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a b s t r a c t 

Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a 
CO 2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemo- 
dynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in 
understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural ac- 
tivity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the 
characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting- 
state data segments, and in data segments which added a 2–3 minute breathing task to the start of a resting-state 
segment. Two different breathing tasks were used to induce fluctuations in arterial CO 2 pressure: a breath-hold 
task to induce hypercapnia (CO 2 increase) and a cued deep breathing task to induce hypocapnia (CO 2 decrease). 
Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response 
to CO 2 by systematically shifting the CO 2 regressor in time to optimize the model fit. This optimization inher- 
ently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a 
resting-state scan only, increases the number of voxels in the brain that have a significant relationship between 
CO 2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemody- 
namic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding 
of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. 
This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider 
applications for fMRI denoising and interpretation. 
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. Introduction 

Brain blood flow is regulated by changes in vessel diameter, directed
y changes in perfusion pressure and by metabolic demands of neural
ctivity ( Meng and Gelb, 2015 ). Cerebrovascular Reactivity (CVR), the
lood flow response to a vasoactive stimulus, is a metric that reflects
his regulatory ability and is a key means of assessing cerebrovascu-
ar health. CO 2 is a potent vasodilator and the partial pressure of arte-
ial CO 2 (PaCO 2 ) naturally fluctuates with changes in respiratory depth
nd rate. Within a certain range around resting PaCO 2 , an increase in
aCO 2 will cause vasodilation and a decrease will cause vasoconstric-
ion ( Meng and Gelb, 2015 , Harper and Glass, 1965 , Brian, 1998 ); this
Abbreviations: No-Opt, No Optimization; Lag-Opt, Lag Optimization; HRF/hrf, He  

artial pressure of End Tidal CO 2 ; BH, Breath Holding; CDB, Cued Deep Breathing; G  

atter; CVR, Cerebrovascular reactivity. 
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hange in vessel diameter will result in a global change in blood flow
hat can be captured by any functional Magnetic Resonance Imaging
fMRI) contrast that is dependent on blood flow changes. Driven by
he same physiological mechanism, the influence of PaCO 2 on fMRI sig-
als can either provide useful information about vascular function, or
onfound our measurement of neural function, depending on how one
odels and interprets these effects. An ideal fMRI experiment should

herefore include characterization of CVR, both to provide complemen-
ary vascular information and to better model and interpret any neu-
al activity of interest (e.g., task activation, intrinsic fluctuations, and
unctional connectivity). The main focus of this paper is to assess how
 practical modification of a typical “resting-state ” protocol improves
ne 2021 
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VR mapping, focusing on regional variations in semi-quantitative CVR
mplitude and local hemodynamic timings. Considering broader appli-
ations, improved modeling of PaCO 2 fluctuations in any fMRI data nat-
rally enables better differentiation between non-neuronal confounds
nd neuronally-driven effects and can aid in correcting fMRI analy-
es for variations in transit delays and vascular properties of the lo-
al hemodynamic response ( Handwerker et al., 2007 , Thomason et al.,
007 , Chang et al., 2008 , Tsvetanov et al., 2015 , Murphy et al., 2011 ,
annurpatti and Biswal, 2008 , Golestani and Chen, 2020 ). 

.1. Practical CVR mapping: modeling both amplitude and timing 

Here we used the Blood Oxygenation Level Dependent (BOLD) fMRI
esponse to represent blood flow changes, and the partial pressure of end
idal CO 2 (P ET CO 2 ) to represent PaCO 2 changes ( Takano et al., 2003 ,
cSwain et al., 2010 ). Aside from an invasive contrast-agent such as

cetazolamide, CO 2 gas inhalation methods are often seen as the gold
tandard for CVR mapping with fMRI ( Liu and De Vis, 2019 ). Gas in-
alations allow more precise and repeatable PaCO 2 targeting, however
hese experiments are more timely, costly and complicated to set-up,
nd are therefore not practical for all research and clinical applications.
uch previous fMRI research has demonstrated that CVR mapping with

reathing tasks (breath holding, BH, or cued deep breathing, CDB) is a
romising practical approach that can provide useful information about
erebrovascular health ( Urback et al., 2017 , Pinto et al., 2021 ); this has
een demonstrated in a diverse set of clinical cohorts, e.g. ( Pillai and
ikulis, 2014 , Krainik et al., 2005 , Pillai, 2011 , Iranmahboob et al.,

016 , Conijn et al., 2012 , Wu et al., 2020 , R.V. Raut et al., 2016 ,
an Oers et al., 2018 , Zacà et al., 2014 , Tchistiakova et al., 2014 ,
uterbaugh et al., 2015 , Prilipko et al., 2014 , Churchill et al., 2020 ,
eranmayeh et al., 2015 , Hsu et al., 2004 ). Resting P ET CO 2 fluctua-

ions also have a significant positive relationship with BOLD fMRI sig-
als ( Wise et al., 2004 ). Therefore, an even simpler approach to CVR
apping is to measure natural fluctuations in P ET CO 2 during fMRI ac-

uisitions with no specific task, i.e., during rest ( Pinto et al., 2021 ,
. Liu et al., 2017 , Golestani et al., 2016 ). This may be favored in clin-
cal studies where subject compliance with breathing tasks is hard to
chieve. The utility of this resting-state CVR approach has also been
emonstrated in clinical cohorts ( P. Liu et al., 2017 , Liu et al., 2020 ,
aneja et al., 2019 , Ni et al., 2020 , Secchinato et al., 2019 ). 

Both breathing tasks and resting-state approaches produce compara-
le BOLD signal changes ( Kannurpatti and Biswal, 2008 , Jahanian et al.,
017 , Birn et al., 2006 ), and are also comparable to those obtained with
as-inhalation techniques ( Kannurpatti and Biswal, 2008 , P. Liu et al.,
017 , Golestani et al., 2016 , Kastrup et al., 2001 , Biswal et al.,
007 ). There are few studies comparing breathing tasks and resting-
uctuations for CVR mapping normalized to a common scale, i.e.,
 ET CO 2 . One study, using P ET CO 2 regressors in their CVR analysis, re-
ort that resting-state data shows poorer model fits, poorer repeatabil-
ty, and more variable between-subject CVR estimates compared to BH
ata, in 14 subjects ( Lipp et al., 2015 ). CVR maps showed good spa-
ial agreement between BH CVR and resting-state CVR when the latter
s evaluated based on the resting P ET CO 2 trace and the resting state
uctuation amplitude (RSFA), but in general their results suggest it is
ot straight-forward to replace BH designs with resting-state in the as-
essment of CVR. In terms of agreement in CVR timing, ( Chang and
lover, 2009 ) reported a strong agreement between P ET CO 2 latency
alues derived from a BH dataset and resting-state dataset, in one sub-
ect. Also assessing timing, ( Bright et al., 2017 ) investigated the opti-
al temporal shift between a gray matter (GM) BOLD time-series and
 P ET CO 2 regressor, in 12 subjects, within a 16 second range. In the
odelled resting-state data, some subjects showed negative correlation

alues, and no clear shift maximum within the temporal bounds consid-
red. For the modelled BH data, all subjects showed a significant posi-
ive correlation between BOLD and P ET CO 2 that peaks at a physiologi-
ally plausible temporal shift. Further, BH derived optimal shift values
2 
ere repeatable within two halves of the scan, whereas this was not
he case for optimal shift values derived with resting-state data. Though
VR mapping with resting-state data is possible, there exists intrinsic

ow-frequency oscillations, driven by neural activity or other physiolog-
cal processes ( Murphy et al., 2013 , Liu, 2016 , Caballero-Gaudes and
eynolds, 2017 , Tong et al., 2019 , Whittaker et al., 2019 ) that can be
f similar or greater magnitude to the low-frequency fluctuations in-
uced by P ET CO 2 , sometimes resulting in an fMRI time-course poorly
oupled to P ET CO 2 . Furthermore, breathing tasks induce larger fluctu-
tions in P ET CO 2 and therefore larger fMRI signal changes which can
e easier to detect above noise. However, breathing tasks, as opposed
o rest, can introduce motion confounds that are correlated with task
imings ( Bright et al., 2009 , Power et al., 2018 , Power et al., 2017 ). 

Correcting for the temporal offset between a P ET CO 2 regressor and
he local fMRI response is an important and necessary step in esti-
ating accurate regional CVR values. Though the previous literature
as mixed approaches and results, robustly characterizing this temporal
hift in resting-state data sometimes appears unreliable and less repeat-
ble. Within the BOLD fMRI literature, it appears relatively common
o correct for the temporal offset with a cross-correlation between the
hysiological regressor and an average fMRI regressor. It is less com-
on to model this temporal offset on a voxel-wise basis, though there

re multiple examples in the literature showing the implementation and
dvantages of this in resting-state or breathing task data ( Chang et al.,
008 , Geranmayeh et al., 2015 , Chang and Glover, 2009 , Bright et al.,
009 , Magon et al., 2009 , Pinto et al., 2016 , R.V. Raut et al., 2016 ,
ohen and Wang, 2019 , Birn et al., 2008 , Sousa et al., 2014 , Tong et al.,
014 , Juttukonda and Donahue, 2019 , Donahue et al., 2016 , Tong et al.,
011 ). This temporal offset is driven by both methodological and phys-
ological factors: there is a delay between the CO 2 exhalation inside the
canner and the recording of exhaled CO 2 in the control room, vascu-
ar transit delays as gasses travel with the blood to arrive at each brain
egion and variability in the vasodilatory response of local arterioles
nd the spatio-temporal complexities of the BOLD response. Therefore,
t is important to model CVR lag (also referred to as CVR timing, op-
imal shift, temporal offset, latency or delay) on a regional or voxel-
ise basis. In healthy subjects, we recently demonstrated our approach

o voxel-wise optimization of hemodynamic lag, to improve regional
OLD-CVR estimates ( Moia et al., 2020 , Moia et al., 2021 ), and we ap-
ly this pipeline to our CVR mapping analysis in this paper. As well as
mproving model fit and more accurately characterizing CVR amplitude,
aking maps of hemodynamic lag can provide distinct regional infor-
ation that is clinically relevant ( Donahue et al., 2016 , Siegel et al.,
016 , Ni et al., 2017 ) and potentially aid in correcting fMRI analy-
es ( Handwerker et al., 2007 , Thomason et al., 2007 , Chang et al.,
008 , Tsvetanov et al., 2015 , Murphy et al., 2011 , Kannurpatti and
iswal, 2008 , Golestani and Chen, 2020 ). 

There is always a trade-off between complexity of experimental set-
p and how much control one can have over the manipulation of blood
asses. We strive for simple and feasible methods that can be applied
n clinical settings, without losing too much accuracy, and minimizing
he disruption to the overall scan session. Therefore, in this study we
ropose a practical addition to a typical resting-state fMRI scan: ap-
roximately 2.5 minutes of a breathing task appended to the start of a
esting state period. We suggest that this novel hybrid design (breathing
ask + resting state) will be useful for both mapping of CVR amplitude
nd timings, ideally still allowing for separate analysis of resting state
ata. We compare CVR maps with and without lag optimization, and
VR maps that have been created with resting-state data alone, resting-
tate data preceded by a short hypercapnic breathing task, and resting-
tate data preceded by a short hypocapnic breathing task. We chose
wo different breathing tasks to achieve these PaCO 2 changes: the com-
only utilized breath-hold (BH) task to induce hypercapnia (reviewed

y ( Urback et al., 2017 )), and a cued deep breathing task (CDB) to in-
uce hypocapnia via hyperventilation ( Bright et al., 2009 , Sousa et al.,
014 , Bright et al., 2011 ), both tasks reviewed by ( Pinto et al., 2021 ). 
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Fig. 1. (A) Five scans collected during the whole session (40 minutes). The 
ASL scan is not analyzed in this manuscript. (B) From 3 fMRI scans, 5 data 
segments were extracted, each with the same number of time points: 3 segments 
were REST only and the other 2 segments involved a breathing task (BH/CDB) 
followed by REST. Visual instructions for each task were displayed on a monitor 
during scanning. (C) BH task: IN and OUT instructions alternated for 3 s each, 
with a countdown from 24 s. Subjects ended on an exhale before holding, and 
were instructed to do another exhale after holding. ‘Recover’ is a period of free 
breathing. CDB task: IN and OUT instructions alternated for 2 s and subjects 
were told to take fast, deep breaths. REST: fixation cross shown. T1-w = T1- 

weighted, BH = breath holding, CDB = cued deep breathing, CB = cued breathing. 
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. Methods 

.1. Data collection 

This study was reviewed by Northwestern University’s Institutional
eview Board and all subjects gave written informed consent. Nine
ealthy subjects were recruited (6 female, mean age = 26.22 ± 4.06
ears). A tenth subject was recruited of which a potential incidental
nding was observed, based on hemodynamic lag maps. The appropri-
te ethical guidelines were followed in reporting of this incidental find-
ng, and it was later confirmed this subject had a diagnosis of Moyamoya
isease. Therefore, this subject is not described alongside the other nine
ubjects in this manuscript, but as a case study in a separate section of
he results. 

The overall study design is shown in Fig. 1 . Before scanning, sub-
ects practiced the BH and CDB tasks outside the scanner with the re-
earcher (R.C.S). Three fMRI scans were collected, the order of acqui-
ition pseudo-randomized across subjects. BH and CDB timings were
uided by previous work using these tasks ( Lipp et al., 2015 , Bright et al.,
009 ) including information about the BOLD time to peak and return to
aseline timings in response to a single deep breath ( Birn et al., 2008 ).
rom three fMRI scans, five data segments were created: BH + REST,
DB + REST, REST, REST BH and REST CDB , of which the first two con-
ain breathing tasks and the others do not. Each data segment had the
ame number of time points, to match degrees of freedom across mod-
ls. During scanning, inspired and expired CO 2 and O 2 pressures (in
mHg) were sampled through a nasal cannula worn by the participant,

nd pulse was monitored with a finger transducer. These physiological
ignals were recorded alongside fMRI volume triggers at 1000 Hz with
abChart software (v8.1.13, ADInstruments), connected to a ML206 Gas
nalyzer and PL3508 PowerLab 8/35 (ADInstruments). Although pulse
ata were collected, they were not included in the modeling of fMRI
ata due to insufficient quality of the recordings across many subjects
nd scans. 

Imaging data were collected with a Siemens 3T Prisma MRI sys-
em with a 64-channel head coil. The functional T2 ∗ -weighted ac-
uisitions run during the breathing tasks and resting-state protocols
ere gradient-echo planar sequences provided by the Center for Mag-
etic Resonance Research (CMRR, Minnesota) with the following pa-
ameters: TR/TE = 1200/34.4 ms, FA = 62°, Multi-Band (MB) accel-
ration factor = 4, 60 axial slices with an ascending interleaved or-
er, 2 mm isotropic voxels, FOV = 208 × 208 mm 

2 , Phase Encod-
ng = AP, phase partial Fourier = 7/8, Bandwidth = 2290 Hz/Px. One
ingle-band reference (SBRef) volume was acquired before each func-
ional T2 ∗ -weighted acquisition (the same scan acquisition parameters
ithout the MB acceleration factor) to facilitate functional realign-
ent and masking. A whole brain T1-weighted EPI-navigated multi-

cho MPRAGE scan was acquired, adapted from ( Tisdall et al., 2016 ),
ith these parameters: 1 mm isotropic resolution, 176 sagittal slices,
R/TE1/TE2/TE3 = 2170/1.69/3.55/5.41 ms, TI = 1160 ms, FA = 7°,
OV = 256 × 256, Bandwidth = 650 Hz, acquisition time of 5 minutes
2 seconds, including 24 reacquisition TRs. The three echo images were
ombined using root-mean-square. ASL data was also collected before
he last fMRI scan, but it was not analyzed in the current study. 

Five example datasets from a pediatric study of hemiparetic cere-
ral palsy and typical development (ages 7–21 years, all female) are
ncluded to assess the feasibility of our proposed method in cohorts
here task compliance may be more challenging. All gave written in-

ormed consent or assent. Only one functional T2 ∗ -weighted acquisi-
ion was collected. The functional acquisition matched the parameters
xplained previously, except for these key differences: MB factor = 8,
R/TE = 555/22 ms, FA = 47°, 64 slices, 6/8 phase partial Fourier, and
OV = 208 × 192. During this acquisition participants completed a
DB + REST protocol that matched the timings described previously, ex-
ept auditory cues were used instead of visual cues ( Fig. 10 ). Expired
O 2 was collected as previously described. 
3 
.2. Data analysis 

The data from this study unfortunately cannot be made openly avail-
ble due to restrictions of the ethical approval that they were col-
ected under. However, analysis derivatives that are not included in
his manuscript may be provided, on request, within ethical guide-
ines. All breathing task stimulus code and the main analysis code
ave been made available via this GitHub repository: github.com/
rightLab-ANVIL/Stickland _ 2021 . 

.2.1. MRI pre-processing 

A custom shell script grouped AFNI ( Cox, 1996 ) and FSL
 Woolrich et al., 2009 , Smith et al., 2004 , Li et al., 2016 , Jenkinson et al.,

https://github.com/BrightLab-ANVIL/Stickland_2021
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f  
012 ) commands, for minimal preprocessing of the MRI data. DICOMS
ere converted to NIFTI format with dcm2niiX ( Li et al., 2016 ). The
1-weighted file was processed with FSL’s fsl_anat , involving brain ex-
raction ( Smith, 2002 ), bias field correction and tissue segmentation
GM/white matter/cerebral spinal fluid) with FAST ( Zhang et al., 2001 ).
issue masks were subsequently created by thresholding the partial
olume estimate images at 0.75. The SBRef volume from the middle
second) fMRI scan was brain extracted, and eroded. The SBRef im-
ge was registered to the preprocessed T1-weighted image using FLIRT
 Jenkinson and Smith, 2001 , Jenkinson et al., 2002 ). The transforma-
ion matrix was inverted in order to co-register the tissue masks from
1 image space to SBRef image space. For each fMRI acquisition, the
rst 10 volumes were discarded to allow the signal to achieve a steady
tate of magnetization. AFNI’s 3dvolreg was run with the same middle
BRef scan as the reference volume. Six motion parameters (three trans-
ations, three rotations) were saved and demeaned for each acquisition.
ext, the three fMRI files were masked to brain voxels using the SBRef
ask created previously. 

.3. CO 2 trace pre-processing 

Fig. 2 gives a schematic overview of the lagged-GLM protocol for
VR mapping. For further justification of this analysis approach see
ppendix A . Custom MATLAB (MathWorks, R2018b) code processed the
hysiological recording to create P ET CO 2 regressors. A text file from the
hole session was exported from the LabChart software and split into
n output for each fMRI acquisition. Each output was (purposefully)
lightly longer than the length of the fMRI acquisition: an additional
0.4 seconds of CO 2 data (equivalent to 17 extra TRs) both before and
fter each acquisition was included in the exported data ( Fig 2 -A). This
ade it possible to create shifted P ET CO 2 regressors in a later step. A
eak detection algorithm was used to detect the end-tidal peaks (max-
mum CO 2 value at the end of each exhale). The peaks were manually
hecked to ensure the end of each expiration breath was always chosen,
nd to remove incorrectly identified end-tidal values (e.g., in the case
f partial breathing through the mouth, and not fully through the nose,
ot giving a true end-tidal peak). A linear interpolation between these
eaks produced the P ET CO 2 trace ( Fig 2 -B) which was convolved with
he SPM canonical hemodynamic response function (HRF) and exported
or functional imaging analyses. For the breath-hold periods there is no
nd-tidal recording, so a linear interpolation is based on the last exhale
efore the hold and the first exhale after. 

.3.1. CVR and lag estimation 

Linear modeling for CVR and lag estimation was carried out sepa-
ately for each of the five data segments (data segments illustrated in
ig. 1 and 3 ). A total of 101 shifted P ET CO 2 hrf regressors with differ-
nt temporal offsets were created, with a unique reference start time
 Fig 2 -C). The reference start time corresponded to the first fMRI vol-
me to be analyzed for that segment. The same model was run for all
hifted versions of the P ET CO 2 hrf regressor ( Fig 2 -E): the fMRI variance
xplained by the demeaned P ET CO 2 hrf regressor was modeled alongside
he six demeaned motion parameters (as nuisance regressors) and Leg-
ndre polynomials up to the 4th degree (to model the mean and drifts
f the fMRI signal). Including these polynomials in the model is approx-
mately equivalent to a high-pass filter cutoff of 0.0076 Hz (AFNI 3dDe-

onvolve help ; ( Kay et al., 2008 )). Least squares regression accounting
or serial autocorrelation of residuals was applied with AFNI’s 3dREML-

t command. The beta coefficient for the P ET CO 2 hrf was scaled by the
tted mean (beta coefficient for 0th order polynomial) of that voxel
P ET CO 2 hrf coefficient/mean coefficient) and multiplied by 100 to cre-
te CVR maps in %BOLD/mmHg. 

The hemodynamic lag at each voxel was identified as the shift that
ave the maximum full model coefficient of determination (R 

2 ) ( Fig 2 -
). If a voxel with an optimal shift (lag) was found at or adjacent to
4 
 boundary (-15, -14.6, + 14.6, + 15) this was not deemed a true opti-
ization and is also less likely to be physiologically plausible ( Fig 2 -
). Final hemodynamic lag maps ( Fig 2 -H) display values ranging from
egative to positive which indicate earlier to later hemodynamic re-
ponses to P ET CO 2 hrf, respectively. Two CVR maps were created: map
ith no lag optimization (No-Opt), using the unshifted P ET CO 2 hrf as

he regressor, and CVR maps with lag optimization (Lag-Opt). Lag-Opt
VR maps used the beta coefficient for the P ET CO 2 hrf regressor from
he model with the optimum shift ( Fig 2 -I). Lag and CVR maps were
hresholded ( Fig 2 -J): CVR values were deemed significant for absolute
-statistics greater than 1.96 (corresponding to p < 0.05) and for Lag-Opt
VR this was further adjusted with the Š idák correction ( Bright et al.,
017 , Sidak, 1967 ) due to running 101 different models. Voxels with lag
alues at the boundary were also removed from thresholded parameter
aps. 

.3.2. Data summaries and statistical tests 

The median GM CVR and the percentage of significant voxels in
M was calculated for each modelled data segment . These values were
omputed for No-Opt, Lag-Opt, No-Opt with statistical thresholding
p < 0.05), Lag-Opt with matched statistical thresholding (p < 0.05) and
ag-Opt with stricter statistical thresholding (p < 0.05, Š idák corrected).
he kernel density estimation of the distribution of lag values in GM
MATLAB’s ksdensity function) was also computed for each subject and
ach data segment, and the median GM lag values were outputted. 

In order to provide lag values with some regional specificity across
M regions, FSL atlases in MNI space (MNI-maxprob-thr25–2mm and
arvardOxford-sub-maxprob-thr25–2mm) were used to make three GM
asks: cortical GM, subcortical GM and cerebellar GM. From the Har-

ardOxford atlas, left and right cerebral cortex parcels were combined
nto one mask, and left and right subcortical regions (thalamus, cau-
ate, putamen, palladium, hippocampus, amygdala, accumbens) com-
ined into another. The cerebellum parcel was extracted from the MNI
tlas to make a third mask. These three atlas masks (cortical, subcortical
nd cerebellar) were linearly transformed (FSL, FLIRT) to subject space,
nd thresholded to only include voxels within the subject’s GM tissue
ask. Median lag values were extracted from each mask for BH + REST

nd CDB + REST data segments. 
R version 3.4.1 ( R Core Team, 2019 ) was used for data exploration

nd statistical testing. To compare parameter values across data seg-
ents and optimization schemes (No-Opt vs Lag-Opt), repeated mea-

ures ANOVAs were run with the R package permuco ( Frossard and Re-
aud, 2019 ) with the ‘aovperm’ function. Null distributions were cre-
ted via 100,000 permutations of the original data, which therefore do
ot depend on gaussian and sphericity assumptions. When investigat-
ng simple main effects (‘emmeans’ package) and performing multiple
omparisons, p-values were adjusted with the Benjamini & Hochberg
pproach ( Benjamini and Hochberg, 1995 ) for control of false discov-
ry rate (FDR), and then compared against an alpha of 0.05 to deter-
ine significance. Outliers were identified with boxplots. Correlation
lots and statistical outputs were created with the R packages ggplot2
 Wickham, 2016 ) and ggpubr ( Kassambara, 2020 ) with the ‘ggscat-
er’ function. Outliers for the correlation analysis were identified when
ook’s distance was over 4/n, with n being the number of subjects,
hich indicates an influential single data point. The Shapiro-Wilk test
as used to ensure normality of variables. 

It can be seen from the parameter maps ( Fig. 5 , Fig. 6 , Supplementary
igure S1) that after statistical thresholding, a substantial proportion
f voxels within white matter do not show a significant relationship
etween P ET CO 2 hrf and BOLD signals. Therefore, we decided to focus
ur comparison of CVR and lag parameter averages, across the different
ata segments, within GM voxels only. 

.3.3. Resting-state analyses 

We performed exploratory analyses to investigate any residual ef-
ects on the resting-state data segments that followed the breathing
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Fig. 2. The main steps of the lagged-GLM analysis. (A) expired CO 2 from the participant is recorded alongside fMRI volume triggers. A high sampling rate of 
1000 Hz is more than strictly necessary; a sampling rate that adequately resolves the shift unit (C) is the required minimum. (B) a peak detection algorithm and 
linear interpolation creates the P ET CO 2 trace, which is convolved with a hrf. (C) multiple shifted versions of the P ET CO 2 hrf regressor are made, with a shift range of 
± 15 seconds and a shift unit of 0.3 seconds, creating 101 regressors (30/0.3 plus the unshifted regressor). (NB: see Appendix A for more details on the choice of shift 
range and shift unit.) The regressors are down-sampled (D) and included in a linear model (E) to assess how they explain the BOLD signal. (F and G): the optimal 
shift is found for each voxel, allowing lag maps to be made (H). Lag maps relative to the GM median are also made, which allow for a more consistent color scale for 
visualizing results across data segments and subjects. This normalized map may also help when comparing across studies. Lag-optimized CVR maps are made (I) as 
well as thresholded maps (J). PETCO2 = Partial pressure of End Tidal CO2, hrf = hemodynamic response function, GM = Gray Matter, BOLD = Blood Oxygenation Level 

Dependent, CVR = Cerebrovascular Reactivity. 
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asks. BOLD-fMRI data from each of the three pre-processed REST seg-
ents (7 minutes 48 seconds, first 10 volumes of each segment re-
oved, brain extraction, volume registration) were detrended to re-
ove the same motion parameters and Legendre polynomials as de-

ailed in Sections 2.2.1 and Sections 2.2.3 . We then created maps of
esting-state fluctuation amplitude normalized to the mean (mRSFA),
mplitude of low-frequency fluctuation (ALFF) and fractional ALFF
fALFF) with AFNI’s 3dRSFC function (4 mm FWHM blurring, filter-
ng between 0.01 and 0.1 Hz). We also created maps of local func-
5 
ional connectivity density (LFCD) with AFNI’s 3dLFCD function (Pear-
on correlation, threshold of 0.6, within a dilated GM mask). Spatial
orrelations were performed between pairs of single-subject resting-
tate parameter maps, within the GM mask, with AFNI’s 3ddot func-
ion. The resting-state parameter maps were linearly transformed to
NI space and a voxel-wise ANOVA analysis (3dANOVA , AFNI) was

un to test the effect of REST segment on mRSFA, ALFF, fALFF and
FCD, setting a voxel-wise threshold of p < 0.05 (FDR corrected) for
ignificance. 
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Fig. 3. (A) Unshifted P ET CO 2 hrf traces (mmHg change from baseline) and GM-BOLD traces (% change from mean) for each of three fMRI acquisitions. Thick lines 
represent group means and thin lines represent each subject. The key at the bottom describes the five data segments that are compared in this manuscript. The first 10 
volumes at the start of each data segment are not used (discarded to allow steady-state to be reached) resulting in 390 volumes for each data segment. (B) Framewise 
displacement, created with FSL’s ‘fsl_motion_outliers’ command is plotted for each scan, including blue and green boxes to indicate the time the participant was cued 
to hold their breath (blue) or take deep breaths (green). The line for each scan represents the mean across subjects and the shading around this line represents the 
standard deviation. PETCO2 = Partial pressure of End Tidal CO2, hrf = hemodynamic response function, GM = Gray Matter, BOLD = Blood Oxygenation Level Dependent, 

BH = breath holding, CDB = cued deep breathing. 
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. Results 

Fig. 3 A shows the average BOLD-fMRI signal across GM, and the
orresponding P ET CO 2 hrf changes, for each of the three scans. Note the
hree cycles of increased P ET CO 2 values in blue, due to breath holds,
nd the two cycles of decreased P ET CO 2 values in green, due to cued
eep breaths. The fMRI time-series changes as expected due to the CO 2 
anipulations. The BH task produced a maximum pressure increase of
.4 ± 3.1 mmHg (mean ± stdev across subjects) and CDB produced a max-
mum decrease of 8.1 ± 3.2 mmHg, relative to the mean value at rest.
or the three rest segments the temporal standard deviation of P ET CO 2 
as 0.9 ± 0.4, 1.2 ± 0.7 and 0.8 ± 0.4 mmHg (mean ± stdev across subjects)

or REST, REST BH and REST CDB respectively. Fig. 3 B displays framewise
isplacement ( Power et al., 2012 ) to summarize head motion, showing
ncreased motion during breathing tasks. 

.1. Hemodynamic lag values 

Fig. 4 shows the distribution of hemodynamic lag values in GM tissue
stimated from the lagged-GLM analysis, displaying both positive and
egative lags. Though a positive lag value might be expected (CO 2 pres-
ure change in the blood leads the fMRI signal change) there are multiple
actors contributing to this value, and in different directions. For exam-
le, the recording delay between CO exhalation inside the scanner and
2 

6 
O 2 recording outside the scanner contributes to a more negative shift,
hereas vascular transit delays and vasodilatory dynamics that even-

ually lead to the BOLD-fMRI signal will contribute to a more positive
hift. Therefore, the observed lag between a CO 2 recording and a BOLD
MRI recording will naturally vary with the experimental set-up, the
articipant, and their physiological state. 

As demonstrated in Fig. 4 , the BH + REST and CDB + REST data seg-
ents, plotted in solid blue and green lines respectively, have a more

aussian-like distribution of lag values (excluding the boundaries), the
roperties of which generally match for most subjects. REST data seg-
ents (dashed lines) have less physiologically plausible distributions
hich agree less with other segments and vary more across subjects.
ig. 4 also shows the percentage of GM voxels with lag values at the
oundary condition. From the repeated measures ANOVA analysis, there
as a significant effect of data segment on percentage of voxels at

he boundary condition (F(4,32) = 9.86, p < 0.0001). Simple main ef-
ects analysis showed that group means for BH + REST (12.24%) and
DB + REST (11.79%) did not differ (p = 0.795, FDR-corrected). However,
H + REST and CDB + REST each had a significantly lower percentage
ompared to REST (17.56%), REST BH (17.35%) and REST CDB (18.34%),
ith all p-values < 0.022, FDR corrected. All REST segment pairs were
ot significantly different to each other (p > 0.605, FDR corrected). This
nalysis was run multiple times after the separate removal of three data
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Fig. 4. Distributions of lag values, across GM voxels. Distributions for all subjects (S1-S9) are shown, and for all data segments. Negative to positive lag values 
indicate earlier to later BOLD responses to P ET CO 2 hrf. The percentage (per) of GM voxels with optimal shift values at the boundary condition is compared across 
data segments in the bottom right-hand corner. The group mean is shown as a thick horizontal line and each subject is represented as a black dot. Lag values are not 
relative to GM median. BH = breath holding, CDB = cued deep breathing, GM = Gray Matter, pde = probability density estimate. 
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oints from the REST CDB group which were classed as extreme outliers
ased on boxplots, however the results did not change. The three REST
ata segments resulted in a greater percentage of voxels being identified
t the boundaries of our fitting procedure; lag values at the boundary are
ess physiologically plausible, and indicate less certain lag optimization
.e., we cannot determine this is a true local maximum. 

Supplementary Table S1 shows that BOLD response timing to a
 ET CO 2 hrf change is generally earliest in subcortical GM regions, ap-
roximately 0.4 seconds later in cortical GM regions, and 1.4–2.0 sec-
nds later in GM cerebellar regions. Though specific regional compar-
sons were not a focus of this paper, lag (CVR delay) is less commonly
haracterized in the literature, compared to CVR amplitude. Therefore,
hese results are included in order to assess the agreement of our lag
alues with previous literature. 

.2. CVR and lag maps 

Figs. 5 and 6 show maps of CVR and lag, respectively, for one subject
nd all thresholding options. CVR values increase after lag optimization,
s expected. There is more spatial agreement in CVR and lag maps when
he BH and CDB segments are included in the modelled data, showing
 similar contrast between tissues types. Maps that only include REST
ata barely exhibit a physiologically reasonable contrast between tis-
ues types, and after the final statistical thresholding (p < 0.05, Š idák cor-
ected) very few voxels remain. This is also seen in Supplementary Fig-
re S1, which displays maps for all subjects. All subjects follow the trend
escribed, except S7 and S8 which have CDB + REST maps that appear
ore similar to REST maps (in number and distribution of significant

oxels); these are the same two subjects in Fig. 4 that had CDB + REST
M lag distributions that did not look similar to the BH + REST distribu-

ions. 

.3. Comparing GM CVR values and significant fits across data segments 

Fig. 7 depicts the distribution of CVR values in GM, for No-Opt CVR
nd Lag-Opt CVR across different levels of statistical thresholding, for
7 
ne subject. The same plots can be found for all subjects in Supplemen-
ary Figures S2-S6. In general, the No-Opt CVR values (row 1) follow a
aussian- or Laplacian-like distribution when no statistical thresholding

s applied. The REST data segments generally have the greatest number
f negative CVR values. The Lag-Opt CVR distributions (unthresholded,
ow 2) change shape to resemble a more bimodal distribution, due to
VR estimates diverging further from zero in either direction (which

s expected due to our method for optimizing lag). This effect is en-
anced in the thresholded distributions for both No-Opt and Lag-Opt
rows 3–5); CVR values closer to zero are removed after applying sta-
istical criteria, resulting in distinct bimodal distributions. Interestingly,
e see the proportion of negative CVR values to positive CVR values is
uch less in the BH + REST and CDB + REST data segments. For the REST

egments, after lag optimization and statistically thresholding there are
ome cases where there is an equivalent amount of positive and nega-
ive CVR values. We expect predominantly positive CVR values in GM,
nd true negative CVR responses represent very different physiological
echanisms ( Thomas et al., 2013 , Bright et al., 2014 ). Considering the

hape of these distributions, and the considerable proportion of negative
VR values in the REST segments, we summarized positive and nega-
ive CVR separately when computing summary CVR metrics across GM,
hown in Fig. 8 and Supplementary Figure S7. For ease of reference,
roup averages and standard deviations from these figures are also pro-
ided in Supplementary Table S2. 

Fig. 8 (top panel) compares median positive GM CVR values across
ata segments. There was a significant interaction between data segment
nd optimization scheme (F(4,32 = 14.2, p < 0.00001) so simple effects
ere investigated. Positive GM CVR values increased after lag optimiza-

ion for all data segments: BH + REST (p = 0.02), CDB + REST (p = 0.01),
EST (p = 0.002), REST BH (p = 0.002) and REST CDB (p = 0.002). There
ere no significant differences in median positive GM CVR values be-

ween any pair of data segments for No-Opt values (all p-values > 0.14)
ut there were significant differences for Lag-Opt values, which drove
he significant interaction. For Lag-Opt, positive GM CVR values were
ot different between: BH + REST and CDB + REST; CDB + REST and REST;
DB+REST and REST BH ; REST and REST BH (all p-values > 0.14), How-
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Fig. 5. Maps of CVR for one example subject (S4). The five main data segments are displayed, as well breathing task only segments (BH only and CBD only) for 
completeness. No-Opt CVR maps (top row for each data segment) are shown thresholded with the P ET CO 2 hrf regressor at p < 0.05. Lag-Opt CVR maps are shown 
thresholded with the P ET CO 2 hrf regressor at p < 0.05 with (middle row) and without (bottom row) Sidak correction, with voxels at lag boundaries removed. BH = breath 

holding, CDB = cued deep breathing, BOLD = Blood Oxygenation Level Dependent, CVR = Cerebrovascular Reactivity, Opt = Optimization. 
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ver, REST had significantly higher values than BH + REST (p = 0.02);
EST BH had significantly higher values than BH + REST (p = 0.006);
EST CDB had significantly higher values than BH + REST (p = 0.001),
DB + REST (p = 0.001), REST (p = 0.002), and REST BH (p = 0.008). One
xtreme outlier was removed from the CDB + REST segment ( Fig. 8 , sub-
ect with highest values) for this statistical testing. All p-values are FDR
orrected. Similar patterns are seen for negative CVR values (Supple-
entary Figure S7). 

The previous CVR comparisons are taken using all GM voxels, and
ot only from voxels that are statistically thresholded; Fig. 8 (bottom
anel) shows that the percentage of significant voxels in GM is no-
iceably lower in the REST data segments, suggesting that there is less
onfidence in these summary CVR estimates. With or without lag op-
imization, there are more GM voxels showing significant positive fits
or P ET CO 2 hrf in the data segments with breathing tasks, for all subjects
xcept S7 and S8. The inverted V-shaped pattern shows the number of
ignificant voxels changes with statistical thresholding in a similar way
cross the 5 data segments: more voxels are significant after lag opti-
ization if the same thresholding (p < 0.05) is applied, however after
 idák correction this returns to a similar or smaller number of statisti-
ally significant voxels as found without lag optimization. This shows
he statistical consequence of the lagged-GLM computation (considered
urther in the discussion). 

.4. Clinical utility 

An incidental finding was suspected in one of our participants due
o an abnormality first noticed in the lag maps. Specifically, a large sec-
ion of the cortex displayed a blood flow response to P CO much later
ET 2 

8 
han other areas of the cortex. The area of cortex impacted appeared to
e the vascular territory mostly supplied by the middle cerebral artery.
he appropriate ethical procedures were followed and it was confirmed
hat this subject had unilateral Moyamoya disease. Moyamoya is a rare
ascular disorder which typically involves blockage or narrowing of the
arotid artery, reducing blood flow to the brain. Fig. 9 shows CVR and
ag maps in this subject. The lag maps show that many GM voxels in the
ight hemisphere are responding approximately 10 seconds later com-
ared to the homologous regions of the left hemisphere. When lag is not
onsidered, the CVR maps (No-Opt) show dominant negative CVR in this
ascular territory, similar to what has been reported in previous CVR
apping studies with Moyamoya ( Conklin et al., 2010 , Poublanc et al.,
013 , Dlamini et al., 2018 ). However, when correcting the CVR maps
or lag (Lag-Opt) there is a striking change - the CVR within GM mostly
ormalizes, without a clear pathology. These lag-optimized maps sug-
est that the local CVR response is preserved in GM, albeit with delayed
lood transits. Looking at the lag optimized CVR map alone, one could
ncorrectly conclude that this subject does not have a clear vascular
athology. Both maps, lag and CVR (Lag-Opt), are needed for the most
ccurate interpretation, and to determine whether there are CVR re-
uctions, delayed blood transits, or both. Fig. 9 also shows CVR and lag
esults in REST data. Here, the pathology is much less evident, and these
esults follow the same pattern seen in the other 9 subjects presented. 

In a concurrent pediatric pilot study, five individuals with typical de-
elopment and hemiparetic cerebral palsy completed a modified version
f the CDB + REST protocol. Fig. 10 shows P ET CO 2 traces and average
OLD-fMRI signal across GM. Three primary scenarios of task compli-
nce were observed. In Scenario 1, participants achieved hypocapnia as
xpected, evidenced by two consecutive decreases in P ET CO 2 and BOLD-
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Fig. 6. Maps of hemodynamic lag for one example subject (S4). The five main data segments are displayed, as well breathing task only segments (BH only and CBD 

only) for completeness. For each data segment, lag maps are shown with no statistical thresholding but voxels at the boundaries removed (top row for each data 
segment) and shown thresholded with the P ET CO 2 hrf regressor at p < 0.05 with (middle row) and without (bottom row) Sidak correction. Values are relative to the 
GM median. Negative to positive lag values indicate earlier to later BOLD responses to P ET CO 2 hrf. BH = breath holding, CDB = cued deep breathing, GM = Gray Matter. 

Fig. 7. Distributions of CVR values in GM for one example subject (S4). The y-axes show the frequency count. The same scaling is used for rows 1 and 2 because 
no thresholding is applied and therefore all GM voxels are included. When statistical thresholding is applied (rows 3, 4 and 5), different numbers of GM voxels 
remain for each data segment. BH = breath holding, CDB = cued deep breathing, GM = Gray Matter, BOLD = Blood Oxygenation Level Dependent, CVR = Cerebrovascular 

Reactivity, Opt = Optimization. 

9 
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Fig. 8. Comparing GM summary metrics across the five data segments. Top: 
Median positive CVR across all GM voxels for No-Opt and Lag-Opt analyses. 
Bottom: Percentage of significant positive fits in GM for each data segment and 
level of thresholding: the [ ∗ ] indicates thresholding at p < 0.05 and [ ∗ (s)] indicates 

thresholding at p < 0.05 with Sidak correction. BH = breath holding, CDB = cued 

deep breathing, GM = Gray Matter, BOLD = Blood Oxygenation Level Dependent, 

CVR = Cerebrovascular Reactivity, Opt = Optimization. 
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MRI signals. In Scenario 2, P ET CO 2 values were unreliable for several
reathing cycles (indicated by missing values in Fig. 10 ), yet there is
ossible evidence of two mild hypocapnia cycles in the BOLD-fMRI sig-
al. In Scenario 3, P ET CO 2 values were more reliable but participants
id not appear to complete the task, evidenced by a lack of hypocapnia-
nduced P ET CO 2 and BOLD signal decreases. These trends appear to be
ge-related, with scenario 1 primarily occurring in older participants
ages 15–21 years) and scenarios 2 and 3 in the youngest participants
7–12 years). 

.5. Resting-state analyses 

For all resting-state metrics, no significant differences were found
etween resting data segments, and therefore no clear evidence of
esidual effects caused by breathing tasks were identified. For mRSFA,
roup means ± stdev for spatial correlations between pairs of single-
ubject maps were: 0.92 ± 0.04 (REST, REST BH ), 0.92 ± 0.06 (REST,
EST CDB ) and 0.92 ± 0.04 (REST BH , REST CDB ). For ALFF: 0.92 ± 0.04
REST, REST BH ), 0.93 ± 0.04 (REST, REST CDB ) and 0.93 ± 0.03 (REST BH ,
EST CDB ). For fALFF: 0.87 ± 0.08 (REST, REST BH ), 0.91 ± 0.03 (REST,
EST CDB ), 0.90 ± 0.05 (REST BH , REST CDB ). For LFCD: 0.62 ± 0.21 (REST,
EST BH ), 0.58 ± 0.25 (REST, REST CDB ), 0.66 ± 0.19 (REST BH , REST CDB ).
or the voxel-wise ANOVA, we observed no voxels with a significant
p < 0.05, FDR corrected) main effect or significant pairwise comparison
or mRSFA, ALFF, fALFF or LFCD parameter maps. The lowest FDR cor-
ected p-value across all pairwise comparisons and parameter maps was
.51. 
10 
. Discussion 

Adding a simple, 2–3-minute breathing task to the beginning of a
esting-state scan vastly improves our ability to model CO 2 effects (both
mplitude and timing) in BOLD-fMRI data. This modified scan proto-
ol produces maps of physiological parameters that may contribute to
ur understanding of healthy and pathological cerebrovascular function,
hilst maintaining an extended “resting state ” period as required for

tudying intrinsic brain fluctuations and connectivity. This hybrid pro-
ocol has clear and direct applications for CVR mapping in both research
nd clinical settings, as well as wider applications for fMRI denoising
nd interpretation. Our analysis produces maps of both the amplitude
CVR) and timing (hemodynamic lag) of the BOLD fMRI response to CO 2 
y systematically shifting the P ET CO 2 regressor to optimize the model
t. In any fMRI dataset, this optimization inherently increases GM CVR
alues and fit statistics. We have shown that the inclusion of breathing
ask data further increases the number of voxels in the brain that have
 significant relationship between P ET CO 2 and BOLD-fMRI signals, and
mproves our confidence in the plausibility of voxel-wise hemodynamic
ag estimates. 

Compared to a typical resting-state fMRI scan, this protocol requires
xtra equipment to record expired CO 2 alongside scanner triggers. For
he benefits gained, this cost is reasonable relative to typical scanning
osts, and the equipment is easy to set-up and maintain. In our ex-
erience, healthy pediatric and adult cohorts find wearing the nasal
annula comfortable throughout the scanning session. It is important
o acknowledge that previous studies have successfully mapped CVR
ithout normalizing the BOLD change by the P ET CO 2 change, for ex-
mple, by using an average BOLD time course in replace of a P ET CO 2 
egressor ( P. Liu et al., 2017 ) or using metrics such as RSFA or ALFF
 Golestani et al., 2016 ) as representations of CVR function. For some
pplications, qualitative CVR metrics may be sufficient; however, we
hose to normalize BOLD change by the P ET CO 2 change to allow more
irect comparisons with other literature and to take in account task com-
liance differences (discussed further in ( Pinto et al., 2021 )). 

A recent study ( Liu et al., 2020 ) followed a very similar rationale
o ours: to develop a practical non-gas inhalation method that is largely
ased in a resting-state scan but introduces breathing modulations to en-
ance fluctuations in P ET CO 2 . They compared CVR maps from resting-
tate scans, scans with intermittent breathing modulations throughout
he scan period (for a duration of 12 seconds after 30–60 s of free breath-
ng), a breath-holding scan, and a CO 2 gas inhalation scan. They showed
hat intermittent breathing modulations (6 seconds per breath) had a
omfort level similar to resting-state, and the resultant CVR maps had
 sensitivity and accuracy similar to maps derived from gas inhalation
ethods. Hemodynamic lag was not a part of their assessment or com-
arisons. Their results are consistent with our conclusions that adding
hort periods of guided breathing is favorable over a resting-state scan
or CVR mapping, and they have validated their design by comparing to
 more gold standard CO 2 -inhalation approach. However, their breath-
ng task and resting-state portion cannot be separated into two sections,
recluding these data from being used for typical resting-state or func-
ional connectivity analyses. 

One reason that including breathing tasks benefits CVR mapping is
imply that the induced variation in P ET CO 2 amplitude is large com-
ared to the smaller fluctuations during undirected free breathing (see
ig. 3 A). Importantly, the amplitude of these natural fluctuations during
esting-state will vary across subjects, and potentially across study pop-
lations ( Lynch et al., 2020 ). If the BOLD fluctuations related to P ET CO 2 
hanges are small in amplitude, it can be hard to distinguish them
rom other physiological, artefactual or neuronally-driven fluctuations
hat occur at (or aliased into) the same low-frequencies ( Murphy et al.,
013 , Liu, 2016 , Caballero-Gaudes and Reynolds, 2017 , Tong et al.,
019 , Whittaker et al., 2019 ). If these other fluctuations are of sim-
lar or greater magnitude to the low-frequency fluctuations induced
y P ET CO 2 , this may result in an fMRI time-course poorly coupled to



R.C. Stickland, K.M. Zvolanek, S. Moia et al. NeuroImage 239 (2021) 118306 

Fig. 9. Maps of lag and CVR for a subject with Moyamoya disease. The white box shows results for the BH + REST data, demonstrating clear clinical sensitivity of 
this protocol. In order to visually compare maps across the same voxels, all maps (CVR No-Opt, CVR Lag-Opt and Lag) are thresholded at p < 0.05, Sidak corrected, 
based on the T statistics of the lag optimized analysis. The REST only results are shown for comparison at p < 0.05 uncorrected as well as the p < 0.05 Sidak corrected 
which displays very few significant voxels. Slices from the T1-weighted image transformed to fMRI space are shown for reference. CVR Lag-Opt maps, and all lag 
maps, do not include voxels with lags found at the boundary. Lag maps are not relative to GM median but the analysis for this subject is run the same was as 
previously presented for the 9 other subjects. Negative to positive lag values indicate earlier to later BOLD responses to P ET CO 2 hrf. BH = breath holding, BOLD = Blood 

Oxygenation Level Dependent, CVR = Cerebrovascular Reactivity, Opt = Optimization. 
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 ET CO 2 . A study using gas inhalation as a hypercapnic stimulus con-
luded that a change of at least 2 mmHg above a subject’s baseline
 ET CO 2 is necessary to evaluate hemodynamic impairment ( De Vis et al.,
018 ). In our acquisitions, both BH and CDB tasks clearly produced
hanges above 2 mmHg, whereas this was not the case for all subjects
uring the REST segments (see Fig. 3 A). Even if a subject performs the
H or CDB task only partially (i.e., shorter hold for the BH, shallower
reaths for the CDB), they are likely to still surpass this 2 mmHg change.
urthermore, there is evidence that despite variability in BH perfor-
ance, robust and repeatable CVR maps can still be obtained when
odeling with P ET CO 2 regressor ( Moia et al., 2021 , Bright and Mur-
hy, 2013 ), which represents what the subject actually achieved and
ot simply the intended stimulus. 

To accurately model CVR we must account for hemodynamic lags
ince measurement delays in gas sampling, arterial transit times to the
rain’s vascular territories, and local vasodilatory dynamics all impact
he temporal relationship between our model of the vasodilatory stim-
lus (P ET CO 2 ) and the BOLD fMRI timeseries. Characterizing hemody-
amic lag at the voxel level is both challenging and necessary for cor-
ect physiologic interpretation of the data. A previous study mapping
VR with resting-state data discussed how they were unable to ob-
ain voxel-wise delays due to the resultant CVR maps being noisy, and
hey acknowledge that the regional CVR deficits they report in Moy-
moya patients may reflect both reduced CVR and longer blood transits
 P. Liu et al., 2017 ). We report similar challenges in our data ( Fig. 4 ,
ig. 6 , Supp. Figure 1), showing more variable and less physiologically
lausible lag distributions across GM in the data modelled with only
esting-state segments. Furthermore, when simply performing a cross-
orrelation between the P ET CO 2 hrf regressor and GM BOLD-fMRI time-
eries, we observe several extreme lag values in resting-state data (see
11 
ppendix A ). The incorporation of the short breathing tasks results in
ore sensible lag distributions and cross-correlation results. Comparing

ur lag values to previous literature is challenging due to the multitude
f experimental set-ups, analysis approaches, and ways of summarizing
hese types of data. Nevertheless, it is valid to compare normalized lag
alues (lag values relative to a tissue average) and compare variability
n lag, where possible. Here, we focus on BH + REST and CDB + REST lag
istributions, considering REST distributions are challenging to summa-
ize ( Fig. 4 ). The range and variability of the lag values we report in
M show the majority of lag values (~68% based on one standard de-
iation, Supp. Table 1) are within 6 seconds of the GM median ( Fig. 6 ,
upplementary Figure S1); therefore, to capture the majority of GM lags
 range of 12 seconds from the GM median may be appropriate. This
roadly agrees with previous work using respiration derived or P ET CO 2 
egressors ( Chang and Glover, 2009 , Bright et al., 2009 , Birn et al., 2008 ,
ousa et al., 2014 , Donahue et al., 2016 , Moia et al., 2020 , Moia et al.,
021 ). Many of these previous reports also see similar regional trends
n relative lag values (Supplementary Table S1): earliest responses in
ubcortical GM and later responses in cerebellar GM and posterior brain
egions. 

Despite much previous literature reporting a summary CVR value,
ur results clearly show that analysis choices in summarizing voxel-wise
VR values are not trivial. The distributions of GM CVR values with and
ithout lag optimization, and with different levels of statistical thresh-
lding ( Fig. 7 , Sup. Figures S2-S6), illustrate that it is not strictly valid
o extract a central tendency value from a distribution of positive and
egative CVR values together, after lag optimization or any statistical
hresholding. We therefore chose to summarize positive and negative
VR values separately, not least because true negative CVR responses
epresent very different physiological mechanisms ( Thomas et al., 2013 ,
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Fig. 10. Task compliance for an adapted cued deep breathing (CDB) protocol used in a cohort of controls and individuals with hemiparetic cerebral palsy (CP). 
Panel (A) shows the protocol, which had the same task timings as the other CDB datasets in the manuscript, but with auditory cues, instead of visual. 20 s of rest 
were included at the start of the task, and 10 volumes (5.55 s) of data were removed to account for steady-state. Panel (B) shows unshifted P ET CO 2 traces (mmHg 
change from baseline) and GM-BOLD traces (% change from mean) for 5 subjects. The missing values in the P ET CO 2 traces in Scenario 2 indicate that the signal 
was unreliable at those times. Note the different axes limits for the GM-BOLD plot in Scenario 2. These subjects represent the primary age-related variations in task 
compliance observed during the CDB protocol. PETCO2 = Partial pressure of End Tidal CO2, BOLD = Blood Oxygenation Level Dependent, MB = Multiband, GM = Gray 
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right et al., 2014 ). We expect positive CVR values in GM, and it is note-
orthy that the three resting-state segments show a greater number of
egative CVR values compared to the segments that include BH or CDB
asks, possibly suggesting a greater relative contribution of noise sources
nd a less successful CVR and lag estimation. The final summative CVR
alue across a tissue type will also depend on whether one has applied
ag optimization and/or applied statistical thresholding. Therefore, we
hose to display CVR values resulting from multiple analysis options in
ig. 8 and Supplementary Figure S7. With no statistical thresholding, the
ositive GM CVR amplitudes for No-Opt and Lag-Opt ( Fig. 8 and Sup-
lementary Table S2) agree with the range seen in previous literature
odeling CVR with breathing tasks or resting-state, when expressed in
nits of %BOLD/mmHg ( Liu et al., 2020 , Lipp et al., 2015 , Pinto et al.,
016 , Sousa et al., 2014 , Moia et al., 2020 , Bright and Murphy, 2013 ,
right et al., 2011 ). Unexpectedly, the REST segments showed higher
M CVR values than the task segments after lag optimization and fol-

owing the strictest thresholding, particularly for REST CDB ( Fig. 8 , Sup-
lementary Figure S7). However, a higher CVR value will not always
uggest a more accurate or more representative tissue estimate. Low fre-
uency fluctuations other than P ET CO 2, motion artifacts and large vessel
ignals may influence the lagged fitting procedure, as discussed. There
ere generally more negative CVR values in REST segments, so positive
M CVR estimates are also summarized over a smaller number of voxels

hat do not fully describe GM tissue. It is also important to note that the
 f  

12 
idák correction is likely too strict of a correction for multiple compar-
sons as it assumes independence, which is not the case when running
he GLM multiples times with slightly shifted P ET CO 2 regressors. 

.1. Choice of breathing task 

This study was not designed for an effective comparison between BH
r CDB, yet some trends can be noted upon. Adding either a short BH or
DB task to a resting segment brings clear advantages for CVR mapping,
ith similar CVR and lag results. Direct comparison of these two tasks

s potentially biased due to the BH task being slightly longer, including
 cycles of hypercapnia versus 2 cycles of hypocapnia for the CDB task.
t is difficult to match both the length of the breathing task, and the
umber of cycles: the ways in which we achieve hypocapnia (increas-
ng the rate and depth of breathing) and hypercapnia (apnea) are very
ifferent, and the timing dynamics of the resulting blood gas changes
an be different, particularly in sustained challenges ( Kasprowicz et al.,
012 , Poulin et al., 1996 , Poulin et al., 1998 ). A small amount of pre-
ious evidence shows that more transient CO 2 modulations induced by
DB and BH tasks generally lead to comparable CVR amplitudes and
imings ( Bright et al., 2009 ), however possibly not in all brain regions
 Bright et al., 2011 ) and they can be modulated differently by baseline
asodilation ( Bright et al., 2011 ). Furthermore, these tasks induce dif-
erent motion confounds ( Bright et al., 2009 ) ( Fig. 3 B) and potentially
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ifferent subject compliance demands. In general, our results suggest
hat these tasks may be used interchangeably in healthy controls. How-
ver, we recommend BH because it leads to plausible lag distributions
nd significant CVR effects more consistently, and there is more exten-
ive literature using this task for CVR mapping ( Urback et al., 2017 ,
into et al., 2021 ). Importantly, vasoconstrictive and vasodilatory re-
ponses can be differentially affected in pathology ( Zhao et al., 2009 )
nd therefore different tasks may be appropriate for different clinical
opulations and research questions. Furthermore, while all subjects in
his study were able to adequately perform both breathing tasks, pedi-
tric, elderly or clinical cohorts may comply better with the CDB task
onsidering the simplicity of instructions. A more thorough compari-
on of the pros and cons of these breathing tasks, in larger healthy and
linical cohorts, is a worthwhile focus for future research. 

It is important to discuss the general limitations of using breathing
asks to model CVR, compared to resting-state. They do require more
ompliance from subjects, introduce neural activity due to the need
or visual or auditory stimuli, and often exhibit motion effects corre-
ated with task timings ( Fig. 3 B) ( Bright et al., 2009 , Power et al., 2018 ,
ower et al., 2017 , Moia et al., 2021 ). We performed volume realign-
ent and included the resultant motion parameters within the GLM,

ut there is evidence this is not sufficient to remove motion effects
 Power et al., 2017 , Moia et al., 2021 , Power et al., 2014 ). Further re-
earch should look into optimizing breathing task designs to minimize
ask induced motion artifacts whilst still maintaining P ET CO 2 changes
f sufficient amplitude. Collecting multi-echo BOLD fMRI data, and ap-
lying spatial ICA-denoising analyses, is one widely adopted strategy
hat can be applied to remove motion artifacts and has been applied to
he modeling of CVR effects in BH paradigms ( Cohen and Wang, 2019 ,
oia et al., 2021 ). A final consideration is the choice of HRF in breath-

ng task data; here we used a canonical HRF to convolve with all the
 ET CO 2 time-series, before creating the multiple shifted P ET CO 2 regres-
ors. There is evidence that the BOLD signal may have a different shape
nd timing response depending on whether the P ET CO 2 is resting fluc-
uations, or within a hypocapnic or hypercapnic range and that physi-
logical response functions can vary across subjects, brain regions and
essions ( Chang and Glover, 2009 , Birn et al., 2008 , Kassinopoulos and
itsis, 2019 , Golestani et al., 2015 ). By shifting the P ET CO 2 hrf in time
ith the lagged-GLM approach, variation in latency will be well ac-

ounted for but not variation in the shape of the response. Therefore,
t is likely that a single response function will not be optimum for cap-
uring all the P ET CO 2 induced BOLD changes during rest, deep breaths
nd breath-holds, a potential limitation when modeling these segments
ogether. 

.2. Clinical applications 

We chose to analyze and present our results in single subject space,
artially to demonstrate the potential utility of this method for individ-
al subjects, such as clinical cases, or individual fMRI denoising. We
eport an incidental finding of unilateral Moyamoya disease, which was
rst identified during inspection of the hemodynamic lag maps con-
tructed from our lagged-GLM approach. This pathology was only visu-
lly obvious when modeling lag and CVR with breathing task data. Re-
ional deficits in CVR are used to guide surgical and treatment decisions
n cases of Moyamoya ( Bacigaluppi et al., 2009 ), with normalization of
VR often seen after surgery. Delayed blood transits are also widely re-
orted in cases of Moyamoya ( Donahue et al., 2016 , Poublanc et al.,
013 , Schubert et al., 2009 ) which is expected due to the narrowing of
lood vessels. Consistent with our non-optimized results, negative CVR
esponses are often observed in cases of Moyamoya ( Conklin et al., 2010 ,
oublanc et al., 2013 , Dlamini et al., 2018 ) and commonly interpreted
s the vascular steal phenomenon. In the case of vascular steal, negative
VR is the result of a redistribution of blood flow from regions without
emaining cerebrovascular reserve to regions with preserved vasodila-
ory capacity. Previous work with cases of Moyamoya have shown a
13 
lear relationship between blood arrival times and CVR amplitudes, with
he longest arrival times having the lowest and most negative CVR (e.g.,
 Poublanc et al., 2013 , Schubert et al., 2009 ). In our data, it is possible
o conclude there is no evidence of vascular steal, considering the nor-
alization of CVR after lag-optimization, however other work suggests

hat negative CVR is likely a combination of a steal phenomenon and de-
ayed local (positive) reactivity ( Poublanc et al., 2013 ). We would need
o apply our technique more systematically across a larger sample to bet-
er characterize these subtleties of Moyamoya pathology, yet what our
ase study clearly demonstrates is the importance of considering both
mplitude and timing when modeling CVR function in pathology. CVR
eficits in Moyamoya are most commonly investigated with gas inhala-
ion or contrast; although there is a much smaller collection of literature
sing breath-hold or resting-state, the interest in these non-invasive and
ractical approaches is growing ( Taneja et al., 2019 , Donahue et al.,
016 , Dlamini et al., 2018 , P. Liu et al., 2017 , Christen et al., 2015 ). 

Example data from a separate pediatric pilot study were included to
valuate the feasibility of our hybrid protocol in clinical cohorts with
ask compliance challenges (e.g., children). Breathing tasks are an at-
ractive alternative to more invasive vasoactive stimuli; BH tasks have
een used successfully in typically developing children ( Thomason et al.,
005 ) and in those with Moyamoya ( Dlamini et al., 2018 ). We report the
rst instance of a CDB task in a pediatric cohort and observed variable
uccess in the quality of P ET CO 2 recordings and achieved hypocapnia.
hese results indicate that further optimization of the breathing task
ortion of the hybrid design may be necessary in less-compliant cohorts.
ow quality P ET CO 2 traces may be caused by periods of mouth breath-
ng and could be addressed by using a mask rather than a nasal cannula.
t may be necessary to adapt breathing task instructions for clarity and
tilize practice sessions, tailored to the population, to ensure partici-
ants understand and comply with the task before entering the scanner.
here are clear next steps to address the feasibility limitations observed

n our hybrid design and, once these are met, this method has promise
s a practical yet robust tool to study typical and atypical neurovascular
evelopment. 

.3. Why should we append breathing tasks to the start of a resting-state 

can instead of keeping them separate? 

Based on the mechanism of neurovascular coupling, the BOLD
ontrast is widely used as a surrogate measure for neural activity
 Glover, 2011 ). However, there are many non-neural factors that
an affect the BOLD signal, with multiple strategies and algorithms
o mitigate and remove these sources of noise, ( Wise et al., 2004 ,
urphy et al., 2013 , Caballero-Gaudes and Reynolds, 2017 , Greve et al.,

013 , Bright and Murphy, 2017 , Liu, 2013 , Chu et al., 2018 , Kim and
gawa, 2012 ). We considered how resting-state fMRI scans are com-
only deployed in neuroimaging research, and designed our protocol

ccordingly. Although the main focus of the work presented here is prac-
ical CVR mapping, CO 2 fluctuations have been shown to be a physio-
ogical confound in resting-state fMRI studies of neural activity, and it
s challenging to meaningfully separate out neural connectivity and vas-
ular connectivity with fMRI data ( Power et al., 2018 , Chu et al., 2018 ,
adjar et al., 2012 , Nikolaou et al., 2015 , Bright et al., 2020 , Chen et al.,

020 ). Removing CO 2 effects from fMRI via nuisance regression is not
et routine practice, in part because it is challenging to robustly char-
cterize these relationships in resting-state fMRI. 

The main benefit of using overlapping data for multiple analyses
e.g., CVR and resting-state analyses) is that it saves both scanning time
nd analysis time (e.g., some of the same pre-processing steps and cre-
tion of physiological regressors can be used for both analyses). By ap-
ending a short breathing task to the start of a resting-state scan, the
esting-state portion could still be analyzed separately, gaining more
utputs from one dataset, with improved denoising from robust mod-
ling of CO 2 effects. However, two key questions arise when consider-
ng the use of overlapping data: (1) are there residual effects from the
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reathing tasks that would systematically affect the resting-state por-
ions that follow (similar to after effects seen after other sensory and
ognitive tasks ( Tung et al., 2013 , Gaviria et al., 2020 ))? and (2) is
odeling of CVR worse by including the resting portion alongside the

reathing task portion? 
Related to (1), our exploratory resting-state analyses showed no

lear systematic differences between the three REST segments (two with
reathing tasks preceding, one without) for mRSFA, ALFF, fALFF or
FCD outputs, after minimal preprocessing and denoising. However,
hese analyses cannot provide direct evidence for the null hypothesis,
nd future work with study designs tailored towards this question should
nvestigate this further. If a researcher is concerned about residual ef-
ects, they could put the breathing task after the resting-state portion
nd not before; we chose to put the breathing task at the start to ensure
he participant was most alert. Another option is to keep the scans sepa-
ate to avoid any interaction between these two data segments, but then
ther benefits will be lost. 

Related to (2), we ran the lagged-GLM with breathing task data only,
ithout the rest portion ( Figs. 5 and 6 , Supplementary Figure S8, Sup-
lementary Table S3). We found more significant CVR effects when
odeling with more data points (greater degrees of freedom in model
t) and no indication of worse lag or CVR estimation when rest portions
re included. These results suggest that CVR and lag can be adequately
odelled with only 2–3 minutes of breathing task data, particularly in

he case of BH. 

.4. Recommendations and practical considerations 

The proposed protocol will not be the best approach for all CVR
apping experiments; if CVR is your primary research focus, longer

reathing tasks or gas inhalation methods in a dedicated scan are recom-
ended. Our protocol aims to be a practical addition to the commonly

ollected resting-state fMRI scan, as well as being a clinically feasible
pproach to mapping CVR and lag in situations where more invasive or
omplicated methods are less desirable. In these studies, we make the
ollowing recommendations. 

○ Collect continuous CO 2 recordings before and after your scan win-
dow, up to the maximum shift you want to consider in your model-
ing, to avoid extrapolation or trimming of data after shifting. 

○ If deciding between a BH or CDB task, we currently recommend BH
when studying healthy cohorts. 

○ If using the BH + REST or CDB + REST design as shown in Fig. 1 , model
CVR using the entire dataset. In this paper, we cut the TASK + REST
segment to 8 minutes in order to make a fair comparison with the
8–minute REST segments. Therefore, our CVR and lag maps are from
modeling with ~2.5 minutes of task data and 5.5 minutes of resting
data; map quality and fit statistics would likely improve with more
data. 

○ Use the smallest range of shifted P ET CO 2 regressors as is appropri-
ate for the physiology of your cohort. There are computational and
statistical consequences to extending the shift range more than is
necessary. 

○ If there is a large offset between the P ET CO 2 trace and the GM fMRI
signal, perhaps due to a measurement delay (e.g., long sample line
from scanner to control room), consider first performing a bulk-shift
(cross-correlation between a mean GM fMRI time-series and P ET CO 2 
time-series) before voxel-wise optimization (see Appendix A ). 

○ When obtaining a summary CVR or lag metric for a tissue class,
check the distributions to see if this is valid and appropriate; con-
sider whether you need to characterize positive and negative CVR
separately. 

. Conclusions 

We have demonstrated that adding a short breathing task to the start
f a resting-state fMRI scan improves the ability to model both the tim-
14 
ng and amplitude of the CVR response, both crucially important for
he accurate characterization of cerebrovascular function. This hybrid
rotocol has direct applications for CVR mapping in both research and
linical settings and wider applications for fMRI denoising and interpre-
ation. 
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ppendix A. Further details on creating shifted P ET CO 2 hrf 

egressors 

The choice of the shift range (15 seconds before & after the reference
tart time) and the shift unit (0.3 seconds), explained in Fig. 2 , was not
he focus of this study. However, this topic warrants further justification
nd explanation. 

Shift range: Searching in a range of ± 9 s (around an average value)
or the optimum P ET CO 2 shift is consistent with research in healthy sub-
ects which report lag values from modeling with breathing task regres-
ors ( Chang et al., 2008 , Chang and Glover, 2009 , Bright et al., 2009 ,
irn et al., 2008 , Sousa et al., 2014 , Tong et al., 2014 , Donahue et al.,
016 , Blockley et al., 2011 ). It is not always clear if it is valid to inter-
ret lag values from previous studies as absolute or relative, and what
hey are relative to, due to differences in data acquisition, data analysis
nd the cohort studied. Therefore, in our previous work using breath-
old data only ( Moia et al., 2020 , Moia et al., 2021 ) we also performed

https://doi.org/10.1016/j.neuroimage.2021.118306
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15 
n initial gross realignment (a “bulk shift ”) before creating the multiple
 ET CO 2 hrf regressors which are shifted at the finer resolution, consist-
ng of a cross-correlation between an average GM BOLD time-series and
he original unshifted P ET CO 2 time-series. Performing a bulk shift in
his way is likely to largely account for variation in measurement de-
ays. However, global physiological delays may still contribute due to
he way this bulk shift is estimated. Future work using such methods
hould attempt to separate out measurement contributions (e.g., delays
hrough the cannula and tubes) from physiological contributions. The
dvantage of performing a bulk shift is that fewer shifted models need
o be run in order to characterize the physiological range of voxel-wise
ags, therefore reducing computation and making the Š idák corrected
lpha value for statistical significance less stringent. 

In this current work, no bulk shift was performed due to finding
hysiologically implausible optimum bulk shift values for the REST only
egments (e.g., 19 and 20 seconds at the most extreme, see Fig. A1 , y-
xis), which could introduce substantial timing errors near the start of
he analysis protocol that would propagate to the final parameter maps.

e hypothesize that this could be due to the intrinsic low-frequency os-
illations associated with neural activity that can be of similar or greater
agnitude to the low-frequency fluctuations induced by P ET CO 2 , result-

ng in a GM fMRI time-course poorly coupled to P ET CO 2 . Motion and
ther physiological noise could also contribute. Therefore, instead of
pplying a bulk shift, we chose to apply our voxel-wise lag optimiza-
ion method with a larger shift range, searching within ± 15 s from the
eference start time. This 15 second range was based on a 9 second
ange plus the largest bulk shift seen across subjects for the BH + REST
nd CDB + REST data segments, which was -5.45 seconds. Fig. A.1 also
hows how well this bulk shift agreed with the GM median lag from the
oxel-wise lagged-GLM analysis, two different methods of characteriz-
ng a representative GM lag value. Data segments with breathing tasks
how the strongest significant positive correlations. The REST BH and
EST CDB segments also show strong significant positive correlations,

hough with more extreme values for the cross-correlation method. The
EST segment did not show a significant correlation between meth-
ds. These results indicate that there is clear consistency between dif-
erent methods of summarizing a GM lag value when including either
reathing task; this consistency is present in some, but not all, REST
egments. 

Shift unit: The true CVR response time (lag) will not be physiologi-
ally constrained to the sampling rate of the fMRI scan or of the breath-
ng rate. Despite only sampling end-tidal CO 2 pressure at the end of each
reath, a linear interpolation between these values is performed to give
n estimate of how the pressure of arterial CO 2 is likely to be changing
t a finer temporal scale. Therefore, we chose to shift the high resolu-
ion P ET CO 2 hrf time-series at 0.3 seconds (4 times the resolution of the
maging TR) to reflect this, although more validation for the choice of
his shift unit is needed. 
ig. A1. Correlation between two methods of identifying GM lag: the median 
ag over GM voxels from the voxelwise lagged-GLM analysis (x-axes) and a lag 
btained from cross-correlation between the average GM-BOLD time-series and 
he P ET CO 2 hrf time-series (y-axes). Each dot represents one subject, and corre- 
ations are shown for each data segment. The gray shaded regions around the 
t line indicate the 95% confidence interval of the correlation coefficient. Data 
oints were classed as outliers (indicated by red dots) when a Cook’s distance 
as over 4/n, with n being the number of subjects. Outliers are not included 

n the correlation, but shown for reference. Note the different axes limits across 
lots. P-values are FDR corrected. Considering the shape of the lag distributions 
n Fig. 4 , it is important to acknowledge that the use of the median as a sum- 
ary metric may not be completely valid for all subjects and data segments. 
H = breath holding, CDB = cued deep breathing, PETCO2 = Partial pressure of End 

idal CO2, GM = Gray Matter, BOLD = Blood Oxygenation Level Dependent. 
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