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Abstract

Cortical circuits rely on the temporal regularities of speech to optimise signal parsing for

sound-to-meaning mapping. Bottom-up speech analysis is accelerated by top-down

predictions about upcoming words. In everyday communications, however, listeners are

regularly presented with challenging input - fluctuations of speech rate or semantic content. In

this study we asked how reducing speech temporal regularity affects its processing - parsing,

phonological analysis and ability to generate context-based predictions. To ensure that

spoken sentences were natural and approximated semantic constraints of spontaneous

speech we built a neural network to select stimuli from large corpora. We analysed brain

activity recorded with magnetoencephalography during sentence listening using evoked

responses, speech-to-brain synchronization and representational similarity analysis. For

normal speech theta band (6.5-8 Hz) speech-to-brain synchronization was increased and the

left fronto-temporal areas generated stronger contextual predictions. The reverse was true for

temporally irregular speech - weaker theta synchronization and reduced top-down effects.

Interestingly, delta-band (0.5 Hz) speech tracking was greater when contextual/semantic

predictions were lower or if speech was temporally jittered. We conclude that speech

temporal regularity is relevant for (theta) syllabic tracking and robust semantic predictions

while the joint support of temporal and contextual predictability reduces word and phrase-level

cortical tracking (delta).

Key words: MEG, semantic predictions, phonological processing, coherence,

representational similarity analysis, neural network
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Introduction

Predictive processing approaches describe speech comprehension as a dynamic balance

between bottom-up parsing of the speech stream and top-down predictions about the content

of incoming linguistic information. This balance must be achieved quickly and efficiently in

order for the listener to keep up with the temporal flow of information encoded in the speech

signal. A mechanism thought to facilitate this is the temporal synchronisation of the language

processing circuits to the temporally regular structures of speech. Speech stream encodes

quasi-periodic acoustic and prosodic cues (Rosen 1992) that help cortical circuits to identify

and extract meaningful linguistic features from the perceptual speech input more efficiently

(Lakatos et al. 2008; Giraud and Poeppel 2012; Doelling et al. 2014). This is putatively done

via cortical entrainment to these cues and arguably forming predictions about the temporal

distribution of upcoming auditory objects (Arnal and Giraud 2012; Rimmele et al. 2018). This

would ensure their preferential perceptual sampling and analysis (Zion Golumbic et al. 2012;

Lakatos et al. 2019). Concurrently, the biasing pragmatic, sentential and phrasal context

enables formation of semantic predictions (Freunberger and Roehm 2016; Maess et al. 2016;

Willems et al. 2016; Wang et al. 2018; Klimovich-Gray et al. 2019) which facilitate integration

of words into the emerging sentence representation. Yet little is known about the

interdependence between the lower-level phonological analysis and semantic predictions and

to what extent that interaction is supported by the inherent rhythmicity of the natural speech

signal. In this study we asked whether reducing the temporal regularity of speech disrupts

perceptual sampling and how this in turn affects the ability to make semantic predictions.
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Background

Language comprehension mechanisms are typically studied in the context of normal speech

comprehension with a syllabic rate of 2-10 Hz (Ding et al. 2017; Poeppel and Assaneo 2020).

While cortical circuits can over-time adapt to quicker speech rates (Dupoux and Green 1997)

by adjusting the frequencies of cortex-to-speech entrainment (Lizarazu et al. 2019),

comprehension deteriorates quickly at faster rates (compression to 0.5 or less of original rate-

Ahissar et al. 2001; Ghitza 2014). Such effects likely represent physiological constraints on

the processing rate of the cortical areas involved in linguistic speech parsing (Giraud et al.

2007; Keitel and Gross 2016). Parsing in this context refers to the ability of the cortical circuits

to identify salient linguistic features from continuous speech, enabled in part by the cortical

tracking of these elements across the corresponding frequencies. It is, however, unclear how

mechanisms underlying comprehension - bottom-up analysis and top-down contextual

predictions - are able to adapt to the more taxing perceptual sampling conditions of temporally

irregular speech input. Situations that require these adaptations occur regularly in everyday

communication when the same speaker intermittently changes their speech rate or if multiple

speakers in the ongoing conversation speak faster or slower due to either language

proficiency or simply preference.

Phonetic and phonological analyses have consistently been shown to be facilitated by the

temporal regularities of the speech signal (Ghitza 2011; Giraud and Poeppel 2012), perhaps

most reliably by the cortical analysis of speech syllabic rhythms in the theta range (Hyafil et

al. 2015; Monsalve et al. 2018). There is, however, very little evidence that context-driven

semantic predictions are also facilitated if they are embedded in temporally predictable

contexts. One of the few studies looking at these processes in naturalistic speech conditions
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is by Rothermich and colleagues (Rothermich et al. 2012). They have shown that the N400

effect (an index of contextual effects on a word’s lexico-semantic analysis) for less predictable

words is reduced in German sentences with metrically regular compared to irregular stress.

Authors concluded that predictable rhythmicity of the stressed syllable locations facilitated

semantic predictions and integrations. Consistently with this, during sentence reading Wlotko

and Federmeier (2015) have shown reduced N400 effects at faster 4 Hz (250 ms SOA)

compared to slower 2 Hz (500 ms SOA) word presentation rate. In contrast, Lau and Nguyen

(2015) did not observe changes in contextual predictability effects in a prime-target paradigm

- indexed by N400 amplitude - in temporally predictable (constant SOA) compared to

temporally unpredictable (variable SOAs) written words. In summary, while there is an

emerging understanding of how speech periodicity guides perceptual analysis and

phonological processing, it is unclear whether higher-level top-down lexico-semantic

predictions are equally dependent on the temporal regularities of speech signal. While there is

limited literature exploring these effects in reading, studies that involve natural speech, where

temporal information is critical for comprehension, are mostly missing.

In the study below we used a novel paradigm of temporally jittered auditory sentences (see

Methods - Stimuli) to understand the role of the temporal regularity of speech on cortical

tracking of the speech signal, analysis of phonological information and top-down semantic

predictions. To disrupt the temporal regularity of the speech envelope we used random

temporal jitter instead of a simple time-compression, so that participants would not over-time

adapt to changes of the speech rate. Further, to ensure that our sentences were naturalistic

and had a range of constraints representative of spontaneous speech, we built a neural

network that enabled us to select sentences (from large online text corpora) that were more or

less constraining to a set of target words, by estimating the probability of these target words
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given preceding context. To provide optimal temporal resolution of the brain response to our

stimuli we collected MEG data from participants during natural listening. We analysed this

data with a combination of different techniques - evoked responses, cortical entrainment to

the speech envelope and representational similarity analysis. Overall our findings point

towards two important conclusions. First, there is a close interdependence of perceptual

speech parsing facilitated by cortext-to-speech entrainment, phonological information

extraction and the ability to generate context-based predictions. Second, fronto-temporal

language areas adapt their processing strategies to the perceptual properties of speech.

Specifically, the presence of temporal jitter weakened contextual semantic predictions.
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Methods

Participants

We collected data from 24 right-handed Spanish native speakers (15 female) with no known

history of neurological disorders, no hearing issues and normal or corrected-to-normal vision.

Average age was 27 years, SD=9 (min 18, max 49). All participants signed an informed

consent form and were paid for their time. The experiment was approved by the BCBL ethics

board.

Stimuli

All stimuli were 320 audio sentences recorded by a female Spanish native speaker on a

digital recorder (Marantz PMD). Each sentence was unique and did not contain complex

syntactic constructions (such as open, complement or adverbial clauses) between the main

verb and the target word (noun). All sentences were selected from a collection of online

Spanish corpora (News Corpus - 63 M words Bojar et al. 2014; esCow - 150 M sentences

Schäfe and Bildhauer 2012; Billion Word Corpus - 1.5 B words Cardellino, 2016; and

Wikicorpus - 120M words Reese et al. 2010), and were assigned into one of the 4 conditions -

Normal HP (high probability), Normal LP (low probability), Jitter HP, Jitter LP. The same target

words n=80, embedded in sentences were repeated across 4 main conditions in different

contexts. All targets were nouns and were either direct objects or obliques of the main verb

and were never the last word of the sentence. All target words were frequent nouns (word

frequency at least 8 per million) with high familiarity, imageability and concreteness ratings
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(min 5 out of 7), 2-3 syllables in length, taken from the ESPAL database (Duchon et al. 2013).

Repeating the same target words across 4 conditions was done to ensure that any

differences between conditions in the critical target-related epoch were not due to

lexico-semantic differences between target words or their syntactic characteristics within the

sentence. While the average position of the target within the sentence was similar across

conditions (HP Normal - 11.4, LP Normal - 9.2, HP Jitter - 10.9, LP Jitter - 9.3) in HP

sentences the target was on average 2 positions further into the sentence than in the LP

sentences. An ANOVA on target position with factors Predictability (HP, LP) and Jitter (Jitter,

Normal) confirmed that there was a significant main effect of Predictability (F(1,316)=34.29,

p<0.001), but no effect of Jitter or, importantly, Jitter x Predictability interaction. HP vs LP

differences of target position, however, were expected and unavoidable since more

constraining HP contexts naturally tend to be longer. Finally, all sentences were manually

checked by Spanish native speakers and were discarded if they contained strong emotional

or graphic content.

Temporal Jitter

Prior to introducing the jitter manipulation, all audio files were normalised with respect to their

loudness using the ffmpeg-normalise software (https://github.com/slhck/ffmpeg-normalize)

and EBU R128 normalization method. This was done to ensure that all files have the same

perceived audio volume.

The temporal jitter was implemented in a custom Matlab script, where random parts (min 200

ms, max 1000 ms) of audio files were temporally modulated - either compressed or expanded

(rate selected randomly from 0.4 to 1.3 of the original) using the time-scale modification
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algorithm described in Driedger and Müller (2014), implemented in Matlab toolbox. This

algorithm was designed to preserve the perceptual quality of the original signal to a high

degree by applying distinct algorithms to the harmonic (phrase vocoder) versus punctuate

(OLA) events in the audio. This is particularly important in our case since we do not want to

introduce significant perceptual noise to our stimuli. The quality of the jittered audio files was

further validated using manual inspection. Finally, to ensure that temporal modulation did not

affect the overall length of the audio signal, expansion and compression of the audio

segments was done randomly and repeatedly until the length of the overall file (in samples)

matched the original non-jittered sentence length (allowed mismatch no more than 3% of

overall length). This was done to exclude the auditory sentence length as a confound when

constructing normal and jittered conditions.

Introducing a random interval temporal jitter deteriorates periodicity across the frequency

spectrum and as a side-effect the power reduces across all frequency bins and consequently

the audio loudness. We measured loudness in dB LUFS using the implementation of the

integrated loudness measurement (according to EBU R128 / ITU-R BS.1770). The loudness

for Jittered audio was -17.3 dB LUFS, while for Normal it was -15.3 dB LUFS, making the

overall difference of 2 dB LUFS. We do not believe that this had an effect on the way that

participants perceived or processed Jittered stimuli since this difference lies on the margin of

barely perceptible difference in loudness in complex sounds (1 dB being the smallest

detectable and 5 dB being clearly perceived change; Gray 2000).

Critically, we expected that random compression and expansion of the audio would

deteriorate the quasi-periodicity of the speech envelope in the critical frequencies that encode

syllabic and prosodic information. To show that periodicity was indeed affected at these

frequencies, we report the amplitude of the envelope across the 0-10 Hz spectrum (Figure 1).
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Spectral intensities of the audio files were computed as the square root of the power spectral

density within a window length of two seconds and 50% overlap. Furthermore, to account for

the minor differences in loudness across jittered and normal conditions we corrected the

amplitude estimate by dividing measurements in each condition by the respective maximum

amplitude value in the spectrum, producing normalised values bound between 0 and 1.

Normal stimuli consistently showed more power across all selected frequencies. We tested

this explicitly with a t-test comparing power between Jitter vs Normal conditions in the

following frequency bins: (1) <4 Hz associated with prosodic word/phrase information and (2)

4 to 10 Hz range related to syllabic information (Giraud and Poeppel 2012; Myers et al. 2019).

In both frequency bins Normal conditions had a significantly higher amplitude: for <4 Hz

t=6.25, p<0.0001; for 4-10 Hz t=8.64, p<0.0001. This shows that signal periodicity was

significantly deteriorated in those frequencies.

---- Figure 1 ----

Estimating target probability with the LSTM neural network

HP and LP conditions differed primarily in the probability of the target word given the

preceding context. To derive target probabilities we chose to use a purpose-built

long-short-term-memory (LSTM - Hochreiter and Schmidhuber 1997) neural network which

was trained on a combination of the above-described text corpora. LSTMs are a type of a

recurrent NN (RNN) typically used for sentence and text analysis that enable the

representations in the hidden layer(s) to maintain information about arbitrarily long sequences

of preceding words and accurately handle long-distance dependencies. They achieve this by
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learning to preferentially weight the preceding sentence content that is most conducive to the

upcoming word prediction. This is an advantage over other methods such as n-gram or

behavioural cloze judgments. N-grams can only take a fixed predefined window of context

and the larger that window (n>5) the less accurate they become (due to collocation matrix

sparsity). Behavioural cloze judgments typically generate shallow probability distributions with

large variability due to the limited number of continuations produced by participants while

LSTMs are used more and more in the cognitive neuroscience of language to derive more

reliable stimuli-related probabilistic estimates and computationally model aspects of linguistic

processing (Devereux et al. 2018; Donhauser and Baillet 2020).

Parameters of the neural network

We trained a word level AWD-LSTM language model (Merity et al. 2018) for predicting word

probabilities given its previous context. In the experiments we use a two layer LSTM model

with 2048 units and word embedding of size 400. For training, we used the non-monotonically

triggered variant of the averaged stochastic gradient method (NT-AvSGD) and we trained the

model for 13 epochs. We applied all the additional regularization techniques in Merity et al.

2018 to prevent overfitting the RNN model (see Supplementary materials, Appendix I for

details).

For the HP conditions the average Surprisal (negative log2 of the probability - Hale 2001;

2016) of the same target was 2.5, SD=1.33 and for LP it was 14.4, SD =2.34. The

distributions of the target Surprisal in HP and LP conditions did not overlap (see

Supplementary Figure 1), ensuring there is a large difference in target probabilities in the two

conditions. To validate that the Jitter and Normal conditions were matched on the target
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probability, we ran a Bayesian t-test of the null hypothesis (H0) that there was no difference

between the corresponding target probability distributions (HP Normal versus HP Jitter,

Bayesian factor BF of H0=7.5; LP Normal versus LP Jitter, BF of H0=7.9). Using the same

method we also attempted to match corresponding conditions on the Surprisal of the pre

target word. This was done to reduce the possibility that the effects present during the target

word processing are driven by the probability of the preceding word (HP Normal versus HP

Jitter, BF of H0=3.6; LP Normal versus LP Jitter, BF of H0=5). As seen from the H0 BFs that

indicate the relative strength of our ability to match the corresponding distributions, matching

was stronger for the target position, compared to the pre-target position. However, given our

stimuli further and more stringent matching for the pre-target position was not possible without

significantly reducing the number of acceptable trials.

Procedure and MEG data acquisition

The magnetoencephalography (MEG) data was acquired in a magnetically shielded room with

a whole-scalp system (Elekta Neuromag, Helsinki, Finland) and the bandpass filter set to 0.03

– 330 Hz, 1 kHz sampling rate. Subjects’ head positions were continuously monitored with

four Head Position Indicator (HPI) coils. Coil position was digitised relative to the anatomical

fiducials (nasion, left and right preauricular points) with a 3D digitizer (Fastrak Polhemus,

Colchester, VA, USA). Subjects’ horizontal and vertical eye movements and heart rate were

monitored using bipolar electrodes.

Each participant performed 3 blocks of data acquisition. In the first block the resting state

MEG activity was recorded as participants were instructed to look at the blank screen for 5

minutes with their eyes open. The second main block consisted of the experimental
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sentences, which participants were instructed to listen to attentively and occasionally (25 % of

trials) perform a simple yes/no comprehension question about the immediately preceding

sentence, while looking at the black fixation cross. Participants answered with an index finger

button press and the hand (right vs left) used for yes/no response was counterbalanced

across participants. The second block consisted of passive listening to 80 target words on

their own. All auditory stimuli were delivered with a random inter-stimulus interval (ISI) (from 1

to 2.5 seconds) via non-magnetic plastic tubes.

Data Analysis

We performed three main analyses which are detailed below - event-related magnetic field

(ERF) analysis on the average amplitude difference between conditions, entrainment analysis

using coherence between cortical responses and the speech envelope and the RSA analysis

for models of Phonological processing and Surprisal. ERF and RSA analysis were

time-locked to the target word while for the coherence analysis the whole sentence epochs

were used (see details below).

Data pre-processing and epoching was done using the open source MNE Python platform

and analysis pipeline (Gramfort et al. 2013, version 0.18) consisting of the following steps.

First we used MaxFilter 2.2 to perform signal-noise separation and bad channel removal.

Temporal extension of the signal space separation (Taulu et al. 2005) was applied to separate

external noise from head-internal signal. Noisy and flat channels were detected automatically,

cross-checked manually and subsequently interpolated (using field interpolation method, only

good channels were used for interpolation). All sensor space subject-specific data was
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transformed to the second block of that subject’s data. The data was further lowpass filtered

at 40 Hz (finite impulse response filter with the hamming window) and blink and heart artifacts

were removed with the independent component analysis implemented in MNE Python.

Subsequently data was epoched from -100 to 600 ms aligned to the onset of the target word,

removing noisy epochs with high sensor amplitudes (cut-off thresholds 4000 fT for

magnetometers and 4000 fT/cm for gradiometers) and finally data epochs were baseline

corrected using the pre-stimulus interval of -100 to 0 ms.

Coherence

Coherence between the MEG recorded brain activity in gradiometers and the speech

envelope was computed with Fieldtrip (version 20200121). First we extracted the envelope of

the audio signals by computing the absolute value of the Hilbert transform. Individual

envelopes were then aligned to the MEG recordings and downsampled at the sampling

frequency of the recordings (1 kHz). The resulting sentence-long epochs were segmented

into 2 seconds-long epochs overlapping for half of their duration. Individual epochs with high

variability were excluded from further analyses (automatic rejection procedure based on

z-scores). Coherence was computed between each individual sensor and the audio envelope

with the connectivity function available in Fieldtrip. Prior to that we extracted the

cross-spectral density matrix with the Hann taper from 0 to 20 Hz in steps of 0.5 Hz. Signals

from gradiometer pairs were linearly combined (see Molinaro and Lizarazu 2018) to obtain

maximum coherence from a virtual gradiometer. We tested for significant group-level effects

of Predictability (LP-HP contrast), Jitter (Jitter-Normal contrast) and the interaction between

these two factors (second order subtraction: LP-HP subtraction in Jittered sentences minus

LP-HP subtraction in Normal) with a cluster-permutation analysis (Maris and Oostenveld
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2007) across sensors and frequency conditions.

ERF

For this analysis each participant's data was averaged within 4 main conditions - HP Jitter, LP

Jitter, HP Normal and LP Normal. Then subtractions of interest were performed across all

time-points within the epoch and the difference signals for all participants were subjected to a

one-sample spatio-temporal permutation t-test across all timepoints and sensors (Maris and

Oostenveld 2007) to identify significant sensors and time-points. This test was performed on

RMS (root mean square) combined gradiometer pairs and magnetometers separately. Here

we only report and plot significant gradiometer spatiotemporal clusters (the same effect was

also present in the magnetometers). The contrasts of interest included the test of the main

effect of Predictability (LP - HP conditions) and the interaction between Jitter and

Predictability (second order subtraction: LP-HP subtraction in Jittered sentences minus

LP-HP subtraction in Normal).

Sensor Space RSA Searchlight

RSA Searchlight analysis (Kriegeskorte et al. 2008) was performed on unaveraged single trial

sensor space epochs with the open-source toolbox (https://github.com/wmvanvliet/mne-rsa).

Only gradiometer data was used for the final analysis but similar results were found when

performing RSA on both magnetometers and gradiometers. For each subject, data at each

time-point across the epoch (from -100 to 600 ms, aligned to target word onset) was

summarised with a symmetrical distance matrix where off-diagonal entries were pairwise
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standardized euclidean distances between data segments of individual trials. These data

segments were sensor by time point arrays where dimensions corresponded to the

searchlight spatial width (4 cm) and temporal length (30 ms). At each time step, these data

distance matrices were correlated (spearman correlation) with the model distance matrix,

which encoded the pairwise distances between data trials based on a theoretically derived

measure. This procedure was repeated for every subject separately resulting in

subject-specific model fit r-value maps across all sensors and time-points within the epoch. To

test for group-level clusters of significant model-fit across sensors and time points,

subject-level data was subjected to a one-sample spatiotemporal permutation t-test across

subjects (same procedure as with the ERF analysis above - Maris and Oostenveld 2007).

Here we report results based on joined magnetometer and gradiometer data but similar

effects emerged when the analysis was run with the magnetometers or gradiometers

separately.

We tested two models of interest both of which were expected to produce model-fits after the

onset of the target word. The first model was Phonological processing and it was derived by

producing IPA (international phonetic alphabet) transcriptions of the target words and

converting those into binary vectors encoding phonological features of voicing, place and

manner of articulation for the consonants and roundedness, backness and height for vowels.

IPA to phonetic feature conversion was done with a PanPhon toolbox version 0.15

(Mortensen et al. 2016). With this model we tested bottom-up access of the phonological

information associated with the target. The second model encoded the Surprisal i.e. negative

log (base 2) of the probability of the target word given the preceding context. These were the

same Surprisal values as used for sentence selection, derived with the neural network (see

Stimuli section above). With this model we tested for the cognitive process of updating the
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current set of lexical context-based expectations based on the incoming perceptual

information. Distance matrices for the Surprisal model were calculated using euclidean

distances, while for Phonological processing the Jaccard distance was used (only non-zero

features were considered during calculation).

Source localisation of the RSA model fit

To better explore the cortical localisation of the RSA analysis we source localised activity for

each participant using the MNE procedure (MNE Python) (Gramfort et al. 2013) based on

distributed source modeling (Lin et al. 2006), where sources of currents are localised by

applying constraints and a priori assumptions about their distributions (dipole orientation and

location summarized in the lead field matrix, derived from the structural MRI scans) and the

noise estimates covariance matrix. For the majority of participants (19/24) individual T1 scans

were used (3D MPRAGE sequence TR 2530 ms; TE 2.36 ms; flip angle 7; acceleration factor

2) acquired on a 3-T Trio scanner (Siemens) with 1 mm isotropic voxels. For 5 participants

who did not have T1 scans, an MNI template brain was used. Anatomical images were

processed and parcellated into surfaces (skull, gray and white matter) with FreeSurfer

software (Fischl 2012) version 6. The MRI and MEG coordinate systems were coregistered

using the MNE analysis interface, with respect to the anatomical locations marked during

acquisition (the nasion and the left and right preauricular points) and additional ~300 head

points. Subsequent steps were performed using the MNE Python environment. To derive the

forward model (lead field matrix) a source space grid was set up on the white-gray matter

boundary surface of 4098 sources per hemisphere and a 1-layer boundary element model

was estimated. A regularized covariance matrix was derived from the epochs using the

pre-trial (silent) period. The forward solution and the covariance matrix were used to estimate

the linear inverse regularization parameter (inverse operator) for every source across all
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channels. To improve the spatial accuracy of the localization and correct for a bias toward

assigning signals to superficial sources, a loose source orientation (0.2) constraint and a

depth constraint (0.8) were applied (Lin et al. 2006). To derive the source estimates at every

time point and for every trial, the inverse operator was applied to preprocessed data and the

estimated activations were normalized with respect to signal noise by dividing the estimates

by their predicted SE, thus producing unsigned dynamic statistical parametric maps (Dale et

al., 2000).

For each subject source estimates across time and vertices were used for the source space

Searchlight RSA analysis (https://github.com/wmvanvliet/mne-rsa). This was the same as

described in the section above but now was run in the source spaces of individual subjects

(30 ms time step, 2 cm source searchlight radius). The resulting subject-level spatiotemporal

model-fit values were morphed to the Freesurfer average brain and averaged across subjects

for visualisation. Since statistical analysis was already performed on the same data and for

the same models in sensor space no further group-level statistical tests were done on the

source maps. While the source space results map out the approximate cortical location of the

main effects observed in the sensor space, the extent of these localisations must be

interpreted with caution since they are not statistically thresholded.

Results

Behavioural analysis

To test whether participants were successful in comprehending all speech stimuli we
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examined the comprehension question accuracy across 4 conditions, taking out the first 5

questions of the experiment as practice ones. The percentage of correct answers averaged

across participants was above 80% for all conditions, suggesting that overall all stimuli were

accurately comprehended: HP Normal - 90 % ; LP Normal - 87 %; HP Jitter - 95 %; LP Jitter -

91 %. When contrasting comprehension accuracy across conditions with a repeated

measures ANOVA (2 x 2 with Jitter and Predictability as main factors) we found a main effect

of probability - responses to more constraining (HP) sentences were more accurate

(F(1,23)=15.9, p<0.001); and a main effect of jitter - responses to temporally jittered

sentences were more accurate compared to the normal ones (F(1,23)=16.6, p<0.001). While

it was expected that more constraining sentences might be easier to comprehend and

therefore to answer questions about, the effect of Jitter was not expected. A tentative

explanation is that while jitter makes sentences more difficult to process, participants may

also be more focused and try harder when answering questions about jittered sentences.

Entrainment is reduced for temporally jittered sentences

To ensure that the temporal jitter substantially disrupted entrainment to the envelope we

evaluated the phase synchronization between the speech envelope during the sentence

context preceding the target words and the oscillatory brain activity: we used the coherence

measure (Figure 2) to evaluate the degree to which activity in all sensors was entrained to the

envelope of our sentences across different frequency bands (< 20 Hz).

The Predictability effect was not significant. The main effect of Jitter emerged in theta (6.5-8

Hz; Normal conditions: mean Coh=0.12, SD=0.04; Jitter: mean=0.10, SD=0.04) in the right

temporal sensors - jittered sentences showed reduced coherence compared to the normal
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ones [p = 0.03]. We then tested how the Predictability effect was modulated by the Jitter

manipulation by subtracting the HP from the LP condition separately for Jittered and Normal

sentences. The direct comparison of these two differences revealed that the interaction was

significant. The cluster resulting from this latter analysis emerged in delta (0.05 Hz) in the left

frontal sensors [p = 0.02]. In the left frontal sensors where the interaction effect was larger,

only normal and contextually more constraining sentences showed a reduction of

speech-brain coherence in delta (mean Coh difference=0.016, SD=0.02) as compared to the

normal/less constraining condition [p<0.01]. No effect was present (mean Coh difference =

~0, SD=0.02) for the two jittered conditions [p=0.14].

---- Figure 2 ----

Theta entrainment in the literature has been mainly interpreted as the brain’s sensitivity to the

temporal structure of the speech envelope, namely to the syllabic rhythms (Gross et al. 2013;

Hyafil et al. 2015). Theta effects, therefore suggest that participants found jitter sentences

more perceptually challenging. Delta entrainment, on the other hand, has been associated

with tracking of the prosodic rhythms as a cue to accessing more high-level linguistic

information and associated syntactic structures (Ding et al. 2016; Kösem et al. 2016; Molinaro

and Lizarazu 2018). We further discuss the potential origins of both effects in the Discussion.

Contextually complex sentences show N400-like effects

Next, to test whether our contextual constraint manipulation was strong enough to elicit

neuronal effects we conducted an ERF analysis on the epoch of the target word. We
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expected to replicate the well-documented N400 effect - reduction of the signal amplitude in

the fronto-temporal sensors for more constraining/predictable words. It was important to

confirm this since in this study the constraint differences between more and less predictable

targets were much weaker (but also more naturalistic) than those usually derived through

cloze measures. Separately, we wanted to explore whether contextual facilitation of the target

word processing would also be present in the temporally jittered conditions, where online

processing of the context was perceptually more demanding.

ERF analysis showed early robust differences between HP and LP conditions from 200 ms in

the left frontotemporal sensors [p=0.005]. In both magnetometers and gradiometers they

follow a typical N400-like topography (Lau et al. 2009) (Figure 3). Within the time-window of

the main Predictability effect the magnitude of the difference between HP and LP conditions

was smaller for Jittered (Mean=1.08, SD =2.8 ft/cm), compared to the Normal conditions

(Mean=2.58, SD=3.67, see Supplementary Figure 2). However, this effect did not reach

significance as there was no significant interaction between Jitter and Predictability, implying

that the context affects the amplitude of the target word in both normal and temporally jittered

speech.

---- Figure 3 ----

RSA analysis – target word neural responses across individual items

Phonological information analysis
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First we explored listeners’ ability to process the lower-level phonological information

associated with the target words (which were the same words across all conditions) in both

normal and perceptually jittered contexts with the Phonological model (see methods) which

encoded only the first phoneme of the targets. We deliberately chose a small time-window

(200 ms) since we expected the effects of the first phoneme processing to be transient. Only

temporally jittered conditions have shown a model fit [p=0.05] in the left fronto-temporal

sensors. To test if the model fit was significantly better in temporally jittered compared to

normal speech we conducted a post-hoc temporal permutation t-test (1-tailed) on the r-values

averaged across significant sensors and within the time-window of the significant model fit.

The model fit was marginally [p=0.07] better for temporally jittered speech in the brief

time-window of the first 50-90 ms of the epoch.

---- Figure 4 ----

This result implies that phonological processing of the target is enhanced when temporal jitter

is present in the preceding context. These effects, however, need to be interpreted with

caution since the difference between model fit in Normal and Jitter conditions is marginal and

furthermore the source space maps show that in both cases the peaks of the model-fit are

distributed across the right temporal, left middle frontal and precentral areas.

Generating context-specific semantic predictions

ERF analysis suggested that effects of predictive context were present both in temporally

jittered and normal contexts. However, using amplitude effects alone we cannot evaluate to
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what extent context was effective in generating specific predictions about upcoming words. To

do so we used the measure of Surprisal - the negative log of the probability of the word given

the context - which quantifies the extent to which the word being processed diverges from the

context-driven expectation. In the context of the information theory this measure quantifies the

self-information encoded by the given stimulus.

Previously, in the context of predictive accounts of speech processing, this measure has been

related to the updating of the current set of probabilistic context-dependent expectations

(Willems et al. 2016). Instead of measuring Surprisal effects on the amplitude of cortical

responses (as it is typically done), here we asked if the information about the Surprisal values

of each target was encoded in the sensor space activity patterns (RSA analysis described in

Methods). We expected this analysis to be more sensitive to the information present in the

sensor data of different conditions compared to the amplitude-based ERF analysis. We

therefore tested the Surprisal model separately on jittered and normal data. Only normal

sentences have shown significant model fit [p=0.04] in the left fronto-temporal sensors, while

jittered ones showed a similar but non-significant trend.The source level maps are consistent

with this, showing a stronger averaged model-fit for normal speech in the left inferior frontal

and middle frontal areas.

To confirm that the model fit was significantly better for normal versus temporally jittered trials,

we conducted a temporal permutation post-hoc t-test (1-tailed) on the r-values averaged

across significant sensors and within the time-window of the significant model fit. This test

showed that a significantly better model fit [p=0.05] for the normal sentences emerged late in

the epoch, from around 530 ms after the target onset. This suggests that if the context is

perceptually challenging the ability to form and update context-specific predictions is
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diminished.

---- Figure 5 ----

Discussion:

In this study our goal was to understand the role of temporal regularity of speech in

perceptual parsing, phonological information analysis and top-down semantic predictions. We

manipulated the temporal periodicity of the speech signal by randomly compressing and

expanding it, thus making it less periodic, more difficult to entrain to and more effortful to

perceptually segment. Our first finding was that subjects were able to accurately comprehend

both normal and temporally jittered sentences (accuracy for follow up questions above 80%

for all conditions). However, while overall comprehension did not suffer in a major way,

analysis of the neural data has shown that the strategies that participants used for normal

versus temporally jittered sentence processing differed.

First we sought to confirm that our perceptual manipulation did in fact introduce a significant

challenge for online perceptual parsing of the speech stream as quantified by the

brain-to-speech entrainement. The entrainment analysis in the theta band (6.5-8 Hz)

confirmed that participants did not entrain to the speech envelope in the right temporal

sensors as efficiently if speech was temporally jittered, and this was true for both more and

less constraining sentences. Entrainment in this band is associated with processing the

syllabic structure (Gross et al. 2013; Hyafil et al. 2015), which is thought to facilitate online

speech signal sampling, by aligning processing to the onsets of linguistically informative
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events. Right localisation of this effect is in line with the proposed role of the right hemisphere

in perceptual tracking of slower oscillations (Giraud and Poeppel 2012), however, both

bilateral temporal and right localisation bias for theta cortex-to-speech entertainment has

been reported previously (Molinaro and Lizarazu 2018; Etard and Reichenbach 2019).

Furthermore, a study by (Lam et al. 2016) using a large pool of participants has shown that

lateralisation of theta effects is subject to considerable subject-to-subject variability therefore

we interpret lateralisation of the theta effect cautiously. A recent study that is more compatible

in design to the current study is Reichenbach and colleagues (2020) who manipulated speech

clarity and has shown a similar effect - less perceptually clear sentences (with added noise)

showed reduced envelope tracking in theta. They related this effect to the reduction of the

ability to parse syllabic and phonetic information when noise is present. Here we propose a

similar conclusion, but instead of noise these effects are caused by reduced temporal

regularity and therefore predictability of the envelope. This suggests that our jitter

manipulation indeed was sufficiently perceptually disruptive to the perceptual sentence

parsing.

Apart from a main effect in theta we also observed an interaction in the delta band (~0.5 Hz) -

for the normal and contextually more constraining sentences (HP Normal condition) there was

a reduction of coherence between left frontal sensors and the envelope. Delta band in speech

processing has been related to the tracking of larger, higher-level linguistic units such as

words and syntactic phrases (Ding et al. 2016; Kösem et al. 2016). This interaction therefore

implies that under normal prosodic conditions (no temporal jitter) semantically constraining

contexts - that are likely to generate stronger top-down lexico-semantic predictions - require

less effort in tracking lexical and syntactic information. Recent studies have also argued that,

unlike theta band, delta is not driven primarily by the perceptual properties of the auditory
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input but by internally generated predictions (Park et al., 2015) about the timing of upcoming

auditory objects such as learned auditory scenes (Breska and Deouell) or contextually

expected syntactic structures (Meyer et al. 2017; Kaufeld et al. 2020). The goal of such

temporal predictions in speech comprehension is perceptual sampling optimization and

subsequent facilitation of information integration (for discussion see Meyer et al. 2020;

Obleser and Kayser 2019). From this perspective, reduced delta coherence in the HP Normal

condition can be interpreted as a shift in the comprehension strategy: reduced tracking of

lexico-syntactic units in speech due to greater reliance on the contextual/semantic

predictions. On the other hand, if contextual/semantic predictions are lower (LP Normal

condition), or if the speech input is difficult to parse (Jitter conditions), stronger delta-band

speech tracking is required. Our data thus underline how delta-band speech tracking is

qualitatively different from the theta-band effect (note the opposite direction of the Jitter effect

in the two frequency bands), being the former more sensitive to cognitive demands. This

interpretation is also partially supported by the RSA analysis results, showing greater

sensitivity to contextual predictions in normal, compared to temporally modulated speech -

effects further discussed below.

Next we used RSA analysis to explore if the information encoded by the phonological features

of the first phoneme of the targets was being accessed shortly after the targets’ perceptual

onset. Interestingly, only for temporally jittered sentences there was significant evidence of

the phonological feature processing in the frontotemporal sensors. While the phonological

model did not reach significance for the normal speech, the direct model-fit comparison

between normal and jittered speech was only marginally significant. Furthermore, source

localisation of the uncorrected group level model-fit in the first 200 ms of target processing

showed that in both cases the peaks of the phonological model-fit were in the left interior
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frontal areas (extending to middle frontal and precentral areas) and right temporal areas

(encompassing most of the right temporal lobe). This localization is consistent with

neuro-cognitive models of phonological feature access and word-initial phonological cohort

competition in the left inferior frontal areas (Poldrack et al. 1999; Hickok and Poeppel 2004;

Liebenthal et al. 2005; Vigneau et al. 2006; Zhuang and Devereux 2017). While the marginal

increase of phonological processing in temporally jittered, compared to normal speech must

be interpreted with caution, this result would be consistent with the idea that when contextual

predictions are weaker (as evidenced by the Surprisal model below) the weighting on the

perceptual analysis is increased and vice versa (Blank and Davis 2016; Sohoglu and Davis

2016; Cope et al. 2017). This intriguing hypothesis should be further evaluated to understand

to what extent contextual predictions can reduce the load onto the ongoing phonological

analysis of words.

The ability to use context to generate predictions was enhanced in the normal, compared to

temporally jittered speech but this was only evident through a more sensitive multivariate

analysis. Previous literature (Rothermich et al. 2012; Wlotko and Federmeier 2015) found that

the context-driven N400 effect was weaker for temporally misaligned linguistic information. In

the present dataset while there was a trend towards weaker predictability effects in the N400

window in temporally jittered sentences, it was not statistically significant. This suggests that

some effects of context on the target processing were present in both normal and temporally

jittered speech. The RSA analysis, however, has shown that the ability to make and update

context-specific semantic predictions is indeed deteriorated in temporally jittered sentences

and enhanced in normal sentences. We observed significantly stronger Surprisal model-fit in

the left fronto-temporal sensors in normal compared to jittered conditions from 530 ms post

target onset. The cortical distribution of the peaks of this effect (source localisation analysis
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Figure 5) in the left IFG, middle frontal and middle temporal areas, right temporal and left

tempo-parietal areas is consistent with previous findings, where the Surprisal effect has been

found to be an index of prediction-updating of the phonological and lexico-semantic levels in

the left frontal and temporal areas (Ettinger et al. 2014; Willems et al. 2016). As indicated

above, it is interesting to observe the parallel sensitivity of (i) Surprisal RSA, which is

time-locked to the target words, and (ii) delta coherence estimates, observed for the listening

of the previous context, to our predictability manipulations in normal speech (but not in jittered

sentences). It should be added that in both cases the effects involved left-frontal brain

regions. While it is premature to draw a conclusion from this parallelism, it is however striking

to observe activity in the left hemisphere frontal regions being modulated by contextual

predictability at multiple time-scales: from single-word lexical Surprisal to sentence-level

phrasal tracking.

Overall our results show that the natural quasi-periodic and therefore predictable structure of

the speech signal plays a critical role in regulating variable processing strategies that cortical

circuits use for successful linguistic comprehension. Presence of temporal regularity improves

speech perceptual parsing in the theta band and concurrently facilitates the use of contextual

information for generating semantic predictions. Conversely, deterioration of temporal cues

degrades contextual effects and recruits increased delta-band cortical tracking resources

possibly reflecting greater effort for the higher-order linguistic processes involving syntactactic

tracking and integration. Together these complementary findings suggest that optimisation of

natural speech comprehension is in a constant dynamic balance, where speech processing

circuits flexibly adjust their processing strategies based on both the perceptual and linguistic

properties of the speech stimulus.
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Figures

Figure 1- Normalised amplitude of the spectral power in Normal vs Jitter conditions Plotted for frequencies

from 0 to 10 Hz for Normal (purple) and Jitter (orange) conditions.
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Figure 2 - Envelope coherence

Top panel - estimates of coherence between the spoken sentence envelope and the cortical signals in 4

conditions across 0-10 Hz frequency in sensors showing the highest effects. Bottom panel - topographies

of the coherence values for two contrasts that showed significant effects. Significant differences between

normal versus temporally jittered conditions emerged in the theta range 6.5-8 Hz, showing strongest effect

in the right fronto-temporal sensors. A significant interaction between temporal jitter and context

predictability was found in the delta band 0.5 Hz, with peak effects in the left frontal sensors.
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Figure 3 - N400 effect in Gradiometers (RMS)

Left - time-averaged topographical t-value map of the LP - HP contrast showing the main effect of target

Predictability emerging in the frontotemporal sensors. Right - RMS signal plotted in the gradiometer which

showed the peak of this main effect (in the 200 to 450 ms time window).
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Figure 4 - RSA Phonology model-fit (a) Results of the spatiotemporal Searchlight analysis for the

Phonology model. Over-time topographies of the t-vales derived from a one-sample t-test over individual

subjects’ model-fit r-value maps. The sensors that are part of the spatiotemporal cluster contributing to the

significant model fit are marked in red. (b) Group-average source space model fit r-maps, averaged over

0-200ms epoch aligned to the target word onset.
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Figure 5 - RSA Surprisal model-fit (a) Results of the spatiotemporal Searchlight analysis for the Surprisal

model. Over-time topographies of the t-vales derived from a one-sample t-test over individual subjects’

model-fit r-value maps. The sensors that are part of the spatiotemporal cluster contributing to the significant

model fit are marked in red. (b) Group-average source space model fit r-maps, averaged over 0.5-0.6 s

epoch aligned to the target word onset.
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