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RESEARCH PAPER/REPORT
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ABSTRACT
Gut microbiota is a constant source of antigens and stimuli to which the resident immune system 
has developed tolerance. However, the mechanisms by which mononuclear phagocytes, specifi
cally monocytes/macrophages, cope with these usually pro-inflammatory signals are poorly under
stood. Here, we show that innate immune memory promotes anti-inflammatory homeostasis, using 
as model strains of the commensal bacterium Lactiplantibacillus plantarum. Priming of monocytes/ 
macrophages with bacteria, especially in its live form, enhances bacterial intracellular survival and 
decreases the release of pro-inflammatory signals to the environment, with lower production of 
TNF and higher levels of IL-10. Analysis of the transcriptomic landscape of these cells shows 
downregulation of pathways associated with the production of reactive oxygen species (ROS) 
and the release of cytokines, chemokines and antimicrobial peptides. Indeed, the induction of 
ROS prevents memory-induced bacterial survival. In addition, there is a dysregulation in gene 
expression of several metabolic pathways leading to decreased glycolytic and respiratory rates in 
memory cells. These data support commensal microbe-specific metabolic changes in innate 
immune memory cells that might contribute to homeostasis in the gut.
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Introduction

The emergence of microbiota research has 
expanded our knowledge on the role of commensal 
microorganisms in controlling a wide variety of 
physiological functions both in the steady state 
and in disease. In the gut, where the microbial 
load is greater than in any other body site, micro
biota components constitute a continuous source of 
stimuli to which the immune system has evolved 
tolerance, leading to the modulation of immune 
responses. 1 Co-evolution with the myriad of 

microbes present in the gut has led to an equili
brium between the regulation of homeostatic 
responses to harmless antigens, and the ability to 
effectively eliminate pathogens. Although the role 
of adaptive immune cells in the gut has been exten
sively described, 2 the regulation of mononuclear 
phagocytic function (i.e. macrophages and dendri
tic cells) by microbiota members remains poorly 
understood. 3 Importantly, gut mononuclear pha
gocytes show aberrant anti-inflammatory responses 
in antibiotic-treated mice. These cells fail to 
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regulate T cell populations in this organ, 4 while 
some bacterial species such as Helicobacter hepati
cus 5 or Clostridium butyricum 6 directly contribute 
to IL-10 homeostasis. Remarkably, small popula
tions of gut bacteria have been found to be asso
ciated with dendritic cells in the mesenteric lymph 
nodes, inducing the production of specific secretory 
IgA and promoting anti-inflammatory responses, 
including the release of the immunoregulatory 
cytokine IL-10. 7 Additionally, microbial metabo
lites, such as short-chain fatty acids (SCFAs), are 
known to regulate both dendritic cell and macro
phage function in the gut, promoting anti- 
inflammatory/hyporesponsive states in innate 
immune cells and contributing to the development 
of intestinal homeostasis. 3

Since the discovery of phagocytic cells by Ilya 
Mechnikov, 8 our knowledge on monocyte and 
macrophage plasticity has enormously evolved. 
This includes phenomena described in the last dec
ade such as the ability of different innate immune 
cell types, monocytes/macrophages among them, to 
generate long-term responses, namely innate 
immune memory. 9 This mechanism involves an 
epigenetic and metabolic reprogramming induced 
by the contact with an infectious agent or microbial 
component that leads to an enhanced (trained 
innate immunity) or decreased (tolerance) cyto
kine-mediated response to a secondary stimulation 
with a, usually different, microbial component. 10,11 

Consequently, innate immune memory has been 
proven to be an important regulator not only of 
antimicrobial responses of innate immune cells, but 
of their roles in inflammatory and neurological 
diseases. 12 However, since all of these studies 
have been performed in a pathological context, no 
information is available to date regarding the role 
that innate immune memory plays in coping with 
the continuous exposure of innate immune cells to 
commensal microbes (i.e. human microbiota), and 
whether this phenomenon plays a role in immune 
modulation by commensal bacteria. 13

Lactobacillus plantarum, recently reclassified as 
Lactiplantibacillus plantarum, 14 is a Gram-positive 
species that has been extensively characterized for 
its adaptive ability to thrive within the human gut 
and the benefits of its immunomodulatory proper
ties for the human host, with some L. plantarum 
strains being widely used as probiotics. 15 

Therefore, we used this species as a model of 
a beneficial microbe to show that, while acute expo
sure to monocyte/macrophages allows bacterial 
intracellular survival and induce both pro- and 
anti-inflammatory cytokine release, a previous con
tact with L. plantarum reprograms the transcrip
tional and metabolic profiles of immune cells in the 
long term. This innate immune memory-like events 
eventually lead to enhanced bacterial intracellular 
survival and decreased pro-inflammatory features 
in pre-stimulated cells.

Results

Lactiplantibacillus plantarum can survive within 
macrophages from different origins

Recent reports have shown that dendritic cells 
populating the mesenteric lymph nodes harbor 
small amounts of gut bacteria inside, which con
tribute to the modulation of both innate and adap
tive responses. 7 Given its genomic similarity with 
some intracellular pathogens, such as Listeria 
monocytogenes, 16 we hypothesized that 
L. plantarum might also be able to survive intracel
lularly and that this could be associated with its 
immunomodulatory effects. To unveil the potential 
of this species to survive intracellularly in macro
phages we used antibiotic protection assays (Fig. 
S1A). As controls, we also used the closely related 
species, Lactobacillus casei (recently reclassified as 
Lacticaseibacillus casei) as well as the enteric spe
cies, Escherichia coli. First, using a multiplicity of 
infection (m.o.i.) of 10, we observed that all the 
L. plantarum strains used in this study were able 
to survive inside the macrophage-like cell line, 
RAW264.7 for 24 h, with strains of human milk 
origin showing slightly higher survival rates. In 
contrast, the number of L. casei and E. coli inside 
these phagocytes was lower (Fig. S1B).

In order to validate our results, we used two 
primary cellular models, murine bone marrow- 
derived macrophages (mBMM) and human mono
cyte-derived macrophages (hMDM). Overall, intra
cellular survival of L. plantarum strains was 
observed in both cell types, although to a lesser 
extent in comparison with the RAW264.7 cell line 
(Figure 1a, b). Similar to our observations using the 
cell line, intracellular survival of L. casei was lower 
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than that of L. plantarum strains, with the presence 
of viable E. coli within the macrophages being dra
matically decreased from the beginning of the 
experiment. Similar results were observed when 
an m.o.i. of 1 was used (Fig. S1C, D). To detect 
the cellular compartment in which L. plantarum 
persists inside macrophages, we incubated 
mBMMs with mCherry-labeled bacteria and 
assessed their colocalization with LAMP-2, 
a phagolysosome marker 17, using confocal micro
scopy. Notably, while heat-killed bacteria were 
observed surrounded by LAMP-2 positive vesicles, 
live bacteria did not show colocalization with the 
marker suggesting that they are able to evade their 
localization within these degradative organelles 
(Figure 1c).

We also performed whole blood ex vivo infection 
assays and analyzed the presence of bacteria. We 
incubated EDTA-treated human blood from 
healthy donors with L. plantarum WCFS1 modified 
to constitutively express mCherry and evaluated 

the internalization of the bacteria and its presence 
over time by flow cytometry. L. plantarum was 
found predominantly associated with CD14+ 

monocytes (Figure 1d). In fact, up to 42.2% of 
these cells were able to internalize and maintain 
L. plantarum for the duration of the assay.

Next, we assessed the ability of L. plantarum to 
escape from macrophages after its internalization. 
After adding bacteria and promoting phagocytosis 
for 45 min, extracellular bacteria were washed 
away, and macrophages were cultured either for 1 
or 4 h in medium supplemented with antibiotics to 
kill remaining extracellular microbes (Fig. S1E). 
Then, mBMMs were washed with warm PBS and 
incubated in antibiotic-free medium for 24 h. 
Samples from supernatants and cell lysates were 
plated onto MRS agar plates to assess bacterial 
viability. Notably, high numbers of viable bacteria 
were found both in the intracellular (Figure 1e) and 
extracellular (figure 1f) compartments. Overall, 
L. plantarum strains survived better in comparison 

Figure 1. L. plantarum colonize and survive within macrophages from different origins. Bacteria were co-cultured with either 
mouse bone marrow-derived macrophages (mBMMs) (a) or human monocyte-derived macrophages (hMDMs) (b), and their intracel
lular survival at different time points was determined using antibiotic protection assays (Fig. S1A). After incubating bacteria with 
immune cells, wells were washed, and antibiotic-containing medium was added. After 1, 4 or 24 h cells were lysed, and suspensions 
plated to assess bacterial intracellular survival. (c) Distinct colocalization of live (left micrograph) and heat-killed, mCherry-expressing 
L. plantarum (right micrograph, red) with the phagolysosome marker, LAMP-2 (green). The nuclei were stained with DAPI (blue). The 
orthogonal projection of the indicated points (crosshairs) is presented at the bottom and right side of the micrographs. (d) 
Anticoagulated whole blood was incubated with mCherry-labeled L. plantarum WCFS1 and its association with CD14+ cells was 
determined by flow cytometry. Representative flow cytometry data is shown. (e, f) Bacterial ability to persist intracellularly (e) and 
reach the extracellular medium (f) after being engulfed by immune cells. After short incubation times (1 and 4 hours) in antibiotic- 
containing medium, cells were extensively washed and incubated with antibiotic-free medium for 24 h. Samples from the supernatant 
and immune cell lysates were plated to check bacterial viability. Data are shown as mean ± s.e.m., n ≥ 3. **; p < .01, ***; p < .001, two- 
way ANOVA compared to L. plantarum WCFS1.
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with L. casei both inside and outside of mBMMs. 
Therefore, these data show that after colonization 
of macrophages, L. plantarum can escape from the 
phagocytes to the extracellular medium.

Together, these data show that L. plantarum can 
be internalized by murine and human monocyte/ 
macrophages and survive for prolonged periods of 
time, compared to other commensal bacteria.

Pre-exposure of macrophages to L. plantarum 
enhances bacterial survival and decreases 
pro-inflammatory outputs

In the last decades, our knowledge on macrophage 
plasticity and ability to display long-term responses 
has greatly increased. Of note, research efforts have 
mainly focused on studying pathogenic/pathobiont 
microbes, partially ignoring the repertoire of long- 
lasting responses developed by these cells in 
response to different stimuli. 18 Thus, we assessed 

the ability of L. plantarum to induce innate 
immune memory-like responses in monocytes/ 
macrophages in vitro (Figure 2a). Pre-stimulation 
of mBMMs with a m.o.i. of 1 of live L. plantarum 
(Lp-Lp) enhanced bacterial survival in a second 
encounter in comparison with unstimulated cells 
(U-Lp), while priming with heat-killed bacteria 
(HkLp-Lp) did not result in a significant increase 
in bacterial survival (Figure 2b). Of note, no bacter
ial survival was detected in the Lp-Lp group before 
the second stimulation, suggesting that live bacteria 
from the first stimulus had been eliminated. 
Remarkably, pre-stimulation with live bacteria 
also led to decreased TNF release after the second 
stimulation, while heat-inactivated bacteria pro
moted a more moderate reduction. In turn, cell 
culture supernatants of mBMMs primed with live 
bacteria contained increased levels of IL-10 com
pared to stimulated naïve cells (Figure 2c). This 
effect was not restricted to the WCSF1 strain as 

Figure 2. Priming with L. plantarum enhances bacterial intracellular survival and reduces pro-inflammatory cytokine release. (a) 
Diagram showing the experimental set up of priming experiments using murine bone marrow-derived macrophages (mBMMs) and 
human monocytes (hMon). Priming mBMMs with L. plantarum (m.o.i. = 1), especially in its live form, increased bacterial intracellular 
survival over time (b) and reduced the immune cell pro-inflammatory profile (c). (d) Decreased TNF release by primed cells depends on 
bacterial m.o.i. used. Intracellular survival and TNF production profiles showed similar patterns in primed hMon after either 24 h (e, f) or 
6 d (g, h) resting time. Priming with either L. plantarum or L. casei improves bacterial survival (i, k) but does not reduce TNF release (j, m) 
if the other species is used for the second stimulation. Data are shown as mean ± s.e.m., n ≥ 3. *; p < .05, **; p < .01, ***; p < .001, two- 
way (B,E,G,I,K) or one-way (C,D,F,H,J,M) ANOVA.
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TNF decrease was also observed when using as 
priming agents two different strains isolated from 
human breast milk, MP31 (Fig. S2A) and MP33 
(Fig. S2B). Notably, induction of memory-like fea
tures in mBMMs after L. plantarum exposure was 
dependent on bacterial dose, showing that 
a minimum of m.o.i. 0.1 used as the first stimulus 
was necessary to induce a significant decrease in 
TNF release upon a secondary stimulation 
(Figure 2d). Finally, to determine whether the 
induction of memory was due to secreted factors 
produced by L. plantarum, we pre-stimulated 
mBMMs with sterile MRS medium or filtered con
ditioned medium obtained from an overnight cul
ture of L. plantarum WCFS1. No changes in 
intracellular survival of L. plantarum were observed 
(Fig. S2C), suggesting that soluble factors were not 
responsible for the increased survival of the bacter
ium upon stimulation with live microorganisms.

Our results were recapitulated in human CD14+ 

monocytes (hMon) in vitro using both 24 h or 6 d 
of resting time after the first stimulus, a protocol 
previously used to study induction of long-term 
responses in these cells. 19 While either live or heat- 
killed L. plantarum induced the same changes in 
bacterial intracellular survival and TNF production 
using a 24 h-resting time (Figure 2e and f), live 
L. plantarum induced higher effects when longer 
resting times were applied (Figure 2g and h). These 
changes in cytokine release profiles suggested that 
pre-stimulation with L. plantarum, particularly in 
its live form, induced long-term changes in both 
mBMMs and hMon featuring an anti-inflammatory 
profile, which may be involved in the increased 
bacterial intracellular survival observed.

We then tested whether priming with other pro
biotic bacterial species, L. casei, could lead to the 
same immunomodulatory events observed with 
L. plantarum. Of note, priming of mBMMs with 
live L. casei enhanced bacterial intracellular survival 
(Fig. S2D) and reduced TNF release (Fig. S2E) 
compared to unprimed cells, although to a lesser 
extent than when L. plantarum was used. 
Moreover, since trained cells have shown certain 
non-specificity in their responses to secondary 
challenges (e.g. BCG stimulation protects from fun
gal and bacterial infections 12), we tested the effect 
of priming with one probiotic species and use the 
other one as the secondary stimulation. Although 

trends of intracellular survival rates were compar
able to those previously observed (Lp-Lp v. Lc-Lp, 
Figure 2i; Lc-Lc v. Lp-Lc, Figure 2k), priming with 
different species than those used for the second 
stimulation did not recapitulate the reduction in 
TNF levels (Figure 2j and m). These data show 
that for these bacteria, long-term effects on phago
cytic cells are, at least partly, species-specific.

L. plantarum priming induces long-term changes 
in the transcriptional profile of human monocytes

To delve into the mechanisms inducing these long- 
term responses by L. plantarum, we studied the 
transcriptional profiles of human monocytes by 
RNA-seq in the three experimental conditions pre
viously analyzed after 6 d of resting time: U-Lp, Lp- 
Lp and HkLp-Lp. The three conditions showed 
distinct transcriptional profiles, as shown by prin
cipal component analysis (PCA) (Figure 3a) and 
clustering of the most regulated genes (Figure 3b). 
Overall, we found 1030 differentially expressed 
genes (using cut off values of 1 for the absolute 
log2 Fold Change and p adj <0.05) between 
unprimed and live bacteria-primed monocytes 
(U-Lp v. Lp-Lp, 514 up and 516 down; Figure 3c), 
and 326 when unprimed controls were compared 
with cells pre-stimulated with heat-killed bacteria 
(U-Lp v. HkLp-Lp, 93 up and 233 down; Figure 3d), 
showing that pre-exposure to live L. plantarum cells 
induced a greater impact on monocytes in the long 
term. Pathway analysis using PantherDB 20,21 

(Table S1) showed a significant enrichment of sev
eral cytokine and chemokine pathways among the 
downregulated genes in monocytes primed either 
with live or heat-killed bacteria. Among others, 
genes as IL1A, IL1B, IL6 or CCL20 were found 
downregulated in both conditions compared to 
unstimulated cells (Figure 3e, f). In addition, path
way analysis showed downregulated functions 
related to organism killing and production of reac
tive oxygen and nitrogen species (Table S1). In this 
regard, several genes coding for antimicrobial pep
tides/proteins, such as calprotectin (S100A8 and 
S100A9) and calgranulin (S100A12), were found 
downregulated only in the Lp-Lp group 
(Figure 3e, f), which may be linked to the increased 
bacterial intracellular survival observed in these 
cells. Notably, TNF and other six members of this 
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cytokine signaling pathway were observed down
regulated only in Lp-Lp monocytes, in addition to 
the four found in monocytes primed either with 
live or heat-killed bacteria (Figure 3g), which con
firmed the profiles of TNF release previously 
detected by ELISA. Moreover, we found changes 
in the expression of KAT2A (upregulated in both 
Lp-Lp and HkLp-Lp) and HDAC9 (downregulated 
in Lp-Lp), both of which are related to histone 
modifications and activation of transcription and 
might be involved in epigenetic modifications asso
ciated with innate immune memory.

Next, we carried out a comparative transcription 
factor enrichment analysis of the differentially 
expressed genes in Lp-Lp and HkLp-Lp using the 
HOMER package. 22 For upregulated genes, only 
the p53 motif was found as regulator of 1.46% of 

genes in the Lp-Lp condition, while no significant 
results were found for the HkLp-Lp gene set 
(Figure 3h). On the other hand, motifs associated 
with NFκB-p65 contributed to the highest percen
tage of downregulated genes in both live (Lp-Lp 
condition) and heat-killed (HkLp-Lp condition) 
bacteria-primed cells, with minor contributions 
from interferon-regulated transcription factors 
(IRF2, ISRE) and CBEP under live bacteria priming 
conditions (Figure 3h).

Transcriptional reprogramming in L. 
plantarum-stimulated monocytes induce changes 
in cell metabolism

Analysis of monocyte transcriptomic profiles also 
allowed us to identify the impact of priming in 
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Figure 3. Broad transcriptional remodeling is induced in human monocytes after L. plantarum priming. (a) Principal Component 
Analysis of human monocytes (hMon) unprimed (U-Lp) or primed with either live (Lp-Lp) or heat-killed (HkLp-Lp) L. plantarum. Heat- 
map (b) and volcano plots (c, d) showing differentially regulated genes. Blue dots represent upregulated genes, whereas red dots 
indicate downregulated genes. (e) Venn diagrams depicting up- or down-regulated genes shared between Lp-Lp and HkLp-Lp 
compared to U-Lp. Heat-maps of selected differentially expressed genes involved in immune responses (f) and belonging to the TNF 
signaling pathway (g). (h) Comparative transcription factor enrichment analysis of differentially expressed genes using the HOMER 
package. The differential expression of genes was set at an absolute log2 Fold Induction value of 1 and Padj < 0.05.
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several metabolic pathways of monocytes in com
parison with cells acutely exposed to L. plantarum, 
especially in those monocytes pre-stimulated with 
live bacteria (Figure 4a). Although we did not find 
great changes in the expression levels within mem
bers of central metabolic pathways, we observed 
that some adjacent metabolic pathways were 
enriched in our functional study. Indeed, our data 
showed the upregulation of folic acid metabolism, 
amino acid and carboxylic acid biosynthesis, and 
monocarboxylic acid catabolism, and the downre
gulation of hyaluronan biosynthesis, negative reg
ulation of lipid storage, and glycerol transport 
(Table S1). Specifically, we observed the upregula
tion of three pyruvate dehydrogenase kinases genes 
(PDK2, PDK3, PDK4) in cells primed with live 

bacteria, as well as a decreased expression of 
ACO1 and ACOD1, coding for aconitase and aco
nitate decarboxylase, suggesting a reduction in the 
integrity of the tricarboxylic acid (TCA) cycle and 
the itaconate pathway. We also found the differen
tial regulation of several genes coding for metabo
lite transporters (Figure 3e), including those for 
glucose (SLC2A1), other hexoses and monocar
boxylic compounds (SLC2A6, SLC45A3, 
SLC16A5), and amino acids (SLC1A2, SLC16A10), 
which possibly contribute to changes in cellular 
metabolism.

To assess whether these alterations in the tran
scriptional landscape had physiological conse
quences in primed cells, we analyzed the 
metabolic profiles of human monocytes by 

Figure 4. L. plantarum priming promotes a metabolic rewiring resulting in decreased oxidative burst. (a) Heat-map depicting 
selected differentially expressed genes with functions related to cellular metabolism. Seahorse extracellular flux analyzer was used to 
determine OCR (b) and ECAR (c) profiles of human monocytes (hMon). Data are shown for a representative experiment out of two 
independently performed. (d) Phenogram showing OCR/ECAR ratio of unprimed hMon, and cells primed with either live (Lp-Lp) or 
heat-killed (HkLp-Lp) L. plantarum. (e) ROS production after the second bacterial encounter. Phorbol-12-myristate-13-acetate (PMA) 
was used to increase ROS production in mBMMs (f), which induced a decrease in L. plantarum intracellular survival in memory 
macrophages (g). Data are shown as mean ± s.e.m., n ≥ 3. *; p < .05, **; p < .01, ***; p < .001, One-way ANOVA (E) and Student’s t test (f, 
g).
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measuring their oxygen consumption rate (OCR) 
and extracellular acidification rate (ECAR) using 
the Seahorse extracellular flux analyzer. First, fol
lowing the same experimental rationale previously 
used with the 6-d resting time (Figure 2a), we 
observed decreased levels in both OCR 
(Figure 4b) and ECAR (Figure 4c) in human mono
cytes pre-stimulated with either live or heat-killed 
L. plantarum compared to unprimed cells, with the 
metabolic alterations in the group Lp-Lp being 
slightly higher. Consequently, the phenogram com
paring basal OCR and ECAR clearly showed the 
metabolic shift induced by monocyte priming with 
L. plantarum. While acutely stimulated cells 
showed high metabolic levels, memory monocytes 
exhibited a metabolic profile similar to that 
observed in resting cells (Figure 4d). Of note, 
these results were recapitulated in mBMMs, which 
showed decreased OCR (Fig. S3A), ECAR (Fig. 
S3B) and a clear separation between the three 
experimental groups in the phenogram, especially 
for Lp-Lp (Fig. S3C). In accordance with a decrease 
in the glycolytic activity, we did not detect any 
significant change in lactate production between 
experimental groups in either human monocytes 
(Fig. S3D) or mBMMs (Fig. S3E).

Reduction in mitochondrial respiration after 
induction of innate memory in monocytes/macro
phages led us to hypothesize that priming cells with 
L. plantarum might be modulating reactive oxygen 
species (ROS) production, since the mitochondrial 
electron transport chain is one of the main sources 
of these antimicrobial molecules in macrophages. 23 

In fact, both reactive oxygen (fold enrichment 4.04) 
and nitrogen species (fold enrichment 5.8) produc
tion pathways were found to be enriched in the 
PantherDB analysis of the downregulated set of 
genes in the Lp-Lp condition (Table S1). Thus, we 
used the mitochondrial superoxide staining 
MitoSOX to measure the oxidative stress in primed 
compared to acutely stimulated cells using mBMMs 
as a model. Remarkably, ROS production was sig
nificantly reduced in memory macrophages, either 
pre-stimulated with live or heat-killed bacteria 
(Figure 4e). To further analyze the role of ROS in 
the observed increase in intracellular survival 
induced by cell priming, we triggered ROS produc
tion in mBMMs previously exposed to live 
L. plantarum just before the second bacterial 

encounter by using phorbol-12-myristate-13- 
acetate (PMA). Increased production of ROS in 
PMA-treated cells (figure 4f) correlated with 
a reduction in bacterial intracellular survival of 
~30% at 1 h and ~40% at 4 h (Figure 4g), eviden
cing the remarkable role of the decreased oxidative 
burst occurring in primed macrophages for 
L. plantarum persistence.

Overall, these results show that priming with 
L. plantarum, especially with live bacteria, leads to 
a metabolic reprogramming that results in 
decreased ROS production and the enhanced intra
cellular survival of bacteria in memory cells.

Discussion

The discovery of the ability of innate immune cells 
to develop long-term responses, i.e. trained innate 
immunity or tolerance, challenged the classic 
immunology dogma of innate versus adaptive 
immunity. 24 Importantly, molecular mechanisms 
underlying these long-term responses have been, at 
least partly, elucidated in the last two decades, 9,25– 

27 increasing the possibility of improving, for exam
ple, vaccination strategies. 28,29 However, these stu
dies have been only focused on analyzing the 
response of innate immune cells to pathogenic 
microbes, such as Candida albicans or 
Mycobacterium tuberculosis, almost exclusively 
using microbe-derived PAMPs or dead microbial 
cells. 11 Unfortunately, no attention has been paid 
to the role of this phenomenon in the interaction of 
the host with the myriads of beneficial microbial 
species inhabiting the human body, even though 
a huge plasticity of innate immune memory in 
response to diverse stimuli has been previously 
reported. 18

Modulation of innate immune responses by the 
gut microbiota occurs by different mechanisms. 3 

These include the presence and physiological activ
ities of resident intracellular bacteria in mononuc
lear phagocytes that are essential for inflammation 
control and homeostasis in the intestine. 7 

Therefore, we first explored the ability of 
L. plantarum, a bacterial species containing well- 
characterized probiotic strains, to survive inside 
macrophages. Indeed, we observed that this species 
can survive for hours inside both murine and 
human macrophages, and that human CD14+ 
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monocytes are able to carry these bacteria. Notably, 
L. plantarum intracellular survival was more 
restricted than that observed for other bacterial 
species with a more defined intracellular lifestyle, 
such as the closely related L. monocytogenes, 30,31 

suggesting that this species has not developed 
a complete genetic machinery to thrive in the long 
term in this environment. However, we hypothe
sized that L. plantarum intracellular survival might 
play a major role in their immunomodulatory 
properties, and that previous encounters with 
these bacteria may induce long-term responses in 
innate immune cells.

Strikingly, pre-stimulation with L. plantarum, 
especially in its live form, significantly enhanced 
bacterial survival and decreased pro-inflammatory 
responses in mBMMs after a resting period of 24 h. 
To test whether these changes induced by cell prim
ing had effects in the long term, we performed 
in vitro experiments using human monocytes as 
previously reported. 19 Notably, we observed simi
lar results in human monocytes regarding intracel
lular survival and TNF release, with a more 
pronounced effect found when cells were left rest
ing for 6 d. Although to a lesser extent, we showed 
that L. casei was able to induce similar effects as 
L. plantarum did and that induction of this tolero
genic type of innate immune memory leads to 
a certain degree of cross-reactivity. The role of gut 
microbiota in the modulation of intestinal macro
phage function is critical for gut homeostasis, 3,32,33 

yet poorly understood. Our data suggest that pro
longed contact with some members of the gut 
microbiota, at least L. plantarum and L. casei spe
cies, induces a long-term anti-inflammatory state in 
monocytes/macrophages that expands the immu
nomodulatory properties already described for 
these species. 34,35 Human monocytes have been 
routinely studied for the development of innate 
memory. Unlike other tissue-resident macrophage 
populations, which have embryonic origin, intest
inal macrophages originate primarily from circulat
ing monocytes 36, and their recruitment to the gut 
is partially mediated by microbiota-derived signals 
37. This makes blood monocytes a good model to 
analyze the cellular and molecular events during 
the interaction between gut microbiota and 
phagocytes.

Our results show that the response to live micro
organisms differs from those observed when killed 
forms of the same microorganism are used, as 
exemplified for other bacteria such as Salmonella 
38 or Borrelia burgdorferi 39. The difference is likely 
linked to either alterations in cell wall composition/ 
structure or the lack of microbial physiological 
activities leading to the production of metabolites, 
proteins, etc. that may activate innate immune cells. 
Lactobacilli produce a wide array of proteins and 
metabolites, such as short-chain fatty acids, 40,41 

that are secreted to the extracellular medium and 
might exert immunomodulatory properties.

Overall, our results contrast with previous 
reports focused on innate immune memory devel
opment, either training or tolerance, using patho
gen-derived PAMPs, such as LPS, β-glucan or BCG. 
12,42,43 In fact, the major PAMPs that can be found 
in L. plantarum, peptidoglycan, lipoteichoic acid 
and flagellin, have been previously associated with 
enhanced memory responses (i.e. trained immu
nity) when only cytokine production (TNF and 
IL-6) responses where considered. 18 However, 
this effect was shown to be dose-dependent and 
since we used whole bacterial cells, integration of 
different cell signals originating from the entire 
microbe led to a different phenotype. More impor
tantly, our experiments comparing memory induc
tion using live or heat-killed bacteria showed 
a strong influence of bacterial viability in most of 
the aspects analyzed. Therefore, besides the rele
vance of classical PAMPs, our data strongly suggest 
that other factors secreted/produced by live bac
teria are critical for innate memory development. 
Priming of mBMMs with conditioned medium did 
not, however, induced a memory phenotype, sug
gesting that physiological activities other that 
secreted factors contribute to the development of 
innate memory in a dose-dependent manner.

Transcriptomic analyses of primed human 
monocytes further confirmed the prominent 
decrease in the expression of pro-inflammatory 
mediators and effectors, including an array of cyto
kines, chemokines and antimicrobial peptides. 
Moreover, we observed a differential regulation of 
genes and pathways involved in metabolism, espe
cially in the transport and use of carbohydrates, 
amino acids and fatty acids, which could be linked 
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to the decreased metabolic rates and ROS produc
tion observed in primed cells. Cellular metabolism 
is intimately linked to the regulation of immune 
responses, with metabolic rewiring being described 
in both acutely stimulated 44 and innate memory 
cells 45. Notably, priming with live bacteria 
increased the expression of pyruvate dehydrogen
ase kinase genes PDK2, PDK3, PDK4. These pro
teins are involved in cellular metabolism regulation 
through the inactivation of components of pyruvate 
dehydrogenase, the enzyme complex converting 
pyruvate to acetyl-CoA, leading to decreased glu
cose and lipid metabolism, and aerobic respiration. 
46 In addition, ACO1 and ACOD1, coding for aco
nitase and aconitate decarboxylase, were found 
downregulated. Itaconate, a metabolite with anti- 
microbial and immunomodulatory properties, 47 

has been associated with the modulation of β- 
glucan-induced trained immunity, and ACOD1 
expression showed decreased levels in memory 
monocytes compared to acutely stimulated cells. 
48 Thus, the observed differential gene expression 
suggests a reduction in the integrity of the tricar
boxylic acid (TCA) cycle and the itaconate pathway 
that might be relevant for the L. plantarum-induced 
long-term memory phenotype in monocytes.

Further physiological studies confirmed the 
metabolic alterations in L. plantarum-primed cells 
identified by transcriptomic analyses, with primed 
phagocytes showing a drop in glycolytic and 
respiratory rates and shifting to a “resting-like” 
phenotype. These data strongly contrast with pre
vious reports using pathogen cells or PAMPs. 
Monocyte/macrophages acutely stimulated with 
LPS, 44 or primed for long-term experiments with 
LPS, 49 β-glucan 50 or BCG 51 exhibit increased 
glycolytic rates, with oxygen consumption being 
more variable between conditions. Also, we found 
that decreased mitochondrial respiration was 
coupled with a reduced ROS production in cells 
primed with L. plantarum after receiving a second 
stimulation. Lower ROS production has been also 
reported in β-glucan-trained monocytes, which 
also exhibit reduced OCR, 50 but contrasts with 
the phenotypes observed in cells primed with 
BCG or oxidized LDL. 19 Of note, rescuing the 
oxidative burst using PMA reduced bacterial survi
val, suggesting a link between the immunometa
bolic changes observed in L. plantarum-induced 

memory cells and their tolerogenic anti- 
inflammatory phenotype.

Taken together, our results show the capacity of 
commensal and probiotic species, such as 
L. plantarum, to survive intracellularly in a, in 
principle, hostile environment. These data also 
establish the ability of symbiotic bacteria to induce 
long-term memory responses in innate immune 
cells through mechanisms that involve the meta
bolic rewiring of phagocytic cells and the decreased 
induction of deleterious antibacterial compounds, 
such as ROS. Thus, our observations suggest that 
L. plantarum-mediated induction of innate 
immune memory may contribute to inflammation 
control and to the expansion of these bacteria into 
alternative ecological niches such as the immune 
cell intracellular compartment. Further studies 
should delineate the in vivo effects of innate 
immune memory induction by symbiotic microor
ganisms and the contribution of these interactions 
on gut homeostasis.

Experimental procedures

Ethics statement

All procedures and experiments involving animals, 
including their housing and care, were carried 
according to the guidelines of the European 
Union Council (Directive 2010/63/EU) and 
Spanish Government regulations (RD 53/2013), 
and with the approval of the ethics committee of 
CIC bioGUNE and the Competent Authority 
(Diputación de Bizkaia). The Animal Facility at 
CIC bioGUNE is accredited by AAALAC Intl.

Buffy coats from healthy blood donors were 
obtained from the Basque Biobank, after approval 
by the Basque Country’s Ethics committee follow
ing the Helsinki convention. Donors had a median 
age of 53 (26–72) and were 68% male, 32% 
female (n = 37).

Bacterial strains and growth conditions

In this study, we used L. plantarum strain WCFS1, 
isolated from human saliva 16 and two strains iso
lated from human breast milk, MP31 and MP33. 52 

In addition, L. casei BL23 and Escherichia coli 
DH5α were assessed for their intracellular survival. 
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All strains were kept frozen at −80°C and thawed as 
needed. L. plantarum and L. casei strains were 
grown statically in De Man-Rogosa-Sharpe (MRS) 
medium at 37°C, while E. coli was cultivated in 
Luria-Bertani (LB) at 37°C and 200 rpm until they 
reached the logarithmic phase of growth (O. 
D ≈ 0.6). All strains used in this study were 
shown to be sensible to penicillin-streptomycin.

In order to calculate the multiplicity of infection 
(m.o.i.) before intracellular survival assays, an esti
mation of bacterial numbers in culture was per
formed. A correlation equation was calculated 
specifically for each strain, using for that purpose 
the association between culture optical density at 
600 nm and colony forming units determined by 
dilution plating. Heat-killed bacteria were obtained 
by incubating bacterial suspensions in a water bath 
at 70°C for 15 min.

Mammalian cell culture

The macrophage-like murine cell line RAW264.7 
was maintained in DMEM (Lonza, Spain) supple
mented with 10% FBS and 1% penicillin- 
streptomycin. Mouse bone marrow-derived 
macrophages (mBMMs) were generated from 8– 
12-week-old C57Bl/6 (B6) mice as previously 
described. 53 Briefly, bone marrow cells were 
flushed out from clean femurs and tibias, filtered 
through a 70 µm-nylon mesh (Thermo Fisher 
Scientific, Rockford, IL, USA), and centrifuged at 
400 xg for 5 min. Red blood cells were removed 
using ACK lysis buffer, and the remaining cells 
were incubated in 100 mm × 15 mm Petri dishes 
for 7 d in DMEM with 10% FBS and 1% penicillin- 
streptomycin plus 30 ng/ml of M-CSF (Miltenyi 
Biotec, Bergisch Gladbach, GE). Fresh medium 
was added after 3 d of culture.

To obtain human CD14+ monocytes, cell sus
pensions from buffy coats were placed onto 
a Ficoll layer and centrifuged at 400 xg for 30 min 
without brake. The layer corresponding to periph
eral blood monocytic cells was obtained and mono
cytes were positively selected using a human CD14 
positive cells purification kit (Miltenyi Biotec) fol
lowing the manufacturer’s instructions. To gener
ate human monocyte-derived macrophages 
(hMDMs), purified monocytes were incubated for 
7 d in RPMI 1640 medium (Lonza) supplemented 

with 10% FBS, 2.4 mM L-glutamine, 1% penicillin– 
streptomycin and 30 ng/ml human M-CSF 
(Miltenyi Biotec). The medium was refreshed 3 
d after extraction.

Antibiotic protection assays

The ability of the bacterial strains to survive inside 
mammalian macrophages was assessed by antibio
tic protection assays. 54 RAW 264.7, mBMMs and 
hMDMs were seeded onto 24-well plates at 
a density of 2 × 105 cells per well. Due to sample 
size, experiments involving human cells were per
formed in 96-well plates using 2 × 104 cells per well. 
After 24 h, cells were extensively washed with warm 
PBS and bacteria were added in serum- and anti
biotic-free DMEM. The cultures were synchronized 
by an incubation of 30 min at 4°C and then, plates 
were incubated for 45 min at 37°C to promote 
phagocytosis. Extracellular bacteria were then 
washed with pre-warmed PBS, and those remaining 
were eliminated by a 1-hour incubation with 
serum- and antibiotic-supplemented DMEM. 
Phagocytes were lysed at different timepoints in 
DMEM/0.1% Triton X-100, and lysates seeded 
onto MRS or LB agar plates for colony forming 
unit (CFU) quantification. Samples from the super
natant were also seeded to test the absence of extra
cellular bacteria after the incubation with 
antibiotics.

To assess the ability of L. plantarum WCFS1 to 
extrude from phagocytes, bacteria were added as 
previously detailed and those remaining extracellu
larly eliminated by extensive washing and addition 
of antibiotics. After one or 4 hours, the medium 
was replaced with antibiotic-free DMEM and cul
tures were incubated at 37°C for 24 h. Then, sam
ples from the supernatants and the cell lysates were 
plated for CFU enumeration.

Detection of subcellular localization of 
L. plantarum

To detect whether L. plantarum was contained 
inside phagolysosomes in macrophages, we incu
bated mBMMs and mCherry-labeled L. plantarum 
cells, either live or heat-killed, in 24-well plates 
containing sterile round coverslips. After the incu
bation time (30 min at 4°C, 45 min at 37°C, and 
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1 h in the presence of antibiotics), cells were 
washed twice with PBS and fixed with 4% PFA 
for 30 min at RT. The wells were washed with PBS 
and blocked with PBS/0.3% triton X-100/1%BSA/ 
0.25 M NaCl for 1 h at RT. The lysosome- 
associated membrane protein 2 (LAMP-2), 
a marker for phagosomes and phagolysosomes,55 

was detected with a monoclonal rat anti-mouse 
LAMP-2 primary antibody (Abcam; ab13524) at 
4 µg/ml in PBS/0.3% triton X-100 overnight at 4° 
C. Wells were washed three times with PBS/0.3% 
triton X-100, 10 min each, and incubated with 
anti-rat Alexa Fluor 488 (Invitrogen; A-11006) at 
4 µg/ml in PBS/0.3% triton X-100 for 1 h at RT. 
The wells were then washed three times with PBS/ 
0.3% triton X-100, 10 min each, including DAPI 
nuclei staining in the last washing step. The cover
slips were washed three times with PBS and pre
pared for confocal microscopy using Prolong Gold 
Antifade reagent. Micrographs were obtained 
employing a Leica TCS SP8 confocal system 
(Leica Microsystems, Madrid, Spain).

Whole blood infection model

Human blood samples from healthy donors were 
incubated with EDTA to prevent coagulation, and 
L. plantarum WCFS1 expressing mCherry was 
added, as previously described. 56 After incubation 
at either 4°C or 37°C, samples were stained with 
anti-human CD14-APC for 30 min in ice. After 
washing samples with PBS/1% fetal calf serum, 
erythrocytes were eliminated using ACK buffer, 
and the presence of fluorescent bacteria inside 
CD14+ monocytes was detected by flow cytometry.

Cytokine and ROS measurements

Levels of TNF and IL-10 in the murine or human 
cell supernatants were determined by ELISA using 
the Mouse TNF ELISA Set II, the Mouse IL-10 
ELISA set (BD Biosciences) and the human TNF 
ELISA set (Thermo Fisher Scientific), following the 
manufacturer’s instructions.

ROS production by memory mBMMs was 
assessed using MitoSOX Red (Life Technologies). 
Briefly, after stimulation experiments, cells were 
washed and stained with MitoSOX Red for 30 min 
at 37°C. After extensive washing with warm PBS, 

cells were trypsinized and fluorescence signal was 
acquired by flow cytometry in a BD FACS Canto II 
cytometer (BD Biosciences, Madrid, Spain). Phorbol- 
12-myristate-13-acetate (PMA) was used at 0.8 μM to 
increase ROS in memory macrophages 30 min prior 
to the second incubation with L. plantarum.

RNA extraction and RNA-seq

Total RNA samples were obtained using the 
NucleoSpin® RNA kit (Macherey-Nagel). The 
quantity and quality of the RNAs were assessed 
using the Qubit RNA Assay Kit (Thermo Fisher 
Scientific) and RNA Nano Chips in a 2100 
Bioanalyzer (Agilent Technologies), respectively.

Libraries were prepared using the NuGEN 
Universal Plus mRNA-Seq kit (Tecan Genomics 
Inc., NuGEN) following the manufacturer’s instruc
tions. Single-read 50 nt sequencing of pooled libraries 
was carried out in a HiSeq2500 platform (Illumina). 
Quality control of sequenced samples was performed 
utilizing the FASTQC software (http://www.bioinfor 
matics.babraham.ac.uk/projects/fastqc/). Reads were 
mapped against the human (hg38) reference genome 
using the STAR program 57 to account for spliced 
junctions. The resulting BAM alignment files for the 
samples were used to generate a table of raw counts 
using Rsubread. 58 A raw counts table was the input 
for the Differential Expression analysis performed 
with DESeq2, 59 to compare the different conditions. 
Heatmaps were plotted via heatmap.2 function from 
the gplots R package (https://CRAN.R-project.org/ 
package=gplots), using a regularized log transforma
tion (RLB) on DESeq2 normalized reads in order to 
enhance graphical representation of the data. Venn 
diagrams were produced using the tool developed by 
Van de Peer (http://bioinformatics.psb.ugent.be/webt 
ools/Venn/). GO enrichment was tested using 
PantherDB. 20,21

Motif enrichment analysis was performed using 
HOMER (v4.10.4). The “findMotifs.pl” wrapper 
script 22 was used for de novo motif discovery 
(using the following parameters: human as refer
ence genome and 8, 10, 12 pbs as motif lengths) to 
check the enrichment of known and de novo motifs. 
The input corresponded to the list of gene IDs 
differentially expressed in the RNA-seq analysis 
for each of the comparatives analyzed.
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Metabolic profiling

Oxygen consumption (OCR) and extracellular 
acidification (ECAR) rates were measured in differ
entially stimulated murine macrophages or human 
monocytes in an XF24 extracellular flux analyzer 
(Agilent). Unstimulated and L. plantarum- 
stimulated cells (2.5–5 × 105 per well) were seeded 
in a Cell-Tak coated plate (BD Biosciences). The 
measurements were normalized to cellular protein 
amount. For ECAR determination, the cells were 
previously plated in XF Seahorse medium with 
4 mM glutamine and 10 mM pyruvate, while for 
the mitochondrial stress test the cells were plated in 
medium containing 4 mM glutamine, 10 mM pyr
uvate and 25 mM glucose. After 1 h at 37°C without 
CO2, three baseline oxidative consumption rate 
(OCR) and extracellular acidification rate (ECAR) 
measurements were performed. For glycolysis 
determination, ECAR was measured at baseline 
and after sequentially adding glucose (25 mM), 
Oligomycin (1 µM) and 2-DG (50 mM). In parallel 
experiments, OCR was determined at baseline and 
after sequentially adding oligomycin, FCCP, anti
mycin/rotenone at 1 µM.

Lactate production was measured from stimula
tion supernatants using the Lactate-Glo™ Assay kit 
(Promega) following the manufacturer’s 
instructions.

Statistics

Statistical analyses were performed using GraphPad 
Prism (GraphPad Software Inc., CA, USA). At least 
three biological replicates were performed to mea
sure each parameter in each experimental 
condition.
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