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Modern communication networks integrate distributed computing architectures, in which customers are 
processed in parallel. We show how to minimize the waiting time of customer’s jobs by leveraging 
a simple threshold-based job dispatching policy. The optimal policy leverages the SITA routing, which 
assigns jobs to servers according to the size of the job. Moreover, the optimal policy permits to optimize 
system performance even when the job size is not known a priori and is estimated by means of error-
prone predictors.
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1. Introduction

Communication networks have evolved towards the integration 
of connectivity and computing elements in a distributed platform, 
so as to offer the possibility to create, customize and tear down 
network services in a flexible way [11]. In particular, there exist 
many services and applications that require network connectivity 
with low and controllable latency, e.g., for the control of industrial 
processes in smart factories, the (remote) monitoring of patients 
using e-Health platforms, and the management of smart cities with 
vehicle platooning systems, just to name a few. The latency perfor-
mance of the network resulting from the composition of connec-
tivity devices (e.g., switches) and computing elements (e.g., edge 
cloud servers) mostly depends on the waiting time experienced by 
messages to exchange—for the connectivity part—and by data anal-
ysis tasks—for the computing part. These “connect-compute” jobs 
are served in parallel by multiple servers, they are strongly hetero-
geneous and incur variable delay, whose minimization strategy is 
the object of this work.

Specifically, we consider a system where jobs arrive according 
to a Poisson process to a dispatcher, e.g., a network switch. The 
dispatcher performs a load balancing task according to the Size-
Interval Task Assignment (SITA) policy, in which the “size” of the 
task is the computing and/or data transmission time required to 
respond to the needs of the application that generated the job. 
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In this routing policy, the job size distribution is divided in inter-
vals and jobs whose sizes are in the same interval are executed 
in the same server. The main advantage of this routing policy is 
that the variability of jobs is reduced in the servers, which, when 
the servers are FCFS, leads to a performance improvement with 
respect to other routing policies such as the random assignment 
or Least-Work-Left. Another advantage of SITA is that, unlike other 
policies such as Power of Two, it does not require signaling be-
tween servers and router.

The implementation of SITA requires to determine which inter-
val the size of each incoming job belongs to. Job sizes of incoming 
tasks are often not known, but they can be estimated using clas-
sification algorithms, using, e.g., machine learning tools [12]. How-
ever, here we are not interested in how to improve the accuracy 
of the prediction itself, but rather in its impact on system perfor-
mance and on the optimal strategy to enforce when routing jobs 
towards the available servers. So, we consider that there is an or-
acle that predicts the interval that each job size is associated to. 
We consider that the oracle makes errors in the predictions and, 
therefore, it may occur that jobs whose sizes belong to different in-
tervals are executed in the same server. This causes a performance 
degradation, which we tackle in this article.

In practice, the system designer will build a non-ideal error-
prone classifier, and we show the impact of errors on network 
performance. Thus, the system designer could rely on our per-
formance analysis in order to tune the desired accuracy of the 
classifier. We therefore assume that the classification error prob-
abilities are known and fixed because a real system will have to 
learn how to classify incoming jobs and foresee their size. Given 
enough training, the learning process will reach the desired level 
le under the CC BY-NC-ND license 
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of accuracy, if compatible with the Bayes error rate of the clas-
sifier. Therefore, after a training transient phase, the system will 
reach a steady state regime in which the classification error prob-
ability matches the target accuracy of the classification learning 
process.

We consider that the system designer is aware of prediction er-
rors and can decide whether to trust or not the oracle. The strategy 
of the system designer consists in setting the optimal probability 
of trusting the oracle’s prediction, i.e., the probability to minimize 
the average waiting time for the jobs in the system. For simplicity, 
we first consider a system with two servers and we show that 
the strategy of always trust the prediction and never trust the 
prediction lead to the same performance. We then consider that 
the router implements the SITA-E policy, which is a SITA policy 
that equalizes the load of both servers, and we show that, when 
prediction errors are present in both types of jobs, the optimal 
strategies consist again in always following or never following the 
prediction of the oracle. We then consider that there are prediction 
errors only in one type of jobs and, under a low load assumption, 
we characterize the optimal strategy, which is unique. We notice 
that the latter strategy can be provided as an approximation of the 
optimal strategy for an arbitrary arrival rate and we study its per-
formance numerically. We also show how to extend the analysis to 
more than two servers.

2. Related work

The SITA policy is a size-based routing policy introduced in 
[10]. The basic idea of this policy consists of separating the exe-
cution of jobs of different sizes in different servers. The authors in 
[7] show that when the service demand is known but the queues 
are non-observable and the servers are FCFS, there exists a set of 
intervals such that the derived SITA policy minimizes the response 
time of jobs in the system. Some authors have characterized the 
intervals of the optimal SITA policy in the asymptotic regime of the 
Bounded Pareto distribution [13,3]. However, the characterization 
of these intervals in a general setting remains as an open question 
even in a two-server system [9]. Therefore, some authors focus on 
variants of the optimal SITA such as Equiload [5], TAGS [8,4] or the 
SITA policy that balances the performance of the queues [1].

3. Model description

We consider a system formed by two homogeneous servers and 
a single router. We assume that the service rate of both servers is 
equal to one. Servers are FCFS queues. We assume that job size in-
coming tasks form an i.i.d. sequence with a common distribution, 
where X denotes a generic job size. Let F (x) = P (X ≤ x). We as-
sume F (x) to be differentiable and we write f (x) = dF (x)

dx . Let xS
and xL be respectively the size of the shortest and the longest job. 
The incoming traffic arrives to the system according to a Poisson 
process of rate λ. We denote by Xi the random variable of jobs 
executed in server i.

3.1. SITA routing

We assume that the router performs the load balancing task us-
ing a size-based policy called Size Interval Task Assignment (SITA). 
Under this policy, there is threshold value x such jobs whose size 
is smaller than x are sent to Server 1 and jobs whose size is 
larger than x to Server 2. Roughly speaking, short jobs are exe-
cuted in one server and long jobs in the other one. We assume 
that xL < ∞, which is a common assumption of the literature of 
SITA policies (even though our results generalize to distributions 
with unbounded support). Therefore, it follows from this defini-
tion that the probability for a job to be executed in Server 1 is 
460
given by q̄1(x) = ∫ x
xS

f (z)dz and in Server 2 by q̄2(x) = ∫ xL
x f (z)dz =

1 − q̄1(x). The arrival rate to Server 1 is λq̄1(x) and to Server 
2 is λq̄2(x). Using conditional probabilities, we obtain that the 
mean service time in Server 1 is E[X1] =

∫ x
xS

z f (z)
F (x)−F (xS )

dz and 
in Server 2 it is E[X2] =

∫ xL
x z f (z)

F (xL )−F (x)dz. Therefore, using that 
q̄1(x) = F (x) − F (xS ), it results that the load of Server 1 is

λq̄1(x)

x∫
xS

zf (z)dz

F (x) − F (xS)
= λ

x∫
xS

zf (z)dz,

and, using that q̄2(x) = F (xL) − F (x), the load of Server 2 is 
λq̄2(x) 

∫ xL
x

zf (z)dz
F (xL )−F (x) = λ 

∫ xL
x zf (z)dz.

Using the Pollaczek-Kinchine formula, the mean waiting time of 
a system with two servers operating under the SITA policy is given 
by

ḡ(x) = λ

2

(
q̄1(x)v̄1(x)

1 − λb̄1(x)
+ q̄2(x)v̄2(x)

1 − λb̄2(x)

)
, (1)

where v̄1(x) =∫ x
xS

z2 f (z)dz, b̄1(x) =∫ x
xS

zf (z)dz, v̄2(x) =∫ xL
x z2 f (z)dz

and b̄2(x) =∫ xL
x zf (z)dz.

3.2. Prediction errors

We assume that there is an oracle that predicts the job size of 
the incoming jobs and the router balances the traffic according to 
the SITA routing. Besides, we consider that the oracle makes errors 
in the predictions. More precisely, a short job is predicted as a long 
job with probability p1 a long job as a short job with probability
p2. Hence, for this case, a proportion p1 of short jobs are executed 
in Server 2 and a proportion p2 of long jobs to Server 1. Hence, 
the mean waiting time of the system is given by

g̃(p1, p2, x) = λ

2

(
q̃1(p1, p2, x)ṽ1(p1, p2, x)

1 − λb̃1(p1, p2, x)
+

q̃2(p1, p2, x)ṽ2(x)

1 − λb̃2(p1, p2, x)

)
, (2)

where q̃1(p1, p2, x) = q̄1(x)(1 − p1) + q̄2(x)p2, ṽ1(p1, p2, x) =
v̄1(x)(1 − p1) + v̄2(x)p2, b̃1(p1, p2, x) = b̄1(x)(1 − p1) + b̄2(x)p2, 
q̃2(p1, p2, x) = q̄2(x)(1 − p2) + q̄1(x)p1, ṽ2(p1, p2, x) = v̄2(x)(1 −
p2) + v̄1(x)p1 and b̃2(p1, p2, x) = b̄2(x)(1 − p2) + b̄1(x)p1.

Before going further, let us present two nice properties of this 
model. First, we note that

ḡ(x) = g̃(0,0, x) = g̃(1,1, x),∀x ∈ [xS , xL], (3)

which means that the performance of the system with perfect pre-
dictions (i.e. when p1 = p2 = 0) and with completely incorrect 
predictions (i.e., when p1 = p2 = 1) is the same. In other words, 
(3) says that swapping from an oracle with perfect predictions to 
an oracle with completely wrong predictions does not change the 
performance of the system. Another interesting property of this 
model is the existence of a performance degradation when there 
are prediction errors, that is,

ḡ(x) ≤ g̃(p1, p2, x),∀x ∈ [xS , xL]. (4)

We assume that the values of p1 and p2 are known and 
fixed. We also assume that the value of the threshold x is cho-
sen such that the load of both servers is equal. We denote by 
xE such a threshold value and by λb the load of each server, i.e., 
b = b̃1(p1, p2, xE ) = b̃2(p1, p2, xE). Therefore, the threshold value 
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is also fixed and it is omitted its dependence in the above func-
tion. As a result, (2) gives

λ(q1 v1 + q2 v2)

2(1 − λb)
, (5)

where q1 = q̃1(p1, p2, xE), v1 = ṽ1(p1, p2, xE ), q2 = q̃2(p1, p2, xE)

and v2 = ṽ2(p1, p2, xE). We remark that, in the above expression, 
we have omitted the dependence of p1, p2 and xE to avoid heavy 
notations since they are fixed.

3.3. Strategies

We consider that the system designer can decide to trust or not 
the prediction of the oracle. Therefore, the strategy of the system 
designer is defined as the probability α to trust the prediction of 
the oracle and its goal is to find the value of α that optimizes the 
performance of the system, i.e., that minimizes the waiting time.

Using (4), it follows that, if the predictions are perfect, i.e., 
p1 = p2 = 0, then the optimal strategy is to always trust the pre-
diction of the oracle, i.e., α = 1, in which case all the short jobs are 
executed in Server 1 and the long jobs in Server 2. Besides, from 
(3), the strategy α = 0 is also optimal in the case of perfect predic-
tions, because α = 0 corresponds to swapping the two servers, so 
as to run all the long jobs in Server 1 and the short ones in Server 
2.

Remark 1. Using the same arguments as above, one can also show 
that the strategy α = 0 or α = 1 is also optimal when p1 = p2 = 1.

In Section 4, we study the optimal strategy for the system de-
signer when there are errors in the prediction of the job sizes that 
the oracle performs, that is, the strategy that minimizes the mean 
waiting time of the system. Prior to that, we present our main as-
sumptions on the job size distribution.

3.4. Assumptions

Besides, we know from Lemma 3 of [6] that q1 ≥ q2 and v1 ≤
v2 when the SITA-E policy is implemented. In this model, we as-
sume that (i) q1 > q2 and (ii) v1 < v2. As we will see now, making 
these assumptions is equivalent to consider a non-deterministic 
job size distribution.

We first focus on (i). Let us consider that q1 = q2. Since the load 
of the servers is the same, we have that

λq1E[X1] = λq2E[X2] ⇐⇒ E[X1] = E[X2],
which means that the mean of the job size distribution of jobs ex-
ecuted in both servers is the same. This is impossible for SITA type 
systems (note that jobs of different sizes are executed in different 
servers) unless the size of all the incoming jobs is equal. There-
fore, from the above considerations, it is clear that q1 > q2 when 
the job size distribution is non-deterministic, and the case q1 = q2
holds for the deterministic case.

We now concentrate on (ii). If v1 = v2, since all the servers are 
equivalent and x2 is an increasing function, we have that

v2 =
xL∫

xE

z2 f (z)dz ≥ xE

xL∫

xE

zf (z)dz =

xE

xE∫
xS

zf (z)dz ≥
xE∫

xS

z2 f (z)dz = v1
461
which implies that the above inequalities are equalities, which is 
only possible if xL = xE = xS , that is, the job size distribution is 
deterministic. Therefore, from the above considerations, it is clear 
that v1 < v2 when the job size distribution is non-deterministic, 
and the case v1 = v2 holds for the deterministic case.

4. Analysis for p1 �= 0 and p2 �= 0

In this section, we assume that the oracle makes errors when 
it predicts short and long jobs, i.e., p1 
= 0 and p2 
= 0. Besides, we 
consider that the system designer trusts the prediction of the ora-
cle with probability α, regardless of the job has been predicted as 
short or long. Under these assumptions, the arrival rate at Server 1 
becomes (αq1 + (1 − α)q2)λ, and the rest goes to Server 2. There-
fore, the performance of the two-server system described so far 
(i.e., the average waiting time experienced by jobs dispatched to 
either server 1 or Server 2 with SITA routing and prediction errors 
on both short and long jobs) is

h2(α) = λ

2

(
(αq1 + (1 − α)q2)(αv1 + (1 − α)v2)

1 − λ(αb + (1 − α)b)
+

((1 − α)q1 + αq2)((1 − α)v1 + αv2)

1 − λ((1 − α)b + αb)

)
. (6)

We note that the above expression can be simplified as follows:

h2(α) = λ

2(1 − λb)
((αq1 + (1 − α)q2)(αv1 + (1 − α)v2)

+ ((1 − α)q1 + αq2)((1 − α)v1 + αv2)). (7)

We notice that, as we said before, h2(0) = h2(1) that is, the 
mean waiting time of the system when we always follow the strat-
egy of the oracle and when we never follow the prediction is the 
same.

We denote by α∗
2 ∈ argmin h2(α). After some simplifications, 

the sign of the derivative with respect to α of the above expres-
sion is the same as the sign of λ(q1 − q2)(v1 − v2)(2α − 1). From 
the assumptions of Section 3.4, the above expression is zero when 
α = 0.5. Besides, from our assumptions, we conclude that the 
above expression is increasing with α when α < 0.5 and decreas-
ing when α > 0.5. Therefore, since h2(0) = h2(1), the following 
result is proven.

Proposition 1. The optimal strategies consist in either always follow the 
prediction of the oracle or never follow the prediction of the oracle, i.e., 
α∗ = 0 and α∗ = 1 are both optimal.

From the above result, it follows that the mean waiting time 
under the optimal strategy in a system with prediction errors is 
given in (5).

5. Approximate analysis for p1 ∈ (0, 1) and p2 = 0

We assume that the oracle makes errors when it predicts short 
jobs and it makes perfect predictions for long jobs, i.e., p1 ∈ (0, 1)

and p2 = 0. The system designer is aware of this prediction errors 
and, therefore, when the oracle predicts a job as short, it always 
trusts the result. However, when the oracle predicts a job as long, 
the prediction is accepted with probability α. For this case, the 
performance of the system is given by

h1(α) = λ

2

(
(q1 + q2(1 − α))(v1 + v2(1 − α))

1 − λ(b + b(1 − α))
+ q2 v2α

2

1 − λbα

)
(8)

We denote by α∗
1 a strategy that is optimal for this case, i.e., 

α∗ ∈ argmin h1(α). Given the difficulty of the derived expression, 
1
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we did not succeed in obtaining an analytical expression of the 
value of α∗

1 . Instead, we analyze the value of α that minimizes the 
following expression:

λ

2

(
(q1 + q2(1 − α))(v1 + v2(1 − α)) + q2 v2α

2
)

(LT-APP)

We now explain that the above expression consists of the first 
order Taylor expansion of (8) at λ = 0. Therefore, it can be seen 
as a light-traffic approximation of the mean waiting time of the 
system. We analyze the accuracy of this approximation in the nu-
merical section.

We denote by ᾱ1 the value of α that minimizes (LT-APP). The 
sign of the derivative with respect to α of (LT-APP) is the same as 
the sign of

− q2 v1 − q1 v2 − 2(1 − α)q2 v2 + 2αq2 v1 =
− q2 v1 − q1 v2 − 2q2 v2 + 4αq2 ṽ2. (9)

This expression is clearly negative when α = 0. Therefore, since 
it is linear on α, it is negative for all α ∈ [0, 1] if and only if it is 
negative when α = 1, i.e., if −q2 v1 − q1 v2 − 2q2 v2 + 4q2 v2 < 0. 
Rearranging both sides of this expression it is easy to see that this 
condition is equivalent to the following one: v1

v2
+ q1

q2
> 2.

As a result, the minimum of (9) over α ∈ [0, 1] is achieved 
when α = 1 when the above condition is satisfied. We now con-
sider that v1

v2
+ q1

q2
≤ 2, in which case if (9) equals zero, it results 

α = 1
4

(
v1
v2

+ q1
q2

+ 2
)

.

We remark that when v1
v2

+ q1
q2

= 2, the above expression gives 
α = 1. As a result of the reasoning, it follows the next result.

Proposition 2. If the oracle makes errors only in the prediction of short 
jobs, then

ᾱ1 = min

{
1,

1

4

(
v1

v2
+ q1

q2
+ 2

)}
.

This result means that, at low load, the optimal strategy for the 
system designer is to always follow the prediction of the oracle 
if v1

v2
+ q1

q2
is larger or equal than two and, otherwise, the optimal 

probability is to follow the prediction of the oracle with probability 
1
4

(
v1
v2

+ q1
q2

+ 2
)

.

5.1. The case p1 = 0 and p2 ∈ (0, 1)

The case p1 = 0 and p2 ∈ (0, 1) is symmetric to the case we 
study above. Therefore, using the same arguments, one can eas-

ily derive that ᾱ1 = min
{

1, 1
4

(
v2
v1

+ q2
q1

+ 2
)}

. This means that, for 
p1 = 0 and p2 
= 0 and at low load, the optimal strategy consists 
of always following the prediction of the oracle if v2

v1
+ q2

q1
is larger 

or equal than 2 and, otherwise, the optimal probability is to follow 
the prediction of the oracle with probability 1

4

(
v2
v1

+ q2
q1

+ 2
)

.

6. Extensions

6.1. More than two servers

In a system formed by K servers, there are K − 1 thresholds 
x1, . . . , xK−1 and, with perfect predictions, a job sent to server i if 
its size is between xi−1 and xi . For this case, the modeling of the 
prediction errors becomes very difficult. To see this, let us consider 
K = 3. For this case, there are short, medium and large jobs and, 
in the system with predictions errors, jobs that are short can be 
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predicted as medium or large, medium jobs as short or large and 
large jobs as short or medium. Hence, for an arbitrary K , the huge 
amount of possibilities that arise shows the difficulty the extension 
of the above results to more than two servers.

However, we now present how the above results can be applied 
to a system with 2K servers. The system is divided in two group of 
servers, each of them formed by K servers and a front-end router. 
We assume that the front-end router of each group of servers re-
ceives all the traffic to be executed and sends the same proportion 
of traffic to each server of that type. We note that traffic received 
by each front-end router is also a Poisson process. Therefore, since 
each server executes a proportion of 1/K of the traffic, the mean 
waiting time of the system with 2K servers is obtained replacing 
λ by λ/K in (5). And, therefore, it is clear that the main results of 
this article for two servers also hold for this case.

6.2. Approximated analysis with asymmetric strategies for p1 ∈ (0, 1)

and p2 ∈ (0, 1)

In this section, we consider that, when the oracle predicts a job 
as long, the prediction is accepted with probability α1, whereas 
when the oracle predicts a job as short, the prediction is accepted 
with probability α2. For this case, the mean waiting time of the 
system is given by

λ

2

(
(α1q1 + (1 − α2)q2)(α1 v1 + (1 − α2)v2)

1 − λ(α1b + (1 − α2)b)
+

((1 − α1)q1 + α2q2)((1 − α1)v1 + α2 v2)

1 − λ((1 − α1)b + α2b)

)
.

As we do in (LT-APP), we use the first order Taylor to say that, at 
low load, the above expression is approximately λ

2 ((α1q1 + (1 −
α2)q2)(α1 v1 + (1 − α2)v2) + ((1 − α1)q1 + α2q2)((1 − α1)v1 +
α2 v2)). Simple calculus arguments show that the minimum of this 
expression in which α1 = α2 is given when α1 and α2 are both 
zero and when they are both one.

6.3. Approximated analysis with optimal SITA

So far, we have assumed that the router implements the SITA-E 
policy, that is, the threshold that determines the short and large 
jobs is chosen in a way that the load of both servers is the same. 
The threshold could be also chosen optimally, that is, to minimize 
the mean waiting time of the system, which, if x∗ is the optimal 
threshold, is

λ

2

(
(αq∗

1 + (1 − α)q∗
2)(αv∗

1 + (1 − α)v∗
2)

1 − λ(αb∗
1 + (1 − α)b∗

2)
+

((1 − α)q∗
1 + αq∗

2)((1 − α)v∗
1 + αv∗

2)

1 − λ((1 − α)b∗
1 + αb∗

2)

)
, (10)

where q∗
1 = q̃1(p1, p2, x∗), v∗

1 = ṽ1(p1, p2, x∗), b∗
1 = b̃1(p1, p2, x∗), 

q∗
2 = q̃2(p1, p2, x∗), v∗

2 = ṽ2(p1, p2, x∗) and b∗
2 = b̃2(p1, p2, x∗). We 

now explain that, for this case, as we do in (LT-APP), one can use 
the first order Taylor to derive that, at low load, the derivative of 
the mean waiting time has the same sign of

λ(q∗
1 − q∗

2)(v∗
1 − v∗

2)(2α − 1).

Hence, from the above expression, we conclude that, for the SITA 
with optimal threshold and at low load, the strategy that mini-
mizes the mean waiting time is (a) ᾱ2 = 0.5 if (q∗

1 − q∗
2)(v∗

1 − v∗
2)

is positive and (b) ᾱ2 = 0 and ᾱ2 = 1 otherwise. We compare the 
performance of the system under this strategy and under the strat-
egy α∗

2 that minimizes the mean waiting time in the numerical 
section.
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Fig. 1. Comparison of ᾱ1 (dashed line) and α∗
1 (solid line) for different values of p1.

Fig. 2. Evolution over p1 of h1(ᾱ1)
h1(α∗

1 )
.

7. Numerical experiments

We now present the numerical experiments we have carried 
out in this work. In all the experiments, we consider the same 
setting as in Figures 4-6 of [7] and Figures 5-7 of [2], that is, the 
Bounded Pareto distribution with shape parameter 1.5, E[X] = 1
and xL/xS = 104. For this setting, we get that xE = 1.3203 and that 
the optimal threshold is 1.9490.

We focus on the approximated analysis of Section 5. In Fig. 1, 
we represent by a solid line the strategy α∗

1 , which and by a 
dashed line the strategy ᾱ1. We recall that α∗

1 is the strategy that 
minimizes h1(α) and ᾱ∗

1 is the strategy that minimizes (LT-APP). 
As it can be observed, the range of values for which for strate-
gies coincide is very large. Indeed, it coincides with ᾱ1 when p1

is very small and very large, whereas if 0.14 ≤ p1 ≤ 0.28, then 
ᾱ1 = 1 and α∗

1 is smaller than 1. In Fig. 2, we represent the value 
of h1(ᾱ1)

h1(α∗
1 )

for different values of p1. We observe that, for the values 

of p1 where the strategy α∗
1 is optimal, we have that h1(ᾱ1)

h1(α∗
1 )

= 1. 
On the other hand, when α∗

1 and ᾱ1 do not coincide, we see that 
the value of h1(ᾱ1)

h1(α∗
1 )

is at most 2.2, which means that the strategy 
ᾱ1 is almost optimal. We consider the SITA policy with optimal 
thresholds when p1 
= 0 and p2 
= 0. In Section 6.3, we explain 
that, at low load, the strategy that minimizes the mean waiting 
time is ᾱ2 = 0.5 if (q1 − q2)(v1 − v2) is positive and ᾱ2 = 0 and 
ᾱ2 = 1 otherwise. We aim to compare the performance of the sys-
tem under strategy ᾱ2 with the performance under α∗

2 , which is 
the optimal strategy, i.e., α∗

2 ∈ argmin h2(α). In Fig. 3, we repre-

sent the performance ratio h2(ᾱ2)
h2(α∗

2 )
for different values of p1 and p2. 

We observe that, for all the values of p1 and p2, the value of the 
ratio h2(ᾱ2)∗ is very close to 1, hence the approximation is almost 
h2(α2 )
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optimal for almost all the values under consideration even if the 
value of the arrival rate under consideration is 1.5.

8. Conclusion

We have characterized the performance of a system with two 
or more parallel servers that receive network jobs according to a 
SITA policy, i.e., their load is balanced by routing jobs to servers 
according to job sizes, so as to make job sizes as homogeneous 
as possible within the same server. Even if servers are meant to 
deal with jobs of similar size, so as to reduce the waiting time 
in the overall system, it is possible that jobs are erroneously dis-
patched, so that the system suffers performance degradations. This 
is possible because the job size is not necessarily know at ser-
vice request time. Nonetheless, the analysis shown in this work 
leads to the identification of a simple probabilistic strategy that 
achieves near-minimal job waiting time when using error-prone 
job size predictors, and which tends to the optimal strategy when 
the load becomes low. We have validated the assumptions and ap-
proximations introduced in the analysis by means of numerical ex-
periments, which also show that the near-optimal policy achieves 
results very close to ones of the optimal policy not only under low 
load conditions, but also when the load becomes high.
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