ANEXO II: Manual de Usuario

El presente anexo corresponde al manual de usuario del código de programación que se ha desarrollado en Matlab® para la herramienta de monitorización térmica del proceso LMD, mediante la cual se pretende facilitar la comprensión de su funcionamiento y poder así evitar errores en su utilización. Para ello, se exponen las partes del programa, así como la descripción de las funciones que se han implementado, donde se detallan los datos de entrada y salida que son necesarios para el correcto funcionamiento de los mismos.

Empezando por las partes del programa, la primera de ellas corresponde a los **datos de entrada** donde se introduce la información necesaria para la importación y carga de datos, así como los cálculos posteriores. Concretamente, el primer paso que se lleva a cabo es la selección del Ensayo y las Pruebas que se desean importar en la siguiente parte del programa, así como la dirección correspondiente (Dir_Imp). Gracias al formato Cell por columnas que presentan estos y el resto de los parámetros, cabe la posibilidad de analizar varios registros de forma simultánea. Así, se amplían los datos para el procesamiento y se mejora la precisión de los ajustes realizados.

Posteriormente, se introducen los datos para el <u>tratamiento de las señales</u> donde se especifica la frecuencia de muestreo (fs), el tipo de ajuste (tipoAJ) y los límites de saturación (Lim_Sup y Lim_Inf). El primero de ellos corresponde al parámetro para el remuestreo de todos los registros con la misma frecuencia, mientras que el segundo resulta necesario para especificar el tipo de ajuste de registros que se desea realizar. Aquí, cabe la posibilidad de llevar a cabo un ajuste según máximos o el inicio de funcionamiento del láser, siendo esta última la opción recomendada. En cuanto a la saturación, se establece unos límites con el fin de aumentar la precisión de los instrumentos termométricos que se han empleado.

Para los cuales, hace falta especificar los <u>algoritmos internos de las cámaras termométricas</u>. Aquí, se distingue entre el modo de funcionamiento *Signal Linear Mode* y el Temprature Linear Mode de la cámara termométrica FLIR A325 G® a través del parámetro IRFormat (Tabla 18 de la Memoria). En el primero de los modos, se especifican los parámetros de calibración (B, R, F), compensación (J0, J1, K1, K2) y respuesta espectral del objeto (alpha1, alpha2, beta1, beta2, X). Para el Temperture Linear Mode en cambio, los parámetros que se especifican son el Rango y su alineamiento (IRAlignment), así como el Offset. El valor del este último es extraído de los ajustes de la cámara (*QueryCase, Limits*) al realizar la conexión por Matlab®.

Para terminar con los datos de entrada, se establecen los parámetros para el <u>procesado de las señales</u>. Primero, se selecciona el punto de la pieza que se desea procesar, para lo cual cabe la posibilidad de especificar las coordenadas en el plano XZ con los parámetros $fP_m y cP_m y cP_m$, o los pixeles con $fP_p x y cP_p x$. En este último caso, los pixeles que se pueden seleccionar de la cámara FLIR A325 G^* depende de su resolución $(320 \times 240 \ px)$, mientras que en la OPTRIS PI 05 M^* es dependiente del mallado virtual que se establece sobre las paredes fabricadas por LMD con la discretización que se haga. Esto es determinado por los parámetros dH_Malla , que corresponden al número

de punto que serán extraídos en la dirección horizontal y vertical respectivamente. Por consiguiente, se recomienda una discretización suficientemente grande como para apreciar pequeñas variaciones de temperaturas, y suficientemente pequeña como para un procesado ágil que no suponga un coste computacional elevado. A modo de ejemplo, la discretización que se propone para unas paredes de $40 \times 4 \ mm$ es de $150 \times 50 \ px$.

Asimismo, se introducen los parámetros del proceso LMD con el fin de establecer cierta relación entre las imágenes obtenidas de las cámaras y el registro de posición del robot ABB. A pesar de haber más parámetros, los más relevantes para la aplicación del procesado de señales son la longitud de las paredes (L_p), la altura entre capas (H_c) y la velocidad de avance del robot (v_r). Siendo esto así, los siguientes datos de entrada que se introducen son las correspondientes al software PIX Connect®. Entre estos destaca la relación de píxel (Rpx), es decir, la relación que guarda un pixel con un milímetro real en el espacio (px/mm). Además, se tienen la velocidad de avance por píxeles (v_px) en unidades de px/s, y las variables que definen los perfiles de temperatura (P1, P2, Np). Estos últimos son extraídos directamente desde los ajustes del software mencionado, por lo que no se ha requerido de cálculos adicionales como para la estimación de Rpx y v_px. Por último, se especifica el número de pasadas en común que se detectan visualmente (Npas). Se trata de un parámetro con la única intención de centrar la atención en una de las pasadas al realizar la combinación de cámaras para la ampliación del rango de temperaturas.

En resumen, los datos de entrada que se introducen en esta primera parte son los que se muestran en la siguiente tabla donde se detalla el formato y las unidades de cada una de ellas, así como una descripción de las mismas:

1. Tabla del Anexo II: Datos de entrada del código de programación de Matlab® para la monitorización térmica del proceso Laser Metal Deposition (LMD).

Símbolo	Formato	Unidades	Descripción
Dir_Imp	1x1 double	-	Dirección de importación de datos (Directorio: 1-3)
Ensayo	1x1 double	-	Ensayo seleccionado (1-4)
Pruebas	3x1 cell	-	Prueba del ensayo seleccionado
fs	1x1 double	Hz	Frecuencia de muestreo
tipoAJ	1x1 double	-	Tipo de ajuste por máximos (1) o el inicio del láser (2)
Lim_Sup	1x3 double	°C	Límite superior del rango para saturación
Lim_Inf	1x3 double	°C	Límite inferior del rango para saturación
IRFormat	1x1 double	-	Modo de funcionamiento de la cámara FLIR A325 G®
			trabajando en Temperature Linear Mode
B, R, F	1x3 double	-	Parámetros de calibración de la cámara FLIR A325 G®
			trabajando en Signal Linear Mode
J0, J1,	1x3 double	-	Parámetros de compensación de
K1, K2			la cámara FLIR A325 G®
			trabajando en <i>Signal Linear Mode</i>
alpha1,	1x3 double	-	Parámetros de respuesta espectral del objeto
alpha2,			Para la cámara FLIR A325 G®
beta1,			trabajando en <i>Signal Linear Mode</i>
beta2,			(Spectral response parameters)
X			
Rango	2x1 cell	-	Rango de la cámara FLIR A325 G® (R0, R1 y R2)
			trabajando en <i>Temperature Linear Mode</i>

IRAlignment	1x1 double	-	Alineamiento del rango de la cámara FLIR A325 G®
			trabajando en <i>Temperature Linear Mode</i>
Offset	1x3 double	°C	Offset del alineamiento de la cámara FLIR A325 G®
			trabajando en <i>Temperature Linear Mode</i>
fP_mm	1x1 double	mm	Fila del punto seleccionado en la pared
			(Dirección Z)
cP_mm	1x1 double	mm	Columna del punto seleccionado en la pared
			(Dirección X)
fP_px	2x1 cell	рх	Fila del punto seleccionado
			en cada video IR de las cámaras
cP_px	2x1 cell	рx	Columna del punto seleccionado
			en cada video IR de las cámaras
dH_Malla	1x1 double	-	Discretización horizontal del mallado virtual
dV_Malla	1x1 double	-	Discretización vertical del mallado virtual
L_p	1x1 double	mm	Longitud de las paredes en la dirección X
H_c	1x1 double	mm	Altura entre capas
v_r	1x1 double	mm/s	Velocidad de avance del robot
Rpx	1x1 double	px/mm	Relación de píxel
v_px	1x1 double	px/s	Velocidad de avance por pixeles
P1	2x1 cell	рх	Puntos iniciales de los perfiles de temperatura
			horizontal y vertical de PIX Connect®
P2	2x1 cell	рх	Puntos finales de los perfiles de temperatura
			horizontal y vertical de PIX Connect®
Np	2x1 cell	-	Número de puntos de adquisición de los perfiles de
			temperatura horizontal y vertical de PIX Connect®
Npas	1x1 double	-	Número de pasadas en común detectadas
			visualmente para la combinación de cámaras

Una vez se introducen los datos de entrada, se establece **la importación y la carga de datos**. Primero, se importan los datos desde el directorio que se ha seleccionado anteriormente y se almacena la información en la misma carpeta donde está guardado el programa. Para ello, se hace uso de la función $f_{\rm Imp_Reg_Temperaturas}$, donde se tienen los datos de entrada que se muestran en la 2. Tabla en azul. Mediante la única ejecución de la función <code>load</code> preestablecida de Matlab® para la carga de datos y la omisión de la función anterior, se pretende evitar la importación de información repetida en caso de seleccionar la misma prueba. La razón de esto viene dada por el elevado coste computacional que supone la operación de importación, especialmente al seleccionar varios registros. Siendo esto así, la selección de una prueba diferente supone la superposición de información al sobrescribir los datos en el archivo con formato MAT que se crea en la misma carpeta. Como resultado de esta operación, se tienen las siguientes variables de salida que se muestran en verde:

2. Tabla del Anexo II: Datos de entrada de la función f_Imp_Reg_Temperaturas (Azul) y variables de salida de la operación de importación y carga de datos (Verde).

Símbolo	Formato	Unidades	Descripción	
Dir_Imp	1x1 double	-	Dirección de importación de datos (Directorio: 1-3)	
Ensayo	1x1 double	-	Ensayo seleccionado (1-4)	
Pruebas	3x1 cell	-	Prueba del ensayo seleccionado	
fP_px	2x1 cell	px	Fila del punto seleccionado	
			en cada video IR de las cámaras	
cP_px	2x1 cell	px	Columna del punto seleccionado	
			en cada video IR de las cámaras	
Nr	1x1 double	-	Número de registros importados (Pruebas)	
t_rA	Nrx1 cell	S	Tiempo de registro de posición del robot ABB	
P_rA	Nrx1 cell	mm	Puntos del registro de posición del robot ABB	
Q_rA	Nrx1 cell	-	Cuaterniones del registro de posición del robot ABB	
L_rA	Nrx1 cell	-	Funcionamiento del láser del	
			registro de posición del robot ABB	
t_pI	Nrx1 cell	S	Tiempo del pirómetro IMPAC IGAR 12-LO MB 22®	
T_pI	Nrx1 cell	°C	Temperaturas del pirómetro	
			IMPAC IGAR 12-LO MB 22®	
t_cF	Nrx1 cell	S	Tiempo de la cámara FLIR A325 G®	
S_cF	Nrx1 cell	-	Señal radiométrica media en (f_px,c_px) selecciona	
videoIR_cF	Nrx1 cell	-	Video IR de la cámara FLIR A325 G®	
	(MAT)			
t_c0	Nrx1 cell	S	Tiempo de la cámara OPTRIS PI 05 M®	
T_cO	Nrx1 cell	°C	Temperaturas máximas de la cámara OPTRIS PI 05 M®	
T_mHS_cO	Nrx1 cell	°C	Temperaturas máximas de la media móvil (3x3 px) de	
			la cámara OPTRIS PI 05 M®	
videoIR_c0	Nrx1 cell	-	Video IR de la cámara OPTRIS PI 05 M®	
	(MAT)			
tPX_cO	Nrx1 cell	S	Tiempo del software PIX Connect®	
vPX_IR	Nrx1 cell	-	Video IR del software PIX Connect®	
	(RAVI)		(Problemas para procesar en Matlab®)	
diagTT_c0	Nrx1 cell	s,°C	Diagrama t-T del software PIX Connect®	

Una vez se tengan todos los datos de entra y las variables de salida, se procede a ejecutar la parte correspondiente a los **cálculos**. Aquí, se tienen distintas funciones que se clasifican por su cometido. Para empezar, se trabaja en el <u>preprocesado de las señales</u>, donde se eliminan los posibles picos que pudieran haber al inicio de los registros procedente del ruido creado por las reflexiones. Además, se realiza la conversión de temperaturas en los registros de la cámara FLIR A325 G® aplicando los algoritmos internos (Ver 3.4.1). Para ello, se hace uso de la función f_Conversion_TTc para las temperaturas del punto seleccionado en la pared. En la 3. Tabla se muestran los datos de entrada en azul y de salida en verde de esta función, donde se detallan el formato y las unidades de cada uno de ellos:

Símbolo	Formato	Unidades	Descripción
Nr	1x1 double	-	Número de registros importados (Pruebas)
Rango	2x1 cell	-	Rango de la cámara FLIR A325 G® (R0, R1 y R2)
IRFormat	1x1 double	-	Modo de funcionamiento de la cámara FLIR A325 G®
IRAlignment	1x1 double	-	Alineamiento del rango de la cámara FLIR A325 G®
Offset	1x3 double	°C	Offset del alineamiento
S_cF	Nrx1 cell	-	Temperaturas originales de la cámara FLIR A325 G®
T_cF	Nrx1 cell	°C	Temperaturas de salida de la cámara FLIR A325 G®

3. Tabla del Anexo II: Datos de entrada (Azul) y salida (Verde) de la función f_Conversion_TTc.

Asimismo, se hace uso de la función f_TempLinearMode para todos los píxeles que forman los fotogramas de los videos IR. A diferencia de la función anterior donde la saturación se realiza posteriormente tras el ajuste, aquí se incluye dicha operación para considerar la saturación a lo largo de todo el video IR que proporciona la cámara FLIR A325 G®. Siendo esto así, se tienen los datos de entrada y salida que se muestran en la siguiente tabla:

6′ 1 1			/
	4. Tabla del Anexo II Dat	os de entrada (A	zul) y salida (Verde) de la función f_TempLinearMode.
entrada y s	anda que se maestra	ir eir id digaiei	ne table.
Ciitiada y 3	anda que se muestra	ii cii ia siguici	ite tabia.

Símbolo	Formato	Unidades	Descripción
Nr	1x1 double	-	Número de registros importados (Pruebas)
Rango	2x1 cell	-	Rango de la cámara FLIR A325 G® (R0, R1 y R2)
IRFormat	1x1 double	-	Modo de funcionamiento de la cámara FLIR A325 G®
IRAlignment	1x1 double	-	Alineamiento del rango de la cámara FLIR A325 G®
Offset	1x3 double	°C	Offset del alineamiento
Lim_Sup	1x3 double	°C	Límite superior del rango para saturación
Lim_Inf	1x3 double	°C	Límite inferior del rango para saturación
videoIR_cF	Nrx1 cell	-	Temperaturas originales de la cámara FLIR A325 G®
	(MAT)		
videoT_cF	Nrx1 cell	°C	Temperaturas de salida de la cámara FLIR A325 G®
	(MAT)		

Posteriormente, se ejecuta el <u>tratamiento de las señales</u> mediante las operaciones de remuestreo, ajuste del inicio y final, así como la saturación en los límites del rango. Para ello, se hace uso de las funciones f_Remuestreo_Total, f_Ajuste_Total, f_Final_Total y f_Saturacion_Total respectivamente, donde la ejecución se realiza de forma secuencial. Esto quiere decir que los datos de salida de uno son las entradas de la siguiente. Por consiguiente, los formatos y las unidades son invariables a lo largo de la secuencia de operaciones correspondiente al tratamiento de las señales.

Sin embargo, alguna de estas funciones requiere de parámetros de entrada adicionales para el correcto funcionamiento. Por consiguiente, se distingue entre los parámetros de entrada específicos para cada función (5. Tabla, Morado) y los genéricos que se introducen de forma secuencial en todas las funciones (5. Tabla, Azul). Dentro de los datos de entrada particulares destacan el número de registros (Nr), la frecuencia de muestreo (fs), el tipo de ajuste (tipoAJ) y el rango seleccionado (Rango) junto a su límite superior (Lim Sup) e inferior (Lim Inf).

En cuanto a los datos de salida, se distinguen los correspondientes al ajuste con final común de la función f_Final_Total (5. Tabla, Verde) y los saturados procedentes de f_Saturacion_Total (5. Tabla, Naranja). La razón de esta distinción viene determinada por la necesidad de introducir en las funciones posteriores. En el caso de las variables ajustadas con final común, son utilizadas para el procesado de señales, mientras que las saturadas se usan para la mera ilustración de las gráficas finales.

En la siguiente tabla se detallan cada uno de los datos de entrada y salida de la secuencia de operaciones mencionada:

5. Tabla del Anexo II: Datos de entrada particulares (Morado) y genéricos (Azul), y datos de salida de las funciones f_Final_Total (Verde) y f_Saturacion_Total (Naranja).

Símbolo	Formato	Unidades	Descripción
Nr	1x1 double	-	Número de registros importados (Pruebas)
fs	1x1 double	Hz	Frecuencia de muestreo para
			la función f_Remuestreo_Total
tipoAJ	1x1 double	-	Tipo de ajuste (1-2) para
			la función f_Ajuste_Total
Rango	2x1 cell	-	Rango de la cámara FLIR A325 G® (R0, R1 y R2) para la
			<pre>función f_Saturacion_Total</pre>
Lim_Sup	1x3 double	°C	Límite superior del rango para saturación para
			la función f_Saturacion_Total
Lim_Inf	1x3 double	°C	Límite inferior del rango para saturación para
			la función f_Saturacion_Total
t_rA	Nrx1 cell	S	Tiempo de registro de posición del robot ABB
P_rA	Nrx1 cell	mm	Puntos del registro de posición del robot ABB
L_rA	Nrx1 cell	-	Funcionamiento del láser del
			registro de posición del robot ABB
t_pI	Nrx1 cell	S	Tiempo del pirómetro IMPAC IGAR 12-LO MB 22®
T_pI	Nrx1 cell	°C	Temperaturas del pirómetro
			IMPAC IGAR 12-LO MB 22®
t_cF	Nrx1 cell	S	Tiempo de la cámara FLIR A325 G®
T_cF	Nrx1 cell	°C	Temperaturas de salida de la cámara FLIR A325 G®
videoT_cF	Nrx1 cell	°C	Video IR de salida de
	(MAT)		la cámara FLIR A325 G®
HS_cF	Nrx1 cell	°C	Temperaturas del HS de la cámara FLIR A325 G®
t_c0	Nrx1 cell	S	Tiempo de la cámara OPTRIS PI 05 M®
T_cO	Nrx1 cell	°C	Temperaturas máximas de la cámara OPTRIS PI 05 M®
videoIR_c0	Nrx1 cell	-	Video IR de la
	(MAT)		cámara OPTRIS PI 05 M®
diagTT_c0	Nrx1 cell	s,°C	Diagrama $t-T$ de la cámara OPTRIS
_		•	procedente del software PIX Connect®

trA_FinTot	Nrx1 cell	S	Tiempos ajustados con final común del robot ABB
PrA_FinTot	Nrx1 cell	mm	Posiciones ajustadas con final común del robot ABE
LrA_FinTot	Nrx1 cell	-	Funcionamiento del láser ajustado
			con final común del robot ABB
tpI_FinTot	oI_FinTot Nrx1 cell s		Tiempos ajustados con final común
			del pirómetro IMPAC IGAR 12-LO MB 22®
TpI_FinTot	Nrx1 cell	$^{\circ}C$	Temperaturas ajustadas con final común
			del pirómetro IMPAC IGAR 12-LO MB 22®
tcF_FinTot	Nrx1 cell	S	Tiempos ajustados con final común
			de la cámara FLIR A325 G®
TcF_FinTot	Nrx1 cell	°C	Temperaturas ajustadas con final común
			de la cámara FLIR A325 G®
VcF_FinTot	Nrx1 cell	°C	Video IR ajustadas con final común
	(MAT)		de la cámara FLIR A325 G®
HScF_FinTot	Nrx1 cell	°C	Temperaturas saturadas del HS
			de la cámara FLIR A325 G®
tcO_FinTot	Nrx1 cell	S	Tiempos ajustados con final común
	•		de la cámara OPTRIS PI 05 M®
TcO_FinTot	Nrx1 cell	°C	Temperaturas ajustadas con final común
_			de la cámara OPTRIS PI 05 M®
VcO FinTot	Nrx1 cell	_	Video IR ajustado con final común
_	(MAT)		de la cámara OPTRIS
DcO FinTot	Nrx1 cell	s,°C	Diagramas $t-T$ ajustadas con final común
_	TUNE COM	5, 0	de la cámara OPTRIS PI 05 M® procedente
			del software PIX Connect®
trA sat	Nrx1 cell	S	Tiempos saturados del robot ABB
PrA sat	Nrx1 cell	$\frac{3}{mm}$	Posiciones saturadas del robot ABB
LrA sat	Nrx1 cell	-	Funcionamiento del láser saturado
	MIXI CEII	_	del robot ABB
tpI sat	Nrx1 cell	S	Tiempos saturados del
opi_bao	MIXI CEII	3	pirómetro IMPAC IGAR 12-LO MB 22®
TpI_sat	Nrv1 coll	°C	•
-1	Nrx1 cell	L	Temperaturas saturadas del pirómetro IMPAC IGAR 12-LO MB 22®
tcF sat	Nrv1 coll		<u> </u>
	Nrx1 cell	S	Tiempos saturados de la cámara FLIR A325 G®
TcF_sat	Nrx1 cell	°C	Temperaturas saturadas
77-T		0.0	de la cámara FLIR A325 G®
VcF_sat	Nrx1 cell	°C	Video IR saturado de
770 - T	(MAT)		la cámara FLIR A325 G®
HScF_sat	Nrx1 cell	$^{\circ}C$	Temperaturas saturadas del HS
			de la cámara FLIR A325 G®
tcO_sat	Nrx1 cell	S	Tiempos saturados de la cámara OPTRIS PI 05 M®
TcO_sat	Nrx1 cell	$^{\circ}C$	Temperaturas saturadas
			de la cámara OPTRIS PI 05 M®
VcO_sat	Nrx1 cell	-	Video IR saturado
	(MAT)		de la cámara OPTRIS PI 05 M®
DcO_sat	Nrx1 cell	s,°C	Diagramas $t-T$ saturadas de
			la cámara OPTRIS PI 05 M® procedente
			•

Para terminar, se tiene la parte para el <u>procesado de las señales</u> donde el primer paso consiste en procesar los videos IR de la cámara OPTRIS PI M® con la función f_Procesado_OPTRIS (6. Tabla).

6. Tabla del Anexo II: Datos de entrada (Azul) y salida (Verde) de la función f_Procesado_OPTRIS.

Símbolo	Formato	Unidades	Descripción
Nr	1x1 double	-	Número de registros importados (Pruebas)
Rpx	1x1 double	px/mm	Relación de píxel
P1	2x1 cell	рх	Puntos iniciales de los perfiles de temperatura
			horizontal y vertical de PIX Connect®
P2	2x1 cell	px	Puntos finales de los perfiles de temperatura
			horizontal y vertical de PIX Connect®
Ир	2x1 cell	-	Número de puntos de adquisición de los perfiles
			de temperatura horizontal y vertical
			de PIX Connect®
fP_px	2x1 cell	px	Fila del punto seleccionado
			en cada video IR de las cámaras
cP_px	2x1 cell	px	Columna del punto seleccionado
			en cada video IR de las cámaras
dH_Malla	1x1 double	-	Discretización horizontal del mallado virtual
dV_Malla	1x1 double	-	Discretización vertical del mallado virtual
trA_FinTot	Nrx1 cell	S	Tiempos ajustados con final común
			del robot ABB
PrA_FinTot	Nrx1 cell	mm	Posiciones ajustadas con final común
			del robot ABB
LrA_FinTot	Nrx1 cell	-	Funcionamiento del láser ajustado
			con final común del robot ABB
DcO_FinTot	Nrx1 cell	s,°C	Diagramas $t-T$ ajustadas con final común
			de la cámara OPTRIS PI 05 M® procedente
			del software PIX Connect®
T_RegPos_H	Nrx1 cell	$^{\circ}C$	Temperaturas de los puntos del registro de
			posición según la distribución horizontal
m Domboo W	Ni. 4 II	0.0	(sin interpolar)
T_RegPos_V	Nrx1 cell	°C	Temperaturas de los puntos del registro de
			posición según la distribución vertical
T RegPosCOM	Nrx1 cell	°C	(sin interpolar)
IntCar	MIXI CEII	C	Temperaturas de los puntos comunes
			del registro de posición en 2D según la interpolación cartesiana
V Malla IntPol	Nrx1 cell	°C	Video térmico de todos los puntos de la malla
- Marra_Introl	(MAT)	U	en 2D según la interpolación polar
T Pto IntPol	Nrx1 cell	°C	Temperaturas del punto seleccionado de la
	MINT CEII	U	malla en 2D según la interpolación polar
Xdisc cO	1xdH_Malla	mm	Discretización en X procedente del procesado
	double	110110	de la cámara OPTRIS PI 05 M®
Zdisc cO	1xdV_Malla	mm	Discretización en Z procedente del procesado
	double		de la cámara OPTRIS PI 05 M®
t rA L	Nrx1 cell	S	Tiempos del registro de posición
		5	del robot ABB procedente del procesado de la
			cámara OPTRIS PI 05 M® (filtrado)
			\

A partir del video térmico de la malla procedente de la cámara OPTRIS PI 05 M®, se lleva a cabo el procesado de los videos IR de la cámara FLIR A325 G® con el fin de obtener una discretización común. Tal y como se expone más adelante, este paso es de vital importancia para la combinación de registros procedentes de estas dos fuentes y poder así ampliar el rango de temperaturas. Para ello, se hace uso de la función f_Mallado (7. Tabla), donde se tienen los siguientes datos de entrada y salida en azul y en verde respectivamente:

7. Tabla del Anexo II: Datos de entrada (Azul) y salida (Verde) de la función f_Mallado.

Símbolo	Formato	Unidades	Descripción
Nr	1x1 double	-	Número de registros importados (Pruebas)
dH_Malla	1x1 double	-	Discretización horizontal del mallado virtual
dV_Malla	1x1 double	-	Discretización vertical del mallado virtual
fP_mm	1x1 double	mm	Fila del punto seleccionado en la pared (Dirección Z)
cP_mm	1x1 double	mm	Columna del punto seleccionado en la pared (Dirección X)
Xdisc_c0	1xdH_Mall a double	mm	Discretización en X procedente del procesado de la cámara OPTRIS PI 05 M®
Zdisc_c0	1xdV_Malla double	mm	Discretización en Z procedente del procesado de la cámara OPTRIS PI 05 M®
P1	2x1 cell	px	Puntos iniciales de los perfiles de temperatura horizontal y vertical de PIX Connect®
P2	2x1 cell	px	Puntos finales de los perfiles de temperatura horizontal y vertical de PIX Connect®
tcF_FinTot	Nrx1 cell	S	Tiempos ajustados con final común de la cámara FLIR A325 G®
VcF_FinTot	Nrx1 cell (MAT)	°C	Video IR ajustadas con final común de la cámara FLIR A325 G®
tcO_FinTot	Nrx1 cell	S	Tiempos ajustados con final común de la cámara OPTRIS PI 05 M®
VcO_FinTot	Nrx1 cell (MAT)	-	Video IR ajustado con final común de la cámara OPTRIS
V_Malla_IntPol	Nrx1 cell (MAT)	°C	Video térmico de todos los puntos de la malla en 2D según la interpolación polar
Tp_cF	Nrx1 cell	°C	Temperaturas del punto seleccionado de la malla procedente de la cámara FLIR A325 G®
VcF_Malla	Nrx1 cell (MAT)	°C	Video térmico de la malla procedente de la cámara FLIR A325 G®
Tp_c0	Nrx1 cell	°C	Temperaturas del punto seleccionado de la malla procedente de la cámara OPTRIS PI 05 M®
VcO_Malla	Nrx1 cell (MAT)	°C	Video térmico de la malla procedente de la cámara OPTRIS PI 05 M® (Igual a V_Malla_IntPol)

Gracias a la función anterior, se tiene dos mallados independientes con el mismo número de puntos de las paredes fabricadas por LMD. Por consiguiente, resulta viable combinar los registros procedentes de cada fuente para la ampliación del rango de temperaturas a través de la superposición del rango $400 \div 1200\,^{\circ}C$ de la cámara FLIR A325 G® y $900 \div 2450\,^{\circ}C$ de OPTRIS PI 05 M®.

Por lo tanto, el siguiente paso consiste en la combinación de temperaturas procedentes de las cámaras FLIR A325 G® y OPTRIS PI 05 M®. La función encargada de ello es f_Combinacion_FO, donde se opera con las temperaturas del punto de la malla seleccionado en (cP_mm, fP_mm) en base a los parámetros que se muestran en la siguiente tabla:

8. Tabla del Anexo	o II: Datos de entrada i	(Azul) v salida	(Verde) de la	función	f Combinacion	FO.
--------------------	--------------------------	-----------------	---------------	---------	---------------	-----

Formato	Unidades	Descripción
1x1 double	-	Número de registros importados (Pruebas)
1x1 double	-	Número de pasadas en común
		detectadas visualmente
1x1 double	mm	Fila del punto seleccionado en la pared
		(Dirección Z)
1x1 double	mm	Columna del punto seleccionado en la pared
		(Dirección X)
Nrx1 cell	S	Tiempos ajustados con final común
		de la cámara FLIR A325 G®
Nrx1 cell	°C	Temperaturas del punto seleccionado de la
		malla procedente de la cámara FLIR A325 G®
Nrx1 cell	S	Tiempos ajustados con final común
		de la cámara OPTRIS PI 05 M®
Nrx1 cell	°C	Temperaturas del punto seleccionado de la
		malla procedente de la cámara OPTRIS PI 05 M®
Nrx1 cell	°C	Temperaturas del punto seleccionado de la
		malla procedente de la cámara FLIR A325 G®
	1x1 double 1x1 double 1x1 double 1x1 double 1x1 double Nrx1 cell Nrx1 cell Nrx1 cell Nrx1 cell	1x1 double - 1x1 double - 1x1 double mm 1x1 double mm Nrx1 cell s Nrx1 cell °C Nrx1 cell s Nrx1 cell °C

Para terminar, se tiene la función $f_{Correccion}$ encargada de aplicar los métodos de ajuste que se han desarrollado con el fin de corregir las temperaturas de la cámara FLIR A325 G® (Ver 3.4.2). En la 9. Tabla se muestran las variables de entrada (Azul) y salida (Verde) que son necesarias para su correcto funcionamiento:

9. Tabla del Anexo II: Datos de entrada (Azul) y salida (Verde) de la función f_Correccion_Temp.

Símbolo	Formato	Unidades	Descripción
Nr	1x1 double	-	Número de registros importados (Pruebas)
tipoAJ	1x1 double	-	Tipo de ajuste (1-2)
Rango	2x1 cell	-	Rango de la cámara FLIR A325 G® (R0, R1 y R2)
			trabajando en <i>Temperature Linear Mode</i>
Lim_Sup	1x3 double	°C	Límite superior del rango para saturación
Lim_Inf	1x3 double	°C	Límite inferior del rango para saturación
fP_mm	1x1 double	mm	Fila del punto seleccionado en la pared en Z
cP_mm	1x1 double	mm	Columna del punto seleccionado en la pared en X
tpI_RemTot	Nrx1 cell	S	Tiempos remuestreados del
			pirómetro IMPAC IGAR 12-LO MB 22®
TpI_RemTot	Nrx1 cell	°C	Temperaturas remuestreados del
			pirómetro IMPAC IGAR 12-LO MB 22®
tcF_FinTot	Nrx1 cell	S	Tiempos ajustados con final común
			de la cámara FLIR A325 G®
Tp_cF	Nrx1 cell	°C	Temperaturas del punto seleccionado de la malla
			procedente de la cámara FLIR A325 G®

tcO_FinTot	Nrx1 cell	S	Tiempos ajustados con final común
			de la cámara OPTRIS PI 05 M®
Tp_c0	Nrx1 cell	°C	Temperaturas del punto seleccionado de la malla
			procedente de la cámara OPTRIS PI 05 M®
Tp_ComFO	Nrx1 cell	°C	Temperaturas del punto seleccionado de la malla
			procedente de la cámara FLIR A325 G®
Tp_CorEvar	Nrx1 cell	°C	Temperatura corregida con $arepsilon_{Var}$ (Ajuste Tc-E)
Tp_CorPol3	Nrx1 cell	°C	Temperatura corregida con $arepsilon_{Pol.3}$ (Ajuste Tc-Tp)

Dentro de esta última función, se tienen distintos algoritmos con el fin de dividir las operaciones necesarias para la corrección de temperaturas. Como las subfunciones de su interior no están al alcance del usuario, el conocimiento de las variables de entrada y salida de cada una de ellas no resulta tan importante como la función que desempeñan. Por ello, las siguientes explicaciones omiten la introducción de los datos de funcionamiento, y se centran en su cometido.

Siendo esto así, el primer paso que se lleva a cabo dentro de la función $f_Correccion_Temp$ es el del reajuste de las señales procedentes del pirómetro IMPAC IGAR 12-LO MB 22® y las cámaras termométricas FLIR A325 G® y OPTRIS PI 05 M®, ya que la posición es dependiente del punto seleccionado de la malla. Para ello, se hace uso de la subfunción $f_Reajuste_IFO$ donde se adaptan f_Ajuste_Total , f_Final_Total y $f_Saturacion_Total$ para que únicamente se consideren los registros mencionados.

Una vez se tengan los tres registros reajustados con inicios, finales y saturaciones en común dentro de la función $f_{Correccion_Temp}$, se procede a la estimación de la emisividad (ε) a través de las subfunciones $f_{Emisividad_TcE}$ y $f_{Emisividad_TcTp}$ que implementan los métodos de ajuste $T_c - \varepsilon$ y $T_c - T_p$ respectivamente. Así, la corrección de temperaturas es realizada con las subfunciones $f_{Emisividad_TcE}$ y $f_{Emisividad_TcTp}$ considerando las correspondientes emisividades que se estiman con cada método.

Finalmente, el código de programación expulsa como resultados las desviaciones máximas y medias que se producen en cada uno de los métodos de ajuste mencionados. Esto es realizado a través de la subfunción f_Desviaciones, que permite un análisis cuantitativo a posteriori. Asimismo, el programa proporciona gráficas ilustrativas sobre los resultados obtenidos, mediante las cuales el usuario es capaz de realizar un análisis cualitativo.