1) → D(k−1) and the k-cubical
variety given by the composition of k-cubical varieties Ỹ (k−1) → Y (k−1) →
Z(k−1), respectively. Since the discriminant square of Ỹ (k) → Y (k) is composed

by the discriminant squares of resolutions Ỹ
(k)
I → Y

(k)
I for all I, then each

discriminant square satisfies the identity (5.6) proved in step 1, that is,

[Y
(k)
I ] = [Ỹ

(k)
I ] + [D

(k)
I ]− [E

(k)
I ] (5.7)

where D
(k)
I = Y

(k+1)
I and E

(k)
I = Y

(k+1)
I∪{k} . Then, after replacing the identities

(5.7) in all the steps of the construction, and writing them as an associated
augmented semi-simplicial variety as in Remark 2.4.8, we find the identity

[Y ] =
n∑
k=0

(−1)k[Xk]. (5.8)

Writting X0 = Ỹ
⊔n
i=1X0,i where X0,i is the term Xi in the (n + 1)-cubical

variety, we obtain the desired identity.

The semi-simplicial resolution satisfies that each Xk is a disjoint union
of smooth varieties Xk,i, such that dimXk,i ≤ n − k. Moreover, the only
component of X0 of dimension n is the smooth variety Ỹ to which ε restricts
to a resolution of singularities ε|Ỹ : Ỹ → Y . Observe also that all morphisms
involved in the cubical hyperresolution are projective.

Remark 5.1.2. Let {ZI}I∈{0,1}n be a cubical hyperresolution of Y ⊂ PnC,

constructed following the procedure of Section 2.4.3. Suppose Y ⊂ PNC . Let
H ∈ (PNC )∗ be a generic hyperplane. Then the cubical variety formed taking
the fibre product of {ZI}I∈{0,1}n by Y ∩H is a cubical hyperresolution of Y ∩H.

Moreover, a variation Ht of the generic hyperplane where Ht ∈ U ⊂ (PNC )∗

is a small neighborhoud of the point H0 in the dual projective space (PNC )∗,
yields a topologically trivial family of cubical hyperresolutions.

Iterating we obtain the same statement for generic linear sections of ar-
bitary codimension.

Proof. The proof of the first assertion is an inspection on the construction of
Section 2.4.3, combined with the fact that if |L| ⊂ (PMC )∗ is a linear system
without base points in a smooth projective manifold Z ⊂ PMC , then a generic
hyperplane section Z ∩H in |L| is smooth.
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Chapter 5. The BSY-conjecture

5.2. Some exact sequences of perverse sheaves

In this section, we construct a spectral sequence of perverse sheaves associated
with the semi-simplicial resolution of Y given in Lemma 5.1.1. We prove that
the rows on the first page of this spectral sequence are exact. This exactness
will allow giving the needed cancellations to prove Theorem 5.0.2.

For any k, the variety Xk is a disjoint union of smooth varieties of different
dimensions, and ε|Xk is a projective morphism. So, by Theorem 2.3.38, we
have a decomposition

Rε∗RXk ∼=
⊕
q≥0

pHq(Rε∗RXk)[−q].

Furthermore, Theorem 2.3.39 predicts that the perverse sheaves pHq(Rε∗RXk)
decomposes as a direct sum of simple intersection cohomology complexes (see
Remark 2.3.32). Let {Y = Σ0,Σ1, ....,ΣN} be the collection of subvarieties in
Y which are the support of simple direct summands of the perverse sheaves
pHq(Rε∗RXk). We have the further decomposition

pHq(Rε∗RXk) ∼=
⊕
j∈J

pHq(Rε∗RXk)Σj , (5.9)

where pHq(Rε∗RXk)Σj denotes the direct sum of the simple summands in
pHq(Rε∗RXk) whose support is Σj .

Remark 5.2.1. Notice that pHq(Rε∗RXk)Y = 0 unless k = 0 and q = n =
dim(Y ), and that pHn(Rε∗RX0)Y = ICY [−n], since ε|Ỹ is a resolution of
singularities of Y (see Remark 2.3.40).

Lemma 5.2.2. If Y is a projective complex variety that is a rational homology
manifold, for each support Σj strictly contained in Y , and for each q ≥ 0, we
have an exact sequence of perverse sheaves

0→ pHq(Rε∗RX0)Σj → pHq(Rε∗RX1)Σj → ...→ pHq(Rε∗RXn)Σj → 0.
(5.10)

We reduce the proof to the degeneration at the second page of a spectral
sequence of perverse sheaves. The proof only uses classical Hodge theory, and
is more in the spirit of [18], but only works when Y is projective because we
use hyperplane sections.

Proof. The proof has 2 parts. In the first part, we identify a spectral sequence
converging to the perverse cohomology of an acyclic complex whose E1 page
splits as the direct sum of the complexes (5.10), and in the second part we use
Hodge theory to prove its degeneration at the second page.
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Part 1: Denote by C•Xk the canonical Godement resolution of the constant
sheaf RXk in Xk (see Section 2.4.2). By cohomological descent (see Definition
2.4.12), of the semi-simplicial resolution (5.4), we obtain a double complex of
sheaves I•,• in Y such that each column Ik,• is equal to ε∗C•Xk (and hence
computes Rε∗RXk), and such that there is a quasi-isomorphism RY → s(I•,•),
where s(I•,•) denotes the simple complex associated to I•,•. It is important to
notice that the horizontal differentials in the double complex I•,• give rise to
morphisms of complexes ε∗C•Xk → ε∗C•Xk+1

which are induced from the alter-

nating sum of the pullbacks by the (k + 1)-morphisms Xk+1 → Xk appearing
in the semi-simplicial variety X•.

Consider the sequence of morphisms of double complexes

I•,•
β1−→ I0,• β2−→ R(ε|Ỹ )∗RỸ

β3−→ ICY [−n],

where the simple complex I0,• is seen as a double complex that has non-zero
objects only at the 0-th column, β1 is the natural morphism of double com-
plexes, β2 is the composition of the natural projection from I0,• to R(ε|Ỹ )∗RỸ
given by the decomposition of X0 in connected components, and β3 is de-
scribed as follows: by Theorem 2.3.38, there is a non-canonical direct sum
decomposition

Φ : R(ε|Ỹ )∗RỸ → ICY [−n]⊕ L,

where L is a direct sum of shifted simple perverse sheaves with support strictly
contained in Y . We define β3 := ρ ◦ Φ, where ρ is the canonical projection
ICY [−n]⊕ L→ ICY [−n].

Even if β3 is not unique, by the uniqueness of Proposition in [31, 5.1],
restricting to the non-singular stratum of Y we obtain that the simple complex
morphism

η : s(I•,•) ∼= RY → ICY [−n]

associated with the composition β3◦β2◦β1 is, up to multiplication with a non-
zero real number, the canonical morphism connecting cohomology with inter-
section cohomology complexes. By uniqueness of the intersection cohomology
complex, if Y is a rational homology manifold then η is a quasi-isomorphism,
and hence cone(η)[−1] is an acyclic complex.

Notice that we can form a double complex K•,•, whose columns are

K0,• = cone(β3 ◦ β2)[−1], and Kp,• = Ip,• for p > 0,

here β3◦β2 denotes the simple complex morphism induced at the 0-th column.
Since there is a quasi-isomorphism

s(K•,•) ∼= cone(η)[−1]

because Y is a rational homology manifold, we have shown that the simple
complex s(K•,•) associated to the double complex K•,• is acyclic.
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We notice that the double complex K•,• depends on the choice of β3.
However, this non-uniqueness does not affect our proof.

The single complex s(I•,•) is decreasingly filtered by the subcomplexes
F ps(I•,•), where F ps(I•,•) is the simple complex of the double sub-complex of
I•,• formed by the direct sum of Ia,b for a ≥ p. A similar filtration is defined
on s(K•,•)

We want to construct a spectral sequence of perverse sheaves associated
with the double complexes I•,• and K•,•. In order to do this, we use the
general technique of construction of spectral sequences given by H. Cartan
and S. Eilenberg in [16, XV.7] (see Example 1 in loc.cit.). Define the Cartan-
Eilenberg systems of perverse sheaves as follows:

H[I•,•](p, q) :=
∑
i∈Z

pHi(F ps(I•,•)/F qs(I•,•)),

H[K•,•](p, q) :=
∑
i∈Z

pHi(F ps(K•,•)/F qs(K•,•)),

for p ≥ q. The morphisms H[I•,•](p, q) → H[I•,•](p′, q′) are induced from
the natural morphism of complexes, and similarly for K•,•. The connecting
morphisms coincide with the connecting morphism for the exact sequence of
complexes

0→ F qs(I•,•)/F rs(I•,•)→ F ps(I•,•)/F rs(I•,•)→ F ps(I•,•)/F qs(I•,•)→ 0,

and similarly for K•,•. The defining sums above are finite, and it is straight-
forward to check, using that Xk = ∅ for k > n, that conditions (SP.1)−(SP.5)
of [16, XV.7] are satisfied. The perverse sheaves H[I•,•](p, q) are graded by
the defining sum, and the same for K•,•. There is an obvious morphism of
Cartan-Eilenberg systems H[I•,•](p, q)→ H[K•,•](p, q).

Therefore, we obtain two spectral sequences of graded objects in Perv(Y ),
and a morphism between them. We obtain the following terms in the page
one of the spectral sequences:

E(I)p,q1
∼= pHq(Rε∗RXp). (5.11)

Since Kp,q → Ip,q is an isomorphism for p > 0, we have an isomorphism

E(K)p,q1
∼= E(I)p,q1

∼= pHq(Rε∗RXp). (5.12)

Considering the decomposition (5.9), and by definition of K•,•, for p = 0 we
have

E(K)0,q
1 :=

⊕
j 6=0

pHq(Rε∗RX0)Σj ; (5.13)

that is, all the summands except ICY [−n] if q = n.
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Theorem 2.3.39 implies that the complexes appearing in the E1 page of
the spectral sequence associated with the acyclic complex s(K•,•) splits in a
direct sum of complexes of perverse sheaves with strict support Σj , for j > 0.
These complexes coincide with the complexes (5.10). So, proving degeneration
at the second page is enough to finish the proof.

Part 2: The proof of degeneration at E2 is by double induction on dim(Y )
and codim(Σj). Suppose that the lemma holds for dim(Y ) < n, and for
codim(Σj) < d when dim(Y ) = n. Assuming dim(Y ) = n, we prove the
exactness simultaneously for all supports Σj of codimension d in Y .

Case d < n: For any Σj , there exists a dense open subset Uj over which
all the perverse sheaves (E1(K)p,q)Σj are local systems. In order to prove the
exactness of (5.10) it is enough to prove the exactness of the stalk

0→ ((E(K)0,q
1 )Σj )z → ((E(K)1,q

1 )Σj )z → ...→ ((E(K)n,q1 )Σj )z → 0, (5.14)

of the complex (5.10) at a point z in each connected component of each of
the open subsets Uj . Let H be a generic linear section of dimension d such
that the intersection Σj ∩H is a finite set of points contained in Uj for every
d-codimensional component Σj . Then, Y ∩H is a projective rational homology
manifold of dimension n − dim(Σj) (see Lemma 5.2.3), and by Remark 5.1.2
the pullback to Y ∩H of the semisimplicial resolution of X• → Y gives a semi-
simplicial resolution of (X|H)• → Y ∩ H. Construct the perverse spectral
sequence (5.11) for the semi-simplicial resolution (X|H)• → Y ∩H, and split
it as a direct sum of spectral sequences of perverse sheaves with common
support as above.

For any z ∈ Σj∩H, the point z is a support for the E1 page of the perverse
spectral sequence associated with the hyperresolution (X|H)• → Y ∩ H and
the complex (5.14) is the analog of the complex (5.10) for the support z. This
follows because (X|H)p is the fibre product Xp ×Y (Y ∩ H), and then, by
the topological triviality statement of Remark 5.1.2, we have Rε∗R(X|H)p =
ι∗Y ∩HRε∗RXp , where ιY ∩H denotes the inclusion of Y ∩H into Y .

Since dim(Y ∩H) = n− dim(Σj) < n, by induction hypothesis the lemma
is true for Y ∩H and the semisimplicial resolution (X|H)• → Y ∩H, we have
the exatness of the sequence (5.14).

Case d = n:
Applying the functor H∗(Y,−) to the quotients F ps(I•,•)/F qs(I•,•) and

F ps(K•,•)/F qs(K•,•) we obtain two Cartan-Eilenberg systems and a mor-
phism between them, in a similar way as above for the construction of spectral
sequences of perverse sheaves. They induce spectral sequences of real vector
spaces, whose terms are denoted by ′E(K)p,br and ′E(I)p,br . The morphism

between the Cartan-Eilenberg systems induces homomorphisms ′E(K)p,br →
′E(I)p,br which are compatible with the differentials. The E1 terms are the
following:

′E(I)p,b1
∼= Hb(Y,Rε∗RXp). (5.15)
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For p > 0, we have an isomorphism

′E(K)p,b1
∼= ′E(I)

p,b
1
∼= Hb(Y,Rε∗RXp), (5.16)

and, for p = 0, we have

′E(K)0,b
1 := Ker(Hb(Y,Rε∗RX0)

β3◦β2−→ Hb(Y, ICY [−n])). (5.17)

The spectral sequence ′E(I) coincides with the spectral sequence induced
by the filtration by columns of the double complex Γ(Y, I•,•). By [71, The-
orem 3.18, Theorem 5.33], the spectral sequence ′E(I) lifts to a spectral se-
quence of real mixed Hodge structures, degenerates at E2, and converges to
the mixed Hodge structure H∗(Y ;R). Since Hk(Y ;R) ∼=

⊕
p+b=k

′E2
p,b(I),

each term ′Ep,b2 (I) has weight b, and Y is compact (see Table 2.1), we have

that Wk−rH
k(Y ;R) ∼=

⊕
p≥r

′E(I)p,b2 , for any k. Since Y is a rational homol-

ogy manifold, by Theorem 2.3.36, then Hk(Y ;R) is a pure Hodge structure of

weight k, and so ′E(I)p,b2 = 0 for p ≥ 1.

By the isomorphism (5.16), we deduce that ′E(K)p,b2
∼= ′E(I)p,b2 = 0 for

p ≥ 2. Therefore ′E(K)p,br = 0 for any r and p ≥ 2, and the spectral sequence
′E(K) degenerates at the E2 page.

By the degeneration at the second page, since the complex s(K•,•) is

acyclic, we have the vanishing ′E(K)p,b2 = 0 for every p, b, and therefore for
every b we have the exact sequence

0→ ′E(K)
0,b
1 →

′E(K)
1,b
1 → ...→ ′E(K)

n,b
1 → 0. (5.18)

We denote by d′1 the differential of this complex.
By Theorem 2.3.38, and the E1 term description (5.16) and (5.17), we have

the splitting

′E(K)p,b1 =
⊕

1≤j≤N

⊕
q≥0

Hb(Y, (E(K)p,q1 )Σj [−q]) (5.19)

in the category of real vector spaces.
Denote by

d′1(p, b, j1, j2, q1, q2) : Hb(Y, (E(K)p,q11 )Σj1
[−q1])→ Hb(Y, (E(K)p+1,q2

1 )Σj2
[−q2])

the composition of d′1 with the inclusion of the source in ′E(K)p,b1 and the

projection from ′E(K)p+1,b
1 to the target.

For j1 = j2, q1 = q2, the morphism d′1(p, b, j1, j1, q1, q1) is obtained applying
the functor Hb(Y,−) to the differential d1 : (E(K)p,q11 )Σj1

→ (E(K)p+1,q1
1 )Σj1

appearing in the complex (5.10) for q = q1.
For j1 6= j2, q1 = q2, the morphism d′1(p, b, j1, j2, q1, q1) vanishes since the
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terms (E(K)p,q11 )Σj1
and (E(K)p,q11 )Σj2

are semi-simple perverse sheaves of
disjoint support.

By induction, if Σj 6= Y is not of dimension 0, then the sequence of semi-
simple perverse sheaves (5.10) is exact. Semi-simplicity and exactness implies
that the sequence (5.10) is isomorphic to the direct sum of exact sequences of
perverse sheaves of the form

0→ P [−l]→ P [−(l + 1)]→ 0, (5.20)

where P is simple and perverse, the map is the identity and 0 ≤ l ≤ n− 1.
Pick some Σj 6= Y , and some simple perverse sheaf such that (5.20) is a

direct summand of (5.10). Pick any b such that Hb(Y, P [−q]) 6= 0. Then the
sequence (5.18) is isomorphic to one of the form

...→ Al−1 → Al⊕Hb(Y, P [−q])
d′1−→ Al+1⊕Hb(Y, P [−q])→ Al+2 → ... (5.21)

where the differential d′1 restricted and projected to Hb(Y, P [−q]) is the iden-
tity. Then the sequence

...→ Al−1 → Al → (Al+1 ⊕Hb(Y, P [−q]))/d′1(Hb(Y, P [−q]))→ Al+2 → ...,

is also exact, and identifying

Al+1 ∼= (Al+1 ⊕Hb(Y, P [−q]))/d1(Hb(Y, P [−q]))

is isomorphic to

...→ Al−1 → Al → Al+1 → Al+2 → ...

with differential induced from d′1.
Define dj := dim(Σj). Proceed in the same way with all the direct sum-

mands (5.20) appearing in all the exact sequences (5.10) for any Σj 6= Y not
of dimension 0, and any q. Taking into account the splitting (5.19), from the
exact sequence (5.18), we obtain an exact sequence of the form

...→
⊕
dj=0

⊕
q≥0

Hb(Y, (E(K)p,q1 )Σj [−q])→
⊕
dj=0

⊕
q≥0

Hb(Y, (E(K)p+1,q
1 )Σj [−q])→ ...

The group Hb(Y, (E(K)p,q1 )Σj )[−q] vanishes unless q = b, because (E(K)p,q1 )Σj

has 0-dimensional support, so the sequence becomes

...→
⊕
dj=0

Hq(Y, (E(K)p,q1 )Σj [−q])→
⊕
dj=0

Hq(Y, (E(K)p+1,q
1 )Σj [−q])→ ...

Using that the morphism d′1(p, b, j1, j2, q1, q1) vanishes if j1 6= j2, we obtain
that this sequence is the direct sum over the set of 0-dimensional supports (for
fixed q) of the sequences (5.10).
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Lemma 5.2.3. Any generic hyperplane section of a rational homology mani-
fold Y is a rational homology manifold.

Proof. Choose a Whitney stratification of Y . A generic hyperplane H does
not meet the 0 dimensional stratum, and so for any point y ∈ Y ∩ H there
exists a neighborhood U of y in Y such that U = (U ∩H)×D, where D is a
disk. The proof follows now from easy homological considerations.

5.3. A computation in the cobordism group of self-
dual complexes

In this section, we give the proof of Theorem 5.0.2. We will show in Section
5.3.1 that

sdR([Y ])− [ICY ] = 0 (5.22)

in ΩR(Y ) when Y is a projective rational homology manifold.
To obtain this vanishing, we will combine Lemma 5.3.9 with Lemma 5.2.2

proved in the previous section. In order to prove Lemma 5.3.9, we show two
preliminary results involving polarizations of Hodge structures (see Definition
2.2.11).

In Section 2.5.2, we introduced two notions of cobordism. The first one was
given by B. Youssin in [85] through the notion of elementary cobordism (see
Definition 2.5.10). The second one was given in [27] considering the directly
cobordism relation (see Definition 2.5.17). In this chapter, we consider this
second definition of cobordism group and its properties given in Section 2.5.2.
However, our result holds as well for both definitions of cobordism, since the
key identity in ΩR(X), which is provided in Lemma 5.3.6 holds for it (see
Remark 5.3.7).

Let Y be a compact complex algebraic variety. Consider a self-dual R-
complex (F , S), that is a pair (F , S) with F ∈ Ob(Db

c(Y )) and S : F⊗F → DY
is a perfect pairing (see Definition 2.5.14), where DY is the dualizing complex
on Y (see Definition 2.3.9). Notice that we can consider equivalently the
definition of self-dual complex given by B. Youssin (see Definition 2.3.13 and
Remark 2.5.15) instead of perfect pairings.

Let ε : Z → Y be a projective morphism of complex algebraic varieties,
with Z smooth of dimension d. By Remark 2.5.16, we have the pair (RZ [d], σZ)
is a self-dual complex, where σZ : RZ [d] ⊗ RZ [d] → DZ is the perfect pairing
given by usual real numbers multiplication. By Remark 2.5.20, we have that
Rε∗RZ [d] inherits a perfect pairing

S : Rε∗RZ [d]⊗Rε∗RZ [d]→ DY . (5.23)

In this section, the complexes C appearing will be direct sums of inter-
section cohomology complexes associated with local systems. Given such a

108



5.3. A computation in the cobordism group

complex C and a subvariety Yj ⊂ Y , we denote by CYj the direct sum of those
direct summands of C whose support is exactly Yj .

Theorem 2.3.38 gives the direct sum decomposition

Rε∗RZ [d] ∼=
M⊕

i=−M

pHi(Rε∗RZ [d])[−i]. (5.24)

The pairing (5.23) induces a perfect pairing

pH0(S) : pH0(Rε∗RZ [d])⊗ pH0(Rε∗RZ [d])→ DY , (5.25)

and, by Proposition 2.5.19 (see also Proposition 2.5.12), we have the equality
of classes

[(Rε∗RZ [d], S)] = [(pH0(Rε∗RZ [d]), pH0(S))] (5.26)

in ΩR(Y ).

Let η be the first Chern class of a relative ample bundle for ε. Relative
Hard-Lefschetz Theorem (see Theorem 2.3.37) is satisfied, that is, η induces
isomorphisms

ηi : pH−i(Rε∗RZ [d])→ pHi(Rε∗RZ [d]), (5.27)

and we have the direct sum decomposition

pH−i(Rε∗RZ [d]) ∼=
⊕
l≥0

P−i−2l(Rε∗RZ [d]) (5.28)

for every non-negative i, where P−i−2l(Rε∗RZ [d]) denotes the primitive part
of pH−i−2l(Rε∗RZ [d]). We remind that P−i(Rε∗RZ [d]) is defined to be the
kernel of ηi+1 : pH−i(Rε∗RZ [d]) → pHi+2(Rε∗RZ [d]) in the abelian category
of perverse sheaves (see Section 2.3.4). For i = 0, this decomposition is or-
thogonal for the self-duality (5.25).

The Decomposition Theorem also implies that each P−i(Rε∗RZ [d]) is a
direct sum of simple intersection cohomology complexes (see Section 2.3.4 and
Section 2.3.3). Then, we have the decomposition

P−i(Rε∗RZ [d]) ∼=
⊕
j∈J
P−i(Rε∗RZ [d])Yj , (5.29)

where {Yj}j∈J is the collection of possible supports. Since any morphism
between two simple perverse sheaves with different strict support vanishes (see
Remark 2.3.32), this decomposition is also orthogonal for the pairing (5.25).
As a consequence we get the following equality in ΩR(Y ):

[(pH0(Rε∗RZ [d]), pH0(S))] =
∑
j∈J

∑
l≥0

[(P−2l(Rε∗RZ [d])Yj , S
l
Yj )], (5.30)
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where SlYj denotes the restriction of the perfect pairing pH0(S) to the orthog-

onal direct summand P−2l(Rε∗RZ [d])Yj .

The complex P−2l(Rε∗RZ [d])Yj is isomorphic to ICYj (L), for a certain local
system L in a Zariski open subset Uj of Yj . For each y ∈ Uj , we consider the
inclusion iy : {y} → Yj . We have the identification i!yICYj (L)[dim(Yj)] ∼= Ly
and applying the functor i!y(−)[2 dim(Yj)], we obtain a perfect pairing

QαYj ,y := i!yS
l
Yj [2 dim(Yj)] : Ly ⊗ Ly → R.

In order to fix our convention, we follow the definition of polarization as
Definition 2.2.11.

Lemma 5.3.1. Define d(j, i) := dim(Z)− dim(Yj)− i. For any point y ∈ Uj
the stalk Ly has a pure R-Hodge structure of weight d(j, 2l) and

(−1)(1/2)d(j,2l)(d(j,2l)+1)+(d−dim(Yj)) dim(Yj)QαYj ,y

is a polarization.

Remark 5.3.2. A proof of this lemma is also possible using M. Saito the-
ory of Hodge modules as follows: by [74, Theorem 5.3.1] ICYj (L) underlies

a polarized pure Hodge module, whose polarization is the perfect pairing SlYi
up to a sign which is precisely determined. Such a pure Hodge module cor-
responds to a polarized variation of Hodge structures whose local system is
L. A dictionary comparing the signs of polarizations of pure Hodge modules
and polarizations of their corresponding variation of pure Hodge structures is
provided in [74, 5.2.12]. Here, we have to notice that since in our convention
for polarization we insert Weil’s operator on the left, and in Saito’s convention
it is inserted in the right, one need to multiply by the extra sign (−1)w, where
w is the weight of the variation of pure Hodge structures. Then, the sign
dictionary is the following: if a perfect pairing S induces a polarization of a
variation of pure Hodge structures of weight w and support of pure dimension
d, then (−1)(1/2)d(d−1)+wS induces a polarization of the corresponding pure
Hodge module.

However, for our proof, no Hodge modules or variations of Hodge structures
are really needed. For us it is enough to understand a sigle stalk of L. So,
below we prove the lemma using computations based on classical Hodge theory.

Proof of Lemma 5.3.1. First we prove the lemma for the case of the structure
morphism ε : Z → Y = {pt}. Due to the shift, the intersection form

Q : Hd(Z,R)⊗Hd(Z,R)→ H2d(X,R) ∼= R

that this pairing induces equals (−1)d〈−,−〉, where

〈−,−〉 : Hd(Z,R)⊗Hd(Z,R)→ H2d(X,R) ∼= R
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is the usual intersection form, induced by the pairing RZ ⊗RZ → RZ . Indeed,
let A•Z be the de Rham complex of Z. We have a chain of isomorphisms

A•Z [d]⊗A•Z [d] ∼= A•Z⊗R[d]⊗A•Z⊗R[d] ∼= A•Z⊗A•Z⊗R[d]⊗R[d] ∼= A•Z⊗A•Z⊗R[2d],

of which the second maps

β ⊗ λ[d]⊗ γ ⊗ µ[d]→ (−1)dlβ ⊗ γ ⊗ λ[d]⊗ µ[d]

for β⊗λ[d]⊗γ⊗µ[d] ∈ AkZ⊗R[d]⊗AlZ⊗R[d]. This induces a (−1)d
2

= (−1)d

sign comparing the pairings Q and 〈−,−〉.
In this case, the stalk Ly is identified with Pd−2l(Z), where Pd−2l(Z)

denotes the η-primitive part of the cohomology Hd−2l(Z,R). By the clas-
sical Hodge-Riemann bilinear relations (see Example 2.2.12), we have that
(−1)(1/2)(d−2l)(d−2l−1)〈−,−〉 is a polarization of Pd−2l(Z), with the pure Hodge
structure inherited from Hd−2l(Z,R). The lemma holds in this case because
(−1)d = (−1)d−2l and

(1/2)(d− 2l)(d− 2l − 1) + d− 2l = (1/2)(d− 2l)(d− 2l + 1).

Now we consider the general case. Let ι : Hj ↪→ Y be the inclusion map,
where Hj is the intersection of dim(Yj) generic hyperplanes in Y . By generic-
ity, we have that

1. ZHj := ε−1(Hj) is smooth, and ε|ZHj : ZHj → Hj is a resolution of

singularities.

2. Set c := dim(Yj). The intersection Yj′ ∩Hj is of dimension dim(Yj′)− c,
and empty if c > dim(Yj′). If the intersection is not empty, then Uj′∩Hj

is dense in Yj′ ∩Hj .

3. There is a tubular neighborhood T (Hj) in Y and a continuous retraction
map π : T (Hj) → Hj , such that π is topologically equivalent to a real
vector bundle over Hj of rank 2c, and such that for every j′ ∈ J such that
dim(Yj′) ≥ c, we have Yj′ ∩ T (Hj) = π−1(Yj′ ∩Hj) and Uj′ ∩ T (Hj) =
π−1(Uj′ ∩Hj).

By the third property above and [31, 5.4.1, 5.4.3], we obtain that for every
j′ such that dim(Yj′) ≥ c, the complex ι!P−2l(Rε∗RZ [d])Yj′ [dim(Yj)] is the
intersection cohomology complex associated with the restriction to Uj′ ∩ Hj

of the local system corresponding to P−2l(Rε∗RZ [d])Yj′ [dim(Yj)].

By [31, 5.4.1], we have ι!RZ [d][dim(Yj)] = RZHj [d−dim(Yj)] and by apply-

ing (2.3), we obtain that R(ε|ZHj )∗RZHj [d − dim(Yj)] = ι!Rε∗RZ [d][dim(Yj)].

Then, applying pH0(ι!(−)[2 dim(Yj)]) to the decompositions (5.24), (5.28)
and (5.29), and noticing that ι!(−)[2 dim(Yj)] transforms the shifted perverse
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sheaves appearing in the decomposition into shifted perverse sheaves, we ob-
tain the following decomposition

pH0(R(ε|ZHj )∗RZHj [d− dim(Yj)]) ∼=
⊕
l≥0

⊕
j′∈J

ι!P−2l(Rε∗RZ [d])Y ′j [dim(Yj)],

which is the η-primitive decomposition of pH0(R(ε|ZHj )∗RZHj [d − dim(Yj)]).

We denote by SlYj′∩Hj
the restriction of the perfect pairing R(ε|ZHj )∗σZHj to

the orthogonal summand ι!P−2l(Rε∗RZ [d])Yj′ [dim(Yj)].
We have the equality of perfect pairings

SlYj′∩Hj = (−1)(d−dim(Yj)) dim(Yj)ι!SlYj′ [2 dim(Yj)]. (5.31)

This sign comes by a reason analogous to the sign comparing Q and 〈−,−〉
above, since the dimension of ZHj is d − dim(Yj) and ι!RZ [d][dim(Yj)] =
ι∗RZ [d][−dim(Yj)] by [31, 5.4.1]. Furthermore, the bilinear form QαYj′ ,y

co-

incides with the bilinear form QαYj′∩Hj ,y
associated with e!

yS
l
Yj′∩Hj

, up to the

sign (−1)(d−dim(Yj)) dim(Yj). This reduces the proof to the case in which Yj
equals a point.

Assume that Yj = {y}. The vector space P−2l(Rε∗RZ [d])Yj inherits a

perfect pairing SlYj , which coincides with the bilinear form QαYj ,y since Yj =

{y}. By [18, Corollary 2.1.7, Theorem 2.1.8], we have P−2l(Rε∗RZ [d])Yj is a
R-Hodge structure of weight d − 2l and that QαYj ,y is a polarization up to a

sign. Below we reduce a self contained argument proving this and determining
the sign.

Consider the structure morphisms f : Z → {pt} and g : Y → {pt}. Notice
that P−2l(Rε∗RZ [d])y is a direct summand both Rε∗RZ [d] supported at the
point y and of the primitive part Pd−2l(Z) of Hd−2l(Z,R) = R−2lf∗RZ [d].
Since we have proven the lemma for the case of the structure morphims,
the perfect pairing Rf∗σZ induces a bilinear form Q′y on Pd−2l(Z) such that

(−1)(1/2)(d−2l)(d−2l+1)Q′y is a polarization. Then the proof of the lemma is fin-

ished because the restriction of Q′y to P−2l(Rε∗RZ [d])y coincides with QαYj ,y.

The last claim holds because we have the equality of perfect pairings

Rf∗σZ = Rg∗Rε∗σZ ,

(see Theorem 2.3.2) and since P−2l(Rε∗RZ [d])y is supported at a point y the
functor Rg∗ restricted to it takes global sections and identifies the perfect
pairing Rf∗σZ with the restriction of Rε∗σZ to P−2l(Rε∗RZ [d])y.

Remark 5.3.3. The use of hyperplane sections in Lemma 5.3.1 does not force
projectivity assumptions. Indeed, the statement is local in Y , and Y can be
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covered by affine patches that can be completed to projective varieties for
which the proof works (the completion is needed because the compactness of
the resolution Z is used in the last part of the proof).

Let V be a semi-simple R-perverse sheaf with strict support in an irre-
ducible variety Y (that is, the support of any of its simple components is Y ).
Let U be a Zariski open subset such that V|U = L where L is a R-local system.
Assume that for a given y ∈ U the fibre Ly is endowed with a pure Hodge
structure.

Definition 5.3.4. Let α : V ⊗V → DY be a perfect paring. Then, α is called
a polarizing self-duality for the Hodge structure at y if α induces a polarization
Qα,y : Ly ×Ly → R of the Hodge structure. If the negative of the self-duality
is polarizing, then we say that the self-duality is (−1)-polarizing for the Hodge
structure at y.

Remark 5.3.5. Lemma 5.3.1 states that the pairing SlYj on P−2l(Rε∗RZ [d])Yj

induces a (−1)(1/2)d(j,2l)(d(j,2l)+1)+(d−dim(Yj)) dim(Yj)-polarizing self-duality for
the Hodge structure induced at Ly for any point y ∈ Uj . In other words, the
fact that SlYj is polarizing or (−1)-polarizing does not depend on the point
y ∈ Uj .

Lemma 5.3.6. Let α and α′ be polarizing self-dualities of V for the same
Hodge structure at y. Then (V, α) and (V, α′) represent the same element in
ΩR(Y ).

Proof. For any s ∈ [0, 1] the morphism sα+(1−s)α′ is a polarizing self-duality.
Indeed, since both α and α′ are polarizing there exits a common open subset
U of Y such that Qα,y and Qα′,y are polarizations for any y ∈ U . Therefore
an straightforward check of the conditions of Definition 2.2.11 imply that for
any y ∈ U , the bilinear form

Qsα+(1−s)α′,y = sQα,y + (1− s)Qα′,y

is a polarization of the Hodge structure Ly. This implies that Qsα+(1−s)α′,y is
non-degenerate for any s. Then, in order to complete the proof it is enough
to use Proposition 5.3.8 below.

Remark 5.3.7. The equality proved in the previous Lemma holds for all the
possible definitions of ΩR(Y ) mentioned in Section 2.5.2.

Proposition 5.3.8. Let L be a R-local system on U and Qs a smooth 1-
parameter family of non-degenerate symmetric or anti-simmetric pairings of
L parametrized by an interval I. Then I admits an open cover I = ∪j∈JIj
such that for any j there exists a smooth family of automorphisms T (s) of L
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, s ∈ Ij, so that Qs(T (s)(−), T (s)(−)) is independent of s. Consequently, for
any s, s′ ∈ I there is an automorphism Ts,s′ of L such that

Qs′(Ts,s′(−), Ts,s′(−)) = Qs(−,−).

Proof. The local system L is a representation ρ : π1(U, y)→ GL(Ly) which is
orthogonal for Qs,y for any s.

By Gram-Schmidt process in the symmetric case, and by the proof of
uniqueness of non-degenerate anti-symmetric real bilinear forms, for any s0 ∈ I
there exists a neighborhood Is0 of s0 in I and a smooth family of automor-
phisms N(s), s ∈ Is0 (not necessarily compatible with the monodromy) such
that N(s0) = Id and

Qs,y(N(s)(−), N(s)(−)) = Qs0,y(−,−)

for all s. Considering Mγ(s) := N(s)−1ρ(γ)N(s) we obtain a smooth family of
real orthogonal representations for Qs0,y.

If Qs0,y is symmetric and (n,m) is its signature of Qs0,y we define W to be
the diagonal matrix In,m be the diagonal matrix of size n + m such that the
(i, i) component equals 1 if i ≤ n and −1 if i > n. If Qs0,y is anti-symmetric
the rank of the local system is even and we define W to be the matrix(

0 I
−I 0

)
(5.32)

where I denotes the identity matrix. Denote O(W ) the orthogonal group for
the bilinear form W . Then, the proposition is reduced to the following claim:

Claim: Let Mγ(s) : π1(Uj , y) → O(W ) be a smooth family of orthogonal
representations for the quadratic form W . If there exists a family N(s) of
invertible matrices such that N(0) = Id and we have the conjugation Mγ(s) =
(N(s))−1Mγ(0)N(s) for any γ ∈ π1(Uj , y), then there exists a family P (s)
of orthogonal matrices such that Mγ(s) = (P (s))−1Mγ(0)P (s) for any γ ∈
π1(Uj , y).

In order to make the proof of the claim, we recall some facts about Lie
groups (it can be considered only the case of matrix Lie groups, this is the
case that will be used). See [48] for generalities on smooth manifolds, and
Lie groups; flows associated to time dependent vector fields are discussed in
Exercise 12-7 of loc. cit.

Let G be a matrix Lie group. Its Lie algebra g is identified with the spaces
of left-invariant vector fields. Denote by Lg : G→ G the left multiplication by
g. We denote the set of smooth paths g : [0, 1]→ G by C∞([0, 1], G). A path
v(t) ∈ C∞([0, 1], g) is viewed as a left-invariant time dependent vector field,
that is, a vector field in G × [0, 1] such that its [0, 1]-component is the unit
vector field ∂

∂t in positive direction, and such that its G-component is invariant
by the action of G by left multiplication. We say that v(t) is integrable if the
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integral flow associated with it is defined in the domain G× [0, 1]. In order to
check integrability, by left invariance, it is enough to check the existence of an
integral curve whose domain is [0, 1]. We denote by C∞([0, 1], g)int the set of
maps giving rise to integrable left invariant time dependent vector fields.

We define the left bijection

L : C∞([0, 1], G)→ G× C∞([0, 1], g)int

as follows. Given a smooth path g : [0, 1]→ G we define g′ : [0, 1]→ g by the
formula

g′(s) := DLg(s)−1(g(s))(
dg(u)

du
|u=s).

Given g(s) ∈ C∞([0, 1], G) we define L(g(s)) to be the pair (g(0), g′(s)).
Conversely, given a pair (g0, v(t)) ∈ G × C∞([0, 1], g)int, we view v(t) as a
left-invariant time dependent vector field and define L−1(g0, v(t)) to be the
unique integral curve of the time dependent vector field v(t) with initial point
g(0) = g0.

The set C∞([0, 1], G) has a group structure. Given h ∈ G and g(s) ∈
C∞([0, 1], G), define h(s) := g(s)−1hg(s), a straightforward Lie group compu-
tation shows the formula

h′(s) = g′(s)− h(s)−1g′(s)h(s). (5.33)

Indeed, since left multiplcation by a matrix is a linear transformation at the
space of matrices we may write

DLg(s)−1(g(s))(
dg(u)

du
|u=s) = g(s)−1(

dg(u)

du
|u=s).

Using this, Leibnitz rule for derivation and the formula for the derivation of
the inverse we obtain

h′(s) = h(s)−1(
dh(u)

du
|u=s) =

= h(s)−1(−g(s)−1(
dg(u)

du
|u=s)g(s)−1hg(s) + g(s)−1h(

dg(u)

du
|u=s)) =

= −h(s)−1g(s)−1(
dg(u)

du
|u=s)g(s)−1hg(s) + g(s)−1h−1g(s)g(s)−1h(

dg(u)

du
|u=s) =

= −h(s)−1g′(s)h(s) + g′(s).

Let W be (−1)β-symmetric. Then we have W 2 = (−1)βId and the Lie
algebra o(W ) of the Lie group is O(W ) the subspace of matrices N satisfying

(−1)β+1WN tW = N.

So o(W ) is the eigenspace for eigenvalue 1 of the involutionN 7→ (−1)β+1WN tW
in the real vector space of square matrices. The vector space of square ma-
trices splits as the direct sum of the eigenspaces with eigenvalues +1 and −1
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respectively for the involution. Given any square matrix N we decompose it
accordingly as N = N+ +N−.

Formula (5.33) applied to Mγ(s) = N(s)−1Mγ(0)N(s) yields

M ′γ(s) = N ′(s)−Mγ(s)−1N ′(s)Mγ(s).

We have

M ′γ(s) = M ′γ(s)+ = N ′(s)+ −Mγ(s)−1N ′(s)+Mγ(s). (5.34)

The first equality is because Mγ(s) belongs to O(W ) for all s. For the second
equality write N ′(s) = N ′(s)+ +N ′(s)−. It is enough to show the equalities

(Mγ(s)−1N ′(s)Mγ(s))+ = Mγ(s)−1N ′(s)+Mγ(s),

(Mγ(s)−1N ′(s)Mγ(s))− = Mγ(s)−1N ′(s)−Mγ(s),

but they follow from an elementary matrix computation using that since
Mγ(s) ∈ O(W ) we have

Mγ(s)−1 = (−1)βWMγ(s)tW.

Define P (s) := L−1(Id,N ′(s)+). Since N ′(s)+ ∈ o(W ) we have P (s) ∈
O(W ). The equality Mγ(s) = (P (s))−1Mγ(0)P (s) is obtained by applying
L−1(Id,−) to Equation (5.34).

In the following Lemma we will use the following notation: certain semi-
simple perverse sheaves with strict support V are endowed with polarizable
Hodge structures at their stalks at generic points by Lemma 5.3.1. We denote
by [V,⊕] the class in ΩR(Y ) represented by V together with a polarizing self-
duality (this definition makes sense by Remark 5.3.5 and Lemma 5.3.6). We
denote by [V,	] the class with a (−1)-polarizing self-duality. If a semi-simple
perverse W together with a self duality sheaves is a direct sum of polarizing
semi-simple perverse sheaves with strict support, then we denote by [W,⊕] its
class in ΩR(Y ); we denote by [W,	] the class of the opposite self-duality.

Lemma 5.3.9. Define βd,j := (d − dim(Yj)) dim(Yj). We have the following
equality in ΩR(Y ):

[(pH0(Rε∗RZ [d]), pH0(S))] =

=
∑
j∈J

M∑
i=−M

(−1)(1/2)d(j,−i)(d(j,−i)+1)+βd,j [pHi(Rε∗RZ [d])Yj ,⊕] =

=
∑
j∈J

(
∑
i=even

(−1)(1/2)d(j,−i)(d(j,−i)+1)+βd,j [pHi(Rε∗RZ [d])Yj ,⊕]+

+
∑
i=odd

(−1)(1/2)d(j,−i)(d(j,−i)+1)+βd,j [pHi(Rε∗RZ [d])Yj ,	]).

(5.35)
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Proof. For each j ∈ J , the Equation (5.28) gives the decomposition

pH0(Rε∗RZ [d])Yj '
⊕
l≥0

P−2l(Rε∗RZ [d])Yj

where the decomposition is orthogonal for the perfect pairing of pH0(Rε∗RZ [d])Yj ,

and the perfect pairing of P−2l(Rε∗RZ [d])Yj induced from the perfect pairing

of pH0(Rε∗RZ [d])Yj is (−1)(1/2)d(j,2l)(d(j,2l)+1)+βd,j -polarizing by Lemma 5.3.1.
Then we have the equality

[pH0(Rε∗RZ [d])Yj ] =
∑
l≥0

(−1)(1/2)d(j,2l)(d(j,2l)+1)+βd,j [P−2l(Rε∗RZ [d])Yj ,⊕].

(5.36)

in ΩR(Y ).
By Equations (5.27) and (5.28), we have the equality

[pH−i(Rε∗RZ [d])Yj ,⊕] = [pHi(Rε∗RZ [d])Yj ,⊕] =
∑
l≥0

[P−i−2l(Rε∗RZ [d])Yj ,⊕]

in ΩR(Y ) for any i ≥ 0.
Plugging this equalities into the middle term of (5.35), making the needed

cancellations and comparing with the left hand side of (5.35) expressed as
in (5.36), the first equality of (5.35) follows.

We show here part of the cancellation process. We write

pHi := [pHi(Rε∗RZ [d])Yj ,⊕] and P−2l := [P−2l(Rε∗RZ [d])Yj ,⊕].

Then, using Hard-Lefschetz Theorem, we have

(−1)(1/2)d(j,0)(d(j,0)+1)+βd,j

M∑
i=−M

(−1)(1/2)d(j,−2i)(d(j,−2i)+1)+βd,j pH2i =

= pH0 − 2pH−2 + 2pH−4 − 2pH−6 + ... =

= (P0 + P−2 + P−4 + P−6 + ...)− 2(P−2 + P−4 + P−6 + ...)+

+ 2(P−4 + P−6 + ...)− 2(P−6 + ...) + ... =

= P0 −
(
(P−2 + P−4 + P−6 + ...)− 2(P−4 + P−6 + ...)+

+ 2(P−6 + ...)− ...
)

= P0 − P−2 + P−4 − P−6 + ... =

= (−1)(1/2)d(j,0)(d(j,0)+1)+βd,j
∑
l≥0

(−1)(1/2)d(j,2l)(d(j,2l)+1)+βd,jP−2l.

This shows the cancellations in the middle term of formula (5.35) when i is
even. The i odd part of the middle term of formula (5.35) cancels completely
by a similar process, and by this complete cancellation the equality with the
right hand side follows.
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5.3.1. Proof of Theorem 5.0.2

Here, we conclude the proof of Theorem 5.0.2. We will show that the difference
of cobordism classes sdR([Y ]) − [ICY ] vanishes after applying the obtained
results in the previous sections.

For any k, the variety Xk is a disjoint union of smooth varieties of different
dimensions. By dk we denote the function that assigns to each connected
component of Xk its dimension, and given a complex of sheaves C on Xk we
denote by C[dk] the same complex, shifted at the dimension in each connected
component.

We have to prove

sdR([Y ])− [ICY ] = 0

in ΩR(Y ). Indeed, Equation (5.5) in Lemma 5.1.1 implies

sdR([Y ]) = sdR([Ỹ ]) +

n∑
i=1

sdR([X0,i]) +

n∑
k=1

(−1)ksdR([Xk]). (5.37)

Since at the cobordism group ΩR(Y ) only the 0-th perverse cohomology mat-
ters, by applying Equation (5.26), we also have

sdR([Ỹ ]) +

n∑
i=1

sdR([X0,i]) = [ICY ] +

N∑
j=1

[Rε∗RX0 [d0]Σj ] =

= [ICY ] +
N∑
j=1

[pH0(Rε∗RX0 [d0])Σj ]

and

sdR([Xk]) =

N∑
j=1

[Rε∗RXk [dk]Σj ] =

N∑
j=1

[pH0(Rε∗RXk [dk])Σj ]

for every k > 0.

Substituting the above expressions in Equation (5.37) and by applying
Lemma 5.3.9, we obtain

sdR([Y ])− [ICY ] =
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=
N∑
j=1

n∑
k=0

Mk∑
i=−Mk

(−1)k+(1/2)(dk−dj+i)(dk−dj+i+1)+βdk,j [pHi(Rε∗RXk [dk])Σj ,⊕] =

=

N∑
j=1

n∑
k=0

2dk∑
q=0

(−1)k+(1/2)(q−dj)(q−dj+1)+βdk,j [pHq(Rε∗RXk)Σj ,⊕] =

=
N∑
j=1

n∑
k=0

∑
q−dk=even

(−1)k+(1/2)(q−dj)(q−dj+1)+βdk,j [pHq(Rε∗RXk)Σj ,⊕]+

+
N∑
j=1

n∑
k=0

∑
q−dk=odd

(−1)k+(1/2)(q−dj)(q−dj+1)+(dk−dj+1)dj [pHq(Rε∗RXk)Σj ,⊕].

The last equality uses the last equality of Equation (5.35) when dj is odd.
The proof concludes noticing that for any q, k, k′ such that dk − q is even

and dk′−q is odd the signs (−1)βdk,j and (−1)(dk−dj+1)dj coincide. Then, since
the sign (−1)(1/2)(q−dj)(q−dj+1) is constant for q and Σj fixed, one can use the
exact sequences of Lemma 5.2.2 for each support Σj and any q and conclude
using Lemma 5.3.6.
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l’Institut des Hautes Études Scientifiques, 40:5–57, 1971.
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179(180):145–162, 1989.

[76] M. Saito. Mixed Hodge modules. Publications of the Research Institute
for Mathematical Sciences, 26(2):221–333, 1990.
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