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Abstract: The objective of this study is to evaluate the turbidity generated during the Fenton photo-
reaction applied to the oxidation of waters containing carbamazepine as a function of factors such
as pH, H2O2 concentration and catalyst dosage. The results let establish the degradation pathways
and the main decomposition byproducts. It is found that the pH affects the turbidity of the water.
Working between pH = 2.0 and 2.5, the turbidity is under 1 NTU due to the fact that iron, added as a
catalyst, is in the form of a ferrous ion. Operating at pH values above 3.0, the iron species in their
oxidized state (mainly ferric hydroxide in suspension) would cause turbidity. The contribution of
these ferric species is a function of the concentration of iron added to the process, verifying that the
turbidity increases linearly according to a ratio of 0.616 NTU L/mg Fe. Performing with oxidant
concentrations at (H2O2) = 2.0 mM, the turbidity undergoes a strong increase until reaching values
around 98 NTU in the steady state. High turbidity levels can be originated by the formation of
coordination complexes, consisting of the union of three molecules containing substituted carboxylic
groups (BaQD), which act as ligands towards an iron atom with Fe3+ oxidation state.

Keywords: BaQD; carbamazepine; ferric coordination complex; photo-Fenton; turbidity

1. Introduction

Over the last decade, special attention has been paid to the presence in waters (in
relation to both their distribution and concentration) of certain organic compounds that,
until now, had not been considered significant dangerous species. This is related to the
improvement of analytical technique, as formerly undetected organic components are
being more widely observed, considering that they have the potential to cause adverse
effects both environmentally and in living beings [1].

Specifically, preventive measures are being adopted to control the emissions of pharma-
ceutically active products (PhACs) on environmental systems due to the harmful impacts
that they can cause both on aquatic life and on human health [2] because they are recalci-
trant compounds that generate toxicity [3,4]. The frequent presence of PhACs in freshwater
and wastewater has promoted the establishment of water quality standards for periodic
monitoring [5]. Thus, carbamazepine (CBZ) is proposed as an anthropogenic marker of
water contamination, caused by its persistence in conventional water treatment plants, also
being perceptible in some freshwater systems [6–8].

CBZ is an anticonvulsive and mood-stabilizing drug, which is used primarily in the
treatment of epilepsy and bipolar disorder [9]. After consumption, around 10% of CBZ is
excreted from the human body [10]. Besides, CBZ is the main cause of Stevens–Johnson
syndrome that can cause toxic epidermal necrolysis [11]. This skin condition is potentially
fatal, with a mortality rate of 30%, in which cell death causes the epidermis to separate
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from the dermis [12]. On the other hand, intrauterine exposure to CBZ is associated with
a congenital defect of the spine and spinal cord, spina bifida [13] and problems with the
neurodevelopmental embryo [14]. Moreover, higher fetal losses, as well as congenital
malformation rates, have been reported among women consuming carbamazepine during
pregnancy [15]. For these reasons, the presence of CBZ in drinking water and some
groundwater is a cause for concern since it constitutes a risk factor as a possible route of
access to the embryo and the infant through intrauterine exposure or breastfeeding.

A large part of the PhACs reach the wastewater through human body excretion and, if
they are not effectively eliminated in the water treatment plants (WWTPs), both the effluent
and the sludge lead to an important source of spreading PhACs in the environment [16,17].
In particular, conventional wastewater treatment plants remove less than 10% of the CBZ
contained in the input influents [18–20]. Thus, WWTP effluents are an important gateway
for CBZ accessing surface and groundwater. In general, the concentration of CBZ is higher
in WWTPs than in exterior waters because the dilution phenomena and natural attenuation
significantly reduce the concentration of these pollutants [21].

The need to effectively eliminate PhACs has promoted Advanced Oxidation Processes,
known as AOPs [22]. Among the AOPs with the greatest applications stand out the
technologies based on oxidation with ozone [23], electrochemical oxidation, photocatalysis
based on the use of UV and Fenton processes [24] and photo-Fenton [25,26]. However,
it should be noted that the oxidation with ozone, although highly reactive with organic
compounds that have olefins or amines in their internal structure, is less effective when
applied in the degradation of the CBZ and ibuprofen [27,28]. In electrochemical oxidation,
the materials making up the electrodes are a limiting factor for industrial application.
Besides, Fenton-like processes produce hydroxyl radicals, which are strong oxidizing
agents capable of degrading a wide range of polluting organic compounds. However,
the traditional Fenton reagent requires a continuous supply of Fe2+, which produces
an excess of iron in the generated sludge [29]. To alleviate this drawback, this work
applies photo-Fenton technology since UV light increases the efficiency of the process.
Therefore, the concentrations of Fe (II) utilized can be much smaller than in the conventional
Fenton reaction.

This study evaluates the Fenton photo-reaction applied to the degradation of CBZ as
a function of several factors, such as pH, hydrogen peroxide concentration and catalyst
dosage. Experimental assays allow checking that during the oxidation treatment, the
treated waters acquire high levels of turbidity depending on the operating conditions used
in the tests. In this way, the aim of this work has been to establish the causes of turbidity in
the treated water and the factors that affect it, relating the formation of turbidity with the
degradation pathways and the main decomposition byproducts causing turbidity. Several
references reported in the bibliography have studied the photo-Fenton treatment applied to
carbamazepine degradation in domestic wastewater [30]. In general, the main objectives of
these works are based on the intensification of ultraviolet technology combined with other
AOPs as iron complexes or ultrasound waves [27,31] and the use of solar light improving
the operational cost [32,33]. However, the novelty of this work is to analyze and establish
the selectivity of the degradative routes of CBZ to water-turbidity generation as a function
of the operating conditions.

2. Results
2.1. Turbidity Changes during Carbamazepine Oxidation

During the degradation of aqueous solutions containing different drugs, using a
photo-Fenton process, it is found that turbidity appears in the treated water (see Figure 1a).
The turbidity control of the water is closely related to the effectiveness of the disinfection
processes, both chemical (chlorine or other biocides) and physical (UV radiation). This
is due to the particles causing turbidity, which reduce the efficiency of the processes of
chlorination in the elimination of pathogenic organisms, since they physically protect
microorganisms from direct contact with the disinfectant. Although the direct effects of
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turbidity on health are not known yet, it affects the organoleptic properties of the water,
which is why it often causes the rejection of consumers.

As shown in Figure 1a, the turbidity generated is a function of the type of pollu-
tant that the water contains, as well as the operating conditions used in the oxidation
treatment. Comparing these results with those shown in Figure 1b for the case of car-
bamazepine oxidation, when carrying out photo-oxidation using oxidant concentrations
(H2O2) = 15.0 mM, the oxidized water presents turbidity levels of 4.6 NTU. Meanwhile,
when using (H2O2) = 2.0 mM, the turbidity of the water increases to levels of 19.0 NTU
after 120 min of reaction. For this reason, it is necessary to perform specific studies for each
kind of effluent, since the turbidity will be determined by the presence of PhACs contained
in the water, as a consequence of the human activities in the emission sources.

Globally, the World Health Organization (WHO) Quality Guidelines for Water for
Human Consumption recommends a maximum of 5 NTU as a reference value, although the
WHO indicates that, to achieve efficient disinfection, the water must have average turbidity
lower than or equal to 1 NTU. Considering Spain, turbidity is a parameter included in
current regulations, where its maximum permitted limits are regulated in Royal Decree
140/2003 [34] on hygienic–sanitary criteria of water for human consumption and Royal
Decree 1620/2007 [35] on reuse of purified waters.
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Figure 1. (a) Turbidity analyzed on aqueous solutions containing different PhACs oxidized by photo-Fenton. Experimental
conditions: (C) = 50.0 mg/L; pH = 3.0; (H2O2) = 15.0 mM; (Fe) = 10.0 mg/L; (UV) = 150 W; T = 25 ◦C. (b) Water quality
indicators analyzed during the carbamazepine oxidation by photo-Fenton. Experimental conditions: (CBZ) = 50.0 mg/L;
pH = 3.0; (H2O2) = 2.0 mM; (Fe) = 10.0 mg/L; (UV) = 150 W; T = 25 ◦C.

On the other hand, Figure 1b represents turbidity as a function of other signs of water
quality, such as the redox potential and the concentrations of ferrous ion and dissolved
oxygen. As displayed, the results do not indicate a direct relationship with the formation
of turbidity. Thus, a more in-depth analysis is necessary to estimate the effect of the main
operating parameters of the photo-Fenton treatment on the formation of turbidity. In this
work, pH, oxidant and catalyst dosage are considered.

2.2. pH Effect

Figure 2a shows the changes in turbidity of the aqueous solutions containing CBZ
during their degradation, using the photo-Fenton process, where the pH of each test
varied between pH = 2.0 and 5.0. It should be noted that the pH value has remained
constant throughout the reaction. These results let verify that acidity affects the formation
of turbidity in the water. However, its formation does not follow a linear relationship with
the pH, but rather, three general ranges of operation are observed.
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When applying acidity between pH = 2.0 and 2.5, the turbidity of the treated water is
less than 1 NTU. This indicates that they are accepted by the legislation, which establishes
the water quality criteria for both consumption and reuse. Oxidized water samples were
analyzed to test carbamazepine degradation intermediates that coexist in the solution once
a steady state is reached (see Appendix A, Table A1). The reason that these intermediate
species cause low levels of turbidity is due to the fact that, performing at a controlled
pH = 2.0–2.5, the iron species added in the form of a catalyst are present as ferrous ions.
Iron species in their reduced state have a low capacity to react with organic matter, forming
metallic complexes or inorganic hydroxides that cause turbidity.

The intermediates detected operating at pH = 2.0 allow proposing the degradation
mechanism shown in Figure 3a, where CBZ would be oxidized through four main degra-
dation routes. The dihydroxylation of the central benzene ring in the cis position of the
hydroxyl groups, which would lead to obtaining acridones through the formation of hy-
droxylated acridines (Acridin-9-ol). On the other hand, the two benzene rings located at
the extremes of the CBZ molecule would be hydroxylated, giving rise to the simultaneous
formation of 3-hydroxy-carbamazepine (3-OH CBZ) and 2-hydroxy-carbamazepine (2-OH
CBZ). Moreover, the attack of the aromatic ring of CBZ, according to the Criegee mecha-
nism, would lead to the formation of 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-
one(BQM) after intramolecular reactions and rearrangements. The reaction of BQM with
hydroxyl radicals would lead to the formation of 1-(2-benzaldehyde)-(1H, 3H)-quinazoline-
2,4-dione (BQD) [20,36]. Finally, the aldehyde group of the BQD could react with the
hydroxyl radicals giving rise to the formation of the carboxyl group, generating the molec-
ular structure 1-(2-benzoic acid)-(1H, 3H) -quinazoline-2,4-dione (BaQD), [37,38].

Conducting at pH values 3.0 and 3.5, turbidity around 5 NTU was observed, which
would be the maximum limit value accepted by the water legislation. In tests per-
formed at pH = 5.0, kinetic results were obtained that lead to similar turbidity. Besides,
the intermediates that contain the oxidized CBZ samples were analyzed, operating at
pH = 3.0 (see Table A2) and pH = 5.0 (see Table A4), in such a way that they allow to
propose the potential degradation mechanisms of CBZ. It is found that, when carrying out
the oxidation of CBZ both at pH = 3.0 and at pH = 5.0 controlled throughout the process,
the four degradation pathways observed when operating at pH between 2.0 and 2.5 are
kept, although with some nuances.

Figure 3b displays the CBZ degradation mechanism proposed for the assay conducted
at a controlled pH = 5.0. In this case, the formation of the epoxide group in the central ben-
zene ring, 10,11 epoxycarbamazepine (10,11-Epoxy CBZ), is detected, which leads to the for-
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mation of the two dihydroxylated isomers in cis positions 10,11-dihydroxycarbamazepine
(cis 10,11-DiOH-CBZ) and trans 10,11-dihydroxycarbamazepine (trans 10,11-DiOH-CBZ).
In turn, both are degraded, generating acridin-9-ol and acridone. On the other hand, the
hydroxylation of the central benzene ring occurs, giving rise to the formation of 10-hydroxy-
carbamazepine (10-OH CBZ), as well as the hydroxylation of the lateral ring generating
2-hydroxy-carbamazepine (2-OH CBZ). Moreover, the presence of (BQD) was tested. Given
that the nature of the CBZ degradation intermediates analyzed does not present relevant
structural differences with respect to the species detected in the previous case, operating at
pH = 2.0, it should be considered that iron species could be the species directly affected by
the change in the applied pH. In the case of conducting at pH = 3.0 and 5.0, iron would
be found mainly in the form of ferric ions. However, when degrading intermediates of
CBZ, the formation of metallic complexes between organic matter and ferric ions does not
seem important. It would be more accurate to consider that the direct cause of turbidity
formation would be the presence of ferric hydroxide in the solution, which would remain
in suspension, and that would be a function of the concentration of iron added to the
system. In this case, the tests were conducted at (Fe) = 10.0 mg/L, and the turbidity of the
water was similar.
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When carrying out the treatment operating at pH = 4.0, Figure 2a shows that the
turbidity potentially increases, reaching maximum values around 16 NTU at 120 min
of reaction. However, it is noted that as the oxidation process progresses, the turbidity
decreases, reaching values about 5 NTU in the steady state.

To explain this effect, the oxidized water was analyzed at pH = 4.0 (see Table A3),
where, from the results obtained, the degradation mechanism shown in Figure 2b is
proposed. In a similar way to the rest of the assays, four main degradation pathways
are detected, towards the formation of acridon, in this case, through the trans isomer
10,11-DiOH-CBZ, as well as the hydroxylation pathways through the central and lateral
benzene ring of CBZ, confirming the formation of BQD and its subsequent oxidation-
generating BaQD.

It should be remarked that in all the tests performed during the first 30 min of reaction,
a small turbidity peak occurs, whose maximum increases proportionally with the pH. In
the case of operating at pH = 4.0, a second turbidity peak appears, with a larger area, which
is not observed in the rest of the experiments. This significant increase in turbidity may
be due to the formation of ferric species that remain in suspension during the first two
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hours of the reaction. Afterward, they slowly precipitate until a solution is obtained with
turbidity not exceeding 5 NTU.

These results allow us to consider that the iron species, mainly ferric hydroxide, cause
turbidity changes when varying the operational pH. Therefore, when applying pH = 4.0,
which means that iron is mainly found as a ferric ion, and since the same initial iron catalyst
concentration is used ((Fe) = 10.0 mg/L), the final turbidity of the treated water is similar
to that of the oxidized samples at pH = 3.0–5.0, which fluctuate around 5 NTU.

The effect of hydrogen peroxide dosage on the formation of turbidity during the
oxidation of CBZ was analyzed using a photo-Fenton treatment (see Figure 4a). The tests
were performed varying the concentration of oxidant dosed between 2.0 and 15.0 mM,
keeping steady the dosage of iron, added as a catalyst in the form of ferrous ion, at
10.0 mg/L and pH = 0. Checking turbidity in the water during the oxidation of CBZ shows
three operating ranges that lead to similar turbidity levels. This fact could indicate that the
dose of hydrogen peroxide would affect the selectivity of the oxidation pathways of CBZ,
leading to the formation of degradation intermediates that cause turbidity.
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Figure 4. (a) Effect of hydrogen peroxide concentration ((Oxidant), mM) on turbidity changes in a photo-Fenton system
during the carbamazepine oxidation. (b) Effect of hydrogen peroxide on the solutions turbidity once achieved the steady
state. Experimental conditions: (CBZ) = 50.0 mg/L; pH = 3.0; (Fe) = 10.0 mg/L; (UV) = 150 W; T = 40 ◦C.

When applying oxidant concentrations between (H2O2) = 8.0 and 15.0 mM, a slight
peak of turbidity appears during the first 20 min of the oxidation. It is verified that the
maximum turbidity value of the peak is a function of the oxidant concentration. Therefore,
that, using (H2O2) = 8.0 mM, produces a maximum turbidity of 12.5 NTU. Meanwhile,
(H2O2) = 1.0 mM produces 7.2 NTU and (H2O2) = 15.0 mM creates 5.0 NTU. Once the peak
arises, the turbidity evolves according to the kinetics of parallel trend until it coincides in
similar values. Besides, it happens that in the steady state (see Figure 4b), the water treated
under these conditions presents turbidity around 5 NTU. This result could indicate that the
turbidity-causing intermediates formed during the first 20 min, which are dependent on
the oxidation degree of the CBZ reached by using different doses of oxidant, are degraded
to species of a similar nature.

Experimenting with oxidant concentrations (H2O2) = 5.0 mM, the formation of a
turbidity peak is observed during the first 60 min of CBZ oxidation. In this case, the
pinnacle is of greater area than in the previous interval. Moreover, it is verified that the
turbidity evolves to values near 1.5 NTU in the steady state (see Figure 4b). Performing with
oxidant concentrations (H2O2) = 2.0 mM, the water turbidity undergoes a notable increase
during the first 30 min of oxidation of the CBZ, following a linear ratio of 0.34 NTU/min.
Subsequently, the turbidity increases over time, but more slowly, at a rate of 0.057 NTU/min,
until reaching around 98 NTU in the steady state (see Figure 4b). This result would indicate
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that CBZ degradation occurs through serial reactions that lead to the formation of species
of a different nature, which cause turbidity.

Next, the treated water was analyzed using the oxidant dose (H2O2) = 2.0 mM to
determine the degradative routes of CBZ towards the formation of species causing turbidity
since it creates the highest turbidity in the tests conducted (see Figure 5a). These results
allow us to verify that the four general pathways of CBZ degradation observed in the
study of the effect of pH also occur here. The oxidation proceeds towards the production
of acridones through the formation of the epoxide in the central benzene ring of CBZ,
as well as the creation of the epoxide group in the lateral benzene ring, which leads to
the development of hydroxylated species 2-OH-CBZ. On the other hand, hydroxylation
reactions happen in the central benzene ring of CBZ, with the consequent formation of
OX-CBZ and degradation towards the formation of BQD and BaQD.
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pH = 3.0. (b) Molecular structure in 2D and 3D of possible coordination iron complex BaQD-Fe(III) causing turbidity in
water. Experimental conditions: (CBZ) = 50.0 mg/L; pH = 3.0; (H2O2) = 2.0 mM; (Fe) = 10.0 mg/L; (UV) = 150 W; T = 40 ◦C.

Given the molecular structures of the species detected, it does not seem conceivable
that the formation of intermolecular hydrogen bondings generates stable structures of a
purely organic nature. In this case, it is contemplated that there are ferric species in the
system, since the tests were performed at pH = 3.0, which determines the distribution of
the iron species in the solution. Based on this premise, it is plausible that the high levels of
turbidity generated in the water when using oxidant concentrations (H2O2) =2.0 mM can
be caused by the formation of coordination complexes. They consist of the union of three
molecules containing substituted carboxylic groups (BaQD), which act as ligands towards
an iron atom with oxidation state 3+, whose molecular structure is shown in Figure 5b.

2.3. Effect of Iron Catalyst

The effect of iron dosage, used as a catalyst, was studied, working with concentrations
between (Fe) = 5.0 and 40.0 mg/L (see Figure 6a) and keeping steady the oxidant concentra-
tion and pH. The results indicate that the turbidity kinetics analyzed during the oxidation
of CBZ show a parallel evolution in all the tests, where the turbidity increases linearly with
the iron concentration according to a ratio of 0.616 NTU L/mg Fe (see Equation (1)). These
results demonstrate that iron does not affect the CBZ degradation mechanism. Furthermore,
by operating at a constant pH, the distribution of ferrous and ferrous species in solution is
kept constant. Finally, the concentration of iron species was analyzed, verifying that the
catalyst is mainly found as ferric species (see Figure 6b).

[NTU] = [NTU]0 + 0.6159 [Fe] (r2 = 0.9804) (1)
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Being that:
[NTU]0: turbidity of the aqueous solution of CBZ (=0.2261 NTU);
[NTU]: water turbidity (NTU);
[Fe]: initial iron concentration (mg/L).
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Figure 6. (a) Effect of iron catalyst on turbidity changes in a photo-Fenton system during the carbamazepine oxidation. (b)
Effect of iron concentration on the solutions turbidity once the steady state is achieved. Experimental conditions: (CBZ) =
50.0 mg/L; pH = 3.0; (H2O2) = 15.0 mM; (UV) = 150 W; T = 40 ◦C.

3. Materials and Methods
3.1. Experimental Methods

Samples of carbamazepine aqueous solutions ((CBZ) = 50.0 mg/L, Fagron 99.1%) were
studied in a photocatalytic 1.0 L reactor provided with a UV-150W mercury lamp of medium
pressure (Heraeus, 95% transmission between 300 and 570 nm). Reactions began adding the
iron catalyst as ferrous ion ((Fe), mg/L) operating between (Fe)0 = 5.0–40.0 mg/L (FeSO4 7H2O,
Panreac 99.0%) and the oxidant dosage for each set of experiments, which varied between
(H2O2) = 0–15.0 mM (Panreac, 30% w/v). All the experiments were carried out at around
40 ◦C in order to simulate real operating conditions, considering the heat absorbed by the
water that is in direct contact with the ultraviolet lamp. Assays were performed operating
under different initial pH conditions (pH between 2.0 and 5.0) in order to assess the effect
of this parameter on color formation during oxidation of carbamazepine aqueous solutions.
Acidity was kept constant, adding NaOH and HCl 0.1M.

3.2. Analytical Methods

Turbidity (NTU) was analyzed by a turbidimeter (100Q-Hach) and ferrous ion
(Fe2+, mg/L) by the phenanthroline method at λ = 510 nm (Fortune, 1938) using a UV/Vis
Spectrophotometer 930-Uvikon, Kontron Instruments (Mazowieckie, Poland). Dissolved
oxygen (DO, mg/L) was assessed by a Polarographic Portable Dissolved Oxygen Meter
HI9142, Hanna Instruments, S.L. (Eibar, Spain). Total dissolved solids (TDS, mg/L) were
analyzed by a TDS Metter Digital and redox potential (V) by a conductimeter Basic 20
Crison, Hach (Derio, Spain).

3.3. Liquid Chromatography-Mass Spectrometry to Elucidate the Intermediates of
Carbamazepine Degradation

Samples were stored after receipt under refrigeration. Samples were centrifuged
and subsequently diluted before starting analysis. The analysis was carried out with an
LC/Q-TOF, with ESI+ Agilent Jet Stream ionization source and the following conditions:
column: Kinetex EVO C18 HPLC/UHPLC Core-Shell (100 × 3 mm) 2.6 µm (Phenomenex
company, Tianjin, China). Mobile phase 0.1% formic acid (A): acetonitrile with 0.1% of
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formic acid (B). Gradient: %B: 20; 20; 100; 100; 20 vs. time: 0; 2; 24; 28; 30. Flow: 0.3 mL/min.
Column temperature: 35 ◦C. Injection volume: 5 µL. Ionization: Gas T = 300 ◦C; drying gas
10 L/min; Nebulizer 20 psig; shealt gas T = 350 ◦C; shealt gas flow 11 L/min; frag 125 V.
Vcap 3500 V.

A screening method was developed to allow the elution and ionization of the greater
number of compounds present in the sample. The stabilization of the system, the repro-
ducibility of the signals and the correction of the exact mass were checked before starting
the analysis. The compounds were searched using the deconvolution algorithm “Find
by molecular features” and subsequent filtering of the proposed compounds based on
compounds detected in the blank, background noise and minimum abundance of the
compound. The following chromatograms show the major compounds observed for each
of the samples (Figure 7). Under the proposed conditions, the following chromatograms
were obtained for each of samples at pH=2.0, 3.0, 4.0 and 5.0 (Figures 8–11).
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Figure 8. Chromatographic profile of the major compounds detected in the sample of carbamazepine oxidized to pH = 2.0.
Experimental conditions: (CBZ) = 50.0 mg/L; (Fe) = 10 mg/L; (H2O2) = 15.0 mM; T = 25 ◦C; (UV) = 150 W.

In order to try to identify the greatest number of compounds, standards of possible
carbamazepine degradation compounds were initially prepared to check their retention
time and mass spectra. The following commercial standards were used: carbamazepine
(CBZ), oxo-carbamazepine (Oxo-CBZ), carbamazepine 10, 12-epoxide (Epoxi-CBZ), 11-
dihidro-10-hidroxicarbamazepine (10-OH CBZ), 9-acridanone, acridin-9-ol, 4-aminophenol,
malonic acid (Figure 12).

Using the method developed for the screening, the following retention times (Tr) and
characteristic ions or mass/charge ratios (m/z) were obtained for each compound (Table 1).
Appendix A summarizes the predominant compounds found, as well as their characteristic
ions (m/z) and the experimental masses calculated for each sample.
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Figure 11. Chromatographic profile of the major compounds detected in the sample of carbamazepine oxidized to pH = 5.0.
Experimental conditions: (CBZ) = 50.0 mg/L; (Fe) = 10 mg/L; (H2O2) = 15.0 mM; T = 25 ◦C; (UV) = 150 W.
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Table 1. Standards analyzed.

Compound Tr, min m/z

4-aminophenol 1.3 110.0600
Malonic acid 1.8 105.0182
10-OH CBZ 5.8 255.1128
Epoxi-CBZ 8.2 253.0972
Oxo-CBZ 9.1 253.0972

9-acridanone 9.9 196.0757
Acridin-9-ol 9.9 196.0757

CBZ 11.2 237.1022

Once the majority of compounds were identified, and in order to determine the
concentration of the degradation products in the samples (identified with the commercial
standards), calibration was completed. The quantification of the samples was carried out
using a calibration at concentrations between 0.001 and 5 µg/mL. The results obtained
from the quantitative analysis are shown in Table 2.

Table 2. Results of quantitative analysis, concentrations in µg/mL.

Compound pH = 2.0 pH = 3.0 pH = 4.0 pH = 5.0

CBZ 1.8 10.8 34.4 17.0
Oxo-CBZ <LQL 0.25 0.21 0.037

Epoxi-CBZ - - - -
10-OH CBZ <LQL 0.065 0.022 0.013

9-acridanone and acridin-9-ol 0.013 0.026 0.004 0.010
4-aminophenol n.d. n.d. n.d. n.d.

Malonic acid n.d. n.d. n.d. n.d.
n.d.: not detected, LQL: lower quantification limit (0.002 µg/mL).

Next is explained the validation of the method, wherein Tables 3–7 provide full
validation process of the analysis of CBZ and its degradation products with the main
validation parameters. The samples were subjected to drastic conditions to acid hydrolysis
(1N HCl), basic hydrolysis (1N NaOH), sunlight and temperature (30 ◦C). Subsequently,
the amount recovered was determined in triplicate after 7 days.

Table 3. Limit of quantification values (LOQ) and limit of detection values (LOD) of CBZ and the
detected degradation intermediates in water.

Compound LOQ
(ng/mL)

LOD
(ng/mL)

CBZ 100 30
Oxo-CBZ 2 0.6

10-OH CBZ 2 0.6
9-acridanone 1 0.3
Acridin-9-ol 1 0.3
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Table 4. Linearity values of CBZ and the detected degradation intermediates in water.

Compound Range
(µg/mL)

Regression
Equation R2

CBZ 0.1–50 y = 3.580 x + 6.340 0.998
Oxo-CBZ 0.002–0.5 y = 2.933 x + 5.480 0.998

10-OH CBZ 0.002–0.5 y = 2.008 x + 3.146 0.993
9-acridanone 0.001–0.5 y = 5.298 x + 9.636 0.998
Acridin-9-ol 0.001–0.5 y = 5.034 x + 8.996 0.998

Table 5. Specificity values of CBZ and the detected degradation intermediates in water.

Compound Parameter Amount Added
(µg/mL)

Amount Recovered
(µg/mL)

Degradation
(%)

CBZ
Acidic degradation 25.05 24.58 1.87

Alkaline degradation 25.05 24.29 3.04
Solar light 25.05 24.87 0.71

OX-CBZ
Acidic degradation 0.251 0.246 2.03

Alkaline degradation 0.251 0.241 3.87
Solar light 0.251 0.249 0.98

10-OH CBZ
Acidic degradation 0.251 0.247 1.54

Alkaline degradation 0.251 0.240 4.20
Solar light 0.251 0.249 0.85

Acridanone
Acidic degradation 0.2505 0.2464 1.64

Alkaline degradation 0.2505 0.2412 3.72
Solar light 0.2505 0.2480 0.99

Acridin 9-ol
Acidic degradation 0.2505 0.2447 2.31

Alkaline degradation 0.2505 0.2418 3.47
Solar light 0.2505 0.2479 1.02

Table 6. Accuracy values of CBZ and the detected degradation intermediates in water.

Compound Range
(µg/mL)

Recovery
(Mean ± % RSD)

CBZ 0.1–50 100.05 ± 0.023
Oxo-CBZ 0.002–0.5 100.24 ± 0.030

10-OH CBZ 0.002–0.5 100.56 ± 0.011
9-acridanone 0.001–0.5 100.08 ± 0.007
Acridin-9-ol 0.001–0.5 100.91 ± 0.024

Table 7. Precision values of CBZ and the detected degradation intermediates in water.

Compound Concentration
(µg/mL)

Standard Solution Sample Solution
Mean SD % RSDIntraday

Precision
Interday
Precision

Intraday
Precision

Inter-Day
Precision

CBZ 25.05 96.0190 96.9792 98.0188 98.9080 97.4812 98.7352 0.0128
OX-CBZ 0.251 6.2164 6.1542 6.0696 6.0908 6.1328 6.1988 0.0108

10-OH CBZ 0.251 3.6500 3.7595 3.8475 3.7264 3.7459 3.8279 0.0118
Acridanone 0.2505 10.9633 10.6344 10.8027 10.7996 10.8000 10.934 0.0124
Acridin 9-ol 0.2505 10.2570 10.1544 10.0560 10.3688 10.2091 10.3431 0.0131

4. Conclusions

This work checks the effect of the control parameters of photo-Fenton technology
applied to CBZ oxidation. Experimental assays show that during the oxidation of aqueous
solutions containing CBZ, the water turbidity shows great changes as a function of the
operational conditions (pH, hydrogen peroxide and catalyst concentration). The relation-
ship between turbidity and the control parameters of the photo-Fenton reaction would be
caused by the degradation intermediates generated in water as a function of the oxidized
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degree achieved in the treatment. The analysis of treated waters that show the higher
turbidity levels allow establishing a general oxidation mechanism, where the CBZ would
be oxidized through four main degradation routes. First, the formation of the epoxide
(10,11-Epoxy CBZ) leads to the creation of two dihydroxylated isomers (cis and trans
10,11-DiOH-CBZ), which, in turn, degrade, generating acridin-9-ol and acridone. On the
other hand, the creation of the epoxide (2,3-Epoxy CBZ) generates hydroxylated benzene
rings (3-OH CBZ and 2-OH CBZ). Moreover, the attack of the aromatic ring of CBZ would
lead to the production of BQM, where the reaction of BQM with hydroxyl radicals would
direct the generation of BQD. Finally, the aldehyde group of BQD could react with the
hydroxyl radicals, generating BaQD. Moreover, it has to be considered that in this system,
the iron catalyst has the oxidized form Fe3+. Then, the generation of high turbidity would
be explained based on the molecular structure of the degradation intermediates detected,
where it would be possible to propose the formation of coordination complexes with ferric
ions that enhance the turbidity. This would be the case of coordination compounds be-
tween a ferric ion atom with three BaQD molecules that consist of stable supramolecular
structures that reduce the passage of light through the water, causing turbidity.
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Appendix A

Table A1. Results of screening of major compounds. Sample pH = 2.0. Experimental conditions: [CBZ] = 50.0 mg/L;
[Fe] = 10.0 mg/L; [H2O2] = 15.0 mM; T = 25 ◦C; [UV] = 150 W.

Label Tr, min m/z Mass Height Name Score Diff
(DB,ppm) Ions

Comp 1 1.8 224.0718 223.0645 146,262 - - - 3
Comp 2 1.8 163.0511 162.0438 41,946 - - - 2
Comp 3 2.1 147.0557 146.0485 501,215 - - - 2
Comp 4 2.2 180.0811 179.0739 172565 Acridine 99.09 −2.02 2
Comp 5 2.4 271.1054 270.0991 33,111 CIS-d iOH -CBZ 88.39 4.91 8
Comp 6 4.1 271.1092 270.1023 58,811 CIS-diOH-CBZ 94.64 −7.03 7
Comp 7 4.5 267.0781 266.0708 8828 BQD 87.11 −6.51 1
Comp 8 5.4 267.0779 266.0706 8275 BQD 89.7 −5.78 2
Comp 9 5.8 255.1158 254.1093 8104 - - -

Comp 10 6.5 251.0828 250.0755 269,555 T1251 92.29 −5.1 5
Comp 11 6.6 267.0778 266.0706 38,790 BQD 90.62 −5.5 2
Comp 12 7.3 224.0719 223.0639 1553 - - - 3
Comp 13 7.4 253.0989 252.0919 12,234 2-OH-CBZ 73.88 −7.86 2
Comp 14 7.6 253.0983 252.0911 16,164 2-OH-CBZ 80.87 −4.92 2
Comp 15 7.7 283.0727 282.0654 32,599 BaQD 93.23 −4.53 2
Comp 16 8.5 267.0779 266.0706 147,319 BQD 90.13 −5.65 3
Comp 17 8.9 253.0994 252.0928 15,599 3-OH-CBZ 77.71 −11.53 3
Comp 18 9.2 253.1034 252.096 3526 - - - 2

Comp 19 9.9 196.077 195.0697 184,640 Acridone or
acridin-9-ol 96.9 −6.8 10

Comp 20 11.2 259.0863 236.0971 3,433,925 Carbamazepine 94 −9.09 7
Comp 21 12.0 318.2826 317.2753 29,688 - - - 2
Comp 22 15.2 226.0881 225.0808 402,491 - - - 5
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Table A2. Results of screening of major compounds. Sample pH = 3.0. Experimental conditions: [CBZ] = 50.0 mg/L;
[Fe] = 10.0 mg/L; [H2O2] = 15.0 mM; T = 25 ◦C; [UV] = 150W. The compounds indicated in grey are the possible species
identified by the database.

Label Tr, min m/z Mass Height Name Score Diff
(DB,ppm) Ions

Comp 1 1.8 224.0716 223.0644 632,743 - - - 3
Comp 2 2.1 147.0563 146.0491 436,509 - - - 3
Comp 3 2.2 180.0818 179.0745 1,149,862 Acridine 92.86 −5.76 3
Comp 4 2.4 271.1095 270.1017 147,566 TRANS-diOH-CBZ 86.39 −4.87 3
Comp 5 3.5 271.109 270.102 12,320 - - - 2
Comp 6 4.1 253.099 270.1023 169,843 TRANS-diOH-CBZ 93.57 −6.99 3
Comp 7 4.5 267.0774 266.0701 56,646 BQD 95.11 −3.92 2
Comp 8 5.3 267.0777 266.0704 45,947 BQD 91.98 −5.07 2
Comp 9 5.7 237.1033 254.1065 131,805 10-OH-CBZ 83.69 −4.02 2

Comp 10 6.5 251.0834 250.0761 544,371 T1251 84 −7.51 5
Comp 11 6.6 267.0776 266.0704 55,876 BQD 93.04 −4.7 2
Comp 12 7.1 269.0934 268.0861 141,392 - - - 4
Comp 13 7.3 224.0718 223.0644 52,554 - - - 3
Comp 14 7.4 253.0988 252.0916 256,182 2-OH-CBZ 95.43 −6.61 8
Comp 15 7.6 253.0989 252.0916 357,248 2-OH-CBZ 94.24 −6.77 5
Comp 16 7.7 283.0735 282.0662 9024 BaQD 82.12 −7.58 2
Comp 17 7.9 267.0784 266.0709 19,667 BQD 85.55 −6.92 3
Comp 18 8.2 253.0985 252.0914 17,230 EP-CBZ 73.45 −6.07 2
Comp 19 8.6 267.0795 266.0722 8216 - - - 2
Comp 20 8.8 253.0994 252.0921 330,535 2-OH-CBZ 90.52 −8.92 4
Comp 21 9.2 253.0988 252.0916 204,534 Oxcarbamazepine 94.32 −6.72 5

Comp 22 10.0 196.0772 195.0699 280,810 Acridone or
acridin-9-ol 96.78 −7.92 6

Comp 23 11.2 237.1047 236.0974 10,672,680 Carbamazepine 88.67 −10.08 15
Comp 24 11.7 224.0733 223.066 276,891 - - - 5
Comp 25 11.9 473.1992 472.1919 639,344 - - - 6
Comp 26 15.2 226.0889 225.0816 1,183,745 - - - 5

Table A3. Results of screening of major compounds. Sample pH = 4.0. Experimental conditions: [CBZ] = 50.0 mg/L;
[Fe] = 10.0 mg/L; [H2O2] = 15.0 mM; T = 25 ◦C; [UV] = 150W. The compounds indicated in grey are the possible species
identified by the database.

Label Tr, min m/z Mass Height Name Score Diff
(DB,ppm) Ions

Comp 1 1.8 224.0722 223.0649 755,262 - - - 3
Comp 2 2.1 147.0566 146.0493 372,649 - - - 3
Comp 3 2.2 180.0822 179.0749 1,818,336 Acridine 87.37 −7.78 3
Comp 4 2.4 271.109 270.1018 67,258 TRANS-diOH-CBZ 80.63 −5.01 2
Comp 5 3.5 271.1091 270.1017 178,694 TRANS-diOH-CBZ 96.59 −4.95 3
Comp 6 4.2 253.0988 270.1021 236,040 TRANS-diOH-CBZ 94.47 −6.47 3
Comp 7 4.5 267.0778 266.0705 26,250 BQD 90.8 −5.44 2
Comp 8 5.3 267.078 266.0707 9285 BQD 88.48 −6.13 1
Comp 9 5.7 255.1141 254.1069 31,349 10-OH-CBZ 80.45 −5.52 3

Comp 10 6.5 251.0825 250.0753 119,415 T1251 94.04 −4.46 3
Comp 11 6.6 267.0779 266.0706 13,942 BQD 89.97 −5.7 2
Comp 12 7.1 269.0935 268.0861 166,675 - - - 5
Comp 13 7.4 224.0716 223.0643 44,729 - - - 2
Comp 14 7.3 253.0985 252.0912 385,655 3-OH CBZ 96.47 −5.18 5
Comp 15 7.6 253.099 252.0917 514,816 3-OH CBZ 93.53 −7.24 8
Comp 16 7.9 267.0781 266.0708 12,768 BDQ 87.89 −6.29 2
Comp 17 8.2 253.099 252.0918 70,044 EP-CBZ 93.04 −7.69 3
Comp 18 8.8 253.0996 252.0923 1,397,381 3-OH-CBZ 89.34 −9.65 11
Comp 19 9.1 253.0989 252.0916 149,274 Oxcarbamazepine 78.9 −6.89 4

Comp 20 9.9 196.0767 195.0696 109,794 Acridone or
acridin-9-ol 97.14 −5.92 4

Comp 21 11.2 237.105 236.0973 15,089,995 Carbamazepine 83.8 −9.81 9
Comp 22 11.7 224.0723 223.0653 95,064 - - - 2
Comp 23 11.9 473.1994 472.192 688,405 - - - 8
Comp 24 13.5 210.0931 209.0859 635,867 - - - 3
Comp 25 15.2 226.0889 225.0817 1,793,645 - - - 8
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Table A4. Results of screening of major compounds. Sample pH = 5.0. Experimental conditions: [CBZ] = 50.0 mg/L;
[Fe] = 10.0 mg/L; [H2O2] = 15.0 mM; T = 25 ◦C; [UV] = 150W. The compounds indicated in grey are the possible species
identified by the database.

Label Tr, min m/z Mass Height Name Score Diff
(DB,ppm) Ions

Comp 1 1.8 224.0718 223.0645 520,658 - - - 3
Comp 2 2.1 147.0568 146.0496 588,299 - - - 3
Comp 3 2.2 180.0822 179.0749 693,527 Acridine 87.18 −7.84 3
Comp 4 2.4 271.1092 270.1019 141,194 TRANS-diOH-CBZ 80.16 −5.49 2
Comp 5 3.5 271.1091 270.1019 432,132 CIS-diOH-CBZ 96.29 −5.38 7
Comp 6 4.1 271.1091 270.1018 409,566 CIS-diOH-CBZ 96.85 −5.13 9
Comp 7 4.5 267.0778 266.0705 114,157 BQD 91.47 −5.23 2
Comp 8 5.3 267.0779 266.0706 13,734 BQD 89.84 −5.73 1
Comp 9 5.7 255.114 254.1069 56,313 10-OH-CBZ 96.03 −5.69 10

Comp 10 6.4 251.0827 250.0755 398,550 T1251 92.37 −5.07 6
Comp 11 6.5 267.0782 266.0709 10,804 BQD 86.14 −6.77 2
Comp 12 7.1 269.0935 268.0862 148,854 - - - 8
Comp 13 7.3 224.0721 223.0648 51,741 - - - 4
Comp 14 7.3 253.0989 252.0916 473,737 2-OH-CBZ 95.34 −6.62 6
Comp 15 7.5 253.0995 252.0922 802,934 2-OH-CBZ 91.73 −9.17 10
Comp 16 7.9 267.0775 266.0701 34,402 BQD 95.57 −3.73 4
Comp 17 8.2 253.0985 252.0915 81,586 EP-CBZ 97.33 −6.51 8
Comp 18 8.8 253.0996 252.0924 1,722,757 2-OH-CBZ 90.91 −9.73 11
Comp 19 9.1 253.0983 252.0911 37,573 Oxcarbamazepine 80.73 -4.9 2

Comp 20 10.0 196.0773 195.07 158,961 Acridone or
acridin-9-ol 95.31 −8.41 6

Comp 21 11.2 237.1048 236.0973 11,711,134 Carbamazepine 89.16 −9.9 15
Comp 22 11.7 224.0731 223.0663 207,462 - - - 5
Comp 23 12.0 473.1987 472.1915 239,021 - - - 7
Comp 24 15.2 226.0886 225.0814 2,443,394 - - - 11
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