

MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

TRABAJO FIN DE MÁSTER

Review of the assembly instructions,

analysis of the amount of copper

used for brazing, automation of the

change of format of a set of files,

data analysis, and optimization of

the shuttle service provided by a

company for the pick-up and

delivery of its workers.

Estudiante Lázaro, Vega, Daniel

Director/Directora Herrero, Villalibre, Saioa

Departamento

Curso académico 2020-2021

Abstract:

Spanish:
El primer bloque reúne las tareas y responsabilidades que he tenido como ingeniero junior en

Franklin Brazing & Metal Treating durante mis prácticas. Desde la revisión y actualización o

corrección de antiguas instrucciones de ensamble, hasta el análisis de datos de producción y mano

de trabajo para la optimización de procesos. También fui responsable de crear una tabla de cálculo

para el proceso de Brazing y la automatización del cambio de formato de las instrucciones de trabajo

de la empresa. Tanto Franklin como yo hemos terminado esta experiencia muy satisfechos.

Agradezco a la Universidad del País Vasco y a la Universidad de Cincinnati la preparación y

oportunidades que me han dado.

English:
This paper brings together the tasks and responsibilities I have had as a junior engineer at Franklin

Brazing & Metal Treating during my internship. From reviewing and updating or correcting old

assembly instructions, to analyzing production and labor data for process optimization. I was also

responsible for creating a calculation template for the Brazing process and automating the

changeover of the company's work instruction format. Both Franklin and I have finished this

experience very satisfied. I thank the University of the Basque Country and the University of

Cincinnati for the technical preparation and opportunities they have given me.

Basque:
Lan honek praktiketan Franklin Brazing & Metal Treating enpresako ingeniari junior gisa izan ditudan

zereginak eta erantzukizunak biltzen ditu. Muntatzeko argibide zaharrak berrikustea eta eguneratzea

edo zuzentzea, ekoizpenaren datuak eta eskulanak aztertzea prozesuak optimizatzeko. Soldadura

prozesurako kalkulu taula sortzeaz eta konpainiaren lan argibideen birformatizazioa automatizatzeaz

ere arduratu nintzen. Franklinek eta biok oso pozik amaitu dugu esperientzia hau. Eskerrak ematen

dizkiet Euskal Herriko Unibertsitateari eta Cincinnatiko Unibertsitateari eman didaten prestaketa eta

aukerengatik.

Contents
1. Intro: .. 6

2. Objectives: ... 6

3. Duties and tasks accomplished: .. 7

3.1. Update and review the Work Instructions. ... 7

3.2. Calculate the correct amount of copper needed for an appropriate brazing. 7

3.3. Automation of the process of changing the sorting format of the company’s files to switch

from an old data base system to a new SQL one. ... 8

3.4. Cleaning, visualization, and analysis of the data. .. 9

3.5. A live route planning algorithm for the company’s shuttle service. 9

3.5.1. Background. ... 10

3.5.2. Methods. ... 10

Customer allocation: ... 11

Ant Colony Optimization: .. 11

Parameters: ... 13

3.5.3. Results. .. 13

3.5.4. Conclusions of the task. ... 16

4. References ... 16

Annex 1. Python Code for the Automation of the process of changing the sorting format of the

company’s files to switch from an old data base system to a new SQL one. 17

Annex 2. Python Code for the live route planning algorithm for the company’s shuttle service. 21

1. Intro:
This internship has been my first job experience as an engineer, and I am very grateful for the

opportunity that Franklin Brazing & Metal Treating has given me depositing trust in myself. What I

have learned during this internship has not been limited to technical know-how, they really taught me

how a work environment is supposed to be. This company cares about each worker there, asking them

for feedback in a daily basis to improve their working conditions. Thus, the aftermath of this good

practice is a welcoming and friendly workspace where you feel like a part of it since the first day. I have

learned a lot about how to behave professionally in a work environment and how to work as team, the

latter if I am being honest, has always been one of my flaws.

This was an Engineering Internship and as I expected, I have been able to apply different ideas learned

during my major (Industrial Engineering) and during my masters (Artificial Intelligence).

To bring a little bit of context, Franklin Brazing & Metal Treating is the only company with the

PuroBrite™ system to braze, normalize, temper, stress relieve, and anneal stainless steel, carbon steel

and other ferrous alloy parts. The process was developed for the strict requirements of stainless-steel

brazing and annealing. Finished stainless steel parts must always be clean and bright, and have precise

micro structure requirements for strength and corrosion resistance properties. Average brazing and

annealing processes cannot reliably meet these requirements. The company has an engineering team

and a manufacturing team.

The engineering team supervises the manufacturing process, the instructions for each part, and quality

of the products. Some parts go through the furnace directly, others go through a more tedious process

involving a pre-assembly, assembly, and furnace time. The brazing of the parts occurs on the furnace,

and there are two furnace configurations depending on the specs of the part, the high flow

configuration, and the low flow configuration. High flow configuration uses a different atmosphere

inside the furnace achieving higher temperatures and avoiding oxidation.

The manufacturing team handles the workforce, they work on the pre-assembly, assembly and furnace

stages of the manufacturing processes. Also, they work on the quality check of the products, and

communicate the defects found. That information is crucial and valuable for the engineering team, to

evaluate the sanity of the furnace, and investigate what changes should be made to fulfill the quality

specs demanded by the client. They work under shift schedule, since the furnaces work nonstop 24h a

day, 365 days a year unless something goes wrong. This is because the fancy process of turning on a

furnace involves a great cost for the company.

The company is based in Lebanon, and the workers live all nearby the company. Not all of them have

vehicles, so the company offers a shuttle service for its workers. The service consists of two vehicles

that pick-up and deliver the workers to the desired destination.

2. Objectives:
The tasks and the objectives go hand in hand. The overall objective of the internship was to contribute

as much as I could to the company and apply to the extend possible the knowledge acquired during

both master’s degrees.

3. Duties and tasks accomplished:

3.1. Update and review the Work Instructions.

Through this company a great number of different pieces are manufactured every day, each of

those has its specific Work Instructions. Workers follow these instructions, so those must be

updated, otherwise mistakes will be made during the operations.

Every time that a process change was needed due to a change of the part or a new requirement

of the client, I had to update the instructions of that part. In addition, to make the instructions as

clear as possible for the worker images of those steps attached, indicating all the details of the

process. In this company a great amount of the workers are hispanic, so every written instruction

had its translation right below. After updating an instruction, it needs to be saved as a PDF and

returned to the data base system of the company, archiving the old one and specifying the reason

of the change.

3.2. Calculate the correct amount of copper needed for an appropriate

brazing.

I made an Excel template to calculate the volume of filling metal needed, depending on the

geometry of de different parts that make up the joint. Brazing is a welding process for metal parts,

where a filling metal (Copper or Aluminum alloys) is used to fill the gap of the joint between both

parts. This filling metal usually comes as a preform (ring or washer), and it is assembled in the joint

before the brazing process. There are a lot of preforms with different geometries (inner and outer

diameter, diameter of the wire, thickness depending on if the preform is a washer or a ring). After

the assembly of the components and the preform, the part goes into the furnace. Once it is in the

furnace the part is heated to the brazing temperature, the filling material melts and by capillarity

action process fills the gap of the joint.

How does this template work? As it has been said previously, this template takes a couple

measures as input, for which the engineer needs to take a look to the print of the part. Once you

have those values the excel will calculate the amount of copper needed, and gives you back the

parameters of the theoretical preform (ring or washer) that would have that exact amount of

copper. Usually the company uses standardized preforms (the piece of filling material), so you will

compare those theoretical values with the standardized preform that will be used. This template

is usually used in two cases:

• When a defect that does not meet a client’s requirements and specifications is detected.

The old preform, the new one and the theoretical one should be compared to check if
there is enough copper.

• When a new part arrives, to decide the new preform that is going to be used.
The scope of this template is to know how much copper you are using and make sure that there is

an appropriate exceed of filling material. This analysis will be always folloId be a trial to verify that

the preform works. The template is just one more tool to interpret the results of the trials, brazing

is a very complex type of Ilding where too many factors must be taken in mind. The most important

part to decide if a preform works or not are the trials, the empirical proof is the final decision

factor.

3.3. Automation of the process of changing the sorting format of the

company’s files to switch from an old data base system to a new SQL

one.

Franklin Brazing is preparing to change from their old data base system (Access) to a new one

(SQL). For that they designed a different way to manage the work instructions, by operation or

process. Thus, the work instructions are being split into individual PDFs for each operation. For

example, if part A goes through a pre-assembly, knurling, assembly, load to furnace, off-load

inspection processes its work instruction would have to be split into a PDF for each process. After

the split there will be 5 PDFs: pre_assembly.pdf, assembly.pdf, knurling.pdf…

There are some clients that have more than 80 different parts, if the splits are done one by one,

the work would take days of work, maybe even weeks. To save this time and resources to the

company I decided writing a program to automate the process. I used Python, a language that I

learned during the masters of Artificial Intelligence, a lot of subjects required python to develop

their projects. The clients have different parts, but those parts usually have their work instructions

written using the same criterion. Consequently, the program will split all the documents of one

client at a time. For every client there is the need to update a few values of two variables that are

very important for the program to work. One of these variables is a list of the keywords that the

program will search for in the work instructions. Those key words are the name of the operations

or the sections that can be found in the work instructions of the parts that belong to one client.

The other variable is a list of strings too but contains the titles that will be used to sabe the split

files. Every file will be saved using the same norm. The first part of the name of the file will be the

part number, the second part will be the operation that is explained in that PDF (That is the title

contained in that important variable).

I wrote two scripts, one of them has all the functions that the program required, and the other one

has the main program. I separated the code in two scripts because probably this program will be

used by people that do not know a lot about Python. Hence, I tried to leave the main program

script very clean and with comments to explain what the main variables that affect the code are

for. Additionally, I wrote a tutorial with detailed instructions that follow all the steps. Before

running the code, a folder needs to be created in the same folder where all the work instructions

that are going to be split are. That is the directory where all the new individual instructions will be

saved.

The Python skills that I acquired during this master have allowed me to come up with this project

and make it work.

3.4. Cleaning, visualization, and analysis of the data.

I gathered raw data from the Access database of Franklin to get valuable information aiming to

bring light upon important inquiries. Studies like if there is capacity for more the production of

more parts or during which shifts is more scrap produced, which workers are more efficient, which

parts take the most capacity of the machinery and resources… To carry out this task I learned the

basics of Tableau, a very used tool in the field of Data Science to clean and visualize data. I imported

the datasets from the Access database of the company, there they have all the information about

the production. Once in Tableau I cleaned the data removing the Nan values and the outliers.

In the Applied AI and ML tools I learned the pre-processing basic methods and ideas that I

needed to develop this task.

3.5. A live route planning algorithm for the company’s shuttle service.

The Vehicle Routing Problem is a classical problem in discrete optimization. The interest of this

problem lies in the multiple variants and applications it has in the real world for the transportation

of goods and people. In this work I solve the dynamic version of this problem for a specific

application: the shuttle service provided by Franklin. Using a combination of smart clustering and

Ant Colony Optimization, I have solved the problem and demonstrated the algorithm can

outperform the performance of the route planning done by a human operator.

The service uses several vehicles for the purpose. The users can request point to point trips within

a 2-mile radius around the company location. So far, each vehicle needs two workers to operate:

the driver and a copilot that decides the routes based on incoming requests. There is no

communication between vehicles, other than a general view of all the pending requests. These

facts result in a sub-optimal service, that often leads to long waiting times when demand for the

service is high. Therefore, it is of general interest to come up with a system that can optimize and

coordinate the routes of each vehicle to improve the quality of the service.

I define the problem to solve as follows. I consider as input several customer requests, each with

a pick-up and a drop-off point in a metric space. The set of requests is not fixed, and new requests

appear during the simulation. I also consider the number of vehicles available to provide the

service, and the capacity of each of them k. The goal is to calculate a route that progressively serves

all the incoming requests, minimizing its length and the waiting time of the customers.

To bound the scope of this work and fit it to the allotted time frame, I have considered several

simplifications and assumptions. Each request will have a single person riding, as opposed to the

real service where groups of up to 5 customers can request a ride. The vehicles can have multiple

customers with different routes riding at the same time, provided the maximum capacity is not

exceeded. I consider the capacity of a vehicle to be k = 5. I also limit the number of vehicles to N =

2.

All the incoming requests go to a common customer pool shared by all the vehicles in service.

However, it is worth noting that each customer requires its pick-up and drop-off locations to be

included into the same route. This is not only a constraint, but also an added difficulty since both

waypoints have influence in the length of the route.

I have divided the resolution of the problem into two tasks. First, based on the two waypoints and

waiting time of each customer, a clustering algorithm allocates a set of n ≤ k customers from the

pool to a vehicle. Note that with this limitation the capacity of the vehicles can never be exceeded.

An Ant Colony Optimization (ACO) algorithm takes the 2n waypoints of the selected customers and

finds a near-optimal route to serve them efficiently.

3.5.1. Background.

The Vehicle Routing Problem (VRP) is a well- known discrete optimization problem. The VRP

involves a set of customers that must be served once, and a fleet of vehicles that depart from

a depot, serve the requests, and go back to the depot. The VRP and its many possible variations

have been widely studied in the past. [1] shows an extensive literature review on the topic.

Another interesting review is presented in [2], with a novel method to solve the multi-depot

VRP. One possible variation of the VRP closer to reality is the Dynamic Vehicle Routing Problem

(DVRP), where the customers change their demands gradually with time. One way to solve this

problem is to divide it into multiple static VRP problems [3]. In the specific problem we are

solving, the vehicles do not go back to a depot after serving several requests, and every request

has two waypoints, both for pickup and delivery. These conditions are shared with the Dial a

Ride Problem (DARP) when the capacity of the vehicle k is not equal to 1 [4]. However, to the

authors' best knowledge, the problem that combines DVRP and DARP has not been solved yet.

3.5.2. Methods.

In this section we will introduce the algorithms used to solve the two tasks mentioned in the

previous section.

In the dynamic problem, customer requests change gradually with time. Directly using an ACO

algorithm to solve the problem would entail several issues. If the ACO is executed every time

there is a new customer in the pool, the planned route changes every few simulation steps.

This means that the vehicles never complete all the computed routes, and they are not

exploiting the benefits of route planning with the ACO. This approach is also computationally

expensive. That is why in our methodology we divide the dynamic problem in multiple static

problems [3]. In turn, the static problem is divided into two tasks: customer allocation and

route planning with ACO. A new static problem is solved every time a vehicle finishes serving

its current route.

 Customer allocation:

This algorithm takes as input the information from all the customers in the pool and allocates
n ≤ k to a vehicle. The information contains the location of the pickup and the drop-off in a
metric space. To account for the waiting time, we add the time that customers have been in
queue to this information. These parameters are fitted into a vector of the form:

where x0 and y0 denote the coordinates of the pickup point, xf and yf the drop-off point, and
t wait represents the waiting time. The vector of each of the vehicles is built as follows,

where xv and yv denote the coordinates of the vehicle when this algorithm is executed. Tlongest
is the highest waiting time of all the customers in the pool. The choice for the drop-off point
of 2 the vehicle is arbitrary, and helps to select customers closer to the vehicle. Setting the
waiting time of the vehicle to the highest one of the customers in the pool makes the
algorithm give more weight to the customers that have been in queue the longest. The
algorithm calculates the Euclidean distance between x vehicle j and all the customers in the pool,
x customer i. Then, selects the n lowest distances, allocates those customers to the vehicle, and
removes them from the pool.

Ant Colony Optimization:

This algorithm considers a set of m ants, each of which represents a vehicle. All of them
start at the node corresponding to the initial position of the vehicle and visit the way-points
assigned to the vehicle until all of them have been visited once. Being n the number of
customers assigned to each vehicle, the route consists of $2n+1$ waypoints: one pick-up and
drop-off location per customer and the initial position of the vehicle. For a given number of
iterations n iteration every ant generates a route over $2n$ steps by choosing a new waypoint
at each step.

In this DVRP, it must be considered that drop-off locations cannot be visited before pick-up
locations. Therefore, to overcome this constraint, we have defined an “illegal” list for each
ant, which contains the drop-off waypoints whose respective pick-up locations have not been
visited yet. At each step, any arc defined by the actual position of the ant and a point in its
“illegal” list will be considered an “illegal” arc. Note that “illegal” lists depend on which nodes
have been visited so far and can be different for each ant. This means that at the same time
an arc may be illegal for one ant but not for another. Consequently, an ant could choose a no
longer illegal arc for itself, and thus deposit pheromone on it, which in the next step could
still be illegal for another ant.

Since next waypoints are chosen based on pheromone and distance information, to avoid
selecting “illegal” paths, before choosing any next way-point, m copies of the current
pheromone information are done. Each copy is used for one ant, and in it the ph≥eromones
corresponding to all the “illegal” arcs of that ant are set to zero. This way, if each ant uses its
pheromone copy for the decision, “illegal” arcs will have zero probability of being chosen.

The equations to calculate the probability of an ant taking an arc I are extracted from [9]. Two
probabilistic rules are defined to select the next destination. A random number q between
[0,1] is generated to decide which one to apply. If q ≥ q0 the ant will use

Otherwise it will use

where

𝑝𝑖𝑗
𝑘  represents the probability of an ant k choosing a path (𝑖, 𝑗) , 𝒩𝒾𝓀 the neighbors of node i

not visited by ant k and all the 𝒩𝒾𝓀 neighbors of node i, τ𝑖𝑗 the pheromone concentration on

arc (𝑖, 𝑗), and η𝑖𝑗 the inverse of the length of arc (𝑖, 𝑗).

Once the next waypoint is chosen, if it was a pick-up location, its respective drop-off location

is removed from the list of “illegal”. On the other hand, the pheromone of the chosen arc is

updated using

Where ρ represents the evaporation rate andτ0is the fixed pheromone increment. Finally,

after all ants have constructed their routes, a “daemon” adds pheromone over the arcs

included in the shortest route found according to

Where

and 𝐿+ represents the length of the shortest route, 𝑇+.

Parameters:

Equations (3) through (8) show the large number of parameters that this algorithm has.

These parameters greatly affect the behavior and performance of the algorithm. Using

[10,11] as reference, we have done several test runs to find the parameters that suit our

problem the best. The final values are 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 10, 𝑚 = 20, 𝑞0 = 0.2, ρ = 0.2, β =

6 𝑎𝑛𝑑 τ0 = 1/65.

3.5.3. Results.
The objective of this work is to improve the performance of shuttle service with respect to the

current state, in which a human operator in each of the vehicles plans the customers to serve

next. Therefore, the results shown here compare the performance of our algorithm with the

performance of a planning done by a human over the same list of customers.

The results have been obtained in a simulation environment specifically created for this work.

The environment is formed by a 20 × 20 bi-dimensional space where customers are located and

vehicles can move (Figure 1). In each step, the vehicles move a fixed distance 𝑣 towards the next

waypoint in their current route. If they reach a waypoint, they pick up or drop off a customer and

proceed to the next waypoint. If the waypoint they reach is the end of their current route, they

execute the customer allocation and ACO algorithms to calculate the next route. Every

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 steps a new random customer appears and is added to the pool. The

pseudo-code of the environment is shown in Algorithm 1.

Figure 1. Snapshot of the simulation environment. Each vehicle (X), the route it is following, and the waypoints allocated to it
is represented with a different color. The grey points are the rest of the customers' waypoints in the pool.

Figure 2. Algorithm 1: Simulation environment. The values of customer frequency and the speed of the vehicles have to be
balanced to keep a steady state of customers and avoid an empty pool.

Table 1 (in the next page) shows the comparison of various metrics when the route planning

is done by the algorithm and manually. The human planners designing manual routes were

given a set of 𝑘 = 5 customers previously chosen by the customer allocation algorithm.

Therefore, this table compares only the route planning, not the customer allocation. The

algorithm outperforms the manual planning in 8 out of 10 simulation runs. The algorithm can

reduce the mean waiting time of customers (𝑡𝑚𝑒𝑎𝑛) up to a −21.5% with respect to the

manual planning. The maximum difference in the cases in which the algorithm increases the

mean waiting time is +4.1% .There are no significant differences in the total distance

covered by the vehicles. This can be explained with the fact that the vehicles move at a

constant speed and the total simulation time-steps is a fixed parameter. The simulation

environment is ideal, so no delays are produced by traffic or customer pick-up or drop-off

times. Therefore, the vehicles are expected to cover a similar distance in all the simulation

runs. There are very little differences in the number of customers served during the

simulations. This indicates there is not a big improvement in the route planning, since more

efficient routes would allow the vehicles to serve more customers in the same simulation

time.

Table 1. Comparison of results of the algorithm and solutions obtained manually over 400 simulation time-steps.
t_{mean} is the mean waiting time of the customers (in simulation time-steps), and D_1 and D_2 the total distances
traveled by the vehicles 1 and 2, respectively. n_{total} represents the number of customers served during the simulation

time. Each Algorithm-Manual simulation pair has been obtained fixing the random generation of customers. The manual
solutions have been designed by the authors of this work and two independent, external, test subjects.

Table 2. Comparison of results when using the clustering algorithm and the FIFO criterion for customer allocation in the
simulation. Each simulation environment has been run 300 times and results have been averaged. t_{mean} is the

average of the mean waiting

To see to what extent the classifier is helping in the route planning, we have also compared

the clustering algorithm and the human choosing criterion. The latter has been assumed to

follow a <First in, First Out> (FIFO) criterion serving the oldest k = 5 customers in the pool.

Table 2 shows the comparison in the mean waiting times and mean route lengths when both

customer allocating strategies are used.

At first glance, one might think that picking up the longest waiting customers would reduce

the average waiting time. However, by not considering their pick-up and drop-off locations,

routes become more inefficient, which ultimately results in longer average waiting times. A

9.29% increase in average route length converts to a difference in wait time of +28.53%.

This demonstrates the effectiveness of the proposed clustering algorithm.

3.5.4. Conclusions of the task.
• Results have shown that the algorithm outperforms a human by hand’s planning.

• The main difficulty of the problem is the allocation of the customers.

• It is “easy” for an individual to find a near optimal route with only 11 waypoints.

• If higher capacity vehicles were considered, the difficulty of the task would increase
exponentially for a human. ACO would make bigger differences.

• The simplifications made for this first approach are far from reality. Future development
of the project should consider road network, non-individual requests, and traffic
conditions.

4. References
[1] Cagri Koc, G. Laporte, and Ilknur Tukenmez, “A review of vehicle routing with simultaneous

pickup and delivery”, Computers & Operations Research, vol.122, 2020.
[2] Y. Li, H. Solemani, and M. Zohal, “An improved and colony optimization algorithm for the

multi-depot green vehicle routing problem with multiple objectives”, Journal of Cleaner
Production, vol.227, pp. 1161-1172, 2019.

[3] H. Xu, P. Pu, and F. Duan, “Dynamic vehicle routing problems with enhanced ant colony
optimization”, Discrete Dynamics in Nature and Society, vol. 2018, pp. 137-172, 2018.

[4] M. Charikar and B. Raghavachanari, “The finite capacity dial-a-ride problem”, in Proceedings
39th Annual Sympossium on Foundations of Computer Science (Cat. No.98CB36280), pp. 458-
467, Nov 1998.

[5] J.E. Bell and P.R. McMukllen, “Ant colony optimization techniques for the vehicle routing
problem”, Advanced Engineering Informatics, vol. 18, no. 1, pp. 41-48, 2004.

[6] B. Bullnheimer, R. Hartl, and C. Strauss, “An improved ant system algorithm for the vehicle
routing problem”, Annals of OperationsResearch, vol. 89, pp. 319-328, 1999.

[7] B. Yu, Z.-Z. Yang, and B. Yao, “An improved ant colony optimization for vehicle routing
problem”, European Journal of Operational Research, vol. 196, no. 1, pp. 171-176, 2009.

[8] R.Goel and R. Maini, “A hybrid of ant colony and firefly algorithms (hafa) for solving vehicle
routing problems”, Journal of Computational Science, vol. 25, pp. 28-37, 2018.

[9] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization”,
Artificial Life, vol. 5, pp. 137-172, 04, 1999.

[10] J. C. Molina, J. L. Salmeron, and I. Eguia, “An acs-based Memetic algorithm for the
heterogeneous vehicle routing problem with time windows”, Expert Systems with
Applications, vol. 157, p. 113379, 2020.

[11] D. Gaertner and K. Clark, “On optimal parameters for ant colony optimization algorithms”,
Proceedings of the 2005 International Conference on Artificial Intelligence, vol. 1, pp. 83-89,
01 2005.

Annex 1. Python Code for the Automation of the process of

changing the sorting format of the company’s files to switch from

an old data base system to a new SQL one.

'''FRANKLIN BRAZING & METAL TREATING'''

#Developed by Daniel Lazaro - 7/13/2021

from splitting_functions import file_paths, split_files

'''Specify File Directory and Extension'''

file_dir = r"C:\Users\Dani\Desktop\Franklin Brazing\Yokohama-20210706T171928Z-001"

file_ext = r".pdf"

'''Get the Paths and the Names of all the Files that are going to be Split'''

path_list, file_names = file_paths(file_dir, file_ext)

'''Specify the titles for the individual split files, and the key words that the program has

to search for in order to split the file correctly into the different operations/sheets that

form the WI'''

split_file_titles = ['Data-Sheet', 'Pre-Assembly', 'Knurl',

 'Spot-Weld', 'Assembly', 'Furnace-Load-Sheet',

 'Furnace-Off-Load-Insp', 'Furnace-Off-Line-Insp',

 'Revision-Date', 'Print']

key_words = ['PART DATA-SHEET', 'Pre-Assembly', 'Knurling Sheet',

 'Spot-Weld', 'Assembly Sheet', 'Furnace Load Sheet',

 'Furnace Off-Load Inspection', 'Furnace Off-Line Inspection',

 'Revision Date', 'Print']

'''This Function splits the Files and saves them inside the folder called Split Files'''

split_files(file_dir, file_ext, path_list, file_names, key_words, split_file_titles)

from PyPDF2 import PdfFileWriter, PdfFileReader

import os

import slate3k as slate

#Funcion para saber en que pagina esta cada titulo

def listed_text(path_pdf):

 with open(path_pdf,'rb') as f:

 extracted_text = slate.PDF(f)

 pdftext = str(extracted_text)

 pdftext.replace('[', '')

 pdftext.replace(']', '')

 #pdftext.replace('\n', '')

 listedtext = pdftext.split('x0c', -1)

 listedtext.pop(-1)

 #clean not important text

 for i in range(len(listedtext)):

 listedtext[i] = listedtext[i][0:100]

 return listedtext

def pages_sheets_dic(listedtext, possible_areas):

 dic = {}

 for i in range(len(listedtext)):

 text = listedtext[i]

 no_area = 0

 for area in possible_areas:

 if area in text:

 dic[i] = area

 else: no_area += 1

 if no_area == len(possible_areas):

 print(i-1)

 dic[i] = dic[i-1]

 for j in listedtext:

 if len(j) == 0:

 print('Encontrado 0 len')

 dic[listedtext.index(j)] = 'Print'

 print(dic)

 page_print = get_key('Print', dic)

 return dic

function to return key for any value

def get_key(val, dic):

 keys =[]

 for key, value in dic.items():

 if val == value:

 keys.append(key)

 return keys

def file_name(key, file_names, possible_areas):

 index = possible_areas.index(key)

 filename = file_names[index]

 return filename

def file_paths(file_dir, file_ext):

 filenames = [_ for _ in os.listdir(file_dir) if _.endswith(file_ext)]

 pathlist = [os.path.join(file_dir, name) for name in filenames]

 return pathlist, filenames

def split_files(file_dir, file_ext, path_list, file_names, possible_areas, split_file_titles):

 counter =0

 for path in path_list:

 print(path)

 inputpdf = PdfFileReader(open(path, "rb"))

 name = file_names[counter]

 n_name = len(name)

 print(name)

 listedtext = listed_text(path)

 dic = pages_sheets_dic(listedtext, possible_areas)

 sheets = list(set(dic.values()))

 for sheet in sheets:

 pages = get_key(sheet, dic)

 output = PdfFileWriter()

 if sheet != 'PART DATA-SHEET' :

 output.addPage(inputpdf.getPage(0))

 for i in pages:

 output.addPage(inputpdf.getPage(i))

 sheet1 = file_name(sheet, split_file_titles, possible_areas)

 namepdf = f'Split Files\{name[:n_name-4]}-{sheet1}.pdf'

 print(name)

 savepath = os.path.join(file_dir, namepdf)

 print(savepath)

 with open(savepath, mode ="wb") as outputStream:

 output.write(outputStream)

 counter += 1

Annex 2. Python Code for the live route planning algorithm for the

company’s shuttle service.

#This script contains the ACO algorithm (function name:ACO) and all the function

s it needs.

#It is Dorigo's proposed algorithm.

#It is call by the main_loop, where the needed parameters are specified in the lines 34-39.

import numpy as np

from random import random

from itertools import permutations

def calculate_distances(A,B):

 dx = A[0] - B[0]

 dy = A[1] - B[1]

 dist = np.array([dx,dy])

 return np.linalg.norm(dist)

def create_nodes(customers,car_position,k):

 nodes=[]

 for i in range(2*k):

 if i<k:

 node=[customers[i][0],customers[i][1]]

 nodes.append(node)

 else:

 node=[customers[i-k][2],customers[i-k][3]]

 nodes.append(node)

 nodes.append(car_position)

 return nodes

def ACO(k,customers,car_position,n_ants,alpha,beta,q0,ph_increment,evaporation_rate):

 customers=customers

 k=k

 alpha=alpha

 beta=beta

 car_position=car_position

 n_ants= n_ants

 n_iterations=10

 evaporation_rate=evaporation_rate

 ph_increment= ph_increment

 q0=q0

 pheromone_matrix,distance_matrix,nodes=initialize_ACO(k,customers,car_position,ph_increment)

 waypoints=list(range(len(nodes)))

 length_best=100000

 for i in range(n_iterations):

 routes, pheromone_matrix=generate_route(waypoints,k,pheromone_matrix,distance_matrix,alpha,beta

,evaporation_rate,ph_increment,n_ants,q0)

 new_best_route,new_length_best= best_route_and_length(routes,distance_matrix)

 pheromone_matrix=daemon_update(pheromone_matrix,new_best_route,new_length_best,evaporation_rate

)

 if new_length_best < length_best:

 length_best=new_length_best

 best_route=new_best_route

 route_nodes=order_nodes(best_route,nodes)

 return best_route,pheromone_matrix,distance_matrix,waypoints,route_nodes,length_best

def initialize_ACO(k,customers,car_position,ph_increment):

 nodes=create_nodes(customers,car_position,k)

 distance_matrix=np.zeros((2*k+1,2*k+1))

 pheromone_matrix=ph_increment*np.ones_like(distance_matrix) #Initial value of pheromone in every pa

th

 for i in range (2*k+1):

 for j in range (2*k+1):

 distance_matrix[i,j]=calculate_distances(nodes[i],nodes[j])

 if i==j: #or j+k==i:

 pheromone_matrix[i,j]=0 #Paths going from destination to origin

 distance_matrix[i,j]=10**5

 return pheromone_matrix,distance_matrix,nodes

def generate_route (waypoints,k,pheromone_matrix,distance_matrix,alpha,beta,evaporation_rate,ph_increme

nt,n_ants,q0):

 illegal= [waypoints[k:2*k] for i in range(n_ants)]

 position=[[waypoints[-1]] for i in range(n_ants)]

 routes=position

 for i in range(len(waypoints)-1):

 arcs=[]

 for j in range(n_ants):

 next_wpt= next_waypoint(routes[j],illegal[j],position[j][i],pheromone_matrix,distance_matri

x,alpha,beta,q0)

 routes[j].append(next_wpt)

 if next_wpt<k:

 illegal[j].remove(next_wpt+k)

 arcs.append([position[j][i],next_wpt])

 position[j][i+1]=next_wpt

 #Once every ant takes an arc, pheromone is updated

 increment_matrix=np.zeros_like(pheromone_matrix)

 pheromone_mat_copy=np.copy(pheromone_matrix)

 for arc in arcs:

 increment=pheromone_update(pheromone_mat_copy[arc[0],arc[1]],evaporation_rate,ph_increment)

 increment_matrix[arc[0],arc[1]]+=increment

 pheromone_matrix[arc[0],arc[1]]=0

 pheromone_matrix+=increment_matrix

 return routes, pheromone_matrix

def next_waypoint(route,illegal,position,pheromone_matrix,distance_matrix,alpha,beta,q0):

 pheromone=np.copy(pheromone_matrix[position]) #takes the row corresponding to the actual position

 pheromone[route]=0

 pheromone[illegal]=0

 attract_numerator=pheromone**alpha * (1/distance_matrix[position])**beta

 distance_matrix[position]

 attractiveness= attract_numerator/np.sum(attract_numerator)

 if random() <= q0:

 next_wpt = np.argmax(attractiveness)

 else:

 probabilities = attractiveness/ np.sum(attractiveness)

 next_wpt = np.random.choice(range(len(probabilities)),1, p=probabilities)

 return int(next_wpt)

def pheromone_update(pheromone_arc,evaporation_rate,increment):

 pheromone_arc = (1-evaporation_rate)*pheromone_arc + evaporation_rate*increment

 return pheromone_arc

def best_route_and_length(routes,distance_matrix):

 all_lengths=[]

 for i in range(len(routes)):

 route_length=0

 for j in range (len(routes[0])-1):

 arc_length=distance_matrix[routes[i][j],routes[i][j+1]]

 route_length += arc_length

 all_lengths.append(route_length)

 best_route=np.argmin(all_lengths)

 return routes[best_route],all_lengths[best_route]

def daemon_update(pheromone_matrix,best_route,length_best,evaporation_rate):

 pheromone_matrix=(1-evaporation_rate)*pheromone_matrix

 for i in range (len(best_route)-1):

 pheromone_matrix[best_route[i],best_route[i+1]]+=evaporation_rate*1/length_best

 return pheromone_matrix

def order_nodes(route,nodes):

 route_nodes=[]

 for waypoint in route:

 route_nodes.append(nodes[waypoint])

 return route_nodes

def route_length(route,distance_matrix):

 route_length=0

 for i in range (len(route)-1):

 arc_length=distance_matrix[route[i],route[i+1]]

 route_length += arc_length

 return route_length

def possible_routes(k):

 '''Generates all the combinations of nodes to create routes and filters the illegal routes'''

 #Not necessary in the ACO, but for making some tests

 perm = permutations(range(k*2))

 per=[]

 for i in perm:

 per.append((6,)+i)

 all_permutations = np.array(per)

 origin = [i for i in range(0,k)]

 dest = [i for i in range(k, 2*k)]

 zipped = zip(origin, dest)

 origin_dest_matrix = np.array(list(zipped))

 i = 0

 todelete = []

 for perm in all_permutations:

 for origindest in origin_dest_matrix:

 if np.where(perm == origindest[0]) > np.where(perm == origindest[1]) :

 todelete.append(i)

 i+=1

 todelete = np.unique(todelete)

 all_permutations = np.delete(all_permutations, todelete, 0)

 return all_permutations

#%% TEST CODE

if __name__ == "__main__":

customers=[[1,2,3,4,5],[6,7,8,9,0],[12,0,13,9,1]]

car_position=[2,1]

k=3

b,p,d,w,rn=ACO(k,customers,car_position,3,1,1)

all_routes=possible_routes(k)

all_lengths=[]

for route in all_routes:

length=route_length(route,d)

all_lengths.append(length)

idx=np.argmin(all_lengths) #No creo que vaya a haber dos rutas con la misma longitud y que sea ju

sto la minima

print('Shortest route:', all_routes[idx])

print('Best found route:', b)

#Clustering algorithm for customer allocation

#The vehicles are the centers of the clusters

#Setting waiting time of the vehicle to the highest one of the customers in the pool...

 #... gives more weight to the ones that have been in queue the longest

import numpy as np

def get_customers(vehicle_position, customer_list, k):

 """

 get_customers selects the k customers closer to a vehicle from the

 customer pool

 Parameters

 vehicle_position : LIST

 [x,y] position of the vehicle.

 customer_list : LIST

 [customer_1, customer_2, ...].

 k : INT

 Number of customers to pick from customer_list.

 Returns

 selected_customers : LIST

 List with selected customers' vectors.

 new_pool : LIST

 list of customers from customer_list that have not been selected by

 get_customers.

 """

 ## find customer with maximum waiting time

 max_time = 0

 for customer in customer_list:

 time = customer[-1]

 if time > max_time:

 max_time = time

 ## define vehicle's vector

 vehicle = []

 vehicle.extend(vehicle_position)

 vehicle.extend(vehicle_position)

 vehicle.append(max_time)

 ## calculate distances from vehicle to each customer

 distances = []

 vehicle_np = np.array(vehicle)

 for customer in customer_list:

 customer_np = np.array(customer)

 distances.append(np.linalg.norm(vehicle_np - customer_np))

 idx = np.argsort(distances)

 idx = idx[0:k]

 ## list with customers

 selected_customers = []

 for i in range(k):

 selected_customers.append(customer_list[idx[i]])

 ## customer pool without the selected customers

 new_pool = list(customer_list)

 for j in sorted(idx, reverse=True):

 del new_pool[j]

 return selected_customers, new_pool

if __name__ == "__main__":

 customer_pool = [[3,4,5,6,0],

 [1,2,7,8,3],

 [-1,1,5,5,4],

 [-5,-4,3,3,3],

 [0,0,9,9,8],

 [1,-5,5,-1,7]]

 get_customers([1,2], customer_pool, 3)

#script use for selecting the 5 first customers in the pool when the FIFO criterion is used

import numpy as np

def get_customers(vehicle_position, customer_list, k):

 selected_customers = []

 for i in range(k):

 selected_customers.append(customer_list[i])

 ## customer pool without the selected customers

 new_pool = list(customer_list)

 del new_pool[0:k]

 return selected_customers, new_pool

#Simulation environment for the live route planning algorithm

#Parameters of the environment are described in lines 28-31

#Parameters used in the ACO algorithm are described in lines 34-39

#The program outputs:

 #Mean waiting time of customers

 #Total distances traveled by each car

 #Customers served by each car

import numpy as np

import matplotlib.pyplot as plt

import random

from vehicle import Vehicle

from classifier import get_customers

from ACO_function import ACO

from plot_routes import plot_routes

from obtain_figures import plot_route

#from first_five import get_customers #for FIFO criterion to be used in the selection of cus

tomers

 #Deactivate line 17 if used

time=[]

length=[]

for i in range(1): # This loop was used with 300 runs for the comparison (clustering VS FIF

O)

 ## PARAMETERS

 simulation_time = 400 # time-steps for the simulation

 customer_freq = 8 # simulation time-steps of interval between customer appearances

 k = 5 # customers to pick from pool

 n_initial_customers = 20 # customers at t=0

 ## ACO PARAMETERS

 ACO_alpha = 1 # controls the type of choice heuristic

 ACO_beta = 6 # controls the type of choice heuristic

 ACO_ants = 20 # number of ants

 q0=0.2 # probability of greedy choice

 ph_increment=1/65 # fixed pheromone increment over an arc every time an ant takes the arc

 evaporation_rate=0.2 # evaporation rate

 random.seed(97)

 routes=[]

 def create_customer():

 new_customer = []

 ## add 4 random parameters for initial and final X and Y position

 for parameter in range(4):

 new_customer.append(random.uniform(-10,10))

 new_customer.append(0) # set the waiting time

 return new_customer

 def add_waiting_time(customers):

 delta = 0

 for customer in customers:

 delta += customer.pop(-1)

 return delta

 if __name__ == "__main__":

 ################### INITIALIZATION ###################

 ## create vehicles

 vehicle1 = Vehicle()

 vehicle2 = Vehicle()

 vehicles = list([vehicle1, vehicle2])

 ## create initial pool of customers

 customer_pool = []

 for i in range(n_initial_customers):

 customer_pool.append(create_customer())

 customer_pool_global = list(customer_pool)

 ## Set initial routes for vehicles

 total_distance = [0,0]

 customers_list=[]

 for i in [0,1]:

 vehicle = vehicles[i]

 customers, customer_pool = get_customers(vehicle.position, customer_pool, k)

 customers_list.append(customers)

 # best_route,pheromone_matrix,distance_matrix,waypoints,route_nodes

 best_route,_,_,_,nodes,route_length = ACO(k,customers,vehicle.position.copy(),ACO_ants,ACO_

alpha,ACO_beta,q0,ph_increment,evaporation_rate)

 routes.append(route_length)

 total_distance[i] += route_length

 # plot_route(customers, vehicle.position, best_route)

 # plot_route(customers, vehicle.position, None)

 # print(best_route)

 vehicle.route=nodes.copy()

 nodes.pop(0) # remove the current vehicle position

 vehicle.update_route(nodes)

 vehicles[i] = vehicle

 ## initialize metrics

 mean_t = 0

 mean_t_samples = 10

 customers_picked = [5,5]

 ################### MAIN LOOP ###################

 xx = []

 customer_pool_size = []

 for t in list(range(simulation_time)):

 ## add new random customer every customer_freq timesteps

 if t % customer_freq == 0:

 cust = create_customer()

 customer_pool.append(cust)

 customer_pool_global.append(cust)

 ## update vehicles

 for i in [0,1]:

 vehicle = vehicles[i]

 ## 1. move

 waypoint_flag = vehicle.move()

 ## If waypoint reached, change destination

 list_flag = False

 if waypoint_flag:

 list_flag = vehicle.update_destination()

 ## If end of current customer list, find new customers

 if list_flag:

 # get customers

 # print('Vehicle %d end of route. Updating...' % i)

 customers, customer_pool = get_customers(vehicle.position, customer_pool, k)

 customers_list.append(customers)

 customers_picked[i] += 5

 mean_t += add_waiting_time(customers)

 mean_t_samples += 5

 # get new customers and route and update

 best_route,_,_,_,nodes,route_length = ACO(k,customers,vehicle.position.copy(),ACO_a

nts,ACO_alpha,ACO_beta,q0,ph_increment,evaporation_rate)

 routes.append(route_length)

 total_distance[i] += route_length

 #plot_route(customers, vehicle.position, best_route)

 vehicle.route=nodes.copy()

 nodes.pop(0) # remove the current vehicle position

 vehicle.update_route(nodes)

 vehicles[i] = vehicle

 # if t<=120:

 # if t%2==0:

 # plot_routes(vehicles,t,customer_pool)

 #increase waiting time of customers in pool

 for i in range(len(customer_pool)):

 customer_pool[i][-1] += 1

 if t % 10 == 0:

 xx.append(t)

 customer_pool_size.append(len(customer_pool))

 pass

 # fig, ax = plt.subplots()

 # plt.plot(xx, customer_pool_size)

 print('Mean waiting time: %.2f u' % (mean_t*1.0/mean_t_samples))

 print('Total distance traveled by the vehicles: %r' % total_distance)

 print('Customers picked by vehicles: %r' % customers_picked)

 #print('Mean best route length:', sum(routes)/len(routes))

 # time.append(mean_t*1.0/mean_t_samples)

 # length.append(sum(routes)/len(routes))

mean_time=sum(time)/len(time)

mean_length= sum(length)/len(length)

print('Mean waiting time:', mean_time)

print('Mean best route length:',mean_length)

variance_t = sum([((x - mean_time) ** 2) for x in time]) / len(time)

res_t = variance_t ** 0.5

variance_l = sum([((x - mean_length) ** 2) for x in length]) / len(length)

res_l = variance_l ** 0.5

print('Mean std time:', res_t)

print('Mean best route std:',res_l)

#This script is used for getting the humand by hand routes.

#The random seed in line 26 must be the same as the seed in line 36 in the main_loop.

#When run, the user will be asked to complete several routes.

#A plot with numbered nodes is displayed for each new case:

 #Triangles represent pick-up locations.

 #Stop signs represent drop-off locations.

 #The vehicle (starting point) is represented with a diamond.

#User has to introduce manually the sequence of nodes that make the route, each number separated by a b

lank space

#Finally, the program outputs:

 #Mean waiting time of customers

 #Total distances traveled by each car

 #Customers served by each car

import numpy as np

import matplotlib.pyplot as plt

import random

from vehicle import Vehicle

from classifier import get_customers

from ACO_function import ACO, route_length, initialize_ACO, order_nodes

from plot_routes import plot_routes

from obtain_figures import plot_route

PARAMETERS

simulation_time = 400 # time-steps for the simulation

customer_freq = 8 # simulation time-steps of interval between customer appearances

k = 5 # customers to pick from pool

n_initial_customers = 20 # customers at t=0

ACO PARAMETERS

ACO_alpha = 1

ACO_beta = 6

ACO_ants = 20

random.seed(97)

def create_customer():

 new_customer = []

 ## add 4 random parameters for initial and final X and Y position

 for parameter in range(4):

 new_customer.append(random.uniform(-10,10))

 new_customer.append(0) # set the waiting time

 return new_customer

def add_waiting_time(customers):

 delta = 0

 for customer in customers:

 delta += customer.pop(-1)

 return delta

def get_user_route():

 error_flag = True

 while error_flag:

 raw_input_string = input('Answer: ')

 ls = raw_input_string.split()

 for i in range(len(ls)):

 ls[i] = int(ls[i])

 # Check if length is correct

 error_flag = False

 if len(ls) != 10:

 error_flag = True

 print('Error! The length of the list is incorrect.')

 continue

 # Check for illegal routes

 len_half = int(len(ls)/2)

 for j in range(len_half):

 dif = ls.index(j+len_half) - ls.index(j)

 if dif < 0:

 error_flag = True

 print('Error! Illegal route.')

 break

 return ls

if __name__ == "__main__":

 ################### INITIALIZATION ###################

 ## create vehicles

 vehicle1 = Vehicle()

 vehicle2 = Vehicle()

 vehicles = list([vehicle1, vehicle2])

 ## create initial pool of customers

 customer_pool = []

 for i in range(n_initial_customers):

 customer_pool.append(create_customer())

 customer_pool_global = list(customer_pool)

 ## Set initial routes for vehicles

 total_distance = [0,0]

 customers_list=[]

 for i in [0,1]:

 vehicle = vehicles[i]

 customers, customer_pool = get_customers(vehicle.position, customer_pool, k)

 customers_list.append(customers)

 # best_route,pheromone_matrix,distance_matrix,waypoints,route_nodes

 plot_route(customers, vehicle.position, None) # give the user the points

 best_route = get_user_route() # the user chooses the route

 best_route.insert(0,len(best_route)) # add the vehicle as the first stop in the route

 _,distance_matrix,nodes = initialize_ACO(k, customers, vehicle.position.copy(),1/65)

 route_dist = route_length(best_route, distance_matrix)

 # best_route,_,_,_,nodes,route_length = ACO(k,customers,vehicle.position.copy(),ACO_ants,ACO_al

pha,ACO_beta)

 total_distance[i] += route_dist

 plot_route(customers, vehicle.position, best_route)

 nodes = order_nodes(best_route, nodes)

 vehicle.route=nodes.copy()

 nodes.pop(0) # remove the current vehicle position

 vehicle.update_route(nodes)

 vehicles[i] = vehicle

 ## initialize metrics

 mean_t = 0

 mean_t_samples = 10

 customers_picked = [5,5]

 ################### MAIN LOOP ###################

 xx = []

 customer_pool_size = []

 for t in list(range(simulation_time)):

 ## add new random customer every customer_freq timesteps

 if t % customer_freq == 0:

 cust = create_customer()

 customer_pool.append(cust)

 customer_pool_global.append(cust)

 ## update vehicles

 for i in [0,1]:

 vehicle = vehicles[i]

 ## 1. move

 waypoint_flag = vehicle.move()

 ## If waypoint reached, change destination

 list_flag = False

 if waypoint_flag:

 list_flag = vehicle.update_destination()

 ## If end of current customer list, find new customers

 if list_flag:

 # get customers

 customers, customer_pool = get_customers(vehicle.position, customer_pool, k)

 customers_list.append(customers)

 mean_t += add_waiting_time(customers)

 mean_t_samples += 5

 customers_picked[i] += 5

 # best_route,pheromone_matrix,distance_matrix,waypoints,route_nodes

 print('Iteration %d/%d' % (t, simulation_time))

 plot_route(customers, vehicle.position, None) # give the user the points

 best_route = get_user_route() # the user chooses the route

 best_route.insert(0,len(best_route)) # add the vehicle as the first stop in the route

 _,distance_matrix,nodes = initialize_ACO(k, customers, vehicle.position.copy(),1/65)

 route_dist = route_length(best_route, distance_matrix)

 # best_route,_,_,_,nodes,route_length = ACO(k,customers,vehicle.position.copy(),ACO_ant

s,ACO_alpha,ACO_beta)

 total_distance[i] += route_dist

 plot_route(customers, vehicle.position, best_route)

 nodes = order_nodes(best_route, nodes)

 vehicle.route=nodes.copy()

 nodes.pop(0) # remove the current vehicle position

 vehicle.update_route(nodes)

 vehicles[i] = vehicle

 # print('Vehicle %d end of route. Updating...' % i)

 # customers, customer_pool = get_customers(vehicle.position, customer_pool, k)

 # mean_t += add_waiting_time(customers)

 # mean_t_samples += 3

 # # get new customers and route and update

 # best_route,_,_,_,nodes,route_length = ACO(k,customers,vehicle.position.copy(),ACO_ant

s,ACO_alpha,ACO_beta)

 # total_distance[i] += route_length

 # #plot_route(customers, vehicle.position, best_route)

 # vehicle.route=nodes.copy()

 # nodes.pop(0) # remove the current vehicle position

 # vehicle.update_route(nodes)

 vehicles[i] = vehicle

 # if t<=120:

 # if t%2==0:

 # plot_routes(vehicles,t,customer_pool)

 # increase waiting time of customers in pool

 for i in range(len(customer_pool)):

 customer_pool[i][-1] += 1

 if t % 10 == 0:

 xx.append(t)

 customer_pool_size.append(len(customer_pool))

 pass

 # fig, ax = plt.subplots()

 # plt.plot(xx, customer_pool_size)

 print('Mean waiting time: %.2f u' % (mean_t*1.0/mean_t_samples))

 print('Total distance traveled by the vehicles: %r' % total_distance)

 print('Customers picked by vehicles: %r' % customers_picked)

#script use for plotting the routes obtained by the ACO

#A plot with numbered nodes is displayed:

 #Triangles represent pick-up locations.

 #Stop signs represent drop-off locations.

 #The vehicle (starting point) is represented with a diamond.

import matplotlib.pyplot as plt

def plot_route(customers, car_position, route):

 ## Extract initial and final points from customers

 initial_nodes = [] # [x,y]

 final_nodes = [] #[x,y]

 for customer in customers:

 initial_nodes.append(customer[0:2])

 final_nodes.append(customer[2:4])

 ## Create list with all nodes for route and rearrange

 if route != None:

 nodes = []

 nodes.extend(initial_nodes)

 nodes.extend(final_nodes)

 nodes.append(car_position)

 nodes_arranged = []

 for node_idx in route:

 nodes_arranged.append(nodes[node_idx])

 nodes_arranged_plot = [[],[]]

 for i in range(2*len(final_nodes)+1):

 nodes_arranged_plot[0].append(nodes_arranged[i][0])

 nodes_arranged_plot[1].append(nodes_arranged[i][1])

 fig, ax = plt.subplots()

 ## plot nodes

 plt.gca().set_prop_cycle(None) # reset color cycle

 for i in range(len(initial_nodes)):

 plt.scatter([initial_nodes[i][0]], [initial_nodes[i][1]],

 marker='^',s=105)

 if route == None:

 plt.text(initial_nodes[i][0], initial_nodes[i][1], s=str(i))

 plt.gca().set_prop_cycle(None) # reset color cycle

 for i in range(len(final_nodes)):

 plt.scatter([final_nodes[i][0]], [final_nodes[i][1]],

 marker='8',s=105)

 if route == None:

 plt.text(final_nodes[i][0], final_nodes[i][1], s=str(i+5))

 ## plot car

 plt.scatter([car_position[0]], [car_position[1]],

 marker='d', s=105, c=0)

 ## plot route

 if route != None:

 plt.plot(nodes_arranged_plot[0], nodes_arranged_plot[1],

 '--', c='chocolate', zorder=-5)

 plt.xlim([-10,10])

 plt.ylim([-10,10])

 plt.show()

if __name__ == "__main__":

 customers=[[1,2,3,4,5],[6,7,8,9,0],[12,0,13,9,1]]

 route = [6,0,3,1,4,2,5]

 plot_route(customers, [5.5, -1], route)

#script use for plotting the routes and customer pool for making the simulation time-lapse

 #Customers in the pool are represented with grey dots

 #Vehicle position is represented with an X and its allocated customers and traveled route is...

 #...represented in the same color (red/blue)

import matplotlib.pyplot as plt

def plot_routes(vehicles,t,customer_pool):

 for cust in customer_pool:

 plt.scatter(cust[0], cust[1],color='gray')

 plt.scatter(cust[2], cust[3],color='gray')

 for (i,c) in zip([0,1],['b','r']):

 j=1

 for coord in vehicles[i].route:

 plt.scatter(coord[0], coord[1],color=c)

 plt.scatter(vehicles[i].position[0],vehicles[i].position[1], marker='x',color=c,s=200)

 plt.text(coord[0]+0.2, coord[1], '{}'.format(j))

 j+=1

 missing=len(vehicles[i].current_route)+1 #current route doesn't consider current_destination

 completed=vehicles[i].route[0:len(vehicles[i].route)-missing]+[vehicles[i].position]

 x=[]

 y=[]

 for pos in completed:

 x.append(pos[0])

 y.append(pos[1])

 plt.plot(x,y,c=c)

 plt.title('t={}'.format(t))

 plt.xlim([-10,10])

 plt.ylim([-10,10])

 #plt.savefig(f'routes/{t}.png', dpi = 1000)

 plt.show()

#The class vehicle is defined:

 #ATRIBUTES:

 # position

 # current destination

 # current route: route already traveled

 # route: route assigned

 #METHODS:

 # move

 # update destination

 # update route

import numpy as np

class Vehicle(object):

 ## Vehicle parameters

 v = 0.87 # vehicle speed, we need to find a reasonable value

 def __init__(self):

 self.position = [0, 0] # vector with vehicle position

 self.current_destination = [0, 0]

 self.current_route = [] # [[wpt1_x,wpt1_y], [wpt2_x,wpt2_y], ...]

 self.route=[]

 def move(self):

 """

 'move' moves the vehicle one step towards the current destination.

 Returns

 reached_destination_flag : BOOLEAN

 The flag will be True when the vehicle reaches the destination.

 Otherwise, it will be False.

 """

 destination = self.current_destination

 ## calculate direction

 dx = destination[0] - self.position[0]

 dy = destination[1] - self.position[1]

 dest_vector = np.array([dx,dy])

 dist = np.linalg.norm(dest_vector) # distance to the next waypoint

 u = dest_vector / dist # u is the unit direction vector

 ## avoid overshooting

 # if distance is larger than speed, advance a distance equal to speed

 # otherwise, reduce the speed to the distance

 if dist > self.v:

 vel = self.v * u

 reached_destination_flag = False

 else:

 vel = dist * u

 reached_destination_flag = True

 ## update position in x and y

 for i in [0,1]:

 self.position[i] = self.position[i] + vel[i]

 # check algorithm

 # print('New position: %r' % self.position)

 dest = np.array(destination)

 # print('New distance: %.5f' % np.linalg.norm(self.position - dest))

 return reached_destination_flag

 def update_destination(self):

 """

 update_destination sets a new current destination for the vehicle

 Returns

 end_of_route_flag : BOOLEAN

 Returns True if the end of the route is reached. Returns

 False if there are more destinations in the current route.

 """

 if self.current_route == []:

 end_of_route_flag = True

 else:

 self.current_destination = self.current_route.pop(0)

 end_of_route_flag = False

 # print('Destination reached. Moving to next waypoint: %r' % self.current_destination)

 return end_of_route_flag

 def update_route(self, new_route):

 """

 update_route sets a new route for the vehicle

 Parameters

 new_route : LIST

 New route for the vehicle.

 The format must be

 [[waypoint1_x,waypoint1_y], [waypoint2_x,waypoint2_y], ...]

 """

 self.current_route = new_route

 self.update_destination()

if __name__ == "__main__":

 import numpy as np

 car = Vehicle()

 route = [[4,5], [3,1], [3,8]]

 car.update_route(route)

 route_flag = False

 while(1):

 flag = car.move()

 if flag:

 route_flag = car.update_destination()

 if route_flag:

 print('Route finished')

 break

