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ABSTRACT 

 

 Nanoparticle (NP) based drug delivery systems offer a more efficient and 

controlled way of administrating drugs compared to the traditional methods, and 

polymeric NPs seem to be a promising platform due to its numerous advantages 

and properties. Conventional techniques such as nanoprecipitation require 

extensive use of the solvents and numerous steps to produce NPs. Therefore, in 

this work, the production of PEGylated polyester based NPs in a two-step process, 

reducing the amount of organic solvents as much as possible was studied. To do 

so, biocompatible caprolactone and L-lactic acid based macromonomers of 

different chain lengths were produced by ring opening polymerization (ROP), and 

then polymerized with poly(ethylene glycol) methyl ether methacrylate (PEGMA) 

via free radical polymerization (FRP) in aqueous and water-ethanol mediums. 

Latexes were analysed regarding conversion of the reaction, coagulum content 

and particle size. To ensure the degradability of the produced NPs, a hydrolytic 

degradation study was performed for polymers produced by solution 

polymerization. Molar mass evolution, thermal properties and water absorption 

and remaining weight were monitored during the study.  

 

LABURPENA 

 

 Nanopartikuletan (NP) oinarritutako sendagaiak emateko sistemek 

sendagaiak administratzeko modu eraginkorrago eta kontrolatuago bat 

eskaintzen dute metodo tradizionalekin alderatuta. NP polimerikoak aukera ona 

dira eskaintzen dituzten propietate eta abantailengatik. Nanoprezipitazioa 

bezalako teknika konbentzionalek disolbatzaileen erabilera zabala eta NPak 

sortzeko urrats ugari behar dituzte. Hori dela eta, lan honetan, PEGilatutako 

poliesterretan oinarritutako NPen ekoizpena bi urratseko prozesuan aztertu zen, 

disolbatzaile organikoen erabilera ahal den neurrian murriztuz. Horretarako, kate 

luzera desberdineko caprolactona eta L-azido laktikoan oinarritutako 

makromonomero biobateragarriak eraztun irekitze (ROP) bidez ekoiztu ziren. 

Ondoren polietilenglikolarekin (PEG) polimerizatu ziren erradikal askeen 

polimerizazio (FRP) bidez ur eta ur-etanol ingurunean. Latexak erreakzioaren 



4 

konbertsioa, koagulo edukia eta partikulen tamaina bidez karakterizatu ziren. 

Ekoitzitako NPen degradagarritasuna bermatzeko, degradazio hidrolitikoaren 

azterketa egin zen antzeko polimeroentzako. Azterketan zehar pisu 

molekularraren eboluzioa, propietate termikoak eta uraren xurgapena eta pisu 

galera behatu ziren.  
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1. Introduction 
 

Among all the numerous applications that polymers have, medicine is one of 

the most significant fields. Some polymers, due to their biodegradable and 

biocompatible properties, are used for multiple medical applications, from re-

absorbable sutures to orthopaedic implants. Their carbon based chemistry make 

polymers closer to biological tissue than inorganic materials, and they have 

further the advantage to be tuneable in physical, chemical and biological 

properties in a wide range to meet the requirements of specific applications.1,2,3 

With the flowering of nanotechnology, revolutionary steps have been taken 

forward in medicine: differently functionalized nanoparticles find advanced 

utilizations in medical diagnostics and drug delivery. Novel drug delivery systems 

came into existence to overcome the shortcomings of conventional dosage, and 

polymeric nanoparticles seem to be a promising platform to tackle them.4,5 

 

1.1. Nanoparticles as drug delivery system 
 

 

NPs are particles that can be described as small nanostructured materials 

which are characterized for their nano-metric size, commonly not passing the 100 

nm. Therefore, NPs can be used as drug delivery systems that can transport active 

ingredients to a targeted tissue or organ, with the specified concentration and 

controlled release.6 

 
 Since conventional dosage forms, such as pills and solutions, encounter 

many drawbacks like low bioavailability and efficiency, rapid clearance, and in the 

case of chemotherapeutic agents, high toxicity and poor specificity, different 

systems for administrating drugs have been developed. NPs can enable an 

effective delivery of the drug into the desired tissue, and concentration, and 

prolong circulating half-life and reduce dosage frequency. This way efficacy and 

bioavailability is increased, and toxicity and side effects are reduced.7,8 

 
 Many different types of nanocarriers exist depending on their 

conformation and composition. They can be made of inorganic, metallic, viral, 

lipid and polymer materials. However, polymer based nanoparticles exhibit many 

advantages over other materials like simple elaboration and design, good 
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biocompatibility, variety of possible morphologies and easy control over size 

distribution.9 

 

1.2. Polymers used for the production of nanoparticles. 
 

The selection of one polymer or another for the drug delivery system 

depends on the nature of the drug,  the interaction and stability of the drug with 

the polymer, and  the end use that want to be achieved. Both synthetic and 

natural polymers can be used. Among the natural polymers cellulose, natural 

latex, starches and proteins such as albumin are the most employed ones. 

Regarding the synthetic polymers, a large list of them can be used safely, 

guarantying their biocompatibility. Some examples are polylactides (PLA), poly 

(lactide coglycolides) (PLGA), polyglycolides (PGA), polyanhydrides, 

polyorthoesters (POE), polycyanoacrylates, polycaprolactone (PCL), poly (malic 

acid) (PMLA), polyglutamic acid (PGA), poly (methyl methacrylate) (PMMA), poly 

(N-vinyl pyrrolidone) (PVP), poly (vinyl alcohol) (PVA), polyacrylamide (PAM), 

polyethylene glycol (PEG), polyacrylic acid (PAA) and poly (methacrylic acid) 

(PMAA).7  

 

Some of the most common ones and hence, used in this work to produce 

nanoparticles due to their well-reported properties were PCL, PLA, and PEG. 

Figure 1 shows the chemical structure of the employed polymers. PLA is a 

synthetic polymer that can be obtained from renewable sources and shows many 

attractive characteristics for the production of NPs including excellent safety, 

good biocompatibility, low levels of immunogenicity and toxicity, and tuneable 

rate of biodegradation.7 

 

 

 

 

PCL PLA PEG 

Figure 1. Chemical structure of the polymers used in the work: polycaprolactone, 

polylactic acid and polyethylene glycol. 

 

 



7 

 

 

 Regarding PCL, this is a fossil fuel-based aliphatic polyester and the six 

carbon chain in the repeating unit makes it intrinsically hydrophobic. It shows 

poor surface wetting and interaction with biological fluids, so it avoids cell 

adhesion and proliferation. It displays a slower degradation time than that of 

polylactide. Therefore, it can be used for longer-term devices.11  

 

For PEG, there is a lot to be said. This is a hydrophilic polyester that can be 

found in the formulation of multiple nanoparticles due to its properties. Once NPs 

are injected intravenously, one of the main problems to be faced is NPs not being 

identified as foreign bodies. This is accelerated by proteins adhering to the surface 

of the NPs, provoking immune responses. It has been studied that a hydrophilic 

and neutral outer layer with hydrogen-bond acceptors instead of donors can 

reduce protein absorption. Consequently, PEG has been selected as one of the 

most effective biopolymers against protein absorption.12 Something to be 

considered is that PEG is not degradable and can be excreted in the kidney. But 

thanks to its hydrophilic character it does not accumulate in the tissues.6 

Therefore, it is used to elongate circulation half-lives of the polymeric 

nanoparticles and also provide water solubility to hydrophobic drugs. There are 

different methods to attach PEG layer to the surface of biomaterials: physical 

adsorption of PEG-containing surfactants, self-assembling of PEG diblock 

copolymers, covalent bonding, complexation and electrostatic interaction. 

Although all of these strategies have been used in practice, they are still subjected 

to some limitations.13 The most efficient way of PEGylating nanoparticles is the 

copolymerization of PEG with the polymer or monomer that will be used for the 

production of NPs.  

 

 

1.3. Methods for the production of polymeric nanoparticles. 
 

In the same way that the selection of the polymer plays an important role 

in acquiring the properties of interest, so does the preparation method, where 

morphology, size distribution and particle properties are strongly influenced.14 

Numerous strategies are found in literature for the production of polymeric NPs. 

These strategies can be divided into two: the ones in which particle formation 



8 

takes place from a pre-existing polymer, and the ones in which it occurs starting 

from monomer. 

 

In the former, nanoprecipitation, solvent evaporation, salting out, 

supercritical fluid and dialysis can be found. In these techniques NPs are obtained 

by dissolving the preformed polymer in a suitable organic solvent and mixing it 

with an aqueous phase, in various different ways. One of the main problems of 

these techniques is the difficult and incomplete removal of the solvent.15 Other of 

the limitations they face are the large particle size distribution, and the 

impossibility of achieving nanoparticles smaller than 200 nm, required for specific 

targeting.16 

 

For monomer polymerization techniques, emulsion, mini-emulsion, micro-

emulsion and interfacial polymerization are carried out. Among them, emulsion 

polymerization is the most employed process. 7 

 
 

1.3.1. Emulsion polymerization 
 

Emulsion polymerization is a heterogeneous polymerization technique in 

which colloidal particles are obtained in a dispersed media, usually water. The 

product obtained is known as latex. In a direct process, that is, oil-in-water 

emulsion, hydrophobic monomers are emulsified in water using a surfactant and 

polymerized using a water soluble initiator. Particles ranging from 50 nm to 1000 

nm are obtained through this process, but more commonly from 80 nm to 300 

nm. As it is known, the dispersed system is thermodynamically unstable, and 

colloidal stability is provided by different type of stabilizers.17 Water dispersed 

particles can be stabilized by electrostatic, steric or depletion effects.  

 

Electrostatic stability is the main mode of colloidal stability in emulsion 

polymerization. It is achieved by using adsorbed ionic surfactant molecules, which 

carry their head group charge to the particle surface. So when the particles are 

close to each other, the counter ions will overlap, thereby generating repulsive 

force. Regarding steric stability, this is provided by the complete surface coverage 

of strongly adsorbed and/or chemically bonded (i.e. grafted) water-soluble 

polymer (WSP) chains, which spreads from the particle surface into the water 
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phase. In the absence of electrostatic effects, the repulsive force will not be 

generated until the particles approach at a distance close to twice the thickness of 

the WSP chain surface layer. Finally, depletion effects are caused by WSP chains 

that are free in the aqueous phase. At the high concentrations of WSP, the 

probability of particles approaching without a WSP chain between them is small, 

so when the particles approach the chain, this creates a force of repulsion 

between the particles.18,19 Figure 2 is an illustration of the mentioned stabilization 

forms. 

 

 

Particles 

 

Positive counter- ions 

 

Anionic surfactant 
molecules 

 

Water-soluble polymer 

chains 

  

 

a) Electrostatic stabilization b) Steric stabilization c) Depletion effect 

 

Figure 2. Representation of the different stabilization forms reproduced from reference.19 

 

It is, therefore, the water as continuous reaction medium and the 

achievement of submicron nanoparticles what makes emulsion polymerization a 

suitable technique for the production of polymeric nanoparticles for drug delivery 

systems. However, the use of emulsifiers is a problem as they have to be removed 

after the polymerization process due to biocompatibility and toxicity issues. It is 

commonly removed by using ion exchange resins, but its effectiveness is difficult 

to be proved in many cases.20 
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1.3.2. Dispersion polymerization for producing nanoparticles. 
 

Although dispersion and suspension polymerization are not normally used 

as route to obtain nanoparticles for drug delivery applications, colloidal polymeric 

particles can be obtained as well through these techniques. In this work, 

dispersion polymerization was studied. 

 

Unlike emulsion polymerization, in dispersion polymerization the 

monomer is soluble in the continuous phase but not the polymer formed. 

Polymerization starts from a homogenous phase where the initiator, the stabilizer 

and the monomer are all dissolved in a suitable solvent or mixture. The 

continuous phase usually consists of water and alcohol (such as methanol or 

ethanol). Polymerization begins in the continuous phase, and the formed 

oligomers precipitate and aggregate to form particles, which are usually stabilized 

by nonionic surfactants such as polyvinyl pyrrolidone. Due to the short nucleation 

time, monodisperse particles with a size range of 1-5 μm are usually formed.21 

 
 

1.4. Motivation and objectives of the work. 
 

Many examples on the production of polyester nanoparticles can be found in 

literature. However, in most of those examples, techniques requiring large 

amounts of organic solvents and several synthesis and purification steps are 

used.22,23 Consequently, the synthesis of polyester nanoparticles in a 

straightforward way reducing the use of surfactants and organic solvents is the 

need of the hour. Free radical polymerization techniques are a good alternative, 

and some authors have already reported examples.7,14,15,24 However, problems 

when using long polyester macromonomer chains have to be still faced.  

 

The main objective of the project is to produce polymeric nanoparticles which 

can be used in biomedical applications such as drug delivery. Therefore, 

biocompatible and degradable polymers are needed. With this aim, PEGylated 

polyesters (PCL and PLA) as biocompatible polymers are proposed to be produced 

by emulsion and dispersion polymerization, and their ability to form nanoparticles 

and to hydrolytically degrade is assessed in this project.  
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2. Experimental part 

2.1. Materials and reagents 
 

L-Lactide (Alfa Aeser), -caprolactone (Sigma Aldrich), 2-hydroxyhethyl 

methacrylate (HEMA, Sigma Aldrich) and tin(II) 2-ethylhexanoate (SnOct2, Sigma 

Aldrich) were used as received for the synthesis of the MMs. 

 

For the polymerization of the synthesised MMs potassium peroxodisulfate 

(KPS, Sigma Aldrich) was used as initiator. Ethanol was used as solvent (EtOH, 

Scharlab) in the polymerization of larger macromonomers. Regarding the 

stabilizers, different polyethylene oxide macromonomers were used as received: 

poly(ethylene glycol) methacrylate (PEGMA, Sigma Aldrich) of Mn = 300 g/mol, 

Mn=950 g/mol and Mn=2000 g/mol. Deionized water (Milipore Mili-Q purification 

system) was used during the whole process, and deutered chloroform (CDCl3, 

Sigma Aldrich) was used as solvent for 1H-NMR experiments. In Table 1 the 

chemical structure, ethylene oxide units and molar mass of the stabilizers 

employed is reported. 

 

Table 1. Chemical structure of the different stabilizers employed. 

 
 

Poly(ethylene glycol) methyl ether 
methacrylate (PEGMA) 

Methoxy Polyethyleneglycol 
Methacrylate (Bisomer S20W) 

m = 5 Ethylene oxide units (EO) 
Mn = 300 g/mol 

m = 45 EO 
Mn = 2080 g/mol 

Water content % (mass): 48 - 52 m = 19 EO 
 Mn = 950 g/mol 

m= 43 EO 
Mn=2000 g/mol 

Water content %(mass):5O 
 

 

For the degradation study, the synthesised MMs were polymerized in solution 

using tert-butylbenzene (Aldrich) as reaction medium, azobisisobutironitril as 

initiator (AIBN, Sigma Aldrich) and as steric stabilizer methoxi polyethylenglycol 

methacrylatets (Bisomer S20W, GEO Speciality Chemicals). Phosphate buffer with 
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a pH=7.4 was prepared (NaCl 8,0 g/L, KCl 0,2 g/L, Na2HPO4 1,42 g/L and  KH2PO4 

0,24 g/L) and employed as degradation medium. GPC grade tetrahydrofuran (THF, 

Scharlab) was used as received. 

 

 

2.2. Synthesis of the Macromonomers 
 

-Caprolactone (CL) and L-Lactide (LA) based macromonomers (MM) and 

comacromonomers (co-MM) were synthesised using ring opening polymerization 

(ROP) in bulk, as described in various papers.25–27 This is a well-controlled 

polymerization process in which tin(II) bis-(2-ethylhexanoate) (Sn(Oct)2) was used 

as a catalyst and 2-hydroxyethyl methacrylate (HEMA) as initiator to obtain HEMA 

functionalized macromonomers. The repeating units of the macro- and co-

macromonomers are controlled by the molar ratio of the monomer (L-lactide 

and �-caprolactone) and HEMA. The products obtained from the ROP process were 

suitable for further free radical polymerization, since the vinyl group from HEMA is 

preserved during ROP. MMs and co-MMs of different chain length were 

synthesised. For the case of caprolactone, MMs with 3, 6 and 12 repeating units 

were synthesised, and named as MCL3, MCL6 and MCL12, respectively. For lactide 

based MMs, repeating units of 6, 12 and 20 were chosen namely MLA6, MLA12 and 

MLA20. Finally, a co-MM was synthesised with 4 repeating units of CL and 4 of LA, 

named as MCL4-co-LA4.  

 

The reactants and the catalyst (0.1% wbm) were placed in a 50 mL round-

bottom flask (RBF) at 130 °C, and stirred continuously under N2 flux (flow rate 15 

ml/min). The reaction was left for 6 hours. The same reaction conditions were 

employed for the synthesis of each MM and the final amount was 20 g in total. In 

order to control the final MM average chain length, the desired molar ratio of the 

reagents was used and the formulations employed are reported in Table 2. The 

reaction route for the synthesis of each MM is shown in Figure 3. 
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Table 2. Formulation used for the synthesis of each type of macromonomer. 

 

 

 
Figure 3. Scheme of the reaction route for the synthesis of the macromonomers. 

 

2.3. Polymerization of the macromonomers in dispersed 
media 

 

Batch emulsion polymerization was proposed in this project to synthesize 

nanoparticles. The procedures carried out are described below, and a scheme of 

the reaction is shown in Figure 4. 

 

 

Type of MM 
Theoretical 

repeating units 
(n) 

Mn of the 
theoretical MM 

(g/mol) 
Monomer (g) HEMA (g) SnOCt2 (g) 

MCLn 

3 472 14.52 5.51 0.057 

6 814 16.85 3.20 0.063 

12 1498 18.29 1.74 0.067 

MLAn 

6 562 15.37 4.63 0.048 

12 994 17.38 2.62 0.051 

20 1570 18.34 1.66 0.053 

MCL4-co-LA4 4CL+4LA 874 10.45CL+6.59LA 2.98 0.059 
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a) Polymerization in aqueous medium (PA):  

 

MCL3 and MLA6 were used for this technique since they were the shortest 

MMs synthesised that can be employed without using any solvent and therefore, 

can be polymerized in water medium. 1 g of the MM was copolymerized with 

PEGMA 300, PEGMA 950, and PEGMA 2000 at different concentrations, with 18 g 

of deionized water in a 50 mL two-neck RBF, producing 20 g reaction. While 

stirring at 75 °C under N2 flux (flow rate 15ml/min), KPS 1% weight based on the 

macromonomer and the stabilizer (wbtm) dissolved in 1 g deionized water, was 

injected as a shot. The reaction was carried out for 3 h. A copolymerization was 

carried out between the two synthetic MMs by employing 0.5 g of MCL3, 0.5 g of 

MLA6, and 0.5 g of PEGMA 950 in 18 g of deionized water in a 50 mL RBF in the 

same conditions as in the previous reaction.  

 

b) Polymerization in water-ethanol medium (PWE): 

 

In this technique the largest MMs were tested (MCL6, MCL12, MLA12, MLA20, 

and MCL4-co-LA4) with stabilizers of different chain lengths (PEGMA 950 and 

2000) and concentrations (25%-50% wbm). Additionally, different solvent:water 

proportions were tested. The solvent and the deionized water were added to the 

reactor, together with the MM and the stabilizer, and stirred under a N2 

atmosphere at 75� °C. The initiator was then added to the reactor in a shot (KPS, 1 

wbtm% dissolved in 1 g deionized water) and the reaction was stopped after 3 h.  

 

 
 

Figure 4. Reaction scheme of the polymerization of MLA type macromonomers. 
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2.4. Polymerization of the macromonomers in solution 
 

Considering the stability and reproducibility issues faced in the polymerization 

of the MMs in emulsion and dispersion polymerization, same polymer systems 

were reproduced via solution polymerization. Subsequently, the degradability of 

the polymers obtained from solution polymerization with similar composition as 

those of the nanoparticles produced were studied. Three macromonomers (MLA6, 

MCL6 and MCL4-co-LA4) were chosen to be polymerized with Bisomer S20W and 

the produced polymers were named as PLA6, PCL6 and PCL4-co-LA4, respectively. 

 

5 g of the synthesised MM, 1.11 g of Bisomer S20W (22.2 wbm%) and 14.2 g 

tert-butylbenzene were placed in a 100 mL round bottomed flask at 80 ⁰C, with a 

reflux condenser under a N2 atmosphere. The initiator (1 wbtm%) was dissolved in 

1 g of tert-butlybenzene and added in a shot to the reaction medium. The reaction 

was left for 6 h and in total 20 g were produced for each polymer. When the 

reaction was finished, the polymers were placed in a silicon mold and dried in the 

oven at 65 �⁰C for one day to remove the solvent and obtain a film. Afterwards, 5 

mg from each polymer were taken to be characterized via 1H-NMR.  Figure 5 

shows a scheme of the reaction carried out. 

 

 

 
Figure 5. Scheme of the solution polymerization reaction. 

 

 

2.5. Characterization methods and techniques 

2.5.1. Nuclear magnetic resonance (NMR) spectroscopy 
 

Nuclear magnetic resonance spectroscopy, known as NMR, is a non-invasive 

and non-destructive analytical method for materials characterisation. It is a 

spectroscopy technique that is based on the absorption of electromagnetic 
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radiation by nuclei of the atoms (the most common stable isotopes are1H and 13C). 

The principle behind NMR is that many nuclei have spin and all nuclei are 

electrically charged. When an external magnetic field is applied, the nuclei can be 

excited and an energy transfer is possible between the base energy to a higher 

energy level. When the spin returns to its base level, energy is emitted. The energy 

absorbed during this transition is a function of nucleus type and its chemical 

environment in the molecule. As a consequence, variations in electron density 

around each nucleus will cause each nucleus to experience a different magnetic 

field, and that differences are measured by the chemical shift, which gives us 

significant information to characterize a molecule.28,29 

 

In this project 1H-NMR has been employed for the characterization of the 

synthesised MMs and to follow the conversion of the polymerization reactions. All 

measurements were carried out in a Bruker AVANCE 400 MHz equipment. 

 

 

Characterisation of the synthesised macromonomers: 

 

The experimental repeating units of each MM were characterize as 

reported in literature.27,25,26 5 mg of each sample were dissolved in 1 mL of 

deuterium chloride (CDCL3) and transferred into the NMR tube. A proton 

automatic measurement was carried out.  

 

Figure 6 shows a typical spectrum for CL-based macromonomers. The two 

first peaks present (around of6.1 and 5.6 ppm) correspond to the vinyl group of 

HEMA. All the area integrations were made by setting the area of one of the vinyl 

hydrogen atoms of the HEMA group (peak X and X’). For the characterization of 

the -caprolactone based MMs, peak H (4 ppm) is representative of the total 

number of repeating caprolactone units added, while I is of the total number of 

terminal groups. Therefore, ratio between the two terms to which the last unit is 

added, not considered in peak H, represent the number of experimental units. 

Equation 1 was used to obtain the experimental units of MCLn type 

macromonomers. 

  



17 

 

 

Figure 6. Typical spectrum for CL- based macromonomers. 

 

 

��� =
�������� �� ���� � (���ℎ����� ������ ������)

�������� �� ���� � (� − ���ℎ����� ������ ������)
 

Equation 1. Experimental units of CL-based macromonomers. 

 

Figure 7 depicts typical spectrum for LA-based MMs. Using the same 

approach as in CL-based MMs, the average number of LA units were obtained. 

Peak B corresponds to the total number of LA units, and peak D refers to the 

number terminal units which is equivalent to signal X, the number of vinyl groups. 

Signal D overlaps with E, so X was used in Equation 2 to calculate the ratio 

between the two terms to which 1 is added to count for the last unit not 

considered in B.  
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Figure 7. Typical spectrum for LA- based macromonomers. 
 

 

��� =
�������� �� ���� � (���ℎ��� ������ ������)

�������� �� ���� � (������� ������ ������)
+ 1 

Equation 2. Experimental units of LA-based macromonomers. 

 

Figure 8 shows the spectrum for CL- and LA-based MM. To obtain the 

experimental units of LA and CL in the comacromonomers, two different 

equations were used. Equation 3 refers to the average number of CL units, where 

D is representative of the total CL units and B to the number of vinyl groups. 

Equation 4 refers to the number of LA units, where H represents the number of LA 

units and X the number of vinyl groups which is equivalent to P, the terminal units 

of LA. 1 is added to the equation to take account of the terminal units not 

considered in H signal. 
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Figure 8. Typical spectrum for �CL-and LA- based comacromonomers. 

 

 

��� =
�������� �� ���� � (���ℎ����� ������ ������)

�������� �� ���� � (������� ������ ������)�2
 ��� =

�������� �� ���� � (���ℎ��� ������ ������)

�������� �� ���� � (������� ������ ������)
+ 1 

Equation 3. CL experimental units of the co-
macromonomers. 

 

Equation 4. LA experimental units of the co-
macromonomers. 

 

 

Additionally, the molar mass of the produced macromonomers was calculated 

via 1H-NMR as well. Therefore, Equation 5 was used to obtain the experimental 

molar mass of the MMs, where Mn is the experimental molar mass, MHEMA the 

molar mass of HEMA, Mmonomer the molar mass of the repeating unit (for LA 72 

g/mol and for CL 114 g/mol), and n the experimental average repeating units of 

the MM calculated previously. 

 

�� = ����� + �������� ∙ � 

Equation 5. Molar mass for the produce macromonomers. 
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Conversion of the polymerization reactions:  

 

 Due to the low volatility of the synthetic macromonomers, gravimetric 

measurements could not be employed as a technique to obtain conversion. 

Instead, 1H-NMR was employed. Figure 9 is a spectra of the polymerization of 

MLA6 type macromonomers and PEGMA 950, showing uncomplete conversion of 

the reaction. Equation 6 was followed for the conversion of the reactions. The 

vinyl protons from HEMA that correspond to the MM and the stabilizer, that is 

peaks X and X’ (around 6.1 and 5.6 ppm), change to single bond as a result of 

polymerization, which means that at complete conversion no X peak is observed. 

Monitoring the changes in the vinyl protons we can calculate the conversion, 

using peak A (Figure 9) as internal standard, since it remains unchanged during 

polymerization.  

 

Figure 9. Spectra of polymerization reaction of MLA type and PEGMA macromonomers 
 

Conversion (%) = �1 − 
������� �� ���� � �� ��������������

�������� �� ���� � ������ ��������������
� ∙ 100 

Equation 6. Conversion of the polymerization reaction. 

 

To prepare the 1H-NMR samples, a few drops of the latex was placed in an 

aluminium capsule and dried overnight at 65 �⁰C to make a film. 5 mg of the dried 

film were taken and dissolved in 1 mL of CDCL3. The samples from solution 

polymerization were prepared in the same way. 
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2.5.2. Dynamic light scattering 
 

Particle size of the obtained latexes was determined by Dynamic Light 

Scattering (DLS). DLS is a non-invasive, well-established technique for 

characterizing the size and size distribution of proteins, nanoparticles, polymers 

and colloidal dispersions, typically in the submicron region. The principle behind 

this technique is that a laser beam is applied to the sample, and a photon detector 

detects the fluctuations of the scattered light at a known scattering angle (173°�), 

as illustrated in Figure 10. From a microscopic point of view, particles scatter the 

light and therefore, they provide information about their motion. So data about 

particles is obtained from the scattered light fluctuations. Intensity fluctuations 

will provide information about particles diffusion. Therefore diffusion coefficient 

of the particles can be obtained this way. Diffusion coefficient (D) is related with 

the radius (R) of the particles by Stokes-Einstein equation, shown in Equation 7, 

where KB is the Boltzman constant, T temperature and η viscosity. The smaller the 

particles, the faster they move and thus, the larger the diffusion coefficient will 

be.30 

  

 

Figure 10. General scheme of the DLS equipment reproduced from reference.30 
 

� =
���

6�ηR
 

Equation 7. Expression for diffusion coefficient. 
   

 

A Zetasizer Nano ZS from Malvern Instrument was used. Samples were 
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prepared by diluting a fraction of each latex in deionized water. The analyses were 

carried out at 25 ⁰�C and a run consisted of three size measurements of 1 minute 

each. An average value of three measurements is reported as a result. 

 

 

2.5.3. Coagulum content  

 

A dispersion of colloidal particles in water would quickly coagulate in the 

absence of forces to counteract the van de Waals attraction between particles. 

Therefore, the presence of coagulum or aggregates during the polymerization 

reactions in emulsion and dispersion are a signal of the poor stability of the 

system.19 After finishing the reactions, latexes were filtered using a filtering fabric 

to no aggregates were present. In the cases where aggregates were present, this 

one was transferred to a capsule and dried overnight at 65 ⁰�C.  

 

 

2.5.4. Degradation study 
 

The polymers that were produced in solution polymerization, ~20 mg polymer 

were placed in a previously weighted 5 mL vial. Then, 3-4 mL of the PBS was added 

until the entire sample was covered by the solution. The vial was closed with the 

tap, covered with parafilm, and introduced in a 37 ºC water bath. Samples were 

withdrawn at different time intervals (Day 1, 7, 14, 21, 28, 42, 56, 71) and each 

sample was done by triplicate in order to do a subsequent statistical study. When 

the sample was taken out from the bath, the PBS was removed with a 5 mL 

syringe and a needle, and the sample was weighted to get the wet weight of the 

sample (Ww). After that, the sample was left to dry one night at room 

temperature, and one more night under vacuum at room temperature. When the 

drying process was finished, the sample was weighted to report the dry weight of 

the polymer (Wd).  With the initial weight, wet weight and dry weight reported, the 

water absorption and remaining weight of each polymer were studied using 

Equation 8 and Equation 9. Additionally, 10 mg from each vial were taken to 

prepare samples for both GPC and DSC to study the molar mass and thermal 

transitions evolution, respectively.  
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%�� =
�� − ��

��
100. %�� =

��

��
100. 

Equation 8. Water absorption. Equation 9. Remaining weight. 

 

 

2.5.5. Gel Permeation Chromatography (GPC). 
 

Size-exclusion chromatography (SEC) or Gel permeation chromatography 

(GPC) is the most widely used method to measure molar mass averages and 

distribution. It does not measure the molar mass directly, but the relative size of 

the chains when they are in solution. Therefore, it is not an absolute method and 

requires calibration. The technique is based on the separation of the dissolved 

macromolecules by size using porous columns. So the chains with higher molar 

mass travel less path and exit first the column while the polymer chains with 

smaller molar mass can penetrate all holes or pores and therefore travel further 

and take longer to cross the column. In Figure 11 a diagram of what would be the 

operation of this technique is shown. The column is the stationary phase which 

separates by size the different species that make up the sample and the detector 

detects the species. The most common detectors are those that measure RI 

refractive indices, in which the difference in refractive indices between the pure 

carrier liquid and the solution is measured.31 

 

Figure 11. Scheme of the GPC system. 

 

 In this work GPC has been used to study the molar mass evolution of the 

degradation samples. Around 2.5 mgpolymer/mLTHF concentration samples were 

prepared and filtered before injection. The GPC set up consists of a pump (LC-20A, 

Shimadzu), an autosampler (Waters 717), a differential refractometer 

(Waters2410) and three columns in series (Styragel HR2, HR4 and HR6) with pore 
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sizes ranging from 102 to 106 Å. The chromatograms were obtained at 35 �C using 

a THF flow rate of 1ml/min. The equipment was calibrated using polystyrene 

standards (5th order universal calibration) and Mark Houwink constants from 

poly(HEMA-g-CL3) were selected (a = 0.571 and K = 2 x 10-4 dL/g) to read the 

chromatograms.  

 

 

2.5.6. Thermogravimetric  Analysis (TGA) 
 

Thermogravimetric analysis (TGA) is a method of thermal analysis where the 

mass of the sample is measured constantly as a function of temperature or time 

while the sample is subjected to a controlled temperature program in a controlled 

atmosphere. In a desired temperature range, if a species is thermally stable, there 

will be no observed mass change. However, when the thermal curve is 

descending, it indicates that mass loss occurred and so the material is not stable 

anymore in that temperature range.32 

In this project TGA was carried out for the degradation samples. This analysis is 

important because it gives information about the thermal stability of the sample, 

and the maximum temperature before degradation. This information is required 

for further thermal analysis such as differential scanning calorimetry, so that 

analyses are made below degradation temperature. The measurements were 

conducted from 25� ⁰C to 800 ⁰C, with a heating rate of 10 ⁰C/min, under nitrogen 

atmosphere, in a TA instruments Q500. 

 

 

2.5.7. Differential Scanning Calorimetry (DSC) 
 

Differential scanning calorimetry is a thermoanalytical technique in which the 

temperature of a sample and reference material is increased at a constant rate. 

The heat flow required to increase the temperature of the sample and the 

reference material at a constant rate is measured. The technique is used for 
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determining phase transitions, relying on the principle that, as the sample 

undergoes a phase transition more or less heat will need to flow to it than to the 

reference to maintain both at the same temperature.33 It is a very powerful 

technique to evaluate material properties such as glass transition, melting and 

crystallization temperatures and the specific heat capacity. In Figure 12 a basic 

scheme of the different parts of the DSC is depicted. 

 

Figure 12. Scheme of the DSC. 
 

In this work DSC was employed to study the thermal properties of the samples 

before and after degradation. The scans were performed in a Q1000, TA 

Instrument. The samples were cooled to -80 ⁰C and then the analysis started by 

heating up to 150 ⁰C at 10 ⁰C/min. In a second scan, the sample was again cooled 

to -80 ⁰C and heated again up to 150 ⁰C at 10 �⁰C/min.  The first scan was done for 

removing the thermal background of the polymer, and the second one to obtain 

the real properties of the material. This way, heat flow versus temperature curves 

were obtained. The glass transition temperature (Tg) was taken from the inflection 

point in the curve, the crystallisation temperature (Tc) form the lowest point of the 

dip, and the melting temperature (Tm) from the highest temperature of the curve. 
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3. Results and discussion 

3.1. Synthesis of the CL and LA based Macromonomers  
 

CL- and LA-based macromonomers of different chain lengths were 

produced by ROP. In some cases the same MM type was synthesized more than 

once. For these, the experimental number of repeating units (n) of all the 

reproductions calculated based on their 1H NMR spectra is reported in the table 

below (Table 3). Additionally, the molar mases of the mentioned MMs were 

calculated with Equation 5, presented in the experimental part, and the results are 

reported in Table 4.  

 

Table 3. Experimental repeating unit of the synthesised MMs. 

 

 

 

 

 

 

 

 

 

 

  

MM type Theoretical n Experimental n 

MCLn 

3 3.9 

6 6.2, 6.8 

12 12.6 

MLAn 

6 5.3, 5.6 

12 11.7 

20 19.4 

MCLn-LAn 
CL LA CL LA 

4 4 4.5 4.0 
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Table 4. Experimental molar masses of the synthesised macromonomers. 

Type of MM Theoretical Mn 

(g/mol) 

Experimental repeating 

units of the MM (n) 

Experimental Mn 

(g/mol) 

MCL3 472 3.9 575 

MCL6 814 6.2 837 

6.8 905 

MCL12 1498 12.6 1566 

MLA6 563 5.3 512 

5.6 533 

MLA12 994 11.7 972 

MLA20 1570 19.4 1526 

MCL4-co-LA4 874 CL=4.5, LA=4.0 931 

 

 

 Generally good agreement with the targeted repeating unit was 

achieved, however higher deviation was observed in some cases. The 

reproducibility was also tested by producing the same MM several times, and 

similar values were observed. This confirms the controllable behaviour of the MM 

synthesis process.25,27 

 

 

3.2. Synthesis of polymeric Nanoparticles 
 

The characterized MMs were polymerized through different processes 

based on the nature of the MM. Latexes were obtained as final product and these 

were analysed regarding the conversion, coagulum content and particle size. 

 

3.2.1. Polymerization and copolymerization in aqueous medium  
 

 In Table 5 the characteristics of the latexes produced by emulsion 

polymerization are presented. MCL3 and MLA6 were polymerized varying the 

concentration of the different stabilizers (PEGMA 300, 950 and 2000).  
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For all the reactions, conversions higher than 97% were achieved. 

Nanoparticles smaller than 250 nm were produced, except for reaction PA-CL3-3, 

and a polydispersity smaller than 0.2 was achieved indicating the uniformity of the 

obtained dispersed particles. 

Regarding the effect of MM type on particle size, no specific trend was 

seen. Comparing PA-CL3-1 and PA-LA6-1 where 50 %wbm PEGMA 950 was 

employed, smaller particle size was obtained for the system based on MLA6. 

However, when using stabilizer at 25 wbm% concentration in PA-CL3-2 and PA-

LA6-2, the reverse trend was obtained. 

Looking at the results, it is apparent that higher amount of PEGMA yields 

smaller particle size which is rooted in the stabilization effect of PEGMA. 

Furthermore, effect of the lateral chain length of PEGMA (m) on the stability of the 

system was studied. Using 25 wbm% of shorter PEGMA (PEGMA 300) to produce 

Table 5. Results obtained by emulsion polymerization and copolymerization. 

Name MMn 
PEGMAm, 
(wbm%)1 

Z-avg 
size 

(nm) 
PDI 

Conv. 
(%) 

Coagulum 
content 

(wbtm%)2 

PA-CL3-1 
MCL3 

n = 3.9 
PEGMA 950 

50 175 0.152 >98 N.O.3 

PA-CL3-2 
MCL3 

n = 3.9 
PEGMA 950 

25 203 0.044 >98 N.O. 

PA-CL3-3 
MCL3 

n = 3.9 
PEGMA 300 

25 121 0.597 >98 30 

PA-LA6-1 
MLA6 
n = 5.6 

PEGMA 950 
50 159 0.103 >98 N.O. 

PA-LA6-2 
MLA6 
n = 5.3 

PEGMA 950 
25 240 0.141 >98 N.O. 

PA-LA6-3 MLA6 
n= 5.6 

PEGMA 2000 
50 

162 0.200 97 4.6 

PA-LA6-4 MLA6 
n= 5.6 

PEGMA 2000 
25 

220 0.151 >98 N.O. 

PA-CL3-LA6 MCL3
n=3.9 

MLA6
n= 5.6 

PEGMA 950 
25 

197 0.104 >98 N.O. 

1weight based on the macromonomer. 
2weight based on total macromonomer (the synthesised macromonomer and the stabilizer). 
3Not observed. 
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PA-CL3-3, considerable coagulum amount was obtained. For PA-CL3-2, on the 

other hand, no coagulation was observed when using PEGMA 950. This can be 

attributed to the low steric stability that shorter chains provide. In the case of 

larger chain PEGMA (PEGMA 2000), aggregates were obtained at 50 wbm% 

concentration, but not at 25 wbm%. With PEGMA 950 (m=19), no aggregates were 

observed in the reactor even when concentration was varied. Based on the results, 

it seems that PEGMA 950 is the best candidate among our choices to stabilize the 

CL- and LA- based nanoparticles. 

Copolymerization of MCL3 and MLA6 macromonomers using PEGMA 950 

as stabilizer was also performed. As a result, a dispersion with a PDI of 0.104 and a 

particle size of 197 nm was obtained. Comparing the mentioned system with PA-

CL3-2 and PA-LA6-2, where polymerization was carried out for MCL3 and MLA6 

respectively at the same conditions, smaller particle sizes were achieved in the 

copolymerization. Figure 13 shows some of the latexes produced via emulsion 

polymerization.  

  
A) B) 

 
Figure 13. Example of some of the latexes obtained via emulsion polymerization: A) 

PA-CL3-3, B) PA-LA6-1 
 

 

3.2.2. Polymerization in water-ethanol medium 
 

For the macromonomers of longer chains, it was not possible to disperse 

them properly in water since they were solid and more hydrophobic (compared 

with shorter macromonomers). In order to disperse the solid macromonomers in 

the reaction media, they were first dissolved in ethanol. PEGMA was dissolved in 

water separately. Then, the two solutions were mixed, getting a turbid mixture for 

the 30:70 ethanol:water ratio employed and at 40:60 ratio, tested in reaction PWE-
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CL6-Et. Finally the reaction was started by adding the initiator at the reaction 

temperature. Although the reactions were designed to be carried out in 

dispersion polymerization, that is starting form an homogenous mixture, in all the 

cases nanoparticles of longer macromonomers were produced starting from a 

two phase water ethanol mixture.  

 

Table 6 represents the results obtained for the reactions carried out in 

water-ethanol medium. Five MMs of different chain length were studied and 

polymerized with PEGMA 950, except for reaction PWE-CL6-2 where PEGMA 2000 

was employed. Additionally, the ethanol:water proportion used was 30:70 in all 

the cases except for reaction PWE-CL6-Et in which it was changed to 40:60 in order 

to check the effect. 
 

Table 6. Results obtained from dispersion polymerization. 

Name MM 
PEGMA 
content 
(wbm%) 

Z-avg size 
(nm) PDI Conv.% 

Coagulum 
content (wbtm%) 

PWE-CL6-1 MCL6 
n=6.6 

PEGMA 950 
50 

144 0.076 89 23 

PWE-CL6-2 
MCL6 
n=6.6 

PEGMA 2000 
25 

172 0.181 86 11 

PWE-CL6-Et MCL6 
n=6.2 

PEGMA 950 
50 

337 0.481 92 25 

PWE-CL12-1 MCL12 
n=12.6 

PEGMA 950 
50 

97 0.079 96 23 

PWE-LA12-1 MLA12 
n=11.7 

PEGMA 950 
50 

203 0.199 94 40 

PWE-LA12-2 
MLA12 
n=11.7 

PEGMA 950 
25 

242 
0.249 

92 33 

PWE-LA20-1 
MLA20 
n=19.4 

PEGMA 950 
25 

146 0.048 93 35 

PWE-CO-1 
MCL4-co-LA4 

n = 4.5, 4.0 
PEGMA 950 

50 214 0.197 94 23 

PWE-CO-2 MCL4-co-LA4 
n = 4.5, 4.0 

PEGMA 950 
25 

255 0.230 92 18 

 

In these reactions particle sizes in the range of 97 to 337 nm were obtained, 

with PDI values from 0.048 to 0.481. As shown in the table above, it was not 

possible to obtain conversions higher than 96% in none of the reactions and in all 

the cases coagulation content higher than 10 wbtm% was achieved.  

 

Looking at the result of the CL-based systems, PWE-CL6-2 showed the 

lowest amount of coagulum, which can be attributed to the longer chain of 
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stabilizer (PEGMA 2000) enhancing the steric stability. Consequently, PEGMA 2000 

outperformed PEGMA 950 regarding the stabilization of the CL-based systems. 

Additionally, in PWE-CL6-1 and PWE-CL12-1 the same coagulum content was 

obtained regardless of the chain length of the MM. Comparing PWE-CL6-Et and 

PWE-CL6-1, it was observed that using higher proportion of ethanol (PWE-CL6-Et) 

the conversion and level of coagulation was relatively similar to that of lower 

ethanol amount (PWE-CL6-1). Although higher particle size was observed for the 

system of higher ethanol content. 

 

For LA-based systems, it was observed that in PWE-LA12-1 and PWE-LA12-2 

lower coagulum content was obtained when using lower PEGMA 950 

concentration. Same behaviour was seen for the reaction carried out with MCL4-

co-LA4 (PWE-CO-1 and PWE-CO-2). Also, similar coagulum contents were 

obtained independently of the MLA chain length. 

 

It can be concluded that, when the repeating units of the MM are increased, 

many stability issues are faced compared with the reactions carried in water 

medium where the shortest MM were used. Still dispersed nanoparticles were 

obtained from the larger MM by separating the coagulum. Based on the coagulum 

contents reported, not significant effect of the chain length in the stability was 

observed. But lower contents of coagulum were seen when concentrations of 25 

wbm% of PEGMA 950 and a larger PEGMA was employed. In Figure 14 are shown 

some of the latexes obtained. 

 

 

  
A)  B) 

Figure 14. Picture of some of the dispersions obtained: A) PWE-CL6-1, B) PWE-CO-1  
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3.3. Degradation study of the polymers synthesized by 
solution polymerization 

 

 The third part of this work consists of studying the degradability of the 

polymers. As mentioned in the experimental part, instead of studying the 

degradability of the nanoparticles, the same monomer formulation was 

employed to produce the polymers via solution polymerization and study their 

degradability. In general, the molar mass obtained from solution polymerization is 

lower than that from emulsion, although in this case the molar mass of the 

polymer backbone is not playing an important role in the degradability. Brush 

copolymers constituted of a HEMA backbone with PEG, PLA and/or PCL pendants 

were obtained. 

 

Degradation process occurs through the hydrolysis of ester bonds of the 

PLA or PCL chains and subsequent release of acidic species, leaving the water-

soluble poly(HEMA-co-HEMA-g-PEG45) as a secondary product. That means that 

degradation of these polymers is dominated by the attack of water to the ester 

bonds, and therefore influenced by the composition and length of the side chains 

and not by the molar mass of the whole polymer, as concluded in many papers. 
13,14,17,21 A schematic representation of the produced polymers is shown in Figure 

15. 

 

Figure 15. Schematic representation of the brush polymers produced. 
  

In Table 7 are presented the molar mass, the polydispersity and the 

conversion obtained for PCL6, PLA6 and PCL4-co-LA4 polymers produced in 

solution polymerization. 
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Table 7. Characterisation of the polymers carried out in solution. 

Polymer Mw (g/mol) Ð Conversion% 
PCL6 84390 1.59 85 
PLA6 52870 1.56 94 

PCL4-co-LA4 74250 1.53 95 
 

 Weight-average molar masses between 50000 and 85000 g/mol were 

obtained. The reactions could not achieve complete conversions, and due to time 

concerns, the polymers were not purified. That means that in the degradation 

samples unreacted macromonomer can be found. 

 

 

3.3.1. Molar mass evolution. 
 

 The molar mass evolution during the degradation of the samples was 

monitored using GPC by reporting average molar mass in weight (Mw), and the 

molar mass distribution (MWD).  

 

Figure 16 shows an example of the integration of the two different peaks 

obtained in the chromatograms of the polymer before degradation. The first peak 

corresponds to the polymer, while the second peak to the unreacted MM. The 

second peak could not be characterized because it was out of the calibration of 

the GPC. Therefore, for the evolution of the Mw only the first peak was integrated 

from 23 min to 28 min elution time. On the other hand, for the study of the molar 

mass distribution, both peaks were integrated at the same time, starting from 

elution time at 23 min to 31 min. By adopting these criteria the next results are 

presented.  
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Figure 16. Example of the two peaks obtained at the chromatograms. 
 

Figure 17 presents the molar mass distribution (MWD) of the polymers at 

day 0, 42 and 56 overlapped with the MWD of the macromonomer used for each 

polymer.  

 

  

 

Figure 17. Molar mass distribution of PCL6, PLA6 and PCL4-co-LA4 at different degradation times. 
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As a consequence of the presence of unreacted MM, bimodal distributions 

were obtained at day 0 for the three polymers. The peak placed at higher Mw 

corresponds to the polymer, while the peak placed at lower Mw to the left to the 

unreacted MM. To confirm this, the MWD of the MM employed in the reaction was 

plotted, and as it can be seen, the peak of the MM overlaps the smaller peak in all 

the cases. The smaller peak also shows transformations during degradation time, 

which can be attributed to species generated from the MM chains’ hydrolysis.  

 

To better monitor the changes in the molar mass during degradation time, 

Mw of the three different polymers against time was calculated and plotted in 

Figure 18, with the error bars from the deviation standard of the statistical 

analysis. Table 8 provides the variations in the molar mass by day. The average of 

the triplicated results of the samples is shown together with the deviation 

standard obtained. 

 

Figure 18. Evolution of the Mw against time for PCL6, PLA6 and PCL4-co-LA4 
polymers. 

 

 

Table 8. Molar masses obtained during degradation days. 

Day 
PCL6  

Mw (g/mol) (x104) 

PLA6 

Mw (g/mol) (x104) 

PCL4-co-LA4 

Mw (g/mol) (x104) 

0 8.44 ± 0.33 5.29 ± 0.03 7.42±0.05 
7 7.97 ± 0.52 5.18 ± 0.07 7.13 ± 0.43 
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14 5.51± 0.25 4.90 ± 0.34 6.94 ± 0.23 
21 5.60 ± 0.17 4.76 ± 0.31 7.29±0.06 
28 4.83 ± 0.77 5.00 ± 0.01 6.97±0.20 
42 5.65 ± 0.40 4.94 ± 0.12 6.78±1.84 
56 4.85 ± 0.24 2.82 ± 0.23 3.96±0.09 
71 4.46 ± 0.39 1.93 ± 0.94 4.33±0.29 

 

With the information obtained from the MWD (Figure 17) and the Mw vs 

time plot (Figure 18), different behaviours were observed in the degradation 

depending on the polymer, but all of them showed a general decreasing trend in 

molar mass by the end of the analysis. 

After the first two weeks for PCL6, a sudden decrease of the Mw occurred, 

obtaining a Mw of around 55000 g/mol. After that, the Mw continued decreasing 

steadily, achieving values of around 45000 g/mol at day 71, almost half of the 

initial Mw. Although changes in the Mw were observed by day 14, the MWD curve 

was similar to the one of the initial day until day 42. By day 56 a shift on the curve 

to the left was produced, as a consequence of the low Mw obtained.  

Looking to the Mw evolution during time of PLA6, taking into account the 

deviation standard of the samples, it can be considered that during the first 42 

days the Mw decreased slightly, obtaining a molar mass of around 49000 g/mol. 

However, during the next two weeks a sudden decrease was seen. This decline 

continued for the next two weeks, obtaining an average molar mass of around 

19000 g/mol in the final day, more than half of the initial value. This change in the 

Mw was confirmed by the shift of the MWD curve to lower molar masss at day 56. 

Similar behaviour was seen for the copolymer. The Mw obtained at day 42 

showed a little reduction in the Mw compared with the initial value. After day 42 a 

dramatic decrease was observed, obtaining a final value of 43000 g/mol by the 

end of the study. In the MWD this was also observed. Distribution curves obtained 

from day 0 to day 42 were all positioned in the same Mw ranges, observing few 

differences between them. But at day 56 again, the curves were displaced to the 

left, indicating the changes in the molar mass as a consequence of the 

degradation taking place. 
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3.3.2. Thermal properties 
 

As mentioned in the experimental part, the thermal properties of the 

degradation samples were also analysed.  Prior to the DSC analysis, a TGA was 

carried out. In Figure 19 weight against temperature was plotted, and the curve 

obtained for PLA6 is shown. 

 

Figure 19. Thermogravimetric analysis of PLA6. 
 

 TGA analysis for the three different polymers were carried out, and similar 

graphs were obtained in the three cases: the curve started to descend at around 

150 ��⁰C, indicating mass loss, and complete decomposition of the samples were 

achieved around 400 ⁰C. Taking into account this information, DSC scans were 

carried from -80 ⁰C to 150 ⁰C. Once stablished the analysis conditions, the next 

results were obtained in the DSC. 

 In Table 9 the results obtained for the thermal transitions of the polymers 

before and after the degradation study are presented. Additionally, Figure 20 

provides the curves obtained from DSC analyses. 

 

Table 9. DSC results of the studied polymer before and after degradation. 

Days 
PCL6 PLA6 PCL4-co-LA4 

Tg (�⁰C) Tc (�⁰C) Tm (�⁰C) Tg (�⁰C) Tg (�⁰C) 

0 -64.0 ± 1.7 -28.2 ± 1.0 22.0 ± 1.2 8.6 ± 0.1 -37.3 ± 0.9 
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71 - - 26.9 ±3.92 5.2 ± 0.5 -40.3 ± 0.3 

 

  

 

Figure 20. Second DSC scans of PCL6, PLA6 and PCL4-co-LA4 at day 0 and day 71 of the 
degradation study. 

 

 

Thermal transitions indicate the nature of the polymers produced. PCL6 

was semi-crystalline while PLA6 and PCL4-co-LA4 were amorphous. A Tg value of -

64� ⁰C was reported for PCL6, with a crystallization temperature at -28 �⁰C and a 

melting temperature at 22 �⁰C. Linear polycaprolactone (PCL) also shows a partial 

crystalline behaviour, reporting Tg values of -60 ⁰C and Tm of 60 �⁰C. So it is due to 

the brush form and the presence of the PEG lateral chain why these values were 

obtained for our polymer.34 At the end of the degradation study, as it can be seen 

in the graph, inflexion point of the curve was difficult to be seen and because of 

that no Tg was reported. Additionally, no crystallization occurred and melting 

point increased.  

Regarding PLA6 samples, initial macromonomers were synthesised using 

L-type lactic acid, which is known to produce semi-crystalline structures.35 

However, neither Tc nor Tm was observed for our samples, which means that the 

polymer produced was amorphous. On the other hand, higher Tg values are 
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reported for pure PLA polymers (around 45-60 �⁰C) 35, which means that the 

polymer synthesized is more malleable due to its brush structure. After 71 days, a 

lower Tg value was observed. As polyester lateral chains degrade, a reduction in 

molar mass is achieved, leading to a decrease in molecular entanglement and an 

increase in chain mobility that affected directly the observed glass transition 

temperature.36 

  

In the case of the copolymer, a Tg value between the PCL6 and the PLA6 

values was found because of the copolymerization of MCL6 and MLA6. 

Furthermore, the same trend as in PLA6 was observed at the end of the 

degradation study: lower Tg were obtained as a consequence of the degradation 

state of the polymer. 

 

 

3.3.3. Water absorption and remaining weight 
 

Since polyesters degrade hydrolytically, the water absorption of the 

samples was studied. Water absorption was measured following Equation 8. 

Figure 21 depicts the water absorption evolution during degradation days. 
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Figure 21. Evolution of the water absorption of PCL6, PLA6, PCL4-co-LA4 during in vitro 

degradation. 

  

From day 7, high water absorption was reported for the three different 

polymers. Since all of them contain PEG side chains, which is a hydrophilic 

polymer, the high water absorptions can be due to the presence of this polymer.  

 The calculated water absorptions present high standard deviations so 

these data has to be interpreted prudently. What it can be inferred is that for the 

three polymers water absorption increases by time and then it remains steady. 

These high deviation standards can be attributed to the operation method 

of the protocol. In the measurements of the wet weight, the surface water of the 

samples was not removed. It was decided to do it that way to avoid manipulation 

of the samples which are prone to be easily segregated.  
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Figure 22. Remaining weight against degradation time of PCL6, PLA6 and PCL4-co-LA4. 

 

 

Remaining weight (RW) of the samples was measured as well to see how 

much of the polymer was segregated into the water, that is, if weight loss was 

happening. In Figure 22 are shown the graphs of the RW of the different polymers. 

No error bars are illustrated because deviation standard was considerably low in 

the three polymers. Weight loss was observed for the three polymers at the end of 

the study, confirming the degradation state of the samples.  

 

In the cases that a weight higher than 100% was reported, it indicates that 

the sample was not completely dried. For future degradation test, it should be 

considered that for theses samples two days drying is not enough due to the high 

water absorptions levels. 
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4. Conclusions 
 

In this work biocompatible PEGylated polyester nanoparticles were produced 

by studying their ability to form nanoparticles and by assessing their hydrolytic 

degradability. For this, CL- and LA- based macromonomers (MM) of different chain 

length were synthesised by ROP (MCL3, MCL6, MCL12, MLA6, MLA12, MAL20, and 

MCL4-co-LA4).  

To produce nanoparticles, the MMs of shorter chain length (MCL3 and MLA6) 

were polymerized with PEGMA of different molar masss in water medium. PEGMA 

950 (m=19) showed the best performance regarding stability, obtaining particles 

the range of 159 to 240 nm, and PDI values below 0.152.  On the other hand, the 

MMs of larger repeating units were polymerized in an ethanol-water medium due 

to the difficulties encountered for their dispersion in pure water. Nanoparticles 

were also achieved with these MMs, but many stability issues were faced. PEGMA 

950 and 2000 were used at different concentrations, but in all the cases coagulum 

contents higher than 10 wbtm% were obtained. No relation was established 

between the length of the MM and the coagulum content, but it was for PEGMA 

concentration. 

Using the same polymer formulations, polymers were produced via solution 

polymerization and the hydrolytic degradability of PCL6, PLA6 and PCL4-coLA4 

was studied for 71 days in a PBS medium. Brushed liked polymers were produced 

with polyester and PEG pendants. A reduction in the Mw was observed by day 14 

in the case of PCL6, while for PLA6 and PCL4-co-LA4 no considerable decrease 

was seen until day 56. Almost half of the initial Mw was obtained at the end of the 

study. The reduction in the Mw was also observed at the MWD curves. Besides, 

thermal properties of the polymers before and after degradation were analysed, 

observing a slight decrease at the Tg which can be attributed to the higher 

mobility of the backbone chains due to degradation. Water absorption and 

remaining weight contents were measured. High levels of water absorption were 

observed during the whole degradation process as a consequence of the PEG 

chins, and weight loss around 5 to 10% was seen at the end of the study for the 

three polymers. 
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Ondorioak 

 

Lan honetan PEGilatutako poliester nanopartikula biobateragarriak 

produzitu dira, hauek nanopartikulak osatzeko duten gaitasuna aztertuz eta 

hauen degradazio hidrolitikoa ebaluatuz. Horretarako, kate luzera desberdineko 

CL- eta LA- oinarritutako makromonomeroak (MM) sintetizatu ziren ROP bidez 

(MCL3, MCL6, MCL12, MLA6, MLA12, MAL20 eta MCL4-co-LA4). 

Nanopartikulak sortzeko, kate luzera txikiko MMak (MCL3 eta MLA6) ur-

fasean polimerizatu ziren pisu molekular desberdineko PEGMArekin. PEGMA 950-

ek (m = 19) egonkortasunari dagokionez errendimendu onena erakutsi zuen, 159 

eta 240 nm bitarteko partikulak eta 0,155etik beherako PDI balioak lortuz. 

Bestalde, kate luzeagoko MMak etanol-ur nahastean polimerizatu ziren, hauek 

uretan soilik barreiatzeko zailtasunak zirela eta. MM horiekin NPak ere lortu ziren, 

baina egonkortasun arazo ugari agertu ziren. PEGMA 950 eta 2000 kontzentrazio 

desberdinetan erabili ziren, baina kasu guztietan % 10 wbtm baino gehiagoko 

koagulu edukiak lortu ziren. Ez da erlaziorik finkatu MM luzeraren eta koaguluaren 

edukiaren artean, baina bai PEGMA kontzentrazioarentzat. 

Dispertsioko monomero formulazio berdinak erabiliz, polimeroak soluzio 

polimerizazio bidez ekoitzi ziren eta PCL6, PLA6 eta PCL4-co-LA4-ren 

degradagarritasun hidrolitikoa 71 egunez aztertu zen PBS-an. HEMAn 

oinarritutako PEG eta poliester albo kateko polimeroak lortu ziren. PCL6-ren 

kasuan, Mw-aren aldaketa 14. egunean ikusi zen. Aldiz, PLA6 eta PCL4-co-LA4 

kasuan, ez zen beherakada nabarmena ikusi 56. egunera arte. Ikerketaren azken 

egunerako lortutako Mw-ak hasierakoen ia erdia ziren. Aldaketa hau Mw-ren 

MWD kurbetan ere ikusi zen. Gainera, degradazioa hasi aurretik eta ondoren 

polimeroen propietate termikoak aztertu ziren. Tg-an beherakada txikia behatu 

zen, eta degradazioaren ondorioz kateek lortutako mugikortasunari atxikitu zaio. 

Xurgatutako ura eta pisu galera edukiak neurtu ziren. PEG-kateak direla dela eta, 

xurgapen maila altuak ikusi ziren degradazio prozesu osoan zehar, eta %5-10 

inguruko pisu galera behatu zen ikerketaren amaieran hiru polimeroetarako. 
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