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Recent measurements of the resistivity in magic-angle twisted bilayer graphene near the super-
conducting transition temperature show twofold anisotropy, or nematicity, when changing the direction of
an in-plane magnetic field [Cao et al., Science 372, 264 (2021)]. This was interpreted as strong evidence for
exotic nematic superconductivity instead of the widely proposed chiral superconductivity. Counter-
intuitively, we demonstrate that in two-dimensional chiral superconductors the in-plane magnetic field can
hybridize the two chiral superconducting order parameters to induce a phase that shows nematicity in the
transport response. Its paraconductivity is modulated as cosð2θBÞ, with θB being the direction of the in-
plane magnetic field, consistent with experiment in twisted bilayer graphene. We therefore suggest that the
nematic response reported by Cao et al. does not rule out a chiral superconducting ground state.
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Introduction.—The pairing symmetries are fundamental
properties of the superconducting state and yield robust
insights even irrespective of the details of the underlying
microscopic pairing mechanisms [1–4]. The recently dis-
covered superconducting phase close to the correlated
insulating phase in magic-angle twisted bilayer graphene
(MATBG) [5–8] has spurred tremendous research activ-
ities. However, the pairing symmetry of the superconduct-
ing state has not been identified experimentally. Pairing
mechanisms based on phonons [9–14] or pure Coulomb
interaction [15–33] have been proposed, among which the
pure electronic origins often favor the chiral (d� id)-wave
superconductivity with promising applications in topologi-
cal quantum computing. Chiral (d� id)-wave supercon-
ductivity retains the rotational symmetry but breaks the
time-reversal one, by a mechanism similar to the one
previously studied in heavily doped single layer graphene
[34,35]. The existing evidence for chiral superconductivity
in other materials, such as UPt3 [36–38] and UTe2 [39], has
so far not been reported in MATBG.

Recent transport measurements in MATBG provided key
features of the pairing symmetry of the superconducting
state by revealing a twofold anisotropy or nematicity in the
resistivity around the superconducting transition temper-
ature Tc when changing the direction of a relatively strong
(≳0.5 T) in-plane magnetic field [40]. The transport
response is still isotropic when the magnetic field is smaller.
At first glance it appears that chiral superconductivity should
be ruled out since it respects the threefold rotation symmetry
of the lattice. Nematic superconductivity—an exotic phase
that breaks the lattice rotational symmetry but respects the
translational one—may be favored, which was phenomeno-
logically proposed to be a complicated coexisting phase [41]
or intrinsic correlated phase [42]. Nematic fluctuation in the
correlated insulating phases was indeed observed in
MATBG by scanning tunneling microscopy (STM) [43–
45], also in twisted double bilayer graphene [46]. But it is not
very clear whether the insulating correlated phase is directly
related to, or purely competitive with, the superconducting
one, in that superconductivity can survive even when the
insulating state is completely suppressed [47]. Less attention
was, however, paid to the possible role of the in-plane
magnetic field for superconductivity. As one marked excep-
tion, it was proposed to provide a vector potential to induce
the Z2 symmetry-breaking phase transition in Sr2RuO4

films of (p� ipÞ)-wave chiral superconductors [48].
However, this was not observed since Sr2RuO4 may not
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be a p-wave superconductor, as suggested by recent inves-
tigations [49–51].
In this Letter, we formulate the phase transition of a

chiral (d� id)-wave superconductor driven by a critical in-
plane magnetic field in a prototype honeycomb lattice of
MATBG and demonstrate that the new phase is nematic
with twofold anisotropy in the transport response. We
predict an emerging Hall effect [52] in the paraconductivity
of the driven nematic phase, also with a twofold anisotropy
with respect to the direction of the in-plane magnetic field
[Fig. 1(a)]. In detail, the two degenerate chiral states,
represented by ξ1 and ξ2 at the north and south poles of
the Bloch sphere depicted in Fig. 1(b), are coupled via the
vector potential of the magnetic field through angular-
momentum conservation. When the magnetic field B is
larger than a critical one Bc, the two chiral states
are hybridized with equal contributions of the form
½ξ1 þ expð2iθBÞξ2�=

ffiffiffi
2

p
, as depicted by points at the

equator of the Bloch sphere. The coefficient of this
superposition is modulated by the direction of the magnetic
field denoted by angle θB. Near the superconducting
transition temperature Tc the critical field driving the
transition becomes arbitrarily small Bc → 0 as T → Tc
(e.g., Bc ∼ 0.6 T when T ∼ 0.9Tc). Although the chiral
states ξ1 and ξ2 are both isotropic, the driven state given by
their superposition is nematic with an anisotropy axis
modulated by cosð2θBÞ, i.e., showing twofold nematic
response with respect to the applied field. The consistence
with experimental measurements [40] indicates that chiral
superconductivity might be not ruled out in MATBG by
these experimental findings. We propose that magneto-
electric transport measurements are useful tools also for
other possible (p� ip)-wave chiral superconductors, such

as UPt3 [36–38] and UTe2 [39] thin films, to engineer and
identify the pairing symmetry.
Symmetry analysis for magnetic-field driven nematicity.—

Although the microscopic mechanism of superconductivity
in MATBG may be sensitive to the detailed structure of the
flat bands and many-body interaction [9–33], the Ginzburg-
Landau (GL) phenomenology is largely independent of
these details by relying solely on the system’s symmetry
[1,4]. For MATBG, the (emergent) D6 symmetry, which
contains a sixfold rotation around the normal and twofold
rotations around in-plane axes, is successfully adopted to
describe the band structure in the continuum model and
tight-binding model with lattice relaxation [25,53–55]. For
our purpose, we shall focus on the d-wave superconduc-
tivity, which is allowed inD6 group by the two-dimensional
irreducible representation with basis ξ1;2 in the form of
(dx2−y2 � idxy) waves, with which one can represent the
condensate Bose field via introducing the superconducting
order parameters ψ1;2ðr; tÞ under the basis ξ1;2 [1,4,35]:

Φðr; tÞ ¼ ψ1ðr; tÞξ1 þ ψ2ðr; tÞξ2: ð1Þ

The two basis functions ξ1;2 span a two-dimensional space,
depicted as a Bloch sphere in Fig. 1(b), with the dx2−y2 �
idxy states being the north and south poles. To construct the
GL Lagrangian, we build the symmetry-allowed quadratic,
quartic, and gradient terms of order parameters (refer to
Supplemental Material for details [56]). We note that
symmetry analysis by the D3, D6, and D6h groups gives
the same Lagrangian [1,35,56,57]. The applied static and
uniform in-plane magnetic field B induces an effective in-
plane vector potentialAx;y via an average over the thickness
d of MATBG [48], i.e.,

Ax;y →
ffiffiffiffiffiffiffiffiffiffiffiffi
hA2

x;yi
q

¼ jBy;xjd=
ffiffiffi
6

p
; ð2Þ

where h� � �i ¼ R
d
0 dzð� � �Þ denotes the spatial average over

the sample thickness and A ¼ z ×B with the surface
normal of the film along the ẑ direction. Including this
vector potential, the GL Lagrangian density follows as

LeffðrÞ ¼ α
X
μ¼1;2

jψμðrÞj2 þ β1ðDþψ1D̃−ψ
�
1 þD−ψ2D̃þψ�

2Þ

þ β2ðD−ψ1D̃þψ�
1 þDþψ2D̃−ψ

�
2Þ

þ γðDþψ1D̃þψ�
2 þD−ψ2D̃−ψ

�
1Þ þ λ1ðjψ1ðrÞj2

þ jψ2ðrÞj2Þ2 þ λ2ðjψ1ðrÞj2 − jψ2ðrÞj2Þ2; ð3Þ

where fα; β1;2; γ; λ1;2g are real GL parameters, D� ¼
∂� − ð2e=iℏÞA�, and D̃� ¼ ∂� þ ð2e=iℏÞA�, with ∂� ≡
∂x � i∂y and A� ≡Ax � iAy. The Lagrangian is invariant
under the gauge transformation

(a) (b)

FIG. 1. Nematic and Hall responses of the driven state by an in-
plane magnetic fieldB [(a)] via the hybridization of two degenerate
chiral states on the Bloch sphere [(b)]. In (a), both the longitudinal
current Jx and Hall current Jy under the electric field Ex show
twofold anisotropy with respect to the magnetic-field direction θB.
In (b), the north and south poles represent two chiral states ξ1;2 with
positive and negative angular momentum �m and the other points
represent their superpositions. The in-planemagnetic field can drive
the system to be a state ðξ1 þ expðiφÞξ2Þ=

ffiffiffi
2

p
with equal contri-

butions from the two chiral states, represented by points at the
equator and modulated by φ ¼ 2θB.
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ψ1;2ðrÞ→ ψ1;2ðrÞeiΛðrÞ; AðrÞ→AðrÞ− ðℏ=2eÞ∇ΛðrÞ;

where ΛðrÞ is an arbitrary function. A constant vector
potential is equivalent to a uniform supercurrent, to which
case the conclusion drawn by magnetic field can be also
applied. Without the magnetic field, the mass term α and
stiffness β1;2 are isotropic for either ψ1 or ψ2, viz., they are
isotropic phases without nematicity. The two chiral order
parameters are coupled via the orbital effect of a mag-
netic field.
Under the application of an in-plane magnetic field, the

ground state can be changed, which is found by minimizing
the free energy Eq. (3), yielding

�
αþ βð2e=ℏÞ2A2 −γð2e=ℏÞ2A2e−iφ

−γð2e=ℏÞ2A2eiφ αþ βð2e=ℏÞ2A2

��
ψ1

ψ2

�

þ
�Ωþ½ψ1;ψ2� 0

0 Ω−½ψ1;ψ2�

��
ψ1

ψ2

�
¼ 0; ð4Þ

where β ¼ β1 þ β2, φ ¼ 2θB, and Ω�½ψ1;ψ2�≡
2λ1ðjψ1j2 þ jψ2j2Þ � 2λ2ðjψ1j2 − jψ2j2Þ. Without loss of
generality, we assume the initial state to be ψ1 before
applying the magnetic field, i.e., a dþ id superconductor.
After applying the magnetic field, ψ2 is also mixed into the
ground state. However, this admixture is small when the
field is weak. On the contrary, when the applied field is
sufficiently strong

B≳ ℏ
2e

1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α

2ðγ − βÞ

s
≡ Bc; ð5Þ

the two order parameters ψ1 and ψ2 are driven to be the
same in magnitude, and the ground state is no longer a
chiral one. We call the complete loss of chirality a phase
transition since the symmetry of the phase is completely
changed. We note that B → 0 when α → 0 near Tc. With
the ansatz ψ2 ¼ ψ1eiφ, we find

jψ1;2j2 ¼
1

4λ1

�
−αþ ðγ − βÞ

�
2e
ℏ

�
2

A2

�
; ð6Þ

which is suppressed by orbital effects when β > γ, as is the
case in MATBG (see numerical results below).
The order parameters with equal contribution of ψ1;2 can

be generally represented by

ψ̃1;2 ¼ ðψ1 � e−iφψ2Þ=
ffiffiffi
2

p
: ð7Þ

When decomposing the condensate Boson field Φ ¼
ψ̃1ξ̃1 þ ψ̃2ξ̃2 [Eq. (1)], we can define new basis ξ̃1;2 ¼
ðξ1 � eiφξ2Þ=

ffiffiffi
2

p
for ψ̃1;2, respectively, which lie at the

equator of the Bloch sphere [Fig. 1(b)]. Since ψ2 ¼ ψ1eiφ,
the new state driven by the in-plane magnetic field is

exactly ψ̃1. We can thereby obtain its Lagrangian by
substituting the transformation Eq. (7) into Eq. (8), yielding
the linearized free energy of ψ̃1

F ¼
Z

drψ̃�
1ðrÞHðr̂; tÞψ̃1ðrÞ: ð8Þ

Here we define

Hðr̂; tÞ ¼ α −
X
μν

c̃μν

�
∂μ −

2e
iℏ

Aμ

��
∂ν −

2e
iℏ

Aν

�
;

where the components of the stiffness are

c̃xx ¼ β þ γ cosð2θBÞ;
c̃yy ¼ β − γ cosð2θBÞ;
c̃xy ¼ c̃yx ¼ γ sinð2θBÞ: ð9Þ

Intriguingly, these components are tunable by the direction
of in-plane magnetic field, and are anisotropic along the x̂-
and ŷ directions, viz., correspond to emerging nematicity
that breaks the threefold rotation symmetry in the mag-
netic-field-driven phase.
Nematic paraconductivity.—The field-driven phase that

is the ground state below Tc shows a nematic transport
response as addressed below. Slightly above the super-
conducting transition temperature, the conductivity, called
paraconductivity, is mainly contributed by the supercon-
ductor order parameters since their fluctuation under
thermal noise can carry a supercurrent [58,59]. The
measurement of dc resistivity around Tc, as performed
in MATBG [40], can thus reflect the fluctuation of the
superconducting order parameters and provide information
about the pairing symmetry of the superconducting state
(see Supplemental Material Sec. V for details [56]). To
calculate the response to an electric field, the vector
potential in Hðr̂; tÞ is increased by AE ¼ −Et, which is
the contribution of the applied electric field [59]. Then by
the free energy (8), the time-dependent GL equation,
augmented by thermal noise, is written as [58,59]

Γ∂tψ̃1ðr; tÞ ¼ −Hðr̂; tÞψ̃1ðr; tÞ þ fðr; tÞ; ð10Þ

where Γ is the damping rate for the superconducting order
parameter ψ̃1ðr; tÞ and fðr; tÞ represents thermal noise. We
assume that the thermal noise is white with corre-
lation relation hf�ðr; tÞfðr0; t0Þi ¼ 2ΓkBTδðr − r0Þδðt −
t0Þ [58,59]. Via a Fourier transformation, the electric current
reads
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J≡ −
δF

SδAE

¼ −
2kBT
ΓS

X
q

ΛðqÞ
Z

0

−∞
du exp

�
−
2

Γ

Z
0

u
dtHðq; tÞ

�
;

ð11Þ

where S is the sample area and ΛðqÞ≡
∂Hðq; tÞ=∂AEjAE→0. From this the paraconductivity is
determined in linear response to be

σij ¼ kBT
e2Γ

2πℏ2α

c̃ijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − γ2

p ; ð12Þ

which is a tensor that exhibits a Hall response. This
emerging Hall effect is unique to the magnetic-field-driven
phase since it is absent in the chiral superconducting phase
without magnetic field, which follows an isotropic para-
conductivity σcij ¼ kBTe2Γ=ð2πℏ2αÞδij. In particular, when
the electric field is applied along the x̂ direction in the
coordinate system defined in Fig. 1(a), the induced current
along the x̂ direction is modulated as c̃xx, and there is a Hall
response with the current along the ŷ direction being
modulated as c̃yx. They are both nematic with a twofold
anisotropy [Eq. (9)].
Parameter estimation.—To be specific for the estimation

of GL parameters and paraconductivity, here we consider
the tight-binding model on the honeycomb lattice with two
p orbitals fpx; pyg on every site proposed by Yuan and Fu
[55,60,61], as shown in Fig. 2(a). The superlattice has a
point group of D3. Note, however, that our general
conclusions rely on the above symmetry analysis only
and are thus applicable beyond this specific microscopic
model. The chiral basis is denoted by ðâk�;σ; b̂k�;σÞT ¼
ðâkx;σ � âky;σ; b̂kx;σ � b̂ky;σÞT=

ffiffiffi
2

p
on the “A” and “B”

sites with σ ¼ f↑;↓g ¼ fþ;−g being the electron spin,
the Hamiltonian in momentum space is divided into
subspaces, given by

h�;σðkÞ ¼ −μþ t2ðgk þ g−kÞ � it3ðg−k − gkÞ

þ σ

2
gμBBþ

�
0 t1fk

t1f−k 0;

�
: ð13Þ

Here, μ is the chemical potential; t1 and ft2; t3g are the
hopping parameters between nearest and fifth neighbo-
ring sites that are connected by cμ¼f1;2;3g and dμ¼f1;2;3g
[Fig. 2(a)], respectively [60]; fðkÞ ¼ P

μ¼1;2;3 e
ik·cμ and

gðkÞ ¼ P
μ¼1;2;3 e

ik·dμ ; and gμBB is the Zeeman splitting
via the in-plane magnetic field. We disregard the Zeeman
effect since its suppression of the superconductivity is weak
when B → 0, while the orbital effect is still relevant when
T → Tc. We use the interaction Hamiltonian that allows us
to stabilize d-wave superconductivity [1,31,34,35,62],

Ĥint ≃
X
α¼�

X
kk0

Vðk − k0Þðâ†kα;↑;b̂†−kα;↓ − â†kα;↓b̂
†
−kα;↑Þ

× ðb̂−k0α;↓âk0α;↑ − b̂−k0α;↑âk0α;↓Þ; ð14Þ

where the pairing potential

Vðk − k0Þ ¼ V
N

X
μ¼f1;2;3g

eiðk−k0Þ·cμ :

Here N is the number of honeycomb lattice sites, and the
coupling constant V < 0.
For this specific model, the condensate boson field

contains three components Φ⃗ ¼ ðϕ1;ϕ2;ϕ3ÞT when we
consider the pairing between three nearest neighbors on the
honeycomb lattice, with which the effective Lagrangian
[63] (see Supplemental Material [56] for details),

Leff ½ϕ̄;ϕ� ¼
X

μμ0¼f1;2;3g

Z
drϕ̄μðr; τÞMμμ0ϕμ0 ðr; τÞ

þ
X
μμ0

X
δγ¼x;y

T μμ0
δγ

Z
dr∂δϕ

�
μðr; τÞ∂γϕμ0 ðr; τÞ

þOðϕ4Þ;

(a)  0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0

T
c 

(K
)
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(b)
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FIG. 2. Microscopic model for calculation of GL parameters
and paraconductivity. (a) The Moiré honeycomb lattice, where
a1;2 are two Bravais lattice vectors, and c1;2;3 and d1;2;3 represent
the nearest and fifth neighboring bonding vectors. (b) Calculated
critical superconducting temperature and compressibility. The
superconducting dome with largest Tc ≈ 1.5 K recovers the
typical features in the experiment [40]. (c) The phase transition
induced by in-plane magnetic field when T ≲ Tc, in which ψ0 ¼
0.063 meV and a phase transition at in-plane magnetic field B ∼
0.6 T is predicted. (d) The dependence of the paraconductivity on
the magnetic-field direction.
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whereMμμ0 determines the superconducting transition, and

T μμ0
δγ controls the spatial fluctuations. In this model, the

basis functions ξ1 ¼ −ðe−ið2π=3Þ; 1; eið2π=3ÞÞT= ffiffiffi
3

p
and

ξ2 ¼ ð1; e−ið2π=3Þ; e−ið4π=3ÞÞT= ffiffiffi
3

p
, with the phase difference

�2π=3 rooted in the angle difference �120° between the
nearest bonding vectors. With the basis function, we find
the mass ai ≡ ξ†iMξi and stiffness cijδγ ≡ ξ†i T δγξj of the
order parameters, and calculate the GL parameters via
relations, e.g., a1 ¼ a2 ¼ α, c11δγ ¼ c22δγ ¼ βδδγ and c21xx ¼
−c21yy ¼ −ic21xy ¼ γ [56].
We first estimate the magnitude of the in-plane magnetic

field to realize the phase transition to the nematic super-
conducting state in MATBG. With parameters
jVj ¼ t1 ¼ 4 meV, t2 ¼ 0.2t1, t3 ¼ 0.05t1, and jcμj ¼
14=

ffiffiffi
3

p
nm for the Moiré honeycomb lattice [5,6], the

critical temperature Tc of chiral d-wave superconductivity
is calculated by solving αðTcÞ ¼ 0. Tc is shown in Fig. 2(b)
and exhibits a dome with a peak at hole doping nh > ns=2
where ns ¼ 4=Ω characterizes doping four holes in one
Moiré unit cell of areaΩ [5,40]. We note that this Tc is well
below the Berezinskii–Kosterlitz–Thouless transition
within our mean-field framework [56]. This peak is not
at the Van Hove points of the band that are characterized by
two peaks in compressibility dn=dμ with our parameters.
With a typical hole doping at μ ¼ −1.5t1, we estimate
Tc≈1.1K, α¼−10−4=jcμj2meV−1 ·m−2, β¼2.6meV−1,
γ¼−0.5meV−1, and λ1¼−3λ2¼0.02=jcμj2meV−3 ·m−2

at temperature T ¼ 1 K [56,60]. With the thickness d ≈
0.8 nm of TBG estimated by roughly twice the single-layer
one ∼0.34 nm [64], the two order parameters ψ1;2 become
close in magnitude when the applied magnetic field
B≳ 0.6 T, as shown in Fig. 2(c), which is close to the
typical value Bc ≈ 0.5 T found experimentally [40].
We then estimate the paraconductivity by choosing Γ ¼

ηαℏ=ðkBTcÞ with a factor η of order 1 [65,66], leading to a
universal paraconductivity σij ¼ ησqc̃ij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − γ2

p
with

σq ¼ e2=ð2πℏÞ ¼ 3.87 × 10−5 S being the conductance
quantum. With the parameters at μ ¼ −1.5t1 and
T ¼ 1.2 K, we plot σij=σq in Fig. 2(d) with B≳ 0.6 T
and η taken to be 1. The conductivities oscillate with
respect to the magnetic field with a period of π, thus
exhibiting a twofold anisotropy. The amplitude of the
oscillation is determined by jγj that may depend on the
behind microscopic mechanism. The direction of the in-
plane magnetic field tunes the sign of σxy and hence the
direction of the Hall current, which also could provide an
intriguing functionality for future applications.
Discussion.—We have demonstrated nematic paracon-

ductivity that emerges in two-dimensional chiral super-
conductors under an in-plane magnetic field. This effect is
particularly instructive for the chiral d-wave superconduct-
ing state of the honeycomb lattice in that the driven phase
shows twofold anisotropy that breaks the threefold one of

the lattice. Furthermore, the magnetic-field–driven nematic
phase shows a Hall effect in a nonferromagnetic system.
The underlying mechanism relies on the hybridization of
chiral order parameters by an in-plane vector potential with
shifted the nodes of the gap in the driven phase, which
could be directly tracked by STM [67]. Intuitively, this
suggests that nematic transport is related to the breaking of
rotation symmetry by the applied in-plane magnetic field.
Our work has direct implications for the pairing symmetry
of superconductivity in MATBG. Since our purely sym-
metry-based mechanism applies in the general context of
two-dimensional superconducting order parameters it
might be relevant to experimental observations in other
materials, such as, e.g., few-layer NbSe2 reported recently
[68], as well.
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Note added.—Recently, Hamill et al. report a twofold
rotation symmetry of the superconducting state in few-
layer NbSe2 under an in-plane magnetic field, in contrast to
the threefold rotation symmetry of the lattice [68].

*Present address: School of Physics, Huazhong University of
Science and Technology, Wuhan 430074, China.

[1] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239
(1991).

[2] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969
(2000).

[3] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657
(2003).

[4] J. F. Annett, Adv. Phys. 39, 83 (1990).
[5] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.

Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[6] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras et al., Nature (London) 556, 80 (2018).

PHYSICAL REVIEW LETTERS 127, 127001 (2021)

127001-5

https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1080/00018739000101481
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154


[7] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K.
Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R.
Dean, Science 363, 1059 (2019).

[8] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang et al.,
Nature (London) 574, 653 (2019).

[9] F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett.
121, 257001 (2018).

[10] Y.W. Choi and H. J. Choi, Phys. Rev. B 98, 241412(R)
(2018).

[11] T. J. Peltonen, R. Ojajärvi, and T. T. Heikkilä, Phys. Rev. B
98, 220504(R) (2018).

[12] M. Angeli, E. Tosatti, and M. Fabrizio, Phys. Rev. X 9,
041010 (2019).

[13] B. Lian, Z. Wang, and B. A. Bernevig, Phys. Rev. Lett. 122,
257002 (2019).

[14] R. Samajdar and M. S. Scheurer, Phys. Rev. B 102, 064501
(2020).

[15] J. W. F. Venderbos and R. M. Fernandes, Phys. Rev. B 98,
245103 (2018).

[16] H. Isobe, N. F. Q. Yuan, and L. Fu, Phys. Rev. X 8, 041041
(2018).

[17] Y. Sherkunov and J. J. Betouras, Phys. Rev. B 98, 205151
(2018).

[18] Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 98, 214521
(2018).

[19] J. F. Dodaro, S. A. Kivelson, Y. Schattner, X. Q. Sun, and C.
Wang, Phys. Rev. B 98, 075154 (2018).

[20] C. Xu and L. Balents, Phys. Rev. Lett. 121, 087001 (2018).
[21] M. Fidrysiak, M. Zegrodnik, and J. Spałek, Phys. Rev. B 98,

085436 (2018).
[22] C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang, Phys.

Rev. Lett. 121, 217001 (2018).
[23] Y. Su and S.-Z. Lin, Phys. Rev. B 98, 195101 (2018).
[24] D. M. Kennes, J. Lischner, and C. Karrasch, Phys. Rev. B

98, 241407(R) (2018).
[25] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys. Rev.

X 8, 031089 (2018).
[26] Y.-Z. You and A. Vishwanath, npj Quantum Mater. 4, 16

(2019).
[27] L. Classen, C. Honerkamp, and M.M. Scherer, Phys. Rev. B

99, 195120 (2019).
[28] S. Ray, J. Jung, and T. Das, Phys. Rev. B 99, 134515 (2019).
[29] J. González and T. Stauber, Phys. Rev. Lett. 122, 026801

(2019).
[30] Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 100, 085136

(2019).
[31] M. Claassen, D. M. Kennes, M. Zingl, M. A. Sentef, and A.

Rubio, Nat. Phys. 15, 766 (2019).
[32] W. Chen, Y. Chu, T. Huang, and T. Ma, Phys. Rev. B 101,

155413 (2020).
[33] A. Fischer, L. Klebl, C. Honerkamp, and D. M. Kennes,

Phys. Rev. B 103, L041103 (2021).
[34] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat.

Phys. 8, 158 (2012).
[35] A. M. Black-Schaffer and C. Honerkamp, J. Phys. Condens.

Matter 26, 423201 (2014).
[36] G. M. Luke, A. Keren, L. P. Le, W. D. Wu, Y. J. Uemura,

D. A. Bonn, L. Taillefer, and J. D. Garrett, Phys. Rev. Lett.
71, 1466 (1993).

[37] R. Joynt and L. Taillefer, Rev. Mod. Phys. 74, 235 (2002).
[38] K. E. Avers, W. J. Gannon, S. J. Kuhn, W. P. Halperin, J. A.

Sauls, L. DeBeer-Schmitt, C. D. Dewhurst, J. Gavilano,
G. Nagy, U. Gasser, and M. R. Eskildsen, Nat. Phys. 16, 531
(2020).

[39] L. Jiao, S. Howard, S. Ran, Z. Y. Wang, J. O. Rodriguez, M.
Sigrist, Z. Q. Wang, N. P. Butch, and V. Madhavan, Nature
(London) 579, 523 (2020).

[40] Y. Cao, D. R.-Legrain, J. M. Park, F. N. Yuan, K. Watanabe,
T. Taniguchi, R. M. Fernandes, L. Fu, and P. J.-Herrero,
Science 372, 264 (2021).

[41] D. V. Chichinadze, L. Classen, and A. V. Chubukov, Phys.
Rev. B 101, 224513 (2020).

[42] Y. X. Wang, J. Kang, and R. M. Fernandes, Phys. Rev. B
103, 024506 (2021).

[43] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. D. Xian, M.
Yankowitz, S. W. Chen, K. Watanabe, T. Taniguchi, J. Hone,
C. Dean, A. Rubio, and A. N. Pasupathy, Nature (London)
572, 95 (2019).

[44] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von
Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat.
Phys. 15, 1174 (2019).

[45] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J.
Mao, and E. Y. Andrei, Nature (London) 573, 91 (2019).

[46] C. R.-Verdú, S. Turkel, L. Song, L. Klebl, R. Samajdar,
M. S. Scheurer, J. W. F. Venderbos, K. Watanabe, T. Tani-
guchi, H. Ochoa, L. Xian, D. Kennes, R. M. Fernandes, Á.
Rubio, and A. N. Pasupathy, arXiv:2009.11645.

[47] P. Stepanov, I. Das, X. Lu, A. Fahimniya, K. Watanabe, T.
Taniguchi, F. H. L. Koppens, J. Lischner, L. Levitov, and
D. K. Efetov, Nature (London) 583, 375 (2020).

[48] V. Vadimov and M. Silaev, Phys. Rev. Lett. 111, 177001
(2013).

[49] A. Pustogow, Y. Luo, A. Chronister, Y. S. Su, D. A.
Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks,
N. Kikugawa, S. Raghu, E. D. Bauer, and S. E. Brown,
Nature (London) 574, 72 (2019).

[50] S. Ghosh, A. Shekhter, F. Jerzembeck, N. Kikugawa, D. A.
Sokolov, M. Brando, A. P. Mackenzie, C. W. Hicks, and
B. J. Ramshaw, Nat. Phys. 17, 199 (2021).

[51] S. Benhabib, C. Lupien, I. Paul, L. Berges, M. Dion, M.
Nardone, A. Zitouni, Z. Q. Mao, Y. Maeno, A. Georges, L.
Taillefer, and C. Proust, Nat. Phys. 17, 194 (2021).

[52] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

[53] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci.
U.S.A. 108, 12233 (2011).

[54] M. Angeli, D. Mandelli, A. Valli, A. Amaricci, M. Capone,
E. Tosatti, and M. Fabrizio, Phys. Rev. B 98, 235137 (2018).

[55] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K.
Kuroki, and L. Fu, Phys. Rev. X 8, 031087 (2018).

[56] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.127001 for de-
tailed construction of the GL Lagrangian for the super-
conducting order parameters by symmetry analysis,
derivation of the Lagrangian with estimation of GL param-
eters by a specific microscopic model, and the detailed
clarification on nematicity of superconducting fluctuations
above Tc.

PHYSICAL REVIEW LETTERS 127, 127001 (2021)

127001-6

https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevB.98.241412
https://doi.org/10.1103/PhysRevB.98.241412
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1103/PhysRevX.9.041010
https://doi.org/10.1103/PhysRevX.9.041010
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevB.102.064501
https://doi.org/10.1103/PhysRevB.102.064501
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevB.98.214521
https://doi.org/10.1103/PhysRevB.98.214521
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevB.98.195101
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1103/PhysRevB.99.195120
https://doi.org/10.1103/PhysRevB.99.195120
https://doi.org/10.1103/PhysRevB.99.134515
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevB.100.085136
https://doi.org/10.1103/PhysRevB.100.085136
https://doi.org/10.1038/s41567-019-0532-6
https://doi.org/10.1103/PhysRevB.101.155413
https://doi.org/10.1103/PhysRevB.101.155413
https://doi.org/10.1103/PhysRevB.103.L041103
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1103/PhysRevLett.71.1466
https://doi.org/10.1103/PhysRevLett.71.1466
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1038/s41567-020-0822-z
https://doi.org/10.1038/s41567-020-0822-z
https://doi.org/10.1038/s41586-020-2122-2
https://doi.org/10.1038/s41586-020-2122-2
https://doi.org/10.1126/science.abc2836
https://doi.org/10.1103/PhysRevB.101.224513
https://doi.org/10.1103/PhysRevB.101.224513
https://doi.org/10.1103/PhysRevB.103.024506
https://doi.org/10.1103/PhysRevB.103.024506
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1038/s41586-019-1460-4
https://arXiv.org/abs/2009.11645
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1103/PhysRevLett.111.177001
https://doi.org/10.1103/PhysRevLett.111.177001
https://doi.org/10.1038/s41586-019-1596-2
https://doi.org/10.1038/s41567-020-1032-4
https://doi.org/10.1038/s41567-020-1033-3
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.98.235137
https://doi.org/10.1103/PhysRevX.8.031087
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.127001


[57] R. E. Rudd and W. E. Pickett, Phys. Rev. B 57, 557 (1998).
[58] W. J. Skocpol and M. Tinkham, Rep. Prog. Phys. 38, 1049

(1975).
[59] R. Wakatsuki, Y. Saito, S. Hoshino, Y. M. Itahashi, T. Ideue,

M. Ezawa, Y. Iwasa, and N. Nagaosa, Sci. Adv. 3, e1602390
(2017).

[60] N. F. Q. Yuan and L. Fu, Phys. Rev. B 98, 045103 (2018).
[61] J. Kang and O. Vafek, Phys. Rev. X 8, 031088 (2018).
[62] T. Yu, M. Claassen, D. M. Kennes, and M. A. Sentef, Phys.

Rev. Research 3, 013253 (2021).
[63] A. Altland and B. Simons, Condensed Matter Field

Theory (Cambridge University Press, Cambridge, England,
2010).

[64] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[65] L. P. Gor’kov, Sov. Phys. JETP 9, 1364 (1959).
[66] N. Kopnin, Theory of Nonequilibrium Superconductivity

(Oxford University Press, New York, 2001).
[67] Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C.

Renner, Rev. Mod. Phys. 79, 353 (2007).
[68] A. Hamill, B. Heischmidt, E. Sohn, D. Shaffer, K.-T. Tsai,

X. Zhang, X. Xi, A. Suslov, H. Berger, L. Forró, F. J.
Burnell, J. Shan, K. F. Mak, R. M. Fernandes, K. Wang, and
V. S. Pribiag, Nat. Phys. 17, 949 (2021).

PHYSICAL REVIEW LETTERS 127, 127001 (2021)

127001-7

https://doi.org/10.1103/PhysRevB.57.557
https://doi.org/10.1088/0034-4885/38/9/001
https://doi.org/10.1088/0034-4885/38/9/001
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevResearch.3.013253
https://doi.org/10.1103/PhysRevResearch.3.013253
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1038/s41567-021-01219-x

