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ABSTRACT 

 

The outbreak of novel coronavirus disease 2019 (COVID19) has spread rapidly, affecting 

nearly all countries and territories around the globe, impacting every aspect of human life. 

Governments and various organizations worldwide have issued mitigation measures to 

counteract COVID-19 virus propagations, whether in indoor spaces or outdoors. Although the 

underlying uncertainty concerning COVID-19 transmission details, most international 

organizations such as WHO, ECDC, ASHRAE, REHVA, and CIBSE agree on the important 

role of ventilation to minimize the causes and reduce the viability of SARS-CoV-2 in confined 

spaces. Given that natural ventilation is variable, which depends on the intermittent wind 

source, mechanical ventilation systems provide stable airflow rates that ensure reliability and 

adequacy to meet the minimum ventilation rates for building users in a controlled environment. 

Thus, a paradigm shift in the mechanical ventilation system is needed to steer the focus from 

the predominant energy efficient space-based design to occupant-based design. This study will 

discuss the cost-related effects to ensure stable and adequate ventilation by setting up 

ventilation scenarios with parameters derived from the recommendations published in recent 

guidelines focusing on HVAC operations. A working methodology is applied to a case study 

on two zones, an office, and a nursery. The results show that maintaining a minimum of five 

and seven air changes per hour for office and nursery, respectively, with proper indoor air 

distribution can reduce the risk of infection by more than half while ensuring an economic 

balance between ventilation costs and infection risk. Additionally, the study suggests using 

photovoltaics installations to power ventilation rates higher than five air changes per hour which 

can save at least forty-five tons of CO2 while reaching a payback period in thirteen years. Based 

on the achieved results, the paper presents recommendations to operate the two zones’ 

ventilation, space heating, and photovoltaics cost-effectively while ensuring COVID-19 

probability of infection reduction. 
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NOMENCLATURE 

 

 

ACH  Air Change per Hour 

ADU  Air Distribution Unit 

AHU  Air Handling Unit 

ASHP  Air Source Heat Pump 

ASHRAE  The American Society of Heating, Refrigeration, and Air conditioning 

Engineers. 

CAV  Constant Air Volume 

CIBSE  Chartered Institution of Building Services Engineers 

COVID-19  Corona Virus Disease 2019 

COP Coefficient of Performance 

CFD  Computational Fluid Dynamics 

DB  Design Builder software 

ECDC  European Centre for Disease Prevention and Control 

HEPA  High-Efficiency Particulate Air filter 

HDDs  Heating Degree Days 

HR  Heat Recovery 

HVAC  Heating, ventilation, and air-conditioning 

HX  Heat Exchanger 

IRR  Internal Rate of Return 

MERV  Minimum Efficiency Reporting Value 

OA  Outside Air 

PP  Payback Period 

REHVA  Federation of European Heating and Ventilation Associations 

RH  Relative humidity 

SARS-CoV-2  Severe Acute Respiratory Syndrome Coronavirus 2 

VAV  Variable Air Volume 

WHO  World Health Organization 
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CHAPTER 1. INTRODUCTION 

At the beginning of the pandemic, the World Health Organization (WHO) presumed the main 

transmission route of SARS-CoV-2 infection to be only via respiratory droplets. Nevertheless, 

on the 5th of October 2020 and the 9th of July 2020, the US Center for Disease Control (CDC) 

and WHO, respectively, both acknowledged that COVID-19 could be spread through airborne 

transmission.  

 

Recent studies agree that the majority of the global SARS-CoV-2 infections have occurred 

indoors. Airborne transmission is one of several pathways for COVID-19 transmission routes 

and is linked to the pandemic quick spread in several “superspreading” events, especially in 

crowded spaces with poor ventilation rate and lack of proper air filtration; the probability of 

infection through aerosols is substantial.  

 

The increased evidence and recognition about the important role long-range plays in spreading 

COVID-19 in indoor spaces has pushed several ventilation organizations such as REHVA and 

ASHRAE to address new interim guidance to mitigate the airborne transmission inside 

buildings through adjusting current HVAC settings.  

 

These recommendations target the HVAC systems in buildings and pinpoint the importance of 

supplying adequate outdoor fresh air, filtration, and extending ventilation duration to increase 

the rate of air change and reduce the level of contaminants inside indoor spaces.  

 

However, ensuring stable ventilation through natural means by opening windows, for instance, 

is not always applicable in settings like offices, schools, and healthcare buildings. Therefore, 

reducing indoor air pollution by applying the recommended measures for mechanical systems 

comes commonly with higher energy penalties. HVAC is already the major consumer of 

energy, according to the US department of energy, and it accounts for 35% of the total building 

energy consumption. Any further increase in ventilation rate to counteract COVID19 

proliferation would result in more energy consumption.   
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CHAPTER 2. LITERATURE REVIEW 

The following sections address both the medical and technical attributes related to COVID-19. 

The first section presents a synopsis of the nature of the virus and an overview of previous 

airborne transmission events. The technical aspect addresses the HVAC different 

configurations. Subsequently, the chapter concludes with the correlation between ventilation 

and modeling of COVID-19 probability of risk to link the medical with the technical side of 

this study.  

 

2.1 COVID-19 OVERVIEW 

This section provides insights into COVID-19’s virus nature and presents known outbreaks 

caused by airborne transmission.  

 

The SARs-CoV-2 is around 0.1 micron and is contained and carried within human respiratory 

fluids (Bar-On et al., 2020). The projected pathogens particle disseminates through the air, 

typically by sneezing, coughing, shouting, breathing, and even toilet flushing (fecal-oral 

transmission). These generate large particles called droplets (> 5µm)  and small, contagious 

particles, namely aerosols (< 5µm) (Bischoff et al., 2013). 

 

The transmission of COVID19 occurs mainly via droplets during close contact or contaminated 

surfaces or via inhaling infectious aerosols. Most droplets travel a shorter distance of 1~2 meters 

from the source, which eventually falls on the ground due to gravity and the large relative 

particle mass.  

 

Unlike droplets, aerosols can travel a longer distance exceeding two meters, and stay in the air 

for three hours to infect the secondary host without contact with the primary source (van 

Doremalen et al., 2020). Aerosols are also formed by the dispersion and evaporation of large 

droplets turning to nuclei at 1 to 100 μm (Liu et al., 2017). Figure (2.1) depicts the short- and 

long-range transmission routes. The arbitrary distance of 1.5m separates the two ranges. In the 

short-range, a large number of ballistic particles are projected to susceptible persons in close 

proximity i.e., susceptible persons are exposed to large, short droplets and direct deposition of 

large droplets on nearby surfaces.  
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Figure 2.1: (Left) theoretical aerobiology trajectory of droplets and small airborne particles produced 

by an infected patient (right) Instantaneous dispersion pattern of particles (t = 100 s) in the buoyancy-

neutral jet (mouth opening diameter D = 2 cm, initial velocity u0 = 10 m/s, Tamb = 25°C)  (Wei and 

Li, 2015). 

 

2.1.1 PREVIOUS OUTBREAKS 

HVAC systems are suspected in a role of a series of outbreaks. There have been a number of 

events associated with COVID19 transmission in closed spaces with large gatherings such as 

factories, offices, dormitories, churches.  Qian et al., 2020,  have studied three hundred and 

eighteen outbreaks in China. All these outbreaks happened in a confined environment except 

for one case.  

 

Li et al., 2020 have studied an outbreak in a restaurant in Guangzhou, China. The study results 

show that ten people who were infected ate at the same restaurant with no close contact. It 

concludes that poor ventilation (less than 2 l/s per person) was the primary reason for infection. 

 

Other outbreaks also happened in meat-processing and poultry plants where poor ventilation 

and recirculating operation mode of inside air were two of the main reasons (Durand-Moreau 

et al., 2020).   

 

The increasing number of outbreaks implicate the effective role of aerosols for the SARS-COV-

2 transmission particularly in enclosed environments (Leclerc et al., 2020). Consequently, it is 

important for building operators in large buildings to review and adapt the HVAC system to 

ensure adequate air supply.   
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2.2 HVAC CONFIGURATIONS 

HVAC systems are used to maintain thermal conditions like temperature and humidity. Also, 

to ensure good air quality conditions, including ventilation, pressure, and airflow.  

 

HVAC systems have many classification criteria such as the system’s function, reversibility, 

expansion type, heating/cooling medium, and others. Since this study is mainly targeted to 

ensure proper ventilation for COVID19, the installation must include an air system. HVAC 

systems can either be centralized or decentralized system.  

 

2.2.1 CENTRALIZED SYSTEM  

Central systems, also referred to as multizone single-supply systems, consist of generation units 

that produce thermal energy and are transported to different thermal zones. The centralized 

system is typically used in large buildings. The system typically includes the supply loop, AHU, 

and demand loop (distribution). (See figure 2.2). 

 

Centralized systems are typically used in large buildings with multi thermal zones. However, it 

can also be combined with decentralized units.  

 

The supply loop consists of heating and cooling plants. Examples of plants are: 

• boilers  

• chillers 

• renewable energy sources; geothermal with GSHP and solar thermal with backup heater 

and storage tank.  

 

The supply loop can use All-air or All-water or a combination of the two mediums. The Supply 

loop feeds up the heating/cooling coils located at the AHU. The AHU is the central machine 

that connects the supply with the demand loops. A typical AHU comprises of the outside grilles, 

dampers, mixing chamber, blow and return fans, coils, pumps, filters, de/humidifier, and 

economizer to allow outdoor air when weather conditions allow. A single AHU can supply 

multiple zones.  
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There are two basic mechanisms to vary the energy removed or supplied by air: CAV and VAV. 

The CAV working principle is to vary the temperature of the supply air (usually reheat coils 

are installed at zone level) while VAV varies the amount of air by using variable dampers.  

 

A fraction of the return air is mixed with the supply stream in the mixing chamber at the AHU 

to achieve highly energy-efficient operations. The remaining of the return air is exhausted to 

the outdoors while utilizing some of the energy content by heat recovery devices.  

 

The fraction of outdoor to recirculated air depends on factors such as the building use and the 

category of the indoor air quality level, energy efficiency design tolerance, number of 

occupants, and quality and temperature of the outdoor air. Nevertheless, many commercial 

systems typically use a range of 10% to 30% outside air of the total air supply to the zone. 

However, some systems provide 100% fresh air i.e., no recirculation (McDowall, 2006b). 

 

•  

Figure 2.2: Centralized HVAC system (Courtesy: Design Builder Help Manual). 
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2.2.2 DECENTRALIZED SYSTEM 

Decentralized systems, also called unitary zone systems, refer to devices that supply a single 

space. This system incorporates heating and cooling coils and fans as a packaged system or 

split system for simple applications and installations. 

 

 In large buildings, the packaged system, also called Fan Coil Unit (FCU), may either recirculate 

zone air, in which case a separate ventilation system is required (e.g., central AHU), or may 

introduce a proportion of fresh air through a dedicated supply duct that is mixed with the 

recirculated air.   

 

FCU can be classified into two-pipe or four-pipe systems. The two-pipe system, also called a 

changeover system, uses one coil for heating or cooling. A four-pipe system includes two coils 

and four pipes, two pipes for each coil. This system is more expensive but can supply heating 

and cooling simultaneously to different zones. FCU is ideal for places like hotels, where rooms 

may be unoccupied for long periods.   

 

 

Figure 2.3: Decentralized HVAC system (Courtesy: Design Builder Help Manual) 

 

2.3 HVAC AND COVID-19 

The COVID-19 pandemic is a novel research subject, consequently, the literature is limited to 

provide generic recommendations and “good building practices” to reconfigure HVAC rather 

than solid numeric guidelines with high confidence levels based on proven facts or experiments 

designed explicitly for the COVID19 context.  
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This section begins by highlighting the position of this work in the COVID-19 context. The 

recommendations that REHVA, ASHRAE, CDC, and WHO put to address HVAC operations 

are presented thereafter.  

 

2.3.1 HVAC GUIDELINES  

In figure (2.4) is a representation of the control hierarchy from the US Center for Disease 

Control and Prevention (CDC). The idea is to focus on the methods at the top at first that are 

more effective, then follow the subsequent control measure.  

 

This study scope falls in the engineering controls category which in essence does not remove 

the source but rather separates the occupants from the viral aerosols through ventilation, 

filtration, and other techniques. According to the control hierarchy, ventilation and other 

building systems measures are more effective to contain pathogens dissemination in space than 

using personal protective equipment (PPE) and administrative controls. Hence, it is important 

to consider ventilation and other building measures to reduce or eliminate airborne 

transmission.  

 

 

Figure 2.4: Traditional infection control pyramid (CDC, 2015) 

 

It is worth noting that ventilation alone is not the only control measure to address the infection 

in enclosed spaces. Other non-HVAC measures recommended by WHO, such as social 

distancing, surface cleaning, and masks, are crucial to limit fomite transmission and break the 
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chain of infection. These non-HVAC measures abolish the infection source before turning to 

airborne aerosols. The dotted line in figure (2.5) shows the scope of this study in the COVID-

19 context to cover only the airborne transmission mode while keeping in mind that other routes 

exist and are crucial to mitigate first.   

 

 

Figure 2.5: Study scope in the COVID-19 transmission routes, reproduced from (Otter et al., 2016) 

 

2.3.1.1  VENTILATION RATE 

ASHRAE Standard 62.1 defines ventilation “ the process of supplying air to or removing air 

from space for the purpose of controlling air contaminants levels, humidity, or temperature 

within the space”.  

 

Although the ASHRAE standard 62.1 mentions controlling air contaminants, it was not 

designed to mitigate viral transmission such as COVID-19. During the COVID-19 outbreak, 

ASHRAE, REHVA, and various other ventilation agencies worldwide issued continuous 

updates to highlight the importance of ventilation and present provisional guidelines to reduce 

the COIVID-19 infection probability indoors.  

 

In addition, previous studies before the COVID-19 pandemic, stress on increasing ventilation 

rates than normal to decrease the probability of exposure to pathogens and disrupt aerosols 

transmission pathways such as Gao et al., 2016. It is nevertheless noteworthy that ventilation 

as a mitigation technique does not influence large droplet flow patterns. Remarkably, it can 

interrupt infectious aerosols dissemination (Pantelic, Kwok and Tham, 2013). 
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Although the many similarities between REHVA and ASHRAE guidelines which aim to dilute 

viral pathogens and lower their indoor concentration, each organization takes a slightly different 

approach on nonresidential buildings. REHVA guidance (REHVA, 2020) focuses on supplying 

as much fresh air as reasonably possible and recommends closing mixing chamber dampers to 

to avoid air recirulation and acquire higher indoor air renewal (see figure 2.6). However, if 

recirculation cannot be avoided, HEPA filters or ultraviolet germicidal irradiation devices 

(UGVI) would be recommended.  

 

Conversely, ASHRAE stresses on keeping recirculation but to upgrading primary filters to at 

least MERV-13 or better filter level and allow maximum flow through the primary filter to 

remove as many infected aerosols as possible (ASHRAE, 2020). 

 

Recirculation of air is inevitable when it comes to current existing HVAC systems design. The 

earlier focus was to achieve as high energy efficiency as possible without degrading the thermal 

comfort of occupants.  

 

 

Figure 2.6: AHU with the closure of recirculation damper  (McDowall, 2006a) 

 

 Moreover, ASHRAE standard 62.1 sets up the minimum ventilation requirement to maintain 

acceptable indoor air quality to occupants to minimize adverse health effects.  According to 

section 6.2 in (ANSI/ASHRAE, 2019) for “Ventilation for Acceptable Indoor Air Quality,” the 

minimum primary airflow for a breathing zone (VPZ-min) is obtained using the following 

formula:  
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𝑉𝑏𝑧  =  (𝑅𝑝 ∙ 𝑃𝑧)  +  (𝑅𝑠 ∙ 𝐴𝑧)  [l/s] ( 1 ) 

Where:  

- Vbz1 = breathing zone outdoor airflow  

- Az = zone floor area [ m2]  

- Pz = number of occupants.   

 -RP and Rs are the minimum primary flow rate for ventilation per person and per unit area, respectively, 

and are determined using table 2.1. This method is referred to as the “Ventilation Rate procedure.”  

 

Table 2.1: Minimum ventilation rates in the breathing zone, reproduced from (ANSI/ASHRAE, 2019) 

Occupancy category 

People Outdoor 

air rate Rp 

(l/s/person) 

Area Outdoor 

Air Rate Ra 

(l/s/m2) 

Occupancy 

Density 

# / 100 m2 

Air class 

Office Buildings 

Breakrooms 5 0.3 50 1 

Main entry lobbies 5 0.3 10 1 

Office space 5 0.3 5 1 

Outpatient Health Care Facilities 

General examination 

room 

7.5 0.6 20 1 

 

VRF is a perspective procedure based on the number of occupants and floor area. Each occupant 

and floor meter square requires a minimum ventilation rate indicated in the table above. The 

equation contains two components; a) ventilation requirements for occupants and b) ventilation 

requirements for pollution from the building and its systems. It is worth noting that the VRF 

procedure is only applicable for normal operating conditions but not to mitigate COVID-19 as 

the standard was developed before the pandemic and did not consider airborne disease 

transmission like COVID-19.  

 

It is noticed from table 2.1 that spaces with higher activities and movements require more 

ventilation rates. For example, office spaces need a lower airflow rate (l/s/m2) than breakrooms 

 

1 The breathing zone is defined as the zone in space between 0.2 and 1.8 meters from the floor and 0.6 meters from 

walls or air-conditioning equipment (McDowall, 2006b). 
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because of lower occupant activity characterized as sedentary, which returns relatively lower 

space-related contaminants. 

 

Additionally, according to (REHVA, 2020), in its COVID-19 update, stated that to achieve an 

indoor air quality of category 2 (medium IAQ), a 1.5 - 2 l/s per m2 (10 – 15 l/s per person) is 

needed in offices and 4 l/s per m2 (8 – 10 l/s per person) in classrooms and meeting rooms.  

 

Although some airflow rates in some spaces fall less than 4 l/s by some standards, it is 

recommended to have a minimum ventilation rate of 4 l/s per person throughout all building 

categories for health reasons (ISO, 2017).  

 

Moreover, another parameter for ventilation is the Air change per hour (ACH). ACH is a unit 

to measure how many times the air volume is being added and removed from the space volume 

in one hour, i.e., five air changes per hour means that the air inside will be exchanged with clean 

air on average five times an hour, see equation ( 2 ). ACH is a metric typically used in healthcare 

buildings. The volume of the space is an important parameter and is inversely proportional to 

ACH. Although it quantifies the volume of air relevant to the volume of space, ACH is not an 

indication of the supply air type, whether outdoor fresh or recirculated.  

 

      𝐴𝐶𝐻 =  
𝑄𝑎𝑖𝑟

𝑉
 [h-1] ( 2 ) 

Where:  

- V is the space volume [m3] - 𝑄𝑎𝑖𝑟 is the air volumetric flow rate[m3/h] 

 

Dai and Zhao, 2020, have studied the required ACH needed in bus, classroom, aircraft, and 

office spaces (See figure 2.7). The study concludes that to get an infection probability of less 

than 1%, a ventilation rate is required above 8–25 l/s per infector and 83–278 l/s per infector 

for 0.25 h and 4h of exposure with mask-wearing, respectively.  

 

The Center for Disease Control (CDC), table 2.2, presents the airborne contaminant removal 

time in minutes equivalent to air quantity supplied (ACH) when there is no aerosols generation 

source i.e, infectors inside the space. Healthcare facilities usually use stringent standards for 

indoor air quality, which proved resiliency to control cross-infection during the COVID-19 

pandemic. ASHRAE recommends applying the healthcare standards if applicable to all other 
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facilities. According to CDC, 2003, healthcare facilities use 6 – 12 ACH, equivalent to 40-80 

l/s/patient (Atkinson et al., 2016). Therefore, based on CDC table 2.2, the recommended 6-12 

ACH would take 46 – 23 minutes, respectively, to remove airborne contaminants with a 99% 

efficiency. The time durations show the required duration to dilute aerosols pathogens after 

space occupancy. 

 

 

Figure 2.7: Air change rate (ACH) vs. infection probability (Y: with masks; N: without masks, one 

infector inside). (Dai and Zhao, 2020) 

 

Table 2.2: Air changes per hour and time required for airborne-contaminant removal by efficiency. 

(CDC, 2003) 

ACH 
Time (mins.) required for 

removal 99% efficiency 

Time (mins.) required for 

removal 99.9% efficiency 

2 138 207 

4 69 104 

6 46 69 

8 35 52 

10 28 41 

12 23 35 

15 18 28 

20 14 21 

50 6 8 
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2.3.1.2 AIR FILTRATION 

Unlike REHVA, ASHRAE COVID-19 guidance emphasizes on the importance of filters 

upgrade when most supply air is recirculated and when areas share the same central HVAC 

system. 

 

The use of highly efficient filters recommended by ASHRAE Standard 52.2 in HVAC systems 

can reduce airborne infectious particles significantly. The main characteristics to distinguish 

filters are their efficiency in removing particles of varying size, resistance to airflow, and dust 

capacity i.e., how much particles mass they can hold. 

 

The minimum efficiency reporting value (MERV) is a rating scale (1-16) that classifies filters 

according to their ability to capture different particle sizes represented by an efficiency 

percentage. Each MERV rating and its corresponding efficiency has its typical application (See 

figure 2.8).  

 

Moreover, the filtering efficiency is simply an indication of the fraction of particles removed 

from the air passing through the filter. There are various particle types and sizes shown in figure 

(2.9). These particles are classified into three categories based on their sizes as follows:   

• Range 1:  0.3 to 1.0 micron. 

• Range 2:  1.0 to 3.0 microns. 

• Range 3:  3.0 to 10.0 microns. 

 

ASHRAE advises using range 1 to decide filter efficiency to protect against COVID-19 because 

of the relatively small size of the virus. High-Efficiency Particulate Air (HEPA) filters are the 

most efficient filtration with an efficiency reaching 99.97% able to remove range 1 particles at 

rated flow. HEPA filters correspond to a MERV rating of 17 to 20.  

 

However, HEPA filter types have high capital costs and require higher fan speed to push the air 

through the filter and counteract the increased pressure drop. The pressure drop is caused by 

the filter’s airflow resistance which varies widely between air filter manufacturers and models, 

primarily due to the number of pleats per inch (dense material structure) in the manufacturer’s 

air filter model design.  Therefore, a drawback to using high-efficiency filters is the significant 

increase in annual fan energy costs, and frequent replacement is often required. (See figure 
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2.10). Nonetheless, if HEPA filters are not an option, ECDC and ASHRAE recommend using 

MERV-13 or higher as a compromise between filter efficiency and cost (MERV 13 filters > 

90% particles of 0.3µm).] 

 

On the other hand, low MERV filters are typically used at the outdoor air intake to prefilter the 

air from large particles, where the air is then refined with higher MERV-rated filters.  

 

 

Figure 2.8: Filter’s MERV efficiency index, image taken from (Nelson-Jameson, 2020) reproduced 

from (ANSI/ASHRAE, 2017) 

 

 

Figure 2.9:General guide to the particle size distribution of common atmospheric contaminants 

(Eurovent, 2017). 
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Figure 2.10: Estimated annual cost of filtration in hypothetical office environment.(Azimi and 

Stephens, 2013). 

 

Furthermore, static pressure drop evolves from ducts and filters. When air passes through a 

duct, the difference in pressure between the two ends is referred to as pressure drop. The higher 

the pressure drop means more resistance to the airflow, which increases the work required, 

corresponding to higher fan horsepower needed to push the air through.  

 

The static pressure drop for air ducts per meter of length is depicted on Darcy Weisbach 

equation:  

 

𝛥𝑝

𝐿
 =  

𝑓𝐷 

𝐷
∙  

𝑝𝑉2

2
 [Pa/m] ( 3 ) 

Where:  

- 𝛥𝑝 is the pressure drop [pa] - 𝑓𝐷 is Darcy friction factor 

- L is the duct length [m]  -D is the inside diameter [m] 

-V is the air average velocity [m/s] - 𝑝 is the fluid density [kg/m3]  

 

2.3.1.3 HEAT RECOVERY 

Similar to the recuperator working mechanism for heat in the boiler’s flue gases, heat recovery 

at the AHU is integral to the system design. Heat recovery is an energy-efficient method to 

reduce energy consumption substantially by utilizing the energy contained in the exhaust air in 

the form of “Low-grade heat” that would otherwise be wasted and supply it back to pre/heat 

the incoming air stream through air-to-air heat exchangers (Zemitis and Borodinecs, 2019). The 

two most known forms of the heat exchanger are wheel and flat plate. Unlike flat plate HX, the 
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rotary HX provides high efficiency but with a potential of air leakage between the supply and 

extract air streams. This is due to the wheel’s rotation, making it difficult to seal effectively 

(William Lawrance, 2020). The uncontrolled transfer of polluted air can be in the order of 1-

9% (Andersson et al., 1993).  

 

However, CIBSE, 2020; REHVA, 2020b and WHO argues that there may be a possibility of 

viral material be transferred to the supply airflow via leaks, but there is no strong evidence. 

Instead, the leakage risk is outweighed by sustaining proper ventilation rates. In addition, there 

is a minimal risk of cross-contamination if the overall system is constructed, installed, and 

maintained properly.   

 

2.3.1.4 OPERATION SCHEDULE 

To reduce airborne exposures, changes in the building HVAC devices, as well as operation 

schedule. ASHRAE, 2020, recommends a ventilation system to operate 24/7 if possible. 

REHVA, 2020, recommends turning on ventilation systems to their nominal speeds at least 2 

hours before occupancy and switch off or lower speed after two hours of building occupancy. 

Extended operation time helps to flush out contaminants. 

 

It is worth noting that most guidelines advise avoiding demand control ventilation (DCV), in 

which the ventilation rate is controlled by CO2, humidity, volatile organic compounds (VOCs) 

sensors or timer. 

 

2.3.1.5 TEMPERATURE AND RELATIVE HUMIDITY 

The transmission of the COVID-19 virus is governed by a number of factors such as host 

immune system, migration flow, medical care quality, population density, and climate 

conditions. Mecenas et al., 2020 examined seventeen recent studies focusing on the connection 

of temperature and relative humidity on SaRs-CoV-2 virus viability. The study found, with low 

confidence, that warm and wet climates reduce the spread of COVID-19 over cold and dry 

climates.  

 

Casanova et al., 2010, found that the Coronavirus’s viability is reduced only when relative 

humidity (RH) is above 80% and temperature (T) is greater than 30°C.  



-17- 

 

 

On the contrary, ASHRAE and REHVA, 2020, in their final guideline, argues that 

humidification is not an effective measure to reduce SARS-CoV-2 stability in buildings and 

advises maintaining normal operating temperature and humidity setpoints. Besides, high values 

of RH and T are unacceptable thermal comfort levels for occupants inside the buildings and 

may cause condensation and microbial growth indoors (e.g. airborne fungi) which could affect 

occupants' health negatively (Arundel et al., 1986). 

 

2.3.2 COVID-19 RISK PROBABILITY MODEL 

A risk infection probability model goal is to roughly estimate the infection probability as a 

function of ventilation rate given different virus exposure times.  

 

A probability infection model is essential to relate it to the dilution effect to reduce the infection 

caused by ventilation and other HVAC-related measures. The probability of risk model is based 

on the most classic Wells-Riley equation to assess infection risk, calibrated for COVID-19. The 

goal is to get the order of magnitude of the infection risk rather than a sophisticated 

epidemiological model. There are some limitations to the Wells-Riley equation, which will be 

explained later.  

 

The Wells-Riley model allows for a quick assessment to deterministically quantify the risk, 

which does not require interspecies extrapolation of the virus infectivity (Sze To and Chao, 

2010). 

 

According to (Sze To and Chao, 2010), the quanta “q” is not a standardized unit but rather a 

hypothetical infectious dose unit developed by Wells in 1995 specifically for this equation. 

Wells assumed that not all the droplets and aerosols inhaled by susceptible would result in an 

infection. Wells defined quanta as the number of infectious droplet nuclei required to infect 1-

1/e susceptible people, i.e., 63% chance to be infected. (Noakes and Andrew Sleigh, 2009).  

 

The quanta are specific for each disease. Quanta rates cannot be directly obtained but calibrated 

following a super spreading event of a known outbreak. This way, the concept of quanta can 

help lump together empirical uncertain virus parameters such as virus infectivity, deposition at 

the respiratory tract and immune system response, the particle size distribution.  Trying to 
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obtain those parameters to create a detailed infection model explicitly is a daunting task, 

especially in the first stages of a new disease like COVID-19. Instead of a fully detailed model, 

the concept of quanta, although of some incomplete or uncertain virus factors, is calibrated to 

known outbreaks of COVID-19, as done in the following papers.  

 

Dai and Zhao, 2020 have used a reproductive number-based fitting approach to estimate the 

COVID-19 quanta generation rate (q) from previous viruses. The generation rate is needed to 

form a correlation between the infection probability and ventilation rate. The study estimated 

the COVID-19 generation rate to be in the range of 14 – 48 (q/h).  

 

Buonanno, Morawska and Stabile, 2020 estimated the quanta emission rate (q/h) emitted given 

different activity levels, type of respiratory activity, and viral load concentrations (expressed in 

RNA copies in mL−1) (Figure 2.11). 

 

 

Figure 2.11: Quanta emission rates (q/h) for SARS-CoV-2 as a function of the activity level. 

(Buonanno, Morawska and Stabile, 2020). 

 

Figure (2.1) shows there is a two order of magnitude difference between the 5th percentile and 

95th. For comparison, the quantum emission rate for measles is between 570q-5600q (Riley, 
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C.E., Murphy, G. and Riley, 1978) and (15-500q) for Influenza (Lee, Golinski and Chowell, 

2012). So COVID-19 is much less transmissible through the air than measles. Still, aerosols 

can be transmitted under the right circumstances (indoors, lower ventilation, crowding, longer 

duration, activities that favor higher emission rates of respiratory aerosols such as singing, 

talking, aerobic exercise (Zafra and Salas, 2020). 

 

Generally, infection models consist of two main components:  

a) Estimation of the generation of the infectious intake dose. 

b) Estimation of the probability of infection given the infective dose.  

 

So, knowing the infectious dose, the likelihood of infection can be modeled. This is shown in 

the Wells-Riley equation as follows:  

 

𝑝 =  
𝐶

𝑆
 = 1 − 𝑒𝑥𝑝(−𝑛)  = 1 − 𝑒𝑥𝑝(−

𝐼 ∙ 𝑞 ∙ 𝑝 ∙ 𝑡

𝑣
) [%] ( 4 ) 

Where:  

-P  probability of infection.  -I  number of infectors 

-C number of infected cases -q  quanta generation rate [q-1] 

-S  number of susceptible -P  breathing rate [m3/h]  

-n  is the quantity of quanta inhaled (dose).   -T  exposure time [h] 

-v  is the outdoor air ventilation rate [ACH]. 

 

The term in the brackets in equation ( 4 ), (−
𝐼𝑞𝑝𝑡

𝑣
),  refers to the risk of infection in a room. It 

assumes a constant well-mixed concentration which increases with time from an initial value 

of zero. The numerator indicated the pollutant generation rate (source), while the denominator 

evaluates the ventilation removal rate (sink). 

 

2.3.2.1 TOTAL FIRST-ORDER LOSS RATE 

Besides the denominator Q (ventilation removal) in equation ( 4 ), which only considers 

ventilation, other control measures that affect the infection risk measure have been incorporated 

in previous studies; to include air filtration (𝜆𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛), virus decay (𝜆𝑑𝑒𝑐𝑎𝑦), and deposition 
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rates (𝜆𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). These sink terms can be added, and all terms sum is referred to as Total first-

order loss rate, 𝜆total (Fisk et al., 2004; Sze To and Chao, 2010).  

 

𝑝 = 1 − 𝑒𝑥𝑝(−
𝐼 ∙ 𝑞 ∙ 𝑝 ∙ 𝑡

𝑣 + 𝜆𝑑𝑒𝑐𝑎𝑦 + 𝜆𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝜆𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛
)  ( 5 ) 

 

According to the COVID-19 online decay rate calculator (DHS, 2020a), the virus decay rate is 

dependent on the UV index, relative humidity, and temperature. The UV index is 0 for indoor 

spaces, 20°C as average temperature, and 40% RH. All of these parameters give a virus decay 

(half-life) of 0.98 h-1
.  This value is in the same order of magnitude found in the New England 

journal article shown in the figure below.  

 

 

Figure 2.12: SARS-CoV half-life decay rates for different mediums (van Doremalen et al., 2020). 

 

For the SARS-CoV-2 deposition rate, (Miller et al., 2020) estimate the deposition rate following 

a super spreading event using Monte Carlo simulation, the loss rate due to deposition values 

ranges from 0.3 to 1.5. This rate varies due to the different particle size ranges and heights of 

the emission source. Another study evaluated deposition to 0.24h-1 (Buonanno, Stabile and 

Morawska, 2020). 

 

The final term in equation ( 5 ), 𝜆filtration is proportional to the filter efficiency i.e., MERV rating, 

and the amount of air passing through the filter. Hence, 𝜆filtration equals:  

 

𝜆𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 ∙
𝑄𝑂𝐴

𝑉
            [h-1] ( 6 ) 

Where: 

- QOA is the amount of outdoor airflow in [m3/h] 

-V is the space volume [m3]. - 𝜂𝑓𝑖𝑙𝑡𝑒𝑟 is the primary filter efficiency 
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2.3.2.2 INHALATION OF VIRAL PARTICLES:  

As explained in (COVID-19: SARS-CoV-2 Aerosol Mechanisms- The Aerosol Society, 2020), 

to evaluate the infection risk probability of susceptible, an estimation of the quanta 

concentration evolution time is needed to predict how much quanta is inhaled. Based on Miller 

et al., 2020 equation (4), the average quanta concentration Cavg is determined as follows:  

 

𝐶𝑎𝑣𝑔 =
1

𝐷
∙ ∫ 𝐶(𝑡)𝑑𝑡 =  

𝐸

𝜆∙𝑉

𝐷

0
∙ [1 −

1

𝜆∙𝐷
∙ (1 − 𝑒−𝜆∙𝐷)]           [ q/m 3] ( 7 ) 

 

Where: 

- E is the net emission rate and equals to 

          𝐸 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑜𝑟𝑠 ∙  𝑞𝑢𝑎𝑛𝑡𝑎 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛 ∙  (1 – 𝜂𝑚𝑎𝑠𝑘). 

- 𝜆 is the total first-order loss rate [h-1]. - D is the time duration [h]. 

- V is the room volume [m3]. -t time [h]. 

 

Therefore, the number of the infective dose is the quanta inhaled in a given concentration and 

breathing rate of susceptible and is determined as follows:  

 

𝑞𝑖𝑛ℎ𝑎𝑙𝑒𝑑 = 𝐶𝑎𝑣𝑔 ∙ 𝑡 ∙ 𝑏 ∙ (1 − 𝜂𝑚𝑎𝑠𝑘) [ q ] ( 8 ) 

 

Where: 

- 𝑞𝑖𝑛ℎ𝑎𝑙𝑒𝑑   is the quanta inhaled per person - Cavg is the average concentration [q/m3]. 

- t is the time duration [h]. -  𝜂mask  is the receptor mask efficiency.  

- b is the breathing rate [m3/h].  

 

Finally, equation ( 8 ) number of quanta is substituted into equation ( 4 ) to evaluate the 

probability of risk infection. Yet, the risk probability percentage whether to be considered high 

or low is subjective. However, studies suggest an acceptable risk probability to be less than 1%. 

 

Furthermore, the net emission rate E shall also incorporate the mask efficiency of the infectors 

to mimic a real-life situation. Face masks are recommended by WHO to interrupt the potential 

transmission route from the source, which can significantly reduce infection probability and 

reduce ventilation costs.   
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𝑁𝑒𝑡 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝜂𝑚𝑎𝑠𝑘 ∙ 𝑞 ∙ 𝑛𝑖𝑛𝑓 [ h-1 ] ( 9 ) 

Where: 

- 𝜂𝑚𝑎𝑠𝑘 is the mask efficiency - q is the quanta 

- ninf  is the number of infectors inside the space  

 

There are different types of masks. Each has unique collection efficiency depending on the 

material and its built structure. Lindsley et al., 2020 conducted a quantitative comparison in 

efficacy to different source control devices like face masks, neck gaiters, face shields at 

different aerosols particle sizes. Figure (2.1) shows N95 respirators have the highest collection 

efficiency. Other filter types range from 40% to 60%. Yet, N95 respirators are not a common 

choice for the general population. 

 

 

Figure 2.13: Collection efficiency of face masks, neck gaiter, and face shield (Lindsley et al., 2020). 

 

In addition, Davies et al., 2013, show different face masks filtration efficiency, the study reports 

from 25% to 75%, an average of 50% for homemade masks—besides,  23% efficiency for face 

shield (Lindsley et al., 2020).  
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2.3.2.3 LIMITATION 

The SARS-CoV-2 virus transmission is novel and an active research topic. Therefore, the 

uncertainties involved in the calculations are high. The quantifications of risk probability in this 

study are not absolute or precise but may fall within the order of magnitude.  

 

The model considers individuals are apart and only focuses on airborne aerosols neglecting 

large droplets, fomite transmission, and other routes. In practice, excluding different 

transmission paths may lead to overestimating the quanta, which is evaluated based on known 

outbreaks. However, the quanta emission rates are usually back-calculated from scenarios 

where the probable major infection factor is caused by long-range transport.  

 

Besides, the hypothesis of perfect mixing and steady-state of contaminants are best applicable 

for small volume spaces. In contrast, for large open spaces, the results of the risk probability 

are underestimated as it does not consider spatial variations of virus concentration and treat all 

the susceptible people to have the same concentration (same virus exposure level). Overall, the 

Wells-Riley risk assessment model is a good tool for understanding how effective the building 

measure like ventilation system affects the infection risk.
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CHAPTER 3. OBJECTIVES 

Ensuring the recommended ventilation rates through mechanical air systems increases energy 

consumption. Consequently, the study target is to look at the different ventilation rates’ 

consumption and the associated electricity cost. The sufficiency of the air supplied to reduce 

the viral aerosol risk is evaluated using the Wells-Riley risk probability model. Additionally, 

although ventilation and other indoor comfort parameters such as heating have different use 

functions, they are interrelated parameters. The research will cover the cost implication of 

maintaining the recommended ventilation rates on space heating and the influence of applying 

heat recovery devices to reduce the cost penalties (O1)2.  

 

Besides, adequate ventilation rates combined with a proper air delivery mechanism improve the 

overall effectiveness of air systems to reduce pollutants inside an enclosed space. The study 

will highlight the influence of indoor airflow patterns on the space end-users (O2). 

 

Lastly, using a renewable source to power the ventilation and heating systems is beneficial to 

reduce the energy consumption from the grid and carbon emissions. The study will conclude 

by examining the feasibility to install a renewable source. The renewable integration analysis 

will explore the profitability to install a renewable system and examine the carbon emissions 

that could be saved (O3).  

 

The research will conduct an array of different simulations for ventilation and space heating, 

air distribution, and renewables integration on a case study building. Eventually, all objectives’ 

results will build up general recommendations to operate the building under the COVID-19 

context.

 

2 O1 = abbreviation to denote the sequence of the research objectives 
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CHAPTER 4. METHODOLOGY 

The chapter starts with the introduction of a case study building and the existing ventilation 

condition. Subsequently, the chapter presents the process to estimate COVID-19’s risk 

probability and cost. Following this, ventilation and heating, air distribution, and renewables 

different scenarios formation and calculation methods are discussed consecutively. 

 

4.1 CASE STUDY 

The rectorship building of the University of Basque Country is located in Leioa municipality 

in the autonomous community of the Basque country in northern Spain (Figure 4.1). The 

building is primarily considered an office type. However, it also includes other functions such 

as a nursery, server, and storerooms.  

 

The building was chosen as a case study because it holds various zone types that require 

different ventilation requirements. Besides, office buildings are a focus of interest to study 

during the COVID-19 pandemic because of their special economic value in the urban fabric 

and considering the challenging task for decision-makers to reopen such buildings due to the 

prolonged exposure times of occupants and the high risk of transmission.  

 

 

Figure 4.1: The University of the Basque Country (UPV), rectorship building. 
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The building is oriented in the north-south direction and has a total area of 2500m2. The 

rectorship building layout comprises four stories, including the ground floor. The ground floor 

serves as multi-use space for the nursery and store, while the upper floors are reserved as open 

office spaces (See figure 4.2). 

Figure 4.2: Case study floor plans 

 

The two terms “space” and “zone” are sometimes interchangeably used, but the difference shall 

be highlighted. Space is a part of a building that is not necessarily separated by walls or floors, 

which can be big or small and subjective to identify. While a zone, always coupled in HVAC 

literature, contains several spaces. A zone is fundamentally chosen depending on the space/s 

thermal gains affected by orientation, function, and location within the building layout. Each 

zone is independent and assigned a thermostat that controls the thermal and indoor air quality 

needs (McDowall, 2006). 

 

In figure (4.3), the ground floor of the rectorship building is distributed into three zones: 

nursery, store, and circulation. First, the spaces are classified by function to form custom areas, 

each with its own use settings and occupant’s activity. The nursery, for instance, is further 

divided into subzones to separate it thermally as each subzone is situated on different 

orientations and has a different window-to-wall ratio, thus, variable thermal gains.  

 

On the other hand, the upper office spaces are divided into two zones because the northern and 

the southern zones each experience a period of solar gains different from the other while other 

factors such as space use, internal loads from the equipment’s lights, and occupancy are the 

Ground floor       First floor              Second floor              Third floor 
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same within the office zone. This way we avoid too few zones which results in unacceptable 

performance and excessive zoning which increases the investment and maintenance costs that 

add to the complexity of the HVAC system.  

 

Figure 4.3: Assigning zones for case study’s spaces 

 

4.2 SCOPE AND BASELINE VENTILATION 

The rectorship building has different space uses, as shown in figure (4.2). Nevertheless, the 

focus of the study is to compare different ventilation rate costs and their influence on infection 

risk probability, risk costs, and space heating.  

 

Spaces like circulation, server, and store do not have the same high exposure time compared to 

that of office and nursery. Therefore, providing high ventilation rates to circulation, store, and 

server is not a top priority to analyze, and are excluded from this work.  

 

Similarly, the rectorship building has more than one office and nursery room. So, simulating 

more than one office and nursery does not add any significant information to the results. 

Therefore, the chosen spaces are Nursery_N and Office N_E, better refer to both as “Focused 

zones”. 

 

The following points highlight the study boundaries to conduct ventilation, heating, and risk of 

infection.  

• Only mechanical ventilation: the simulation does not consider natural ventilation or 

building infiltration, exfiltration, or any air leakage mechanisms neither through the 

building envelope (ex/infiltration) nor mechanical ventilation system’s components. 

Ground floor       First floor             Second floor              Third floor 
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• Focusing on critical zones in the case study: the rectorship building includes various 

use spaces. However, the focused zones include a Nursery and an Office. Other zones 

like the store, server and circulation are neglected.  

• Four hours of occupancy per day (8:00 – 12:00): the simulation considers 4 hours of 

occupancy five days a week from Monday to Friday for one year. 

• Fixed occupancy density: The Office density is fixed and set to have 1.5m and Nursery 

2m of circle radius around each occupant. This corresponds to 7.07m2/person and 

12.57m2/person, respectively. 

• Homogenous viral concentration: based on the Wells Riley hypothesis, the level of 

concentration of SARS-CoV-2 is assumed to be the same at every location within the 

indoor environment. 

• Ten percent are infected: this work assumes 10% of the space occupants are infected 

and constant quanta generation per infector throughout the occupancy duration.  

 

Figure (4.4) depicts a schematic of the HVAC system for the case study building. A centralized 

VAV air system is chosen. It is widely used for multizone applications because it can reduce 

energy consumption than CAV and adds to the flexibility of operation. Generally, VAV 

terminal units are equipped with an air damper with an automatic actuator controlled by a 

thermostat to vary the amount of air for each zone. 

 

 

Figure 4.4: Case study’s HVAC system illustration diagram  
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Furthermore, the baseline ventilation refers to the current air requirements for the focused zones 

before COVID-19 prevalence. Baseline ventilation is evaluated using ASHRAE’s Ventilation 

Rate Procedure (VRP) to examine and compare the minimum air requirements of the focused 

zones. Table 4.1 shows a breakdown of the focused zones parameters. The quantity of air per 

person implies poor existing ventilation rates because it fell below the recommended ventilation 

for COVID-19 of at least 40 l/s and 15 l/s for Nursery and Office, respectively. 

 

Table 4.1: Focused Zones baseline ventilation rate using VRP 

Parameter Office Nursery 

Area (m2) 203.81 174.03 

Height (m) 3.95 5.5 

Density (#/m2) 0.14 0.08 

Number of occupants 28 14 

Rp 2.5 7.5 

Ra 0.3 0.6 

Equivalent ACH for baseline  0.6 0.8 

Ventilation per person (l/s) 4.6 15 

 

4.3 COVID-19 RISK COST MODELLING 

This section will redraw the process of quantifying the risk based on the Wells-Riley equation. 

It is worth mentioning that there are aerosols transmission online calculators to roughly estimate 

the infection probability including the University of Cambridge, 2020, NIST, 2020, and 

REHVA, 2020a. These calculators are not fully tailored to the research’s information needed 

to fulfill the objectives. Instead, the online aerosols calculators’ scientific approach is explored 

and adapted to a spreadsheet using the recent information found in the literature review, section 

2.3.2. 

  

Furthermore, the quanta value varies significantly with the activity, e.g., talking, loud speaking, 

signing, and the metabolism rate, e.g., resting and light or heavy exercise. The chosen quanta 

emission rate (q/h) is based on the 99th percentile of SARS-CoV-2 taken from the latest study 

of Buonanno, Stabile, and Morawska, 2020. 
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For the face masks, 50% is assumed to be an average efficiency for the general public since not 

everyone wears a respirator mask with efficiency higher than 90% such as FFP3, N95, N99 nor 

low-efficiency masks such as neck gaiters or cloth masks. However, the 50% is lowered to 40% 

due to leaks resulting from improper wearing (fit, tight, or loose), and long-term use of masks. 

All of which influence the mask's effectiveness.  

 

The probability of infection for a given ventilation rate (i.e. ACH) is calculated analytically 

through the following steps:  

 

A.  Establish the space environment parameters such as the type and volume of the space, 

number of occupants, breathing rate, number of infectors, and mask efficiency (Table 

4.2).  

B.  Calculate the total first-order loss rate (𝜆total), including ventilation, virus deposition, 

decay rates, and air filters to evaluate the total removal rate for the infectious quanta.  

C. Calculate the infectors’ net emissions using equation ( 9 )  

D. Calculate the average quanta concentration per m3 of air using equation ( 7 ). 

E. Obtain the number of quanta inhaled using equation ( 8 ). 

F. Calculate the estimated probability of infection equation ( 4 ).  

G. Translate the risk probability to treatment cost. 

 

Converting the infection risk probability to risk expenses estimates the risk price to be paid out 

for treating an infected person given a ventilation rate supplied in space. This helps to form a 

balance between the ventilation costs and risk cost, cost-effectively. 

 

After figuring out the probability of risk from equation ( 4 ), the risk percentage is multiplied 

by the total number of susceptible people to obtain the fraction of people infected. However, 

not all people infected must go to the hospital to get treatment. The hospitalization rate varies 

enormously and is subjected to age, immune system, and the existence of chronic disease on 

the individual level and influenced by the prevalence of COVID-19 in the community on a 

larger scale. 

  

The hospitalized rate is determined by dividing the number of cases admitted to the hospital by 

the total number of cases. Daily reports from 9/05/2020 to 16/04/2021 for the province of the 
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Basque region were obtained from Centro de Coordinación de Alertas y Emergencias Sanitarias 

(CCAES). Plotting the ratio to see the trend in (Figure 4.5).  

 

The hospitalization rate range fell from 52% during the early period of the pandemic to 9%.  

Additionally, the cost of treating a COVID-19 patient varies considerably. According to a news 

report (Business Insider España, 2021), the worst-case scenario costs more than one hundred 

thousand euros, and on average, the cost is between (66,000 € to 76,000 €) per patient. Add to 

it the transportation cost to the hospital obtained from the Basque department of health 

(Oskidetza Libro de tariffs 2021), which is 876€ for an ambulance trip distance of less than 

100km.  

 

Hence, equation ( 10 ) evaluates the probability of the infected people receiving treatment by 

adding the prevalence of the disease in the area, i.e., the hospitalization rate.  

 

𝑅𝑖𝑠𝑘 𝐶𝑜𝑠𝑡 =  𝐻𝑟 ∙ 𝑇𝑐 ∙ 𝑃 ∙ 𝑁𝑠 [ €/yr ] ( 10 ) 

Where: 

-𝐻𝑟 is the hospitalization rate. -𝑃 is the probability of infection.   

-𝑇𝑐 is the treatment and transportation cost for an 

infected person. 

-𝑁𝑠 the number of susceptible people in 

space (Total number of people minus 

infected)   

 

 

Figure 4.5: Hospitalization rate of the Basque Country, Spain. 
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Therefore, the higher the ventilation rate supplied, the less the probability of infection, and the 

fewer expenses needed to treat and transport the patients. Table 4.2 compiles the selected space 

medical-related parameters used to quantify the probability of infection and evaluate the risk 

cost. 

Table 4.2: Model parameters summary 

Parameter Value 

Quanta rate 5.7 h-1
 for Office (resting, breathing) 

76h-1
 for Nursery (Light activity, speaking) 

Decay rate* 0.15h-1 

Deposition  0.3h-1 

Mask filtration (inhalation and exhalation) *** 40% 

Percentage of people wearing the masks 100% 

Breathing rate*** 0.96 m3/h for Office (resting, speaking) 

1.74 m3/h  for Nursery (Light activity, speaking) 

Number of infectors 10% of the total occupants in each zone 

Hospitalization rate 10% 

Medical treatment for COVID-19 Per patient 66000€ 

Ambulance cost (>100km) 876€ 

* Using (DHS, 2020b) 

** The physical flows during exhalation and inhalation are different and affect aerosol particles differently. 

Therefore, the efficiencies are typically different. For simplification, the mask efficiency during exhalation and 

inhalation is given the same percentage.  

*** For the breathing rates, the chosen rates are according to the intensity activity level according to table 6-2 in 

(Wang et al., 2015). 

 

4.4 STUDY SCENARIOS  

The following sections introduce the scenario formulation method of ventilation and heating 

and air distribution. It also explores the potential of renewables integration. All study scenarios 

are applied to the focused zones of the case study building.  

 

4.4.1 VENTILATION AND HEATING 

The ventilation scenarios are based on the two approaches discussed by REHVA to supply 

outdoor air as much as reasonably possible and ASHRAE’s to upgrade filters to at least MERV-
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13. Both ventilation and filtration are two methods effectively used to counteract COVID-19 

propagation.  

 

Ventilation and filtration are often regarded to achieve the same goal, reducing indoor generated 

contaminants. Therefore, two distinct ventilation operational settings are drawn for the focused 

zones as follow: 

 

-Scenario “A”  is characterized by Low filtration (MERV 8), with 100% outside air. 

-Scenario “B” is characterized by High filtration (HEPA), with 10% outdoor air (90% 

recirculated). 

 

The two scenarios do not necessarily give the same effect, yet both can reduce the indoor 

contaminants. Scenario “A” represents the REHVA approach to introduce outdoor air to dilute 

indoor contaminants by maintaining a higher air renewal rate. Scenario “A” incorporates a 

MERV 8 filter index because outside air does not necessarily mean fresh air all the time. 

Outdoor air can contain coarse contaminants. Hence, a low- MERV ranked filter is employed 

as a primary filter.  

 

On the other hand, Scenario “B” represents the ASHRAE strategy to recycle air with the 

existing outdoor air fraction and to upgrade the filters. Scenario “B” depicts the typical outdoor 

air intake fraction in many air systems (10 to 30% outdoor air intake) which were commonly 

applied before the pandemic spread  and suggested to be an adequate fraction to balance the 

indoor air quality and maintain energy-efficient operations. When the fraction of recirculated 

air is high i.e., 90%, the probability of viral pathogens disseminating throughout the space to 

be transported increases which necessitates upgrading air filters to a highly efficient filter such 

as HEPA to filter out smaller particles. Additionally, a prefilter is also added in scenarios “A” 

and “B” to prevent larger outside objects from clogging up the primary filter and air ducts. It is 

worth noting that is no specific filtration level proven to filter out the SARS-CoV-2. 

 

Each scenario, the amount of supplied air i.e., the ACH is increased by a magnitude of half an 

ACH beginning from the baseline ventilation rate up to 16 ACH (See figure 4.6). Ventilation 

in the diagram refers to supplying uncontaminated air either from outdoor or through filtration 

of recirculated air.   
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Figure 4.6: Ventilation scenarios diagram  

 

Moreover, space heating is considered the second-ranked consumer of energy after lighting in 

office buildings. The evaluation of space heating consumption in this study is crucial to examine 

the ventilation effect on heating inside the focused zones. Unlike ventilation which aims to 

maintain clean air indoors, heating technologies accomplish heating the air to the preferred 

temperature.   

 

The heating setpoint temperature, the temperature that the thermostat is set to maintain thermal 

comfort, is taken from the “Codigo de la edificacion” (CTE), the Spanish standard regulating 

energy efficiency. The indoor air temperature (Tin) following CTE particularly the 

“Reglamento de Instalaciones Termicas de los Edificios” (RITE) is 20-23°C. Therefore, a 

median of 22°C is adopted as the default heating setpoint for the entire heating simulation. 

 

Figure (4.7) shows the average monthly temperature where wicks indicating the highest and 

lowest temperature. The heating load is more significant than the cooling load throughout the 

year. More specifically, the hourly ambient temperature in the case study building site is below 

22°C eighty-five percent of the total yearly hours and is above or equal to 22°C fifteen percent 

of the total annual hours Additionally, the heating and cooling degree days (HDD, CDD) which 

is a calculation method to estimate the energy demand for heating and cooling in buildings, 

shows an annual total of 720 and 305 for HDD and CDD respectively. Thus, the cooling will 

be neglected for this study for low demand and the fact that it can also be fulfilled by natural 

means. 
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Figure 4.7: Monthly Air Temperature, Leioa, Basque Country, Spain (Meteonorm) 

 

In wintertime, buildings typically become less ventilated in order to maintain warm conditions 

indoors. Therefore, heating is separated rather than integrated at the AHU heating coil to keep 

a stable supply of ventilation while not affecting the thermal comfort of space users. The heating 

is delivered through electric convectors.    

 

Heating analyses follow the same ventilation scenarios with the addition of heat recovery (HR).  

 

 

Figure 4.8: Heating scenarios diagram  
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HR is fulfilled by a rotary type heat exchanger (HX), and its effectiveness is set to 70% taken 

from (Roulet et al., 2001). Figure (4.8), shows the integration of HR to the ventilation scenarios. 

“With HR” refers to the adoption of HR in the simulation while “Without HR” describes a 

simulation carried out without heat recovery. This is to show the effect of HR on the amount of 

electricity consumption savings. 

 

4.4.2  AIR DISTRIBUTION 

Air distribution systems play an important role to maintain the indoor comfort level and to flush 

out pollutants properly. It is a one-sided view to focus only at supplying adequate ventilation 

while neglecting the air patterns behaviors around the end users. Computational Fluid 

Dynamics (CFD) analysis is used to test airflow direction, velocity, and temperature 

distribution inside space. After searching in the literature to find general concepts about the 

relationship between building internal airflows and viral transmission, we found that the 

number of buildings where the literature focused on airflow behavior and viral transmission, 

making it hard to generalize concepts on building population at large.  

 

The European Centre for Disease Prevention and Controls, 2020, addresses the possibility that 

airflow generated by HVAC units may facilitate the spread of viral materials. However, the 

relative contribution is uncertain whether to be attributed to airflow patterns or poor ventilation, 

such as the outbreak that happened in the Guangzhou restaurant in China. Accordingly, a careful 

analysis of interior airflow is needed.  

 

When an occupant generates viral particles, the virus aerosols may be carried by the movement 

of air to be inhaled by a neighboring occupant inside the same space. Thus, improper air supply 

mechanism may create air turbulence which compromise the ventilation effect and 

unintentionally increases the risk of airborne viral transmission.  In this study, a simple CFD 

analysis aims to examine the effects of microcurrent around the occupants and assess roughly 

whether the air currents are accumulated near the occupant plume or flushed out to the extract. 

 

We assume a well-mixed of air approach employed in this analysis. Hence, the approach implies 

that mixing between air and viral aerosols happens fast, and so viral materials are dispersed 

homogenously in the room.  
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 The model is created for the Office zone only (Figure 4.9). The equivalent air quantity (l/s) 

corresponds to 5ACH. The ceiling supply and exhaust air diffuser is a four-way, square ceiling 

type with the dimension of 300mmx300mm determined using a manufacturer catalog 

(PrudentAire, 2018) which is best accompanied with VAV applications. The selection of ceiling 

supply of air is best applicable to ensure a well-mixed air distribution according to ASHRAE 

62.1 (Table 6-4). Despite the displacement (stratification) air distribution technique is known 

to provide better indoor air quality, mixed air distribution helps protect people more efficiently 

from high exposure of viral material from the source according to Nielsen et al., 2008; Li, 

Nielsen, 2011. 

 

Figure 4.9: Air distribution scenarios for the Office zone 

 

The placement of the indoor furniture in the office as well as diffusers is according to the 

author’s choice for a typical office layout. The number of occupants is kept fixed at 28 

occupants. Figure (4.9) shows four scenarios based on changing the diffuser’s placement, air-

jet angle and amount of air per diffuser. Overall, the amount of incoming air flow must equal 

extract flow. It is worth noting that these scenarios are independent from the previous heating 

and ventilation scenarios.  

 

Scenario “I” and “II” have the same diffuser layout. There are six supply diffusers and three 

exhausts located in the center of the space. The variation of the supply and exhaust diffusers 

number dictates to vary the amount of air (l/s) per diffuser. Similarly, Scenario “III” and “IV” 

have the supply diffusers in the middle and exhaust on the space edge. The diffusers’ angle is 

altered by 30° and 60°.  
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4.4.3 RENEWABLES INTEGRATION 

This section aims to view how feasible and profitable a renewable source could be if installed 

to power ventilation and heating energy consumption. This section has no scenarios but to 

investigate the potential to integrate a renewable source. 

 

Looking at the wind and solar data in the case study building site, both renewable resources 

have the potential for electricity generation, generally speaking.   

 

The average wind power density is 385 W/m2 (Figure 4.10) while the average wind speed is 

6.5m/s (World Bank Group, 2018). According to the Renewable Energy Laboratory wind 

assessment handbook (NREL), both the wind speed and power density fall into class 3 (AWS 

Scientific Inc., 1997). Power classes range is from Class 1 to Class 7, with Class 4 or greater 

being suitable for most wind turbine applications. Class 3 is suitable only if wind turbines’ hub 

is tall i.e., large projects considering high-rated capacity wind turbines typically above four 

megawatts. Hence, the wind source is technically not feasible to establish aside from other 

social constraints such as noise, safety and environment at the university campus.  

 

Figure 4.10: Mean power density at 100m hub height (World Bank Group, 2018) 

 

On the other hand, the yearly global solar irradiance is 1237 kWh/m2 (Figure 4.11),  which 

could potentially produce high PV yield per installed PV capacity (kWh/kWp) (World Bank 

Group, 2020). This suggests a considerable amount of solar potential of the site, beneficial for 

implementing a photovoltaics power system. Unlike wind turbines, solar panels are easier to 

install and maintain, and possible to mount on the roof of the rectorship case study. 
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Figure 4.11: Monthly global radiation at Leioa, Basque Country (Meteonorm) 

 

4.5 SIMULATION METHODS 

The following sections present the calculations process and tools to conduct ventilation, space 

heating, air distribution, and photovoltaics scenarios and the associated costs. 

 

4.5.1 VENTILATION AND HEATING 

Supplying higher ventilation rates and upgrading filters as the recommendation entails, requires 

more fan power and energy consumption. In addition, filters upgrade not only consumes a 

higher fraction of energy to operate but also other associated costs of ownership.  

 

4.5.1.1 ENERGY COST 

The total pressure drop consists of duct and filter pressure drops. It is calculated for each ACH 

step to obtain the energy consumption of the fan and consequently the electricity cost per year. 

The Darcy Weisbach equation ( 3 )is used to determine the pressure drop per meter multiplied 

by the total length of the ducts in focused zones of the rectorship building. The Darcy friction 

factor (𝑓
𝐷

) is calculated graphically by Moody chart using the following values:  

-Absolute Surface roughness (ε) = 0.15mm for galvanized steel (The Engineering Toolbox, 2015). 

-Dynamic Viscosity (η) = 0.000018 kg/ms for air at 20C (Osborn, 1985).  
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- L is the duct length [m] and is set to 156m for only the focused zones ducts (the length is multiplied 

by two to account for the supply and return duct).  

-D is the inside diameter [m] and is by default 500mm. 

-V is the air average velocity [m/s] derived from each ACH’s air quantity and divided by duct cross-

sectional area. 

- 𝑝 is the fluid density, 1.225 kg/m3. 

 

The Darcy Weisbach equation shows that pressure drop is proportional to the square velocity 

of the air and inversely proportional to the cross-sectional area of the duct. Figure (4.12) shows 

the evolution of the pressure drop per meter of duct length. 

 

 

Figure 4.12: Focused zones duct pressure drop per meter 

 

Moreover, the pressure drop caused by filters is calculated using the manufacturer catalog 

(Camfil, 2016). For scenario “A”, a “M5” rated filter class is selected (medium filtration 

rating). On the contrary, Scenario “B” is equipped with an “H-13” filter class to account for a 

high filtration rating (HEPA filter).  

 

Table (4.3) indicates the chosen filters’ dimensions and a comparative classification of air filters 

according to different standards rating. According to the Camfil catalog, each H-13 and M5 air 

filter has a maximum airflow of 4250 m3/h per filter. When the equivalent air quantity reaches 

the maximum capacity of the filter, the number of filters is increased incrementally to extend 

the surface area and operate according to the manufacturer’s maximum recommended settings. 
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The number of filters is increased evenly by two filters to be consistent with a real filter housing 

design. The filter pressure drop and the number of filters are calculated from 1 to 16 ACHs.  

 

Table 4.3: Ventilation air filters type 

Filter type Dimensions 
Max 

capacity 

ISO 16890 

Std.* 

EN779 

Std. 

ASHRAE 

52.2 Std. 
Eurovent 

Prefilter** 

 

W=59.2cm 

H=59.2cm 

D=98 mm 

4250 m3/h 

(88 Pa) 

N/A G4 MERV 1-6 EU4 

Scenario “A”  W=59.2cm 

H=59.2cm 

D=64 cm 

4250 m3/h 

(60 Pa) 

ePM1 

𝜂 < 20% 

M5 MERV 8-10 EU5 

Scenario “B”  W=59.2cm 

H=59.2cm 

D=64 cm 

4250 m3/h 

(297pa) 

ePM1  

99.95% ≤ 𝜂 

H13 MERV 19 EU13 

*Note: Taken particle efficiency range of ( ≤ 1 μm). 

** Prefilter is included in scenario “A” and “B”. 

 

Finally, using the Camfil pressure drop calculator for the prefilter, M5, and HEPA and inputting 

the air quantity corresponding to each ACH for the focused zones, we obtain the following 

pressure drops (Figures 4.13, 4.14, and 4.15).  

 

 

Figure 4.13: Pressure drop across the prefilter (G4), calculated using (Camfil, 2016) 
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Figure 4.14: Pressure drop across medium filter index (M5), calculated using (Camfil, 2016)  

 

 

Figure 4.15: Pressure drop across high Index filter (HEPA), calculated using (Camfil, 2016) 

 

Finally, combining the pressure drops from filters and duct, figure (4.16) is obtained. 

 

Figure 4.16: Total pressure drop 
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Furthermore, the fan power needed to push the air to overcome the resistance caused by filters 

and ducts for every half ACH is determined using equation ( 11 ). The fan energy consumption 

is fan power multiplied by number of the operating hours over the year. The fan electricity cost 

per year is computed using equation (13).  

 

    𝑊𝑓𝑎𝑛 =
𝑄𝑎𝑖𝑟 ∙ 𝛥𝑝𝑡𝑜𝑡𝑎𝑙

𝜂𝑓𝑎𝑛 𝑡𝑜𝑡𝑎𝑙
             [ KW ] ( 11 ) 

 

𝐸𝑓𝑎𝑛 = 𝑊𝑓𝑎𝑛 ∙ 𝑡                     [ Kwh/yr ]       ( 12 ) 

Where:  

-𝐸𝑓𝑎𝑛 fan energy consumption  -𝑄𝑎𝑖𝑟 airflow volume [m3/h] 

-𝜂𝑡𝑜𝑡𝑎𝑙 total fan efficiency including the motor impeller and belt efficiencies and is assumed 70% 

taken from (Bekö, Clausen and Weschler, 2008). 

-𝛥𝑝𝑡𝑜𝑡𝑎𝑙 total pressure drop [pa]  -𝑊𝑓𝑎𝑛 fan power  

-𝑡 fan operation time [h].  

 

                   𝐶𝑓𝑎𝑛 = 𝐸𝑓𝑎𝑛 ∙  𝑃𝑒𝑙𝑒𝑐 [ €/yr ] ( 13 ) 

Where:  

-𝐶𝑓𝑎𝑛 total fan electricity cost per year  

-𝑃𝑒𝑙𝑒𝑐 is the electricity tariff (€/KWh) and is fixed to 0.08 €/kWh (Electricity price for non-household 

final consumers in Spain excluding tax, the first half of 2020. (Eurostat, 2020). 

 

4.5.1.2 FILTRATION COST 

The annual ventilation cost includes the cost of fan electricity and the total cost of filter 

ownership.  

𝐶𝑣𝑒𝑛𝑡 = 𝐶𝑓𝑎𝑛 + 𝑇𝐶𝑂 [ €/yr ] ( 14 ) 

Where:  

- 𝐶𝑣𝑒𝑛𝑡  Total ventilation cost per year. 

- TCO  Total cost of ownership. 

 

The filter total cost of ownership includes the cumulative costs of filter investment and 

replacement. 

𝑇𝐶𝑂 = [Cfilter + Clm] ∙ Nc ∙ Nf [ €/yr ] ( 15 ) 
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Where:  

-𝐶𝑙𝑚 labor and maintenance cost 

- 𝑁𝑓 number of filters per change 

-𝐶𝑓𝑖𝑙𝑡𝑒𝑟 filter cost 

-𝑁𝑐 number of Changes per year 

 

Table (4.4) summarizes the values used for the filter cost calculation and lifetime. The expected 

filter lifespan (i.e., replacement frequency) was taken from a commercial contact advise in the 

filtration industry as a “best building practice norm”. Quantifying the exact filter replacement 

periods is a complex task that depends on various variables such as the outdoor air environment, 

cleanliness of the indoor air, amount and temperature of the air stream, filter design, and pleats’ 

material and structure on a micro level. 

 

Table 4.4: Filter’s lifetime and cost break-up 

Parameter 
Value 

G4 filter M5 filter HEPA filter 

Filter cost (€) * 15 34 125 

Replacement cost (€) ** 12 12 12 

Disposal cost (€) ** 5 5 5 

Expected filter life  6 months 8 months 12 months 

Changes per year  2 1.5 1 

*the values are derived from the Camfil product catalog and similar filter costs from (Escoda, 2012). 

** directly taken from (Bekö, Clausen and Weschler, 2008). 

 

4.5.1.3 HEATING COST 

The heating simulation is based on Design Builder’s EnergyPlus weather data for Bilbao, Spain. 

From the weather data, the highest heating load referred to as “Winter Design Day” is used to 

determine the sizing of convectors with a relative 25% oversizing margin used as a safety factor.  

 

 The heat generation uses an electric convector and calibrated to an Air Source Heat Pump 

(ASHP). The electric convector converts electric to heat energy with 100% efficiency. The 

electric convector consumption is divided by the yearly mean value of ASHP’s Seasonal 

Performance Factor (SPF), equation ( 16 ). The annual mean value of SPF is estimated as three 

for ASHP (Nouvel, Cotrado and Pietruschka, 2015). It is worth noting that the heat delivery 
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mechanism inside the focused zones is the same for the two heating technologies i.e., using 

convectors. 

 

𝐴𝑆𝐻𝑃 =  
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝐾𝑊𝐻

𝐴𝑣erage 𝐴𝑆𝐻𝑃 𝑆𝑃𝐹
 [ Kwh ]  ( 16 ) 

   

Similarly, the electricity consumption is multiplied by the fixed electricity tariff to obtain the 

heating cost per year. Finally, a summary of the key parameters data discussed used in the 

ventilation and heating Design-Builder simulation are displayed in the following table. 

 

Table 4.5: Summary of input data used in the ventilation and heating simulation 

Parameter Value 

DB Simulation timeframe One year- hourly timestep 

Total ventilation rate  From 1 to 6 ACH, step of 0.5ACH in between. 

Number of Occupants Nursery: 14 Office: 29 

Zone Volume area (m3) Nursery: 956 Office: 804 

Cost of electricity 0.08 €/Kwh  

Fan efficiency  70% 

Operation time per year 4h/day, 5d/week, =11% of the total year hours. 

Heating setpoint T 

Heating setback  T 

22°C 

12°C 

Heat recovery Efficiency  70% (Rotary air to air heat exchanger) 

 

4.5.1.4 PENALTY FUNCTION  

The ventilation rate is inveserly proportional to the probability of risk and vice versa. This 

relation is also valid to the respective cost of ventilation and and probability of risk. Hence,   

balancing the ventilation costs and risk cost is crucial to determine and select a cost-effective 

ACH by minimizing the two costs using L2 norm. Norms in mathematics are typically used to 

measure the magnitude (length or size) of a vector, a matrix, or a function. In this study context, 

the ventilation and risk costs make up the vector magnitude. 
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L2 norm looks at the shortest path in the vector space referred to as Pythagorean distance or 

Euclidean distance.  The L2 norm is a function that takes the square root of the sum of the 

absolute values squared, expressed as follow:  

 

‖𝑥‖2 = (∑ |𝑥𝑖|
2𝑁

𝑖=1
)

1

2   ( 17 ) 

  

Substituting the ventilation and risk costs gives equation ( 18 ).  

 

𝑓(𝐴𝐶𝐻) = [(𝑅𝑖𝑠𝑘 €(𝐴𝐶𝐻)2 + 𝑉𝑒𝑛𝑡 €(𝐴𝐶𝐻)2]
1
2 

            ( 18 ) 

   

Equation ( 18 ) will return a certain value for each half step of ACH which we can then 

minimize. The minimum value from the 1 to 16 ACH set would be our cost-effective ACH 

solution.  

 

4.5.2 AIR DISTRIBUTION  

Air distribution scenarios are carried out using DB’s CFD tool which is based on the RNG k-

epsilon turbulence model.  

 

The model is first created by defining the zone geometry, and air quantity linked to each supply 

and exhaust diffuser. Then the creation of internal and external boundary conditions which 

include surface temperature, finite volume grid spacing, and monitor point located in the center 

of the office space (See figure 4.17).  The finite volume grid axes (X, Y, Z) are generated by 

using key vertices of the indoor space objects and static occupants models, i.e., non-uniform 

3D grid. 

  

The grid spacing is set to 50cm and the grid line merge tolerance of 5cm. The grid tolerance is 

to avoid small grid sections and produce a more uniform grid. Additionally, the monitor point 

function located in the center of the space is to monitor the variations of the calculated variables 

during iterations until reaching a convergence (DesignBuilder, 2019). 

 

The average metabolic rate per occupant is 60Watt (=1met), which corresponds to the sedentary 

office activity level (ASHRAE, 2013). The metabolic rate corresponds to the heat emitted, 
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affecting the heat gain, which in return increases temperature and thus air direction and 

intensity. 

 

                 

Figure 4.17: Creation of the finite volume grid (left) and monitor point (right) 

 

Nevertheless, this study’s air distribution analysis highlights the importance of supplying air 

properly to minimize the probabilities of infection to the lowest possible. The created CFD 

results is unique for this setup and does not incorporate virus transport behavior. Modeling a 

full airborne model to simulate the virus characteristic, level of contamination, and spatial 

variations of viral concentration is a complex task and often returns highly uncertain results due 

to the novelty of this field. Additionally, the model does not consider air entrainment, which 

may occur due to the dynamic indoor activities such as people walking, opening doors, and 

windows.  

 

4.5.3 RENEWABLES INTEGRATION 

Solar energy was found to have a potential to install a photovoltaics system in the case study 

building site. The photovoltaic system is designed using PVsyst Software based on the hourly 

irradiance data extracted from the site coordinates and altitude using Meteonorm software. 

 

The focused zones’ demand profile (KW) will be determined after conducting the ventilation 

and heating assessment and applying the penalty function to evaluate the range of the ventilation 

rate (ACH) and the least scenario energy consumption (i.e., scenario A or B). The analysis will 

also discuss the profitability to install a renewable source as well as the carbon savings using a 

life cycle emissions approach.  
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4.5.3.1 PHOTOVOLTAICS DESIGN 

Generally speaking, the solar system design for self-consumption takes two pathways in terms 

of sizing; the first is oversizing the PV array capacity above the electricity demand. Oversizing 

is used because of solar intermittency and the fact that PV does not operate under rated power 

(Wp) in actual conditions all the time. The other option is to size the PV modules' capacity to 

meet occasional peak demands throughout the year to reach a cost-effective investment and 

performance arrangement. The former option is typically used for standalone (off-grid) systems 

commonly associated with energy storage to meet 100% of electricity demand for a selected 

period of autonomy, whereas the latter for grid-connected solar systems to meet partial demand 

and sell the surplus back to the grid.  

 

The case study building is in an urban area, making it more viable to select a grid-connected 

solar system with no need for an energy storage medium. The photovoltaic rated capacity 

(KWp) is sized to meet the highest hourly power demand of the year theoretically.  

 

Figure (4.18) shows the energy flow scheme of the grid-connected PV system. When there is 

enough energy output from the modules, the energy is consumed by the local load (E_used). 

However, if the PV modules output is not sufficient to meet the total demand, the deficit is 

supplemented by the grid (E_backup).  Nevertheless, the PV energy is injected into the grid 

(E_over) during times of no demand or energy surplus from the PV output.  
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Figure 4.18: Simplified PV system energy flow scheme (PVsyst) 

 

The price per kWh is 0.08€ from the grid (Eurostat, 2020), while 0.051 € is the feed-in tariff to 

the grid (IBERDROLA, 2021).  

 

Furthermore, to ensure system high efficiency, a seasonal tilt angle adjustment 3 (winter tilt at 

55°, summer tilt at 24°) was decided to be the most optimal, being a compromised solution 

(Performance/cost) between the fixed tilt and the two-axis tracking panels. The two seasonal 

tilt angles and the azimuth angle were determined using PVsyst and PVGIS inclination angle 

optimization tools for the site coordinates (Commission, 2019).  

 

4.5.3.2 ECONOMIC ASSESSMENT 

The economics of the solar system is a cash flow analysis based on the difference between 

electricity costs from the local grid and the PV system.  

 

𝐶𝐹𝑠 = 𝐶𝑖 −  ⌊(𝐸𝑡 ∙ 𝐶𝑓) − (𝐸𝑅 ∙ 𝐶𝑓) − (𝐶𝑚) + (𝐸𝑠 ∙ 𝐶𝑡 ∙ 𝐷𝑟)⌋ [€] ( 19 ) 

Where: 

𝑪𝑭𝒔 𝑪𝒂𝒔𝒉 𝒇𝒍𝒐𝒘𝒔 𝑬𝑹 𝒊𝒔 𝒕𝒉𝒆 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝒅𝒆𝒎𝒂𝒏𝒅 𝒔𝒖𝒑𝒑𝒍𝒊𝒆𝒅 𝒃𝒚 𝒈𝒓𝒊𝒅(𝒌𝒘𝒉) 

𝑪𝒊 𝒊𝒔 𝒕𝒉𝒆 𝒊𝒏𝒕𝒊𝒂𝒍 𝒊𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 (€) 𝐸𝑆 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑉 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑜 𝑔𝑟𝑖𝑑 (𝑘𝑤ℎ) 

𝑬𝒕 𝒊𝒔 𝒕𝒉𝒆 𝒕𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒅𝒆𝒎𝒂𝒏𝒅 (𝒌𝒘𝒉) 𝐶𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑛𝑎𝑐𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (€) 

 

3 Winter months (October to March), Summer (April to September) 
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𝑪𝒇 𝒊𝒔 𝒕𝒉𝒆 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒕𝒂𝒓𝒓𝒊𝒇 𝒇𝒓𝒐𝒎 𝒈𝒓𝒊𝒅 (€) 𝐶𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑡𝑎𝑟𝑟𝑖𝑓 𝑡𝑜 𝑔𝑟𝑖𝑑 (€) 

𝑫𝒓 𝒊𝒔 𝒕𝒉𝒆 𝑷𝑽 𝒎𝒐𝒅𝒖𝒍𝒆𝒔 𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 𝒓𝒂𝒕𝒆 𝒑𝒆𝒓 𝒚𝒆𝒂𝒓  

(%) 

 

 

The calculations are based on the euro per watt total cost value. The capital cost “CAPEX” is 

the initial cost that must be accumulated at the start of the project; this cost covers the equipment 

(panels, inverters, wiring, etc.) and the installation cost. According to PvXchange, 2021, the 

average cost of monocrystalline modules from April 2020 to April 2021 is 0.33€/Wp. Inverters 

and other equipment cost 0.15€/Wp while maintenance cost is 0.18€/kwh/yr (IRENA, 2020). 

Additionally, a PV performance degradation rate of (0.08%) is incorporated in the 25 years of 

PV modules’ lifetime. The Payback period (PP) and internal rate of investment (IRR) metrics 

are used to evaluate the profitability of PV installations.  

 

Finally, the capital cost can usually be reduced by government grants and incentives for such 

renewable projects; however, with the uncertainty around the Spanish “tariff-deficit” 4  

described in (López Prol and Steininger, 2017) and its consequent restrictive measures to reduce 

green prosumers profitability, the economic assessment will not consider any external 

subsidies.  

 

4.5.3.3 CARBON SAVINGS 

The carbon balance analysis estimates the amount of reduction in CO2 emissions if solar energy 

is implemented. The analysis is based on comparing the life cycle carbon emissions (LCE) 

difference between the system using solely an existing grid and a PV system to replace the same 

amount of electricity. If the carbon footprint of the PV installation per kWh is smaller than the 

one for the grid electricity production, there will be a net saving of CO2 emissions (PVsyst, 

2020). The previous description is expressed in equation ( 20 ) 

 

𝑆𝑎𝑣𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 = 𝐿𝐶𝐸𝑔𝑟𝑖𝑑  −  𝐿𝐶𝐸𝑃𝑉 𝑠𝑦𝑠𝑡𝑒𝑚 [tCO2 -eq5] ( 20 ) 

 

4 An accumulated debt of 30€ billion since 2001 caused by financing the difference between costs and revenues in 

the regulated activities derived when the retail price of electricity is set lower than the corresponding costs borne 

by energy companies.  

5  [tCO2 -eq] tons of carbon dioxide equivalent 
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Where:  

- 𝐿𝐶𝐸𝑔𝑟𝑖𝑑 = 𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑤ℎ) × 25𝑦𝑟 × 207𝑔𝐶𝑂2/𝑘𝑤ℎ 6 

- 𝐿𝐶𝐸𝑝𝑣 𝑠𝑦𝑠𝑡𝑒𝑚 =  𝑤ℎ𝑖𝑐ℎ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑎𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐿𝐶𝐸 (𝑆𝑒𝑒 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐶). 

 

6 Spain greenhouse gas emissions intensity of electricity generation (European Environment Agency, 2020). 
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CHAPTER 5. RESULTS  

The chapter presents the ventilation, space heating, air distribution, and photovoltaics different 

simulations’ findings and analyzes the key differences. 

 

5.1 VENTILATION AND COVID-19 PROPAGATION RISK 

The annual ventilation costs stated expressed in this section corresponds to the cost described 

in equation ( 14 ). Figures (5.1), and (5.2) show that the ventilation costs curve is increasing 

non-linearly. With each step of ACH, i.e., higher air quantity, the total pressure drop increases 

which is proportional to the square of the average air velocity. This results in the fan's high 

electricity consumption and cost. The Nursery has overall higher ventilation costs than the 

Office because of the larger volume requiring more airflow rate (m3/s) to be delivered. Nursery 

and Office constitute 54% and 46%, respectively, of the total air supplied by the central VAV 

AHU unit.   

 

Overall, scenario “A” is relatively cheaper than Scenario “B”. Scenario “B” has more additional 

pressure drop from the HEPA filter, requiring extra energy to push the air through the filter. 

Besides, the high ventilation costs in scenario B are attributed to the HEPA filter investment 

and replacement costs.  

 

On the other side, the difference in the risk probability between the two scenarios is relatively 

minor. This is because the Wells Riley equation considers both ventilation and filtration with 

the same weight to reduce the infection. In scenario “A”, the Wells Riley equation sink terms 

incorporated the effect of ventilation (λVent.) for 100% of air together with the additional 

measure of the M5 filter (λfiltration) whose efficiency to filter out particles of 0,3 µm up to 1 µm 

is less than 20%7. 

 

On the other hand, scenario “B” incorporated the HEPA filter (λfiltration) which can filter out 

particles with an efficiency of 99.95% for 90% of the total air, recirculated, and the remaining 

10% of fresh air accounts for ventilation effect to reduce airborne particles (λVent). Therefore, 

 

7 See Figure 2.8 for filter efficiency 



-53- 

 

both scenarios “A” and “B” yield little difference in the total first-order loss rate (λtotal) and 

consequently the risk probability difference magnitude. It is worth noting that the virus 

deposition and decay rates are equal in both scenarios.  

 

Moreover, although the lower density and bigger volume the nursey has, the Nursery poses a 

higher probability of risk than the Office. Nursery starts as high at 12.5% at 0.8ACH while the 

Office starts at 2.5% at 0.6ACH, baseline ventilation. The quanta generation rate magnitude of 

(76q) for the Nursery compared to (5.7q) for the Office explains the initial high percentage of 

risk, i.e., high quanta generation translates to higher SARS-CoV-2 aerosols concentration in the 

air and higher probability of infection for susceptible occupants. However, at 16ACH, the 

probability of infection significantly decreased to 1.57% and 0.3% for nursery and office, 

respectively.  

 

Additionally, the trend of the risk probability tends to fall drastically from the initial 

concentration of 2.5% and 12.5% to 1.3% and 7% at 2ACH for Office and Nursery, 

respectively. Therefore, 2ACH can reduce the risk by at least 40% of the initial risk percentage 

both in scenario “A” and “B”. This is due to the low initial average concentration of quanta 

(q/m3), consequently lowering the probability to inhale viral particles per air volume by 

susceptible people. However, the risk after 2ACH is relatively high even with an initial 

reduction. Hence, the amount of money spent to dilute and reduce the probability of risk (i.e., 

Risk probability/ventilation costs) is lower and more profitable until 2ACH than above 2ACH. 

Eventually, with higher ventilation rates, the slope plummets with a slight decrease because of 

the nature of the exponential function in the Wells Riley equation.  

 

Figure 5.1: Office ventilation costs and risk probability (Scenario A vs. Scenario B) 
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Figure 5.2: Nursery ventilation costs and risk probability (Scenario A vs. Scenario B) 

 

Furthermore, the penalty function from equation ( 18 ) is implemented for each ACH step to 

calculate the minimum value of ventilation and the risk costs. The minimum value is drawn 

corresponding to the ACH bin shown in the following table:  

 

Table 5.1:  L2 norm minimum ACH  

Zone Scenario A Scenario B 

Office 6 ACH  (= 46 l/s/pers.) 5 ACH (= 38 l/s/pers.) 

Nursery 8 ACH (= 152 l/s/pers.) 7 ACH (= 133 l/s/pers.) 

* The Graphs of the L2 norm are found in Appendix A 

 

On one side, in the Office, a ventilation rate of 6ACH and 5ACH for scenario “A” and “B”, 

respectively, yields the lowest minimum based on the L2 norm method. On the other side, the 

nursery L2 norm returns 8ACH and 7ACH for scenario “A” and “B”, respectively. 

 

Additionally, taking the highest and lowest ACHs in (Table 5.1), both 5 and 8ACH would take 

58minutes and 35minutes, respectively, to remove 99% contaminant removal efficiency based 

on the CDC removal rates. 

 

Furthermore, figures (5.3) and (5.4), show the evolution of supplying 5 ACH and 8 ACH to the 

risk probability evolution in the focused zones over the exposure hours of 10 hours. The 

extended exposure duration shows the linear increase in the probability risk from 4h and 10h 

of by a factor of 2.5. As a result, ventilation costs would increase correspondingly to keep a 

constant infection probability.  
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The value of the quanta determines the magnitude of the risk probability reduction. Figure (5.3) 

shows the Office zone is less sensitive when the ventilation supply is increased from 5ACH to 

8ACH. Unlike the Office, Nursery has 70 more quanta production per person inside the space 

resulting in a considerable difference in reducing the risk probability from 10% to 7% on the 

10th hour of exposure. Hence, the higher the exposure time with a constant ventilation rate, the 

higher the risk of infection.  

 Figure 5.3: Office infection risk evolution, left: 5ACH, Right: 8ACH – Scenario A 

Figure 5.4: Nursery infection risk evolution, left: 5ACH, Right: 8ACH – Scenario A 

 

5.2 HEATING 

In the previous section, we found that Scenario A's ventilation costs are less than Scenario B 

for all ACH steps. This section will compare the two scenarios in terms of increased ventilation 

rates’ implications on space heating cost and the effect of heat recovery.  

 

Ventilation and heating systems are not directly connected technologies. Nevertheless, when 

air is being supplied and extracted to and from space by the centralized AHU, the air 

temperature should fall within the heating setpoint to maintain the thermal comfort of 

occupants. Evidently, more outdoor air quantity means more energy is needed to heat the air.  
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Figure (5.5) shows the annual heating cost for scenario “A” characterized by 100% outside 

fresh air, is the most energy-intensive option when the heat recovery is off.  Without the heat 

recovery activated, the amount of air needed to be heated increases with each incremental step 

of ACH. Likewise, The Nursery heating cost is higher than the Office because of the Nursery’s 

larger space volume and orientation (more thermal gains) in the building layout. 

 

In scenario “A”, figure (5.5) shows turning on heat recovery in scenario “A” reduces energy 

consumption by a factor of 3 to 5 (i.e., huge spread) over the 1 to 16 ACH range. Additionally, 

the difference between “with HR” and “Without HR” modes, reaches 2811€ for the focused 

zones at 16ACH, corresponding to 35130 KWh per year.  

 

On the contrary, scenario “B” cost reduction factor over the 1-16 ACH range is 1.2 to 1.5 (i.e., 

small spread), (See figure 5.6 ). Additionally, Scenario B's highest cost difference between the 

two heat recovery modes at 16ACH, for the focused zones is only 205€ corresponding to 2560 

KWh per year. Hence, the benefit of heat recovery is not as significant as in scenario “A” 

because heat recovery is effectively utilized to preheat the incoming remaining 10% of the 

outdoor air while the 90% recirculated air still possesses a fraction of the sensible heat.  

 

 

Figure 5.5: Scenario A space heating cost per year for ASHP - Office (Top)-Nursery (Bottom). 
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Figure 5.6: Scenario B space heating cost per year for ASHP - Office (Top)-Nursery (Bottom). 

 

Finally, based on the results mentioned above, table (5.2) summarizes the compiled annual total 

cost of ventilation and heating for scenario “A” and “B” between the range of 5 to 8ACH 

determined by the L2 norm and compared to 16ACH. It is evident that scenario A is less costly 

in terms of ventilation than scenario “B” especially when heat recovery is activated. 

Nevertheless, at 16 ACH, scenario “B” has less total cost than scenario “A” when heat recovery 

is switched off. This is because the heating consumption in scenario “A” becomes exponentially 

high at 16 ACH. After all, the heating generation COP is 3 compared to 70% of the fan 

efficiency. In addition, the operation time of the fan is constant all year long for 4 hours 5 days 

a week while heating works for a limited number of hours over the year during wintertime. This 

makes heating has a low impact on the overall total cost, i.e., heating savings from scenario “B” 

is low to offset ventilation costs. Consequently, Scenario “A” is a plausible option to be used 

at lower ACHs (<16ACH) for the focused zones.   
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Table 5.2: Focused zones scenario “A” and “B” yearly ventilation and heating Cost  

Scenario Parameter 
5 

ACH 

6 

ACH 

7 

ACH 

8 

ACH 

16 

ACH 

Scenario 

A 

Ventilation  + Heating with HR (€) 1497 1977 2564 3272 15600 

Ventilation  + Heating without HR  (€) 2039 2611 3303 4133 18420 

Scenario 

B 

Ventilation + Heating with HR (€) 2245 2878 3614 4466 17150 

Ventilation  + Heating without HR  (€) 2263 2901 3642 4500 17356 

 

Finally, tables (5.3) and (5.4) show the summary of ventilation, risk probability, and heating 

for office and nursery, respectively. Each scenario indicates the equivalent ACH calculated by 

the L2 norm. Undoubtedly, for both zones, scenario “A” with HR is cheaper to operate. If 

scenario “A” is not a plausible option to implement, Scenario “B” can be another alternative. 

The difference in the risk probability in Scenario A and B in the two zones is also not significant. 

 

Table 5.3: Office ventilation, risk probability, L2 norm, and heating summary 

Parameter Scenario A : 6ACH Scenario B : 5ACH 

Risk (%) 1% 1.2% 

Ventilation (€) 1057 1284 

Heating (€) 
With HR 112 28 

Without HR 450 38 

 

Table 5.4: Nursery ventilation, risk probability, L2 norm and heating summary 

Parameter Scenario A : 8ACH Scenario B : 7ACH 

Risk (%) 2.9% 3.2% 

Ventilation (€) 1615 1926 

Heating (€) 
With HR 165 33 

Without HR 633 46 

 

5.3 AIR DISTRIBUTION 

Each scenario explained in the air distribution methodology has two distinctive differences: the 

placement and angle of supply and exhaust diffusers and the quantity of air per diffuser. The 

total air supply quantity is equivalent to 5 ACH i.e., 1117 l/s, and is divided by the number of 
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the supply and return diffusers. The focus of this analysis is to examine the airflow patterns 

around the end-users by changing diffusers settings. 

 

The red lines drawn over the figures in this section are indicative to illustrate the major air flow 

movement trend. It is worth noting that the discussed results for this section are based solely on 

the author's air movements analysis to further employ ventilation appropriately and avoid the 

transmission risk as much as possible. There is no scientific basis to confirm or refute the 

occurrence of infection.  

 

Looking at Scenario “I” and “II” in figures (5.7), and (5.8), the arrows show the direction and 

the intensity of the air stream. Scenario I’s supply diffuser (at 60° angle) throw distance, which 

is the distance from the diffuser to the point where the airstream reaches, is shorter than the 30° 

supply diffusers of scenario “II”. Scenario “I” air pattern from the supply diverts from hitting 

directly the occupants but eventually creates a turbulent zone on the right side of the space. This 

may stimulate the transfer of viral aerosols from the left to the right side of the space.  

 

On the other hand, scenario “II” has a smooth airflow movement diluting the air around the 

occupants and extracting it in the center of the space. However, air direction arrows indicate a  

portion of the air is transferred to other zones in the center and around the corners. 

 

 

Figure 5.7: Scenario I -Cross-sectional view of air patterns around occupants  

 

Furthermore, in scenarios “I” and “III”, it is noticed that a portion of the supply air is short-

circuited to extract because of the short distance between supply and extract air streams. 

Scenario “III” is similar to “I” where air turbulence happening in the corners instead of the 

center of the space. The initial horizontal spread in Scenario “I” and “III” discharged by the 
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supply diffuser caused by the 60° tilt results in the air eventually being dropped vertically, 

which then induces the existing stagnant air in the room and creates turbulence in the center 

due to air density and temperature difference.  

 

 

Figure 5.8: Scenario II - Cross-sectional view of air patterns around occupants  

 

 

Figure 5.9: Scenario III - Cross-sectional view of air patterns around occupants  

 

Finally, Scenario “IV” air movement has a vertical drop, passing through occupants’ plume and 

directly extracted upward. This air behavior gives less probability of infection for circulation in 

the room center and also for seated occupants in the corners. All scenarios’ turbulence level 

findings around the occupants are analyzed more in-depth using several CFD slices in the model 

itself and are estimated in table (5.5). 
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Figure 5.10: Scenario IV – Cross-sectional view of air patterns around occupants  

 

Table 5.5: CFD scenario turbulence assessment summary 

Scenario Level of turbulence around occupants 

Scenario “I” High - (Air is short circuited) 

Scenario “II” High 

Scenario “III” Low - (Air is short circuited) 

Scenario “IV” Low  

 

5.3.1 PHOTOVOLTAIC SYSTEM 

The section will first draw out the focused zone annual hourly power demand profile for 

Scenario A in the focused zones. Scenario “A” is selected only to design the PV system because 

it returned a lower annual operation cost than scenario “B”. The power profile incorporates 

scenario’s “A” ventilation and heating with a heat recovery power demand over a year and is 

used to size the PV capacity. The demand profile is created for 5ACH and 8ACH, selected as 

the lowest and the highest range of air change rates found to have the minimum cost for 

ventilation and risk in the table (5.1). Also, 16ACH is added to compare the 5 and 8 ACH to 

higher ventilation rates if to be used. The section starts with an overview of the PV system 

design and components and explains the different losses during operation. The economic 

assessment and the saved carbon footprint are discussed subsequently.  

 

Figures (5.11) and (5.12) illustrate the hourly power demand profiles over the year for 5ACH 

and 8ACH, respectively. The highest power peaks are 11.2KW and 29KW for 5ACH and 

8ACH, respectively, and taken as the PV-rated installed capacity.  
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Figure 5.11: Focused zones annual hourly power demand at 5ACH. 

 

 

Figure 5.12: Focused zones annual hourly power demand at 8 ACH. 

 

The PV system consists of monocrystalline modules, with rated efficiency of 19% and a 

nominal power of 400Wp according to the manufacturer, PowerSun8. For 5ACH, the PV system 

comprises of 28 modules connected in 7 in series, and 4 in parallel to make up the 11.2 KWp 

of nominal PV capacity under Standard Test condition (STC) with a total area of 61m2. On the 

other hand, the 8ACH’s system includes 72 modules connected as 9 in series and 8 in parallel 

with a total area of 156m2.  

 

Additionally, the number of PV modules can be mounted on the roof of the Rectorship building 

(Figure 5.13). It is found that the roof can accommodate up to 200 PV modules which can 

support a maximum of 12ACH of ventilation rate.     

 

 

8 PV module Model : Si-mono - SPR-400-WHT-D  
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Figure 5.13: Illustration of the case study’s roof and PV modules mounting area proportion - Photo 

and PV modules to scale- Left: 5ACH, Right:8ACH 

 

Furthermore, the inverter is sized to achieve a DC to AC ratio 9 of 1.15, which is ideal for 

significantly minimizing clipping losses (Good and Johnson, 2016). Table (5.6) shows a 

breakup a summary of photovoltaic components for 5ACH and 8ACH. The solar fraction 

indicates the percentage of the amount of energy consumed by demand from photovoltaics. It 

is found that PV meets an average of 51% of the total demand. In other words, the demand and 

PV generation mismatch causes around 49% of PV energy not effectively utilized by the 

building due to solar intermittency and is fulfilled by the grid.  

 

Table 5.6: PV system components and solar fraction 

 

Moreover, figure 5.14 shows a breakdown of power flows to and from the grid as well as the 

different losses.  The surplus of electricity is injected back to the grid or can be also stored using 

 

9 Also called “PV to inverter Load” is the ratio between the PV rated capacity under STC and inverter capacity. A 

rule of thumb is to have a ratio between 1.1 to 1.2 since PV is very rarely operating under optimum conditions in 

real life settings.  

Parameter 5ACH 8ACH 

Nominal installed power (KWp) 11.2 28.8 

Number of modules 28 72 

Module’s connection 4 strings, 7 in series 8 strings, 9 in series 

Yearly energy demand (KWh) 6089 20660 

Solar fraction 53% 48% 
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any storage technology. The energy flows from and to the grid at 8ACH is approximately 3 

times higher than at 5ACH. 

 

Manufacturers use the Standard Testing Conditions (STC) to give the rated capacity KWp of 

the module. STC assumes no losses, and thus an ideal array/module yield is helpful to determine 

system losses using STC as a reference. Figure (5.14) shows a breakup of the yearly flow 

diagram of losses, system, and collection losses. Another metric to evaluate the losses is the 

Performance ratio. PR is the ratio of the energy effectively produced to the energy which would 

be produced if the system was continuously working at its theoretical STC efficiency (PVsyst, 

2020), i.e. the production of energy under STC minus losses. The system PR for both ACHs 

reaches 83%, i.e., system loss is 17%. The total losses are justified by several factors.  

 

Figure 5.14: Loss diagram over the whole Year, Left: 5ACH, Right: 8ACH (PVsyst) 

 

Firstly, the orientation and tilt of the modules might not be at their optimum all the time. Also, 

climatic conditions change occasionally, especially during the winter months (high 

precipitation), and partial shading caused by nearby terrain.  

 

The collection losses of the modules are estimated at 0.57 kWh/kWp/day; these are caused due 

to the differences between the cell operating temperature and their STC conditions.  
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. 

Furthermore, the system losses of 0.11 kWh/kWp/day include losses from electrical support 

devices such as inverters, charge controllers, and wiring.  

 

5.3.2 ECONOMIC ASSESSMENT 

A cash flow analysis was conducted for 5ACH and 8ACH using equation ( 19 ) to examine the 

payback period and profitability applied to 4 and 8 hours of building operation. It is worth 

noting that the study assumed power injection to the grid is permissible all the time regardless 

of real operations constraints such as voltage regulations.  

 

Figures (5.15) and (5.16) show the annual cashflows and the payback period for 5ACH and 8 

ACH respectively. The graph indicates that going to a higher ACH and extending the operation 

period, results in a decrease in the payback period. In 5ACH, the payback period is cut down 

from 13 to 10 years whereas a decrease from 11 to 10 years for 8ACH when demand is increased 

from 4 hours to 8 hours. 

 

Additionally, table (5.7) summarizes the payback periods and the IRR results. At 5 ACH, the 

IRR returns 0% which means project unprofitability and loss of the principal amount invested. 

Conversely, at 8 hours of operation, the IRR grew to 3.3%. Similarly,  8ACH, the IRR increases 

from  0.5% and 5.6% on the 4 and 8 hours of operation, respectively. The minor improvement 

in 16ACH’s payback period and the IRR marginally is attributed to the exponential increase in 

power and energy demand. Besides, even if the system is over/undersized, the fact that 

investment’s components cost calculations are incremental and based on euro/Wp which does 

not significantly affect the payback period i.e., high installed PV capacity yields high 

investment. Hence, an IRR value of less than 10% considering the system’s lifetime of 25 years 

implies low demand to offset the investment by large, i.e., economies of scale do not break 

down. This is compounded by the fact that the selling price to the grid is only 64% of the buying 

price (i.e., huge spread). 
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Figure 5.15: Cashflows at 5 ACH 

 

 

Figure 5.16: Cashflows at 8 ACH 

 

Table 5.7: Photovoltaics economic assessment summary 

` 
5ACH 8ACH 16ACH* 

4 h 8 h 4h 8h 4h 8h 

Payback period (PP) – (Years) 13 11. 12 10 12 9 

Internal rate of return (IRR) % 0% 3.3% 0.5% 5.6% 0.8% 5.9% 

* 16ACH demand profile and cash flows chart in Appendix B 
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5.3.3 CO2 SAVINGS 

Based on the LCE method, see equation ( 20 ). The results in figures (5.17) and (5.18) indicate 

that the total amount of saved carbon emissions during the installation lifetime of 25 years when 

operating 4 hours per day.  The study found that 5ACH saves 45 (tCO2 -eq). On the contrary, 

8ACH carbon saving is 118 (tCO2 -eq). Nevertheless, both 5 and 8ACHs reach a carbon balance 

within six years. On the other hand, 16 ACH saves 550 (tCO2 -eq). This is due to the energy 

demand profile from 1 to 16 ACH is nonlinearly increasing, and thus, more carbon savings 

acquired, estimated to be 112%. increase every 1ACH step  

 

Note that the calculations estimated the grey energy use of transportation and include 1% 

degradation of the PV efficiency. However, it did not incorporate the embodied emissions from 

maintenance and dismantling at the end of its lifetime.  

  

Figure 5.17: Carbon Balance; saved tons of CO2 versus PV lifetime, Left: 5ACH, Right: 8ACH 

 

Figure 5.18: Carbon Balance; saved tons of CO2 versus PV lifetime, 16ACH 
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CHAPTER 6.  RECOMMENDATIONS 

The study estimated the worst-case scenario risk probability of infection if ten percent of the 

indoor users are infected with an exposure duration of four hours. The study conducted the 

simulations within a range of ventilation rates from 1 to 16 ACH on an office and nursery zone 

in two distinct settings; Scenario “A” with 100% outdoor air intake with a M5 filter and 

Scenario “B” operating on 90% of the total air recirculated with a HEPA filter integrated.   

 

Typically, the more we increase the outdoor air, the less the recirculation and the more the air 

that goes to the filters. Hence, if we look into the overall cost impact, there is a tradeoff between 

the removal of indoor air contaminants by ventilation and removal by filters. However, both 

ventilation and filtration techniques were found to reduce the COVID-19 probability of risk 

with the same order of magnitude. The higher the ACH, the lower the risk probability but higher 

energy consumption. Scenario “A” has lower ventilation costs to achieve the same risk 

reduction as scenario “B” due to the latter scenario requiring a higher filtration investment, and 

operation cost (higher pressure drop).  

 

However, the space heating results suggest that heating cost savings are significant in Scenario 

“B” due to 90% of air is recirculated while still possessing sensible heat to reheat the space 

again reducing the convectors heat generation. However, the magnitude of the heating 

electricity consumption is relatively insignificant to ventilation consumption because of the 

high COP and lower operation periods throughout the year. Hence, the lower the COP of the 

heating technology and higher heating demand, the preferable Scenario “B” becomes. Hence, 

scenario “A” with a heat recovery device is the most profitable option to operate in the focused 

zones at this point. 

 

Furthermore, it is found that the Nursery shows a higher risk probability than the Office starting 

from 12% at baseline ventilation rate to 1.5% at 16ACH. In the Nursery the L2 norm returns 

7ACH for Scenario “B” and 8ACH for scenario “A” which meets the 6 to 12 ACH range of 

healthcare facilities recommended by the CDC, and WHO and falls within the 83  to 278 l/s/ 

per infector according to Dai and Zhao, 2020. Accordingly, applying 7ACH or 8ACH in the 

Nursery zone is not only medically adequate but also technically cost-effective.  
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Similarly, the Office poses a low-risk probability starting at 2.5% at a baseline ventilation rate 

reaching 0.3%. The 5ACH and 6ACH for Scenario A and B, respectively, meet the minimum 

of 40 l/s/patient recommended by the CDC, and WHO but not the study of Dai and Zhao, 2020. 

However, unlike the Nursery, the Office zone is not a healthcare facility where stringent 

ventilation requirements are necessary. Hence, the 5 to 6 ACH obtained can be lowered to a 

minimum of 2ACH (equivalent to 14 l/s/person) to meet REHVA’s guidance of 10-15 

l/s/person. The study found that at 2ACH can decrease the initial risk probability to at least 

40%. Nevertheless, the Office zone can still operate at 5 or 6 ACH following the healthcare 

facilities standards as ASHRAE suggests if deemed necessary. Besides, if the building operator 

decides to extend the 7ACH in the Nursey and 2ACH in the Office for an additional hour to 

dilute any remaining airborne contaminants after space occupancy, then it would take 40 and 

138 minutes for Nursery and Office respectively to remove 99.9% of indoor airborne 

contaminants. 

 

Moreover, the results show that by extending the exposure time from four to ten hours, leads to 

more accumulation of infectious quanta in the room and consequently a higher probability to 

be inhaled, requiring even higher ventilation rates to dilute (See figure 5.3 and 5.4). Hence, in 

principle, decreasing the exposure time by reducing the occupancy schedule, i.e., exposure time 

is a priceless practical approach to consider first.  

 

Undoubtedly, there is not any scenario more cost-effective than the other. It depends on the 

indoor settings, outdoor air conditions, and building conditions. The maximum possible outdoor 

air rate that we can bring in is dependent on the weather condition. Scenario “A” is a favorable 

option only if outdoor conditions are compatible with indoors, reducing the heating loads while 

not affecting indoor conditions adversely. Alternatively, scenario “B” is an applicable option 

with high heating load, low efficient heating technology used, and high ACH operation. 

Besides, scenario “B” is also a good choice to apply with existing HVAC systems where there 

are no operable windows.  

 

The amount of air recirculated is dependent on the outdoor air conditions to achieve energy 

savings on the one hand and to eliminate contaminants through filters on the other hand. Hence, 

a “good practice” approach is to determine the maximum fraction of the outdoor air intake 

based on the outdoor conditions and the building administrators’ energy efficiency tolerance 

and to upgrade the air filters to a higher index accordingly. Filter upgrade is generally less 
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feasible to implement than adjusting AHU air intake operational settings because of existing 

fan capacity. This approach would provide the desired exposure control while minimizing 

energy penalties. Besides, it is advisable to operate with a heat recovery especially when the 

fraction of outdoor air intake is high (O1). 

 

Furthermore, ventilation and filtration are not the only strategies to reduce indoor pollutants per 

se. Viral aerosol concentration control is a new consideration in indoor spaces. Air distribution 

system designs have a crucial effect on the concentration of viral material inside the confined 

space which can minimize the possibility of direct person-to-person transmission. The study 

suggests if ceiling mixing type air distribution is used in the office zone, it is advised to use a 

supply diffuser with a jet angle of 30°  placed away from occupants. The supply diffusers should 

supply high mass flow rates than the extract grilles with air movement updrafting around the 

occupants to mix the contaminants at the source on one hand and provide a vertical draft to 

exhaust on the other hand. This would effectively dilute and remove viral material locally from 

an unknown point of infection inside the space. Hence, minimizing the uncertainties associated 

with the impact of air turbulence that may cause virus-laden particles’ re-suspension and 

deposition. Nonetheless, the revision of air distribution is highly dependent on existing space-

specific parameters which differ from one case to another (O2). 

 

Moreover, the solar energy in the case study building site was found to be suitable for 

photovoltaics installations. The study found that the IRR and PP values obtained for 5ACH, 

8ACH, and 16ACH indicated in the table (5.7) are considered low, and the grid electricity may 

be a preferable option to consider at this point unless the share of electricity self-consumed 

increases, and governmental subsidies or other financing schemes for renewables are 

incorporated to find a better price to sell to the grid. All of which, if implemented, would return 

higher cash flows relative to the initial investment that deduct the original investment leading 

to higher renewable project profitability (i.e., IRR) and a lower payback period. Additionally, 

improving PV efficiency and lowering maintenance cost are additional factors to consider in 

the long term. 

 

Above all, if a PV installation is decided to be used, it is advisable to supply ventilation above 

the rate of 5ACH to be profitable under the determined settings used in this study. 
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Finally, on the carbon emissions side of the PV analysis, the study revealed an exponential 

increase of 111%  in the carbon emissions savings with each 1ACH step reaching 550 (tCO2- 

eq) at 16 ACH throughout the system lifetime for the focused zones combined. Hence, if PV is 

installed to power the focused zones whether in scenario “A” or “B”, the CO2 savings are 

substantial. In short, PV installation is recommended at higher ventilation rates for the reduction 

of carbon emissions and the expansion of profits. (O3). 

 

 



 

-72- 

 

CHAPTER 7. CONCLUSION AND FUTURE WORK 

The SARS-CoV-2 virus airborne transmission is efficacious in confined spaces with poor 

ventilation and an insufficient supply of uncontaminated air. Adequate ventilation has always 

been important, and now we just became even more aware during the COVID-19 pandemic 

with a swift focus on modeling airborne infection risk. Evidently, removing viral aerosols via 

ventilation and filtration is necessary to reduce exposure to viral particles.  

 

Despite the limitations and uncertainties attached to quantifying the infection risk using the 

Wells Riley equation, this research approach to defining infection risk is based on the current 

information found in the literature that is not definitive or absolute because of the rapid research 

progress in this field. However, it gives a fair approximation to compare the infection reduction 

effectiveness and the associated cost to different ventilation strategies. Besides the study 

provides an insight into how much increase in ventilation the building needs during an outbreak 

as well as other implications on heating and photovoltaics.  

 

Although there are many ongoing studies to investigate how much ventilation is needed to 

reduce the infection risk, the current information has no strong scientific evidence. If the SARS-

CoV-2 virus and its variants’ characteristics are proven with high confidence in future studies, 

it is recommended to conduct a Computational Fluid Dynamics analysis to obtain a deeper 

understanding of how air moves around space and to show the different levels of viral 

concentrations given the spatial variations. Air distribution design and airflow patterns are as 

important as supplying adequate ventilation to achieve an effective ventilation system design.  

 

Buildings are diverse. Likewise, building systems like design and controls, occupant activities, 

layout, operation are different. This study is oriented to a specific building site and specific 

zones setup where heating demand, solar irradiance, and air distribution vary largely from one 

building to another. However, the methodology remains the same and can be applied to different 

environments.  

 

Finally, since the beginning of the pandemic, several organizations have produced guidelines 

(REHVA, ASHRAE, CIBSE) for temporal mitigation purposes. This renewed focus on 

ventilation and airborne viral transmission will have a significant impact on creating and 
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revising building codes and standards preparedness for future epidemics and its implications on 

the design of air handling systems. 



 

I 
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APPENDIX A- CASE STUDY BUILDING 

        

Figure 0.1: The University of the Basque Country - Rectorship building (side view) 

 

 

Figure 0.2: Hourly Ambient Air Temperature, Leioa, Basque country, Spain- Red line indicates the 

heating setpoint. (Meteonorm) 

 

 

Figure 0.3 : Heating and Cooling degree days in 2020, Leioa, Basque Country (BizEE Software, 

2017). Base temperatures obtained from (IDAE, 2010) 
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Figure 0.4: Estimating the duct length for focused zones (Vertical and horizontal length)  

 

 

Figure 0.5: L2 norm for Scenario “A” and “B” 
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APPENDIX B – PHOTOVOLTAICS SOLAR SYSTEM 

 

Figure 0.1: Precipitation rate, Leioa, Basque Country, Spain (Meteonorm)  

 

Figure 0.2: Daily global irradiance, Leioa, Basque Country, Spain (Meteonorm) 
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Figure 0.3: Preliminary evaluation of the PV performance potential using (Commission, 2019). 

 

 

Figure 0.4: Mean wind speed at 100m height (World Bank Group, 2018) 
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Figure 0.5: PV system LCE calculation for 8ACH (PVsyst) 

 

 

Figure 0.6: 8ACH, 8h operation, winter design day hourly power distribution (PVsyst) 
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Figure 0.7: 8ACH, 8h of operation, summer design day hourly power distribution (PVsyst) 

 

 

Figure 0.8: Hourly power demand profile at 16ACH  
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Figure 0.9: Cashflows at 16 ACH 

 

Case study Coordinates: 

 

Latitude: 43.33°      Longitude: -2.97°  Altitude: 83m above sea level 

 

 

End of report 
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