
Bachelor Degree in Computer Engineering
Computation

Thesis

Implementation of the

“Snakes and Ladders” Heuristic

for solving the

Hamiltonian Cycle Problem

Author

Manuel Torralbo Lezana

2021



Abstract

The Hamiltonian Cycle Problem is a popular NP-complete problem belong-
ing to the field of Graph Theory and an intrinsic part of the famous Travel-
ling Salesman Problem. Both paradigms are highly regarded in Mathematics
and Computer Science due to the immense consequences that would suppose
to achieve an optimal solution in investigation and research as well as in the
optimization of numerous real life scenarios. As a result, there is no lack of
material engaging the issues from numerous mathematical approaches, one of
them being the “Snakes and Ladders” Heuristic. First introduced in 2014, the
“Snakes and Ladders” Heuristic is a state of the art polynomial-time determin-
istic algorithm for solving the Hamiltonian Cycle Problem, which inspired by
the Lin-Kernighan Heuristic uses “k -opt” transformations to search for a possi-
ble solution, achieving astounding results even with difficult graphs of different
characteristics. What follows in this document is a proposal for a functional im-
plementation of the “Snakes and Ladders” Heuristic, including in-depth analysis
of the process which took place in order to conceive it.
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Chapter 1

Introduction

The Hamiltonian Cycle Problem (HCP), named after the Irish mathematician
William Rowan Hamilton who first presented and studied it alongside Thomas
Kirkman around 1856, is an NP-complete problem belonging to Graph Theory
and close relative of the widely known Travelling Salesman Problem (TSP).

Given a graph G containing n vertices, the HCP consists on proving whether
G is a Hamiltonian graph, by finding the existence of at least one Hamiltonian
cycle, or on the contrary, if G is a non-Hamiltonian graph, assuring the absence
of any of such cycles. A Hamiltonian cycle being a sequence of n distinct
interconnected edges, visiting all n vertices once and starting and ending at the
same vertex.

The TSP goes a step beyond and determines of all Hamiltonian cycles present
in G, if there are any, which has the the minimal cost, given by the sum of the
weights of the edges. If the edges of G are not weighted, or all have the same
weight for that matter, the TSP is simply reduced to the HCP. In other words,
the HCP is an intrinsic part of the TSP, and a breakthrough in the first would
inevitably affect the latter.

Such advancement would also have implications in Mathematics and Computer
Science, specially in the branches of Optimization and Complexity Theory. Not
only that, but these problems real world applications are numerous, just to name
a few, these include logistics, data storage, circuitry, cytogenetics, etc. For this
reason, the HCP and TSP problems have been studied extensively and a vast
amount of literature is available, engaging the issue from multiple mathematical
approaches, some of which will be discussed further along in this document.

However, this work’s main focus is the state of the art “Snakes and Ladders”
Heuristic (SLH) for solving the HCP. Presented for the first time in Baniasadi et
al (2014) [4], SLH is a polynomial complexity deterministic algorithm inspired
by the Lin-Kernighan heuristic [10] for solving the TSP, the primary influence
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being the usage of “k -opt” transformation techniques to transition and search
for a Hamiltonian cycle making incremental improvements.

The lack of an available source code for the SLH brings up this project’s moti-
vation; to propose and facilitate a functional implementation of the algorithm.
Throughout this paper, in detail documentation of the implementation is pro-
vided, alongside the rational process that took place in order to conceive it,
which in some cases may open the opportunity to discuss further improvements.
Subsequently, the implementation’s performance is tested against a large pool
of graphs, varying in size and difficulty.

In addition, a web application with a user interface has been developed which
provides a visual representation of the internal behaviour of the SLH.
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Chapter 2

Project Management

The following chapter defines this projects scope and time constraints and the
measures taken to control the given limitations, reduce the risks and ultimately
successfully complete the project.

2.1 Planning

Keep in mind that the planning process is being conceived at the early stages
of the project and may be subject to change during its course.

2.1.1 Work Breakdown

The project’s work load has been divided and the identified tasks have been
organized for easier management. The Work Breakdown Structure can be seen
in Figure 2.1 and, in addition, a brief explanation for each task is provided.
Lastly, the time period which each task will take place is shown in the Gantt
Diagram, see Figure 2.2.

• T1 Research

– T1.1 SLH Research: Deep analysis of the “Snakes and Ladders”
Heuristic.

– T1.2 “k -opt” Transformations: Study other algorithms which use
“k -opt” transformation techniques.

– T1.3 Graph Test Set: Gather a set of graph of different qualities to
debug and benchmark the implementation.

– T1.4 Flask WAF: Learn how to use “Flask” to develop the web ap-
plication.
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Figure 2.1: Work Breakdown Structure Diagram.

• T2 Development

– T2.1 Design: Conceive the software design of the implementation.

– T2.2 SLH Implementation: Implement the “Snakes and Ladders”
Heuristics.

– T2.3 Testing: Debug and benchmark the implementation.

– T2.4 Web Application: Implement the web application.

• T3 Documentation

– T3.1 Thesis: Write this document.

– T3.2 Code: Document the implemented source code.

– T3.3 Presentation: Create the required material to present this project.

• T4 Project Management

– T4.1 Planning: Assess and split the work to be done in order to
reduce the risks and successfully complete the project.

– T4.2 Monitoring: Control the work done to identify potential prob-
lems.
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Figure 2.2: Gantt Diagram showing the time period each of the identified tasks
takes place.

2.1.2 Risk Management

The following risks have been identified and, if possible, a contingency plan has
been proposed:

• R1: As of January of 2021 the world is subject to a global pandemic of the
virus COVID-19 and the possibility of contagion and further quarantines
seems a likely scenario. Since this is a single person project, all the work
will be done from home and a lockdown situation would not pose a serious
thread. However, in the case of suffering grave symptoms the project could
be delayed from one to two weeks.

• R2: The SLH is a state of the art algorithm with no available implemen-
tation, the only available information being the one given by the authors.
This means that the implementation must be done from scratch and from
just one source, for which only the given results can be contrasted. The
risk of misunderstanding the authors guidance is probable and will in-
evitably change the output of the resulting algorithm to a greater or lesser
extent.

• R3: Providing a publicly accessible web application entails difficulties
from a couple of standpoints. Since the interface requires a user input,
a secure parser and website is consequently needed. Furthermore, SLH
makes use of a considerable amount of computational power and space.
Even if the chance of multiple concurrent users is disregarded, acquir-
ing the necessary infrastructure may be problematic. For these reasons,
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just making a local web application for demonstrative purposes is not
discarded.

• R4: The period this project takes place coincides with the second school
quadrimester, an excessive total workload may delay this project.

2.2 Monitoring and Evaluation

During the period in which the project took place several decision where made
which affected the initially planned guidelines. At the time of writing this being
in the latest stages of the project the final outcome asks for a recapitulation and
evaluation of the most significant events.

One of the mayor changes is a nearly three month delay of the project, until
September of 2021. This is to a large extent due to risks already listed in the
planning phase. First of, as assessed in R4, the month of May was in its en-
tirety dedicated to other projects and exams, which made impossible any real
advancement. Secondly, R2 posed to be even a harder challenge than expected;
a working implementation of the SLH was achieved earlier in the project, how-
ever, the acquired results did not meet the standard set in the projects scope.
What followed where a series of optimizations and various versions of the imple-
mentation, until the outcome was considered satisfactory enough. As of now, the
implementation exceeds the expectations regarding the time required to solve
large graphs, nevertheless, it still lacks a consistent record of solving difficult
instances.

On another note, as predicted in R3, making a publicly accessible website,
containing user inputs and needing a significant amount of infrastructure, due
to the computational requirements of the SLH, ended up being an unfeasible
task. Therefore, the web application made is set to be a local user interface
with the sole purpose of showing how the SLH internally works.
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Chapter 3

Context and
State of the Art

As part of the mathematical branch of graph theory, many of the solutions pro-
vided for the HCP base their approach solely in vertices and edges of a graph
and the properties within them. There are even algorithms designed to exploit
the peculiarities of certain families of graphs. Such is the case with the al-
gorithm proposed by Eppstein (2003) [6], which provides a list of all existing
Hamiltonian cycles in a cubic graph in time O(23n/8). Using a recursive back-
tracking structure the algorithm takes advantage on the fact that the graph has
maximum degree of three to discern if a certain edge will be considered in a
cycle or not.

Trying to solve the problem by other means, most notable are the studies
which, given the structural similarities between the HCP and Markov chains,
use the tools and techniques of Markov decision processes that graph theory
does not have access to. The “Determinant Interior Point Algorithm” proposed
by Haythorpe (2010) [8], embeds the HCP in a Markov decision process creating
a doubly-stochastic probability transition matrix containing the probabilities of
all vertices transitions between each other. The algorithm then is described as
an optimization problem which tries to find a deterministic doubly-stochastic
transition matrix representing a Hamiltonian cycle.

On another note, it is not possible to talk about the HCP without mentioning
the TSP, more so taking into account that any TSP solver available also tries to
find Hamiltonian cycles. Consider a graph with n vertices originally intended
for the HCP, but the same weight w has been assigned to all of its edges. If this
very graph is provided to an algorithm designed to solve the TSP and a tour
with a cost of n× w is returned, then the graph has a Hamiltonian cycle.
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The highly regarded “Concorde TSP Solver” [2] is an exact algorithm, always
returning the tour with the best cost, which poses the issue as a linear pro-
gramming problem. Implemented as a complex branch and bound algorithm,
Concorde uses cutting planes constraints to reduce the search space and correct
itself as to produce a valid tour. However, it has to be noted that if the default
configuration of Concorde is used, the initial solution from which the solver will
build upon is constructed with the “Chained Lin-Kernighan” algorithm [1].

In the context of SLH, the “Lin-Kernighan Heuristic” [10] has mayor impor-
tance, being the first algorithm which considered an exchange of edges over a
TSP tour as a means to obtain a new one with better cost, a technique now
known as “k -opt” transformation, k being the number of edges exchanged. The
idea was based on the basic approach of other heuristics for combinatorial opti-
mization problems, which iteratively improved considering a random set of valid
solutions.

Over the time multiple improvements have been proposed for the Lin-Kernighan
Heuristic, the most notable one being Helsgaun’s Lin-Kernighan implementation
[9]. With an improved and more meticulous search strategy and an added in-
depth analysis focusing and restricting the search space, the running times are
highly reduced compared to the original algorithm, specially in graphs with
larger amount of vertices.
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Chapter 4

The “Snakes and Ladders”
Heuristic

Having already available the full description of the SLH by the authors them-
selves makes it unnecessary and redundant trying to capture in detail the al-
gorithm here again. For this reason, only a brief explanation of the SLH will
be presented, emphasizing in the concepts that provide context to the proposed
implementation. The reader is of course referred to [4] for the detailed descrip-
tion.

Let G be a graph containing n vertices, for which edges have neither direction
nor weight. Conceptually, what the SLH does is arranging all vertices along
the perimeter of a circle and then adding the edges in one of two ways. If the
vertices which the edge joins are contiguous in the perimeter, the arc of the
circle connecting both vertices is underlined and will be called a “Snake”. If,
on the contrary, the vertices are not next to another, a straight line is drawn
between the two, making a chord in the circle, and will be called “Ladder”.
Is this conceived image and its relative similarity to the popular board game
“Snakes and Ladders” what gives name to the algorithm.

For any given configuration of the vertices, since the number of vertices is n,
the total number of snakes can only be as many as n, and if that is the case,
it would mean that all vertices along the perimeter are connected in G to their
contiguous two vertices, a Hamiltonian Cycle for that matter. Searching for
such arrangement of vertices containing n snakes is the purpose of the SLH.
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4.1 Terminology

In order to explain the SLH, and subsequently the proposed implementation, a
particular terminology and notation is introduced.

4.1.1 Arrangement

A permutation of all vertices contained in a graph placed along the perimeter
of a circle. An arrangement has two directions, forward and backward, or more
specifically, clockwise and counterclockwise. Having the same number of vertices
as the graph it refers to, two vertices are said to be adjacent in the arrangement
if they are next to each other, or put in other words, if there is no additional
vertex between them.

If the contained vertices are to be specified, they are listed ordered clockwise,
using commas and between parenthesis, repeating the initial vertex at the end
to denote its cyclic nature and emphasize that it covers the entire perimeter of
the circle. Three suspension points indicate an ellipsis of 0 or more vertices.

One example of this notation could be (a,b,. . . ,c,a); a being the initial vertex
is adjacent and previous of vertex b, 0 or more vertices follows ending with the
final vertex c.

4.1.2 Ordering

Quoting Baniasadi et al (2014) [see 4, page 4]:

“The arrangement of vertices on the circle form natural equivalence classes.
Namely, two arrangements are said to be equivalent if either one can be trans-
formed to the other via a rotation or reversal, or a composition of both. . . . .
We use the term ordering, or cycle ordering to denote such an equivalence class,
. . . ”.

To be able to test the class equivalence of different arrangements to begin with,
they have to refer to the same graph, problem which is intrinsically solved since
G is the only mentioned graph.

An ordering of G is noted as C. Listing all 2n possible arrangements of the
equivalence class would be inefficient, therefore, just one of the members is
used to represent the ordering. For this reason, the term ordering is also used
referring to its representative arrangement when no confusion is possible. Lastly,
the number of gaps in the ordering C in noted as g(C).
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Figure 4.1: Example of the class equivalence of the two arrangements (A and
B) shown in the upper section. The bottom section proves this equivalence by
transforming arrangement A to B ; the first step performs a reversal and the
second a two position clockwise rotation.

4.1.3 Segment

A contiguous section of an ordering which does not contain the whole perimeter
of the circle. If the contained vertices are to be specified, the same notation as
an arrangement is used, without repeating the initial vertex at the end.

An ordering could be represented as the union of multiple segments, for instance,
the ordering (a,. . . ,b,c,. . . ,d,a) could be decomposed in the segment A: (a,. . . ,b)
and segment B : (c,. . . ,d) and redefined as (A,B). In addition, AR: (b,. . . ,a)
refers to the reverse of segment A.

4.1.4 Snake

Any adjacent pair of vertices in an ordering, also connected by an edge in the
graph. The snake between vertices a and b is specified as a _ b and drawn as
a continuous bold arc in the circle.

4.1.5 Ladder

Any pair of not adjacent vertices in an ordering connected by an edge in the
graph. A ladder is drawn as a chord in the circle.
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4.1.6 Gap

Opposite to a snake, as the name indicates, a gap is any adjacent pair of vertices
in an ordering not connected in the graph. Noted as g, the gap between vertices
a and b is specified as a | b and drawn as a discontinuous arc in the circle.

Figure 4.2: Representation of the ordering (a _ b,...,c | d,...,e _ f,...,a) con-
taining the snakes a _ b and e _ f, the gap c | d and the ladders between
the vertices a-d and c-e. The ordering can be divided in the segments (b,. . . ,c),
(d,. . . ,e) and (f,. . . ,a).

4.2 Description of the algorithm

The SLH starts with an initial ordering and performs transformations over it
and the subsequently obtained orderings as a means to gradually improve and
ultimately find a Hamiltonian Cycle, in the form of an ordering containing n
snakes or 0 gaps. The SLH is a deterministic algorithm and the initial configu-
ration of the vertices will alter the run time and outcome, which will always be
identical given the same starting ordering.

There are multiple transformations but all of them are the result of a compo-
sition of two “isomorphisms”, a term derived from the Ancient Greek meaning
“equal form or shape” and used broadly in mathematics referring to operations
mapping an element to another of the same properties. Named γ and ℵ, seen in
Figure 4.3 and Figure 4.4 respectively, in the context of the SLH an isomorphism
is the minimal form of transformation which converts an ordering to another.

• Isomorphism γ: Having the segments A← (x, ..., b) and B ← (a, ..., y), the
ordering (x, ..., b, a, ..., y, x) or (A,B) is mapped to the ordering (b, ..., x, a, ..., y, b)
or (AR, B).

• Isomorphism ℵ: Having the segments A ← (x, ..., e), B ← (c, ..., a), C ←
(b, ..., f) and D ← (d, ..., y), the ordering (x, ..., e, c, ..., a, b, ..., f, d, ..., y, x)
or (A,B,C,D) is mapped to the ordering (e, ..., x, a, ..., c, d, ..., y, f, ..., b, e)
or (AR, BR, D,CR).
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Figure 4.3: Isomorphism γ.

Figure 4.4: Isomorphism ℵ.

A transformation being a sequence of one or more isomorphisms, also maps
an ordering C to another ordering C ′. Regarding the number of gaps in C ′

compared to C, three types of transformations are defined:

• Closing Transformation: The number of gaps in C ′ is less than the number
of gaps in C (g(C ′) < g(C)).

• Floating Transformation: The number of gaps in C ′ is less than or equal
to the number of gaps in C (g(C ′) ≤ g(C)).

• Opening Transformation: The number of gaps in C ′ is greater by one,
equal to or less than the number of gaps in C (g(C ′) + 1 ≤ g(C)).

These transformations are applied using a certain criterion, for which an al-
gorithm with four stages is defined, trying to find a solution using different
approaches:

• Stage 0: Simplest of the four, just closing transformations are applied,
creating as many snakes as possible leaving the burden of closing the
remaining gaps to the other stages.
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• Stage 1: Only floating transformation are used with the intention of per-
forming a lateral search until a gap is closed. The number of transforma-
tions is limited to n2 since a gap is being closed.

• Stage 2: To avoid a local minimum an opening transformation is performed
and Stage 1 is repeated. If the number of gaps is less than the previously
obtained minimum return to Stage 1.

• Stage 3: An opening transformation is performed, then closing transfor-
mations are made until no more gaps can be closed. If the number of gaps
is less than the previously obtained minimum return to Stage 1, otherwise,
this stage is repeated. The number transformations is limited to n3.

The worst case time complexity of the SLH is O(n6 log(n) k4), however en-
countering an instance with such requirements is highly unlikely and the more
realistic bound is set to O(n5 log(n) k4). Furthermore, the algorithm solves most
graphs in the first iteration of “Stage 1”, which requires O(n4 k4).
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Chapter 5

Implementation of SLH

The proposed implementation is designed as an object-oriented program and is
available in both C++ and Python programming languages. Object-oriented
programming (OOP) is based on the concept of objects which interact with one
another and change their state with the use of their stored data, in the form of
attributes, and code, in the form of methods.

Applied to the SLH algorithm, an OPP approach makes possible, among other
things, to create collections containing instances of classes representing elements
such as gaps and orderings. An ordering instance in turn, also contains gaps
and stores vertices in a specific order, giving it its identity. Is this relationship
between different objects and the joint stored data what defines the particular
state of the SLH algorithm.

Furthermore, OOP can make use of auxiliary objects, such as iterators, which
allow to transverse orderings despite being cyclic, and in conjunction with or-
dering class methods, ease the implementation of SLH transformations.

The given explanation starts from the lower level notions, and as they are grad-
ually acquired they are used as a means to build more complex and abstract
algorithms. Therefore, the employed objects and data structures are introduced
first, and then, the SLH transformations and stages are described, in that order.

5.1 Objects and Data Structures

What comes ahead is a detailed description of the objects and data structures
used along the algorithm’s course, these being a global manager instance called
“Solver” and the class representations of graphs, orderings and gaps. An overall
description of each class and the relationship between each other can be seen in
the Class Diagram shown in Figure 5.1.
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Figure 5.1: Class Diagram showing the relationships, properties, methods and
attributes of each of the classes in the implementation.

Notice that there is no class describing vertices but all objects contain a rep-
resentation of one or multiple of them. As of this implementation the only
important information regarding a vertex is its identifier, therefore all vertex
references are just unsigned integers. It has been decided that two bytes will
provide a good balance of memory saving and the capacity of supporting graph
up to 65535 vertices. The graphs tested identify the vertices starting the count
from 1 upwards, however, for the sake of convenience, this algorithm starts from
number 0.
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5.1.1 Graph

Class representing the undirected and unweighted graph G by the connections
between its n vertices. For time optimization purposes, explained further in
Section 5.3, both the Adjacency Matrix and the Adjacency List of the graph
are stored at the cost of having redundant information.

Attributes

Adjacency Matrix. Square n x n matrix such that the element located at
row i and column j indicates if there is a connection between vertices i and j
for 0 ≤ i, j < n. Stored as a bidimensional array of bits.

Adjacency List. Collection of lists such that the v -th list contains the neigh-
bors of vertex v for 0 ≤ v < n. Stored as a bidimensional array of unsigned two
byte integers.

Properties

Indexable. In order to gain access to the adjacency matrix the class is twice
indexable, such that the expression G[i][j] returns a Boolean indicating if there
is a connection between vertices i and j for 0 ≤ i, j < n.

Time Complexity: Constant.

Methods

Get the neighbors of a vertex. Returns the list of neighbors for vertex v at
the Adjacency List.

Notation: get neighbours().

Arguments: Vertex v.

Time Complexity: Constant.

5.1.2 Ordering

Class representing an ordering by a particular arrangement of the equivalence
class. All instances refer to the same graph G and, as a result, the same number
of vertices n.

Attributes

Vertices. Arrangement of vertices. Stored as an array of unsigned two byte
integers.

Indices. Position of each of the vertices in the arrangement, stored as an array
of unsigned two byte integers, such that the expression indices[a] returns the
index of vertex a in the vertices array.
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Figure 5.2: Example of the arrays vertices and indices for the ordering (7,9,4,3,
6,8,2,5,1,10,7). For the sake of clarity, the two arrays can be viewed as mirrors of
each other since opposite to the vertices array, the indices array has the vertices
as indices and their positions as values.

Properties

Iterable. In order to iterate over the arrangement and access the vertices, an
auxiliary iterator class is implemented. Most importantly, this class supports
the cyclic nature of the orderings, internally traversing between both ends of the
sequentially stored arrangements, which eases the implementation of otherwise
convoluted functions. In addition, the iterator class has the following properties:

• Bidirectional. The iterator can go both in clockwise and counterclockwise
directions.

• Random Access. The iterator can be initialized and displaced to any
position in the arrangement.

• Deference. The iterator has access to the value of the vertex it points to.

• Equality. Two iterators are the same if they point to the same vertex.

Comparable. Enables a binary search in an ordered container of orderings. As
previously described, two different arrangements belong to the same equivalence
class if either one can be transformed to the other using a reversal, rotation or
both.

However, since looking for such transformation has no optimal implementation
the following method is proposed in order to compare two instances:

1. For both orderings, create an iterator at the position of the same starting
vertex. This starting vertex could be any in the arrangement but it needs
to be fixed for a consistent comparison criterion. Since all graphs have at
least one vertex, vertex 1 is recommended.

2. Compare the vertices adjacent to the starting one to determine the direc-
tion of the iterators; if the previous is greater than the next the iterator
moves clockwise, counterclockwise otherwise.
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3. The vertices pointed by both iterators are compared:

(a) If the first is greater than the second, the first ordering is also con-
sidered greater than the second one.

(b) If the first is lesser than the second, the first orderings is also consid-
ered lesser than the second one.

(c) If they are the same vertex, shift both iterators in their respective
direction and return to step 3.

4. If all vertices are equal the arrangements belong to the same equivalence
class.

Time Complexity: Making a single comparison between two ordering is linear
on the number of vertices n. Therefore, a binary search in an ordered container
of orderings requires O(n log(n)).

Figure 5.3: Comparison of arrangements A (2,5,1,3,4,6,2) and B (5,4,3,1,6,2,5),
where A > B.

Methods

Previous vertex of another. Returns the previous adjacent vertex on the
arrangement of vertex v in clockwise direction.

Notation: previous of().

Arguments: Vertex v.

Given by the expression:

vertices[(n+ indices[v]− 1) mod n]

Time Complexity: Constant.

19



Subsequent vertex of another. Returns the next adjacent vertex on the
arrangement of vertex v in clockwise direction.

Notation: next of().

Arguments: Vertex v.

Given by the expression:

vertices[(indices[v] + 1) mod n]

Time Complexity: Constant.

Distance between two vertices. Returns the number of vertices on the
arrangement between vertices v0 and v1, non inclusive and in clockwise direction.

Notation: distance().

Arguments: Vertices v0 and v1.

Given by the expression:

(n+ indices[v0]− indices[v1]− 1) mod n

Time Complexity: Constant.

Check if a vertex is between other two. Return whether or not vertex v
is between vertices v0 and v1 in the arrangement in clockwise direction.

Notation: is between().

Arguments: Vertices v, v0 and v0.

Two possible cases are recognized depending on the position of initial and final
vertices, v0 and v1 respectively. The considered vertex v has to be contained
in the segment (next of(v0), ..., previous of(v1)), which is contiguous in the
vertices array if the index of v0 is less than the index of v1. Otherwise, the
segment will be divided, occupying both ends of the vertices array.

The following Boolean expression is proposed:
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Where:

• A : indices[v0] < indices[v1]

• B : indices[v0] > indices[v1]

• C : indices[v] < indices[v0]

• D : indices[v] > indices[v1]

Time Complexity: Constant.

Next gap given a position. Returns the next gap in the arrangement in
clockwise direction starting from a position given by an iterator. If no iterator
is passed the position is assumed to be the start of the arrangement. The
purpose of the iterator is not only to indicate the position, but also to store it
between this method’s calls to efficiently iterate over gaps.

Notation: next gap().

Arguments: Optional iterator.

The following implementation is proposed:

1. Store the vertex pointed by the iterator.

2. Shift the iterator in clockwise direction.

3. If the vertex currently pointed by the iterator and the previously stored
are not connected in the graph G, return the gap containing these two
vertices, go back to step 1 otherwise.

4. If the end of the iterator is reached there is no gap.

Time Complexity: Linear on the number of vertices n.

Number of gaps. Returns the amount of gaps in the ordering.

Notation: number of gaps().

The following implementation is proposed:

1. Initialize a counter to 0.

2. Initialize an iterator at the start of the arrangement.

3. Call the method next gap() providing the iterator as an argument. If a
gap is returned, increment the the counter by 1 and repeat this step.

4. Return the counter.

Time complexity: Linear on the number of vertices n.
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Reverse Segment. The given segment of the arrangement is reversed. This
segment is defined by its initial and final vertices, v0 and v1 respectively, in
clockwise direction.

Notation: reverse segment().

Arguments: Vertices v0 and v1.

The conventional method of gradually swapping the elements at both extremes
of the collection until they meet at the middle is used. However, an ordering is
cyclic so the segment could be split in the vertices array and, in addition, the
indices array also needs to be modified so it reflects the changes made to the
ordering. Therefore, the following version is proposed:

1. Create two iterators, the first moving in clockwise direction and positioned
at v0, the second in counterclockwise direction and at v1.

2. Repeat the number of times given by the expression:

bdistance(v0, v1)/2c+ 1

(a) Swap the positions of the vertices pointed by the iterators in the
indices array.

(b) Swap the vertices pointed by the iterators in the vertices array.

(c) Shift both iterators in their respective directions.

Time Complexity: Linear on the number of vertices n.

Figure 5.4: Effect of a segment reversal on the vertices array.
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Swap Segments. Exchange the placement of two non overlapping segments
in the arrangement. The segments are defined by their initial and final vertices
in clockwise direction.

Notation: swap segments().

Arguments: Initial vertex of the first segment v00, final vertex of the first seg-
ment v01, initial vertex of the second vertex v10 and final vertex of the second
segment v11.

Precondition: The proposed implementation requires the segments not to inter-
sect. However, the functions making use of this method, discussed in Section
5.3, intrinsically assure that the provided vertices are correctly positioned.

The ordering is decomposed in four segments:

• First Segment A: (v00, ..., v01)

• Central Segment B : (next of(v01), ..., previous of(v10))

• Second Segment C : (v10, ..., v11)

• Final Segment D : (next of(v11), ..., previous of(v00))

Then, the ordering is rearranged as (C,B,A,D), keeping in mind that most
likely one of the segments will not be sequentially stored in the vertices array.

Time Complexity: Linear on the number of vertices n.
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Algorithm 1 Swap Segments

1: function swap segments(v00, v01, v10, v11)
2: new vertices← Array[0 : n− 1]
3: i← 0

. Second Segment
4: itr ← iterator(indices[v10])
5: end← iterator(indices[next of(v11)])
6: write to new vertices

. Central Segment
7: itr ← iterator(indices[next of(v01)])
8: end← iterator(indices[v10])
9: write to new vertices

. First Segment
10: itr ← iterator(indices[v00])
11: end← iterator(indices[next of(v01)])
12: write to new vertices

. Final Segment
13: itr ← iterator(indices[next of(v11)])
14: end← iterator(indices[v00])
15: write to new vertices

16: vertices← new vertices . Update the vertices array
. Update the indices array

17: for (i← 0; i < n; i← i+ 1) do
18: indices[vertices[i]]← i

19: procedure write to new vertices
20: while itr 6= end do
21: new vertices[i]← itr.pointed vertex
22: itr ← itr + 1
23: i← i+ 1
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5.1.3 Gap

Representation of two adjacent vertices in an ordering, which are not connected
in the graph G.

Attributes

V0. First vertex.

V1. Second vertex.

Properties

Equality. Two gaps are said to be the same if they contain the same pair of
vertices, whatever the order. To test the equality of gaps g0 and g1 the following
expression is proposed:

(g0.v0 = g1.v0 ∧ g0.v1 = g1.v1) ∨ (g0.v0 = g1.v1 ∧ g0.v1 = g1.g0)

Time Complexity: Constant.

Hashable. Enables the fast search and retrieval in hash based containers. The
Cantor pairing function is used [11]:

Cantor : N× N→ N

Cantor(x, y) =
1

2
(x+ y)(x+ y + 1) + y

Applied to a gap, the following criterion is used:

• x = max(v0, v1)

• y = min(v0, v1)

Since the Cantor pairing function is bijective, it is also a perfect hash function
with no possible hash collision.

Time Complexity: Constant for both computing the pairing function and search-
ing a gap in a hash based container.

5.1.4 Solver

Attributes

Graph. Instance of class Graph, representing graph G.

Ordering Stack. LIFO container of instances of class Ordering.

Gap Set. Hash based container of unique instances of class Gap.

Number of Gaps. Unsigned two byte integer storing the minimum number of
gaps found in an ordering.
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Properties

Singleton. Restricted instantiation of the class to a single instance for easier
access.

Methods

Clear. Removes every single ordering from the ordering stack except the one
at the top and empties the gap set.

Notation: clear().

Solve. Runs the SLH algorithm controlling the logic flow between the different
stages.

Time Complexity: O(n6 log(n) k4), where n is the number of vertices and k is
the maximum degree of graph G. However, this is worst case scenario and it is
highly unlikely. O(n5 log(n) k4) is given as the more reasonable time complexity,
or even O(n4 k4) if the graph solved at the early stages of the algorithm. See
Section 5.4 for a detailed explanation.

5.2 Isomorphisms

Representative of the generative transformations [see 4, page 4], these are the
only processes that perform transformations over orderings. Implemented as
blind functions which do not check any condition, they just change the config-
uration of the vertices in an ordering, making direct use of the Ordering class
methods reverse segments() and swap segments(). As the actual isomorphisms,
these functions can be applied sequentially to form complex transformations.

Isomorphism γ

Given an ordering C and two of its vertices x and b, the segment (x, ..., b) is
reversed. In other words, considering the vertices y ← previous of(x) and a←
next of(b) and the segments A← (x, ..., b) and B ← (a, ..., y), the ordering C =
(x, ..., b, a, ...y, x) or (A,B) is transformed into (b, ..., x, a, ..., y, b) or (AR, B), see
Figure 4.3.

Arguments: Ordering C and vertices x and b.

Algorithm 2 Isomorphism γ

1: function isomorphism γ(C, x, b)
2: C.reverse segment(x, b)

The function internally calls Ordering class method reverse segment(), there-
fore, keep in mind that the reversed segment is defined in clockwise direction.
However, if the ordering is being traversed in counterclockwise direction the

26



correct transformation can be achieved by simply interchanging vertices x and
b at the time of calling the function.

Time Complexity: Linear in the number of vertices n.

Isomorphism ℵ
Given ordering C and its vertices x, e, c, a, b, f , d and y, the following segments
are considered:

• A← (x, ..., e)

• B ← (c, ..., a)

• C ← (b, ..., f)

• D ← (d, ..., y)

The ordering C = (x, ..., e, c, ..., a, b, ..., f, d, ..., y) or (A,B,C,D) is transformed
into the ordering (e, ..., x, a, ..., c, d, ..., y, f, ..., b, e) or (AR, BR, D,CR), see Fig-
ure 4.4

Arguments: Ordering C and vertices x, e, c, a, b, f , d and y.

Algorithm 3 Isomorphism ℵ
1: function isomorphism ℵ(C, x, e, c, a, b, f, d, y)
2: C.swap segments(b, f, d, y)
3: C.reverse segment(x, e)
4: C.reverse segment(c, a)
5: C.reverse segment(b, f)

Since multiple of the used vertices are adjacent, it can be argued that there is
redundant information passed into the function. On the other hand, because
of the way it has been implemented, the processes making use of this function
have already acquired the values of all the vertices and it has been considered
that there is no need to compute them again.

Just as isomorphism γ function, the vertices must be given in clockwise direction
to achieve the desired transformation. If C is being traversed in counterclock-
wise direction instead, the vertices defining segments A, B, C and D have to
be passed swapped. Keeping the values of the vertices as they are, the function
would be called in the following manner:

ISOMORPHISM ℵ(C, e, x, a, c, f, b, y, d)

Time Complexity: Linear on the number of vertices n.
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5.3 Transformations

A special combination of isomorphisms γ and ℵ, each of these complex transfor-
mations requires a different set occurrences involving snakes, ladders and gaps
to be present in an ordering so it can be transformed. They are implemented as
searching algorithms which look for specific conditions and leave the actual con-
version of the ordering to the isomorphism functions discussed in the previous
section.

The implementations of these transformations, even if they search for a dis-
tinct set of conditions, all follow the same structure and utilize a defined set
of techniques to navigate the orderings and check that the conditions are met.
Consequently, just Algorithm 4 containing the description for the floating trans-
formation “4-flo type 1” is included, see Figure 5.5. This algorithm is an ex-
cellent reference for the rest of the transformations since it makes use of all the
aforementioned techniques.

Figure 5.5: Floating 4-flo type 1 transformation.

However, before going any further, an important distinction has to be made.
All of the transformation functions are provided with an ordering C and one of
its gaps g. C is the ordering to be searched and g sets the point from where the
algorithm will start looking, but given that C can be traversed in two different
directions, also two types of transformations are identified:

• Symmetric: Those transformations that thanks to the conditions they
require, if there is a set of vertices which fulfills them in C, then it will be
found no matter the direction. The floating transformation “4-flo type 1”
falls into this category.

• Asymmetric: Contrary to the symmetric transformations, C has to be
searched in both directions in order to check if there is any set of vertices
which meets the imposed conditions.

Taking this into account, the algorithm sequentially tries to search for a series
of vertices, using the already established vertices and the given conditions as
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Algorithm 4 Floating 4-flo type 1

1: function floating 4flo type1(C, g)
2: G← Solver.instance.graph
3: gS ← Solver.instance.gap set

4: x← g.v1
5: y ← g.v0

6: for a in G.get neighbours(x) do
7: b← next of(a)

8: if G[y][b] ∧ C.distance(x, a) ≥ 2 ∧ C.distance(b, y) ≥ 2 then
9: itr ← Iterator(C.indices[x]) + 2

10: end← Iterator(C.indices[a])

11: for (; itr 6= end; itr ← itr + 1) do
12: c← itr.pointed vertex

13: for d in G.get neighbours(c) do
14: if C.is between(d, b, y) then
15: e← C.previous of(c)
16: f ← C.next of(d)

17: if y 6= f ∧ ¬(Gap(e, f) in gS) then
18: opt← 0
19: if G[e][f ] then opt← opt+ 1
20: if ¬G[c][e] then opt← opt+ 1
21: if ¬G[a][b] then opt← opt+ 1
22: if ¬G[d][f ] then opt← opt+ 1

23: C ′ ← Shallow Copy(C)
24: Isomorphism γ(C ′, x, e)
25: Isomorphism γ(C ′, c, a)
26: Isomorphism γ(C ′, b, e)
27: Isomorphism γ(C ′, f, y)

28: return opt, C ′

29: return 0, Null
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guides to find the next vertex. The “anchor points”, as they will be called, are
just the vertices which for a given state of the algorithm have already been set.
These anchor points, when possible, are used in conjunction with the required
snakes, ladders and gaps to obtain a new anchor point. If all anchor points have
been positioned, then a set of vertices fulfilling the conditions exists and the
transformation can proceed.

The techniques or methods used to navigate the orderings in either direction
fall into these three categories:

1. Adjacency in graph G: Provides the information regarding the exis-
tence or absence of edges between vertices.

(a) Adjacency List: Allows to loop trough all the ladders of an anchor
point. This can be seen in Algorithm 4 line 6, since there is a ladder
(x−a) and vertex x, being part of g, is an anchor point, the algorithm
iterates over all possible ladders of x in order to set vertex a.

(b) Adjacency Matrix: Returns in constant time whether or not two
vertices are connected in G in order to check the existence of snakes,
ladders and gaps.

Having both representations of graph G implies that there is redundant
information stored. On the other hand, not having available one of the two
means a suboptimal search. In the lack of the adjacency list, all n vertices
would have to be considered as possible ladders, and in the absence of
the adjacency matrix, testing if two vertex are connected in G would cost
O(log(n)) at best if the neighbours of each vertex are stored in orderly
manner.

2. Ordering Iterators: Used as a last resort, they are necessary when the
next vertex to be found has no related anchor point. This situation can be
seen at Algorithm 4, lines 9-11, where vertices x, y, a and b have already
been set but not one of vertices c, d, e and f has a snake, ladder or gap
with any of the anchor points. Consequently, the vertices of an entire
segment have to be observed, in this case segment (x, .., a) in search for
vertex c.

3. Relative position in ordering C : Provide early stopping conditions and
most importantly assure that the anchor points are correctly positioned
between each other, leaving no room to contradictions.

(a) Previous and next of a vertex: They easily obtain the adjacent vertex
of an anchor point in C. See Algorithm 4, line 7, where vertex b is
just the next of a, the previous in the case of the direction being
counterclockwise.

(b) Distance between vertices: Considering the anchor points, it is used
to determine if the conditions are still feasible. See Algorithm 4, line
8, once vertices a and b have been set there is no reason to continue if
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in the segments (x,...,a) and (b,...,y) contain less than four vertices,
since vertices e, c and d, f respectively, also have to be included.

(c) Vertex contained within a segment: Used in conjunction with tech-
nique 1.a when the vertex at the end of a ladder starting from an
anchor point has to be contained in a certain segment. See Algo-
rithm 4, line 14, where considering the ladder (c− d) and the anchor
point c the algorithm is trying to set vertex d. However, vertex d has
to be included in segment (b, ..., y) or otherwise it will be discarded.

Depending on the minimum number of gaps potentially closed there are three
types of transformations: “closing”, “floating” and “opening” transformations.
Furthermore, the “stages” defined at Section 5.4 do not ask for a particular
transformation, these functions request for any applicable transformation of
one given type instead, just specifying the ordering to transform. This means
that for all gaps in the ordering and for all transformations falling in the given
type, any combination could be potentially applicable.

It is not specified the priority in which the transformations are tested, nor if all
the transformations are tested before continuing to the next gap or the other
way around. The approach taken in this implementation is based on one of the
principles adopted in [3, page 38], which gives priority to the transformations
of lower computational cost. For that matter, the implementation iterates over
the transformations of the specified type, ordered from lower to higher compu-
tational cost, and tries to apply the selected transformation with all the gaps
in the ordering until an applicable combination is found, or going to the next
transformation otherwise. Notice that this approach is just one of the possible
among others and it could not be the same as the authors used.

5.3.1 Closing Transformations

These transformations guarantee that at least one gap is closed after the con-
version of the ordering. Used in “Stage 0”, see Section 5.4.1, this process does
not maintain a collection of visited orderings, therefore, all transformations are
applied over the same Ordering object instance C.

Arguments: Ordering C and gap g.

Returns: Boolean type indicating whether or not the transformation has been
applied.

Transformation Symmetric Asymptotic Notation

2-opt type 1 No O(n+ k)
2-opt type 2 Yes O(n+ k)

3-opt Yes O(n+ k2)

Table 5.1: SLH closing transformations in order of priority. Where k refers to
the maximum degree of graph G.

31



5.3.2 Floating Transformations

If one of these transformations is applicable to an ordering C, the resulting
ordering C ′ will have the same number of gaps or less than C.

Any transformation can be seen as an exchange of gaps, for example taking a
look at floating transformation “4-flo type 1” in Figure 5.5, gap (x|y) is ex-
changed for a possible gap (e, f). Floating transformations require one addi-
tional condition, being that the exchanged gap has not been already subject
of a previous transformation, see Algorithm 4, line 17. For that matter, if the
transformation is still applicable, gap g will be added to a hashed container so
the transformations to come do not produce it again.

There is a variation of the floating transformations used in “Stage 3”, see Section
5.4.4, which requires at least one gap to be closed, just as the closing transfor-
mations. This is easily implemented imposing variable opt in Algorithm 4, line
18, to be greater that 0.

Compared to the original floating transformations, even if they no longer impose
restrictions in the exchanged gap, the resulting ordering C ′ cannot have been
previously visited, adding a time complexity of O(n log(n)), result of a binary
search in an ordered container, which needs to be given as a parameter, plus
the time it takes to compare two orderings.

Arguments: Ordering C, gap g and, optionally, an ordered container of visited
orderings.

Returns: The number of gaps closed and ordering C ′.

Transformation Symmetric
Asymptotic Notation

flo opt

2-flo No O(n+ k) O(n log(n) k)
3-flo - O(n+ k2) O(n log(n) k2)

4-flo type 1 Yes O(n+ k2 s) O(n log(n) k2 s)
4-flo type 2 No O(n+ k3) O(n log(n) k3)

5-flo No O(n+ k4) O(n log(n) k4)

Table 5.2: SLH floating transformations in order of priority. Where k is the
maximum degree of gap graph G and s is the length of segment (x, ..., a), see
Figure 5.5 and Algorithm 4, lines 9-11.

Floating transformation “3-flo” is a special transformation in the sense that it
can be symmetric and asymmetric depending on the considered ladder, (y − b)
or (c− d) respectively [see 4, page 8].
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5.3.3 Opening Transformations

Transformations that potentially increase the number of gaps by one. Aside
from ordering C and one of its gaps g, they also require an ordered container
of orderings to be passed as an argument, with the intention of not repeating
already visited orderings. The collection can be just the orderings product of
other opening transformations as it is used in “Stage 2”, see Section 5.4.3, or
the entire list of visited orderings as used in “Stage 3”, see Section 5.4.4.

Arguments: Ordering C, gap g and an ordered container of orderings.

Returns: The number of gaps closed and the resulting ordering C ′.

Transformation Symmetric Asymptotic Notation

4-flo No O(n log(n) k2 s)

Table 5.3: SLH opening transformation. Where k is the maximum degree of
graph G and s is the length of segment (x, ..., a) [see 4, page 9].

5.4 Stages

The SLH algorithm is formed by four main processes called “Stages” which
try to solve the HCP using different approaches. They transition between each
other until ultimately an ordering containing 0 gaps is discovered or n3 orderings
have been considered. In either case, the ordering with the least amount of gaps
found is returned. The State Diagram explaining the transition between the
different stages is shown in Figure 5.6 and the detailed explanation is available
at [4, page 10].

The worst time complexity of the complete process is O(n6 log(n) k4), given by
“Stage 3”, the stage with the highest computational cost O(n5 log(n) k4), and
the n times “Stage 1” though “Stage 3” can be repeated, the latter requiring
to find an ordering with less gaps than any previous ordering found before in
order to return to the first.

However, tests show that “Stage 3” is repeated few times, since by the moment
the algorithm reaches this stage most gaps have been already closed, therefore a
more reasonable time complexity would be O(n5 log(n) k4). Furthermore, most
instances are solved without ever reaching “Stage 2”, just requiring O(n4 k4),
the time complexity of “Stage 1”.
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Figure 5.6: State Diagram showing the transition between the different stages
of SLH. The conditions being as follows: A) An ordering with 0 gaps found.
B) The number of orderings in the stack is greater than n2 or no more floating
transformations can be performed. C) An ordering with a new minimum number
of gaps found. D) All opening transformations considering the ordering at the
top of the stack and one of its gaps have been considered. E) The number of
orderings in the stack is greater that n3 or the ordering at top of the stack has
no possible opening transformation.
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5.4.1 Stage 0

As many gaps as possible are closed just using closing transformations over the
same Ordering object instance C. Once no more closing transformations can be
performed, the number of gaps is updated.

A maximum of n closing transformations will be performed, since they close at
least one gap, and ordering C at any given time can have as many as n gaps from
where the transformations can be applied. The closing transformation “3-opt”
requires two anchor points to be established, and if each vertex has a maximum
of k neighbours in G then there are k2 potential combinations. Therefore, this
stage has a worst case time complexity of O(n2 k2).

Algorithm 5 Stage 0 of SLH

1: function stage0()
2: S ← Solver.instance
3: C ← S.ordering stack.top()
4: transformation made← closing transformation(C)

5: while transformation made do
6: transformation made← closing transformation(C)

7: S.number of gaps← C.number of gaps()

5.4.2 Stage 1

Just using floating transformations this stage tries to close gaps using a lateral
search. The number of ordering containing the same number of gaps is limited
to n2, but each time an ordering with less gaps is found, the ordering stack is
emptied. This can happen a maximum of n times. The floating transformation
“5-flo” requires 4 anchor points to be set, if each vertex has as many as k neigh-
bours in G and if each ordering has up to n gaps from where a transformation
can be applied, there are nk4 potential combinations. Therefore, this stage has
a worst case time complexity of O(n4 k4).

5.4.3 Stage 2

This process takes the ordering with the least amount of gaps, performs opening
transformations using a single gap and delegates the control over again to “Stage
1”. This can be interpreted as the algorithm trying to find new pathways in
order to continue the search.

If “Stage 1” can create up to n2 new orderings, the amount of performed opening
transformations is limited to n or otherwise more than n3 orderings would be
created. Therefore, if “Stage 1” with O(n4 k4) can only be repeated a maximum
of n times, this stage has a worst case time complexity of O(n5 k4).

35



Algorithm 6 Stage 1 of SLH

1: function stage1()
2: S ← Solver.instance
3: CS ← S.ordering stack
4: auxiliary CS ← Shallow Copy(CS)

5: while CS.size() ≤ n2 ∧ auxiliary CS.size() > 0 do
6: opt, C ← floating transformation(auxiliary CS.top())

7: if C 6= Null then
8: CS.push(C)

9: if opt > 0 then
10: S.number of gaps← S.number of gaps− opt
11: if S.number of gaps = 0 then return
12: S.clear()
13: auxiliary CS.clear()

14: auxiliary CS.push(C)

15: else auxiliary CS.pop()

5.4.4 Stage 3

An opening transformation on the ordering at the top of the ordering stack is
followed by a sequence of all possible floating transformations which close gaps.
This is repeated until an ordering with a new minimum number of gaps has been
found or n3 orderings have been considered. Each new ordering is required not to
be already visited, requiring O(log(n)) to perform a binary search in an ordered
container and O(n) to compare two orderings. The floating transformation “5-
flo” requires 4 anchor points to be set, if each vertex has as many as k neighbours
in G and if each ordering has up to n gaps from where a transformation can be
applied, there are nk4 potential combinations. Therefore, this stage has a worst
case time complexity of O(n5 log(n) k4).
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Algorithm 7 Stage 2 of SLH

1: function stage2()
2: S ← Solver.instance
3: C ← S.ordering stack.pop()
4: g C ← S.number of gaps
5: g ← C.next gap()
6: visited C ← Sorted Set

7: opt, C ′ ← opening 4flo transformation(C, g, visited C)
8: while C ′ 6= Null do
9: S.ordering stack.push(C ′)

10: S.clear()
11: S.gap set.insert(g)
12: S.number of gaps← S.number of gaps− opt
13: stage1()

14: if S.number of gaps < g C then
15: if S.number of gaps = 0 then return False
16: S.clear()
17: return True

18: visited C.insert(C ′)
19: opt, C ′ ← opening 4flo transformation(C, g, visited C)

20: S.ordering stack.push(C)
21: S.number of gaps← g C
22: return False
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Algorithm 8 Stage 3 of SLH

1: function stage3()
2: S ← Solver.instance
3: CS ← S.ordering stack
4: visited C ← Sorted Set(CS)

5: while CS.size() ≤ n3 do
6: C ← opening transformation(CS.top(), visited C)
7: if C = Null then break

8: auxiliary CS ← Stack
9: auxiliary g CS ← Stack

10: CS.push(C)
11: visited C.insert(C)
12: auxiliary CS.push(C)
13: auxiliary g CS.push(C.number of gaps())

14: while CS.size() ≤ n3 ∧ auxiliary CS.size() > 0 do
15: opt, C ← opt transformation(auxiliary CS.top(), visited C)

16: if C 6= Null then
17: CS.push(C)
18: visited C.insert(C)
19: auxiliary CS.push(C)
20: auxiliary g CS.push(auxiliary g CS.top()− opt)

21: else if auxiliary g CS.top() < S.number of gaps then
22: S.number of gaps← auxiliary g CS.top()
23: if auxiliary g CS.top() = 0 then return False
24: S.clear()
25: return True

26: else
27: auxiliary CS.pop()
28: auxiliary g CS.pop()

29: return False
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5.5 Run Time

At the time of executing the program it is required to provide a file with “.hcp”
extension containing the representation of the graph to be solved as a list of
edges. Once the graph has been specified the program’s life cycle is formed by
a simple sequence of subprocesses:

1. Parsing: The “.hcp” file is parsed as an instance of class Graph.

2. Initialization: The singleton instance of class Solver is created with the
instance of class Graph generated by subprocess 1, the number of vertices
for all the objects of class Ordering is set and the ordering containing
the initial assignment of the vertices is constructed and pushed into the
ordering stack.

3. SLH Execution: Using the implemented version of the SLH, the specified
graph is searched with the intention of finding a Hamiltonian cycle.

4. Output: The series of vertices contained in the ordering with the least
amount of gaps found are returned.

5. Clean up: The created objects are destructed if necessary.

5.6 Possible Improvements

During the development of the implementation several improvements were con-
sidered, which in the end, were not added to the latest version of the program
since they had a trade off, they were inconsistent with original design of SLH
or simply, there was a lack of information to support them.

5.6.1 Ordering fingerprint

In [3, page 41, Algorithm 1] the term “fingerprint” is used as an alternative to
store the visited orderings in an ordered list. It is inferred that a fingerprint
is the minimal expression of an ordering instance, which still maintains the
identity of the ordering and it is comparable to another fingerprint.

An example of such element could be achieved based on the vertices array
attribute and the comparable property of the Ordering class in Section 5.1.2:

• Array containing n− 1 vertices, since it would always start from vertex 1.

• The listing of the vertices would be done using the same criterion as the
comparable property of the ordering class, following the direction imposed
by the vertex with smaller identifier adjacent to and starting from vertex 1.

• Two fingerprint instances would be compared vertex by vertex, from start
to finish, until a pair of vertices returns an inequality or all comparisons
are equal.
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Figure 5.7: Comparison of fingerprints of orderings A (2,5,1,3,4,6,2) and B
(5,4,3,1,6,2,5), where A > B. Same as Figure 5.3.

Applied to the proposed implementation, it would mean that each time an
ordering was recovered it would have to be reconstructed from the fingerprint
in O(n) time, and that each time a transformation was made the produced
ordering had to be created following the fingerprint listing order.

On the other hand, the space in memory required to run the algorithm would
be approximately reduced by half in difficult instances, since just a compressed
representation of the orderings would have to be stored instead of the entire
instance.

5.6.2 Blind Improvement Space

Explained in detail in [3, page 23], a “Blind Improvement Space” (BIS) is a term
used by “k -opt” transformation algorithms referring to a map that associates a
non-optimal tour of a graph to a set of transformations which produce at least
one improved tour, closer to the optimal. The BIS of SLH is conformed by the
set of stages and the order the transformations of each category are applied,
having a lack of information regarding the latter.

It is probable that the BIS created by the proposed implementation is not the
same as the authors originally intended, which would explain the unreliable
results on the last two stages of the algorithm shown in Section 6.2. This would
also mean that optimizing the BIS of the implementation could significantly
increase its performance in difficult graphs.
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5.6.3 Multithreading

The current version of the algorithm is implemented as a single threaded pro-
gram, however, some segments of the code could be ran in multiple threads as
means to increase the computing power. The most notable segments being the
searches of applicable transformations for the different categories. If the CPU
would allow it, multiple threads could ran in parallel looking for new orderings
using different combinations of gaps and transformations.

Notice that in this case, if the first eligible transformation found would be per-
formed, the algorithm would no longer be deterministic, since the output could
vary between different executions depending on the state of the CPU and the
operating system. Therefore a priority system should be also implemented, one
that would make a thread wait if it has found an applicable transformation until
the threads considering higher priority gaps and transformations had finished,
which would nevertheless speed up the process in some situations.
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Chapter 6

Experimental Validation

The goal of this chapter is to evaluate the proposed implementation using dif-
ferent problem benchmarks.

All the times listed in this section where achieved running the C++ version
of the implemented SLH running in a custom desktop computer with a Ryzen
7 2700X at 4.3GHz overclocked with Precision Boost Overdrive and 16GB of
RAM under Linux Debian 10.

6.1 Benchmarks

The graphs used to test the implementation are obtained from the TSPLIB
website’s specific HCP section [12], which provides 9 graph of up to 5000 vertices,
a large set of 797 symmetric cubic graphs of up to 2048 vertices, accessible at [5]
and lastly, from the Flinders HCP Challenge Set [7], a collection of 1001 difficult
graphs. All mentioned graphs contain Hamiltonian Cycles with the exception of
two symmetric cubic graphs, C10.1 (the Petersen graph) and C28.1 (the Coxeter
graph).
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6.2 Results

The obtained results obtained in the aforementioned benchmark graph sets are
gathered using a series of tables containing the following fields:

• Graph: Name or identifier of the graph.

• Number: Number of graphs in the benchmark set.

• Size Range: Minimum and maximum number of vertices in the graphs
of the benchmark set.

• Time (t): Time required to solve the graph, s of second and ms for
milliseconds.

• Stage (stg.): Stage in which the graph was solved. Even if the algorithm
returns to previous stages the furthest reached is considered.

• Success rate: Percentage of successfully solved graphs in the benchmark
set.

Graphs Number Size Range Time (s) Success Rate

TSPLIB 9 1000-5000 1.95 100
Symmetric cubic 795 4-2048 24.32 100

Table 6.1: Combined time required to solve all graphs in the TSPLIB challenge
set and the 795 symmetric cubic graphs containing Hamiltonian cycles.

After a series of versions and optimizations the proposed SLH implementation
has exceeded the expectations regarding the time required to solve graphs with
large amount of vertices, solving all symmetric cubic graph in less than half a
minute and all the graphs proposed by TSPLIB in less than two second.

Due to its deterministic nature, if the algorithm is initialized with the same
initial configuration of vertices, it will always follow the same series of actions
and return the same outcome. Therefore, to further test the consistency of
the implementation, each graph has been tested ten times using random initial
orderings. In Table 6.2 and Table 6.3 the particular results for the graphs with
higher count of vertices are listed.

Graph Time (ms) Stage Graph Time (ms) Stage

alb1000 23 1 alb3000d 216 1
alb2000 69 1 alb3000e 211 1
alb3000a 155 1 alb4000 353 1
alb3000b 191 1 alb5000 561 1
alb3000c 158 1

Table 6.2: Average time required for 10 different tests using random initial
orderings for all TSPLIB graphs.
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Graph Time (ms) Stage Graph Time (ms) Stage

C2048.1 46 1 C2048.14 45 1
C2048.2 67 1 C2048.15 60 1
C2048.3 53 1 C2048.16 41 1
C2048.4 57 1 C2048.17 56 1
C2048.5 58 1 C2048.18 54 1
C2048.6 93 1 C2048.19 54 1
C2048.7 52 1 C2048.20 50 1
C2048.8 91 1 C2048.21 62 1
C2048.9 55 1 C2048.22 55 1
C2048.10 47 1 C2048.23 47 1
C2048.11 62 1 C2048.24 55 1
C2048.12 67 1 C2048.25 74 1
C2048.13 62 1

Table 6.3: Average time required for 10 different tests using random initial
orderings for all the symmetric cubic graphs of 2048 vertices.

The results are promising, solving the graph of 5000 nodes in an average time
of half a second, however note that all tests have been solved between stages
0-1. In order to evaluate the performance of the remaining stages, graphs in
the Flinders HCP Challenge Set are used, these being difficult instances which
reliably reach the latter stages of the algorithm.

Graph
Run 1 Run 2 Run 3 Run 4 Run 5

t (s) stg. t (s) stg. t (s) stg. t (s) stg. t (s) stg.

1 0.294 2 0.274 2 0.473 2 0.838 2 0.0 1
2 0.0 1 0.0 1 0.0 1 0.0 1 0.07 2
3 2.26 3 1.47 3 1.15 2 0.1 2 2.68 3
4 0.2 2 0.18 2 0.0 1 0.27 2 0.0 1
5 7.29 3 4.56 3 2.04 3 1.64 2 3.79 3
6 0.15 2 0.0 1 1.19 3 0.3 2 0.0 1
7 14.08 3 5.21 3 7.52 3 17.79 3 4.75 3
8 8.5 2 0.0 1 0.0 1 5.61 2 11.85 2
10 0.6 2 0.0 1 4.94 2 3.52 3 0.0 1

Table 6.4: Five distinct runs of the first ten graphs in the Flinders HCP Chal-
lenge set using random initial orderings. All instances were successfully solved.
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As shown in Table 6.4 the implementation is not reliable solving difficult in-
stances. The algorithms shines in stages 0-1, however, when it transitions to
stages 2 or 3 the time required to solve the graph rapidly increases, even more
so as the number of vertices grows. In addition, the state reached is highly
dependant on the initial configuration of the vertices considered, an obvious
example being graph 8 which alternates between nearly instantly being solved
and requiring one of the longest time observed.

One of the observations made during multiple runs is that the algorithm often
falls to stage 3 when it has just gap left to be closed, meaning that the problem
is stuck in this stage until it is being solved, since stage 3 requires at least one
gap to be closed in order to transition. This can be, due to multiple reasons, an
error in the implementation, a misinterpreted guideline of the official algorithm,
a suboptimal search space, etc.
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Chapter 7

Web Application

As a means to show the internal behaviour of the SLH applied to real and com-
plex graphs, a simple web application with a user interface has been developed.
The application allows to drag and drop a “.hcp” file containing the representa-
tion of the graph as a list of edges. Afterwards, the given graph is solved using
the implementation made of the SLH. The algorithm, modified to periodically
reserve the best ordering found at that given time, allows the web application to
render the stored ordering using the same visual representation the algorithm
was based upon, arranging the sequence of vertices contained in the ordering
along the perimeter of a circle and subsequently drawing the snakes, ladders
and gaps.

The ladders are painted in orange color, as chords in the circle between two
non adjacent vertices in the ordering. The snakes and gaps on the other side,
are painted as arcs between all the adjacent vertices, in green and red color
respectively, which in the end constitutes the entirety of the circle’s perimeter.
All in all, the contrast between the colors combined with geometrical properties
of some graphs and the patterns produced by the SLH transformations can
ultimately produce striking images. Furthermore, the user can go back and
forth between distinct visual representation of the orderings, using an image
gallery, allowing to see how, over the course of the algorithm, the number of
gaps decreases as snakes increase.

The Web application has been built using Flask, HTML, JavaScript and the
Bootstrap framework for the CSS styles. The python implementation of the
SLH, with the variations already mentioned, is used to solve the HCP instances
provided by the “.hcp” files, and the visual representation of the graphs are
rendered using the Pillow library.
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Unfortunately, due to the space and computational requirements of the SLH
implementation, the web application has to remain as a local demonstrative
interface. Moreover, the security measures required, given the user input file,
and the concurrency of multiple users, distance even further a publicly accessible
web site from this project’s scope.

Figure 7.1: SLH Web Application input window.
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Figure 7.2: SLH Web Application loading screen.
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Figure 7.3: SLH Web Application image gallery showing the initial ordering for
the symmetric cubic graph C2048.25.
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Figure 7.4: SLH Web Application image gallery showing the final ordering of
the symmetric cubic graph C2048.25, which contains a Hamiltonian cycle.
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Chapter 8

Conclusions

The course of this project has been at all times carried out under the context of
the “Snakes and Ladders” Heuristic, a state of the art algorithm for the Hamil-
tonian Cycle Problem. The main goal was to design and develop a functional
implementation of the heuristic, which had to be built from the ground up just
with the help of the description provided by the authors.

After meticulous study and a series of optimizations a version of the algorithm
with excellent results in graphs of large number of vertices was conceived, which
corroborated the incredible potential of the “Snakes and Ladders” Heuristic.

On the other side, there is no denying that the implementation proposed does
not reliable solve difficult instances and is highly dependant on the initial con-
figuration of the vertices. However, this is not discouraging, but rather reassures
that there are improvements to be made.

The products derived from this project are two implementations, in python
and C++, a web application, showing the internal behaviour of the algorithm,
and most importantly, a detailed guideline of the designed program, allowing
anyone who desires to build it on their own, or even better, improve the given
implementation.
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