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ABSTRACT Estimating the temperature of hot emissive samples (e.g. liquid slag) in the context of harsh
industrial environments such as steelmaking plants is a crucial yet challenging task, which is typically
addressed by means of methods that require physical contact. Current remote methods require information
on the emissivity of the sample. However, the spectral emissivity is dependent on the sample composition
and temperature itself, and it is hardly measurable unless under controlled laboratory procedures. In this
work, we present a portable device and associated probabilistic model that can simultaneously produce
quasi real-time estimates for temperature and spectral emissivity of hot samples in the [0.2, 12.0µm] range
at distances of up to 20m. The model is robust against variable atmospheric conditions, and the device is
presented together with a quick calibration procedure that allows for in field deployment in rough industrial
environments, thus enabling in line measurements. We validate the temperature and emissivity estimates by
our device against laboratory equipment under controlled conditions in the [550, 850◦C] temperature range
for two solid samples with well characterized spectral emissivity’s: alumina (α − Al2O3) and hexagonal
boron nitride (h− BN). The analysis of the results yields Root Mean Squared Errors of 32.3◦C and 5.7◦C
respectively, and well correlated spectral emissivity’s.

INDEX TERMS Probabilistic computing, radiometry, spectral analysis, spectral emissivity, spectroscopy,
steel industry, temperature measurement.

I. INTRODUCTION
The steelmaking process consists of obtaining steel products
through a series of industrial steps of ferrous raw materials
(scrap or iron ore) melting, liquid steel solidification and
thermo-mechanical transformation. Those processes must be
properly adjusted based on the features of the raw materi-
als and the required properties of the steel products to be
obtained. Currently, the two main routes for producing steel
are the integrated route and electrical route [1]. However,
no matter the process route used, obtaining inline detailed
information, not only for steel, but also for slag in the different
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reactors is of vital importance for the optimization of the
processes. In the digital era, in which industrial facilities tend
to be automatized through process smartization, the devel-
opment of online analysis tools is becoming an important
topic of concern and heavy processes like EAF (Electric
Arc Furnace) represent a giant challenge. In this sense, sev-
eral solutions have been reported for liquid steel control in
the EAF, including continuous temperature measurement by
using optical fiber or optical sensors [2], dynamic metallurgi-
cal models that continuously solvemass and thermal balances
for the whole system [3] or foamy slag detection by noise and
arc harmonics analysis [4].

As for the EAF operation, the process begins with a mix-
ture of different ferrous raw materials being introduced in
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the reactor. These materials are melted down in the initial
phases of the procedure and then, during the steel refin-
ing phase, the liquid steel is heated up till about 1650◦C.
For succeeding in the steel transformation process, most
of the undesired elements contained in the scrap are oxi-
dized and moved to the slag, whose function is also to
improve the efficiency of the huge amounts of energy
(electrical and chemical) continuously being introduced dur-
ing the EAF operation. At the end of the process, the slag
is removed from the furnace and the steel is poured into a
refractory ladle to be refined in the ladle furnace process.

The analysis of the slag temperature and chemical com-
position is of vital importance during the steel manufactur-
ing process. The slag composition is measured manually by
the use of a manually acquired and prepared sample on a
spectrometer that allows calculating the steel-slag thermody-
namic state. Although some automated methods have been
implemented to avoid the slag sample preparation and to
directly measure the slag composition based on its spectral
reflectance [5], they still require the manual extraction of the
slag sample, still representing a slow and manual process.

Novel methods are therefore required to measure the tem-
perature and composition of the liquid slag without inter-
fering with the steel manufacturing process. Currently, there
exists no viable solution for accurately measuring the temper-
ature of liquid slag, and few technologies have been posed for
online understanding of slag evolution (i.e. solid/liquid frac-
tion distribution, chemical composition or temperature) [6].
Proposing a method for remote extraction of continuous slag
characteristics would allow for the optimization the EAF
process by continuously adjusting the process parameters
according to the evolution of the slag.

In this work, we present a novel portable spectrometer
device and Bayesian probabilistic algorithm that are capable
of direct remote estimation of temperature and spectral emis-
sivity from remote radiant samples. The system captures the
radiance signal incoming from an 8 cm diameter spot located
up to 20m away. A fully Bayesian model integrates all the
signal pipeline, simultaneously estimating the sample tem-
perature, spectral emissivity’s, the absorption caused by the
presence of water vapour and CO2 along the optical path that
explains the observed radiance with a maximum likelihood.
The proposedmethodwas validated with alumina (α−Al2O3)
and hexagonal boron nitride (h−BN ) samples and compared
with standard laboratory analysis obtaining good correlation.
The proposed system andmethods can be used in steel factory
settings for in-situ electric arc furnace monitoring without the
need for active thermocouple or calibration blackbody.

II. RELATED WORK
On the EAF process, temperature is a key factor that regu-
lates thermo-chemical processes in order to yield appropriate
properties of the resulting steel [3], [7]. On the other hand,
slag composition determines the thermodynamic system sta-
tus between the steel and slag [5]. In this sense, coming to
the idea of developing methods for characterizing materials

involved in the steel manufacturing process, a compact and
portable device that remotely provides reliable composition
and temperature values under actual industrial conditions is
desirable.

The thermal infrarred range has been widely analysed by
different authors in order to establish relationships between
the spectral emissivity and the different materials. Different
works [8]–[13] analyse the relationship between the temper-
ature and the emissivity of different materials, evidencing
the dependency of the spectral emissivity on the chemical
composition for slag materials such as SiO2, Al2O3, FeO,
Fe2O3, CaO and MgO.
Temperature measurement devices are commonly divided

in two different categories: those that require contact (ther-
mometers, thermocouples, thermistors, etc.) and those that
do not (e.g. pyrometers, thermographic cameras). The latter,
which sense and measure the incoming infrared radiation
in order to estimate the temperature, are frequently used
for monitoring high-temperature furnaces. To make an accu-
rate temperature measurement, these methods require precise
knowledge on how the emissivity behaves in the spectral
range that the radiation is detected, as T = T (ε(λ)). The
emissivity ε(λ) is a parameter that indicates how a material
emits radiation when compared to a black body, the perfect
emitter.
A number of works have proposed novel methodologies to

measure emissivity and temperature in field with the use of
non-contact and portable devices: Rego-Barcena et al. [14],
[15] described a technique to obtain emissivity’s in situ at
different locations, with a portable, rugged and inexpensive
device. Their method is capable of estimating a single spectral
emissivity value and the average temperature by means of
least-squared optimization. However, this method considers
the boiler emitter as a gray body. This is not the case on the
EAF furnace, as the emissivity depends on the composition of
the slag-steel fraction [3], [8], [16]. As opposed to theirs, our
method makes no assumption on the shape of the underlying
spectral emissivity of the sample.
Other methods focus on estimating spectral emissivity’s

under controlled conditions, where the temperature is not esti-
mated but used as a model input [9]. More recently, different
Bayesian methods have been employed to model the com-
plex interactions between the radiative physical processes:
[17] used Montecarlo techniques to simulate the radiative
heat transfer between surfaces, while a few works [18]–[20]
apply Bayesian approaches to address the composition esti-
mation problem.
Temperature Emissivity Separation (TES) methods aim

to simultaneously estimate sample temperature and emis-
sivity. Given the inherently under-constrained nature of the
problem, most of them tackle the task by imposing certain
strong priors on the proposed models [21]–[27]. A few others
claim to avoid making such heavy assumptions by instead
imposing a maximization of the entropy [28]–[30], although
still require to explictly select the temperature and emis-
sivity ranges within which the solution is expected to be.
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Besides, in practice, these solutions are often tied in some
way to the specific use case for which they were conceived.
Many of the aforementioned approaches were indeed pro-
posed and tested in the context of remote sensing applica-
tions, and thus operate under a very constrained range of
plausible temperature values [21], [28].

Some of these approaches have also been applied in steel
manufacturing processes. Sonoda et al. [31] e.g. propose
a bootstrap filter-based method to estimate the probability
distribution of liquid steel temperature. Meanwhile, only
machine learning methods have been proposed for the esti-
mation of the slag parameters [32].

In this work we introduce a compact and portable device
that remotely produces reliable temperature and visible-IR
spectral emissivity estimates under actual industrial condi-
tions in quasi real time. The device comprises three punc-
tual spectrometers with partially overlapping spectral ranges,
covering a combined range of [0.2, 12.0µm] for an improved
predictive performance. Along with it, we present and vali-
date a fully Bayesian radiative transfer model that seamlessly
estimates and accounts for the spectral emissivity, the sample
temperature and the different unknown variables that may
affect the received radiance on real industrial situations such
as presence of gases on the optical path or fiber misalign-
ments on the spectrometers. It does so by leveraging the sig-
nal received by the three available spectrometers, and could
easily generalize to an arbitrary number of them. As opposed
to machine learning-based approaches, the model can be con-
sidered unsupervised once the calibration procedure has been
completed, as it requires no further training data. In addition,
it yields full density estimates of the considered random
variables, thus considering the uncertainty associated to each
prediction. This is possible due to its Bayesian nature, which
also implies the need to impose a prior distributions over each
of the target random variables. The distributions proposed in
section IV-B for such priors provide a good parametrization
for the very wide range of temperatures considered in this
work. However, these are soft constraints that may be further
softened by substituting them by other less informative distri-
butions (or hardened, should the user wish to apply it in more
constrained setups); the described framework would still be
valid in both cases, and the influence of the prior distributions
is in any case overridden as the evidence provided by the
captured observations becomes more prevalent.

III. DESIGN OF THE DEVICE
As mentioned in section II, several systems have been pro-
posed to simultaneously calculate spectral emissivity and
temperature of hot emissive samples. However, these systems
have been designed to work under strict controlled laboratory
conditions and are not capable of estimating the temperature
and spectral emissivity under real industrial conditions. The
targeted goal for our device is to allow operating on the prox-
imity of the electric arc furnace from the steel factory. These
conditions imply high temperature, dirtiness, tolerance to

mechanical impacts and vibrations and uncontrolled vapour
conditions.

Based on preliminary laboratory testing and analysis,
the following system requirements were defined and set as
design guidelines. (i) As for the optical requirements, a spec-
tral range of 200−12 000 nm was defined with a minimum
spectral resolution of 50 nm/pixel on the far infrared region.
(ii) The device should allow for the remote acquisition of
a spot with a diameter of 12mm at a distance of 20m.
(iii) The system should be able to perform simultaneous
spatial and temporal acquisition, (iv) with a minimum acqui-
sition rate of 0.5 samples per second. (v) Regarding usability,
the device should provide in-field pointing capabilities and
on-field calibration mechanism without the need for sending
the system to laboratory for calibration. (vi) Finally, as for
the working conditions, the system should be tolerant to heat
and vibrations and (vii) agnostic to the presence of water
vapour, CO and CO2 on the optical path. The present work
describes how a prototype fulfilling these requirements has
been designed, built, calibrated ant tested both in laboratory
and in real industrial conditions at the ArcelorMittal research
casting factory of Sestao.

A. SYSTEM DESCRIPTION
Fig. 1 shows the acquisition device diagram. In order to cap-
ture the radiance from a 12mm diameter area from region (A)
located up to a distance of 20m we employ a UV-Enhanced
Aluminum Reflective collimator (B) with an SMA connector
that assures a 12mm beam and a good reflectivity throughout
the required range. The captured radiance passes through a
special fiber (C) comprising a fiber bundle that ends in 4
SMA-905 outputs (D). This fiber bundle is composed by
one input and four outputs, allowing spectral coverage in
the 200−12 000 nm range. This fiber bundle is composed
by seven fibers: 1×200µm UV-VIS fiber, 3×240µm Poly-
cristaline infrared (PIR) fibers and 4× VIS-NIR 200 µm
fibers. Two VIS-NIR fibers (H) are connected to an inline
splice bushing connector (Thorlabs 20-02) (I) which is also
connected to a green laser source (J) (MGL-III-532-300mW)
that serves as system pointer. The UV-VIs fiber (E) con-
nects into a UV-VIS spectrometer (L), an Ocean Optics
HR2000 with a composite grating covering 200−1100 nm.
A notch filter (K) (Thorlabs NF533-17) is placed to remove
green laser signal from the spectrometer entrance. The other
two VIS-NIR fibers (F) are connected to a Fourier transform
infrared spectrometer (M) composed by a CaF beamsplitter,
with an InGaAs detector covering the 0.9−2.6µm range
(ArcOptics). The two PIR fibers are connected to a second
Fourier Transform Infrared spectrometer (N) with a ZnSe
beamsplitter covering the 2.5−12µm range (ArcOptics).

The system is packed into an acquisition case (see Fig. 2)
that allows taking measurements on industrial conditions.
The case provides mechanical protection to the optical
components as well as data connectivity based on a sin-
gle USB output connection for all the different acquisition
devices.
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FIGURE 1. Design diagram of the acquisition system. Targeted point is illuminated by the green laser (J). A collimator (B) captures the signal, which is
transmitted to the three spectrometers (L), (M) and (N) through the fiber bundle (D). Filter (K) eliminates the signal from the green laser (J).

FIGURE 2. Packed prototype. (left) Acquisition case, (middle) Packed opto-mechanical system, (right) Tripod mounting.

In order to obtain a continuous spectral signature in each
capture, a dedicated software has been developed. The soft-
ware performs real time acquisition of the data from the three
spectrometers and it applies the latest optical system’s cali-
bration function on the fly. It allows plotting, recording and
saving the captured information, and provides access to the
specific low-level settings of each independent spectrometer.

B. SYSTEM CALIBRATION
The calibration of the system have been divided into two
different processes. A first process models the spectrometers’
non linear response and generates the optical system transfer
function. However, the intended working conditions of the
system may significantly affect the system calibration. Fiber
re-installation, vibrations and in-place temperature variations
affect the amount of radiance acquired by each spectrometer.
This makes necessary an additional in-situ calibration of the
system. To cope with this, a second calibration stage based on
a stabilized calibration lamp is added to the system operation.

1) CALIBRATION OF THE NON-LINEARITIES OF THE
SPECTROMETERS
Each spectrometer wavelength was calibrated by fitting
a 2nd degree polynomial function that maps the collected
counts by the spectrometer at each λi into the theoretical

blackbody radiance at the blackbody temperature (Tj). The
polynomial coefficientsWλi are estimated at each wavelength
λi by minimizing the root mean square error between the
theoretical blackbody emissivity at Tj: Lbbλi (Tj) and the map-
ping of the counts Cλi (Tj) acquired by the spectrometer when
looking into a calibrated blackbody at temperature Ti at λi as
described in (1):

arg min
Wλi

√√√√√ Tn∑
Tj=T0

[Lbbλi (Tj)− fcalib(Cλi (Tj),Wλi )]2 (1)

where fcalib is a 2nd degree polynomial function that takesWλi

as its polynomial coefficients to map spectrometer acquired
counts into theoretical radiance.

To calibrate the system, acquisitions over a blackbody
furnace between 500◦C and 1500◦C were performed at the
closest possible distance of 600mm from the tip of our
system collimator and the end of the blackbody furnace.
Fig. 3 depicts the calibration setup. It is noteworthy to remark
that this optical path contained gases composition that cor-
responds to the part of the atmospheric transmittance corre-
sponding to the optical path that is inside of the calibrated
device. However, this effect can be considered negligible in
comparison to the full optical path.
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FIGURE 3. Acquisition system under calibration set-up.left) System on the
calibration room close to the blackbody furnace, right) Close-up.

The root mean squared error resulting from this process
was 2% for spectrometer 1 (200−1100 nm), 1% for spec-
trometer 2 (970−2600 nm) and 0.5% for spectrometer 3
(2500−12 000 nm), as illustrated in Table 1. Correlation
among theoretical radiance and calibration-corrected cap-
tured samples for three specific wavelengths and six temper-
atures is depicted in Fig. 4.

TABLE 1. Acquisition system calibration error (%).

2) FIELD CALIBRATION
Working in industrial conditions makes the system be
affected bymechanical vibrations, dust, temperature changes,
etc. Even the movement between the different fibers occa-
sionally led to observed intensity changes of up to 15% on the
collected signal. Fortunately, these changes are related to the
coefficient of transmission between the different fibers and
devices. We model this transmission coefficient as indepen-
dent from wavelength. Based on this hypothesis, we assume
that the change in the amount of radiance acquired by each
spectrometer S can be modelled by a proportional factor Cs
that does not depend on the wavelength.

In order to reduce this effect, a stabilized spectral cal-
ibration lamp emulating a blackbody at 1500K (Thorlabs
SLS203L (500−9000 nm)) is proposed for daily calibration
at the beginning and at the end of each acquisition cam-
paign. The calibration lamp is used with an installed diffusion
filter to allow for diffuse illumination into the collimator.
Fig. 5 depicts the imaging systemwith the coupled calibration
camera.

The field calibration procedure is defined as follows:
(i) During the spectrometers’ non-linearity calibration phase
(section III-B1) the calibration lamp is mounted into the
system and switched on, and the radiance captured by the dif-
ferent spectrometers Ls0(λ) is stored as reference. (ii) Later,
during the field measurements, the calibration lamp is set
again and the new signal Ls1(λ) is recorded. (iii) For each
spectrometer, the ratio of the average intensity between the

two lamp signals along a specific spectral range [λl, λh] is
used for signal correction, as shown in (2). An spectral range
of 450−900 nm is used for spectrometer 1, 960−2500 nm
for spectrometer 2 and 3500−4000 nm for spectrometer 3.
Figure 6 shows the resulting three obtained correction
factors Ks, one per spectrometer. The RMSE before correc-
tion was 11% for the signal induced by the calibration lamp,
whereas this error was reduced to 0.4% after applying the
correction factors.

Ks =

λh∑
λ=λl

Ls1(λ)

λh∑
λ=λl

Ls0(λ)

, ∀s ∈ {1, 2, 3} (2)

IV. RADIATIVE TRANSFER MODEL
A. MODEL FORMULATION
Our final aim is the simultaneous estimation of the tempera-
ture Tbb and spectral emissivity ε(λ,Tbb) of the observed hot
sample, taking as sole input the number of counts (i.e. digital
level magnitude) yielded by the capture software as a function
of the wavelength, C(λ). We model the scenario described
in the preceding sections as a perfect blackbody radiator
Lbb(λ,Tbb) emitting at our unknown target temperature Tbb,
whose emission is successively filtered by (i) a selective filter
with a transfer function that equals the spectral emissivity
that characterizes the sample (both conforming a selective
radiator), (ii) the atmospheric spectral transmittance of the
optical path between the device and the sample, Tatm(λ),
and (iii) the transfer function of the full multi-spectrometer
optical system, TOS (λ) (comprising the fibers, optical com-
ponents, detector and the slit function modelling its spectral
convolution), which is determined by the calibration process
(see section III), and relates the observed physical magnitude
-radiance, in W/m2µm- to the counts yielded by each of the
spectrometers. Equation (3) formalizes this model, which is
graphically described in Fig.7 [33].

C(λ) = TOS [Lbb(λ,Tbb) · ε(λ,Tbb) · Tatm(λ)] (3)

Thus, the calibrated radiance being observed by our sys-
tem, Lobs(λ) can be obtained by inverting the precomputed
optical system’s transfer function (resulting from the calibra-
tion process described in section III-B) and directly applying
it to each captured observation:

Lobs(λ) = T −1OS [TOS (Lbb(λ,Tbb) · ε(λ,Tbb) · Tatm(λ))] (4)

The remaining terms in (4) contain certain variables that
are either our target magnitudes (i.e. spectral emissivity,
ε(λ,Tbb) and temperature Tbb of the equivalent ideal black-
body) or side parameters that need to be estimated from our
observations. In order to solve for these all simultaneously
we adopt a probabilistic programming framework and build a
Markov-Chain Monte Carlo (MCMC) based Bayesian infer-
ence model. The modeling details of each of such terms are
introduced in the rest of this section:
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FIGURE 4. Correlation plot of the calibrated system response vs. an ideal blackbody source for three separate wavelengths (1765.54 nm, 2527.81 nm,
5330.49 nm) at six different furnace temperatures. x axis: theoretical blackbody radiance at the specific wavelength. y axis: radiance estimated by the
calibration polynomial.

FIGURE 5. Calibration lamp for field calibration. (left) System mounted
for calibration, (right) Lamp calibration diagram: calibration lamp,
diffusion filter and SLS203L camera.

The ideal blackbody radiance, Lbb(λ,Tbb), is defined as:

Lbb(λ,Tbb) =
2hc2

λ5

1

e
hc

λkBTbb − 1
(5)

where kB is the Boltzmann constant, h is the Planck constant,
and c is the speed of light. Equation (5) shows the heavy
dependence of the radiance Lbb(λ,Tbb) with the target tem-
perature Tbb of the sample. An accurate estimation of this
parameter is thus critical. We consider such temperature a
stochastic variable to be estimated by the probabilistic model.

The spectral atmospheric transmittance, Tatm(λ), can be
defined as a function of the distance, d , between the capturing
device and the observed radiating sample, and the attenuation
coefficient of the atmosphere, γatm. The latter can be further
decomposed in terms of the molar concentration x and the
unitary absorption coefficient γ of each of the considered

FIGURE 6. Calibration correction by using the calibration lamp. (top) In
blue, the current radiance received by the sensor, in red the reference
radiance obtained at calibration time and in green the corrected radiance
after applying the correction factors Ks. (bottom) The three Ks correction
factors calculated, following (2), as the ratio of current collected collected
lamp-induced radiance Ls1(λ) and the radiance collected with the lamp
right after the nonlinear response calibration Ls0(λ).

absorbents, a. Therefore:

Tatm(λ) = e−d ·γatm = e
−d ·

∑
a
−xa·γa

(6)

The distance d is set manually according to the acquisition
set-up, while the attenuation coefficients are obtained from
the HITRAN2016 (High Resolution Transmittance) molec-
ular spectroscopic database [34], which comprises spectro-
scopic parameters for a number of gaseous molecules with
a high spectral resolution, and constitutes the de facto stan-
dard for the simulation of atmospheric molecular absorption
under arbitrary conditions. The HITRAN Application Pro-
gramming Interface (HAPI) [35] was used during this work
in order to obtain accurate and line-by-line information about
the absorbents being considered in our measurements. HAPI
provides the molecule-specific attenuation coefficient infor-
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FIGURE 7. Radiative transfer model: The radiance from a blackbody emitter at the unknown sample temperature is
successively filtered by the spectral emissivity of the sample, atmospheric transmittance of the optical path, and transfer
function of the capturing optical system and sensor. The model is solved through Bayesian probabilistic inference and
yields full probability density estimates of sample temperature, spectral emissivity, atmospheric CO2 and H2O
concentrations, and other auxiliary variables. Dashed lines represent signals, continuous lines represent the different steps
modeled by their spectral transmittance.

mation in the form of cross section (σi) with [cm2/molecule]
units, which we then convert appropriately. In our case,
the molar concentration of the absorbents (xa) are unknown
probabilistic variables to be estimated by the model. We ini-
tially considered a set of potentially significant absorbents
comprisingH2O,CO2,O3,CO,CH4,N2O, andO2. However,
after simulating the spectral atmospheric transmittance due
to each of them within a range of typical concentrations,
sampling distances and ambient conditions in industrial envi-
ronments (see Fig. 8), onlyH2O,CO2 where kept in themodel
as the ones with non-negligible contributions to the overall
absorbance, in order to reduce potential sources of overfitting.
Hence, (6) can be further decomposed:

Tatm(λ) = e−d ·γatm = e−d ·(xCO2 ·γCO2+xH2O·γH2O) (7)

Fig. 9 shows the effect of the resulting typical atmo-
spheric transmittance over the emission of an ideal blackbody
at 1550 ◦C at a sampling distance of 1.5 m .

The definition domain of the spectral emissivity,
ε(λ,Tbb), of the observed radiative source -our main target
variable, which is continuous as a physical magnitude- is
given by those of the three spectrometers of the capturing
device, which, together, sample the continuous spectrum at
λi ∃∀i ∈ [1,N ].

However, in order to prevent overfitting, we regularize the
spectral emissivity with a set ofM probabilistic variables εk ,
with k = 1, . . .M andM � N , each paired with one specific
anchor wavelength in the considered range, and whose values
represent the value of the spectral emissivity of the radiative
source at each of such spectral sampling points.

In order to obtain the spectral emissivity defined for every
value of λi, we take advantage of the smooth variation of
the spectral emissivity function [36], and pose M fuzzy sets
defined by their triangular membership functions µk :

µk (λ) =

1−
∣∣∣∣λ− λckD

∣∣∣∣ λck − D < λ < λck + D

0 otherwise
(8)

where λck is the central wavelength corresponding to εk , ∀k ∈
[1, . . .M ]. Using this representation, the spectral emissivity
at any arbitrary wavelength i can be estimated as the weighted
value of the peak emissivity values, εk , defined at the center
of the each fuzzy set (Fig. 10).

Multi-spectrometer setupAlthough useful for standalone-
spectrometers, the presentedmodel does not take into account
the case where the observed spectral radiance signal is a
combination of a set of various spectrometers operating
in adjacent, partially overlapping regions of the spectrum.
Regions perfomning high noise were removed from the
model. For spectrometer 1 wavelengths between 0.2−0.4 um
and 0.9 − 1.2 um were removed due to spectrometer lack
of sensitivity. For spectrometer 2, wavelengths between
2.5 − 2.7 um were removed and for spectrometer 3,
wavelengths between 1.6 − 3.0 um and were removed. The
optical system of our device comprises, though, three differ-
ent spectrometers, six bunches of optic fiber and a reflective
collimator, whose aperture causes that the three spectrometers
do not measure exactly the same area. In order to account
for this and for possible fiber misalignments, we introduce a
set of three additional proportionality correction probabilistic

VOLUME 9, 2021 100519



A. Picon et al.: Probabilistic Model and Capturing Device for Remote Simultaneous Estimation

FIGURE 8. Spectral atmospheric transmittance due to each of the
considered absorbents (H2O, CO2, O3, CO, CH4, N2O, and O2.) and the
combined transmittance for typical concentrations and 27◦C, at a
distance of 1.5 m.

variables ks (with s = 1, 2, 3) into the model. These are con-
stant for every value of λ within each spectrometer, and their
prior value can be pre-calculated by the use of a calibration
lamp as shown in (2) and explained in section III-B2. Minor
variations over the pre-computed Ks can be estimated by the
model should they provide a better explanation (i.e. higher
likelihood) of the observed data.

The resulting radiative transfer model is thus:

Lobs(λ)

= T −1OS

[
TOS

(
ks ·e−γatm(λ)·d ·ε(λ,Tbb) · Lbb(λ,Tbb)

)]
(9)

which contains M + 6 unknown parameters that need to be
estimated, i.e. θ = {Tbb, σ, xCO2 , xH2O, k1, k2, k3, εk} ∀k ∈
[1 . . .M ]. Tbb was directly one of our ultimate targets, and the
other one, i.e. ε(λ,Tbb), can then be reconstructed for every
value of λi ∀i ∈ [1 . . .N ] via the membership functions (µk )
from εk ∀k ∈ [1 . . .M ].

B. SOLVING THE MODEL THROUGH PROBABILISTIC
INFERENCE
The only information available to estimate these unknown
variables are the observations acquired by the capturing
device, Lobs, and the radiative transfer model defined by (9).
In order to do so, a probabilistic Bayesian inference approach

FIGURE 9. Radiance from an ideal blackbody at 1550◦C filtered by
simulated atmospheric transmittance due to H2O, CO2 absorption at
typical concentrations and 27◦C, sampled at distance of 1.5 m. 1st row)
Combined absorbance of the optical path at high spectral resolution,
as yielded by the HAPI model (i.e. line-by-line cross-section information).
2nd row) Equivalent transmittance as a result of converting the original,
line-by-line magnitude to a low resolution one -matching those of the
spectrometers- by convolving the signal with the slit function that
characterizes each of the spectrometers’ sampling processes (a sinc
function for the FTIR spectrometers and a triangular function for the
non-FTIR one). 3rd row) Blackbody radiance and high resolution radiance
once filtered by the atmosphere. 4rd row) Atmosphere-filtered radiance
convolved and downsampled to match the spectrometers’ resolution.

FIGURE 10. Triangular shaped membership functions µk , defined over
their respective M central wavelengths λck ,k = 1 . . .M and with a
distance D between adjacent central wavelengths λck .

is proposed. The field of Bayesian inference addresses
the classical problem of fitting a probabilistic parametric
model —our equation (9)— to the available noisy observa-
tions, i.e. learning the values of the model parameters, θ ,
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that best explain the measured data, assuming that the model
describes the data generation process faithfully. As opposed
to well-known point estimators for such parameters
(e.g. Maximum Likelihood, or Maximum A Posteriori),
Bayesian inference constructs a full probability distribution
over the values of each model parameter, in such a way that
we gain insight about the goodness of our fit, effectively mod-
eling the inherent uncertainty of any measurement process
and accounting for the fact that there is no single optimal
set of parameter values which are compatible with the noisy
observations.

At the core of this approach lays the classical Bayes’
formula:

P(θ | x) =
P(x | θ )P(θ )

P(x)
(10)

where:
• P(θ | x), known as the posterior probability distribution,
is the probability of each parameter value given the
measured data. This is ultimately our quantity of interest,
the one we need to compute.
In this case we have:

P(θ | x) = P(Tbb, σ, xCO2 , xH2O, k1, k2, k3,

ε1, . . . εM | Lobs(λ)) (11)

and we are ultimately willing to know what are the
sample temperature (Tbb) and emissivity’s εk (Tbb) that
best explain the measured radiance data.

• P(x | θ ) is the likelihood, i.e. how we think the data
is distributed given a parameter set θ , or how likely it is
that the data was generated by our model with such given
parameter set. This is what we use to evaluate how well
our model explains the data, and where we describe how
our data was generated, guided by (9).

• P(θ ) is the prior, i.e. the probability distribution over the
different parameter values. This is the magnitude that
we can use to incorporate any prior knowledge we could
have over the parameter values. Table 2 summarizes the
prior assignments used in our solution.

• P(x) is the evidence that the data was generated by this
model, which could be computed by integrating over
all possible parameter values: P(x) =

∫
θ
P(x, θ)dθ . For

non-trivial models, though, we are not able to compute
this integral in a closed form.

The intractability of P(x) makes the exact computation
of P(θ | x) impossible in most of real-world examples.
However, we can try to approximate the posterior making
use of Markov Chain Monte Carlo (MCMC) methods, which
work by constructing a Markov Chain that generates samples
yielding a distribution that matches that of the posterior:

P(θ | x) ∝ P(x | θ )P(θ ) (12)

This can be achieved by defining just the priors and likeli-
hood, thus avoiding the need to work with the evidence term.
Themain of the few caveats to be taken into account is that the

samples from the resulting distribution are not independent
i.e. there is a certain non-zero serial correlation between them,
but the resulting distribution can be monitored to this respect
so as to ensure a good-enough mixture (i.e. sampling).

The subject of probabilistic programming has recently
emerged as a field that helps programmatically describe how
the available data have been generated in terms of random
variables, probability distributions and deterministic relations
that can be used to model real-world processes. Specific
programming languages exist that follow and implement
this paradigm, but some general-purpose languages, such as
Python, also offer library-based approaches to it, such as
PyMC3 [37], which was our library of choice.

The first modeling decision was to represent the difference
between the expected theoretical spectral radiance (given
by the successively filtered Planck’s law) and the obtained
measurement as a normal distribution N (µ, σ 2), where each
sample corresponds to a given wavelength. This corresponds
to our likelihood. We can thus define our observed radiance
data, Lobs, as:

Lobs ∼ N (µ, σ 2) (13)

where the expected value of the distribution,µ, around which
the measured samples are expected to be located, follows a
deterministic transformation of the random variables accord-
ing to (9):

µ = Lexpected (λ) (14)

And the standard deviation of the distribution is also a
random variable with a prior following a Half-Cauchy dis-
tribution [38] with a fixed beta parameter value:

σ ∼ HalfCauchy(β = 10) (15)

This means that we are assigning high likelihoods to
those unknown random variables that generate a theoret-
ical Lexpected (λ) radiance which is numerically close to
the Lobserved (λ) radiance acquired by our device. MCMC
obtains the posterior probability P(θ | x) by sampling from
some probability distributions that represent our prior knowl-
edge over each of the unknown model parameters from the
model independently of the observed data. We define such
parametrized prior distributions in Table 2, by observing their
expected occurrence in nature:
• Tbb is the expected temperature distribution of the target
sample. We use the minimum and maximum tempera-
ture values and set a uniform distribution between those
values.

• The values of the molar concentrations of CO2 and H2O
are based on real typical atmospheric ranges.

• Ks are pre-calculated with a calibration lamp as defined
in (2) (section III-B2) and the model assumes that there
can be some variation over this pre-calculation. Conse-
quently, they are modeled as normal variables.

• εk is the expected value of the spectral emissivity of the
radiative source at the k th control wavelength.
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TABLE 2. Prior distributions assigned to each of the random variables
from our Radiative Transfer Model from (9).

• σ models the intensity of the noise existing on the cap-
tured signal, independently of the region of the spectrum
where it is produced. The extremes of the spectral range
of each of the spectrometers are more prone to larger
noise levels, while central wavelengths of the respective
ranges exhibit less noise. The imposed Half-Cauchy
distribution (15) aims at modeling such behavior.

Once we have described the observed data generation pro-
cess (atmosphere-corrected and calibrated radiance as given
by the spectrometers), we can apply MCMC to obtain sam-
ples from the posterior distribution of each of the unknown
variables. Note that, as a result, we will have simultane-
ous probabilistic estimates for all the random variables that
we defined along this description. These will be our model
parameters:

θ =
{
Tbb, σ, xCO2 , xH2O, k1, k2, k3, ε1, . . . εM

}
(16)

In reality, MCMC comprises a full family of distinct algo-
rithms for generating such samples. One of the most efficient
ones in the task of going over the full multidimensional
posterior space generating samples is the NUTS (No-U-Turn
Sampler) sampler [39], used in our solution, which takes
advantage of the use of the gradient for such duty. In doing
so, the more data samples we have, the lower will the uncer-
tainty in the parameter estimation be, and the less the serial
correlation of the samples. This will be reflected in narrower
monomodal distributions for these estimates. Also, for the
same sample size, the uncertainty will grow as the number
of parameters we need to estimate increases.

In summary, a complete Bayesian probabilistic model was
built, which is sensitive to both the observed data and the the-
oretical framework comprising the optical calibration transfer
function of the device, the proportional misalignment and
calibration correction factor of the individual spectrometers,
the spectral emissivity and temperature of the radiative sam-
ple, and the atmospheric absorption corresponding to the
optical path between the device and the observed sample. The
joint modeling of these parameters by means of a Bayesian
inference model implemented via probabilistic programming
makes the developed model remarkably flexible and robust,
and enables the simultaneous estimation of all the unknown
parameters.

V. EXPERIMENTAL VALIDATION
In order to validate the proposed method and acquisi-
tion system, two different reference materials were chosen:

Alumina (α−Al2O3) and hexagonal boron nitride (h−BN ),
for which the emissivity has already been studied [40]–[43].
The spectral emissivity of these materials was carefully
measured in laboratory conditions using the HAIRL emis-
someter and applying a recently upgraded quantification
methods [40], [44]. Making use of a dedicated experimental
device, infrared spectral directional emissivity measurements
were performed accurately in a controlled atmosphere as
a function of temperature, emission angle, and in situ sur-
face state evolution. These samples have been chosen for its
high-temperature structural stability and the presence of a
Christiansen wavelength. This is a wavelength in the infrared
region that appears in certain ceramic materials at which the
emissivity equals to one [41]. It is a very useful feature to
obtain the sample temperature at time it is being measured.
As the emitted radiation equals to R = εL(T , λ), where
L is the Planck function, knowing the emissivity at a certain
wavelength allows calculating the temperature. Since the
Christiansen wavelength is temperature-independent, usually
it is easily determined at room-temperature by obtaining a
spectrum with an integrating sphere.

The spectral emissivity and sample temperature of both
materials were estimated under factory industrial conditions
by the system andmethods proposed in this paper. The valida-
tion of the temperature estimation process was performed by
attaching a thermocouple to the sample whereas the spectral
emissivity’s of the materials were compared with the values
measured through the HAIRL emissometer, showing high
correlation. This section details the performed experiments.

A. EXPERIMENTAL SETUP
1) LABORATORY MEASUREMENT SETUP
Normal spectral emissivity measurements were performed
in laboratory air using a Fourier-transform infrared
spectrometer (FTIR) with a thermal DLaTGS detector
(1.43−25µm spectral range, a reference blackbody (Isotech
Pegasus 970-R R©) and an optical entrance box that allows
switching between the blackbody source and the sample
chamber by a rotating plane mirror. As pointed out in [44],
a 10◦ tilting was applied to the sample to avoid spurious
signals. The sample was heated with a resistive Kanthal R©

wire located underneath, as depicted in Fig. 11. It was heated
at a 0.4 K/s rate in order to avoid cracking from sudden
thermal expansion and it was stabilized for 15 minutes to
ensure high-temperature stability and constant radiance.

The emissivity measurements were performed between
100◦C and 860◦C. To determine the actual sample temper-
ature, a non-contact method suitable for materials with low
thermal and electrical conductivities was applied. It makes
use of the so-called Christiansen wavelength, at which the
emissivity is very close to 1 and almost independent of
the temperature [40], [41]. The Christiansen wavelength is
determined by means of a simple room-temperature reflec-
tivity measurement using an integrating sphere. Then, each
measurement temperature is computed by manually forcing
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FIGURE 11. Arrangement of the sample in the analysis chamber.

the emissivity at the Christiansen wavelength to be the value
determined in the reflectance measurement (very close to 1).

2) IN-FIELD INDUSTRIAL SETUP
For the industrial conditions measurement, a refractory brick
was used to hold the alumina sample. In order to allow
time for an accurate temperature measurement, a thermo-
couple was attached to the sample by means of refractory
cement, as depicted in Fig. 12. The calibrated acquisition
system was positioned at a top position and in-situ calibra-
tion was performed following the procedure explained in
section III-B2 making use of the calibration lamp.

The sample was then heated by means of a LH
15/12 Nabertherm furnace up to 1100◦C. After a stabiliza-
tion time of 10min the sample was taken off the furnace
and placed on the sample stage. The system was monitored
simultaneously by an OPTIX PT 50 (1100−1700 nm) exter-
nal pyrometer and a FLIR T640 (7500−14 000 nm) external
thermal camera that were used as control devices. The exper-
imental setup is presented in Fig. 13.

Under this configuration, the sample temperature is
continuously being monitored by the thermocouple. The
sample radiance was also captured by the presented
multi-spectrometer device at a rate of 0.75 samples/s, with
all radiance in the 200−12 000 nm being captured. The
acquired signal was processed by the probabilistic algo-
rithm detailed in section IV and the sample temperature and
the spectral emissivity’s at the anchor wavelengths λck =
{0.2, 1.0, 1.5, 2.0, 3.0, 5.0, 6.5, 8.0, 10.0, 12.0}µm are esti-
mated. The experiment was stopped when the measured sam-
ple temperature reached around 600◦C, at which the radiance
signal becomes too noisy for our system. This temperature
corresponds, in terms of approximate equivalent radiance for
the case of the two consideredmaterials, with the lower bound
of the calibration range described in III-B, which can be
shown shaded in red in Fig. 17 and Fig. 23.

FIGURE 12. Sample holder for the alumina, including the attached
thermocouple.

FIGURE 13. Experiment setup. The figure shows the acquisition device
mounted on the top part, a control pyrometer and thermal camera,
the furnace to heat the sample, the attached thermocouple and the PCs
running the acquisition and control software for the different devices.

B. ANALYSIS OF ALUMINA
Alumina (α − Al2O3) was chosen as a reference material
to validate the infrared emissivity measurements performed
by the proposed system. Its purity and open porosity were
certified by the supplier (McDanel Adv. Ceramic Technolo-
gies) to be 99.8% and 0%, respectively. The surface rough-
ness was measured with a profilometer and the average and
root mean square values obtained were Ra = 1.36µm and
Rq = 1.69µm, respectively. Then, the infrared reflectance
at room temperature was measured (see Fig. 14) to locate
the Christiansen wavelength, which was thereby at 9.82µm,
with an emissivity value of 0.99. This value is in very good
agreement with the expected one according to the data in the
literature [41].

The results of the laboratory emissivity measurements fol-
lowing the approach illustrated in section V-A1 are shown
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FIGURE 14. Spectral emissivity of the alumina sample measured at
room-temperature from reflectivity (blue) and from direct radiometric
measurement with the laboratory setup at 103◦C (orange).

FIGURE 15. Normal spectral emissivity of the Alumina sample as a
function of temperature, as measured in laboratory.

in Fig. 15. The shape of the spectra and the thermal evolu-
tion are consistent with previous results in the literature and
the typical behaviour of dielectric materials [40], [41]. It is
important to note that the emissivity values observed below
4 µmwill not be considered in this work, because the material
becomes semitransparent at those wavelengths and part of the
radiation emitted by the heater reaches the detector [40], [45].

The treatment of this effect is out of the scope of the current
work. In addition, the feature at 4.18µm can be explained
by the fundamental vibrational mode of CO2, whereas the
H2O absorption is clearly observed in the 5.5−7.5 µm range
and due to the residual gases present on the optical path.
The curve corresponding to the lowest temperature config-
uration (i.e. 103◦C) recorded in this way is also overlaid
in Fig. 14, showing good accordance with the room tempera-
ture reflectance measurement.

Thereafter, an alumina sample was also analyzed following
the industrial setup described in section V-A2. Fig. 16 rep-
resents partial results of the algorithm, showing the posterior
probability of some of the measured stochastic variables such
as sample temperature, spectral emissivity’s orH2O and CO2
concentrations. Note that we obtain full probability density
estimations of the considered probabilistic variables, which
constitute a more informative outcome than point estimates
obtained from other non Bayesian approaches. Fig. 17 depicts
the remaining components of the output of the algorithm.
On the top figure, dotted red points show the signal captured
by the device after calibration correction. The blue continu-
ous line represents the theoretical radiation from a blackbody
at the temperature given by the thermocouple. The green
line represents the radiance of an ideal blackbody Lbb(λ, T̂bb)
at the temperature T̂bb estimated by the algorithm, whereas
the black line represents the estimated radiance L̂(λ, T̂bb) of
the sample when applying the spectral emissivity ε̂(λ, T̂bb)
estimated by the algorithm to Lbb(λ, T̂bb). The magenta line
represents the calculated spectrum when applying the esti-
mated attenuation caused by CO2 and H2O to the spectrum
L̂(λ, T̂bb). On the bottom part of the figure we depict spec-
tral the emissivity ε̂(λ, T̂bb) estimated by the algorithm as
defined in eq. 8 and Fig. 10, by composition of the poste-
rior probability estimates of the emissivity’s at the anchor
wavelengths εk .
Fig. 18 shows the comparison between the temperature

measured by the thermocouple and the temperature estimated
by the proposed system for the alumina at different real tem-
perature values. The comparison yields a Root Mean Square
Error (RMSE) of 32.3◦C between them and a coefficient of

FIGURE 16. Estimated posterior probability of some of the stochastic variables for an alumina sample. Each plot comprises 20 random initializations of
the model.
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FIGURE 17. Algorithm output for an alumina sample at 607.8◦C. Top)
Application of probabilistic radiative transfer model to the sample. The
blue continuous line represents the theoretical radiation from a
blackbody at the temperature given by the thermocouple. The green line
represents the radiance of an ideal blackbody Lbb(λ, T̂bb) at the
temperature T̂bb estimated by the algorithm, whereas the black line
represents the estimated radiance L̂(λ, T̂bb) of the sample when applying
the spectral emissivity ε̂(λ, T̂bb) estimated by the algorithm to
Lbb(λ, T̂bb). The magenta line represents the calculated spectrum when
applying the estimated attenuation caused by CO2 and H2O to the
spectrum L̂(λ, T̂bb). Bottom) Emissivities ε̂(λ, T̂bb) estimated by the
algorithm as defined in (8) and Fig. 10.

FIGURE 18. Regression graph between the temperature measured by the
thermocouple and the temperature estimated by our proposed system
and method for the Al2O3 sample.

determination R2 = 0.96, thus exhibiting a good correlation
across the whole temperature range. Note that the compar-
atively higher error at the lowest nominal temperatures is
consistent with the fact that part of the spectral radiance
reaching the system falls below the calibrated range for those
temperatures, due to the low emissivity of the sample in
such region (see Fig. 17). This range also corresponds to the
non-zero transmittance region of the alumina.

Finally, Fig. 19 represents the emissivity’s measured under
laboratory conditions for the alumina sample at a single
temperature setting (see section V-B). The qualitative emis-
sivity behaviour is resembled correctly by the model in the
range of 3.6−12.0µm. The obtained curve is the typical of
ceramicmaterials. From the Christiansenwavelength towards
shorter wavelengths, a high-emissivity plateau is observed

FIGURE 19. Spectral emissivity of the alumina sample determined in
laboratory conditions compared to the emissivity estimated by the
algorithm under industrial conditions.

FIGURE 20. Spectral emissivity of the boron nitride sample measured at
room-temperature from reflectivity (blue) and from direct radiometric
measurement with the laboratory setup at 103◦C (orange).

FIGURE 21. Normal spectral emissivity of the hexagonal boron nitride
(h− BN) sample as a function of temperature, as measured in laboratory.

followed by a steep decrease, whereas towards longer ones
the emissivity immediately decreases. For this range it is
also observed that there is a more than acceptable quanti-
tative agreement between the algorithm estimation and the
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FIGURE 22. Estimated Posterior probability of some of the stochastic variables for a boron nitride sample. Each plot comprises 20 random initializations
of the model.

laboratory measurement. Therefore, we can conclude that
the proposed system is suitable to adequately estimate the
temperature and emissivity of alumina. It is worthmentioning
here that below 3.6µm, both curves differ due to the non-zero
transmittance of the sample, and part of the radiation from
the heating set is therefore detected by the spectrometer. This
semi-transparency effect will not be treated here. Besides,
in the laboratory-air measurement tracks of CO2 and H2O
are evident, while the correction applied in the model appro-
priately removes these ‘‘artifacts’’ from the actual emissivity
evolution.

C. ANALYSIS OF BORON NITRIDE
A sample of hexagonal boron nitride (h − BN ) was used
as a reference material complementary to alumina in order
to validate infrared emissivity measurements by our system.
A sample processed by hot pressing of high-purity powders
was purchased from Goodfellow, with a range of porosities
of 2-15%. The surface roughness was measured with a pro-
filometer and its average value was Ra = 0.69µm. Finally,
the infrared emissivity at room temperature was measured
indirectly with an integrating sphere in order to locate the
Christiansen wavelength, which was found to be at 5.56µm,
with an emissivity value greater than 0.99 (see Fig. 20), which
are in agreement with the data reported in the literature [43].
The results of this measurement are shown in Fig. 21.

The laboratory set-up was again arranged following the
description in section V-A1 and the same procedure as with
the alumina sample was used. The results of the labora-
tory emissivity measurements (shown in Fig. 21 for the
99-860◦C range and in Fig. 20 for the 99◦C case for direct
comparison with the reflectivity-basedmeasurement at room-
temperature) were again found to be consistent with the
literature and the typical behaviour of dielectric materials in
terms of shape of the spectra and the evolution as a function
of the temperature. As a difference with the measurement
acquired from the sample of alumina, the plateau around
the Christiansen wavelength is much shorter with decreasing
emissivity towards both sides. Of course, as these measure-
ments were also performed under laboratory air the absorp-
tion peaks corresponding to CO2 and H2O are also visible.

FIGURE 23. Algorithm output for an boron nitride sample at 599.44.8◦C.
Top) Application of probabilistic radiative transfer model to the sample.
The blue continuous line represents the theoretical radiation from a
blackbody at the temperature given by the thermocouple. The green line
represents the radiance of an ideal blackbody Lbb(λ, T̂bb) at the
temperature T̂bb estimated by the algorithm, whereas the black line
represents the estimated radiance L̂(λ, T̂bb) of the sample when applying
the spectral emissivity ε̂(λ, T̂bb) estimated by the algorithm to Lbb(λ, T̂bb).
The magenta line represents the calculated spectrum when applying the
estimated attenuation caused by CO2 and H2O to the spectrum L̂(λ, T̂bb).
Bottom) Emissivities ε̂(λ, T̂bb) estimated by the algorithm as defined in (8)
and Fig. 10.

FIGURE 24. Regression graph between the temperature measured by the
thermocouple and the temperature estimated by our proposed system
and method for the BN sample.

Another particular feature for h−BN in the range of interest
for this work, i.e. from 4 to 12µm in wavelength, is the
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FIGURE 25. Boron nitride emissivity determined in laboratory conditions
compared with the emissivity estimated by the algorithm under industrial
conditions.

wide peak observed between 6 and 8µm, what corrresponds
to an infrared active phonon (for details see [43]). Finally,
semi-transparency effects for h−BN are not so significant as
for alumina below 4µm, leading to reliable emissivity data
down to 2µm.

For the industrial conditions measurement, the same con-
figuration and procedure as with the alumina experiment
was followed, stopping the experiment at 500◦C, once the
radiance signal became noisy for our system. Fig. 22 shows
the posterior probabilities of some of the stochastic variables
estimated of the algorithm whereas, Fig. 23 presents the algo-
rithm’s estimations for a boron nitride sample at 599.44◦C,
following the notation from Fig. 17.
The temperature estimation obtained for this sample shows

an even better correlation across the whole range with the
thermocouple measurements than in the case of the alumina,
as can be seen in Fig. 24 (RMSE= 5.69◦C, R2 = 0.996).
Finally, (Fig. 25) compares the emissivity’s measured under
laboratory conditions with those estimated under industrial
conditions for a fixed temperature value of 852◦C. It can be
appreciated that there is a quite good qualitative and quanti-
tative agreement between both in the 2−12µm range, except
for the region corresponding to the active infrared phonon
(6-8 µm) that is removed from the model. This phenomenon
is beyond the scope of the current work.

Furthermore, we can observe that the CO2 (at 4.2 µm)
and H2O (at 5.8µm and 6.5 µm) absorptions present in the
laboratory measurements are adequately treated by our algo-
rithm and eliminated from the emissivity, thus giving a correct
spectra of the actual emissivity.

VI. CONCLUSION
In this work we presented, to our knowledge, the first captur-
ing device that is able to simultaneously estimate the spec-
tral emissivity and temperature of a hot emissive material
under real steel factory conditions. The presented device is
capable of capturing 0.2−12 µm range radiance signal at up
to 20m away from the sample, over a 12mm diameter spot.
The device allows for in-situ calibration making use of a

stabilized calibration lamp. The system is accompanied by
a probabilistic algorithm that is able to produce simultaneous
full probability density estimates of the sample temperature
and spectral emissivity at different wavelengths, as well as the
global concentration of H2O and CO2 along the optical path.
All these parameters are seamlessly predicted by a Markov
Chain Montecarlo-based estimation algorithm as the ones
that provide the best explanation for the captured data.
We showed that, by analyzing the radiance between

0.2−12µm,wewere capable of estimating the temperature of
alumina and boron nitride samples in a range of 600-1000◦C
with an RMSE of 32.3◦C and 5.69◦C, respectively. Spectral
emissivity was calculated accurately and the effect of H2O
and CO2 absorption was also estimated and discounted from
the measurement.
These results pave the path for future attempts to estimate

the slag composition on the electric arc furnace based on the
analysis of the predicted emissivity values.
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