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Abstract: Certainly, the success of polythiophenes is due in the first place to their outstanding
electronic properties and superior processability. Nevertheless, there are additional reasons that
contribute to arouse the scientific interest around these materials. Among these, the large variety
of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In
particular, a turning point was marked by the diffusion of synthetic strategies for the preparation
of terthiophenes: the vast richness of approaches today available for the easy customization of
these structures allows the finetuning of their chemical, physical, and optical properties. Therefore,
terthiophene derivatives have become an extremely versatile class of compounds both for direct
application or for the preparation of electronic functional polymers. Moreover, their biocompatibility
and ease of functionalization make them appealing for biology and medical research, as it testifies to
the blossoming of studies in these fields in which they are involved. It is thus with the willingness to
guide the reader through all the possibilities offered by these structures that this review elucidates
the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives.
In the final part, an in-depth presentation of their numerous bioapplications intends to provide a
complete picture of the state of the art.

Keywords: conjugated polymers; polythiophenes; terthiophenes; thiophene trimers; biosensing;
photosensitizers

1. Introduction

Today, conductive polymers have become inalienable components of a wide spectrum
of advanced technologies, including sensor and biosensors, batteries, solar cells, LEDs, and
organic transistors [1–6]. Among conductive polymers, poly(3,4-ethylenedioxothiophene)
(PEDOT) is undoubtedly the most widespread. In fact, a set of useful properties, such as
high conductivity, superior photostability, low redox potential, transparency, and good
processability, contributes to the exceptionality of this polymer [7]. Typically purchased as
a water dispersion of PEDOT:PSS (poly(styrene)sulfonate), PEDOT is cheap and readily
available for research purposes. As an alternative, PEDOT can be easily prepared by poly-
merization from the EDOT monomer, allowing the preparation of films on a wide range
of substrates. While for the above-mentioned reasons PEDOT was quickly establishing
itself as the gold standard of conductive polymers, the progress in organic synthesis gradu-
ally disclosed new possibilities for the easier preparation and modification of alternative
thiophene-based structures, including thiophene and EDOT monomers carrying different
functional groups. Therefore, a new research branch focused on the preparation of more
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complex thiophene-based structures has blossomed, taking advantage of the introduction
of functionalities for the tuning of physical, chemical, and optical properties towards se-
lected and specific applications. Nevertheless, the use of these functional structures is still
relatively narrow with respect to the ubiquity of PEDOT. The main reason behind this are
probably the costs. The synthesis of functionalized monomers requires organic laboratory
facilities, specific knowledge, and time. On the other hand, dozens of publications per
year demonstrate that the modification of thiophene-based monomers is a tremendous
approach for the preparation of advanced functional materials.

In this framework, the preparation of thiophene-based trimers has proven to be an
interesting solution, resulting in a relatively simple synthesis and with the capability to
afford complex structures with variable functional groups. In fact, the compatibility with
the polymerization conditions of the monomer side groups connected to position 3–4 or
2–3 of the thiophene or the EDOT, respectively, (see Scheme 1) is limited. For example, the
common precursor hydroxymethyl-EDOT cannot be converted to carboxylic acid without
triggering the undesired polymerization. In some cases, the functional group contributes to
lowering the oxidation potential of the monomer, making it particularly sensitive towards
uncontrolled polymerization, while, in other cases, the influence of the side group has
the opposite effect, hampering the polymerization [8]. Many of these problems can be
overcome by the synthesis of terthiophene (thiophene trimer): the presence of a side group
in position 3′ or 4′ on the central unit will interfere less with the trimer polymerization in
position 5 and 5′′ (Scheme 1), thus allowing the introduction on the polymer of functional
groups otherwise incompatible. Moreover, in contrast to monomers, trimers allow us to
obtain perfectly alternated copolymers. This opportunity is undeniably useful when it
is pursued with the preparation of donor–acceptor copolymers with tunable bandgaps.
Additionally, being symmetrical molecules, polymerizable trimers are frequently easier to
prepare with respect to dimers, especially when very efficient synthetic strategies, such as
Suzuki coupling, are covered. Furthermore, although trimers are generally synthesized as
polymers precursors, they have also been exploited for several direct applications, thanks to
their interesting optical properties that result from the large electron delocalization. Finally,
both trimers and polymers have been demonstrated to be safe and biocompatible materials.

Scheme 1. EDOT, thiophene, and terthiophene chemical structures.

Terthiophenes can therefore be an elegant and efficient solution for those who may look
for novel optoelectronic materials and photoactive molecules for bioapplications. With that
in mind, this review aimed to offer an exhaustive walkthrough over the thiophene-based
trimer structures reported in the literature until now. Thus, the first part is dedicated to the
presentation of the different synthetic strategies employed for the trimer scaffold synthesis,
independently from the functional side groups. The central part is a compendium of all
the functional groups that have been introduced on thiophene-based trimers, classified
per elementary organic group; in order to skim the literature, polymerizable thiophene-
trimer was preferred (i.e., bearing hydrogen atoms in positions 5 and 5′′). Finally, the latter
part is focused on the most promising applications of trimer-based materials in biology
and medical science. In particular, sensing, photodynamic therapy, drug delivery, tissue
engineering, antibacterial, and pesticide activity are discussed.
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2. Synthetic Methodologies

The first isolated terthiophene was reported in 1942 andwas obtained as a byproduct
in the synthesis of bisthiophene [9]. The Ullmann coupling method was exploited for the
bisthiophene synthesis by treating 2-iodothiophene with copper. Even if the main product
of the reaction was bithiophene, terthiophene was also isolated in a small amount [10]. It is
worth mention that, in 1947, terthiophene was extracted from a natural source: marigold
flowers [11]. Since then, various approaches have been developed for the synthesis of
terthiophenes, which can be grouped into two routes: the C–C bond formation between
thiophenes or the ring closure reaction from precursor molecules (Scheme 2).

Scheme 2. The two main synthetic routes for the obtaining of the trimer scaffold.

2.1. Carbon–Carbon (C–C) Cross-Coupling Methods

Metal-promoted C–C coupling reactions are widely reported in the literature because
of the ease of the experimental protocols and the high yield related. They consist in the
formation of a new C–C bond with the aid of a metal catalyst. A description of the different
C–C cross-coupling reactions is presented in the following sections.

2.1.1. Kumada Reaction

Since the moment that conducting polymers were discovered, immediate attention
was given to the synthesis of polyaromatic polymers such as polythiophenes [12]. In
1980, the Kumada reaction [13] was used for the synthesis of conducting polymers by
Grignard cross–coupling of heterocyclic compounds [14,15]. Afterwards, the Kumada
reaction was reported several times as an efficient method for the synthesis of various types
of oligothiophenes. The Grignard reagent preparation and the further cross-coupling are
usually performed in a one-pot reaction. First, 2-bromothiophene in ether-based solvent
reacts with Mg in order to generate the corresponding organometallic compound; second,
the addition of dibromothiophene derivatives and a metal catalyst (typically nickel or
palladium complexes, 0.01–0.1 eq.) allows the elimination of magnesium bromide and
the formation of a C–C bond. Organolithium intermediates could be useful to prepare
derivatives bearing a bromine and a magnesium bromide on the same ring. The reaction
proceeds under mild conditions with high reaction yields. A representative reaction scheme
for terthiophene synthesis by Kumada coupling is depicted in Scheme 3. Terthiophenes
synthesized by Kumada coupling have been used for direct applications or as intermediates
for further reactions [16–24].

Scheme 3. Nickel-catalyzed Kumada reaction for the synthesis of terthiophene [16,18].

The Kumada reaction has some drawbacks with respect to other types of metal-
catalyzed cross-coupling reactions. In fact, Mg or Li reagents are also reactive towards some
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types of organic groups, including aldehydes and ketones, affording undesired byproducts
when they are present as thiophene side groups [10]. To overcome this limitation, protecting
groups can be used to mask the sensitive functional groups before the Kumada reaction.
Another drawback is the high sensitivity to water and air of this reaction, which requires
dry and oxygen-free reagents and solvents to achieve good yields.

2.1.2. Stille Reaction

Stille cross-coupling consists of the palladium-catalyzed C–C bond formation be-
tween an organotin aromatic compound and an aryl halide. Several types of palladium
complex catalysts have been developed, such as Pd(PPh3)4, Pd(PPh3)2Cl2, Pd(dppp)Cl2,
Pd(dppf)Cl2, and Pd2(dba)3. This reaction is one of the commonest methods for the syn-
thesis of terthiophene and its derivatives, since it requires mild reaction conditions, is
regioselective, and is compatible with many functional groups, including aldehydes, ke-
tones, alcohols, nitriles, and esters [10]. The synthesis of unsubstituted terthiophene by
Stille coupling is performed using 2,5-dibromo- or 2,5-diiodothiophene with organotin
derivatives (such as tributhyl(2-thienyl)tin) in presence of the Pd catalyst [25–29]. The
reaction is illustrated in Scheme 4. An alternative approach was covered in the work
of Kamal et al., where the Stille reaction was performed between a bithiophene-based
organotin compound and a 2-bromothiophene. Although for the synthesis of terthiophenes
by Stille coupling can afford high conversion yields (around 75–90%), the acute toxicity of
organotin compounds should be of concern to those who may perform this reaction.

Scheme 4. Stille reaction for the synthesis of terthiophene [25–28].

2.1.3. Suzuki Reaction

In the synthesis of terthiophenes by Suzuki cross-coupling, a palladium complex
catalyzes the C–C bond formation between a 2,5-dibromo- or 2,5-diiodothiophene and a
thiophene boronic acid or boronate ester (pinacol ester) (Scheme 5). The Suzuki reaction
is today the most common choice for the synthesis of terthiophene derivatives, thanks
to its good yield (50 to 90%) and to its compatibility with the presence of functional
groups both on the thiophene halide and on the thiophene boronate [30–32]. After the
discovery of this reaction in 1979, many studies assessed its ability to work for different
heterocyclic compounds. One of the first applications of Suzuki coupling on the synthesis
of terthiophenes was presented by Gronowitz et al. [33], which reported the coupling of
2-thiophene boronic acid with 2,5-dibromothiophene with a 40% yield. Interestingly, they
noticed that using an excess of 20% of boronic acid in the coupling reaction prevents the
formation of mono-coupled byproducts, which are difficult to separate from the product.
In the case of electron-rich heteroaromatics, the unwanted deboronation of organoboron
compounds may also occur [33]. Melucci et al. demonstrated a facile, solvent-free and
microwave-assisted approach for synthesis of various oligothiophenes derivatives via the
Suzuki reaction. They reported the coupling of dibromothiophene with thiophene boronic
acid using various Pd catalysts (5% mol with respect to boronic acid) in order to optimize the
reaction yield [34]. Another microwave-based trimer synthesis was developed by Alesi et al.
for the preparation of highly pure thiophene oligomers using silica- and chitosan-supported
Pd complexes. The trimer has also been synthesized using 2,5-diiodothiophene instead
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of 2,5-dibromothiophene [35]. A similar approach was covered by Di Maria et al., using
chitosan-supported Pd for the synthesis of terthiophene for cell imaging applications [36].

Scheme 5. Suzuki reaction for the synthesis of terthiophene [33,35].

2.2. Ring Closure Reactions

As an alternative to the C–C cross-coupling methods, ring closure reactions can be
exploited for the terthiophene formation. Here, the central thiophene ring is formed last
by a cyclization step on a precursor made of two thiophene rings connected by different
possible structures.

2.2.1. Cyclization of 1,3-diynes

This strategy involves the formation of the central thiophene ring from a bis-
thienylbutadiyne. This step gives good yields, but requires the synthesis of the diyne precur-
sor. The preparation of diynes can be performed by oxidative coupling of 2-thienylacetylenes
and further cyclization of the diyne group (Scheme 6) [37].

Scheme 6. Terthiophene synthesis by cyclization of 1,3-diynes [37].

Beny et al. first developed this strategy for the synthesis of terthiophene [37]. 2-
thienylacetylenes were synthesized in two steps from 2-thiophenealdehyde: first, this molecule
was converted to 2-(2,2-dibromoethenyl)thiophene using carbon tetrabro-mide (Corey-Fuchs
procedure), then the treatment with n-butyllithium caused the de-hydrobromination and the
formation of the alkyne. The oxidative coupling of 2-thienylacetylenes was performed with
copper chloride. In the last step, a [4+2] peri-cyclic reaction of the 1,3-diyne group is driven
by sodium sulfide, affording the final terthiophene structure in a total yield of 46%. Later,
Perrine et al. increased the overall reaction yield of the terthiophene synthesis to 77% by
improving the purification steps [38]. In another study, Carpita et al. used this synthetic
procedure for the synthesis of terthiophene and thiophene-furan-thiophene type oligomers
as antifungal agents [39]. This method was also applied for preparing terthiophene as
intermediate for further modification, i.e. to obtain diiodoterthiophene [40], and thiolate-
terthiophene [41]. In the last decade, many studies focused on the improvement and
readaptation of this cyclization reaction. Zheng et al. described a one-pot, two steps radical
reaction for cy-clization of diacetlylene precursor in the presence of KOH and sodium
disulfide in DMSO. The reaction yielded the terthiophene without the use of a transition
metal catalyst [42]. In another study, the synthesis of terthiophene was achieved from the
diacetlylene precursor with elemental sulfur and NaOtBu as reactants [43]. Urselmann et al.
reported a one-pot synthesis of terthiophene where 2-iodothiophene is converted to terthio-
phene using a Pd/Cu-catalyzed Sonogashira–Glaser process followed by sul-fide-mediated
cyclization [44].

2.2.2. Cyclization of 1,4-diketone

Another convenient method for the synthesis of terthiophenes by cyclization employs
thiophene-substituted 1,4-diketones. Wynberg et al. reported a pathway for the synthesis
of 1,4-dithienyl 1,4-diketone starting from 2-acetylthiophene. In here, a Mannich reaction
converts 2-acetylthiophene into the corresponding β-aminoketone, which reacts in a further
step with an activated thiophene aldehyde (Stetter reaction) to give the 1,4-di-(2′-thienyl)-
1,4-butanedione in 70% yield as shown in Scheme 7a [45]. The synthesis of 1,4-dithienyl
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1,4-diketones can also be achieved via Friedel-Crafts acylation, i.e. two equivalents of
thiophene are made react with succinyl chloride and AlCl3 (Scheme 7b) [46]. An alternative
approach consists of the synthesis of 1,4-di-(2′-thienyl)-1,4-butanedione by oxidation of
the silyl ether of 2-acetylthiophene [47]. Once the diketone product has been obtained, it
can be cyclized into the terthiophene by means of different strategies, including treatment
with H2S and HCl (Paal-Knorr synthesis), phosphorous (V) sulfide or Lawesson’s reagent
(L.R.) [46,48–51].

Scheme 7. Synthesis of 1,4-dithienyl 1,4-diketone: (a) via Mannich reaction using 2-acethylthiophene,
(b) via Friedel-Crafts reaction using thiophene; and cyclization to afford the terthiophene [45,46].

2.3. Other Synthetic Strategies

Ben-Haida et al. developed a unique approach, consisting of the cleavage of polymer-
supported aryl 2-thienyl ketones using a mixture of potassium tert-butoxide and water. The
cleavage reaction affords the terthiophene as product [52]. Leriche et al. reported in their
study the formation of terthiophenes as side product: their work pursued the synthesis
of star-shaped phosphorous oligothiophene derivatives, however, during the coupling
reaction, with a stoichiometric amount of 2-tributylstannylthiophene and in the presence
of Pd(PPh3)4 as catalyst undesired terthiophene was obtained in 20% yield [53].

3. Trimer Structures
3.1. Unsubstituted EDOT-Containing Thiophene-Based Trimers

In this class are included all the thiophene-based trimers composed by at least one
EDOT unit. The introduction of EDOT in the trimer is a straightforward approach for
tuning the electrical and optical properties of the whole structure. Different triads built
from different combinations of thiophene and EDOT units have been reported, including
EDOT-EDOT-EDOT, EDOT-Thiophene-EDOT and Thiophene-EDOT-Thiophene. Cross-
coupling reactions for the C-C bond formation between EDOT and thiophene monomers
have been widely exploited for the purpose.

Grignard/Kumada reaction is one of the most reported synthesis methods for the
preparation of unsubstituted EDOT trimers (TerEDOT). In here, an EDOT halide initially
reacts with Mg to form the Grignard reagent. Afterwards, dibromo- or diiodoEDOT is
added and a Ni(II) catalyst promotes the coupling to give terEDOT [54–59]. Kumada
reaction was also applied to the synthesis of other unsubstituted EDOT-based trimers, such
as thiophene-EDOT-thiophene [60,61] or EDOT-Thiophene-EDOT [62,63]. In alternative,
Suzuki [64–66] and Stille [67–70] coupling reactions offer valuable routes for the synthesis
of EDOT-based trimers. EDOT organoboron and organotin compounds can be easily
synthesized and further coupled with aryl-halide to complete the synthesis of EDOT-based
trimers. Lastly, Borghese et al. developed a novel synthetic method for the preparation
of EDOT-based trimers consisting of a direct regioselective C–H arylation reaction. The
reaction takes place between 2-bromothiophene and EDOT and it is catalyzed by Pd(OAc)2
or Pd(Cl)2. This approach provides a simple way for the synthesis of oligothiophene
series [71].

3.2. Saturated Aliphatic Substituents

Terthiophenes substituted with one or more bare aliphatic chains are among the most
reported types of thiophene-based trimers (examples in Scheme 8). One of the first reports
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dates back to 1960 and exploit a synthetic pathway discovered in 1947 [72]. It consists
of an Ullmann coupling using iodothiophene derivates bearing one or two methyl in
position 3 and/or 4 [9,73]. The methyl groups can be also inserted on the central thiophene
ring through a [4+2] cycloaddition reaction on di-carbonyl compounds that involves
elemental sulfur [37] or the Lawesson’s reagent [74]. Recently di- [75] and monomethyl [16]
derivates were prepared through Ni-catalyzed Kumada reactions [17,76,77], as well as
ethyl derivatives [78,79]. Monosubstituted trimers have been obtained with a large variety
of alkyl groups: by Kumada reaction the octyl [17,77], decyl [80] or dodecyl [81] side
groups, by cyclization reaction with substituted diketones and the Lawesson’s reagent
in the case of butyl [82], and dodecyl [82], or with phosphorus pentasulfide in the case
of eptyl [83] and octadecyl [83]. Pd-catalyzed Suzuki coupling was exploited for the
obtaining of octyl derivates [33,84]. The hexyl side chain is among the commonest alkyl
moieties in trimer derivatives. Monohexyl trimers have been synthesized by Pd-catalyzed
Kumada [85] and Stille coupling [86,87]. Dihexyl trimers substituted in 3 and 3′′ were
prepared via Ni- [88–94] or Pd-catalyzed Kumada coupling [95], Suzuki coupling [96,97]
and Stille coupling [98]. Dihexyl derivates in position 3′,4′ were obtained through a variant
of Ni-catalyzed Kumada reaction [99]. Disubstituted trimers have been achieved also with
di-methyl in 4,4′′ using Lawesson’s reagent [100] or in 3,3′′ using a Pd-Grignard [101] or Pd-
halogen coupling [102], di-butyl chains in 3′-4′ either using Ni-Grignard [103,104] or using
Pd-Grignard [105,106], di-tert-butyl 3′,4′ using a Zn-Grignard [107], di-octyl in 3,3′′ with Ni-
Grignard [108–114], Stille [115,116], Suzuki coupling [117] and halogen substitution [118],
di-decyl in 3′,4′ using a Stille coupling [119], di-undecyl [120] dodecyl via Suzuki [121,122]
and di-hexadecyl [123] using metal-Grignard reaction pathways.

Scheme 8. Examples of alkyl-substituted terthiophenes (I) [124]; (II) [125]; (III) [126].

Additionally, branched aliphatic chains have been introduced on trimers: mono- (3′)
and disubstituted (3′-3′′) 2-ethylhexyl have been obtained by Ni-catalyzed Kumada [125,127]
or Stille coupling [128]. Stille Coupling was also exploited to insert in 3 and 3′′ positions
two 2,7-dimethyloctyl chains [129]. Lastly, a bis-2,2-dimethyl-butyl group was located in
position 3 and 3′′ through a variation of the Ni-catalyzed Kumada reaction [130]. Although
less common, some trimers substituted with more than two alkyl chains have been reported.
For example, Tri- [131] and tetramethyl [124,132] derivates have been synthesize following
a Ni/Pd-catalyzed Kumada reaction as well as trioctyl derivates by means of the same
procedure [133], by Stille coupling [134] or by Suzuki coupling [135]. Trihexyl substituted
trimers were obtained via Kumada coupling [136–138], Stille coupling [139], Suzuki cou-
pling [140], Fe-catalyzed Grignard [141] nucleophilic addition [142] and TEMPO-catalyzed
Kumada reaction [143–145]. More recently microwave-assisted reactions were successfully
employed for the introduction of trihexyl [146] and 3,3′′-didecyl [126] groups with an
adapted Stille coupling and of methyl and hexyl groups by means of decarboxylative
Pd-catalyzed cross-coupling [147].

3.3. Unsaturated Aliphatic Substituents

Compared to the saturated alkyl derivates, unsaturated derivates are less reported.
Trimers with a double-bond in 3′ position were obtained using Wittig reaction [148], metal-
catalyzed Grignard reaction [149,150] and Sonogashira coupling [151]. This last strategy
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was used with a EDOT-thiophene-EDOT trimer [152]. Notably, an unsaturated alkyl trimer
was obtained by formation of the central unit with a diketone derivate and P4S10 [153].
Regarding the alkyne functionality, the favored synthetic strategy for the insertion of
triple bonds is the Sonogashira cross-coupling, consisting of the reaction between a bro-
moalkyl substituted trimer with an alkyne. While gaseous acetylene is normally unusable,
trimethylsilyl acetylene or 2-methyl-3-butyn-2-ol can be used for the introduction of a triple
bond synthon. A further deprotection step is needed in order to obtain the ethynyl moiety.
Through this method, trimers substituted in position 3′ [154,155] and 3′,4′ [156] were ob-
tained. Sonogashira coupling with 2-methyl-3-butyn-2-ol followed by deprotection with
potassium hydroxide provided monosubstituted trimers [157–159]. Tetrabutylammonium
fluoride has been also reported as efficient deprotecting agent [160,161]. Wittig reaction
with an halogen derivate has also been used to form an alkene and, subsequently an triple
in bond in 3′ by intramolecular elimination [162]. Some examples are shown in Scheme 9.

Scheme 9. Examples of unsaturated aliphatic groups on terthiophenes. (I) [149]; (II) [153]; (III) [154].

3.4. Nitro Groups

Nitro-substituted thiophene trimers are synthesized by previous nitration of the
thiophene monomer, followed by carbon-carbon cross coupling. Nitroderivatives of
thiophene trimers are usually employed as intermediates for the synthesis of amino-
substituted trimers. Commonly, nitro groups are introduced in positions 3 and 4 of
2,5-dibromothiophene. The resulting 2,5-dibromo-3,4-dinitrothiophene is coupled with
organotin or organoboron thiophene derivatives in a metal-catalyzed Stille or Suzuki re-
action, thus affording 3′,4′-dinitro trimers [27,163–179]. In some cases, the organotin or
organoboron thiophene derivatives carried alkyl or ether chains, that were in this way
introduced on the resulting dinitroterthiophene [101,180–190]. In the work of Zotti et al.,
two EDOT monomers were coupled with the central dinitrothiophene with a yield of
52% [191]. An alternative approach for the synthesis of nitrated thiophene trimers was
reported by Leitch et al. [192]. In here, the nitration of the trimer was performed using nitric
acid and acetic acid. Although this method conveniently involves only one step starting
from commercially available terthiophene, the disadvantage is that it is not regioselective:
the direct nitration of terthiophene yields a mixture of four different nitro- regioisomers and
column cromatography separation is required. Some examples are shown in Scheme 10.

Scheme 10. Examples of nitro substituted trimers. (I) [163,164,192]; (II) [192]; (III) [191].

Trimers carrying nitro groups which are not directly linked to the thiophene ring are
also well-documented in literature. For example, nitrophenyl was employed as interme-
diate groups for obtaining aminophenyl-functionalized trimers [193–195]. Overall, when
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nitro groups were connected directly to the thiophene ring, they were used as intermediates
for the synthesis of amine-based trimers.

3.5. Amines

Amines are conveniently obtained by reduction of nitro groups. Commonly, they are
introduced in the positions 3′ and 4′ of the trimer [101,163,165,190,196], but there are exam-
ples of trimers carrying amines in 3 and 3′′ position [197] and even in 4 and 4′′ position [198].
Nitro- or dinitrothiophene is converted to amino- or diaminothiophene by using Sn metal
or SnCl2 and hydrochloridric acid [101,177,199]. Nevertheless, in order to form the trimer,
the amino groups on the monomers should be protected first with tert-Butyloxycarbonyl
(Boc), since free amines can interfere in the coupling reaction affording undesired side
products [197,200]. For this reason, nitro groups are sometimes reduced after the formation
of the trimer. In this case, iron metal in acetic acid solvent has been used as an alternative
to SnCl2/HCl for the nitro reduction [165,171]. Other reduction methods involve H2 on
Ni in ethanol [185], H2 on Pd/C in ethyl acetate [201] or Zn metal in acetic acid [184].
When directly connected to the thiophene ring, amines are frequently exploited as electron
donors. Thiophenes carrying amines can be coupled with nitro- or imido- thiophenes:
the presence of both electron donating and electron withdrawing pending groups confers
to the resulting trimers a strong zwitterionic-like character [202]. 3,4-diaminothiophene
is a widely used trimers building block, not only because of amines electron donating
properties, but also as an intermediate for the synthesis of extended conjugated systems
such as thienopyrazines [167,199,203], thienothiadiazoles [173,186,190,204], thienoimida-
zoles [171,205], thienoselenadiazoles [206], and more complex aromatic structures based
on those. The preparation of trimers carrying N-linked amide [207], carbamate [197],
ethyloxyamyl [208] and oxamate [209] groups is obtained by amine acylation with the
corresponding acyl chlorides or anhydrides. Trimers carrying aliphatic and aromatic
amines not directly linked to the thiophene ring are also well-documented in literature.
For example, amino-styril [210–212] and aminopyrimidyl [212–218] trimers were abun-
dantly employed for sensing and biological applications, as well as aminoacid-linked
trimers [200,219]. Some examples are shown in Scheme 11.

Scheme 11. Examples of amino substituted trimers. (I) [101]; (II) [198]; (III) [210].

3.6. Nitriles

Because of their strong electron withdrawing character, cyano groups (-CN) are intro-
duced on thiophene- or EDOT-based trimers in order to tune their optical and electronic
properties. In literature, several studies reports that cyano groups can be incorporated
onto different trimer positions by exploiting different synthetic methodologies. However,
Suzuki and Stille couling reaction are not widely reported for the synthesis of these trimer
derivatives. The principal reasons are two: the difficulties of bromination, especially when
the cyano groups are in the 3 position on thiophene and the challenge in the preparation
of organotin or organoboron version of a cyano derivate. Grignard reaction is neither a
safe route due to high chemical reactivity of the nitrile groups. Common methods for the
preparation of cyano trimers are using a palladium-catalyzed coupling reaction via organ-
otin or organozinc intermediates and direct introduction of cyano groups. Organozinc
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intermediates are formed on the cyano thiophene derivatives, and further the intermediates
are coupled with bromo thiophenes in presence of Pd catalysts [220–223]. Some examples
are shown in Scheme 12.

Scheme 12. Examples of cyano-substituted trimers. (I) [223]; (II) [221]; (III,IV) [224].

Trimers carrying cyano groups which are not directly linked to the thiophene ring
are also well-documented in literature. Using p-toluenesulfonylmethyl isocyanide or
Lawesson Reagent, cyano groups can be introduced on the trimer structure [225,226].
In another study, 2-aminothiophene-3-carbonitrile was covalently linked to the trimer
aldehyde in presence of acid to form an azomethine derivative [226]. Furthermore, some
cyano derivatives were obtained by treating with t-BuOK the 1, 3- Dithiol-2-one heterocylic
ring fused on the central tiophene of the trimer. The resulting compound carries two nitrile
moietes linked to the trimer through thioether groups. In a further step, this molecule can
be exploited for the preparation of cyclic thioethers [227,228]. Lastly, Hsu et al. synthesized
and exploited the electrochemical properties of some fused benzo- and naphtonitrile
derivatives [224]. The synthesis of thiophene-EDOT-thiophene trimers with the cyano
groups on the side units (3 and 3′′ position) was accomplished by a palladium-catalyzed
coupling reaction, using organozinc thiophenes carrying a nitrile and dibromothiophene
as starting materials [221,223,224].

3.7. Bromo Groups

Bromine is the most exploited halogen for cross-coupling reactions. Bromo-trimers are
normally obtained by bromination of the monomer precursors. In here, the bromination
of the thiophene monomers is performed not only in 2 and/or 5 position, that are the
ones suitable for the trimer preparation, but also in 3 and/or 4, where other functional
groups can be attached by cross-coupling C-C bond formation. Rasmussen et Al. studied
extensively how the regioselectivity of bromination is influenced by electronical and sterical
effects [229]. Trimers bearing a bromine atom in 3′ were prepared by Stille [230], grig-
nard [149,150], Kumada [215,229,231–234], Suzuki [154,235,236] and microwaves Suzuki
reactions [157]. Dibromo derivates in 3′ and 4′ have been obtained using Grignard [237]
organotin [238], Suzuki [239–241], Kumada [237] and palladium C-C coupling [156,242].
Finally a 3,3′′-dibromoterthiophene was obtained by debromination reaction in 1, 1′′ [160]
and a 4,4′′-dibromoterthiophene was prepared by final formation of central thiophene
ring via Lawesson reagent [243]. The synthesis of tetrabromo derivates was achieved by
Nighishi coupling [244–248].

The insertion of bromine was also performed on the trimer. By using NBS and AIBN
two bromomethyl groups in position 4 and 4′′ were attached (Scheme 13, II) [249]. Another
way to obtain trimers carrying bromo functional groups is to introduce them as pending
group of reactive molecules, for example by reaction of an hydroxyl functionalized trimer
with bromoacetyl chloride (Scheme 13, III) [250,251] or with a dibromo alkyl chain [252].
Bromo pending groups were further exploited for the Atom Transfer Radical Polymeriza-
tion (ATRP) of the trimers [253,254]. EDOT-containing brominated trimer are also reported:
3′-bromoProDOT-like trimer has been obtained using an organotin derivate [155] as well
as a 3′-bromo(EDOT-thiophene-EDOT) [152].



Polymers 2021, 13, 1977 11 of 49

Scheme 13. Examples of bromo substituted trimers. (I) [230]; (II) [249];(III) [254].

3.8. Fluoro, Chloro, and Iodo Groups

Few examples of fluorinated substituents are available in literature. A common strat-
egy consist in the substitution reaction between a bromo group attached to the trimer and
the desired perfluorinated alcohol molecule, forming an ether. This strategy allowed to con-
nect in 3′ a perfluorinated chain of seven [255] and nine carbons (Scheme 14, I) [249]. Fluo-
rotrimers were obtained by using fluorinated monomers for the C-C cross-coupling reaction.
In this way, 3′,4′-difluoroterthiophene (Scheme 14, II) [256], 3′-perfluorohexylterthione [257]
and 3,3′′-bis(perfluorohexyl)terthiophene [258] were obtained. Also, a difluoro[c]’-fused
maleimide [259] and a fused [c]’-perfluorocyclopentane group (Scheme 14, III) were intro-
duced on the trimer [260,261]. An unusual structure containing two terthiophenes bridged
by a perfluorocyclopentane ring was employed as photoswitch [262]. There are very few
works reporting the synthesis of iodo [263] and chloro [264,265] trimers.

Scheme 14. Examples of fluoro-substituted trimers. (I) [249]; (II) [256]; (III) [260,261].

3.9. Alcohols

An alcohol pendant group is a chemically useful linker. Trimer functionalization
has been achieved by exploiting alcohol reactivity to form several ethers [266–271] or
esters [253,272–275]. 3-thiopheneethanol is commercially available and it is the most
used precursor for building trimer alcohols, such as [2,2′:5′,2′ ′-Terthiophene]-3′-ethanol.
In alternative, the same structure can be obtained by reduction with lithium aluminum
hydride (LiAlH4) of Ethyl 2-(2,5-di(thiophen-2-yl)thiophen-3-yl)acetate [275]. The hydroxyl
function was also obtained by aldehyde reduction. In this way, methyl alcohol was obtained
either in position 3′ [148,276,277], in position 3 [278], or in position 3 and 3′′ [279], affording
asymmetrical or symmetrical trimers with the alcohol group on the lateral units. An
example of asymmetric trimer carrying alcohols on the lateral units is given by the works
of the van Esch’s group, where the –OH terminated poly(ethylene glycol) chains are
connected in position 3′′ and 4 [280,281]. Trimers with central and/or lateral EDOT units
were synthesized. Hydroxymethyl EDOT is a commercial molecule and it was inserted
both between two thiophene units (Scheme 15, III) [282] and between two EDOT units [271].
Otherwise, central 3-thiopheneethanol was coupled with two EDOT molecules (Scheme 15,
IV), forming an EDOT-thiophene-EDOT trimer [271].
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Scheme 15. Examples of hydroxyl-substituted trimers. (I) [275]; (II) [148]; (III) [282]; (IV) [271].

3.10. Ethers

Ether is one of the most widespread pendant group of terthiophenes. It is known
that alkoxy chains increase the solubility and improve the electronic properties of trimers
and, therefore, their presence is ubiquitous in the literature. Typically, two O-connected
alkyl chains (one per lateral unit) are found in 3 and 3′′ [71,283–286] or in 4 and 4′′ po-
sition of the trimer (Scheme 16, I) [287–294]. Besides, structures with one [295,296] or
two [297,298] alkoxy groups on the central thiophene, in 3′ and 4′ position, were synthe-
sized. Methoxy [283], ethoxy [296], butyloxy [298], pentyloxy [88,287], hexyloxy [290,298],
octyloxy [298], decyloxy [290,299] pendant groups, among many, have been reported. An-
other type of common ether-based pendant group is poly(ethylene glycol). Similarly to
the alkoxy groups, poly(ethylene glycol) chains were positioned on both the lateral units
(Scheme 16, II) [185,281,286,300] or on the central thiophene [269,301–304], in order to im-
prove the solubility of the trimer or as linker between the trimer and other materials. Several
crown ethers, a special category of poly(ethylene glycol) pendant groups, have been syn-
thesized for cation sensing applications. Different ring sizes were prepared [234,305–308].
The crown ether was connected directly to the trimer [307–309] or by means of other
functionalities, such as cyano or styryl lateral groups (Scheme 16, III) [305,306,310,311].
In some works, trimer’s alcohol group has been converted to ether for functionalization
purposes [266–271]. Finally, EDOT, a very common building unit of trimers, owes its
peculiar electronic properties to the cyclic double ether pendant group (Scheme 16, IV).

Scheme 16. Examples of ether-substituted trimers. (I) [288]; (II) [281]; (III) [305]; (IV) [62].

3.11. Thioethers

Several thioethers directly connected to the trimer by sulfur were reported. Alkylsul-
fanyl chains of different lengths were introduced on the central [228,296,312,313] and/or
on the lateral [306,314,315] thiophene units. Additionally, some examples of vicinal sulfurs,
in position 3′ and 4′ of the trimer, are reported [227,228,312]. A particular case is the
all-sulfur analog of PEDOT, whose effect on the electronic properties of different trimers
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was scrutinized [227,316]. Fused dithiino spacer groups, with sulfur atoms connected in po-
sition 3′ and 4′ of the trimer, were obtained from a 1,3-dithiole-2-thione intermediate [317].
This functionality was exploited for connecting to the trimer some redox-active pending
groups, i.e. substituted tetrathiafulvalenes [318–320] and fluorenes [318,321]. A similar
strategy was covered for the preparation of dithiinoquinoxaline [322] and tetrathianaphtal-
ene [323] units.

3.12. Ketones

Ketones are strong electro-withdrawing groups and, if directly connected to the thio-
phene ring, can increase the electrofilicity of the trimer. Therefore, they are commonly
introduced for tuning its electronic properties. Y. Ie et Al. prepared trimer ketones through
the insertion of dioxocyclopenta[c]thiophene between two thiophene units by Stille or
Suzuki coupling (Scheme 17, I) [259,324,325]. Moreover, the acidic α position between
the two ketones was exploited for further functionalizations [324,325]. The benzodithio-
phenedione structure is another cyclic ketone and serves as acceptor unit in donor-acceptor
copolymers for photovoltaic applications (Scheme 17, II). Trimers formed by a central
benzodithiophenone linked to two thiophene rings are prepared by Stille coupling and
present some variation on the pendant group [242,326–333]. Finally, a terthiophene linked
to a non-cyclic β-diketone was also reported (Scheme 17, III) [334].

Scheme 17. Examples of carbonyl- (oxo) substituted trimers. (I) [259]; (II) [326]; (III) [334].

3.13. Aldehydes

The preparation of trimer aldehyde most commonly employs 3-thiophenecarboxaldehyde
as a commercially available starting material. This monomer can be inserted as the central
unit of the trimer by a bromination step followed by Suzuki coupling with thiophene- or
EDOT-boronic acids [276,279,294,335–338]. The resulting trimer has an aldehyde attached
in position 3′. The same structure was also achieved by Grignard metathesis. Nonetheless,
in this case it was required the protection of the aldehyde group with 2,2-dimethylpropane-
1,3-diol before the coupling reaction [338]. W.-C. Xu et Al. afforded an asymmetric trimer
with the aldehyde attached to position 4 of a lateral unit [278]. Trimers with two aldehyde
groups were also prepared, in position 3′ and 4′ on the central unit [242], or in position
3 and 3′′ on the lateral units [71]. The presence of an aldehyde group connected to the
thiophene ring is of great advantage for the functionalization of trimers. For example,
several β-substituted trimers were prepared by Wittig’s condensation between the alde-
hyde and a phosphonium salt [148,279,338,339]. Aldol condensations involving the trimer
aldehyde and an amide [340], ketone [341], diketone [337] or malonitrile [294] group were
also successfully performed.

3.14. Carboxylic Acids

Various trimer carboxylic acids have been prepared, directly connected to the thio-
phene rings [342–345] or linked through a spacer. In fact, spacers of one [346–352],
two [279,353,354], three [355], four [354], five [356] or six [350] carbon atoms are reported
(Scheme 18, I and II). Benzoic acid, connected in para on position 3′, is also reported
(Scheme 18, III) [249,357]. since the Suzuki or Stille coupling are not compatible with
the presence of carboxylic acids, this group is normally converted to methyl or ethyl
ester before the formation of the trimer [344,346,350,351]. Once the trimer is obtained,
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the ester is hydrolyzed and the carboxylic acid restored. Therefore, common precursors
of carboxylic acid trimers are 3-thiophenecarboxylic acid and 3-Thiopheneacetic acid.
Thiophene aldehyde can be converted to α,β-unsaturated carboxylic acid by aldol conden-
sation [279,354]. Furthermore, in order to avoid the esterification and the hydrolysis steps,
in some works the carboxylic acid is obtained by hydrolysis of nitrile [313,342,345]. The
negative charge of carboxylic acid is widely exploited for promoting attractive interactions
between the trimer and other molecules, materials or surfaces [349,350,355,358,359]. Addi-
tionally, trimers carrying a carboxylic acid can be easily functionalized by esterification or
amidation [343,346,347,360].

Scheme 18. Examples of carboxylic acid substituted trimers. (III) [249].

3.15. Esters

Ester is a multivalent group employed for the preparation and functionalization
of trimers. Esters have been introduced for tailoring the physical and electronic prop-
erties of trimers and trimer-based polymers [63,242,361–363], as intermediates for the
preparation of alcohols [272,275,350,364,365] and pyridazinediones [366,367] and as a
carboxylic acid protecting groups in the Stille and Suzuki couplings [344,346,350]. The
ester formation is a preferential strategy for the functionalization of trimers. The alco-
hol [250,253,273–275,277,364,365,368,369] or the carboxylic acid [302,343,344,346,347] on
the trimer is exploited for this purpose (Scheme 19, I and II). In this way, several molecules,
nanoparticles and other functional materials were covalently linked to the trimers, in-
cluding spyropyran [343,370], gold nanoparticles [371], poly(ethylene glycol) [302,372],
cellulose [373], methaclyate [277], thiocarbonylthio derivate useful for RAFT (Reversible
addition−fragmentation chain-transfer) polymerization [275] and olefin dendrons [374].
Numerous works report the preparation of the 3′,4′ trimer diester (Scheme 19,
III) [242,361,362,366,375,376]. Additionally, the work of A. Fazio et Al focuses also on
the synthesis of trimers carrying esters on the position 3,4 and 3′′,4′′ of the lateral thio-
phenes, rather than on the central one [362].

Scheme 19. Examples of ester-substituted trimers. (I) [346]; (II) [277]; (III) [376].

3.16. Amides

The amide bond formation is an excellent approach for the easy and stable attachment
of pendant groups to the trimer. Functional pendant groups carrying an amine or a car-
boxylic acid were attached respectively to trimer carboxylic acid [303,304,377–381] or amine
(Scheme 20, I and II) [207–209,382]. The amide formation occurs on the side group of the
central thiophene either before [377–380] or after [207,381,382] the formation of the trimer
and it is typically achieved by carboxylic acid activation by acyl chloride [207–209,378]
or a carbodiimide coupling agent [377,379–381], followed by amine nucleophilic substitu-
tion. Instead, the reaction between a trimer diester and hydrazine leads to the formation
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of a pyridazinedione pendant group on the central unit (Scheme 20, III) [366,367]. A
significant subcategory of trimer amides presents as central unit a thieno[3,4-c]pyrrole-4,6-
dione (Scheme 20, IV). This structure is a strong electron acceptor; therefore, it has been
widely studied as component of donor-acceptor zwitterionic copolymers. The monomer
is prepared by conversion of a 3,4-thiophenedicarboxylic acid [197,202,383] or its cyclic
anhydride [383–386] to acyl chloride and subsequent introduction of the desired amine.
Depending on the amine, several linear and branched alkyl chains of different lengths
were introduced on the N-position, with the purpose of improving the solubility of the
resulting material [383,387–389]. The pyrrole-dione group is also found on perylene-fused
trimers [185,390,391].

Scheme 20. Examples of amide-substituted trimers. (I) [377]; (II) [207]; (III) [366]; (IV) [202].

3.17. Fused Aromatics

The bandgap of trimers can be tuned efficiently by extending their conjugated system
with fused aromatic pending groups. In fact, merging electron donating or electron with-
drawing aromatic groups with the thiophene rings leads to changes in the HOMO and
LUMO energy of the whole system. Most commonly, the central thiophene is fused with
aromatic rings like benzene, pyrazine, thiophene, thiadiazole or imidazole, that can, in
turn, be connected or fused with other aliphatic or aromatic groups. All these possibilities
leaded to the preparation of a huge variety of terthiophenes with extended aromaticity and
new optoelectronic properties.

Different strategies were developed in order to obtain a trimer with a central
benzo[c]thiophene unit between two thiophene units (dithienylbenzo[c]thiophene) (Scheme 21,
I). Typically, two equivalents of 2-mercaptopyridine react with 1,2-Benzenedicarbonyl
dichloride, forming two reactive thioester bonds [392–396]. Afterwards, the mercaptopy-
ridines are replaced by two thiophene substituents, by addition of 2-thienylmagnesium
bromide. Finally, the central thiophene unit is obtained by employment of either phos-
phorous pentasulfide [397,398], Lawesson’s reagent [392–395,399] or Davy’s reagent [396].
Benzene-1,2-dicarbaldehyde can be used in the place of 1,2-benzenedicarbonyl dichlo-
ride: in this case 2-thienylmagnesium bromide directly reacts with the aldehyde groups,
but the oxidation of the resulting alcohols to ketones is then needed before the Lawes-
son’s reagent step [400,401]. Other similar approaches with slightly different starting
materials were successfully performed [402–407]. Finally, also the classic Stille or Suzuki
coupling is a feasible pathway [390,404,408]. Benzene rings with a variety of substituents
were introduced through those methods on the central unit of the trimers, including
chloro [394], methoxyl [409], and alkyl groups [393,396], as well as sulfides [393], es-
ters [224], nitriles [224], amides [390,408] and additional aromatic rings [224,405,410].

Pyridazine and pyridazine derivatives form a large category of fused aromatic rings
on terthiophenes. The thienopyrazine, the central unit of the trimer, acts as electron
acceptor, while alkyl-substituted lateral thiophenes act as electron donor. The zwitterionic
character of the trimer results in the destabilization of the HOMO and the narrowing of the
bandgap. The synthesis of 5,7-di(2-thienyl)thieno[3,4-b]pyrazine (Scheme 21, II) involves
a 3′,4′-terthiophene diamine and an α-diketone. The double condensation occurring
between amines and ketones forms a pyridazine ring fused with the central thiophene.
Therefore, changing the diketone substituents, a large variety of substituted pyrazine rings
can be obtained, such as alkyl groups [178,411], unsubstituted and substituted phenyl
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groups [180,196,412–415], tiophenes [413,416,417], furans [201,418], pyridines [419,420],
phenazine [421], naphtalimide [185], perylene imide [422] carbazole [423], and fullerene [424].
In alternative to α-diketones, an α-diester [167] or an α-diimine [425] can be employed for
the obtaining of functionalized thienopyrazine units.

Besides the thienopyrazine, thienothiadiazole is another recurring electron with-
drawing thiophene derivative (Scheme 21, III). The formation of the thiadiazole group
on the trimer’s central thiophene requires, as for the pyrazine, the presence of a vic-
inal diamine in position 3′ and 4′. The heterocycle is obtained by reaction with N-
thionylaniline [165,173,184,186,189,426,427]. Similarly, the pendant group thienoimida-
zole (Scheme 21, IV) is obtained from the reaction between a 3′,4′-trimer diamine and
trimethylorthoformate [171] acyl chloride or acetic acid in strong acid conditions [428].
Finally, thieno[3,4-b]thiophene is a common monomer employed for the formation of
trimers [429–432]. The free carboxylic acid function can be exploited for the introduction of
different chemical modifications [429].

Scheme 21. Examples of fused-aromatic-substituted trimers. (I) [402]; (II) [166]; (III) [427]; (IV) [428].

3.18. Aryl and Heteroaryl Groups

Aryl and heteroaryl groups have been widely exploited as trimer pendant groups
(Scheme 22). The resulting extended aromaticity can improve the optoelectronic properties
of the entire conjugated system. Moreover, the interaction between the aromatic pendant
group and external molecules or materials have a direct influence on the trimer band gap,
changing its electronic response. Therefore, a large number of trimers connected to aryl
and heteroaryl groups has been studied. The functionalization of the central thiophene
was performed either before [85,249,433,434] or after [232,435–438] the trimer formation.
Common reactions for the formation of the aryl-thiophene bond are the Stille coupling,
involving an aryl bromide and an alkylstannyl thiophene [433,436], and the Suzuki cou-
pling, involving an aryl bromide and a thiophene boronic acid [232,434,437,438]. In this
way, phenyl groups with different substituents have been introduced both on the cen-
tral [85,433,435,437,439–441] and on the lateral [249,434,441] thiophene units. The reported
heteroaryl groups includes pyridines [232,341,436,442,443], oxadiazoles [444,445], tria-
zoles [446], pyrimidines [214,215], and BODIPY [447]. Alkenes and alkynes are frequently
employed as connectors between the trimer and an aryl or heteroaryl group. In this way,
electron delocalization between the two aromatic systems is preserved. By alkene group
formation, benzene [338], naphthalene [448], anthracene [448] and pyrene [449] where
connected to the trimer, as well as substituted phenyl groups [195,210,310,338,450–453],
pyridines [148,339,454], thiophenes [454–456], and ferrocene [457]. Through alkyne bridge,
mono-, bis- and ter-pyridines were attached [162,236,458,459], as well as fullerenes [460,461].
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Scheme 22. Examples of aromatic-substituted trimers. (I) [338]; (II) [448]; (III) [448]; (IV) [449];
(V) [162]; (VI) [458]; (VII) [462]; (XIII) [463]; (IX) [34]; (X) [445].

3.19. Thiophene S,S-dioxide

The oxidation of the thiophene sulfur affords the corresponding S,S-dioxide and it is a
valuable strategy for modyifing the optical and electronic properties of thiophene-based
trimers (Scheme 23). The presence of S,S-dioxide allows to tune the HOMO and LUMO
energies of the trimers as well as to improve their crystalline organization in semiconduct-
ing films. The sulfur oxidation is usually performed with m-chloroperoxybenzoic acid
(mCPBA) because of its easy of employment and removal. In alternative, HOF·CH3CN was
used as oxygen-transfer agent [464]. Lastly, S,S-thiophene dioxide was obtained from the
reaction between thionyl chloride and zirconacyclopentadiene [465]. In order to control the
dioxide position in the trimer, it is critical to perform the oxidation on the monomer rather
than on the trimer, otherwise all the rings will be oxidized at once. In a C-C cross coupling
reaction, the S,S-thiophene dioxide can be found either on the halide or on the organometal
reagent. Typically, Stille coupling is employed with this aim [466–471]. The preparation
of terthiophene 1′,1′-dioxide was also performed using Suzuki coupling: the S,S-dioxide
group was formed on a diiodo thiophene and the resulting molecule was further made
react with thiophene boronic acid in a Pd-catalyzed reaction [36]. The dioxide has been
also introduced on the EDOT unit of terthiophenes [36,469,472].

Scheme 23. Examples of S–S dioxide trimers (I) [466]; (II–IV) [472].

3.20. Metal Complexes

Several pendant groups have been employed in order to introduce metal binding
sites on the trimers. Depending on the choice of these groups, different metals were
targeted for the formation of organometallic complexes. For example, diphenylphos-
phine was employed for binding noble metals like gold [473], iridium [474], osmium [475],
palladium [476,477], rhodium [266] and ruthenium [475,478]. In alternative, gold and
platinum were binded on alkyne groups located at position 3 and 3′′ of the trimer lateral
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units [161,479]. Also aromatic rigid amines are a class of useful ligands: a bipyridine-
functionalized trimer was employed for binding cobalt [458], while terpyridines for bind-
ing ruthenium [459,462,480,481] and porphyrins for cobalt [482], copper [482], nickel [483]
and zinc [482,484]. Similarly, cadmium [485], copper [101,311,486], nickel [311] and
zinc [101] were coordinated by the two nitrogen and two oxygen atoms of the ligand
N,N’-bis(salicylidene)-3,4-diaminothiophene, located on the central position of the trimer.
A comparable strategy was chosen for the coordination of uranium [487]. bisterthio-
phene complexes were achieved by the coordination of two terthiophene dithiolenes with
gold, nickel and palladium [488]. Erbium complexes, instead, were obtained by link-
ing the erbium atom to two acetate groups located in position 3′ and 4′ of the trimer.
Also organomolybdenum complexes were prepared by employing functionalized terthio-
phenes [489,490]. Some examples are shown in Scheme 24.

Scheme 24. Examples of fused-aromatic-substituted trimers. (I) [101]; (II) [475]; (III) [488] (counter anions have been
omitted for clarity).

3.21. Charged Trimers

Charged trimers show enhanced water solubility and therefore are very interest-ing for
bioapplications. The positive charge can be conferred by a phosphonium salt (Scheme 25,
I) [148,491] or a nitrogen atom, in the form of either a viologen moiety (Scheme 25, II) [492]
or an ammonium salt [271,493]. Negatively-charged trimers have the advantage to be
self-doped, in a similar fashion with respect to the PEDOT:PSS system. The negative
charge is conferred by a sulfonate residue, linked to a terthio-phene molecule [494] or to an
EDOT-thiophene-EDOT trimer (Scheme 25, III). In this case, the sulfonate is connected to
the trimer through an ether spacer [271,495–498].

Scheme 25. Examples of charged trimers (I) [148]; (II) [492]; (III) [271] (counter ions have been
omitted for clarity).

3.22. Crosslinked Trimers

As small class of terthiophene-bases structures which is worth to mention is the one
where a trimer is linked to another, resulting in a possible crosslinking agent for further
polymerization or for 3D networks. Even if not crowded, this group of trimers spaces across
a vast range of applications: from optic to energy conversion, including band-gap studies
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and synthesis of dendrimers. Among these crosslinked trimers, the simplests consist of two
terthiophenes directly linked one to each other [499] or connected by a saturated alkylic
moiety [250,500]. Binaphthol [270] and fluorinated spacers are also reported [501], as well
as several substituted phenyl spacers [437,439,487,502–504]. Dendrimer structures have
been also prepared [268,269,272]. Some examples are shown in Scheme 26.

Scheme 26. Examples of crosslinked trimers (I) [499]; (II) [250]; (III) [503].

4. Bioapplications

The unique properties of terthiophenes and derivatives, including ease of functional-
ization and good biocompatibility, make these materials excellent candidates for several
biomedical and biological applications. In recent years, their use and diffusion has quickly
increased in multiple fields. In this part of the review, a summary of biological and medical
studies involving terthiophene and derivatives is presented. For clarity purposes, this
section is formed by two subsections: in the first one, the applications regarding the direct
use of terthiophene and terthiophene derivatives are described, whereas, the second section
is dedicated to the applications of the polymers based on these structures (Figure 1).

Figure 1. Different groups of trimer derivatives and related bioapplications.
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4.1. Terthiophene and Terthiophene Derivatives

A large number of published studies reports the use of terthiophene and its derivatives
as photosensitizers (PS) [505–507]. Commonly, PS work transferring the photon energy
to oxygen molecules, to generate reactive oxygen species (ROS), such as singlet oxygen
(1O2), peroxide (O2

2−), superoxide (O2
•−) and hydroxyl radicals (OH•), to react with

macromolecules, such as protein, lipid or DNA, and lead to oxidative damage under the
irradiation of light with appropriate wavelengths.

4.1.1. Pesticides

Today, PS based on terthiophenes are useful alternatives to traditional pesticides for
population control of insect pests. For example, some derivatives showed photo-induced
inhibitory and cytotoxic effects against Spodoptera litura, otherwise known as the tobacco
cutworm or cotton leafworm [508]. Stability and insecticidal activity of the trimer were
studied for the first time by the group of Zhang. The results assessed the terthiophene high
toxicity against Aedes albopictus (tiger mosquito) and Plutella xylostella with a maximum
absorbency at 0.480 after UV irradiation for 200 min [509]. In another study, it was founded
that the photo-cytotoxicity of terthiophene on the ovarian Tn5B1-4 and Sf-21 cells can
be enhanced by increasing concentration and irradiation time [510]. Similarly, Zhang,
tested the ROS formation ability of terthiophene against Aedes aegypti larvae, leading to
cell death patterns. In here, the authors have studied the ROS effect on mitochondria as
function of the terthiophene concentration. The exposure to low trimer concentrations
induced apoptosis, while moderate concentrations promoted autophagy through induction
of ROS, inhibited apoptosis, and induced necrosis. In contrast, high concentrations of
trimer induced high levels of ROS, which, causing mitochondrial dysfunction, directly
induced cell necrosis [511]. Overall, the hope is that photoactive compounds can act
as efficient insecticides while reducing their environmental adverse effects. Huang et al.
evaluated the exposure risks on human 293 cells and insect Tn-5B1-4 cells to photo-activated
trimers at different doses. Photo-activated trimers exhibited dose-dependant toxicity on
the growth of 293 cells (EC50 = 6.23 µg/mL) and Tn-5B1-4 cells (EC50 = 3.36 µg/mL).
Therefore, the photoactivated terthiophene might be a potential factor in human mutagenic
progression. Nevertheless, additional studies are necessary in this regard to clarify the
toxicity mechanism of photoactivated trimers, as well as to evaluate and minimize their
environmental risks and bioaccumulation [512]. Besides their photo-activated toxicity,
terthiophenes have shown toxic effects even in absence of light. In nature, some plants
secrete specific thiophene derivatives, including terthiophenes, in order to inhibit the
growth of undesired plagues or neighbors [513]. The herbicidal activity of terthiophene
was studied by Dong et Al. on Digitaria sanguinalis, Arabidopsis thaliana and Chlamydomonas
reinhardtii. The authors isolated the terthiophene from Flaveria bidentis (L.) Kuntze and they
studied how it affected the plant protein expression by dimensional gel electrophoresis
and liquid chromatography tandem mass spectrometry. It was observed a decrease in
the expression of proteins related to energy production and carbon metabolism and it
was suggested that this effect was due to the interaction of terthiophene with a plant
transketolase [514]. Other non-photo-induced toxicity effects of terthiophene were reported
against the Formosoan subterranean termite [515], the mosquitoes Aedes aegypti [516],
and the cyst-forming nematode in Zea mays [517].

4.1.2. Antifungal and Antibacterial Activity

Terthiophene and its derivatives are good candidates for photodynamic therapy
(PDT) thanks to their ability to generate ROS under ultraviolet (UV) and visible (Vis)
light. For example, Sortino et al. exploited these structures for treating oropharyngeal
candidiasis, a common fungal infection in immunocompromised patients. The authors
investigated the toxicity of terthiophene under UV light irradiation against the Candida
species responsible for the disease. Two variables were taken into account: exposure
irradiation time and distance to the irradiation source. The optimal condition for the
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in vitro antifungal activity of terthiophene was found to be 5 min of UV light irradiation
from a distance of about 6 cm. Surprisingly, terthiophene was able to kill twenty different
resistant strains of Candida at the low concentration of 0.31 g/L [505]. Similarly, the same
group exploited the plant of Porophyllum obscurum as a source of new PS with potential
use in PDT of oropharyngeal candidiasis cases. The antifungal photosensitive activity of
different extracts from Porophyllum obscurum was evaluated by using microdilution and
bioautographic assay under UV irradiation. This work established a correlation between
the composition of the different thiophene extracts with respect to their photo-induced
antifungal effect [506].

Liu and coworkers tested the antibacterial activity of the marigold extract containing
terthiophene in common food. The authors observed an inhibitory effect on the growth
of E. coli, Salmonella and strains of Penicillium: the antibacterial effect of the terthiophene
extract increased by increasing the concentration and the exposition time [518].

4.1.3. Sensing

Thanks to their large aromatic conjugated structure, it is not surprising that terthio-
phenes derivatives have found large application as fluorescent dyes. In Figure 2a four ex-
amples of 5-R-terthiophene derivatives designed for this purpose are shown. For example,
Chow et Al. demonstrated the ability of 5-(4-ethynyl-N,N-dimethylaniline)-terthiophene
(Tt1 in Figure 3a) to enter HeLA cells and the easy detection of its fluorescence emission
(Figure 2b), thus providing a new strategy for the design of molecules for two-photon
imaging in vitro [519]. Furthermore, cytotoxicity assays revealed the low reduction of
viable cultured HeLa cells after 24h in presence of the trimer, thus confirming the high
biocompatibility of this compound.

Figure 2. (a) Different terthiophene-based compounds used as fluorescent dyes. (b) In vitro staining
of HeLA cells with (I) Tt1; (II) brightfield image; (III) LysoTracker1 Red (specific dye for lysosome);
and (IV) their overlapping images. Adapted with permission from ref. [519]. Copyright 2013
RSC Publishing.

The terthiophene derivatives depicted in Figure 3a have been successfully exploited
for the sensing of toxic molecules. Guo and co-workers synthesized a terthiophene func-
tionalized with 1,3-indendione (3TI, Figure 2a) or barbituric acid (3TD in Figure 2a) for
the rapid and highly sensitive colorimetric and fluorimetric detection of cyanide (CN-) in
real water samples and farm products, as well as for bioimaging in living cells [520,521].
Similarly, the authors synthesized a dithiane derivate (3TH, Figure 2a) for colorimetric de-
tection and ratiometric fluorescence enhancement response to Hg2+ [522]. According to the
authors, all the above-mentioned terthiophene-based sensors present multiples advantages,
including high fluorescence brightness, fast response time (30 s), minimal pH dependence
in the physiologically relevant pH range and excellent selectivity in presence of other
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competitive ions. Furthermore, given their high water solubility, good biocompatibility
and low cytotoxicity, subcellular imaging of the target ions in living cells was achieved
with low detection limits, i.e. 31.3 nM 22.6 nM for CN- with 3TI and 3TD respectively, and
62 nM for the detection of Hg(II) with 3TH [520–522].

Figure 3. (a) Molecular structures of the naphthalene-functionalized terthiophenes synthesized for
detection of biogenic amines. (b) Left: top view of the sensor device based on a silver/terthiophene
derivative thin film. Right: SEM cross-sectional image of the silver/terthiophene derivative thin film
deposited on glass substrate. Adapted with permission from ref. [523] Copyright 2019 Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim.

Mono- and bi-functionalized terthiophene-based trimers are useful structures for the
development of chemiresistors. In fact, the high polarizability of sulfur electrons may
provide a variety of intra- and intermolecular interactions, which can improve charge
transport. In addition, the chemical and physical properties of these structure can be
easily tuned through convenient structural modifications. In this respect, Liu and co-
workers demonstrated that the terthiophene functionalization with aromatic structures is
an effective way to enhance their photochemical and thermal stability, thus overcoming
some limitations for their sensing application. The authors prepared two chemiresistive
sensing devices by direct deposition of two different naphthalene-functionalized trimers
(NA-3T and NA-3T-NA) on glass substrates (Figure 3), and demonstrated their efficiency
in the detection of gaseous biogenic amines (BAs), important contaminants mostly found
in the spoiling process of foods [523]. In particular, the NA-3T-NA-based sensor showed
higher sensitivity for trimethylamine (TMA), with an experimental detection limit of
22 ppm. The difference in the sensing performances between the two chemiresistive
sensors was ascribed to the different packing of the terthiophene derivatives into the
prepared films [523].

In another work, a sensor was obtained by using terthiophene derivatives as molecu-
lar linkers in order to tether the antibodies to magnetic nanoparticles. In fact, the direct
binding of biomolecules to the nanoparticle would have been more complicated because
of the steric hindrance. Instead, thanks to a thin self-assembled monolayer of terthio-
phene, linkers on the nanoparticles allowed a denser functionalization and subsequently
improved the sensitivity of the device. This strategy was successfully covered for the detec-
tion of progesterone (LOD = 0.013 ng·ml−1) by using an ultrasensitive surface plasmon
resonance (SPR) gold chip, modified as described in Figure 4 [304]. In another example,
COOH-biphenyl-functionalized trimers self-assembled on gold nanoparticles were used
to covalently immobilize brain-derived neurotrophic factor antibodies (BDNF) through
the amide bond formation between the amine groups of antibody and the carboxylic acid
groups of the trimers [524]. The resulting microfluidic immunosensor was employed to
detect the release of BDNF from various cancer cells by the effect of various exogenous
activators (ethanol, K+, and nicotine), proving the potential of this sensing system in drug
screening and therapeutics.
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Figure 4. SPR gold chip preparation: (a) carboxylated terthiophene (T3C) molecule (left) and T3C
SAM formed on gold surfaces (right); (b) in situ synthesis of progesterone (P4)-linker-ovalbumin on
SPR gold. Reprinted with permission from ref. [304] Copyright 2019 Elsevier B.V.

Finally, a folic acid sensor was prepared by electropolymerizing a bis-terthiophene-
based dendron onto a quartz crystal microbalance (QCM) [503]. The sensor response
showed good linearity within the concentration range of 0–100 µM of folic acid, with a
detection limit of 15.4 µM and good selectivity against other competitive molecules.

4.1.4. Pharmacological Activity

It is known that terthiophenes exhibit various biological effects, such as photo-
activated cytotoxicity[525] and anti-bacterial activity [505,509]. However, the anti-cancer
activity of terthiophenes in human cells and its molecular mechanism are still poorly
understood. Jian and coworkers evaluated the antiproliferative activity of terthiophenes
against several human tumor cells, i.e. K562, MCF-7, A549, and HCT116, revealing that
these structures promote the cell apoptosis [526]. Jin and coworkers reported the photo-
activated toxicity of terthiophene extracted from Echinops grijsii Hance roots on HepG2,
K562, HL60 and MCF-7 human tumor cell lines, but in the in vivo animal experiment it was
not observed any significant anti-tumor activity [527]. Jang et al. evaluated by MTT assay
the cytotoxicity against human ovarian cancer cells (SKOV3) of a series of terthiophenes
isolated from Eclipta prostrata L. These compounds showed a significant cytotoxicity, with
IC50 values ranging from 24.57 to 58.20 µM. The group suggested terthiophene-methanol as
potential candidate for additional studies in order to evaluate its potential as an anti-cancer
agent [528].

Terthiophene showed antitumor effects on several cancer cell lines, including ovarian
cancer cells [525–527]. The discovery of the anti-proliferative effect of thiophene derivatives
by the group of Preya dates back to 2007. In here, it was investigated the molecular
mechanism behind the anti-proliferative effect of terthiophene-methanol. It was found that
this structure is able to inhibit the growth of human ovarian cancer cells by arresting the S
phase of the cell cycle via induction of ROS stress and DNA damage. Thus, it was prepared
a potential agent for the treatment of ovarian cancer based on terthiophene-methanol
(Figure 5) [525].

Saito et al. founded that local oxidation reactions on the cell membrane produce
submicron-sized holes. Remarkably, after the perforation the cells were still viable. There-
fore, they designed and fabricated a rod-shaped device in which the membrane perforation
function was made possible by the presence of terthiophene as PS. The cell membrane perfo-
ration was successfully achieved with a light intensity of 0.82 W/cm2 for 30 s. The authors
demonstrated that the cells, impermeable to a certain fluorescent dye before perforation,
could instead uptake it once treated in the way described above. However, the group of
Saito suggested that in the near future the UV-active PS should be replaced with a visible-
or IR-active PS in order to reduce the risk of mutagenesis induced by UV irradiation [529].



Polymers 2021, 13, 1977 24 of 49

Figure 5. (A) The chemical structure of α-terthienylmethanol. (B) Exponentially growing OVCAR3
cells were treated with the indicated concentrations of α-terthienylmethanol for 3 days. (• control;
0.05 µM; N, 0.1 µM; H, 0.2 µM; �, 1.0 µM; �, 2.0 µM). Cells were loaded on a hemocytometer, and
viable cell number was determined. (C) OVCAR3 cells were treated with indicated concentrations of
α-terthienylmethanol and the cell viability was determined using MTT assay. * p < 0.05 versus the
control group. Copyright (2017) Elsevier [525].

4.2. Polimerized Trimers
4.2.1. Sensing

The detection of proteins, vitamins, and other nutrients in food and biological samples
is a task of high biological, technological, and pharmaceutical importance. Therefore, it is
necessary to develop rapid, selective, and sensitive methods for their reliable determination,
which are capable of satisfying the high product monitoring standards demanded by the
government regulations. For this purpose, terthiophene-based conducting polymers have
proven to be an excellent choice, because of their simple functionalization and relatively
good stability in air. Consequently, polyterthiophenes have been employed for electrode
surface modifications, allowing the development of biosensing devices for multiple pur-
poses. For example, polyterthiophenes (pTTP) are the first compounds used as electronic
transducers for protein recognition. Amine or carboxylic acid pending groups are typically
exploited for the attachment of biomolecules.

Poly(amino-terthiophene)s

Amine groups are commonly used for the conjugation of small biomolecules, such as
vitamins or drugs that can further interact with the target protein. For instance, biotin, a
type B vitamin with a carboxylic acid group, was covalently immobilized onto a conducting
polyterthiophene coated electrode by exploiting the primary amine side groups of the
polymer. The as-prepared sensor was succesfully employed for the detection of avidin,
a highly stable glycoprotein found in egg-whites, showing a linear response between
4 × 10−14 and 3 × 10−4 mol/L and a detection limit of ca. 10−14 mol/L [210,211]. Due to its
large-scale usage as antioxidant, ascorbic acid is another highly interesting target molecule.
Abdelwahab et al. developed an aminopyrimidyl-functionalized-pTTP based sensor for
ascorbic acid showing excellent selectivity between 10 to 200 mM and a detection limit
of 1.4 mM [212]. Moreover, the same polymer was used for the detection of rocuronium
(Figure 6), a residual drug that may cause serious safety issues to the patients. This molecule
is a neuromuscular blocking agent used in anesthesia that facilitates tracheal intubation
by muscle relaxation. Aminopyrimidyl-functionalized-pTTP was covalently binded to
phosphatidylinositol lipid via amine group, obtaining an efficient sensor for monitoring
rocuronium in blood samples without pre-treatment, with a dynamic range between
0.025 to 10 ug/mL and a detection limit of 3.83 ng/mL (Figure 6) [216]. A sensor for the
simoultaneous detection of piroxicam, an anti-arthritis drug, and its major interferences
(L-ascorbic acid, tyrosine, and uric acid) in urine samples was also developed [530]. In this
case, the aminopyrimidyl groups of the pTTP backbone were linked to graphene oxide,
which directly interacts with the target molecules. Recently an heterocyclic derivate has
been used to detect paracetamol with a minimum detection limit of 60 nM [531].
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Figure 6. Schematic representation of the rocuronium sensor. Reprinted with permission from
reference [216]. Copyright Wiley & Sons 2018.

Poly(acid-terthiophene)s

Carboxylic or boronic acid pTTP derivatives have been covalently functionalized with
antibodies, that allow the selective recognition of targeted biomolecules. Following this
strategy, disposable electrodes for amperometric detection of specific biomarkers were
developed. These sensors (see Figure 7 for schematic examples) showed high sensitivity
towards cardiac troponin I, glycated hemoglobin and glucose and glutathione disulfide,
thus high potential for the diagnosis of acute myocardial infarction, diabetes and brain
disorders respectively [532–535]. Following a similar protocol was studied a glucose sensor
based on pTTP coated with AuZn oxide layer [536]. In another study, the fabrication of
an ultrasensitive electrochemical immunosensor for detecting human immunoglobulin G
(IgG) [537]. In here, the target protein IgG was sandwiched between the anti-IgG antibody,
covalently attached to the pTTP via amide bond, and the Ag (I)-cysteamine complex
(Ag–Cys) adsorbed onto gold nanoparticles (AuNPs)–anti-IgG. The detection signal is
originated from the electrochemical stripping of Ag from the adsorbed Ag–Cys complex
on the AuNPs–anti-IgG. This sensor showed a wide dynamic range with a detection limit
of 0.4 fg/mL.

Immunosensors based on benzoic acid-pTTP (BA-pTTP) showed high efficiency for
the in vitro monitoring of inducible nitric oxide synthase (i-NOS), a family of enzymes cat-
alyzing the production of nitric oxide. The detection of i-NOS is as an indirect measurement
of endocrine disrupters, which downregulates i-NOS and produce adverse developmental,
reproductive, neurological, and immune effects in both humans and wildlife [538,539]. The
sensor, which showed a limit of detection of 0.2 ng/mL, was prepared by self-assembly of
electropolymerized pTTP on gold nanoparticles (AuNP) followed by electropolymerization
on a glassy carbon electrode surface (Figure 7b).

Furthermore, the benzoic acid functionality showed excellent sensitivity for the
electrochemical detection of toxic products released by normal or diseased cells. In
the work of Kim et Al., the detection of nitric oxide (NO) produced from cancer cells
(LOD = 7.7 × 10−9 M) was achieved by using ZnO nanoparticles immobilized on a BA-
pTTP/rGO composite layer [540]. In another study, silver nanoparticles (AgNPs) attached
to a BA-pTTP/carbon nanotubes composite was tested as a biosensor for the detection of
H2O2 in urine samples showing a fast response time (below 5s) and a LOD of 0.24 mM [541].
Lastly, phthalate was analytically monitored with a microfluidic device coupled to a BA-
pTTP electrochemical biosensor, with the aim to evaluate the effect of endocrine disruptors.
The high uptake ability of the biosensor towards soluble phthalate esters in aqueous
media (LOD = 12.5 pM) was achieved by controlling the surface charge and hydropho-
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bicity through assembling with a lipid and a cationic molecule attached to the BA-pTTP
matrix [542].

Figure 7. pTTP sensors for the detection of (a) glycated hemoglobin and (b) i-NOS. Adapted with permission from ref. [533]
and ref. [539] Copyright 2013 and 2011, American Chemical Society.

4.2.2. Antibacterial Activity

The group of Rodrigues described the preparation of an antiwetting and self-cleaning
superhydrophobic pTTP film and its effect on enabling or inhibiting the adhesion of pro-
teins and bacterial cells on its surface (Figure 8). The authors could tune the polythiophene
wettability by simply changing its redox state via potential switching. For instance, the
undoped pTTP film, which is superhydrophobic, inhibits the adhesion of fibrinogen pro-
teins and E. coli cells. On the other hand, the doped film, which is hydrophilic, leads to
increased attachment of both proteins and bacteria. Overall, manipulating the wettability
affect the adhesion of fibrinogen and E. coli [543].

Figure 8. (a) Fabrication scheme of the superhydrophobic polymeric surface. (b) Protein and bacterial
adhesion onto the undoped (orange-colored film) and doped (green-colored film) polythiophene
surfaces. Copyright (2012) American Chemical Society [543].

4.2.3. Tissue Engineering

As many polythiophenes, polyterthiophenes are considered attractive materials for
their implementation in synthetic cellular scaffolds, as they are biocompatible and can
closely interact with cells and tissues both in an electrical and biological way. For example,
Quigley and co-workers tested an alkoxy-functionalized pTTP together with two different
dopants as substrates for the growth and differentiation of primary myoblasts [544]. The
authors found that p-toluenesulphonate–doped polymers were significantly smoother and
hydrophilic than the perchlorate counterpart. Such properties and the presence of methoxy
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groups had a significant effect on the primary myoblasts attached onto the polymer surface
and resulted in the promotion of different specific cellular responses, e.g., proliferation vs.
differentiation, in absence of other biological agents. In another work, the carboxylic acid
moiety of pTTP was exploited for the grafting of fibronectin-derived Arg-Gly-Asp (RGD)
peptides. Through this strategy, an electronically conductive and biocompatible surface
was obtained. Afterwards, this material was successfully employed for the the attachment
and growth of human dermal fibroblasts, proving its potential as bioactive scaffold for
tissue engineering applications [345].

4.2.4. Pharmacological Activity

Polyterthiophene has been used as platform for the controlled release of dexametha-
sone, a synthetic glucocorticoid anti-inflammatory drug. The controlled release profiles
were established using a range of electrochemical stimulation protocols over a period of
24 h. Interestingly, the redox state of the polyterthiophene was found to be critical for
the controlled release of the dexamethasone. In fact, in the reduced state the amount of
dexamethasone released from the polyterthiophene under the electrostimulation protocols
was at therapeutically relevant levels, with a maximum release of ≈80 g/cm2. On the con-
trary, in the oxidized state the rate of release of dexamethasone was significantly impeded
with ≈40 g/cm2 released over 24 h [545].

Prion diseases are neurodegenerative infectious disorders characterized by the de-
position of β-sheet-rich aggregates. The infectious agent is termed prion and Aguzzi
and coworkers reported the use of polythiophenes for the inhibition of its propagation
by stabilizing the prion proteins. They tested on cerebellar organotypic cultured slices
and on mouse prion proteins in vitro a wide variety of polythiophenes, including poly-
terhtiophenes, in their anionic, cationic or zwitterionic form, using the enzyme-linked
immunosorbent assay (ELISA). Overall, the polythiophenes reduced the infectivity of
prion-containing brain homogenates and cerebellar organotypic cultured slices and de-
creased the amount of scrapie isoform of prion proteins. Nevertheless, the antiprion activity
of these compounds cannot be attributed to the charge type of their side chains, because
anionic, cationic, and zwitterionic compounds reduced prion infectivity to a similar level.
Thus, the activity of these polythiophenes appears to be an intrinsic property of the polymer
backbone itself. Finally, some of the polythiophenes synthesized displayed the ability to
cross the blood-brain barrier and therefore may represent promising candidates for further
in vivo studies [546].

5. Future Perspectives

The synthetic strategies, the structural variety, and the biological applications of
terthiophenes were discussed in this review. It is clear how the ease of synthesis and the
variation and modification of these structures has made possible their implementation
into a wide palette of new advanced technologies, consecrating them as the following
generation of thiophene-based functional materials.

Nevertheless, although the chemical and optical properties of terthiophene deriva-
tives have been extensively investigated, their applicative potential still needs to be fully
explored. In particular, the employment of these structures in biology and medical science
studies is rather limited compared to their widespread use for optoelectronics and energy
conversion applications. The reason could lie in the sometimes-challenging communication
across the fields: on one side, the unawareness of the synthetic tools available, on the
other, their unacknowledged value for developing useful technologies, which hampers the
progress of transversal research. This review attempted to overcome some of these diffi-
culties, providing with simple words and clear examples the complementary information
to promote interdisciplinarity. Many possible bioapplications of trimer-based materials
were discussed in this review, including photodynamic therapy and plagues treatment,
as well as the development of platforms to diagnose and treat a wide variety of diseases.
In particular, the successful use of terthiophene as an organic PS has been abundantly
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reported. Nonetheless, these PS are activated by UV light, whose exposition is potentially
mutagenic, and more effort should be done to make them active under the safer visible or
infrared wavelengths.

In summary, the enormous amount of approaches and possibilities available for the
synthesis, functionalization, and application of thiophene-based trimers is reflected in the
increasing number of outstanding scientific results. Our belief is that the day in which
these materials will have a positive impact on everybody’s life is now close. With this work,
we hope to have provided a useful help to whomever may want to participate in this goal.
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