
Degree in Computer Engineering
Computer science

End of degree work

Gaining root access in Linux using the
CVE-2021-26708 vulnerability

Author

Markel Azpeitia Loiti

2021

Degree in Computer Engineering
Computer science

End of degree work

Gaining root access in Linux using the
CVE-2021-26708 vulnerability

Author

Markel Azpeitia Loiti

Director(s)
Jose A. Pascual

Summary

In this project, a novel Linux kernel vulnerability discovered on February 2021 and present
from kernel version 5.5 to 5.10.13 is analyzed and dissected. The vulnerability arises from
a race condition residing in the virtual sockets implementation, consequence of an easily
avoidable programming mistake, that causes a 4-byte write-after-free at offset 40 on a
64-byte kernel object.

Using a QEMU/KVM virtualized Linux environment alongside the GDB debugger, the
inner workings of the vulnerability are analyzed, determining the reason for which it is
considered a vulnerability and the conditions that must be met to to trigger it, implement-
ing a reliable proof of concept that can cause the bug using system calls.

Furthermore, publicly available exploitation techniques like heap spraying and control
flow hijacking are implemented in the C language that firstly turn the 4-byte memory
corruption caused by the vulnerability’s race condition into an arbitrary free exploit, which
is then used for arbitrarily leaking some kernel object pointers of interest. Eventually, the
leaked information is used for briefly hijacking the kernel’s control flow and redirecting
execution to a ROP gadget consisting of two opcodes that overwrite the kernel object
storing the current user’s id to zero, ultimately escalating privileges to root for all intents
and purposes.

i

Disclaimer

Due to the nature of the exploit developed in this thesis, its implementation will not be
publicly disclosed as to avoid it being used for malicious purposes.

The author of this document assumes no responsibility for possible damages that may be
caused by the contents of this thesis; the contents of this document are purely for academic
purposes and should not be used with any other intention.

iii

Contents

Summary i

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

2 The aims of the project 3

3 Project management 5

3.1 Description of the phases . 5

3.1.1 Management . 6

3.1.2 Development . 6

3.1.3 Documentation . 7

3.2 Work Breakdown Structure . 7

3.3 Time estimates . 8

3.4 Risk management . 8

3.5 Deviation analysis . 9

3.6 Work methodology . 9

v

CONTENTS

3.6.1 Meetings . 9

3.6.2 Work schedule . 10

4 Linux subsystems 11

4.1 Memory management subsystem . 11

4.1.1 Buddy allocator . 11

4.1.2 Slab allocator . 12

4.2 Linux virtual socket subsytem . 14

4.3 Linux kernel security measures . 15

4.3.1 SMEP & SMAP . 15

4.3.2 Kernel Address Space Layout Randomization 16

4.3.3 Security-Enhanced Linux . 17

5 Common software vulnerabilities 19

5.1 Exploiting . 20

5.2 Proof of concept . 21

6 CVE-2021-26708 Vulnerability 23

6.1 Vulnerability description . 23

6.2 Reproducing the bug . 25

6.2.1 Saving the pointer to the socket transport into a local variable . . 25

6.2.2 Freeing the socket transport . 26

6.2.3 Using the invalid pointer . 27

6.3 Triggering the bug . 29

6.4 Proof of concept . 30

6.5 Kernel information leak . 32

vi

7 Exploiting the vulnerability 33

7.1 Environment Setup . 33

7.1.1 OS & Kernel . 33

7.1.2 Debugging . 34

7.2 Exploit step-by-step . 34

7.3 Memory Corruption . 35

7.3.1 Heap Spraying technique . 36

7.3.2 struct msg_msg implementation 36

7.4 Arbitrary Free . 38

7.5 Arbitrary Read . 39

7.5.1 Heap spraying: setxattr() & userfaultfd() 40

7.5.2 Receiving the replaced msg_msg 41

7.6 Privilege escalation . 42

7.6.1 Control flow hijacking . 42

7.6.2 Arbitrary write . 43

8 Conclusions 47

9 Future work 49

Bibliography 51

vii

List of Figures

3.1 WBS diagram . 8

4.1 Buddy allocator, 33 page allocation request 12

4.2 Output of slab cache info file /proc/slabinfo 13

4.3 Slab allocator, example of generic slab caches 14

4.4 CR4 register control bits . 16

4.5 Memory layout of ASLR enabled program through different executions . 17

6.1 CVE-2021-26708 race condition . 25

6.2 Warning in /dev/kmsg due to dangling pointer 32

7.1 Heap spraying . 36

7.2 struct msg_msg implementation . 37

7.3 Probing memory with GDB after successful msgsnd() heap spraying . . 38

7.4 Arbitrary free by corrupting msg_msg security field 38

7.5 Overwritten msg_msg kernel object . 39

7.6 setxattr() + userfaultfd() heap spraying 41

7.7 Payload for overwriting sk_buff object 43

7.8 Arbitrary write on struct cred . 45

ix

List of Tables

3.1 Project time estimates and final times 8

xi

1. CHAPTER

Introduction

In this project, a Linux kernel vulnerability known as CVE-2021-26708 [NVD, 2021]
[Help Net Security, 2021] is analyzed and dissected, looking at what makes it a vulner-
ability, how it can be triggered and taken advantage of and ultimately demonstrating the
security implications of said vulnerability and how it can be fixed.

The risk of said vulnerability is very high, as it can be exploited for local privilege esca-
lation, meaning that an unauthorized user may gain root access to a system locally with
it. The exploit has received a CVSS v3 base score of 7.0 (high severity) out of 10.

At the time of writing, there is not much publicly available information regarding the
inner workings of the vulnerability or how one could exploit it. However, the patch
[Popov, 2021b] regarding is very short (only one source code file changed with 12 line
insertions and 5 deletions), meaning that the culprit of the vulnerability should be easy to
identify.

The vulnerability results from race conditions implicitly added when virtual socket multi-
transport support was featured in Linux kernel version 5.5 in November 2019. Alexander
Popov, Linux kernel developer and security researcher, and the man who discovered the
bug, described it like this:

1. vsock_sock.transport pointer is copied to a local variable.

2. lock_sock() is called.

3. The local variable is used.

1

2 Introduction

The value of vsock_sock.transport may be modified or freed after its pointer is copied
to the local variable, but before its lock is obtained through lock_sock(), leading to the
following code to possibly read or write values to a modified or freed pointer, resulting in
a use after free type of vulnerability.

The patch regarding the vulnerability is straightforward, as the only change that needed
to be done to fix the bug is to simply copy the pointer of vsock_sock.transport to the
local variable after the lock_sock() call. With a vulnerability fix this simple, identifying
the error and in which scenario it is caused should not pose a problem.

2. CHAPTER

The aims of the project

The main objective of this project is to investigate and understand a recently discovered
Linux kernel level vulnerability as well as analyzing its security implications, ultimately
proving how a very simple programming mistake that has gone unnoticed for nearly a year
and a half may be exploited to gain root-level access and ultimately defeat the security of
a mature system like Linux.

The vulnerability code-named CVE-2021-26708 will be identified, examined, and dis-
sected, demonstrating how and why it can be triggered, what consequences that may have
and how it can be fixed.

Before deep-diving straight into the vulnerability, two Linux Kernel subsystems will be
analyzed to provide some context: Virtual Sockets or VM sockets, and the memory man-
agement subsystem, more specifically the Buddy allocator and the Slab allocator, as well
as Linux kernel security measures KASLR, SMEP & SMAP, and SELinux, put in place
to protect the kernel’s integrity.

Moreover, a suitable Linux kernel version and distribution will be installed to be used as
the working and testing environment. The vulnerability and the consequent exploit will
not work in all Linux kernel versions and distributions, so choosing a proper combination
will be critical; with the work environment set, the vulnerability will be analyzed and
presented, identifying how to trigger it reliably at will from user space.

Finally, common Linux kernel vulnerability exploiting techniques will be examined and
presented, ultimately implementing a proof of concept exploit that takes advantage of

3

4 The aims of the project

CVE-2021-26708 to gain root-level access on an unauthorized user account of a Linux
machine.

In short, the following are the tasks that will be completed throughout the project.

1. Research the relevant Linux subsystems: The memory management subsystem,
the virtual socket subsystem and Linux kernel security measures KASLR, SMAP
& SMEP and SELinux are the most relevant.

2. Set up the working environment: Install a suitable Linux kernel version and the
necessary development tools.

3. Identify and analyze the bug: Identify in which source code file and line the bug
is located and what makes it a vulnerability.

4. Trigger the bug: Analyze how the bug can be caused through user space and de-
velop a proof of concept to trigger it at will.

5. Research about vulnerability exploiting: Investigate about common vulnerability
exploits in software, more specifically Linux kernel vulnerability exploits.

6. Implement an exploit: Develop a exploit in C that, using the vulnerability dis-
cussed in this work as an entry point, elevates privileges to root.

3. CHAPTER

Project management

In order to successfully develop a project of this scale, it is necessary to carefully think and
create an accurate planning that identifies both the tasks and risks, to ease the development
of the project and avoid any possible drawback or delay. Moreover, the workload and time
estimates must be balanced and coherent and match the final objectives of the project.

On the same note, the project has been divided into three main stages in order to clas-
sify the basic tasks: project management, where the project’s objectives and planning
will be done; development, where the kernel vulnerability will be presented and analyzed
alongside a proof of concept meeting the objectives of the previous stage; and finally the
documentation stage, where all discoveries are presented.

Furthermore, all previously mentioned three main stages have been subdivided into smaller
tasks, as can be seen in the following section.

3.1 Description of the phases

In this section the different stages of the project have been gathered to further detail and
explain the sub-tasks that compose them, analyzing the usefulness of each of them and
how they complement and correlate with each other.

5

6 Project management

3.1.1 Management

The main objective of the management phase is to estimate the duration and cost of all
the stages and the tasks that compose them and at the same time, make up the whole
project. Since this is an early stage of the project, estimating potential risks and the time
that will go into the tasks accurately is of uttermost importance, as it will eventually be a
reference to evaluate and assess the progress of the project, and whether there have been
any unexpected deviation from the original plan. The following are the tasks that compose
the management stage:

• Planning: This first stage aims to identify the tasks and milestones of the project,
estimate their duration and the resources that may be needed for their completion.
Once the tasks have been identified and estimated, the possible risks and deviations
will be identified and a risk management plan done according to those to actively
avoid them.

• Tracking: In this part, the project’s progress is analyzed, checking whether the
objectives are being completed in the previously estimated time and if any delays
have occurred. By tracking the progress, unnecessary risks may be avoided. In ad-
dition, weekly meetings will be done with the project director to further improve
the project tracking by keeping them up to date with the project development, ana-
lyzing the progress and taking more frequent steps to distribute the workload better,
avoiding any unexpected delay.

3.1.2 Development

Most of the time that will be invested in the project will go to the development phase. The
development phase has been further divided into three parts:

• Research: The field that is being worked on in this project is unknown to the author
of the project and as such researching and understanding the underlying concepts
is necessary before any further development is done. Several fields will have to be
researched:

– VSOCK, VM Sockets, and the Linux memory subsystem

– Use After Free vulnerability

3.2 Work Breakdown Structure 7

– Linux privilege escalation techniques

• Preparing the working environment: The vulnerability in question affected Linux
kernel versions 5.5 (including) to 5.10.13 (excluding). However, these were all
patched [Popov, 2021b], and therefore, in order to work with an exploitable sys-
tem, the kernel will have to be recompiled after removing said patches from its
source code. Moreover, KGDB [Wessel, 2010], a Linux kernel debugger, will be
set up to help in the debugging process.

• Vulnerability exploiting: Once the vulnerability has been identified, analyzed and
understood, it will be exploited to prove the consequences that a seemingly small
bug can have on the integrity of a system. A proof of concept will be developed that
exploits it to escalate privileges from a local unauthorized user.

3.1.3 Documentation

The last part of the project consists of gathering all the researched information, progress
through development and achieved results in a presentable manner.

LATEXwill be used to redact the end of degree work in an ordered and elegant manner
using the online tool Overleaf. This way, the document may be accessed and consulted at
any time by the director as well.

3.2 Work Breakdown Structure

The Work Breakdown Structure (WBS) is used below to better present the main stages
and sub-tasks that the project will go through:

8 Project management

End of degree work

Management Development

Research Analysis Exploiting

Documentation

Planning

Tracking

VSOCK, mem-
ory subsystem

Use After Free

Privilege escala-
tion

Identify the bug

Understand the
bug

Trigger the bug

Privilege escala-
tion

Report

Presentation

Figure 3.1: WBS diagram

3.3 Time estimates

In the following table (see Table 3.1), the estimated time of completion and the real in-
vested time of each phase and sub-task is presented in hours. The estimated and final
invested time hours of sub-tasks are summed in each phase.

Estimated time (h) Final time (h)
Management phase 20 20
Planning 10 12
Tracking 10 8
Development phase 220 233
Research 100 85
Analysis 50 43
Exploiting 70 105
Documentation phase 60 67
Report 45 55
Presentation 15 12
Total time sum 300 320

Table 3.1: Project time estimates and final times

3.4 Risk management

In projects of this scale, unforeseen delays or problems that affect its proper development
are expected regardless of the topic. That is why it is essential to identify the potential

3.5 Deviation analysis 9

risks and prepare a risk management plan to avoid or reduce the impact of any possible
drawback.

Usually, the more extensive the workload of a stage, the more bound it is to suffer from
delays. Therefore, the estimated times of those stages are increased to account for delays,
while the time estimates of the tasks with smaller workloads are expected to be more
accurate and less extra time is assigned to them.

3.5 Deviation analysis

Although some deviations have occurred with the estimated times, the initial planning has
mostly been kept during development as no considerable delay or problem affected it.

The major deviation corresponds to the exploit implementation phase. In the first stages
of this phase, a custom kernel was compiled for Ubuntu 20.04 to be used as the working
environment. However, this distribution resulted inadequate for the exploit and had to be
scrapped in favor of Fedora 33 Server, resulting in having to recompile the kernel.

Moreover, kernel crashes were a very common occurrence during the development and
debugging of the exploit, resulting in having to reboot the target machine and set up the
working environment several times throughout each work session, hindering development
greatly.

3.6 Work methodology

In this section, several choices and decisions made about the employed work methodology
are presented and explained.

3.6.1 Meetings

During the whole project life cycle, the end of degree work author and the project director
will not hold face-to-face meetings due to geographical constraints. Instead, weekly online
meetings will be used to discuss, share and keep track of the project through an online
meetings platform. Moreover, email communication will always be open to answering
any question deemed too simple for having a meeting.

10 Project management

3.6.2 Work schedule

In order to comply with the set time estimates, it was decided that the student will work on
the project every week from February to May, while having a regular working schedule
each week.

4. CHAPTER

Linux subsystems

Before examining the vulnerability at hand, it is necessary to understand the inner work-
ings of the affected system; in this chapter, the Linux kernel subsystems most relevant to
the vulnerability are examined and presented: memory management, virtual sockets and
Linux kernel security mechanisms.

4.1 Memory management subsystem

The Linux memory management subsystem is responsible, as the name implies, for man-
aging the memory in the system, which includes implementation of virtual memory and
demand paging, memory allocation both for internal kernel structures and user space pro-
grams, mapping of files into processes’ address space, etc.

The most relevant memory management concepts to the topic, the Buddy allocator and
the Slab allocator, are presented below to provide some context and better understand the
forthcoming vulnerability analysis and exploit.

4.1.1 Buddy allocator

The Buddy allocator is the main algorithm used in Linux for physical page management.
The basic principle behind it is the following: physical memory is broken up into large
chunks of memory where each chunk is of size 2n×PAGE_SIZE (PAGE_SIZE being

11

12 Linux subsystems

a constant in the kernel, usually 4096 bytes). Whenever a block of memory has to be
allocated, and the requested size is not available, one of the aforementioned big chunks is
halved continuously until a block that wastes the minimum amount of memory and meets
the size requirement is found. Every two broken blocks of the same size are buddies to
each other; one half is used for allocation, and the other is free. When a block is later
freed, its buddy is examined, and if free they are both joined again.

One fundamental property of the Buddy allocator is that it allocates physically contiguous
memory blocks, a property that will prove helpful later on for exploiting. However, this
memory management scheme has a big problem: internal fragmentation.

If a process requires to allocate 33 pages, then the minimum quantity of pages that the
Buddy allocator can hand to the process will be 26 = 64 because 25 = 32 < 33, meaning
that 31 pages are wasted out of the 64 that were allocated, as can be seen in Figure 4.1.

512

256

256

128

256

128

Memory chunk halving

bu
dd
ie
s

bu
dd
ie
s

256

128

64

64bu
dd
ie
s

Figure 4.1: Buddy allocator, 33 page allocation request

The internal fragmentation problem is addressed in Linux using the Slab allocator, which
slices memory pages into smaller chunks of memory (slabs) for further allocation. With
this combination of allocators, the kernel ensures that wasted space due to internal allo-
cation is kept to a minimum.

4.1.2 Slab allocator

The main idea of the Slab allocator [The kernel development community, 2008b] [Dio, 2020]
is to keep caches of commonly used objects in an initialized state available for allocation
in the kernel. Without an object-based allocator like this the kernel would spend much of

4.1 Memory management subsystem 13

its time allocating, initializing and freeing the same objects over and over again. The Slab
allocator aims to cache freed kernel objects so that their basic structures are preserved
between uses.

The Slab allocator provides two main classes of caches:

• Dedicated. These are caches for objects that are commonly used in the kernel, such
as task_struct, mm_struct, cred_jar and more.

• Generic. These are general purpose caches, usually of sizes corresponding to pow-
ers of two.

Different information about the available slab caches can be consulted in the dedicated file
/proc/slabinfo as can be seen in Figure 4.2 (several rows and columns have been removed
for brevity):

slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>
Dedicated Caches
inode_cache 37895 37895 608 53 8
dentry 110993 111720 192 42 2
mm_struct 210 210 1088 30 8
files_cache 322 322 704 46 8
cred_jar 1218 1218 192 42 2
pid 1600 1600 128 64 2
radix_tree_node 12712 12712 584 56 8
General purpose caches
dma-kmalloc-8k 0 0 8192 4 8
dma-kmalloc-96 0 0 96 42 1
kmalloc-8k 132 136 8192 4 8
kmalloc-64 9920 9920 64 64 1
kmalloc-32 22144 22144 32 128 1
kmalloc-16 16896 16896 16 256 1
kmalloc-8 12288 12288 8 512 1
kmem_cache_node 256 256 64 64 1
kmem_cache 256 256 256 64 4

Figure 4.2: Output of slab cache info file /proc/slabinfo

In Figure 4.3 an example of three pages of PAGE_SIZE bytes reserved for three different
generic slab caches, kmalloc-1024, kmalloc-512, and kmalloc-64 are shown.

14 Linux subsystems

PAGE 1

kmalloc-1024

kmalloc-1024

kmalloc-1024

kmalloc-1024

PAGE 2

kmalloc-512

kmalloc-512

kmalloc-512

kmalloc-512

kmalloc-512

kmalloc-512

kmalloc-512

kmalloc-512

...

kmalloc-64
kmalloc-64
kmalloc-64
kmalloc-64
kmalloc-64

PAGE 3
PA

GE
_S

IZ
E

Figure 4.3: Slab allocator, example of generic slab caches

In order to do allocations of generic slab caches the kmalloc interface is used, defined in
Linux kernel source code file include/linux/slab.h as follows in Listing 4.1:

1 // allocates memory generic slab allocator cache.

2 static __always_inline void *kmalloc(size_t size, gfp_t flags);

3

4 // frees previously allocated generic slab cache.

5 void kfree(const void *);

Listing 4.1: Extract of Linux kernel source code file include/linux/slab.h

Consequently, similar to how memory allocation is done from user space, kmalloc() is
invoked for allocating a generic slab cache and kfree() for freeing it.

4.2 Linux virtual socket subsytem

Linux Virtual Sockets (VSOCK) or VM sockets [King, 2013] allow communication be-
tween virtual machines and their hypervisor (the host machine). User-level applications
in both the host and the guest virtual machine can use the VM socket API to quickly
and efficiently communicate. The use cases include clipboard sharing, mouse integration,
automatic adjustment of video resolution, guest control and remote console, to name a
few.

For identification purposes, port numbers which are represented using 32 bits and most
importantly, CIDs (Context IDentifiers, 32 bits) are used in the context of VM sockets,
the most important ones being [Garzarella, 2020]:

4.3 Linux kernel security measures 15

• VMADDR_CID_ANY (0xFFFFFFFF): Use any address for binding.

• VMADDR_CID_LOCAL (1): Address for local communication (loopback).

• VMADDR_CID_HOST (2): Address of the host.

Moreover, VSOCK supports the standard Linux socket API, meaning that all Linux socket
functions are supported: socket(), bind(), listen(), connect(), send(), recv(),
etc.

4.3 Linux kernel security measures

The following are some of the most critical Linux security measures intended to keep the
integrity of the kernel intact and avoid active attacks against it.

4.3.1 SMEP & SMAP

Supervisor Mode Execution Prevention (SMEP) [Intel Corporation, 2018] and Supervisor
Mode Access Prevention (SMAP) [Wikipedia, 2021] [Intel Corporation, 2015] are CPU
based security mechanisms that provide user space address-space protection. SMEP pre-
vents unauthorized supervisor mode execution from user pages, while SMAP prevents
unintended supervisor mode access (read & write) to data in user pages.

Without SMEP and SMAP, kernel space code has full read & write access to the whole
memory address layout, including user space memory addresses. Several kernel exploits,
including privilege escalation exploits, rely on this to gain kernel privileges from user
space. SMEP and SMAP aim to prevent this type of exploits and many more from suc-
ceeding.

SMEP and SMAP are enabled when memory paging is active and the SMEP and SMAP
bits of the CR4 CPU control register (bit 20 and 21, respectively) are set, as shown in
Figure 4.4.

16 Linux subsystems

Figure 4.4: CR4 register control bits

SMEP and SMAP are supported since mainline Linux Kernel v3.7 and are enabled by
default on all CPUs that support these features (all modern Intel and AMD x86-64 CPUs
do).

4.3.2 Kernel Address Space Layout Randomization

Kernel Address Space Layout Randomization (KASLR) [Edge, 2013], or ASLR [Mordechai Guri, 2015]
applied to a kernel, is a security mechanism that aims to prevent exploitation of memory-
corruption vulnerabilities by randomly arranging the address space positions of key data
areas of a process or kernel, such as the base address of an executable and the position of
libraries, heap, and stack, instead of placing them in fixed addresses.

ASLR makes redirection of program/kernel execution flow more difficult as the addresses
of functions are randomized on each execution.

The Linux kernel has KASLR enabled by default since version 4.12; when activated, a
constant is randomly calculated on boot, which serves as the KASLR offset. In the follow-
ing Figure 4.5, the memory layout of a program with ASLR through different executions
is shown.

4.3 Linux kernel security measures 17

Stack

Program
code

Library
code

Heap

Stack

Program
code

Library
code

Heap

Stack

Program
code

Library
code

Heap

Rerandomize Rerandomize

Figure 4.5: Memory layout of ASLR enabled program through different executions

The aforementioned security measures, SMEP & SMAP, and KASLR, keep the most
basic attacks against the kernel at bay, but many techniques render them useless and allow
for successful attacks

4.3.3 Security-Enhanced Linux

Security-Enhanced Linux (SELinux) is a security architecture integrated into Linux sys-
tems that allows administrators to have more control over who can access the system’s
resources through mandatory access control (MAC).

SELinux will not be a security measure that will play an active role in preventing the
vulnerability or the exploit to succeed. Instead, its implementation will be taken advantage
of to develop the exploit.

5. CHAPTER

Common software vulnerabilities

A software vulnerability is a weakness or flaw in a system that an attacker can exploit to
perform unauthorized actions such as reading or writing to restricted areas or execute lim-
ited operations. Vulnerabilities are common in all kinds of software, from web browsers
to operating systems, mainly caused by design flaws and their ever-increasing complexity.

Many different kinds of software vulnerabilities exist, and depending on the platform in
use, some types of software may be more prone to have some sort of vulnerabilities than
others.

The following are some of the most usual vulnerabilities that can be found in software
[CWE, 2020b]:

• Cross-site scripting (XSS): typically found in web applications, allows attackers
to inject malicious client-side scripts in websites which get executed by other users
visiting the website.

• Improper input validation (e.g. SQL Injection): When software does not validate
input properly, an attacker is able to craft the input in a way that is not expected by
the application.

• Buffer overflow: a vulnerability in which a program overruns the boundaries of the
buffer it was writing to, overwriting adjacent memory.

• Use After Free: the use of a previously freed memory.

19

20 Common software vulnerabilities

The vulnerability analyzed in this work is a Use After Free (UAF) one. A UAF vulner-
ability (CWE-416) [CWE, 2020a] refers to the referencing of a memory location after
this has been freed, which can cause a program to crash, use unexpected values, corrupt
previously valid data or execute arbitrary code.

The code in Listing 5.1 illustrates the simplest pattern of a Use After Free error. The rea-
son this is a bug is that after the free(ptr) call, the content of memory being referenced
by ptr is unknown, and any operation with it will result in undefined behavior. Pointer
ptr is now a dangling pointer, a pointer that references an already freed memory location.

1 int *ptr = (int*) malloc(sizeof(int));

2 *ptr = 23;

3 free(ptr);

4 *ptr = 42; // Use After Free

Listing 5.1: Example of a UAF vulnerability pattern

5.1 Exploiting

UAF exploiting techniques will differ depending on the system they are running on and
the implementation of the executable in question. The following is a basic UAF exploiting
scenario that leads to execution flow redirection:

1. Allocate memory A: An allocation is made where we provide a struct containing a
function pointer allocated in the heap.

2. Free memory A: The previously allocated memory is freed.

3. Allocate memory B: Allocate a memory chunk containing malicious code, aiming
to replace the chunk that the first allocation A had.

4. Reference allocation A: When the function member of the struct we created is
called, we expect it to call the function from allocation A. However it will call the
malicious function from allocation B.

5.2 Proof of concept 21

5.2 Proof of concept

The following is a proof of concept that demonstrates how the aforementioned use-after-
free vulnerability may be exploited on a Linux machine [Jimenez, 2017]. As we can see
in Listing 5.2, the code starts off with a struct definition, struct vuln_t, containing a
function pointer which is called vulnfunc():

1 typedef struct vuln_t {

2 void (*vulnfunc)();

3 } vuln_t;

Listing 5.2: Vulnerable struct vuln_t declaration

Afterwards we have two global function definitions as shown in Listing 5.3. The aim of
the exploit is to call function bad() without explicitly referencing it from the pointer
vulnfunc() in struct vuln_t.

1 void good(){

2 printf("I AM GOOD :)\n");

3 }

4

5 void bad(){

6 printf("I AM BAD >:|\n");

7 }

Listing 5.3: Function declarations for UAF

In addition, the main() function is as follows in Listing 5.4:

1 vuln_t *malloc1 = malloc(sizeof(vuln_t));

2 malloc1->vulnfunc = good;

3 malloc1->vulnfunc();

4 free(malloc1);

5 long *malloc2 = malloc(0);

6 *malloc2 = (long)bad;

7 malloc1->vulnfunc();

22 Common software vulnerabilities

8 return 0;

Listing 5.4: main() function declaration for UAF

On lines (1),(2), and (3) of Listing 5.4 a vuln_t struct is allocated, function pointer
"good" assigned to its member vulnfunc() and then called, resulting in output "I AM
GOOD :)", as expected. Next vuln_t struct is freed (4) and immediately more mem-
ory is allocated (5) 1 and function pointer "bad" assigned to it (6), taking the memory
location in the program heap that function pointer "good" previously had. Finally, when
vulnfunc() is called from the now dangling pointer function bad() will be called in-
stead, resulting in output "I AM BAD >:|"

It should be noted that the aforementioned situation is very unlikely to happen in a real
environment, as one usually has to deal with security measures and more complex data
types. However, the main concept behind UAF exploiting remains.

1malloc(0) behavior is implementation dependent, i.e. not defined by any standard.

6. CHAPTER

CVE-2021-26708 Vulnerability

In this chapter the vulnerability under discussion, CVE-2021-26708, is examined, ana-
lyzed and discussed in depth, as well as the steps needed to successfully and reliably
trigger it with a user space program.

6.1 Vulnerability description

Up until the kernel commit that added the VSOCK multi-transports support, in the context
of virtualization each kernel (both host and guest) could only register one VSOCK socket,
which proved to be problematic in nested virtual machine environments. For example,
if a Linux host had a VMware virtual machine running and this virtual machine had a
QEMU/KVM machine running in it at the same time, the VMWare machine could only
register one VSOCK, meaning that it could only communicate with its host (the Linux
machine) or its guest (QEMU/KVM virtual machine), but never with both at the same
time.

This situation was addressed by adding multi-transports support to Linux v5.5, which
implicitly added the vulnerability discussed.

The vulnerability in question lies in Linux source file net/vmw_vsock/af_vsock.c, and
the affected functions as seen in the bug fix [Popov, 2021b] are:

• vsock_poll(): Wait for some event on a virtual socket.

23

24 CVE-2021-26708 Vulnerability

• vsock_dgram_sendmsg(): Send a message to a connectionless virtual socket.

• vsock_stream_setsockopt(): Set options for a connection-oriented stream vir-
tual socket.

• vsock_stream_sendmsg(): Send a message to a connection-oriented virtual socket.

• vsock_stream_recvmsg(): Receive a message from a connection-oriented virtual
socket.

All the changes in the patch and in the mentioned functions involve moving operation
transport = vsk->transport, so that instead of being executed before calling the
function lock_sock(sk), it is executed immediately after it, as shown in Listing 6.1
(where the red background represents the line that was removed in the patch, while the
green background shows the lines that were added).

1 - const struct vsock_transport *transport = vsk->transport;

2 + const struct vsock_transport *transport;

3 lock_sock(sk);

4 + transport = vsk->transport;

Listing 6.1: CVE-2021-26708 vulnerability’s patch extract

In other words, with the fix applied the pointer of the socket transport (vsk->transport)
is saved into a local variable (const struct vsock_transport *transport, line 1 in
Listing 6.1) only after its lock has been acquired in function lock_sock(sk) (line 3) and
never before.

After analyzing the patch, it is clear that the problem lies in that a thread A may save
the pointer to the transport into a local variable while its corresponding memory region
is freed in a different thread B before thread A acquires the lock, leading to a dangling
pointer that may cause memory corruption that could consequently be exploited to be
used as a vulnerability to gain privilege escalation; a textbook race condition, as shown in
Figure 6.1.

6.2 Reproducing the bug 25

Thread B

Thread A

 {
 *transport=vsk->transport;
 (...)
 (...)
 (...)
 lock_sock(sk);
 }

Thread B

 {
 (...)
 (...)
 kfree(vsk->transport);
 (...)
 (...)
 }

Ex
ec

ut
io

n

Figure 6.1: CVE-2021-26708 race condition

To sum it up, for the bug to show itself, the following must happen:

1. Pointer to socket transport (vsk->transport) is saved into a local variable in
thread A.

2. Thread B obtains the socket lock, and the transport object is freed from memory
with kfree().

3. Thread A acquires the lock and uses its reference, now a dangling pointer, to execute
operations on it.

Once an operation is executed on the dangling pointer, unpredictable behavior may occur
during the lifespan of the local variable holding the incorrect pointer, as the content of the
memory location that it points to is unknown.

6.2 Reproducing the bug

In this section, the steps that have to be taken to reproduce the bug reliably are presented.

6.2.1 Saving the pointer to the socket transport into a local variable

The first step to reproduce the bug is to have the reference or pointer to a socket trans-
port be saved into a local scope variable before acquiring its lock. This sequence can be
identified by looking at the code snippet shown in Listing 6.2

1 transport = vsk->transport;

26 CVE-2021-26708 Vulnerability

2 lock_sock(sk);

Listing 6.2: Code snippet that causes the race condition

The aforementioned sequence in Listing 6.2 is found in the five VSOCK related Linux
kernel functions that were patched.

6.2.2 Freeing the socket transport

The next step would be to free the memory region occupied by the socket transport on
a different thread before obtaining the lock. But, of course, this can not be forced with a
simple free() call from user space, as the memory region holding it is in kernel space, and
therefore, must be achieved through kernel system calls.

The value of the socket transport (vsk->transport) may be modified in two kernel func-
tions:

• vsock_deassign_transport(): where it is destructed, and its value set to NULL.

• vsock_assign_transport(): where a new transport struct is assigned to it.

Function vsock_deassign_transport() (see Listing 6.3) calls socket transport’s func-
tion destruct() in line 6 (defined in /net/vmw_vsock/virtio_transport_common.c),
which in turn calls kfree(), as shown in line 4 of Listing 6.4.

1 static void vsock_deassign_transport(struct vsock_sock *vsk)

2 {

3 if (!vsk->transport)

4 return;

5

6 vsk->transport->destruct(vsk);

7 module_put(vsk->transport->module);

8 vsk->transport = NULL;

9 }

Listing 6.3: Function vsock_deassign_transport()

6.2 Reproducing the bug 27

1 void virtio_transport_destruct(struct vsock_sock *vsk)

2 {

3 struct virtio_vsock_sock *vvs = vsk->trans;

4 kfree(vvs);

5 }

Listing 6.4: Function virtio_transport_destruct()

On the other hand, vsock_assign_transport() will assign a new transport to the given
socket depending on the socket’s current CID as described by a comment in source code
shown in Listing 6.5.

1 /* The vsk->remote_addr is used to decide which transport to use:

2 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or

VMADDR_CID_HOST if

3 * g2h is not loaded, will use local transport;

4 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;

5 * - remote CID > VMADDR_CID_HOST will use host->guest transport;

6 */

Listing 6.5: Kernel source code comment on transport assignment

If the given transport is the same as the socket already had, no changes are made. How-
ever, if the transport is different, then the previous transport is freed by calling kernel
function vsock_deassign_transport(). Therefore, if a transport is changed, the pre-
viously allocated one gets freed from memory. With this information, we can free the
memory region occupied by the socket transport at will.

6.2.3 Using the invalid pointer

The last step to reproduce the bug is to determine whether the previously acquired local
variable, now with an invalid pointer, is used in any of the functions in which the bug is
located.

One of these functions is vsock_stream_setsockopt() which when certain circum-
stances are met calls function vsock_update_buffer_size() (see Listing 6.6), which

28 CVE-2021-26708 Vulnerability

in turn calls socket transport member function notify_buffer_size() (line 10 in List-
ing 6.6). This function will write a 4-byte value given as an argument in offset 40 of the
now dangling pointer (see line 8 of Listing 6.7).

1 static void vsock_update_buffer_size(struct vsock_sock *vsk, const

struct vsock_transport *transport, u64 val)

2 {

3 if (val > vsk->buffer_max_size)

4 val = vsk->buffer_max_size;

5

6 if (val < vsk->buffer_min_size)

7 val = vsk->buffer_min_size;

8

9 if (val != vsk->buffer_size && transport && transport->

notify_buffer_size)

10 transport->notify_buffer_size(vsk, &val);

11

12 vsk->buffer_size = val;

13 }

Listing 6.6: Function vsock_update_buffer_size()

1 void virtio_transport_notify_buffer_size(struct vsock_sock *vsk,

u64 *val)

2 {

3 struct virtio_vsock_sock *vvs = vsk->trans;

4

5 if (*val > VIRTIO_VSOCK_MAX_BUF_SIZE)

6 *val = VIRTIO_VSOCK_MAX_BUF_SIZE;

7

8 vvs->buf_alloc = *val;

9

10 virtio_transport_send_credit_update(vsk,

VIRTIO_VSOCK_TYPE_STREAM, NULL);

11 }

6.3 Triggering the bug 29

Listing 6.7: Function virtio_transport_notify_buffer_size()

6.3 Triggering the bug

All previously mentioned VSOCK functions are kernel functions, meaning that they are
called by the kernel itself and cannot be used or invoked from a user created program
directly. Therefore, if the kernel is to call those functions in a certain order to trigger the
bug, a user space program will have to be carefully crafted using system calls, which will
call those kernel functions under certain circumstances, and force the kernel to trigger the
bug.

In order to trigger the vulnerability we want to create a race condition between kernel
functions vsock_stream_setsockopt() and vsock_stream_connect(). The former
will save the transport into a local variable and the latter will cause the free, leaving the
dangling pointer in vsock_stream_setsockopt() function’s local variable and possibly
writing on it.

Linux system call setsockopt() with AF_VSOCK family and SOCK_STREAM socket type
as arguments will be used to reach vsock_stream_setsockopt().

Next, we want vsock_assign_transport() to call vsock_deassign_transport()
to free the occupied memory region. System call connect() will be used to call func-
tion vsock_stream_connect(), which, if the socket’s state is SS_CONNECTING, will
call vsock_assign_transport() (see line 13 of Listing 6.8). Once this kernel func-
tion is called if the socket is of type SOCK_STREAM and the transport is changed then the
previously referenced transport will be freed, leaving the dangling pointer in function
vsock_stream_setsockopt().

1 switch (sock->state) {

2 case SS_CONNECTED:

3 err = -EISCONN;

4 goto out;

5 case SS_DISCONNECTING:

6 err = -EINVAL;

7 goto out;

30 CVE-2021-26708 Vulnerability

8 case SS_CONNECTING:

9 err = -EALREADY;

10 break;

11 default:

12 (...)

13 err = vsock_assign_transport(vsk, NULL);

Listing 6.8: Extract from vsock_stream_connect()

6.4 Proof of concept

The vulnerability depends on a race between obtaining the reference to the transport and
obtaining the socket lock. The time that elapses between these operations is very small, a
minuscule window in which it can be triggered.

In order to trigger the bug from a user space program, first, a socket stream of type
AF_VSOCK is created, which will try to connect to a nonexistent local server by using CID
VMADDR_CID_LOCAL as argument in order to set the socket’s transport to the loopback
transport, as can be seen in Listing 6.9.

1 vsock = socket(AF_VSOCK, SOCK_STREAM, 0);

2 addr.svm_cid = VMADDR_CID_LOCAL;

3 connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm

));

Listing 6.9: Initializing VSOCK for triggering the vulnerability

Following the first call to connect(), two new threads are created as shown in Listing
6.10; one will call setsockopt(), which will hold the pointer to the socket transport
while the second thread will call connect() once again but with a different target CID
(VMADDR_CID_HYPERVISOR) to force the socket transport to be freed.

1 // Thread A

2 addr.svm_cid = VMADDR_CID_HYPERVISOR;

3 connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm

));

6.4 Proof of concept 31

4

5 // Thread B

6 setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE, &val,

sizeof(unsigned long));

Listing 6.10: Code to trigger the race condition

This is when the race starts: If the connect() thread obtains the lock first, it will end up
calling kfree() on the transport whose pointer setsockopt() holds. When setsockopt()
acquires the lock next it will call vvs->buf_alloc = *val; (as seen in line 8 of List-
ing 6.6) causing a memory corruption by writing to a freed region. Otherwise, if the
setsockopt() thread obtains the lock first, then the race is lost, but the process can be
repeated safely.

When instruction vvs->buf_alloc = *val; is executed, an arbitrary value of 4-bytes
specified in the argument val of setsockopt() will be written in a kmalloc-64 slab
cache at offset 40. The reason behind this is that variable vvs, to which setsockopt()

writes, is of type struct virtio_vsock_sock and its member variable buf_alloc is
of type u32 (unsigned, 32 bits) and resides at offset 40 (line 9), as seen in Listing 6.11.
Moreover, the reason this kernel object is placed at a kmalloc-64 is that it is 64-bytes in
size.

1 struct virtio_vsock_sock { // Offset

2 struct vsock_sock *vsk; // 0

3 u32 buf_size; // 8

4 u32 buf_size_min; // 12

5 u32 buf_size_max; // 16

6 spinlock_t tx_lock; // 20

7 spinlock_t rx_lock; // 28

8 u32 tx_cnt; // 36

9 u32 buf_alloc; // 40

10 ...

11 };

Listing 6.11: struct virtio_vsock_sock’s definition

32 CVE-2021-26708 Vulnerability

6.5 Kernel information leak

Every time the vulnerability is triggered, the kernel will show a warning in the log file
/dev/kmsg, as can be seen in Figure 6.2:

WARNING: CPU: 1 PID: 42067 at net/vmw_vsock/virtio_transport_common.c:34
...
CPU: 1 PID: 42067 Comm: vuln Tainted: G W 5.10.11+ #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:virtio_transport_send_pkt_info+0x14d/0x180 [vmw_vsock_virtio_transport_common]
...
RSP: 0018:ffffb899c8487e10 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8f9803494e40 RCX: ffff8f980db131c0
RDX: 00000000ffffffff RSI: ffffb899c8487e58 RDI: ffff8f9803494e40
RBP: 0000000000000000 R08: 000000002d6dc425 R09: 0000000000000000
R10: 00000000000003c4 R11: 0000000000000000 R12: 0000000000000008
R13: ffffb899c8487e58 R14: 0000000000000000 R15: ffff8f9803494e40
FS: 00007fbe81f4a640(0000) GS:ffff8f987dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f4a1a07c000 CR3: 00000000120f0001 CR4: 0000000000370ee0
Call Trace:
virtio_transport_notify_buffer_size+0x60/0x70 [vmw_vsock_virtio_transport_common]
vsock_update_buffer_size+0x5f/0x70 [vsock]
vsock_stream_setsockopt+0x128/0x270 [vsock]

...

Figure 6.2: Warning in /dev/kmsg due to dangling pointer

This warning shows which process has caused the vulnerability to trigger: (CPU: 1 PID:

1 Comm vuln), the call trace leading to it (vsock_stream_setsockopt(),
vsock_update_buffer_size(), virtio_transport_notify_buffer_size) and the
values of several CPU registers at the time. By using GDB it was discovered that the value
of register RBX corresponds to the kernel address of the kernel object vsock_sock in this
context, while register RCX holds the kernel address of the just freed virtio_vsock_sock.
This information will prove very useful when developing an exploit: The pointer of the
freed virtio_vsock_sock will be used for arbitrarily freeing another kernel object,
which will allow us to leak the contents of vsock_sock; this will be used to calculate
the KASLR offset and further develop the exploit.

7. CHAPTER

Exploiting the vulnerability

In this chapter, a method of exploiting the vulnerability will be shown and implemented
step by step, ultimately escalating privileges to root from an unauthorized user.

The methodology of the exploit was presented by Alexander Popov on his website [Popov, 2021a].
However, all of the programming and implementation of the exploit was done by the au-
thor of this investigation work, as the implementation was not disclosed publicly at the
time of writing.

7.1 Environment Setup

Before developing the exploit, it is necessary to set up a proper working environment in
which the vulnerability can be triggered, and the kernel debugged.

7.1.1 OS & Kernel

As seen in previous sections, the vulnerability was fixed [Popov, 2021b] and backported
into all affected stable trees, meaning that the previously affected versions can not be
exploited anymore. For this reason, it is necessary to edit and compile a custom Linux
kernel with these patches removed in order to trigger the vulnerability.

The exploit that will be presented below relies on several key OS features that must be
present on the target machine for successful execution, namely:

33

34 Exploiting the vulnerability

• SELinux enabled

• Permission to read the kernel system log as an unprivileged user

• Permission to use userfaultfd() as an unprivileged user

If any of the previously mentioned features is not present, the exploit will fail, possibly
causing a kernel crash.

The OS of choice for testing and developing the exploit will be Fedora 33 Server for
x86_64 as it meets these requirements out of the box. A custom Linux kernel version
5.10.13 will be compiled with the relevant vulnerability related patch reverted in the
source code file net/vmw_vsock/af_vsock.c in order to be able to trigger the bug suc-
cessfully. This Fedora machine will be installed on a QEMU/KVM virtual machine to
allow for debugging via GDB.

7.1.2 Debugging

In order to ensure the proper development of the kernel exploit, GDB will be used to
check Linux kernel variable values, probe memory addresses on run-time, set breakpoints
and halt execution at will.

7.2 Exploit step-by-step

A simplified step-by-step procedure, which shows the basics of the exploit, is presented
next; more details about the steps are given in the next sections.

1. Get good msg_msg addresses

• Provoke the race condition and heap spray the memory with msgsnd().

• Read log file /dev/kmsg to collect the kernel addresses of the heap sprayed
msg_msg objects.

2. Arbitrary free

• Provoke the race condition and heap spray the memory again with msgsnd(),
this time writing the address of a leaked good msg_msg in the UAF.

7.3 Memory Corruption 35

• Repeat the previous step until a good msg_msg is freed.

3. Arbitrary read

• Heap spray the arbitrarily freed address with a fake msg_msg using setxattr()
& userfaultfd().

• Receive the heap sprayed message with msgrcv(), which will leak the con-
tents of kernel object vsock_sock.

• vsock_sock will contain the address of the credentials object; it will also be
used to calculate the KASLR offset and the address of a possible sk_buff

socket buffer.

4. Arbitrary write

• Heap spray the memory by sending UDP messages.

• Arbitrary free one of the previously sprayed UDP messages.

• Heap spray the arbitrarily freed message with a fake sk_buff containing a
ROP gadget.

• Receive the replaced UDP message, which will overwrite the credentials ob-
ject and escalate privileges.

These are the simplified steps to escalate privileges using CVE-2021-26708. In the fol-
lowing section these steps are developed further.

7.3 Memory Corruption

The vulnerability’s race condition may cause a write after free of a 4-byte value on a 64-
byte kernel object at offset 40, which may not seem very useful at first glance. However,
if a proper kernel object is placed in the memory address where the free was caused,
and its value at offset 40 is arbitrarily overwritten, the vulnerability can be turned into a
dangerous exploit. A technique known as heap spraying will be used to place a desired
kernel object in the previously freed address and cause the vulnerability to write on it.

36 Exploiting the vulnerability

7.3.1 Heap Spraying technique

Heap spraying refers to indirectly causing many sequential memory allocations hoping
that one of these allocations is performed on a desired kernel address. Heap spraying is
possible thanks to the slab allocator, which always tries to allocate the most recently freed
memory addresses. Many heap spraying techniques can be carried out in Linux, one of
which is performed by using the system call msgsnd().

In Figure 7.1, the result of a simple memory heap spraying is shown. By provoking the
allocation of several memory locations, a target memory region which was recently freed
is allocated again alongside other unrelated regions.

Free

Allocated

Last Freed

Free

Allocated

Free

Free

Spray Allocated

Allocated

Spray Allocated

Allocated

Free

Free

Allocated Allocated

Spray Allocated

Heap Spray

Memory Memory

Figure 7.1: Heap spraying

The system call msgsnd() is part of the System V message queue operations and is used
to send messages to a message queue, allowing for inter-process communication. Each
time a 16-byte message is sent with this system call a 44-byte sized kernel object, struct
msg_msg followed by the message itself, is allocated into the kmalloc-64 slab cache, as
both together take up 60 bytes in space.

Therefore, if msgsnd() is called right after a 64-byte kernel object is freed, the resulting
struct msg_msg may be placed on the same memory address. Furthermore, to counter
the constant frees and allocations of the memory by the kernel, the system call may be
called several times at once to improve the chance of a successful heap spray.

7.3.2 struct msg_msg implementation

When the kernel allocates memory for a sent message, it will write the values of a
struct msg_msg immediately followed by the message in memory as long as the mes-

7.3 Memory Corruption 37

sage is equal or smaller in size than constant DATALEN_MSG defined in source code file
ipc/msgutil.c:421. When a message exceeds DATALEN_MSG bytes in size the remain-
ing message chunks are stored in a list of message segments whose starting address is
saved in the struct msg_msgseg *next field of the message object, while field size_t

m_ts stores the entire message length.

Figure 7.2 demonstrates the structure of the msg_msg struct kernel object:

struct list_head m_list = 0xffff8881XXXXXXXX;

long m_type = 1;

size_t m_ts = 16;

struct msg_msgseg *next = NULL;

void *security = 0xffff8881YYYYYYYY;

msg_msg data

struct msg_msg, data <= DATALEN_MSG

SELinux data

struct list_head m_list = 0xffff8881XXXXXXXX;

long m_type = 1;

size_t m_ts = 16;

struct msg_msgseg *next = 0xffff881ZZZZZZZZ;

void *security = 0xffff8881YYYYYYYY;

msg_msg data

struct msg_msg, data > DATALEN_MSG

SELinux data

msg_msg data

Figure 7.2: struct msg_msg implementation

To check whether the heap spraying is successful, GDB may be used to probe memory:
if the heap spraying is performed by calling msgsnd() with a message string composed
of 15 consecutive ’C’ characters (16 bytes with the NULL terminator) then when probing
the memory address where the freed object was (which was leaked in log file /dev/kmsg,
register RCX) the last 16 values should correspond to 15 consecutive character ’C’s ASCII
values, which is 0x47, followed by the NULL terminator (0x00).

The following (see Figure 7.3) is the output of kernel memory probing in GDB, where
msgsnd() heap spraying has been successful, as can be seen in the last two rows.

1https://elixir.bootlin.com/linux/v5.10.11/source/ipc/msgutil.c#L42

https://elixir.bootlin.com/linux/v5.10.11/source/ipc/msgutil.c#L42

38 Exploiting the vulnerability

(gdb) x/64bx 0xffff97d18dec3340
0xffff97d18dec3340: 0xc0 0xc2 0x97 0x8d 0xd1 0x97 0xff 0xff
0xffff97d18dec3348: 0xc0 0xc2 0x97 0x8d 0xd1 0x97 0xff 0xff
0xffff97d18dec3350: 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xffff97d18dec3358: 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xffff97d18dec3360: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xffff97d18dec3368: 0x80 0xec 0xc9 0x86 0xd1 0x97 0xff 0xff
0xffff97d18dec3370: 0x47 0x47 0x47 0x47 0x47 0x47 0x47 0x47
0xffff97d18dec3378: 0x47 0x47 0x47 0x47 0x47 0x47 0x47 0x00

Figure 7.3: Probing memory with GDB after successful msgsnd() heap spraying

7.4 Arbitrary Free

An arbitrary free exploit refers to freeing a chosen kernel space memory address without
restrictions, meaning that any address, from user space or not, can be freed with it.

If heap spraying is performed with msgsnd() after the vulnerability is triggered and a
struct msg_msg is successfully placed where struct virtio_vsock_sock was pre-
viously allocated, then the first 4 bytes of the security field of the struct, which in a
little-endian system correspond to the 32 least-significant-bits of its value, will be over-
written (see Figure 7.4). If the corruption of msg_msg.security field happens during
msgsnd() handling, a SELinux security check will fail, resulting in the freeing of the
memory address pointed by msg_msg.security. Therefore, an arbitrary free may be
achieved when overwriting the 32 least significant bits of the security field.

struct list_head m_list = 0xffff8881XXXXXXXX;

long m_type = 1;

size_t m_ts = 16;

struct msg_msgseg *next = NULL;

void *security = 0xffff8881YYYYYYYY;

msg_msg data

corrupted struct msg_msg

struct list_head m_list = 0xffff8881XXXXXXXX;

long m_type = 1;

size_t m_ts = 16;

struct msg_msgseg *next = NULL;

void *security = 0xffff8881ZZZZZZZZ;

msg_msg data

struct msg_msg to be freed

SELinux data

Figure 7.4: Arbitrary free by corrupting msg_msg security field

7.5 Arbitrary Read 39

7.5 Arbitrary Read

An arbitrary read exploit refers to reading a chosen memory address without any restric-
tion, meaning that any memory location from kernel space or user space may be read with
it without any user authentication or permission check.

The previously presented arbitrary free can be escalated into an arbitrary read exploit
by using the same system call used for the heap spraying: msgsnd(). If a kernel allo-
cated struct msg_msg is arbitrarily freed and replaced with a user-controlled struct

msg_msg as shown in Figure 7.5, then an arbitrary read can be achieved by writing the
address to be read in field next and the amount of bytes to be read + DATALEN_MSG in
m_ts.

msg_msg data

Overwritten struct msg_msg

Contiguous kernel data

Kernel data, arbitrary read

struct list_head m_list = 0xffff8881XXXXXXXX;

long m_type = 1;

size_t m_ts = 16;

struct msg_msgseg *next = 0xffff881ZZZZZZZZ;

void *security = 0xffff8881YYYYYYYY;

struct list_head m_list = 0xa5a5a5a5a5a5a5a5;

long m_type = 0x1337;

size_t m_ts = 6096;

struct msg_msgseg *next = 0xffff881ZZZZZZZZ;

void *security = 0xffff8881YYYYYYYY;

DATALEN_MSG

m_ts - DATALEN_MSG

Figure 7.5: Overwritten msg_msg kernel object

In order to get the address of a struct msg_msg to be freed, the previously explained race
condition followed by msgsnd() heap spraying will be used. If the spraying is successful,
the address of the newly allocated msg_msg can be parsed from log file /dev/kmsg in the
CPU’s RCX register.

Once this address is freed, its contents will be replaced with a user-crafted msg_msg using
a different heap spraying technique that combines the setxattr() and userfaultfd()

system calls.

40 Exploiting the vulnerability

7.5.1 Heap spraying: setxattr() & userfaultfd()

This heap spraying technique was first shown by security researcher Vitaly Nikolenko
[Nikolenko, 2018], who described it as a universal heap spraying technique. This tech-
nique allows an attacker to allocate object contents controlled by the user without any
header whatsoever, unlike msgsnd() heap spraying, which always allocates a struct

msg_msg before the message itself.

Kernel function setxattr() (see its definition in Listing 7.1) is used to place user-
controlled data into kernel memory. However, on a normal execution flow that user data
is allocated (lines 9 & 13) and freed (line 19) on the same call.

1 static long setxattr(struct dentry *d, const char __user *name,

const void __user *value, size_t size, int flags)

2 {

3 int error; void *kvalue = NULL;

4 char kname[XATTR_NAME_MAX + 1];

5 // (...)

6 if (size) {

7 if (size > XATTR_SIZE_MAX)

8 return -E2BIG;

9 kvalue = kvmalloc(size, GFP_KERNEL);

10 if (!kvalue)

11 return -ENOMEM;

12 if (copy_from_user(kvalue, value, size)) {

13 error = -EFAULT;

14 goto out;

15 }

16 // (...)

17 }

18 // (...)

19 kvfree(kvalue);

20 return error;

21 }

Listing 7.1: Kernel function setxattr()’s definition

7.5 Arbitrary Read 41

System call userfaultfd() is used to keep that data in kernel memory as long as needed
to achieve successful heap spraying. userfaultfd() gives the possibility of handling
memory page faults in user space at will, meaning that when a read or write is performed
on a given page, kernel execution on its calling thread halts until the fault is handled.

The first step into this technique is to allocate two adjacent pages in user space by calling
mmap() and place the data to be sprayed on the end of the first page. Then, userfaultfd()
is configured on the second page, so that when setxattr() is called with the starting
address of the controlled data or payload and a size argument that overflows into the sec-
ond page, only the data placed in the first page will be copied to the kernel and a page
fault will be caused when reaching the second page, effectively halting kernel execution
on setxattr() and keeping the data from the first page on kernel memory. Figure 7.6
shows the basics of this heap spraying technique.

PAGE_1

mmap(0x500000, 0x2000, ...)

0x500000 0x501000

userfault configured
on PAGE_2

PAYLOAD
n bytes PAGE_2

setxattr("./", "user.exp", addr, n+1, 0)

addr = 0x501000 - n

Figure 7.6: setxattr() + userfaultfd() heap spraying

7.5.2 Receiving the replaced msg_msg

Once the original struct msg_msg has been freed and replaced with an overwritten
one by using setxattr() & userfaultfd() spraying, the last step into the arbitrary
read is to simply receive that message using system call msgrcv(), the counterpart to
msgsnd(). The return value will be DATALEN_MSG bytes contiguous to the message’s
struct msg_msg immediately followed by m_ts - DATALEN_MSG bytes located in ad-
dress next, as seen in Figure 7.5.

For this privilege escalation exploit, Linux kernel structure vsock_sock will be the ob-
jective of the arbitrary read. This structure contains three kernel addresses of other kernel
structures that will be needed later on, namely:

42 Exploiting the vulnerability

• struct mem_cgroup *sk_memcg, points to a structure residing in kmalloc-4k slab
cache which will be used to calculate the possible address of a struct sk_buff, a
socket buffer object.

• const struct cred *owner, stores the credentials or access privileges of the
socket owner that will be overwritten to gain root access.

• void (*sk_write_space)(struct sock *), function pointer that is set to the
address of static kernel function sock_def_write_space() which will be used to
calculate the KASLR offset.

The kernel address of struct vsock_sock is leaked in log file /dev/kmsg in CPU reg-
ister RBX every time the vsock race condition is caused.

7.6 Privilege escalation

The last step of the exploit is to overwrite the uid and gid fields of the previously leaked
const struct cred *owner to effectively escalate privileges. An instance of struct
sk_buff, which represents a network buffer, will be replaced and used with the previous
arbitrary free and heap spraying techniques.

7.6.1 Control flow hijacking

A network related buffer is represented with struct sk_buff. This object contains an
instance of struct skb_shared_info which contains field void* destructor_arg

within; this address points to an instance of struct ubuf_info that holds a function
pointer, void* callback, which will be replaced and forced to be called to hijack the
kernel’s control flow.

In order to generate a suitable struct sk_buff in kernel UDP packets of 2800 bytes
each have to be sent to local sockets. Sending these UDP packets will generate struct

sk_buff kernel objects in the kmalloc-4k slab cache which may end up placing one of
them immediately after the leaked struct mem_cgroup *sk_memcg, that is, in address
sk_memcg + 4096 due to the fact that struct mem_cgroup *sk_memcg is also placed
in the kmalloc-4k slab cache.

7.6 Privilege escalation 43

By making use of the previously presented arbitrary free exploit followed by setxattr()

+ userfaultfd() heap spraying, the struct sk_buff immediately after the leaked
sk_memcg can be overwritten with a payload (see Figure 7.7); when receiving the UDP
packet corresponding to that struct sk_buff with recv() the kernel will execute the
function contained in struct ubuf_info’s field callback, effectively allowing for redi-
rection of the kernel’s execution to an arbitrary location.

skb_shared_info

void (*callback)(struct
ubuf_info *, bool);
long unsigned int desc;
...

...
__u8 tx_flags
...
void * destructor_arg
...

payload for overwriting sk_buff

MY_UINFO_OFFSET

SKB_SHINFO_OFFSET

Figure 7.7: Payload for overwriting sk_buff object

7.6.2 Arbitrary write

One of the easiest ways to get root privileges at this point would be to redirect the execu-
tion flow to a user space function that executed the following two functions (see Listing
7.2):

1 commit_creds(prepare_creds());

Listing 7.2: Privilege escalation without SMAP & SMEP

This would immediately elevate privileges to root when executed in kernel space, which
was a very common technique for privilege escalation. However, when SMAP and SMEP
are enabled, as is the case, this is not possible as execution is halted immediately when
such access to user space is detected.

Instead, a ROP gadget that will overwrite the corresponding credentials kernel object will
be used for this exploit; a Return-Oriented-Programming (ROP) gadget is a small se-

44 Exploiting the vulnerability

quence of CPU instructions present on a binary file that perform several instructions like
modifying register values or reading/writing to memory before ending with a ’ret’ oper-
ation, a ’return from procedure’ instruction to return the control to the calling function.

In order to overwrite the uid and gid fields of the previously leaked struct cred

*owner the callback function pointer will store the address of a ROP gadget present
on the kernel executable (vmlinux or vmlinuz if compressed).

The following Listing 7.3 shows the ROP gadget2 that will be used to escalate privileges:

1 mov rdx, qword ptr [rdi + 8]

2 mov qword ptr [rdx + rcx*8], rsi

3 ret

Listing 7.3: ROP gadget for arbitrary write

The first instruction will store in register RDX the 8 bytes (QWORD) of data starting at
the address stored in RDI at offset 8 (rdi + 8) as a pointer (ptr), then the second opcode
will copy the 8 bytes of value of register RSI to the address stored in register RDX at
offset RCX*8 and finally return to the previous execution flow.

When the ROP gadget in callback is called the RDI CPU register holds the first argument
of the callback function which is the struct ubuf_info itself, so the address [rdi + 8]
will point to ubuf_info.desc, which we set it to be the address of the uid field of the
leaked credentials object minus 1 byte in the payload (see Figure 7.7); the gadget stores
this address in register RDX. The value of register RSI is 1, and RCX = 0, so when
opcode mov qword ptr [rdx + rcx*8], rsi is executed fields uid and gid of the
leaked cred object are overwritten with 0’s, as shown in Figure 7.8, which correspond to
the root user account, effectively converting an unprivileged user into root and at which
point the root shell is invoked.

2Search ROP gadgets automatically with https://github.com/JonathanSalwan/ROPgadget

https://github.com/JonathanSalwan/ROPgadget

7.6 Privilege escalation 45

0x29 0x22 0x00 0x00
0xE8 0x03 0x00 0x00

0xE8 0x03 0x00 0x00
0xE8 0x03 0x00 0x00

0xE8 0x03 0x00 0x00
0xE8 0x03 0x00 0x00

usage

uid

gid

suid

sgid

euid

0x29 0x22 0x00 0x01
0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00
0xE8 0x03 0x00 0x00

0xE8 0x03 0x00 0x00
0xE8 0x03 0x00 0x00

Original struct cred Overwritten struct cred

usage

uid

gid

suid

sgid

euid

... ...

Figure 7.8: Arbitrary write on struct cred

By redirecting the execution flow to a kernel space address and not to an user space one
SMAP and SMEP are avoided and do not get triggered.

8. CHAPTER

Conclusions

In this project, Linux kernel race condition CVE-2021-26708 was dissected and pre-
sented, demonstrating what causes the bug, how to trigger it, and ultimately proving the
disastrous consequences it can cause in the wrong hands.

A proof of concept exploit that turned a very limited 4-byte write-after-free into an ar-
bitrary free, read and write of kernel memory, and consequently privilege escalation was
implemented using a publicly available technique, bypassing security measures KASLR,
SMEP, and SMAP.

The exploit is very target-specific, mostly due to the KASLR calculating scheme and the
use of a ROP gadget. Therefore, it requires previous research on the target machine to find
the addresses of the ROP gadget and the static kernel function sock_def_write_space()
(used to calculate the KASLR offset), and to adapt the exploit to it. Moreover, for the ex-
ploit to be successful it is necessary that the target machine meets certain requirements
that not all popular Linux distributions do; Fedora 33 Server is one of the most popular
that meets them all.

Implementing the exploit was quite a challenge, as even though some source codes of
different Linux exploits are available online, each exploit relies on different techniques,
and they all have their quirks, hardly making any difference in easing the implementation
of this exploit. Moreover, kernel crashes were very frequent during development which
forced to reboot the virtual machine and set up the working environment over and over
again, which slowed down progress greatly.

Furthermore, it was also very frequent to see the System V message queues fill when heap

47

48 Conclusions

spraying the memory with msgsnd(), which also forced to reboot the system, as further
heap spraying with msgsnd() was not possible and receiving the messages or deleting the
queues would make the kernel crash.

Lastly, the exploit may cause several situations beyond the user’s control that may cause
the exploit to fail, and the kernel to completely freeze, namely:

• Failed msgsnd() heap spray: After a virtio_vsock_sock object is freed due
to the vulnerability’s race condition, its memory location is heap sprayed with
msgsnd(). If this spray fails to replace the freed virtio_vsock_sock object, the
next step in which this message is arbitrarily freed may free an unrelated kernel
object, causing kernel instability.

• Failed setxattr() + userfaultfd() msg_msg heap spray: After a real msg_msg
memory location is arbitrarily freed, its contents are replaced with a fake msg_msg

using heap spraying. If this heap spraying is unsuccessful, system call msgrcv()
will fail, causing the exploit to hang or freeze the kernel.

• Unexpected sk_buff memory location: After heap spraying with UDP packets,
the possible memory address of a sk_buff kernel object is calculated as sk_memcg
location + 4096 bytes. However, it is possible that now sk_buff it will be placed
on that address, meaning that no control flow hijacking is performed, and kernel
instability may be caused.

This investigation work has made me understand better the inner workings of some of the
subsystems that compose the Linux kernel, as well as acquiring the necessary skills to
develop a kernel exploit from the ground up.

9. CHAPTER

Future work

The exploit developed on this project grants root access to an unprivileged user as long
as certain conditions are met. Several situations beyond the user’s control may cause the
exploit to fail and possibly cause the kernel to become unstable or even completely crash
or freeze.

These situations occur commonly, and therefore the exploit must be executed, and the ker-
nel rebooted several times for it to be successful. Further research is needed to determine
the exact reasons behind these problems in order to improve the exploit’s reliability and
success rate.

49

Bibliography

[CWE, 2020a] CWE (2020a). CWE-416: Use After Free. https://cwe.mitre.org/data/

definitions/416.html.

[CWE, 2020b] CWE (2020b). Weaknesses in the 2020 CWE Top 25 Most Dangerous Software

Weaknesses. https://cwe.mitre.org/data/definitions/1350.html.

[Dio, 2020] Dio, A. D. (2020). The slab allocator in the linux kernel. https://hammertux.

github.io/slab-allocator.

[Edge, 2013] Edge, J. (2013). Kernel address space layout randomization. https://lwn.net/

Articles/569635/.

[Fabretti, 2018] Fabretti, N. (2018). Cve-2017-11176: A step-by-step linux kernel exploitation.

https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.

html.

[Garzarella, 2020] Garzarella, S. (2020). VSOCK: VM ↔ host socket with minimal configu-

ration. https://static.sched.com/hosted_files/devconfcz2020a/b1/DevConf.CZ_

2020_vsock_v1.1.pdf.

[Help Net Security, 2021] Help Net Security (2021). Now-fixed Linux kernel vulnerabilities en-

abled local privilege escalation (CVE-2021-26708). https://www.helpnetsecurity.com/

2021/03/03/cve-2021-26708/.

[Intel Corporation, 2015] Intel Corporation (2015). Intel® xeon® processor d prod-

uct family technical overview: Supervisor mode access protection (smap). https:

//web.archive.org/web/20160411033318/https://software.intel.com/en-us/

articles/intel-xeon-processor-d-product-family-technical-overview.

[Intel Corporation, 2018] Intel Corporation (2018). Related intel security features &

technologies. https://software.intel.com/security-software-guidance/

best-practices/related-intel-security-features-technologies.

51

https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/1350.html
https://hammertux.github.io/slab-allocator
https://hammertux.github.io/slab-allocator
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html
https://static.sched.com/hosted_files/devconfcz2020a/b1/DevConf.CZ_2020_vsock_v1.1.pdf
https://static.sched.com/hosted_files/devconfcz2020a/b1/DevConf.CZ_2020_vsock_v1.1.pdf
https://www.helpnetsecurity.com/2021/03/03/cve-2021-26708/
https://www.helpnetsecurity.com/2021/03/03/cve-2021-26708/
https://web.archive.org/web/20160411033318/https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://web.archive.org/web/20160411033318/https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://web.archive.org/web/20160411033318/https://software.intel.com/en-us/articles/intel-xeon-processor-d-product-family-technical-overview
https://software.intel.com/security-software-guidance/best-practices/related-intel-security-features-technologies
https://software.intel.com/security-software-guidance/best-practices/related-intel-security-features-technologies

52 Anexo

[Jimenez, 2017] Jimenez, J. (2017). Linux heap exploitation intro series:

Used and abused – use after free. https://sensepost.com/blog/2017/

linux-heap-exploitation-intro-series-used-and-abused-use-after-free/.

[King, 2013] King, A. (2013). Vsock: Introduce vm sockets. https://github.com/torvalds/

linux/commit/d021c344051af91f42c5ba9fdedc176740cbd238.

[Mordechai Guri, 2015] Mordechai Guri, P. (2015). Aslr - what it is, and what it isn’t. https:

//blog.morphisec.com/aslr-what-it-is-and-what-it-isnt/.

[Nikolenko, 2018] Nikolenko, V. (2018). Linux kernel universal heap spray. https://duasynt.

com/blog/linux-kernel-heap-spray.

[NVD, 2021] NVD (2021). Cve-2021-26708 detail. https://nvd.nist.gov/vuln/detail/

CVE-2021-26708.

[Popov, 2021a] Popov, A. (2021a). Four Bytes of Power: exploiting CVE-2021-26708 in the

Linux kernel. https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html.

[Popov, 2021b] Popov, A. (2021b). vsock: fix the race conditions in multi-transport sup-

port. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

commit/?id=c518adafa39f37858697ac9309c6cf1805581446.

[Red Hat, Inc., 2021] Red Hat, Inc. (2021). What is SELinux? https://www.redhat.com/en/

topics/linux/what-is-selinux.

[The kernel development community, 2008a] The kernel development community (2008a).

Physical page allocation. https://www.kernel.org/doc/gorman/html/understand/

understand009.html.

[The kernel development community, 2008b] The kernel development community (2008b). Slab

allocator. https://www.kernel.org/doc/gorman/html/understand/understand011.

html.

[The kernel development community, 2018] The kernel development community (2018). The

linux kernel user’s and administrator’s guide, memory management. https://www.kernel.

org/doc/html/latest/admin-guide/mm/index.html.

[Wessel, 2010] Wessel, J. (2010). Using kgdb, kdb and the kernel debugger internals. https:

//www.kernel.org/doc/html/v4.15/dev-tools/kgdb.html.

[Wikipedia, 2021] Wikipedia (2021). Supervisor mode access prevention. https://en.

wikipedia.org/wiki/Supervisor_Mode_Access_Prevention.

https://sensepost.com/blog/2017/linux-heap-exploitation-intro-series-used-and-abused-use-after-free/
https://sensepost.com/blog/2017/linux-heap-exploitation-intro-series-used-and-abused-use-after-free/
https://github.com/torvalds/linux/commit/d021c344051af91f42c5ba9fdedc176740cbd238
https://github.com/torvalds/linux/commit/d021c344051af91f42c5ba9fdedc176740cbd238
https://blog.morphisec.com/aslr-what-it-is-and-what-it-isnt/
https://blog.morphisec.com/aslr-what-it-is-and-what-it-isnt/
https://duasynt.com/blog/linux-kernel-heap-spray
https://duasynt.com/blog/linux-kernel-heap-spray
https://nvd.nist.gov/vuln/detail/CVE-2021-26708
https://nvd.nist.gov/vuln/detail/CVE-2021-26708
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c518adafa39f37858697ac9309c6cf1805581446
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c518adafa39f37858697ac9309c6cf1805581446
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/index.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/index.html
https://www.kernel.org/doc/html/v4.15/dev-tools/kgdb.html
https://www.kernel.org/doc/html/v4.15/dev-tools/kgdb.html
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention

BIBLIOGRAPHY 53

	Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	The aims of the project
	Project management
	Description of the phases
	Management
	Development
	Documentation

	Work Breakdown Structure
	Time estimates
	Risk management
	Deviation analysis
	Work methodology
	Meetings
	Work schedule

	Linux subsystems
	Memory management subsystem
	Buddy allocator
	Slab allocator

	Linux virtual socket subsytem
	Linux kernel security measures
	SMEP & SMAP
	Kernel Address Space Layout Randomization
	Security-Enhanced Linux

	Common software vulnerabilities
	Exploiting
	Proof of concept

	CVE-2021-26708 Vulnerability
	Vulnerability description
	Reproducing the bug
	Saving the pointer to the socket transport into a local variable
	Freeing the socket transport
	Using the invalid pointer

	Triggering the bug
	Proof of concept
	Kernel information leak

	Exploiting the vulnerability
	Environment Setup
	OS & Kernel
	Debugging

	Exploit step-by-step
	Memory Corruption
	Heap Spraying technique
	struct msg_msg implementation

	Arbitrary Free
	Arbitrary Read
	Heap spraying: setxattr() & userfaultfd()
	Receiving the replaced msg_msg

	Privilege escalation
	Control flow hijacking
	Arbitrary write

	Conclusions
	Future work
	Bibliography

