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The aim of this study is to measure opportunity bias in Spain. This purpose requires to analyse 

current outcomes as a function of opportunities, and how the latter affect the first. Opportunities 

are defined in terms of those circumstances of the individuals that are out of their control. It is 

crucial that these characteristics are exogenous, which we ensure by using information of the 

individual and her household when she was around 14 years old. The variation in educational 

opportunities is determined by circumstances in an 80%, mainly due to family origin. The share 

is between 30 and 45% for labour situation and hourly wage. Labour market gaps are partly 

shaped by family origin, but regional differences have the largest impact. In 2019, more than 

half income inequality is generated by inequality of opportunity, a share that has steadily 

increased since 2004.  

 

Keywords: Inequality, inequality of opportunity, social justice, labour market, education. 
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1. Introduction 

Spain has one of the largest levels of inequality in Europe. In 2019, it was higher than almost 

any other EU country, including the Mediterranean ones, the only exceptions were Bulgaria, 

Lithuania, Latvia and Romania, according to Eurostat1. The Gini coefficient increased between 

2002 and 2016. Since 2017 it decreased, but inequality has not yet diminished enough to reach 

the levels prior to the Great recession, as it can be seen in Figure 1. In addition, it can be 

expected that gaps will increase again due to the current economic crisis generated after the 

outbreak of COVID-19. In this setting, our research focuses on a specific part of the disparities, 

the ones caused by characteristics of the individual that are out of their control. We analyse 

Spanish inequality of opportunity in 2019 by quantifying the impact and relevance of several 

circumstances on a set of outcomes related to the individuals’ labour market performance. 

 

Recent literature has studied inequality as being the result of two components, one related to 

effort and autonomous decisions of the individual and the other determined by circumstances 

out of their control (Roemer, 1993 and 1998; Van de gaer, 1993). This last component is 

inequality of opportunity (IO), which is the fraction of inequality that offsets social justice: if 

inequality of opportunity dominates, outcomes are less linked to skills, merit or effort and are 

a result of origin and family background. Additionally, although traditional research does not 

agree on whether the effects of inequality are good or bad for economic performance, newer 

investigations have found that the opportunities component is clearly negative for economic 

growth and efficiency (Marrero and Rodríguez, 2013 and 2019; Bradbury and Triest, 2016). 

Spain is found to be one of the European countries with the highest levels of IO (Palomino et 

al., 2019; Marrero and Rodríguez, 2012; Rodríguez, 2008). Furthermore, inequality of 

opportunity is increasing in this country. There is empirical evidence that social mobility has 

diminished in recent years, particularly for some demographic groups (Esping-Andersen et al., 

 
1 https://ec.europa.eu/eurostat/databrowser/view/ILC_DI12__custom_1138823/default/table  

https://ec.europa.eu/eurostat/databrowser/view/ILC_DI12__custom_1138823/default/table
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2020; Cantó and Ruiz, 2015). According to an OECD report (2018)2, income mobility in Spain 

is low both at the top and bottom parts of the distribution, and it has been shrinking since the 

1990s.  

Being able to identify and quantify inequality of opportunity and its drivers allows for more 

efficient public policies aimed at fostering social mobility. High levels of intergeneration 

transmission are related to lower levels of participation, life satisfaction and well-being and 

government trust (OECD, 2018). In addition, measuring IO is key to policies aimed at fostering 

social justice, as circumstance-based inequality is undoubtedly seen as unfair. In addition, if 

IO was the dominant component of overall inequality, its levels would have a negative impact 

on economic performance.  

The aim of this study is to contribute into the literature of IO both by using an innovative 

methodology, created by Herrero and Villar (2018 and 2020), and by providing a dynamic 

study of opportunity bias importance using the most recent available data in Spain. We analyse 

current outcomes as a function of exogenous opportunities, and quantify how the latter affect 

the first. We start by measuring IO in a set of related labour market outcomes, and then, we 

compute its relevance and evolution in overall income inequality.  

Regarding our first contribution, we use the opportunity advantage index developed by Herrero 

and Villar to compare distributions in terms of relative advantages. By means of this procedure, 

we quantify the impact of circumstances on three outcomes that are related to the labour market 

and essential for individual chances in life. We find that 80% of the variation in educational 

opportunities is determined by circumstances, this share is between 30 and 45% for labour 

situation and hourly wage. Labour market gaps are partly shaped by family origin, but regional 

differences are also large and significant.  

For the second, we measure the importance of IO in Spain in 2019, the most recent data, and 

we compare it to 2011. We find that circumstances of the individual when she was young 

determine more than 50% of their current level of income. This share has steadily increased 

since 2004, as we can conclude by comparing our results with the study of Marrero and 

Rodríguez (2012). Household origin and background are the main source of this kind of 

inequality.  

This paper is structured as follows. First, we describe and present the data and the set of 

circumstances used in the study.  Then, we split the paper into two parts. Section 3 is devoted 

to the drivers of IO on their impact on three outcomes. We introduce the methodology used, 

describe the outcomes and present the main results. The second part of the analysis is presented 

in Section 4, where we measure the relevance of IO on overall inequality. This section includes 

its own methodology and the second set of results. Finally, we summarize our main findings 

and conclude.  

 

 
2 OECD (2018), A Broken Social Elevator? How to Promote Social Mobility, OECD Publishing, 

Paris, https://doi.org/10.1787/9789264301085-en 

https://doi.org/10.1787/9789264301085-en
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2. Data 

We use individual microdata from the 2011 and 2019 Survey on Income and Living Conditions 

(SILC) of the Spanish Statistical Institute. This is a yearly database that complies data on 

income and living conditions by means of household interviews, combined with income 

administrative data. Both waves include a specific module devoted to analyse intergenerational 

poverty transmission with information about the conditions of the individuals and the 

characteristics of their households when they were around 14 years old. This specific module 

is included in the SILC every six to eight years. Using it, we are able to generate a rich dataset 

including data on individual’s exogenous circumstances, which allows us to precisely estimate 

inequality of opportunity in Spain.  

Our study analyses nowadays IO. Therefore, we use 2019 data throughout all the research. 

After presenting current results, we incorporate information from 2011 to measure the 

evolution of inequality of opportunity during this period.  

Focusing on 2019, the original database included 39,852 observations. For our analysis we 

select individuals between 25 and 59 years old3, for whom the SILC includes information on 

the background circumstances, resulting in a sample of 17,615 observations from 10,459 

households.  

Our first goal is to understand how much of the labour market outcomes of an individual are 

determined by their circumstances, i.e., characteristics out of their control. For the first part of 

our study, these will be gender, the region in Spain where the individual lives4 and the family 

economic background when she was 14 years old. This last variable is discrete and includes 

six categories regarding the economic situation of the household when the individual was a 

teenager, ranking from very bad to very good5. The distribution of these circumstances among 

the Spanish population according to our data can be found in Table 1.  

Table 1. Circumstances used for measuring the divers of IO 

  N Frequency 

Gender Men  

Women 

11,370,081 

11,362,129 

50.02% 

49.98% 

Region Andalusia 

Aragón 

Asturias 

Canary Islands 

Cantabria 

Castilla León 

Castilla Mancha 

Catalonia 

Extremadura 

Galicia 

Balearic Islands 

4,149,569 

617,782 

475,675 

1,154,364 

274,560 

1,084,685 

980,260 

3,657,682 

504,277 

1,273,962 

629,320 

18.25% 

2.72% 

2.09% 

5.08% 

1.21% 

4.77% 

4.31% 

16.09% 

2.22% 

5.60% 

2.77% 

 
3 We have also discarded observations from Ceuta and Melilla, the two Spanish autonomous cities, as the number 

of observations for these regions is very small. 
4 The SILC database does not include information on the region of birth. A robustness check for this issue can be 

found on Annex A using the Spanish Labour Force Survey.  
5 The information in this variable is the answer to the question “What was your economic situation when you were 

around 14 years old?”. The answer to this question might be subjective. In further steps of this research, we will 

repeat, as a robustness check, the same analysis with other variables that are more objective. 
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Table 1. Circumstances used for measuring the divers of IO 

Rioja 

Madrid 

Murcia 

Navarre 

Basque Country 

C. Valenciana 

148,858 

3,319,913 

738,506 

308,965 

1,005,054 

2,408,778 

0.65% 

14.60% 

3.25% 

1.36% 

4.42% 

10.60% 

Family 

Background 

Very Bad 

Bad 

Moderately Bad 

Moderately Good 

Good 

Very Good 

500,246 

1,797,331 

3,552,661 

8,882,694 

6,811,721 

598,012 

2.20% 

7.91% 

15.63% 

39.08% 

29.97% 

2.63% 

Total  22,732,210  

We link these circumstances with three relevant outcomes for the individuals’ performance in 

the labour market. These are the highest attained level of studies, labour situation and hourly 

wage. All are presented as categorical variables in four-level intervals. For studies we use Less 

than secondary, Secondary, Post-secondary and Superior. For labour situation: Long term 

unemployment (more than 12 months), Short term unemployment (up to 12 months), 

Temporary contract and Indefinite contract. Finally, hourly wage is a continuous variable that 

we transform into categorical, so it is comparable with the others. We do so by setting the 

thresholds at the sample mean (11.3€/hour) and at the mean of each of the population subgroups 

obtained from dividing the society into those above and below the mean (18.8€/hour and 

6.6€/hour, respectively). Using these three values we obtain four categories for the hourly wage 

variable. This procedure minimizes the error introduced when substituting a continuous 

distribution by a discrete variable with a limited number of intervals, as proposed by Esteban, 

Gradín and Ray (2006).  

After quantifying and understanding the drivers of opportunity biases in the three mentioned 

outcomes, the second objective of this study is to measure what part of overall inequality is 

due to inequality of opportunity (IO). For this part, our variable of interest is household income, 

which includes all sources of income, adjusted by the number of household members using the 

OECD-modified equivalent scale. In this section, due to its methodology, we are able to 

increase the detail of family background circumstances by including a wide range of relevant 

and exogenous variables related to the situation of the individual and her household when she 

was young. With this dataset we are able to characterize in high detail individuals’ origin and 

background. The description of the extra6 circumstances can be found in the next table.  

Table 2. Circumstances used for quantifying the relevance of IO on total inequality 

  N Frequency 

Parental education Secondary or less 

Post-secondary 

Superior 

15,766,553 

2,792,235 

3,368,037 

69.36% 

12.28% 

14.82% 

Parental occupation Not working 837,017 3.68% 

 
6 We include extra variables because the procedure used to estimate the importance of IO on total inequality allows 

for a lower number of observations in each cell generated by crossing all the circumstances. In order to have more 

individuals per cell, in the first part we summarize family background information in a unique variable. See the 

methodological sections 3.1 and 4.1 for more detail.  
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Table 2. Circumstances used for quantifying the relevance of IO on total inequality 

Low skilled 

Middle skilled 

High skilled 

2,479,912 

14,341,340 

4,312,795 

10.91% 

63.09% 

18.97% 

Parental ethnicity At least one foreign-born 

At least one foreign-born (EU) 

All Spanish 

2885741 

919403 

18,213,195 

12.69% 

4.04% 

80.12% 

Type of family Lived with both parents 

Otherwise 

19,968,136 

2,764,074 

87.84% 

12.16% 

Number of siblings None 

One or two siblings 

More than 3 

4,912,830 

13,479,329 

3,661,557 

21.61% 

59.30% 

16.11% 

Did the mother 

work? 

No 

Yes 

14,364,957 

8,367,253 

63.19% 

36.81% 

Number of 

inhabitants 

Large num. inhabitants 

Med num. inhabitants 

Small num. inhabitants 

8,243,592 

8,025,974 

5,860,068 

36.26% 

35.31% 

25.78% 

Total  22,732,210  

3. The drivers of inequality of opportunity 

The first goal of our analysis is to understand the drivers of inequality of opportunity. This is 

done by using an innovative methodology, developed by Herrero and Villar (2020), devoted to 

analyse opportunity advantages. One of the contributions of their approach is that it offers a 

relative and precise quantitative evaluation of the advantages and disadvantages of population 

subgroups in terms of opportunities. We apply this method to a diverse set of outcomes related 

to individuals’ labour market performance. 

The most well-known definition of inequality of opportunity among economists was proposed 

by Roemer (1993; 1998) who defined outcomes as the result of two components, effort and 

opportunity. According to that definition, the first one includes all that refers to agents’ external 

circumstances, given at birth or at a young age, and thus, out of their control. The second is 

related to responsibility and autonomous choices of individuals7. 

Roemer’s characterisation considers that there is equality of opportunity if all individuals who 

exert the same degree of effort obtain the same level of outcome. In other words, same effort 

should lead to the same results, independently of individuals’ origin. This is known as the ex-

post approach. Van de gaer (1993) proposed an alternative view: there is equality of 

opportunity if the opportunity set available to all individuals is independent of their initial 

circumstances. This is the ex-ante approach, the one we adopt in this study. Following Van de 

gaer theorization, by dividing the population into subgroups defined by exogenous 

circumstances, we can measure the impact of inequality of opportunity as the between-group 

differences in each of the studied outcomes. 

 
7 Nevertheless, effort is very difficult to measure and can be highly related to circumstances. In addition, other 

unobservables, like luck, also play a role and can influence effort. This is why we focus our study on analysing 

the impact of circumstances, and we don’t try to measure or quantify effort. Specifically, we study the overall 

effect of circumstances which includes the direct and indirect effect (the impact of circumstances through “effort” 

and other unobservables, like luck, etc.). 
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We focus on three outcomes, education levels, job status, in terms of type of contract and 

duration of unemployment, and hourly wage. Empirical evidence finds a strong relation 

between the level of studies and labour market outcomes. Measuring the importance of 

circumstances in these three variables provides an idea of the impact of inequality of 

opportunity on labour market differences.  

Previous literature concludes that circumstances play an important role in Spain. Choi et al. 

(2017) find that inequalities in educational attainment generated by socioeconomic 

circumstances, gender and place of birth originate at lower educational levels in Spain. Esping-

Andersen et al. (2020) analyse whether the social class of individuals, measured in terms of 

occupational positions, is more influenced by their skills or by their family background. They 

compare several countries and find that Spain and Italy are the two places where the impact of 

social origin in determining access to a high social position is the largest. Family origin and 

social environment have also gained relevance in the allocation of people’s chances in life, 

reducing social mobility. A fact that is specially reflected in the social structure of 

unemployment and the distribution of its social costs (Gorjón, de la Rica and Villar, 2020).  

Moreover, Herrero, Villar and Soler (2018) apply the opportunity advantage index on Spanish 

income distributions before, during and after the 2008 economic crisis. Despite finding large 

regional differences, they conclude that overall, in 2016, Spain had 15% less income 

opportunities than before the recession and the reduction on employment opportunities was of 

20%.  

By analysing our three labour market outcomes we contribute to IO research in Spain, 

particularly by applying a novel procedure, the opportunity advantage index. In the next section 

we present this innovative methodology, and after that, our results.  

3.1 Methodology 

Herrero and Villar (2018; 2020) approach offers a formal relative measure to rank and compare, 

in a complete and cardinal way, outcome distributions in terms of opportunity advantages. 

Specifically, it divides the population into subgroups and measures the probability of a random 

individual in a subgroup to obtain higher outcomes than another random individual in a 

different subgroup. The method results in a precise indicator that attaches a value to each 

distribution that is proportional to the likelihood of getting higher outcomes.  

As mentioned, the key element that allows this indicator to be used as a measure of opportunity 

inequality is the fact that subgroups are defined in terms of circumstances, which are, by 

definition, out of the control of the individual. Exogeneity is essential as it allows us to quantify 

the extent to which current outcomes are determined by characteristics of individuals that, in a 

setting of equality of opportunity, would be independent of the outcomes. 

We use the opportunity advantage index in its discrete form, as the three labour market 

outcomes that we study are categorical. In this way, we obtain a number for each subgroup that 

indicates how many opportunities the subgroup has, relative to a reference group. This 

valuation is calculated as follows: 
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     𝜑𝑖 =  
∑ 𝑞𝑖𝑗𝑗≠𝑖 𝜑𝑗

∑ 𝑞𝑗𝑖𝑗≠𝑖
     (1) 

Where 𝜑𝑖 represents the valuation of subpopulation 𝑖, defined by exogenous circumstances. 

Then, the numerator represents the overall advantage of 𝑖 over 𝑗, 𝑞𝑖𝑗, adjusted by the valuation 

of subpopulation 𝑗, 𝜑𝑗. The denominator is a proportionality degree equal to the overall 

disadvantage of 𝑖 over 𝑗. Overall advantages and disadvantages are calculated comparing 𝑖 and 

𝑗 distributions: 

𝑝𝑖𝑗 = 𝑎𝑖𝑧(𝑎𝑗(𝑧−1) + ⋯ + 𝑎𝑗0) + 𝑎𝑖(𝑧−1)(𝑎𝑗(𝑧−2) + ⋯ + 𝑎𝑗0) + ⋯ + 𝑎𝑖1𝑎𝑗0 

𝑞𝑖𝑗 = 𝑝𝑖𝑗 + 
𝑒𝑖𝑗

2
  

In the first formula 𝑎𝑖𝑧 represents the share of individuals in subpopulation 𝑖 with level 𝑧 of the 

outcome we evaluate. For example, if we divide the population into binary gender subgroups, 

women (𝑖) and men (𝑗), and we want to evaluate the level of studies measured in the four 

mentioned categories, 𝑧 would be equal to 4 and  𝑎𝑖𝑧 would be the proportion of women having 

superior studies and 𝑎𝑖(𝑧−1) would be the proportion of women having post-secondary 

education. Similarly, 𝑎𝑗(𝑧−1) would be the proportion of men having post-secondary education 

and 𝑎𝑗0 would be the proportion of men having less than secondary education. This way, in the 

expression above, the overall advantage of women over men, 𝑞𝑖𝑗, is obtained by calculating 

how often a woman obtains a higher level of studies than a man, plus half of the probability 

that a woman and a man obtain the same level of studies, 
𝑒𝑖𝑗

2
8.  

The summatory in equation (1) is there to indicate comparison between more than two 

subgroups. When there are multiple subpopulations, the procedure is repeated to all pair-wise 

comparisons and solved altogether, using consistency and proportionality requirements. See 

Herrero and Villar (2020) for more detail9.  

We first apply Herrero and Villar’s index into the three sets of circumstances: gender (2), 

region (17) and family background (6) and present a description of subgroup advantages and 

disadvantages. Once we cross these characteristics, we obtain 204 cells (2x17x6)10. Then, we 

attach a valuation based on the indicator to each of these cells for the three outcomes of interest: 

level of studies, labour situation and hourly wage. Doing a cell-based analysis requires the 

number of cells to be limited, in order to have enough information per cell. This is the reason 

why we use a unique variable summarizing family background, instead of using a larger and 

more detailed set of variables. 

The purpose of the construction of this cells-dataset is to be able to estimate the relevance of 

each circumstance on the index.  We run OLS regressions where the dependent variable is each 

of the three indexes, measured in these 204 cells, and the independent variables are the 

 
8 The probability of an individual in 𝑖 obtaining the same outcome level as an individual in 𝑗 is the same for both 

subgroups: 𝑒𝑖𝑗 = 𝑒𝑗𝑖. As 𝑝𝑖𝑗 + 𝑝𝑗𝑖 + 𝑒𝑖𝑗 = 1, we can calculate 𝑞𝑖𝑗 = 𝑝𝑖𝑗 +
𝑒𝑖𝑗

2
, and thus, 𝑞𝑖𝑗 + 𝑞𝑗𝑖 = 1. 

9 An algorithm for the computation of the Opportunity advantage index is freely provided by Ivie. 

https://web2011.ivie.es/balanced-worth/  
10 Two cells are empty for level of studies and labour situation and four cells are empty for hourly wage. 

https://web2011.ivie.es/balanced-worth/
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circumstances. This analysis allows us to check whether there is a relation between 

circumstances and opportunity biases and which associations are the most important. We also 

want to see whether the opportunity bias in the level of studies affects the labour situation 

outcome, and if these two have an effect on hourly wage. That’s why we run extra regressions 

including the previous11 indexes.  

The OLS regressions we use in this setting are summarized in the next formula, where the 

subindex 𝑖 takes three values, one for each outcome, and the subindex 𝑘 relates to the 204 cells. 

𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑏𝑖𝑎𝑠𝑖𝑘 =  𝛽0 + 𝛽1𝑔𝑒𝑛𝑑𝑒𝑟𝑘 + 𝛽2𝑟𝑒𝑔𝑖𝑜𝑛𝑘 + 𝛽3𝑓𝑎𝑚𝑖𝑙𝑦 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑘 + 𝜀𝑘    

In addition, we also study the effect of the circumstances and previous opportunity differences 

on the outcomes per se. This is why we repeat the previous regressions, but now the dependent 

variables are the three outcomes. As we are still using the cell-database, we transform the 

outcomes in order to obtain a representative value per cell. For the level of studies, we use the 

share of individuals in each cell with superior studies, for labour situation the proportion of 

employed and for hourly wage we use the mean of the cell. In this case, the subindex 𝑗 takes 

three values, one per each outcome, and the subindex 𝑘 refers to the cells. 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑗𝑘 =  𝛽0 +  𝛽1𝑔𝑒𝑛𝑑𝑒𝑟𝑘 + 𝛽2𝑟𝑒𝑔𝑖𝑜𝑛𝑘 + 𝛽3𝑓𝑎𝑚𝑖𝑙𝑦 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑘 + 𝜀𝑘    

3.2 The relation between outcomes and circumstances – Descriptive findings 

In this section we study the distribution of each outcome by circumstances. It is important to 

underline that this research links current outcomes with given characteristics, out of the 

individuals’ control.  

Figure 2 depicts the distribution of outcomes by gender. Women obtain better results in 

education, as they present higher percentages in high level of studies and lower ratios in low 

levels. However, this does not translate into a better labour situation: there are more women in 

long and short unemployment and more women with temporary contracts, compared to men; 

females have also lower salaries.   

 
11 Previous in terms of the moment these outcomes are acquired. It is understood that higher attained level of 

studies lead, to a certain degree, to better job statuses and higher salaries. In turn, improving once’s job status is 

usually associated with larger wages.  
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There are substantial differences by region (Figure 3). For instance, Madrid and the Basque 

Country have the highest rate of superior studies (53%), whereas Murcia has less than half this 

percentage (25%). The percentages for the top performance in labour situation, which 

corresponds to having an indefinite contract, are larger than in the other categories. Despite 

that, we also observe large changes. Extremadura and Andalusia have around 40% of their 

workforce with indefinite contracts, while for most of the Spanish regions this rate is higher 

than 60%, and five autonomous communities reach, and some surpass, 70%. Regarding hourly 

wage, we can see that in Extremadura half of the population earns less than 6.6 euros per hour. 

On the other extreme there is the Basque Country, where 19% have an hourly salary above 

18.8 and more than half its inhabitants earn more than 11.3 euros per hour; this fact is only 

reproduced in Navarre.  
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In Figure 4 we plot current outcome distributions per family background, the economic 

situation of the household when the individual was a teenager. In this case we observe a clear 

relation between the circumstance and the performance in the labour market. As the economic 

family background improves, the percentage of individuals with superior studies 

quadruplicates, from 14% to 63%. This is the largest increase, but the impact of a good 

economic situation when being a teenager also increases the ratio of individuals with indefinite 

contracts and higher salaries in a substantial way. Individuals with a good economic 

background have 30% more chances to get an indefinite contract than those with very bad 

backgrounds, and less than half the probability of being in long unemployment. The likelihood 

of a high salary more than doubles and that of a low hourly wage almost halves.  

In this visual analysis, we have also crossed gender and family background to check whether 

the economic characteristics of the household where the individual grew up have different 

impacts depending on the individuals’ gender. The results for gendered family background are 

presented in Annex B. In Figure B1 we see that women obtain better educational levels than 

men in the same family background for all categories. For both genders, the chances of superior 

studies more than triple when family background is improved. This increase is especially 

relevant for women; 68% of those coming from the richest families obtain superior studies, the 

rate is 11 points lower for men.  

In this top economic origin only 1% of men and women have less than secondary education, 

whereas women in the poorest families have a chance of 39% of having less than secondary 

education (35% is the share for men). It seems that among the poorest families, women have 

higher chances to attain superior studies, but also larger probabilities of not finishing secondary 

education. 

The increased educational opportunities for women do not translate into better job positions: 

in almost all family background levels, men have a larger share of indefinite contracts, and 

women a larger presence in long unemployment. Only 1% of women with a very bad family 

origin reach a top position on the wage distribution, the share is 10% for men. In the wage 

allocation, men have larger opportunity advantages, but for both genders, those seem highly 

determined by family origin.  

Overall, having the top category for salary is much less common than achieving the best result 

for the other outcomes. We find quite small percentages of individuals at the top of the 

distribution for hourly wage, whereas having an indefinite contract seems relatively more 

common in Spain and the probability of obtaining superior studies lies somewhere in between. 
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3.3 The opportunity advantage index 

After a descriptive analysis of the relationship between current outcomes and exogenous 

circumstances, we apply the opportunity advantage methodology (Herrero and Villar, 2020). 

This procedure reveals the same intuitions that we presented in the previous section, but offers 

a quantitative value for the magnitude of the opportunity bias of each subgroup, relative to a 

reference. In the following figure, we plot the opportunity bias by gender. We set men at one 

hundred and obtain the advantage or disadvantage of women with respect to men for each 

outcome. We can see that while women have a 22% advantage in studies, they have a 12.2% 

disadvantage in labour situation and a 23.6% disadvantage in hourly wage.  

 

The results for the opportunity advantage per region can be found in Figure 6. In this case, we 

have set Spain as a hundred, so the indicator refers to the opportunity of each region with 

respect to the whole country. In doing so, we can compare each region with the Spanish average 

and check whether it offers opportunities above or below the country’s mean. For instance, the 

regions that bring the most opportunities in studies are Madrid, followed by the Basque 

Country; they provide an advantage around 40%, compared to Spain as a whole. On the other 

hand, the opportunities for education in Murcia are the lowest, with a disadvantage of more 

than 30%. This implies that in Murcia the likelihood of obtaining a high educational outcome 

is 30% lower than the Spanish average. 

For labour situation, the top regions are Aragón and Rioja, with an advantage slightly higher 

than 30%. For this outcome, regions appear to be closer to the country’s average, but two of 

them present a clear disadvantage of more than 30%, those are Extremadura and Andalusia. 

Finally, regarding hourly wage, two regions stand out, the Basque Country and Navarre, which 

provide to their citizens an advantage of more than 60%, implying that the inhabitants in these 

regions have a 60% chance to obtain higher wages than the Spanish average. On the other part 

of the opportunities, we find Extremadura, with a disadvantage of almost 45%.  
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As mentioned before, SILC does not include information for the region of birth, only for the 

region where the individual is registered at the time of the interview. This might not be an 

exogenous circumstance as individuals may have moved from one region to another in order 

to achieve better outcomes. In Annex A we repeat the analysis using data from the Spanish 

Labour Force Survey, which includes both region of birth and registered region, but does not 

include wage variables, so the study is only redone for the level of studies and the labour status 

outcomes. This way we are able to compare the results and check whether there are substantial 

differences regarding the use of region of birth, as circumstance, or actual region. The 

correlation between region of birth and registered region is 0.76, which means that around one 

quarter of the individuals move. This generates some differences in the magnitude of the 

opportunity bias, mainly for the studies outcome. However, the ranking of opportunities is 

robust; the correlation between the studies index for region of birth and registered region is 

0.95, and for labour situation is even higher, 0.97. That’s why, from now on, we continue using 

region as almost an exogenous characteristic.  

In Figure 7 we plot the indexes by family background. We have set as the reference category 

those who had a very good economic situation when young. We uncover a clear relation 

between the opportunities an individual has at present and their economic origin. For all 

outcomes, the lower the economic security of the individuals when teenagers, the higher the 

disadvantage they face. There is only one exception, those who had a good economic situation 

seem to slightly outperform those with a very good economic situation in both the labour 

situation and hourly wage; their advantage is around 5%.  

In sum, these results indicate that exogenous circumstances determine individuals’ outcomes 

in life. For instance, we can see that those with very bad economic situations when young have 

a disadvantage of almost 80% in education. The disadvantage is almost 50% for labour 

situation and almost 40% for hourly wage.  

These differences have also a gender component, as plotted in Figure B2. Now the reference 

group is men in a very good economic situation. Again, we see that women present relative 

advantages for education, but not for the other outcomes. For example, it seems that women 

from the richest origins have less chances to high labour outcomes both in their job status and 

hourly wage, but present a 22% advantage in education. What is even more concerning is the 

disadvantage for women from bad and very bad origins, they face a wage disadvantage around 

60%.  
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3.4 Estimating the drivers of the opportunity advantage index – Econometric 

results 

In the last section of this first part, we estimate the outcomes of the cells defined above on all 

three circumstances in order to understand the extent to which different circumstances affect 

the outcomes under analysis. As mentioned, we also include previous indexes to control for 

accumulated opportunity biases. 

The relation between opportunity advantages in one outcome and the others can be seized by 

computing the correlation between the indexes. It seems like having a high opportunity on one 

outcome does not necessarily lead to better opportunities in another. Labour situation is the 

most interrelated outcome: the opportunity index for labour status is linked with the 

opportunities in studies with a correlation of 0.28 and with the chances of hourly wage by 0.29. 

The linkage between opportunities in education and hourly wage is weaker, with a correlation 

of 0.2. This implies that, in a cell level, we can have subgroups with relative disadvantage one 

outcome but with relative advantage on another. 

In Table 3 we show how each circumstance determines opportunity biases. The first relevant 

conclusion is found in the R-squared. Circumstances explain around 70% of the variance of 

opportunities in education, but around 30% of the variance of opportunities in labour situation 

and hourly wage.  

In the opportunities of education (1), the most relevant factor is the household economic 

situation when the individual was young, which is reasonable, as education is mostly received 

while being young, therefore it is plausible that it is more affected by circumstances. For labour 

status opportunities (2) the most relevant circumstance seems to be the region:  most regions 

increase labour opportunities compared to Andalusia, which is intuitive as, overall, this region 

has one of the lowest indexes for labour opportunities as seen in Figure 6. IO in studies explains 

only 8% of the variation in labour advantages (3), and it turns non-significantly different from 

zero when the circumstances are incorporated (4). Finally, for prospects in hourly wage (5), 

living in Navarre or in the Basque Country is positive and significant, but the next most 

important factor is being a women, which is related to a decrease in salary opportunities. 

Intuitively, good chances in labour status increase hourly wage opportunities (6), together with 

the education index they determine 10% of salary prospects. The labour indicator remains 

significant when adding the circumstances (7).  

Table 3. The impact of the circumstances on each index 

 Studies Labour situation Hourly wage 

Index (1) (2) (3) (4) (5) (6) (7) 

Index - studies   0.347*** 0.362  0.0616 -0.0507 

   (0.102) (0.282)  (0.0399) (0.0987) 

Index – labour situation      0.106*** 0.0650** 

      (0.0251) (0.0296) 

Gender (base: Men)        

Women 4.133*** -9.085***  -10.58*** -5.357***  -4.549*** 

 (1.428) (2.785)  (3.411) (1.077)  (1.026) 

Region (base: Andalucía)        

Aragón 10.34** 32.96***  29.21*** 1.628  0.00866 

 (5.232) (10.05)  (9.757) (1.889)  (2.214) 

Asturias 8.489*** 9.717***  6.642 4.347**  4.145** 

 (2.872) (3.233)  (4.096) (1.803)  (2.001) 
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Canary Islands 2.751* 12.56**  11.56** 1.697  1.019 

 (1.563) (5.628)  (5.612) (2.064)  (2.073) 

Cantabria 13.61*** 22.30***  17.37** 12.35  11.44 

 (3.917) (7.851)  (7.753) (9.421)  (10.71) 

Castilla León 7.013** 22.57***  20.03*** 3.989*  2.876 

 (3.183) (3.879)  (4.692) (2.153)  (2.237) 

Castilla Mancha 3.138* 23.26***  22.12*** 1.257  -0.0960 

 (1.695) (6.111)  (6.050) (1.413)  (1.607) 

Catalonia 9.573*** 23.55***  20.08*** 4.554***  3.508* 

 (2.142) (3.904)  (4.769) (1.224)  (1.799) 

Extremadura 6.510 4.761  2.403 1.613  1.634 

 (5.010) (6.293)  (4.854) (2.300)  (2.119) 

Galicia 10.26** 29.39***  25.67*** 1.778  0.387 

 (4.616) (7.575)  (8.234) (1.293)  (1.944) 

Balearic Islands 2.887 25.12***  24.07*** 5.890**  4.403* 

 (2.157) (5.638)  (5.348) (2.455)  (2.613) 

Rioja 6.680*** 22.68***  20.26** 2.747  1.611 

 (2.481) (7.497)  (7.912) (2.245)  (2.627) 

Madrid 13.01*** 27.91***  23.20*** 3.758**  2.602 

 (1.919) (3.873)  (5.501) (1.597)  (2.298) 

Murcia -3.175 15.16***  16.32*** -0.263  -1.411 

 (2.941) (3.759)  (4.180) (1.392)  (1.468) 

Navarre 6.414* 27.82***  25.50*** 9.061***  7.395*** 

 (3.409) (9.044)  (8.874) (2.360)  (2.366) 

Basque Country 14.54*** 19.49***  14.22** 6.998***  6.467*** 

 (3.102) (4.520)  (5.810) (1.881)  (2.414) 

C. Valenciana 1.836 26.58***  25.92*** 1.232  -0.404 

 (2.744) (6.351)  (7.226) (1.278)  (1.556) 

Family background (base: Very bad)        

Bad -0.247 -7.132  -7.042 -4.011**  -3.595** 

 (1.740) (6.358)  (6.209) (1.550)  (1.555) 

Moderately Bad 4.183** -6.506  -8.021 -4.147**  -3.504** 

 (1.614) (5.854)  (5.978) (1.641)  (1.623) 

Moderately Good 11.17*** -0.493  -4.539 -2.693*  -2.087 

 (1.607) (5.751)  (6.590) (1.618)  (1.790) 

Good 21.86*** 7.143  -0.774 -0.949  -0.298 

 (1.605) (5.697)  (8.480) (1.596)  (2.465) 

Very Good 39.42*** 7.704  -6.576 3.306  4.746 

 (3.767) (7.254)  (12.23) (2.779)  (5.824) 

Constant 3.001* 29.41*** 36.80*** 28.33*** 9.929*** 2.977*** 8.176*** 

 (1.758) (5.315) (2.866) (5.284) (1.779) (1.142) (2.068) 

Observations 202 202 202 202 200 200 200 

R-squared 0.716 0.276 0.080 0.301 0.293 0.101 0.312 

Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.  

Models (1), (2) and (5) regress each index on the set of circumstances. Models (3) and (6) regress the indexes on the previous indexes: 

opportunities in labour situation as determined by opportunities in studies and opportunities in hourly wage, by opportunities in studies and labour 

situation. Models (4) and (7) use as regressors both circumstances and previous indexes.  

Lastly, we check the impact of circumstances on the outcomes themselves. We repeat the 

previous estimations but the dependant variable, instead of being the opportunity advantage 

index is the outcome itself. For the studies outcome we use the share of individuals with 

superior studies in each cell, for labour situation the percentage of employed individuals in the 

cell and for hourly wage the average hourly wage per cell, this last regression is log-linear. 

The results of these regressions can be found in Table 4. By using them, we can confirm that 

background characteristics are by far the most important circumstance for the level of studies 

but not so determinant for labour situation and hourly wage, though they are still relevant.  

Almost 80% of the variation in the frequency of individuals that attain superior studies in each 

cell can be explained by circumstances (1). Being a woman increases this share and some 

regions also offer higher probabilities, but the most important factor is economic family 
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situation. The top group increases the ratio of superior studies by almost 53 points. This last 

variable is also important in increasing hourly wage, coming from a very good economic 

background increases mean salaries for the cell by almost 43%, when controlling for 

opportunity bias in studies and job status (5). However, family background does not seem 

significant in determining labour situation.  

For women, the likelihood of being employed (2), is between 8 and 10% lower, and mean 

hourly wages are also lower in female cells (4), they earn, on average around 20% less per 

hour. Circumstances determine employment rates in a 28% and hourly wages in 36%, these R-

squared increase when including previous opportunity advantages.  

It is important to notice that educational opportunities slightly increase the chances of being 

employed (3) and labour situation opportunities have also a small and positive impact on 

average hourly wage (5). Therefore, we can conclude that the opportunity advantages and 

disadvantages in education, caused by characteristics that highly determine the individual’s 

level of studies, are somewhat carried out to affect the next labour outcomes, labour situation 

and hourly wage. These previous opportunities have an explanatory power around 5% for job 

status and almost 10% for hour salaries.  

Some extra interesting things can be learned from these regressions. Some regions provide 

clearly better educational opportunities than Andalusia; even more outperform the reference 

territory in employment rates, but only a few offer higher salaries. Catalonia, Madrid, Navarre 

and the Basque Countries are the only regions that offer hourly wages above those of all the 

other autonomous communities (4), which are not significantly different from those in 

Andalusia, with the exception of Murcia that provides lower salaries. These results are only 

significant at 90% for the Basque Country, Madrid and Navarre when controlling for previous 

opportunity bias.  

Table 4. The impact of circumstances on the outcomes 

 

 

Freq. superior 

studies 
Freq. employed Mean hourly wage (in logs) 

Index (1) (2) (3) (4) (5) 

Index – 

studies 

  0.435***  -0.00632** 

  (0.161)  (0.00320) 

Index –  

labour situation 

    0.00501*** 

    (0.00160) 

Index –  

hourly wage 

     

     

Gender (base: Men)      

Women 7.463*** -7.852*** -9.648*** -0.249*** -0.177*** 

 (1.648) (2.297) (2.537) (0.0424) (0.0504) 

Region  

(base: Andalusia) 

     

Aragón 10.03** 18.91** 14.42 -0.0352 -0.135 

 (4.828) (9.007) (9.088) (0.137) (0.114) 

Asturias 14.49*** 12.09** 8.402 0.0495 0.0544 

 (4.172) (5.189) (5.678) (0.0891) (0.0948) 

Canary Islands 3.489 6.696 5.500 -0.0515 -0.0970 

 (2.655) (5.515) (5.633) (0.113) (0.110) 

Cantabria 16.74*** 14.42 8.510 0.177 0.145 

 (5.263) (8.812) (8.689) (0.179) (0.189) 

Castilla León 8.588** 23.63*** 20.58*** 0.0912 0.0225 

 (3.773) (4.727) (5.392) (0.113) (0.103) 

Castilla Mancha 2.315 13.14** 11.77* -0.0415 -0.138 

 (3.103) (6.359) (6.345) (0.0997) (0.104) 
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Catalonia 12.27*** 21.36*** 17.20*** 0.203** 0.145 

 (2.606) (4.565) (5.079) (0.0800) (0.0911) 

Extremadura 3.409 6.901 4.072 -0.130 -0.113 

 (4.563) (4.616) (4.427) (0.126) (0.135) 

Galicia 9.405** 20.49*** 16.03** -0.0102 -0.0926 

 (3.860) (7.397) (7.784) (0.0941) (0.0969) 

Balearic Islands 2.120 24.20*** 22.94*** 0.172* 0.0640 

 (4.614) (4.723) (4.518) (0.0938) (0.0955) 

Rioja 5.913 20.78*** 17.87** -0.0562 -0.128 

 (3.665) (6.894) (6.997) (0.176) (0.170) 

Madrid 17.54*** 25.10*** 19.44*** 0.247*** 0.189* 

 (2.535) (3.996) (4.640) (0.0920) (0.107) 

Murcia -5.391 14.07*** 15.45*** -0.0631 -0.159* 

 (3.446) (4.686) (5.136) (0.0765) (0.0847) 

Navarre 8.021 21.59*** 18.80*** 0.266*** 0.159* 

 (5.457) (5.980) (6.276) (0.0793) (0.0874) 

Basque Country 18.85*** 22.52*** 16.20*** 0.256** 0.250* 

 (3.584) (3.799) (4.413) (0.124) (0.129) 

C. Valenciana 1.794 22.82*** 22.02*** 0.0661 -0.0554 

 (3.710) (4.091) (4.847) (0.0791) (0.0928) 

Family background  

(base: Very bad) 

     

Bad 2.285 -4.118 -4.011 -0.0372 -0.00464 

 (3.244) (5.361) (5.201) (0.0818) (0.0858) 

Moderately Bad 10.54*** -0.123 -1.941 0.0449 0.104 

 (3.051) (4.564) (4.525) (0.0785) (0.0847) 

Moderately Good 23.85*** 6.698 1.844 0.153** 0.227*** 

 (2.870) (4.401) (4.518) (0.0749) (0.0834) 

Good 38.65*** 11.12** 1.622 0.276*** 0.378*** 

 (2.841) (4.481) (5.320) (0.0765) (0.0988) 

Very Good 52.61*** 6.960 -10.17 0.218* 0.426*** 

 (3.963) (5.748) (9.120) (0.112) (0.139) 

Constant 3.481 62.61*** 61.31*** 2.231*** 2.103*** 

 (3.108) (5.232) (5.311) (0.0987) (0.117) 

Observations 202 202 202 200 200 

R-squared 0.780 0.282 0.335 0.359 0.443 

Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.  

In columns (1), (2) and (4) the independent variables are the circumstances and the dependent variables are the outcomes 

per cell. In columns (3) and (5) in addition to circumstances, previous indexes are also included. 

To sum up, we find a larger role of circumstances in determining the opportunities of education. 

The impact is lower for hourly wage, and even smaller for job status. This related to previous 

literature devoted to analyse the channels of inequality of opportunity. Palomino et al. (2019) 

find that, in 2011, a relevant share of inequality of opportunity in household income was 

channelled through the attained level of studies (around 16.2% of IO in Spain), whereas once 

controlling for education, the occupational channel is reduced (accounting for 4.3% in Spain). 

The most relevant circumstance in shaping the level of studies an individual attains is the 

familiar economic situation when the individual was young. This variable also plays an 

important role in wage opportunities, but hourly salary is also highly influenced by gender, and 

some regions, Navarre and the Basque country, clearly provide better opportunities than the 

Spanish average.  

Family background seems to not be significant in determining the job status12. Gender has some 

influence, but we find that the type of contract and the duration of unemployment spells are 

highly determined by the autonomous community. Consistently with previous literature we 

 
12 In further steps of this research, we plan to further analyse the job dimension of IO by checking the impact of 

circumstances on occupational levels, in addition to contract types and unemployment spells. 
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find that the regional employment differences in Spain are large, and also in the provided labour 

opportunities (Gorjón, de la Rica and Villar, 2020; Herrero, Villar and Guillén, 2018).  

Being a woman increases educational opportunities, an advantage that is not translated neither 

in employment ratios nor in higher hourly wages. 

4. The relevance of opportunity bias on total inequality 

Once the drivers of opportunity bias and their importance and impact onto several relevant 

outcomes for the labour market performance have been analysed, this part of the study is 

devoted to quantify the extent to which total inequality is generated by inequality of 

opportunity (IO).  

Several studies have compared the share of opportunity biases between different countries and 

concluded that Spain is one of the European states with the highest share of IO (Palomino et 

al., 2019; Marrero and Rodríguez, 2012; Rodríguez, 2008).  

In addition, other research shows that IO is harmful for economic growth. Economic theory 

suggests that overall inequality has both positive and negative effects to growth, in this setting, 

Marrero and Rodríguez (2013, 2019) show that IO has only negative effects. A hypothesis that 

is also tested by Bradbury and Triest (2016). Using US data, they find that local areas with 

higher intergenerational mobility display faster economic growth over the 2000–2013 and 

2007–2013 periods. And also, that higher growth fosters opportunity advantages.  

We want to analyse the relevance of IO on total inequality. We measure it in terms of income 

inequality and use yearly equivalent household income as the reference variable. We have 

focused the analysis of the drivers of IO on the year 2019, therefore, we first present an 

estimation of its importance for the same year. After that, we include an extra section where 

we compare the evolution of IO in two moments of time, 2011 and 2019. We compare results 

between these dates because it is the years when the SILC dataset includes the specific module 

on intergenerational transmission, allowing us to estimate IO. 

The distribution of the dependent variable, yearly household income, in 2011 and 2019 is 

plotted in Figure 8. We can observe that the top decile holds more than 20% of total income in 

both years. These households obtain more than 30,432€ a year. Actually, the allocation of 

household income has not changed much during the analysed period.  Half of total income is 

accumulated by the top three deciles. The first decile has only around 2% of total income, less 

than 6,186€ a year. Our goal is to understand how much of this unequal income distribution is 

due to circumstances, and if the share of IO has changed over the period. 

The procedure we follow to achieve this objective is the same as the one used by Cabrera et al. 

(2021). It is similar to the methodology used in an extensive set of inequality of opportunity 

literature (Bourguignon et al., 2007; Ferreira and Gignoux, 2011; Björklund et al., 2012). Our 

approach is explained in the next section, and after that, we present our results and compare 

them to previous research. 
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4.1 Methodology 

We adopt a parametric ex-ante approach, as defined by Van de gaer (1993), and we follow the 

estimation methodology proposed by Bourguignon et al. (2007) and Ferreira and Gignoux 

(2011). This procedure is suitable when the set of circumstances is considerably large and 

resulting subgroups might contain a small number of observations. This is the case of this 

study, as we want to fully use the potential of the information in the SILC module.  

The main difference between Bourguignon et al. (2007) and Ferreira and Gignoux (2011) is 

how they treat the potential bias in the estimators generated by the fact that not all 

circumstances are observed13. The first use Monte-Carlo simulations to estimate bounds around 

the coefficients taking into account the potential bias, the latter interpret the coefficients as a 

lower bound of IO. Björklund et al. (2012) allow for heterogeneity capturing individual 

heteroskedasticity. 

Another difference between methodologies is in the construction of counterfactual 

distributions. Several studies assign the same level of characteristics to all individuals14 in the 

sample and compute absolute IO as the difference between total inequality and the level of 

inequality in the counterfactual distribution where there are no differences in circumstances. 

The methodology we implement, following Cabrera et al. (2021) and Marrero and Rodríguez 

(2012), relies on constructing a smoothed distribution using the fitted values of a reduced form 

regression of income on observed circumstances, as we explain in the next paragraphs.  

 
13 Some circumstances, and also effort, are unobservable, and probably correlated to the included circumstances. 

Then, the residuals are not orthogonal to the explanatory variables. 
14 For instance, Ferreira ang Guinoux (2011) and Bourguignon et al. (2007) assign the average level of 

circumstances to all individuals. Additionally, Bourguignon et al. (2007) also equalize parental education as if all 

parents attained the lowest level of mandatory education.  
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In this approach, the first step to quantify the share of IO is to estimate a model that captures 

the overall effect of (observed) circumstances on the outcome. To do so, we use individual 

data. The overall effect of circumstances on yearly equivalent household income, 𝑦𝑖, is 

estimated through the following OLS regression. This overall effect includes the direct effect, 

and also the indirect effect (the impact of the circumstances through “effort” and other 

unobservables, like luck, etc.).  

ln(𝑦𝑖) = 𝐶𝑖𝜓 + 𝜀𝑖  

Then, as Cabrera et al. explain, if there was equality of opportunity, personal circumstances 

should not affect the distribution of outcomes. Consequently, inequality of fitted income, 𝑦̂𝑖 =

exp (𝐶𝑖𝜓̂), should be zero. We can apply any inequality index to the fitted income distribution 

𝐼(Φ̂(𝑦̂𝑖)), and the difference between the value we obtain and zero will be our measure of 

inequality of opportunity (IO). The percentage of IO over total inequality is simply obtained 

by dividing the inequality in the fitted distribution over total inequality.  

Θ𝐼𝑂 =  
𝐼(Φ̂(𝑦̂𝑖))

𝐼(Φ(𝑦𝑖))
× 100 

The vector of observed circumstances 𝐶𝑖 is a sub-vector of the true vector 𝐶𝑖
∗of all possible 

circumstances (observed and unobserved) that determine an individual’s advantage. Therefore, 

Θ𝐼𝑂 will be a lower-bound estimate of true total inequality of opportunity (Ferreria and 

Guignoux, 2011). We include as many circumstances as our dataset allows, but still there are 

many unobserved exogenous characteristics of the individual that may affect the outcome. 

For the inequality index we use Gini coefficient as it is the most commonly used to assess 

inequality and because we are not interested in any decomposition. In addition, Brunori et al. 

(2019) argue that Gini is the best inequality index to measure IO. Comparing it to MLD they 

state that the latter is highly sensitive to extreme values and reveals a low sensitivity with respect 

to low levels of inequality. As we measure IO from a smoothed distribution, extreme values are 

removed and MDL systematically results in lower estimates than the Gini index.  

Despite that, we also present results for the mean logarithmic deviation (MLD, 𝐸0) in Annex 

D.  Mainly, we do so for comparability reasons and also as a robustness check as Ferreira and 

Gignoux (2011) discuss that MLD is the index with the best properties. Moreover, Ramos and 

Van de gaer (2020) argue that some of the properties of the indexes are lost when estimating a 

log-linear regression and then transforming the fitted values back into levels. That’s why, in 

Annex D, we also present the results for several combinations of logarithmic and non-

logarithmic sample and fitted distributions, following Ramos and Van de gaer (2020) 

recommendations, but our results appear to be robust to these variations.  

We apply this method for the total population in 2019. In addition, we repeat the procedure 

running two restricted regressions on two cohorts and for NUTS1 regions (grouped Spanish 

autonomous communities)15. We also include a time trend analysis by comparing 2019 results 

to 2011. This dynamic comparison is done with 2011-SILC as it includes the module on 

 
15 In this last part we use NUTS1 instead of the autonomous communities per se. Some automonous regions 

have a small number of observations and we want to guarantee that we have enough information in all 

regressions.  
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intergenerational transmission of poverty. Other waves do not provide a complete set of 

exogenous circumstances and do not allow us to replicate this part of the study. 

4.2 Estimating Inequality of Opportunity 

Table 5 shows the results for the regressions of the natural logarithm of household income on 

the wider set of circumstances presented in Table 2. We start by introducing the same 

circumstances used in the first part of the study to generate the opportunity advantage index 

(1), and then we add extra variables to provide more detail on the family background, as this 

methodology allows for it. All representing information about the characteristics of the 

individual and her household when she was around 14 years old. The main variables included 

are the maximum level of parental16 education (2), the maximum skill of parental occupation 

(3) and whether at least one of the parents is foreign-born17 (4). In addition, we also add 

information on whether the individual lived with both parents, the number of siblings, if the 

mother worked and the size of the city where the individual lived, in terms of the number of 

inhabitants (5).  

Using these variables, all exogenous circumstances and none devoted to skills, merit, effort or 

luck, we are able to explain 18.7% of household income variability. Although this R-squared 

seems small, we have to take into account that we are only estimating household income as a 

result of circumstances (gender, region and characteristics of the individuals when they were 

around 14 years old). None of the common income determinants such as level of studies, 

occupation, economic sector, worked months, etc. are included18. This result is higher than the 

majority of the R-squared values for IO literature for Spain and other European countries. For 

instance, Marrero et al. (2012) find an R-square of 15%, Björklund et al. (2012) use an 

extensive dataset from Sweden and find a value slightly above 5%. Ferreira and Gignoux 

(2011) analyse several Latin American countries and find an R-squared of 17.5% for Colombia, 

results are higher for other Latin American countries, as for example, Brazil, with a value 

around 30%, consistent with what Bourguignon et al. (2007) find for the same country. 

Table 5. Household income on circumstances 

Equivalent income (in logarithm) (1) (2) (3) (4) (5) 

Gender (base: Men)      

Women -0.0379** -0.0375** -0.0380** -0.0251* -0.0236 

 (0.0159) (0.0158) (0.0158) (0.0150) (0.0150) 

Region  

(base: Andalusia) 

     

Aragón 0.288*** 0.297*** 0.286*** 0.334*** 0.340*** 

 (0.0422) (0.0414) (0.0408) (0.0357) (0.0368) 

Asturias 0.170*** 0.157*** 0.145** 0.131** 0.133** 

 
16 In order to avoid missing observations, we include parental variables instead of separated variables for father 

and mother characteristics, following Björklund et al. (2012). If we were to include separated mother and father 

variables, we would lose all the individuals with missing information on one of the parents, and therefore, include 

only those that lived with both parents, which would lead to sample selection as living with both parents has a 

positive impact on household income.  
17 SILC dataset presents data for parental country of birth in three categories: the first category is for those born 

in Spain, the second for the EU and the third includes any other country in the world. Thus, we cannot add extra 

disaggregation in our regressions. 
18 These variables, tough relevant for the estimation of income determinants, are excluded because the goal of this 

research is to quantify inequality of opportunity. In order to do so, we use a reduced form model where only 

exogenous circumstances are incorporated as explanatories (see the methodology section in 4.1 for more detail).  
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 (0.0582) (0.0579) (0.0579) (0.0545) (0.0553) 

Canary Islands 0.0475 0.0365 0.0304 0.106** 0.0987** 

 (0.0457) (0.0479) (0.0478) (0.0418) (0.0429) 

Cantabria 0.161** 0.162** 0.149** 0.158** 0.158** 

 (0.0714) (0.0711) (0.0721) (0.0727) (0.0728) 

Castilla León 0.313*** 0.309*** 0.302*** 0.303*** 0.311*** 

 (0.0305) (0.0306) (0.0310) (0.0309) (0.0314) 

Castilla Mancha 0.0647 0.0678* 0.0638 0.0921** 0.103*** 

 (0.0394) (0.0392) (0.0396) (0.0384) (0.0382) 

Catalonia 0.415*** 0.414*** 0.403*** 0.460*** 0.455*** 

 (0.0307) (0.0303) (0.0303) (0.0298) (0.0311) 

Extremadura -0.0439 -0.0286 -0.0171 -0.0524 -0.0409 

 (0.0358) (0.0357) (0.0356) (0.0359) (0.0353) 

Galicia 0.236*** 0.231*** 0.216*** 0.201*** 0.206*** 

 (0.0331) (0.0332) (0.0335) (0.0332) (0.0338) 

Balearic Islands 0.356*** 0.349*** 0.334*** 0.488*** 0.487*** 

 (0.0435) (0.0429) (0.0431) (0.0391) (0.0405) 

Rioja 0.214*** 0.210*** 0.200*** 0.244*** 0.252*** 

 (0.0666) (0.0672) (0.0675) (0.0643) (0.0653) 

Madrid 0.393*** 0.369*** 0.351*** 0.412*** 0.412*** 

 (0.0338) (0.0341) (0.0342) (0.0332) (0.0355) 

Murcia 0.0890** 0.102*** 0.0998*** 0.144*** 0.143*** 

 (0.0358) (0.0357) (0.0358) (0.0348) (0.0347) 

Navarre 0.463*** 0.465*** 0.458*** 0.485*** 0.495*** 

 (0.0370) (0.0376) (0.0379) (0.0362) (0.0367) 

Basque country 0.475*** 0.454*** 0.445*** 0.447*** 0.447*** 

 (0.0371) (0.0370) (0.0373) (0.0366) (0.0367) 

C. Valenciana 0.163*** 0.159*** 0.147*** 0.201*** 0.208*** 

 (0.0337) (0.0341) (0.0343) (0.0337) (0.0338) 

Family background 

(base: Very bad) 

     

Bad 0.0277 0.0345 0.0263 -0.0202 -0.0193 

 (0.0583) (0.0594) (0.0584) (0.0537) (0.0541) 

Moderately Bad 0.206*** 0.198*** 0.180*** 0.0784* 0.0717 

 (0.0505) (0.0517) (0.0509) (0.0465) (0.0463) 

Moderately Good 0.357*** 0.328*** 0.297*** 0.135*** 0.122*** 

 (0.0482) (0.0495) (0.0490) (0.0451) (0.0451) 

Good 0.469*** 0.401*** 0.356*** 0.175*** 0.160*** 

 (0.0495) (0.0506) (0.0503) (0.0464) (0.0471) 

Very Good 0.498*** 0.405*** 0.345*** 0.200*** 0.178*** 

 (0.0661) (0.0660) (0.0656) (0.0617) (0.0622) 

Parents’ education 

(base: Secondary or less) 

     

Post-secondary  0.0720** 0.0411 0.0936*** 0.0883*** 

  (0.0292) (0.0299) (0.0281) (0.0276) 

Superior  0.232*** 0.146*** 0.185*** 0.184*** 

  (0.0244) (0.0279) (0.0262) (0.0259) 

Parents’ occupation 

(base: Did not work) 

     

Low skilled   -0.0364 -0.0386 -0.0765* 

   (0.0439) (0.0403) (0.0425) 

Middle skilled   0.0633 0.0347 -0.0132 

   (0.0413) (0.0377) (0.0436) 

High skilled   0.191*** 0.163*** 0.116** 

   (0.0461) (0.0425) (0.0451) 

Country of birth of the parents 

(base: all Spanish) 

     

At least one from the UE    -0.418*** -0.414*** 

    (0.0445) (0.0445) 

At least one from the rest of the world    -0.561*** -0.548*** 

    (0.0310) (0.0309) 

Lived with both parents 

(base: No) 

    0.0798* 

    (0.0409) 

Number of siblings 

(base: None) 

     

One or two     0.00593 

     (0.0190) 
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Three or more     -0.0258 

     (0.0249) 

The mother worked 

(base: No) 

    0.0241 

    (0.0163) 

Number of inhabitants 

(base: Large) 

     

Medium     0.00936 

     (0.0201) 

Small     -0.0312 

     (0.0209) 

Constant 9.027*** 9.027*** 9.010*** 9.216*** 9.194*** 

 (0.0501) (0.0513) (0.0598) (0.0543) (0.0635) 

Observations 16,982 16,807 16,781 16,766 16,700 

R-squared 0.098 0.111 0.116 0.185 0.187 

Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 

Gender has a negative impact, but it is not significantly different from zero once the other 

variables are introduced. This is due to the fact that the dependent variable is household income, 

both men and women in the same household obtain the same level of household income. 

Therefore, gender effects are not properly detected.  

Household income is higher in most regions compared to Andalusia, the reference in the 

estimation. In fact, once we control for the number of inhabitants, all territories exhibit a 

positive effect, with the exception of Extremadura, which is not significant. Familiar economic 

background has relevant and significant impact, though this diminishes when we include extra 

characteristics of the household, as some of the effects are generated by these variables and 

were masked inside family background coefficients. Despite that, its effect remains quite 

strong. In model (5), where all variables are included, coming from a family with a very good 

economic situation increases household income by 17.8% compared to coming from a very 

bad economic background. 

Parental studies are also relevant and significant. If at least one parent had superior education, 

current household income of the individual increases by 18.4% compared to those who’s 

maximum parental education was secondary or less. Having parents with post-secondary 

studies has also a positive effect of 8.8%. If at least one parent worked in a high-skilled job this 

has also a positive effect on nowadays individuals’ household income, which increases by 

11.6% compared to those whose parents did not work.  

These results are consistent with previous literature finding family background and social class 

of the parents (occupation and education) among the most relevant variables in estimating 

household income inequality of opportunity (Marrero and Rodríguez, 2012; Cabrera et al., 

2021).  

Although these variables are relevant, in our study the highest impact goes to parental 

migration. Having at least one parent that was not born in Spain decreases household income 

for the son or daughter. The impact depends on the origin of the parents, if at least one comes 

from the rest of the European Union (and the other is either from Spain or also from the EU), 

household income is 41.4% lower. The impact is even larger for those who have at least one 

parent from the rest of the world, they experience a reduction of 54.8%.  

Marrero and Rodríguez (2012) also find a large impact of the country of birth in Spain. Their 

study is done using 2005 SILC data on 26 European countries and using country of birth of the 
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individual, instead of parental country of birth. For Spain, they find a similar negative impact 

of being born in the rest of the EU on household income, and even higher for individuals 

coming from the rest of the world, of almost 70%. The size of this coefficient is the largest 

among all studied countries, and the coefficient for EU citizens is also among the most negative 

ones, only surpassed by Italy. These values indicate a large effect of intergenerational 

transmission of poverty and inequality for Spanish immigrants, between 2005 and 201919.  

Among the extra variables, only living with both parents has a positive and significant effect 

at 90%. The increase in current household income is around 8%. The others are not significant, 

but provide a better adjustment for the coefficients of the principal circumstances.  

4.3 The share of IO over total inequality 

Fitted values from regression (5) are used to generate a smoothed distribution of yearly 

household income. This distribution represents the part of income explained by the observed 

circumstances. First, we calculate the Gini coefficient of yearly household income in 2019, the 

value we obtain is 0.3320. Then, we apply the Gini to the smoothed distribution and obtain a 

value of 0.17. If there was equality of opportunity, this is, if circumstances did not matter for 

the level of income, any inequality index applied to the smoothed distribution would be equal 

to zero. As long as the value obtained is significantly different from zero, there is opportunity 

bias. In the case of Spain in 2019, the observed circumstances of our study account for almost 

52% of total inequality, the value is significant at all conventional levels. Therefore, more than 

half of Spanish inequality is generated by characteristics of the individual that are out of their 

control.  

To the extent of our knowledge, this is the largest value of estimated IO for Spain. Cabrera et 

al. (2021) use a different dataset specifically designed to estimate inequality of opportunity in 

2017 and find a value of 44%. This eight-points-difference might be due to an increase of IO 

during these two years, but also generated by the use of different variables, for instance, we 

include country of birth and find it largely relevant, whereas this information is not used in 

their estimation.  

As a robustness check, in Annex D we present estimations of IO using the MLD as the 

inequality index. As mentioned above, the results for MDL are significantly smaller due to the 

index sensibility to extreme values and the use of a smoothed distribution to estimate IO. 

Despite that, we obtain a value around 23%, which is also higher than previous estimates. For 

instance, Cabrera et al. find an MDL value for 2017 around 18%. Palomino et al. (2019), find 

IO shares in Spain to be around 12% both for 2005 and 2011 EU-SILC data.  

Nevertheless, although it has already mentioned, we have to underline again that these are 

lower bound estimates of IO. Because it is impossible to observe the true and complete vector 

of circumstances, adding more information on exogenous characteristics of the individual 

would result in more precise estimates of IO.  

 
19 Extra results for 2011 are presented afterwards. Regressions can be found in Annex C, where the impact of 

parental country of birth has a similar dimension. 
20 This is exactly the same value obtained by the Spanish Statistics Institute (INE).  
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Table 6. Share of IO of total inequality    

Gini of equivalent income Total Circumstances 

 0.327981 0.169957 51.82% 

 (0.003285) (0.001476)   

Observations  16,700  

Standard errors in parenthesis    

4.4 Heterogeneity across groups 

We are also interested in analysing the relative importance of IO for total inequality over 

several groups. We run separate regressions by age and aggregated regions21 and apply the Gini 

coefficient to the fitted values of those regressions. Detailed results of the regressions can be 

found in Annex C, and the values for the weight of IO in Tables 7 and 8.  

For young individuals, under 40 years old, the impact of circumstances is higher, almost 59%, 

whereas for individuals between 40 and 59 this value is almost 50%. The fact that 

circumstances are more important for younger individuals might be due to two reasons. On the 

one hand, it might be that, with age, individuals are able to partly detach from their origin and 

be able to gain control of their outcomes. On the other, it can be that circumstances had a lower 

effect in the past, so that older individuals, even when young, experienced higher social 

mobility, but this has diminished in the recent years. This last interpretation, would be 

consistent with what Herrero, Villar and Soler (2018) found when studying the impact of the 

economic recession on opportunities. Their results suggest that young individuals have lost the 

largest share of opportunities. From 2007 to 2016, individuals between 16 and 30 lost 50% of 

their income opportunities and 40% of the employment ones.  

Table 7. Share of IO of total inequality per age groups 

Gini of equivalent income Total Circumstances 

Under 40 (25-39) 0.316747 0.186269 58.81% 

 (0.005084) (0.002776)  

Observations  5,025  

Over 40 (40-59) 0.332767 0.165737 49.81% 

 (0.004126) (0.001669)   

Observations  11,675  

Standard errors in parenthesis 

There are also significant differences between regions. In some aggregated territories the 

importance of circumstances on total inequality is around 40%, this is the case for the North 

West and the South. In the rest of territories, this value is closer to 50%, therefore around half 

of total inequality is generated by observed circumstances. We can also see that there is no 

clear relation between the size of total inequality and the relevance of circumstances. For 

instance, we find the lowest value for the overall Gini coefficient in the North East, but the 

impact of IO is around 5 points higher there than in the North West and the South, regions with 

higher total inequality.  

Table 8. Share of IO of total inequality per regions (NUTS1) 

Gini of equivalent income Total Circumstances 

North West  0.319316 0.129991 40.71% 

 (0.007266) (0.004005)   

Observations  1,979  

North East  0.276020 0.128755 46.65% 

 
21 We do not use autonomous communities in order to have enough observations in each OLS regression.  
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 (0.006564) (0.00434)   

Observations  2,283  

Madrid  0.345737 0.165301 47.81% 

 (0.011030) (0.004073)   

Observations  1,606  

Center  0.293983 0.157089 53.43% 

 (0.005763) (0.003371)   

Observations  2,336  

East  0.311747 0.148249 47.55% 

 (0.005449) (0.002945)   

Observations  4,942  

South  0.327694 0.136266 41.58% 

 (0.006369) (0.00328)   

Observations  2,998  

Canarias  0.308381 0.14764 47.88% 

 (0.012159) (0.008088)   

Observations  556  

Notes: Standard errors in parenthesis.  

According to NUTS1 classification North West includes Galicia, Asturias and Cantabria. North East: 

Basque Country, Navarre, Rioja and Aragón. Center: Castilla León, Castilla Mancha and Extremadura. 

East: Catalonia, C. Valenciana and Balearic Islands. South: Andalusia and Murcia.  

4.5 Dynamics of the relevance of IO 

To finish out the analysis, we present the change of the relevance of IO over total inequality 

between 2011 and 201922. A table for a detailed two-year comparison can be found in Annex 

E, but the most important results are summarized in the next plot. In this period, total inequality 

decreased by one point, from 33.9 in 2011 to 32.8 in 2019. Despite this reduction in overall 

inequality, observed inequality of opportunity increased in this period by 1.35 points. This 

produces an increase of 5.6% of the share of IO over total inequality, from around 46% in 2011 

to roughly 52% eight years later.  

For comparability reasons we have also included the values of IO obtained by the MDL index. 

Marrero and Rodríguez (2012) use the exact same methodology for 2005 EU-SILC database 

and fins a value for the IO Spanish share equal to 13.3%. For 2011, we find a smaller overall 

inequality level, but a larger level and share of IO, accounting for 19.5%23. The level of 

inequality of opportunity measured by MDL is also larger in 2019, representing, as mentioned, 

an even higher share of 22.8%. Therefore, both the share and level of IO have steadily increased 

in Spain for the last fifteen years.  

Figure 9 shows summarized information on the share of IO by groups, calculated using the 

same procedure as for Tables 7 and 8.24 A time increase on the share of opportunity bias 

 
22 In this section, slightly change due to the fact that the dataset for 2011 does not include information on the 

dimension of the city where the individual lived when she was around 14 years old, in terms of number of 

inhabitants. Despite that, shares obtained do not differ much. For comparability purposes between the two years, 

estimation methods are repeated without this variable. This way, results for both years are obtained using the exact 

same set of observed circumstances.  
23 We also find a larger value for 2011 IO than Palomino et al. (2019). They use the European version of our same 

dataset. The selection of circumstances is very similar, with the exception of the construction of some variables, 

for instance they only use father occupation and they include mother and father occupation separately. Therefore, 

we believe that the difference in the estimation might be due to a slight change of methodology. Whereas we 

estimate IO using the fitted values smoothed distribution, they construct a counterfactual and assign average 

circumstances to every individual and then, compute IO as the difference between total inequality and the 

inequality in their counterfactual distribution.  
24 Detailed results can be found in Annex E. 
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responsible of total inequality is experienced by every category. Whereas in 2011 IO 

represented from 30 to 40% of total inequality, with the exception of the young, now it is much 

closer to be responsible for around half total inequality.  

Younger individuals burden a higher impact of their observed circumstances in both years, but 

their share in 2019 is the largest value of all, almost 60%. Despite that, in this period, the 

increase in IO is larger for individuals over 40, a rise of 7.4%. This allows us to conclude that 

inequality of opportunity is increasing in this period and social mobility is diminishing. It 

seems that, the possibility for individuals to gain control over their outcomes as they grow older 

is reducing, thus detachment from social origin is getting harder.  

 

Making a comparison between territories it stands out the percentage for the Central region 

which has increased by more than 14 points in eight years. The place where exogenous 

characteristics of the individuals matters the least is the North West region, this territory has 

the lowest share in both analysed years, but has increased its value quite a lot, almost 7 points. 

The region that has experienced the smallest change is the East, with a 2.3% rise. In addition, 

regional disparities have widened. In 2011, between-regions difference in the share of 

inequality of opportunities was around 12%, and in 2019 is closer to 14%.  

To sum up, the importance of inequality of opportunity in Spain has raised during the last 15 

years. We see that the shares of IO have enlarged by around six points between 2011 and 2019, 

the period we study. The impact of circumstances is larger for the younger population but the 

increase has been larger for the old. Therefore, before the relevance of circumstances decreased 

with age, but this gap between young and old is diminishing, indicating a larger effect of IO in 

the overall society. There are significant regional differences, which implies that some 

institutions offer higher opportunities to their citizens, whereas in other territories, individuals 

have more difficulties to detach their outcomes from their original background.  
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5. Conclusions 

This study analyses the drivers of inequality of opportunity (IO) in 2019 and the importance 

and evolution of this kind of bias on total inequality in Spain. Opportunity disparities are 

relevant because they go against social justice, as they represent the part of inequality that is 

clearly seen as unfair. In addition, IO is found to be harmful for economic growth (Marrero 

and Rodríguez, 2013 and 2019; Bradbury and Triest, 2016). Spain is one of the European 

countries with larger shares of IO. 

We contribute to the literature by applying an innovative methodology, the opportunity 

advantage index (Herrero and Villar, 2020) to analyse the impact of IO and its drivers on 

outcomes that are relevant for individuals’ labour market performance. In addition, we measure 

the relevance of IO over total inequality both in 2011 and 2019. To the best of our knowledge, 

this is the first study measuring the share of IO in Spain using the most recently available data.  

Despite the fact that total inequality has slightly reduced in Spain during the analysed period, 

the share of IO has increased, from around 46% in 2011 to roughly 52% eight years later. 

Including previous research focused on 2005 data (Marrero and Rodríguez, 2012), we can 

conclude that the importance of IO has steadily increased in Spain during the last fifteen years, 

both in absolute and relative terms.  

In order to understand the drivers of such inequality, we study the effect of circumstances on 

the attained level of studies, labour situation and hourly wage. We find that gender, region and 

family socioeconomic origin explain almost 80% of the variability of educational 

opportunities. The impact is lower for hourly wage, almost 45%, and smaller for employment 

chances, around 30%. This is consistent with previous literature in finding in education an 

important channel of IO (Palomino et al., 2019; Cabrera et al., 2021).  

Using the opportunity advantage index, we can quantify relative disadvantages between 

subgroups defined by exogenous circumstances. These circumstances describe household 

characteristics when the individual was young, which we link to current outcomes. We find 

that coming from a household with a bad economic situation, compared to a very bad economic 

background, reduces educational opportunities by almost 80%, and labour opportunities, both 

in terms of employment and salary, between 65 and 40%. The effect highly depends on the 

gender of the individual. Women have more educational opportunities, an advantage that is not 

translated neither in better labour market conditions nor in higher salaries.  

Regional differences in provided opportunities are large in Spain, especially in the labour 

market. We find that the gap between the autonomous community with the most opportunities 

and the one with the least chances in labour status is around 70%. This gap is even larger for 

hourly wage, salary opportunities in the Basque Country and Navarre almost triple those in 

Extremadura.  

Further research should focus on more detail on studying regional differences. Disparities can 

arise from different public policies that should be studied and experimented on to better 

understand the channels of inequality transmission and how to reduce them. In addition, some 

regions are attracting individuals and others see their population reduced year by year. It could 
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be interesting to compare these internal migrations in terms of opportunities and the chances 

that are provided to those who move and those who stay.  

Large territorial differences indicate that regional institutions can play an important role in 

reducing inequality of opportunity and fostering social mobility. From our results, it is 

necessary to intervene in an early age so that educational disparities between socioeconomic 

groups are diminished and not transmitted from generation to generation. Reducing opportunity 

bias in education will probably reduce labour market disparities, allowing a more equal access 

to occupational opportunities. OECD (2018) proposes investments in childcare and in family 

policies that balance work and family to foster social mobility, along with progressive tax 

systems and protection against adverse life events that result in earning losses. In addition, 

active labour market policies that match demand and supply are expected to reduce inequality 

of opportunity. Finally, we find that parental country of birth is a key variable in determining 

individuals’ household income. Intergenerational transmission of poverty and inequality for 

Spanish immigrants, between 2005 and 2019, is one of the largest in Europe. Policies 

enhancing migrant opportunities in education and in the labour market are, thus, essential to 

reduce IO. 
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Annex 

Annex A – Robustness check comparing region of residence and region of birth using data from 

the Spanish Labour Force Survey in 2019.  

We estimate the opportunity advantage index for level of studies and labour situation. We present the values 

for the index for both region variables and the difference on the evaluation computed as the index for the 

birth region minus the value for the region of residence. In this plot, a positive value indicates that the region 

offers more opportunities than the ones we can capture. On the other hand, if the value is negative, the region 

offers less opportunities. For example, a negative value on the difference in the level of studies index implies 

that citizens born in said region attain higher level of studies, but afterwards, individuals with higher levels 

of studies move to other regions, or the region attracts individuals with lower educational levels.  

 



 

 

We can see that, in general terms, birth regional differences are slightly higher, implying that moving 

contributes to smoothing the territorial opportunities distribution. Nevertheless, the ranking is highly 

maintained. The opportunity advantage is slightly biased for level of studies when we use region of 

residence, but the bias is small and does not affect the ranking. Regions offering advantages above the 

Spanish mean and disadvantages under the mean are maintained. These differences are largely reduced for 

labour status.  

 



 

 
  



 

Annex B – Plots for crossing circumstances: gender and family background. 



 

 



 

 



 

Annex C – Additional regressions.  
 

Household income on circumstances by age and region groups – 2019  

Equivalent income (in logarithm) 

Age Region 

Under 40 Over 40 NW NE Madrid Center East South Canarias 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Gender (base: Men)          

Women -0.0571** -0.00597 -0.0101 -0.0309 -0.0905** -0.0105 -0.00928 -0.0224 0.0417 

 (0.0273) (0.0179) (0.0415) (0.0317) (0.0449) (0.0298) (0.0268) (0.0367) (0.0593) 

Region           

Andalusia base base      base  

Aragón 0.449*** 0.278***  base      

 (0.0680) (0.0441)        

Asturias -0.00223 0.185*** base       

 (0.126) (0.0518)        

Canary Islands 0.0852 0.0933*       omitted 

 (0.0822) (0.0488)        

Cantabria 0.177 0.136 0.0190       

 (0.142) (0.0831) (0.0835)       

Castilla León 0.427*** 0.245***    base    

 (0.0562) (0.0374)        

Castilla Mancha 0.158** 0.0680    -0.200***    

 (0.0649) (0.0466)    (0.0356)    

Catalonia 0.455*** 0.445***     base   

 (0.0575) (0.0365)        

Extremadura -0.0239 -0.0427    -0.344***    

 (0.0572) (0.0441)    (0.0381)    

Galicia 0.227*** 0.187*** 0.0419       

 (0.0638) (0.0398) (0.0529)       

Balearic Islands 0.546*** 0.444***     0.0148   

 (0.0814) (0.0455)     (0.0363)   

Rioja 0.154 0.293***  -0.0843      

 (0.128) (0.0732)  (0.0644)      

Madrid 0.446*** 0.388***   omitted     

 (0.0656) (0.0421)        

Murcia 0.209*** 0.101**      0.153***  

 (0.0587) (0.0431)      (0.0366)  

Navarre 0.512*** 0.478***  0.168***      

 (0.0731) (0.0399)  (0.0373)      

Basque country 0.504*** 0.410***  0.111***      

 (0.0673) (0.0440)  (0.0387)      

C. Valenciana 0.278*** 0.159***     -0.247***   

 (0.0587) (0.0407)     (0.0294)   

Family background 

(base: Very bad) 

         

Bad 0.139* -0.0956 0.651*** -0.125 -0.0960 0.175 -0.0970 -0.0221 -0.207 

 (0.0733) (0.0726) (0.174) (0.104) (0.138) (0.170) (0.107) (0.100) (0.187) 

Moderately Bad 0.190*** 0.00964 0.645*** 0.00767 -0.0572 0.143 0.00442 0.166** -0.246 

 (0.0711) (0.0582) (0.168) (0.0785) (0.132) (0.165) (0.0978) (0.0740) (0.204) 

Moderately Good 0.274*** 0.0496 0.647*** -0.00751 0.0535 0.162 0.0800 0.201*** -0.0105 

 (0.0666) (0.0572) (0.172) (0.0710) (0.125) (0.162) (0.0967) (0.0714) (0.180) 

Good 0.290*** 0.102* 0.821*** -0.0448 0.0399 0.332** 0.0949 0.186** 0.0930 

 (0.0716) (0.0586) (0.172) (0.0717) (0.127) (0.163) (0.0994) (0.0778) (0.180) 

Very Good 0.330*** 0.105 0.854*** -0.0209 0.0208 0.250 0.212* 0.135 0.124 

 (0.0968) (0.0761) (0.215) (0.114) (0.140) (0.202) (0.128) (0.129) (0.211) 

Parents’ education 

(base: Secondary or less) 

         

Post-secondary 0.0364 0.159*** 0.124** 0.0536 0.0886 0.189*** 0.0661 0.110 -0.0299 

 (0.0443) (0.0321) (0.0624) (0.0543) (0.0654) (0.0536) (0.0441) (0.0953) (0.107) 

Superior 0.134*** 0.255*** 0.278*** 0.101* 0.183*** 0.204*** 0.121** 0.330*** 0.126 

 (0.0393) (0.0339) (0.0702) (0.0541) (0.0683) (0.0471) (0.0479) (0.0652) (0.105) 

Parents’ occupation 

(base: Did not work) 

         

Low skilled -0.0304 -0.0947* 0.00275 0.0700 0.212 -0.0990 -0.118* -0.238** -0.304 

 (0.0861) (0.0485) (0.112) (0.108) (0.185) (0.0968) (0.0690) (0.0937) (0.208) 

Middle skilled -0.0637 0.0197 0.104 0.0270 0.250 -0.111 -0.0318 -0.144 -0.193 



 

 (0.0871) (0.0495) (0.101) (0.103) (0.180) (0.0939) (0.0627) (0.105) (0.200) 

High skilled 0.116 0.104* 0.156 0.203* 0.377** -0.0195 0.0975 0.0239 -0.210 

 (0.0878) (0.0535) (0.122) (0.106) (0.180) (0.100) (0.0721) (0.0985) (0.217) 

Country of birth of the parents 

(base: all Spanish) 

         

At least one from the UE -0.347*** -0.476*** -0.578*** -0.305*** -0.475*** -0.440*** -0.228*** -0.351** -0.623*** 

 (0.0659) (0.0614) (0.201) (0.0605) (0.0946) (0.109) (0.0738) (0.140) (0.0970) 

At least one from the rest of the 

world 

-0.538*** -0.527*** -0.692*** -0.749*** -0.708*** -0.635*** -0.505*** -0.366*** -0.338*** 

 (0.0525) (0.0379) (0.137) (0.0851) (0.0866) (0.0946) (0.0473) (0.0641) (0.104) 

Lived with both parents 

(base: No) 

0.116* 0.0493 0.00299 0.129 0.0117 0.0789 0.00981 0.239* 0.0789 

(0.0658) (0.0528) (0.0920) (0.0884) (0.0894) (0.0698) (0.0437) (0.144) (0.120) 

Number of siblings 

(base: None) 

         

One or two -0.00108 -0.00521 -0.0168 0.0635 -0.0619 -0.0653* 0.0125 0.0701 0.0575 

 (0.0313) (0.0227) (0.0464) (0.0436) (0.0471) (0.0352) (0.0333) (0.0544) (0.0798) 

Three or more -0.0521 -0.0492* 0.0150 0.0243 -0.127* -0.164*** -0.0169 0.0362 0.201** 

 (0.0538) (0.0283) (0.0724) (0.0600) (0.0697) (0.0493) (0.0504) (0.0581) (0.0940) 

The mother worked 

(base: No) 

0.0408 0.0365* 0.0939** 0.0862** -1.75e-05 0.0765** 0.0452 -0.0470 -0.00905 

(0.0286) (0.0211) (0.0418) (0.0351) (0.0518) (0.0329) (0.0296) (0.0429) (0.0668) 

Number of inhabitants 

(base: Large) 

         

Medium 0.0227 0.0126 0.127** -0.0631 0.190*** 0.0155 0.00821 -0.0494 -0.174** 

 (0.0339) (0.0244) (0.0612) (0.0412) (0.0592) (0.0404) (0.0307) (0.0547) (0.0687) 

Small 0.0159 -0.0437* 0.0781 -0.0352 -0.0634 -0.0289 -0.0557 -0.0512 0.0328 

 (0.0353) (0.0260) (0.0608) (0.0401) (0.0769) (0.0397) (0.0376) (0.0557) (0.0851) 

Constant 8.995*** 9.299*** 8.634*** 9.580*** 9.607*** 9.533*** 9.768*** 9.082*** 9.634*** 

 (0.114) (0.0749) (0.173) (0.123) (0.193) (0.190) (0.107) (0.142) (0.254) 

Observations 5,025 11,675 1,979 2,283 1,606 2,336 4,942 2,998 556 

R-squared 0.230 0.173 0.143 0.174 0.193 0.209 0.194 0.106 0.195 

Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 

According to NUTS1 classification North West includes Galicia, Asturias and Cantabria. North East: Basque Country, Navarre, Rioja and Aragón. Center: 

Castilla León, Castilla Mancha and Extremadura. East: Catalonia, C. Valenciana and Balearic Islands. South: Andalusia and Murcia. 

 

 

 

Household income on circumstances by age and region groups – 2011 

Equivalent income  

(in logarithm) 

All 
Age Region 

Under 40 Over 40 NW NE Madrid Center East South Canarias 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Gender (base: Men)           

Women -0.0148 -0.0317 -0.000896 -0.0337 -0.0227 0.0343 0.0164 -0.0420* 0.00640 -0.0428 

 (0.0129) (0.0204) (0.0164) (0.0315) (0.0295) (0.0389) (0.0275) (0.0241) (0.0328) (0.0586) 

Region            

Andalusia base base base      base  

Aragón 0.331*** 0.341*** 0.316***  base      

 (0.0312) (0.0538) (0.0364)        

Asturias 0.251*** 0.218*** 0.270*** base       

 (0.0309) (0.0515) (0.0367)        

Canary Islands 0.0236 0.0389 0.00715       omitted 

 (0.0390) (0.0523) (0.0533)        

Cantabria 0.166*** 0.259*** 0.0940** -0.0975**       

 (0.0363) (0.0558) (0.0462) (0.0410)       

Castilla León 0.255*** 0.286*** 0.232***    base    

 (0.0280) (0.0442) (0.0351)        

Castilla Mancha 0.101*** 0.124** 0.0891**    -0.149***    

 (0.0308) (0.0500) (0.0382)    (0.0320)    

Catalonia 0.365*** 0.413*** 0.326***     base   

 (0.0262) (0.0415) (0.0319)        

Extremadura 0.00597 0.0331 -0.0159    -0.243***    

 (0.0352) (0.0589) (0.0430)    (0.0377)    

Galicia 0.176*** 0.183*** 0.170*** -0.0598*       

 (0.0297) (0.0475) (0.0368) (0.0359)       

Balearic Islands 0.264*** 0.226*** 0.296***     -0.105**   

 (0.0481) (0.0833) (0.0492)     (0.0467)   



 

Rioja 0.219*** 0.224*** 0.210***  -0.104***      

 (0.0346) (0.0562) (0.0425)  (0.0365)      

Madrid 0.401*** 0.470*** 0.346***   omitted     

 (0.0280) (0.0457) (0.0328)        

Murcia 0.126*** 0.123** 0.124***      0.124***  

 (0.0338) (0.0499) (0.0452)      (0.0361)  

Navarre 0.530*** 0.509*** 0.550***  0.210***      

 (0.0355) (0.0577) (0.0434)  (0.0371)      

Basque country 0.452*** 0.515*** 0.403***  0.128***      

 (0.0319) (0.0502) (0.0399)  (0.0341)      

C. Valenciana 0.140*** 0.162*** 0.120***     -0.240***   

 (0.0283) (0.0480) (0.0326)     (0.0263)   

Family background 

(base: Very bad) 

          

Bad 0.0580 -0.00617 0.0905 0.106 0.0522 0.101 0.151* -0.170 0.117 0.292 

 (0.0487) (0.0803) (0.0608) (0.0961) (0.122) (0.110) (0.0893) (0.142) (0.0811) (0.260) 

Moderately Bad 0.0872* -0.0164 0.147** 0.0810 0.140 0.146 0.181** -0.0391 0.0266 0.477* 

 (0.0462) (0.0758) (0.0580) (0.0910) (0.124) (0.108) (0.0830) (0.129) (0.0791) (0.259) 

Moderately Good 0.168*** 0.0761 0.218*** 0.160* 0.154 0.270*** 0.244*** 0.0435 0.142* 0.379 

 (0.0450) (0.0743) (0.0563) (0.0865) (0.117) (0.103) (0.0807) (0.126) (0.0780) (0.256) 

Good 0.199*** 0.111 0.245*** 0.194** 0.164 0.256** 0.273*** 0.130 0.166** 0.372 

 (0.0460) (0.0755) (0.0579) (0.0915) (0.118) (0.105) (0.0846) (0.127) (0.0840) (0.271) 

Very Good 0.136** 0.0288 0.214*** 0.124 0.296** 0.272* 0.183 0.0604 -0.0461 0.316 

 (0.0627) (0.0993) (0.0772) (0.102) (0.129) (0.150) (0.164) (0.141) (0.155) (0.299) 

Parents’ education 

(base: Secondary or less) 

          

Post-secondary 0.110*** 0.0673* 0.186*** 0.162*** 0.113** 0.137** 0.154** 0.113** 0.0279 0.139 

 (0.0296) (0.0400) (0.0403) (0.0526) (0.0551) (0.0627) (0.0713) (0.0464) (0.117) (0.108) 

Superior 0.250*** 0.245*** 0.253*** 0.297*** 0.208*** 0.243*** 0.272*** 0.237*** 0.332*** -0.0199 

 (0.0283) (0.0392) (0.0417) (0.0579) (0.0539) (0.0743) (0.0603) (0.0485) (0.0725) (0.259) 

Parents’ occupation 

(base: Did not work) 

          

Low skilled 0.0202 0.0328 0.0215 0.185** -0.0216 0.119 0.0487 0.0311 -0.0849 -0.0799 

 (0.0376) (0.0578) (0.0493) (0.0728) (0.0858) (0.117) (0.0743) (0.0877) (0.0770) (0.168) 

Middle skilled 0.0956**

* 

0.0850 0.113** 0.211*** 0.0773 0.136 0.215*** 0.0747 0.00886 -0.0432 

 (0.0361) (0.0539) (0.0481) (0.0656) (0.0816) (0.111) (0.0738) (0.0849) (0.0736) (0.161) 

High skilled 0.207*** 0.174*** 0.239*** 0.231*** 0.124 0.272** 0.306*** 0.158* 0.163* 0.330* 

 (0.0394) (0.0593) (0.0522) (0.0745) (0.0905) (0.122) (0.0812) (0.0873) (0.0877) (0.192) 

Country of birth of the parents 

(base: all Spanish) 

          

At least one from the UE -0.412*** -0.472*** -0.333*** -0.624*** -0.327*** -0.279*** -0.494*** -0.393*** -0.720*** -0.268** 

 (0.0438) (0.0643) (0.0527) (0.219) (0.0743) (0.0908) (0.0826) (0.0771) (0.136) (0.130) 

At least one from the rest of 

the world 

-0.500*** -0.506*** -0.485*** -0.266*** -0.585*** -0.449*** -0.393*** -0.603*** -0.445*** -0.400*** 

 (0.0296) (0.0418) (0.0422) (0.0728) (0.0496) (0.0661) (0.0525) (0.0417) (0.0963) (0.155) 

Lived with both parents 

(base: No) 

-0.0285 0.0312 -0.0775** -0.0434 0.0156 -0.0152 -0.0469 -0.0394 -0.00480 -0.154* 

(0.0249) (0.0378) (0.0325) (0.0476) (0.0540) (0.0737) (0.0549) (0.0508) (0.0603) (0.0899) 

Number of siblings 

(base: None) 

          

One or two -0.0141 -0.00329 -0.0233 -0.0208 -0.00636 -0.0241 -0.0338 0.0255 -0.0494 -0.0772 

 (0.0148) (0.0229) (0.0188) (0.0333) (0.0333) (0.0407) (0.0338) (0.0298) (0.0378) (0.0776) 

Three or more -

0.0629**

* 

-0.0855** -0.0603** -0.0663 -0.0306 -0.105 -0.0716 -0.0127 -0.0916* -0.0624 

 (0.0217) (0.0389) (0.0263) (0.0524) (0.0455) (0.0654) (0.0479) (0.0440) (0.0485) (0.0872) 

The mother worked 

(base: No) 

-0.00128 0.0443** -0.0349 0.0114 0.0159 0.0546 0.0311 0.0101 -0.0641 -0.0979 

(0.0149) (0.0213) (0.0216) (0.0333) (0.0337) (0.0432) (0.0367) (0.0273) (0.0390) (0.0760) 

Constant 9.192*** 9.195*** 9.203*** 9.341*** 9.520*** 9.404*** 9.275*** 9.702*** 9.304*** 9.238*** 

 (0.0594) (0.0923) (0.0766) (0.122) (0.128) (0.140) (0.110) (0.164) (0.105) (0.302) 

Observations 15,731 5,916 9,815 2,169 2,664 1,514 2,517 3,529 2,538 800 

R-squared 0.175 0.222 0.147 0.105 0.150 0.139 0.143 0.180 0.132 0.114 

Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1. 

According to NUTS1 classification North West includes Galicia, Asturias and Cantabria. North East: Basque Country, Navarre, Rioja and Aragón. Center: 

Castilla León, Castilla Mancha and Extremadura. East: Catalonia, C. Valenciana and Balearic Islands. South: Andalusia and Murcia. 

 



 

  



 

Annex D – Robustness check for the estimates of the share of IO on total inequality  

We present several procedures to estimate the share of IO. On the one hand we present estimations using 

MDL as the inequality measure. As expected, and mentioned in the study, the results for MDL are smaller. 

This is due to the fact that MDL index is sensible to extreme values and we measure inequality of opportunity 

by means of a smoothed distribution, which, by definition, has no extreme values (Brunori et al., 2019).  

On the other hand, Ramos and Van de gaer (2020) argue that some of the properties of the inequality indexes 

may be lost when combining logarithmic and non-logarithmic sample and fitted distributions.  

The estimates used in the discussion are obtained from a log-linear regression, where household income, the 

dependent variable, is included in logarithms. Then, we transform the fitted values back to non-logarithm 

exp(ln(𝑦𝑖)̂). We apply our inequality index to the transformed fitted values and compare the result with total 

inequality measured directly by applying an index to 𝑦𝑖. The results obtained by this approach are highlighted 

in the tables.  

In addition, we present several combinations. In the first column of each index, we compare total income, 

𝑦𝑖, and fitted values in levels. The difference is that we can obtain the smoothed distribution from a linear-

linear regression, without the need to transform the fitted values from logarithms to levels, or from a log-

linear regression. We can see that the difference between these two approaches results into a maximum 

difference of 2.2%.  

In column two of each index and year, the method first transforms household income into logarithms and 

applies the inequality index into the logarithm distribution. Then, this value is compared to the fitted 

distribution obtained from a log-linear regression, without the need to transform it back to levels. Following 

this approach we obtain smaller proportions of IO, but not extremely different. Smaller valuations are 

generated due to the fact that a logarithmic distribution reduces the presence of extreme values, diminishing 

the level of inequality in such distributions. The main problem with this approach is that we may be able to 

interpret the percentage of IO, but the inequality levels obtained from applying any inequality index to 

logarithmic incomes are not interpretable.  

Overall, we can conclude that results are robust, and that IO has increased in the analysed period.  

Share of inequality of opportunity over total inequality – 2019 

  Gini MDL 

Total inequality (in levels or logarithms) 

  
𝒚𝒊 𝐥𝐧(𝒚𝒊) 𝒚𝒊 𝐥𝐧(𝒚𝒊) 

 0.327981 0.039238 0.207651 0.003536 
 (0.003285) (0.000516) (0.004938) (0.000357) 

Smoothed distribution 

Dependent variable in levels 𝑦𝑖  

Fitted values 𝑦𝑖̂  𝑦𝑖̂  

 0.162626  0.048742  
 (0.001642)  (0.001269)  

  49.58%  23.47%  

Dependent variable in logarithms ln(𝑦𝑖) 

Fitted values exp(ln(𝑦𝑖)̂) ln(𝑦𝑖)̂ exp(ln(𝑦𝑖)̂) ln(𝑦𝑖)̂ 

 0.169957 0.018451 0.047414 0.000544 
 (0.001476) (0.000179) (0.000856) (0.000011) 

  51.82% 47.02%    22.83% 15.38% 

 

 

 

 

 

 

 

 



 

Share of inequality of opportunity over total inequality – 2011 

  Gini MDL 

Total inequality (in levels or logarithms) 

  
𝒚𝒊 𝐥𝐧(𝒚𝒊) 𝒚𝒊 𝐥𝐧(𝒚𝒊) 

 0.338779 0.038381 0.203786 0.002758 
 (0.003459) (0.000411) (0.004369) (0.000089) 

Smoothed distribution 

Dependent variable in levels 𝑦𝑖  

Fitted values 𝑦𝑖̂  𝑦𝑖̂  

 0.15367  0.041611  
 (0.001521)  (0.001147)  

  45.36%  20.42%  

Dependent variable in logarithms ln(𝑦𝑖) 

Fitted values exp(ln(𝑦𝑖)̂) ln(𝑦𝑖)̂ exp(ln(𝑦𝑖)̂) ln(𝑦𝑖)̂ 

 0.156425 0.016736 0.039707 0.000447 
 (0.001313) (0.000162) (0.000726) (0.000009) 

  46.17% 43.60% 19.48% 16.21% 

 

 

 

 

 

  



 

Annex E – Comparison table for changes in IO and subgroup heterogeneity 
 

Gini of household equivalent income 

 2011 2019 
 Total Circumstances  Total Circumstances  

 0.338779 0.156425 46.17% 0.327981 0.169743 51.75% 

  (0.003459) (0.001313)   (0.003285) (0.001478)   

Standard errors in parenthesis 

 

 

 

Gini of household equivalent income – Age groups  

 2011 2019 
 Total Circumstances  Total Circumstances  
Under 40 (25-39)             
 0.332572 0.173917 52.29% 0.316747 0.186164 58.77% 

  (0.006117) (0.002233)   (0.005084) (0.002780)   

Over 40 (40-59)       
 0.343419 0.145414 42.34% 0.332767 0.165377 49.70% 

  (0.003922) (0.001554)   (0.004126) (0.001672)   

Standard errors in parenthesis 

 

 

 

Gini of household equivalent income – Regions (NUTS1) 

 2011 2019 
 Total Circumstances  Total Circumstances  

North West              
 0.298075 0.097865 32.83% 0.319316 0.126363 39.57% 

  (0.007053) (0.003292)   (0.007266) 0.004001)   

North East             
 0.31167 0.125756 40.35% 0.27602 0.128065 46.40% 

  (0.006564) (0.003084)   (0.006564) 0.004326)   

Madrid             
 0.329495 0.135169 41.02% 0.345737 0.157932 45.68% 

  (0.011596) (0.003154)   (0.01103) 0.004106)   

Center             
 0.326607 0.12847 39.33% 0.293983 0.156487 53.23% 

  (0.007256) (0.002583)   (0.005763) 0.00338)   

East             
 0.330747 0.148732 44.97% 0.311747 0.147394 47.28% 

  (0.006396) (0.002465)   (0.005449) 0.002959)   

South             
 0.348192 0.126369 36.29% 0.327694 0.135314 41.29% 

  (0.007984) 0.003696)   (0.006369) 0.003286)   

Canarias             
 0.343239 0.1246 36.30% 0.308381 0.138224 44.82% 

  (0.013832) 0.005713)   (0.012159) 0.008447)   

Standard errors in parenthesis 

According to NUTS1 classification North West includes Galicia, Asturias and Cantabria. North East: Basque Country, Navarre, 

Rioja and Aragón. Center: Castilla León, Castilla Mancha and Extremadura. East: Catalonia, C. Valenciana and Balearic 

Islands. South: Andalusia and Murcia. 

 

 

 

 


