
Ocean and Coastal Management 213 (2021) 105872

Available online 9 September 2021
0964-5691/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Measuring left-tail risk of fish species 

Itsaso Lopetegui *, Ikerne del Valle 
Department of Public Policy and Economic History, University of the Basque Country (UPV/EHU), Spain   

A R T I C L E  I N F O   

Keywords: 
Left-tail risk 
Fish catches 
Vulnerability 
Ecosystem-based fisheries management 

A B S T R A C T   

The main objective of this paper is to perform a risk analysis for the key commercial fish species in the FAO area 
27 by means of a bundle of financial left-tail risk indicators, including Value-at-Risk (VaR), Expected Shortfall 
(ES) and Expectiles (EX), and panel data of catches (Qit) to measure the left-tail risk of catches (LTRi); an empirical 
and probabilistic measure of the worst-case reduction of catches resulting from huge negative shocks. LTRi can be 
useful, not only to classify the fish species according to their risk level, but also, using the appropriate weights, to 
infer the risk to any other aggregation level such as fleet, fishing community or fishing country. In this paper, we 
are employing our species level (LTRi) estimations to calculate the left-tail risk of catches of the EU fishing 
countries (LTRj), a country level proxy variable for the risk inherent to the fishing activity itself.   

1. Introduction 

Fisheries need long run strategies, management tools and trans-
disciplinary indicators to achieve required biological and environmental 
targets (Sainsbury et al., 2000; Hilborn, 2007; Espinoza-Tenorio et al., 
2013), and avoid short-run myopic behaviours that can drive to unsus-
tainable harvest levels (Botsford et al., 1997; Larkin et al., 2011), 
break-even profits and social disrupts in fisheries dependent commu-
nities. This need for governance strategies that, at the same time, ac-
count for social, economic and ecological goals have encouraged 
scholars to call for the ecosystem-based fisheries management (EBFM) as 
an approach to sustainably develop the fishing activity, targeting both, 
human and ecosystem well-being (Pikitch et al., 2004; Garcia and 
Cochrane, 2005; Long et al., 2015; Link and Browman, 2017). Un-
doubtedly, a better understanding of the marine ecosystem functioning 
(Rosenfeld, 2002; Curtin and Prellezo, 2010) and the dynamics of past 
collapses could help to detect early warning signs (Jackson et al., 2001; 
Mullon et al., 2005), to predict the vulnerability of fish species before 
their population collapses (Worm et al., 2006; Sala and Knowlton, 
2006), to improve forecasting capacity (Hobday et al., 2016; Farmer 
et al., 2019), and to overcome uncertainty and risk related issues 
(Rosenberg and Restrepo, 1994; Hoos et al., 2019). 

Effective decision-making in the framework of fisheries policy is 
specifically complex due to the uncertainty surrounding the measure-
ment of the abundance of fish stocks, their expected dynamic evolution, 
and the lack of reliable and synthetic indicators measurable with con-
ventional fisheries data (Pelletier et al., 2005; Claudet et al., 2006). 

Marine scientists already provide several ecological indicators acces-
sible from different databases, which aim to summarise the status of 
individual fish species. For instance, FishBase (Froese and Pauly, 2018) 
includes vulnerability and resilience of fish species, and The Red List of 
Threatened Species index of the International Union for Conservation of 
Nature (IUCN) (IUCN, 2018) classifies fish species according to a specific 
conservation score based on criteria such as the rate of population 
decline, the population size and distribution, the geographical distri-
bution and the fragmentation degree. However, there are many missing 
species, and besides, some of the key indicators are just qualitative. The 
lack of quantitative information, as well as the exclusion of a number of 
species, advocates investigating on additional indicators that might help 
to foresight the risk of shocks in particular fishing areas and ecosystems. 
Moreover, there is an increasing demand for precise scientific informa-
tion to improve the quantification of risk in order to guide individuals 
and policy makers’ decisions, and help agent’s expectations formation 
(Link et al., 2015; Libralato et al., 2019; Fulton, 2021). 

Depending on the specific field, the concept of risk is open to mul-
tiple interpretations and formulations. While some disciplines base their 
definition of risk on probabilities or expected values, other areas 
conceptualize risk as an undesirable event or danger dealing with un-
certainties (Aven, 2012). For the purpose of this paper, we are identi-
fying risk with a possibility of a bad or undesired outcome happening (Fox, 
1999; Wagner, 2010; Sethi, 2010). Thus, risk involves variability of 
catches, uncertainty and loss related to the fishing activity itself. More 
precisely, taking advantage of the domain of finances, risk is defined as 
the expected loss of benefits from the fish stocks in terms of the returns 
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of the catches, which are often used as a proxy variable of the revenues 
in fisheries (Rosenberg and Restrepo, 1994). Certainly, instead of the 
volume of catches, we could also use the value of such catches. However, 
adding prices involves a bundle of supplementary source of risk, 
because, not only the supply itself, but also many factors influence on 
fish prices (i.e. environmental change, fish quality, fish size, water 
pollution, location, days spent on storage, etc.). Besides, to some extent, 
it is reasonable to assume that local fisheries are price takers (Crona 
et al., 2016; Rosales et al., 2017). 

Regarding the measurement risk, there is not a clear consensus about 
the most appropriate risk indicator to proxy risk, and frequently, the 
choice is guided by an empirical perspective. Moreover, designing and 
quantifying risk presents its own hazards (Barrieu and Scandolo, 2015). 
In certain cases, financial practitioners measure risk as the probability of 
shortfall below a benchmark level of return, while in other occasions, 
they are more concerned with the overall magnitude of the loss (McNeil 
et al., 2015; Kratz et al., 2018; Novales and Garcia-Jorcano, 2019; 
Bignozzi et al., 2020). Despite the simple variance of the returns has 
been widely used as a proxy for risk, the last world financial crises 
(2008) turned the attention to downside risk measures (Bali et al., 2009; 
Huang et al., 2012; Hammoudeh et al., 2013; Almahdi and Yang, 2017). 
Semivariance is one of the most popular downside risk indicator, 
because, since it measures the dispersion of the observations that fall 
below the mean or target value of the assets, it is consistent with the 
intuitive perception of risk for investors. Nevertheless, when investors 
are especially scared of incurring extreme losses and are averse to de-
viations below a certain threshold, left-tail risk indicators (henceforth 
LTRs) constitute a better estimation of risk than variance or semi-
variance (Miller and Reuer, 1996; Gundel and Weber, 2007; Zhu et al., 
2009; Shah and Ando, 2015). LTRs focus on severe downside events, 
estimating the impact of rare but significant big negative shocks (on 
catches), that is, the worst-case loss. 

Among the LTRs, Value-at-Risk (VaR) (Jorion, 1997, 2001) became 
the most popular and widely used indicator since its adoption in 1996 by 
the Basel Committee on Banking Supervision (Basel, 1996). Afterwards, 
due to the lack of some key properties (such as coherence, subadditivity 
and the fact that VaR ignores losses in the far tail of the loss distribution 
(Artzner et al., 1999; Krokhmal, 2007; Chen and Wang, 2008)), in 2013 
Basel III (2013) they recommended replacing VaR by the Expected 
Shortfall (ES) (Rockafellar et al., 2000; Rockafellar and Uryasev, 2002). 
ES is coherent and quantifies tail risk, but it fails the elicitability prop-
erty deemed essential to backtesting (Ziegel, 2016) and depends 
excessively on the extreme tail of the returns distribution (Jadhav et al., 
2013). Accordingly, some authors advocate for the use of Expectiles (EX) 
to measure risk (EX) as a coherent and elicitable alternative to VaR and 
ES (Waltrup et al., 2015; Bellini and Di Bernardino, 2017; Chen et al., 
2018). 

In the fisheries framework, LTRs are also more appropriate to mea-
sure risk (Charles, 1983; Fock et al., 2011; Alvarez et al., 2017; Lope-
tegui and del Valle, 2020). Notice that any positive deviation would 
imply more catches, which, obviously, is not a bad or undesired outcome, 
as we have defined risk. Since there is not a definite theoretical financial 
risk indicator to measure risk, we will determine the one that best fits 
our data; to quantitatively measure the left-tail risk of catches (LTRi) for 
the key fish species (i = 1,..,49) in the target area (FAO area 27). LTRi 
measures the worst-case loss on the volume of catches, based on the 
negative severe reduction on catches occurred in the past. For instance, 
if species i = 1 gets the highest risk level (LTR1 = 1), in the worst case, its 
catches would be reduced by 100%, or if LTR2 = 0 for species i = 2, then, 
in the worst case the catches of species i = 2 would remain constant (0% 
change). Accordingly, species 1 may be catalogued as a very high-risk fish 
species (since it has already suffered a severe yearly decline on catches 
in the past), while species 2 would be a low-risk fish species (since its 
catches have always increased or, at least, remained constant in the 
past). 

This way, we contribute to the literature twofold. On the one hand, 

providing an innovative way of measuring the risk of fish species 
quantitatively, deriving the taxonomy of individual fish species, and 
complementing the existing species level conventional vulnerability 
indicators. On the other, LTRi can be easily inferred to any aggregation 
level by using the appropriate weights, so as to measure the overall left- 
tail risk of catches of a country, region, community, fleet or fishing area, 
and to compare their risk patterns. Specifically, using our estimation of 
species-level risk (LTRi,) and the country-level catches as weights (wijt), 
we derive the country-based left-tail risk of catches (LTRjt) for each of 
the (j = 1, …,15) EU fishing countries operating in the FAO area 27. This 
way, if for example, a country (j = 1) gets the highest risk level (LTR1 =

1), in the worst case, the catches of such country would be reduced by 
100%. Contrarily, if for country (j = 2) LTR2 = 0, then, in the worst case 
the catches of country j = 2 would remain constant (0% change).The 
former (j = 1) would be a country operating with a very high-risk, while 
the latter (j = 2) will be catalogued as a low-risk country. Thus, our 
analysis will help to classify, not only individual fish species according 
to their inherent risk, but also EU fishing countries from low to very high 
risk ones. This may be useful to identify similar risk patterns and po-
tential country specific diversification strategies by means of reducing 
catches of certain risky fish species and targeting low-risk ones. Addi-
tionally, special attention will be paid on checking whether there are 
potential differences between the LTR patterns of EU fishing countries 
by means of parametric and not parametric tests such as ANOVA and 
Kruskal Wallis. 

The remainder of this paper is organised as follows. After this 
introduction, Section 2, focuses on describing the fishing area or 
ecosystem of the analysis, the data and methods used, including an 
overview of financial left-tail risk indicators. Section 3 summarises the 
major empirical findings made in this section, Section 4 adds some 
discussion points and Section 5 concludes with a summary of the major 
points made in the paper. 

2. Material and methods 

2.1. Study area 

Our fish species risk analysis focuses on the species subject to stock 
assessment in the FAO area 27, including North-East Atlantic and 
adjacent waters (North Sea, Baltic Sea, Skagerrak, Kattegat, West of 
Scotland Sea, Irish Sea and Celtic Sea) (see Fig. 1), the major fishing 
ground in the EU with around 75% of the fish catches (EUROSTAT, 
2019). Therefore, we proxy our target fishing ecosystem, for now on Ω, 
as the group of the 49 fish species subject to analytic stock assessments 
(the full list of the species in the analysis may be found in Table 1). 

In order to estimate LTRi we are using panel data of fish catches (Qit) 
{Qit: i = 1, …,49; t = 2000, …,2018:1} (data accessed from EUROSTAT 
(2020)).1 To obtain the aggregated catches of Ω we are summing up the 
catches of the 15 fishing EU member-states operating in the target area 
(i.e. Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, 
Latvia, Lithuania, Poland, Portugal, Spain, Sweden, The Netherlands 
and United Kingdom2). Notice that to get aggregate catches by species in 
Ω we are not including EU fishing countries such as, Greece, Italy, Malta, 
Bulgaria, Croatia, Cyprus, Romania or Slovenia, because their fishing 
grounds are not within our target fishing area. 

2.2. Methods 

We are following a 3-steps procedure to get country-based left-tail 
risk estimations (LTRjt) from the species level LTRi. 1) Firstly, we 

1 Time horizon (2000–2018) is limited to available data, due to the presence 
of many missing values in 2019.  

2 Even if the UK is no longer part of the EU, it was part of the EU during the 
period analysed (2000–2018). 
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measure individual fish species returns (Rit) using each species catches 
(Qit) as input data, and analyse the distributional properties of such 
returns in order to empirically preselect the LTR that best fits our real 
data. 2) Secondly, we measure LTRi of each fish species using alternative 
LTRs. 3) Thirdly, using the proportion of the catches of each individual 
fish species (i) in each country (j) and year (t) as weights (wijt), from the 
species-level risk measure (LTRi), we infer the country-level risk (LTRjt) 
of the EU fishing countries operating in Ω. 

2.2.1. Step 1: estimating species returns (Rit) 
Firstly, using the geometric rate of the catches (Qit) we measure the 

returns (Rit) of each (i = 1, …,49) species in Ω (1). Rit measures the 
yearly catches increase or reduction for each fish species. Returns will be 
positive (Rit>0) when catches increase, and negative (Rit<0) when they 

decrease. Fishers, following their expectations about future gains (pos-
itive returns) or losses (negative returns) and their related risk,3 decide 
whether to target or not a specific species. 

Rit = ln
Qit

Qit− 1
= lnQit − lnQit− 1 (1)  

where Qit are the yearly (t) aggregated catches of the i fish species in Ω. 
A common practice before calculating the risk of the returns is to 

analyse the distribution of Rit in order to identify possible fluctuations, 
non-normal distribution, skewness and/or kurtosis that might bias the 
risk measure (Rachev et al., 2005; Bali et al., 2008; You and Daigler, 
2010). Hence, the best strategy is to choose the most accurate risk in-
dicators based on the real data of the particular fishing area. 

2.2.2. Step 2: estimating species-level risk 
Secondly, we measure the risk of Rit using five alternative LTRs, 

namely, Value-at-Risk (VaR) (2), the Modified Value-at-Risk (MVaR) (a 
robust version of VaR) (3), the Expected Shortfall (ES) (4), the Modified 

Fig. 1. FAO area 27. 
Source: ICES (2019). 

Table 1 
Shapiro-Wilk normality test: returns (Rit).   

W P-value 

Rit 0.46878 <2.2e-16 

Notes. 
Shapiro-Wilk normality test for catches (Qit) yearly returns (Rit). 
P-values: *** significant at 1%, ** significant at 5%, * significant at 10%. 

3 In general, there is a negative tradeoff between the expected returns and the 
risk of the assets. Higher expected returns assume more risk, and, contrarily, 
lower expected returns are associated with lower risk. 
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Expected Shortfall (MES) (a robust version of ES) (5) and the Expectiles 
(EX) (6). Depending on the distribution of Rit, the most appropriate risk 
indicator will be proposed so as to proxy the left-tail risk of catches 
(LTRi). Special attention will be paid on the potential ambiguities among 
the different risk measures in order to select, joint with the empirical 
distributional properties of Rit, the best financial risk formulation to 
proxy LTRi, and derive the taxonomy of individual fish species based on 
their estimated risk. 

Value-at-Risk (VaR)4 (2) is the most popular LTR, mainly because it 
brings simplicity, wide applicability and universality (Jorion, 1997). 
VaR measures the worst expected loss over a given horizon under 
normal conditions at a given level of confidence (Jorion, 2001), that is to 
say, the worst-case loss or negative return (Rit<0). 

VaRα(Rit)= − qα(Rit) (2)  

where α is the confidence level αε(0,1) and qα is the α-quantile of the 
return (Rit) distribution (Emmer et al., 2015). The so called Modified VaR 
(MVaR) (3), a robust version of VaR, is more appropriate when returns 
are not normally distributed, because it adjusts the standard deviation to 
account for skewness and kurtosis in the return distribution (Favre and 
Galeano, 2002) using the Cornish Fisher expansion method (Cornish and 
Fisher, 1938) by 

MVaRα(Rit)= μ(Rit) + σ(Rit)qCF,α (3)  

where α is the confidence level of the MVaR, μ is the potential rate of 
drift of returns (Rit), σ is the standard deviation and qCF,α

5 is the Cornish 
Fisher approximation of the α quantile of the distribution. 

Expected Shortfall (ES) (4) (Rockafellar and Uryasev, 2000; Rock-
afellar and Uryasev, 2002)6 is the mean worst-case loss beyond VaR, that 
is to say, the average worst-case loss (Emmer et al., 2015), and it is 
calculated by averaging all the returns in the distribution that are worse 
than VaR. 

ESα(Rit)= − E[Rit| − Rit ≥VaRα(Rit)] (4)  

where α is the confidence level and Rit the returns. ES is a better alter-
native to VaR, because it is sensitive to the severity of losses (negative 
returns (Rit <0)) in the far tail of the Rit distribution. ES is also contin-
uous with respect to α and the risk measured by ES will not change 
dramatically when changing the confidence level, as it happens in the 
case of VaR (Acerbi and Tasche, 2002). As it is in the case of Modified 
VaR, Modified Expected Shortfall (MES) (5) is suggested as a robust 
version of ES. MES is the mean loss (negative return (Rit <0)) between 
the VaR at α-quantile and the α(1-αa)-quantile of the worst cases of Rit, 
eliminating the non-frequent and exceptionally very negative returns 
above the α(1-αa)-quantile by 

MES(α,a)(Rit)= − E[Rit| − qα(1− αa)(Rit)≥ − Rit ≥VaRα(Rit)] (5)  

where α is the confidence level, Rit the returns, and a≥0 is a specified 
number. MES is more appropriate under non-normality of the returns, 
because it adjusts the standard deviation to account for skewness and 
kurtosis in the return distribution (Boudt et al., 2008; Jadhav et al., 
2013; Jadhav and Ramanathan, 2019). 

Expectiles (EX) (6) were introduced by Newey and Powell (1987) and 
have been suggested by the union of ‘expectation’ and ‘quantiles’ 
(Emmer et al., 2015). EX is similar to quantiles but is determined by tail 
expectations rather than tail probabilities. 

EXτ(Rit)= argmin
RεR

τE
[
(Rit − q)2

+ + (1 − τ)E
(
Rit − q)2

−

]
(6)  

where q+ = max(q,0) and q- = max(-q,0) are the left and right quantiles, 
Rit the returns and τε(0,1) is the asymmetry parameter as an index of 
prudentiality (Kuan et al., 2009). EX weight negative deviations by (1-τ) 
and positive deviations by τ, providing information about the symmetry 
of the distribution of Rit. When τ = 0.5, EXτ = [ Rit], therefore, EX can be 
interpreted as an asymmetric generalisation of the mean. 

We use Rit (1) coming from the previous step to measure the LTRi of 
each of the (i) fish species in Ω, employing the above-mentioned five 
LTRs. In order to make the five risk indicators comparable, in the case of 
VaRα(Rit) it is usual to choose 99% confidence level (α = 0.01) (Basel, 
1996); the latest revisions of the Basel III (2013) suggests α = 0.025 for 
ESα(Rit); and asymmetry parameter τ = 0.00145 is suggested for EXτ(Rit) 
(Bellini and Di Bernardino, 2017). The underlying idea is to compare 
alternative risk indicators without changing the resulting value of the 
left-tail risk (worst-case loss (Rit<0)), thus, following Bellini and Di 
Bernardino (2017), VaR0.01(Rit) ≃ MVaR0.01(Rit) ≃ ES0.025(Rit) ≃
MES0.025(Rit) ≃ EX0.00145(Rit). 

All of our five risk indicators (VaR, MVaR, ES, MES and EX) range 
from 0 to 1. Accordingly, the lowest left-tail risk of catches (LTRi = 0) 
would imply that, in the worst case, Rit (i.e. the yearly change on Qit of 
the fish species (i)) would be zero. That is to say, catches (Qit) would 
remain constant. An intermediate left-tail risk of catches level (LTRi =

0.5) would indicate that in the worst case, the Qit of the fish species (i) 
would be reduced by 50%. The highest left-tail risk of catches (LTRi = 1) 
implies that in the worst case, the Qit would be reduced by 100%. 

Risk measures may be ambiguous depending on the formulation of 
the risk indicator used. Although all the five risk indicators we are 
focusing on (i.e. VaR (2), MVaR (3), ES (4), MES (5) and EX (6)) are 
theoretically consistent, however, as we will show later in subsection 
3.1, MES will be found to be the most accurate and preventive risk in-
dicator based on the specific distributional characteristics of our returns 
(1). Since MES reflects the effect of not frequent but important distur-
bances on returns (Rit), it helps to identify ambiguities among different 
indicators. Therefore, even we are measuring the five left-tail risk in-
dicators, MES will be the reference one to proxy LTRi, and to infer the 
country-level risk. 

2.2.3. Step 3: From species-level risk to country-level risk 
So as to get the country-level left-tail risk of catches (LTRjt) for each 

of the 15 EU fishing countries (j = Belgium, Denmark, Estonia, Finland, 
France, Germany, Ireland, Latvia, Lithuania, Poland, Portugal, Spain, 
Sweden, The Netherlands and United Kingdom), first, we calculate the 
weights (wijt). wijt measure the proportion of each (i) fish species’ vol-
ume of catches to the total catches of the (j) country; Afterwards, using 
wijt, we infer the country-level left-tail risk of catches (LTRjt), multi-
plying the corresponding wijt by the individual species-level left-tail risk 
of catches (LTRi). Accordingly, the resulting LTRjt would be: LTRjt =
∑

wijtLTRi (i = 1,…,49; j = 1,…,15; t = 2000,…,2018). Notice that, 
our procedure could be easily carried out using data coming from other 
fishing areas. 

3. Results 

3.1. Species-level risk indicators 

Catches’ returns (Rit) exhibit a rather heterogeneous return distri-
bution depending on the species. Some of the species, such as common 
dab and lemon sole, exhibit very stable catches in the period of analysis 
(close to zero Rit), whereas others, such as beaked redfish and Norway 
pout, are subject to major fluctuations. Notice that very high and posi-
tive Rit imply that the yearly catches for these species have increased, 
while contrarily, negative Rit involve yearly reduction on the catches. 
We can expect that some of the species (such as common sole and 

4 VaR is commonly known as Historical VaR (HVaR).  
5 qCF,α = qα + 1

6 (q
2
α − 1)S(Rit) +

1
24 (q

3
α − 3qα)K(Rit) −

1
36 (2q3

α − 5qα)S
2(Rit)

where qα is the α quantile of a standard normal distribution, S (Rit) is the 
standardized skewness of the returns (Rit) and K(Rit) is the excess kurtosis of Rit.  

6 ES is commonly known as Historical ES, average VaR, Conditional VaR 
(CVaR), or tail conditional expectation. 
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Norway lobster) will be associated to low left-tail risk of catches and 
others (such as Norway pout and sandeels) to very high left-tail risk of 
catches. Fig. 2 shows the density plot for Rit distribution. We can observe 
that although is rather symmetric, it is more peaked than the normal 
distribution and the shape of the tails does not correspond to a normal. 
Additionally, we have checked by the Shapiro-Wilk test whether our Rit 
are normally distributed. Shapiro-Wilk testing results (Table 1) show 
that the Rit are indeed not normally distributed. 

We are taking advantage of the R package PerformanceAnalytics 
(Peterson and Carl, 2019) and expectreg (Sobotka et al., 2014) to esti-
mate VaR (2), MVaR (3), ES (4), MES (5) and EX (6) so as to proxy LTRi 
of each i species based on Rit (1). Table 2 shows the left-tail risk of 
catches (LTRi) estimates for each species (i = 1, …,49) in Ω. According to 

MES, the average left-tail risk of catches of the species in the fishing area 
Ω is 0.65. This means that, in the worst case, and due to the risk related 
to factors influencing the fishing activity, the catches in Ω would be 
reduced by 65%. Even that the resulting overall classification of the fish 
species is rather stable, there are however some noticeable particular-
ities. Special attention should be paid on some species, such as blonde 
ray, thornback ray and anglerfishes nei, which could be catalogued as 
ambiguous species. Even their VaR, MVaR, ES and EX values are rela-
tively low, MES catalogues these species as very high-risk species. 

These results support that it is always recommendable to measure 
different risk measures to afterwards, based on the empirical distribu-
tions of the returns and potential ambiguities among alternative in-
dicators, choose the reference risk indicator to be used in each case 
study. For the purpose of this paper, there are several reasons to focus on 
MES to proxy species-level left-tail risk of catches (LTRi). On the one 
hand, (the same as MVaR) MES is more appropriate under non- 
normality of returns. Besides, MES reflects the effect of not frequent 
but important disturbances on returns that makes its risk value higher. 
Additionally, MES is capable of appropriately measuring the risk of the 
fish species showing an ambiguous behaviour. In fact, for some species (i. 
e. blonde ray, European hake and Atlantic mackerel for example), MES 
values are significantly higher than the rest of the risk indicators, 
because such indicators (i.e. VaR, MVaR, ES and EX) may mis-
communicate the actual risk when the returns exhibit huge breakdowns. 
That is the main reason why in the field of finances MES is often pro-
posed as the best robust and coherent risk indicator, which is also able to 
account for these huge breakdowns and consequently, quantify the 
authentic risk (Jadhav et al., 2013). Hence, based on our empirical 
findings, we focus on MES to proxy species-level left-tail risk of catches 
as a measure of the average worst-case loss (severe reduction) on 
catches. Based on MES, the low-risk fish species (lowest LTRi) are Turbot 
(LTRTUR = 0.17) and European plaice (LTRPLE = 0.19). On the contrary, 
European anchovy (LTRANE = 1), blackbellied angler (LTRANF = 1) and 
sandeels (LTRSAN = 1), are some of the very high-risk fish species (highest 
LTRi). 

Fig. 2. Returns (Rit) density plot.  

Table 2 
Left-tail risk of catches (LTRi).   

Left-tail risk of catches (LTRi)  Left-tail risk of catches (LTRi) 

Species VaR MVaR ES MES EX Species VaR MVaR ES MES EX 

European anchovy 1 1 1 1 1 Atlantic mackerel 0.26 0.2 0.28 0.65 0.28 
Anglerfishes nei 0.96 0.48 1 1 1 Smooth hounds nei 0.45 0.54 0.5 0.54 0.49 
Blackbellied angler 1 1 1 1 1 Northern prawn 0.41 0.46 0.43 0.48 0.42 
Greater argentine 1 1 1 1 1 European sprat 0.36 0.4 0.38 0.47 0.37 
Boarfish 1 1 1 1 1 Nursehound 0.29 0.41 0.3 0.46 0.29 
Capelin 1 1 1 1 1 Ling 0.38 0.44 0.41 0.45 0.4 
Four spot megrim 1 1 1 1 1 European seabass 0.33 0.4 0.34 0.4 0.34 
Megrim 1 1 1 1 1 Spotted ray 0.5 0.4 0.57 0.4 0.55 
Angler 1 1 1 1 1 European flounder 0.32 0.36 0.34 0.39 0.33 
Norway pout 1 1 1 1 1 Haddock 0.32 0.37 0.34 0.37 0.34 
Rays and skates nei 1 1 1 1 1 Atlantic horse mackerel 0.31 0.37 0.32 0.37 0.31 
Beaked redfish 1 1 1 1 1 Saithe 0.22 0.29 0.23 0.31 0.22 
Golden redfish 1 1 1 1 1 Megrims nei 0.23 0.26 0.25 0.3 0.24 
Blonde ray 0.08 0 0.09 1 0.08 Small spotted catshark 0.25 0.29 0.26 0.29 0.26 
Cuckoo ray 1 1 1 1 1 Atlantic herring 0.17 0.2 0.18 0.27 0.18 
Sandeels 1 1 1 1 1 Atlantic cod 0.2 0.26 0.21 0.26 0.2 
Blackmouth catshark 1 1 1 1 1 Whiting 0.2 0.26 0.21 0.26 0.21 
Blue whiting 1 1 1 1 1 Sardine 0.19 0.24 0.19 0.24 0.19 
Surmullet 0.49 0.63 0.5 0.97 0.49 Common dab 0.2 0.23 0.21 0.23 0.21 
Thornback ray 0.15 0.1 0.16 0.85 0.16 Norway lobster 0.14 0.15 0.15 0.23 0.15 
Lemon sole 0.44 0.5 0.49 0.82 0.48 Brill 0.17 0.19 0.19 0.21 0.18 
Blue ling 0.7 0.79 0.74 0.79 0.73 Common sole 0.13 0.14 0.14 0.2 0.13 
European hake 0.43 0.48 0.47 0.78 0.46 European plaice 0.15 0.19 0.16 0.19 0.15 
Greenland halibut 0.53 0.71 0.54 0.71 0.52 Turbot 0.14 0.17 0.16 0.17 0.15 
Tusk 0.41 0.36 0.44 0.69 0.43 Average risk 0.54 0.56 0.55 0.65 0.55 

Notes. 
Value-at-Risk (VaR), Modified Value-at-Risk (MVaR), Expected Shortfall (ES), Modified Expected Shortfall (MES), Expectiles (EX). LTRi values range from low (zero) to 
very high (one) risk. The lowest left-tail risk of catches (LTRi = 0) denotes that in the worst case, the catches of the species (i) would keep constant. On the contrary, the 
maximum left-tail risk of catches (LTRi = 1) implies that in the worst case, the catches of the fish species (i), would be reduced by 100%. 
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Summarising, we have estimated the left-tail risk of catches (LTRi) 
(based on Qit) at fish species level, using a bundle of five left-tail 
financial risk indicators (i.e. VaR, MVaR, ES, MES and EX). Due to the 
non-normality of the distribution of returns (Rit) and the fact that MES 
reflects the effect of not frequent but important disturbances on returns, 
helping to identify ambiguities among different indicators, MES will be 
the reference risk indicator for LTRi (Table 2 and Fig. 3). 

3.2. From species-level to country-level financial risk indicators 

Based on our species-level risk indicator (LTRi), and using the pro-
portion of the catches of each country to the total catches as weights 
(wijt), we have inferred the country-based left-tail risk of catches (LTRjt) 
for the 15 EU fishing countries operating in the target area Ω. We have 
divided the resulting LTRjt into four quartiles to classify the EU fishing 
countries as low-risk (Q1), moderate-risk (Q2), high-risk (Q3), and very 
high-risk (Q4) (Table 3 and Fig. 4). Even our results7 have a panel 
structure containing the country-based risk for each of the countries and 
years, due to space limitations, Table 3 only shows the average risks by 
country, as well as the standard deviation (σ), the coefficient of variation 
(CV) and the quartile (Q). Additionally, we are showing the multi-panel 
graphs and the notched box plots for the country-based left-tail risk of 
catches (LTRjt) for the concerned period (t) and country (j) in Figs. 5 and 
6. 

The average country level left-tail risk of catches (LTRj) is 0.45; this 
means that in the worst case, the catches would be reduced by 45%. 
Denmark, Spain, Ireland and United Kingdom are the countries with the 
highest average country-based LTRj. Accordingly, in the worst case, the 
volume of catches would be reduced by 64% in Denmark, 62% in Spain, 
56% in Ireland and 51% in United Kingdom. Contrarily, Belgium and 
Finland are lowest-risk countries (LTRBelgium = 0.31, LTRFinland = 0.30). 

EU fishing countries operating in Ω exhibit rather heterogeneous left- 
tail risk of catches patterns (see panel graphs for the estimated risk in 

Fig. 5). In fact, Denmark (LTRDenmark = 0.64) and Spain (LTRSpain =

0.62) are the countries facing the highest average left-tail risk of catches. 
Nevertheless, focusing on the temporal path, whereas the Spanish LTRjt 
is rather stable oscillating between 0.58 and 0.68, the Danish LTRjt 
presents much more variability. The LTRjt in Denmark reached the 
highest value (0.77) in 2002 and declined several times over the period 
until it reached 0.49 the last year. The case of Portugal is also remark-
able, since it is the country facing the highest increasing trend, from 0.31 
to 0.56. The Portuguese LTRjt evolution implies that Portugal is 

Fig. 3. Bar plot for the left-tail risk of catches by fish species (LTRi). 
Notes.Bar plot for the left-tail risk of catches by fish species (LTRi) according to MES (Table 2). Bars are displayed from the highest risk (LTRi = 1) to the lowest (LTRi 
= 0.17). Colours represent quartiles: very high risk (Q4) in black, moderate high risk (Q3) in dark grey, moderate low risk (Q2) in grey, low risk (Q1) in light grey. 

Table 3 
Average country-based left-tail risk of catches (LTRj).   

LTRj Q σ CV 

Denmark 0.64 Q4 0.08 13% 
Spain 0.62 Q4 0.04 6% 
Ireland 0.56 Q4 0.04 7% 
United Kingdom 0.51 Q4 0.02 4% 
The Netherlands 0.47 Q3 0.05 10% 
France 0.46 Q3 0.03 6% 
Lithuania 0.46 Q3 0.05 11% 
Germany 0.45 Q2 0.03 6% 
Sweden 0.44 Q2 0.06 13% 
Poland 0.40 Q2 0.02 4% 
Latvia 0.39 Q2 0.01 4% 
Estonia 0.39 Q1 0.01 4% 
Portugal 0.37 Q1 0.07 20% 
Belgium 0.31 Q1 0.04 13% 
Finland 0.30 Q1 0.01 4% 
Average risk 0.45    

Notes. 
Average country-based left-tail risk of catches (LTRj). 
Quartiles (Q) = Q1: low-risk, Q2: moderate-risk, Q3: high-risk, Q4: very high- 
risk. 
σ is the standard deviation and CV is the coefficient of variation. 

7 Detailed panel data including yearly LTRjt results available upon request. 
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targeting more risky fish species than in the past.8 Contrarily, Latvia, 
Poland, Finland and Estonia are the countries with the most stable LTRjt. 
Accordingly, not only the average risk but also the variability of the left- 
tail risk of catches (LTRjt) matters. 

Summarising, the EU fishing countries facing very high-risk (Q4) are 
Denmark, Spain, Ireland and United Kingdom. Even the LTRjt of 
Denmark and Spain is significantly different (not overlapping box plots) 
and higher to the Irish and British ones (see Fig. 6). The high-risk 
countries (Q3) are The Netherlands, France and Lithuania. Germany, 
Sweden, Poland and Latvia are moderate-risk (Q2) countries, although 
differences between Q3 and Q2 countries are not clearly noticeable. 
Finally, Estonia, Portugal, Belgium and Finland are low-risk countries 
(Q1). 

For completeness, we have also tested if these apparent differences 

among countries and/or time are significant through one-way analysis 
of variance (ANOVA)9 using the plm package in R (Croissant and Millo, 
2018). However, attention should be paid on the fact that these results 
may be biased, because ANOVA assumes that the data follows a normal 
distribution and has a common variance. Therefore, we have checked by 
the Shapiro-Wilk test whether left-tail risk of catches (LTRjt) is normally 
distributed, and by Levene’s test whether the variance across coun-
tries/time is significantly different. Shapiro-Wilk testing results 
(Table 4) show that the LTRjt is indeed not normally distributed. Besides, 
Levene’s test results (Table 4) reveal that the variance across countries is 
significantly different for their concerned risk. Consequently, ANOVA 
results may not be consistent since both normality and homogeneity of 
variances assumptions are violated. Therefore, Kruskal-Wallis rank sum 
test (i.e. non-parametric alternative to ANOVA test) may be a better 

Fig. 4. Mapped country-based left-tail risk of catches (LTRj). 
Notes.Mapped average left-tail risk of catches by EU countries (LTRj) (Table 3). Colours represent the LTRj from the highest risk (LTRDenmark = 0.64) in black to the 
lowest risk (LTRFinland = 0.30) in light grey. 

8 In 2000, it was sardine the most caught fish species in Portugal, which has a 
relatively low risk (LTRPIL = 0.24), followed by Atlantic horse mackerel 
(LTRHOM = 0.37) and Atlantic cod (LTRPIL = 0.26). However, the distribution of 
the catches in Portugal changed over the time. Atlantic horse mackerel became 
the most caught fish species in 2017 and 2018, followed by sardine and Eu-
ropean anchovy (LTRANE = 1), which is one of the most risky fish species in the 
target area Ω. 

9 The one-way analysis of variance (ANOVA) compares mean values in situ-
ations where there are more than two groups. It is used to test if means of 
different groups are the same through the measurement first of the variance 
within samples (S2

within) and second the variance between samples (S2
between). 

Therefore, the ANOVA test produces the F-statistic as a ratio of S2
between/ 

S2
within. If P-value is less than the significance level 0.05, it implies that there 

are significant differences between groups. 
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approximation to check whether these apparent differences on LTRjt 
between countries and/or time are significant. 

ANOVA results (Table 5) show that there are significant differences 
in the mean LTRjt among the countries, while, these differences do not 
change significantly over time. Kruskal-Wallis rank sum test results 
(Table 5) corroborate the ANOVA ones. Thus, it can be definitely 
concluded that EU fishing countries operating in Ω are facing signifi-
cantly different risk levels, but their risk does not significantly change 

over time. 
We have complemented the guess coming from the notched box plots 

with Tukey HSD10 test to analyse pairings between similar countries 
(Table 6). Tukey results confirm that Spain and Denmark comprise the 
group of the two highest risk countries. Ireland and the United Kingdom 
are also very high-risk countries, but their risk patterns are completely 
different from the rest of the countries. The group of the five moderately 

Fig. 5. Multi-panel graph for the country-based left-tail risk of catches (LTRjt). 
Notes.Country-based left-tail risk of catches (LTRjt) by country (j) and year (t). 

Fig. 6. Notched box plots for the country-based left-tail risk of catches (LTRjt). 
Notes.Notched box plots for the country-based left-tail risk of catches (LTRjt). 
Notched box plots display a confidence interval around the median (McGill 
et al., 1978) and are useful to compare groups of countries. If the notches of two 
boxes do not overlap this is ‘strong evidence’ their medians differ (Cham-
bers, 2018). 

Table 4 
Shapiro-Wilk normality and Levene’s tests.   

Shapiro-Wilk Levene’s 

W P-value F-value P-value 

Country 0.9579 8.992E-07 5.0777 2.524 E− 08*** 
Year 0.97141 5.366E-05 0.3227 0.9943 

Notes. 
Shapiro-Wilk normality test and Levene’s homogeneity of variances test for the 
left-tail risk of catches (LTRjt) by country and year. 
P-values: *** significant at 1%, ** significant at 5%, * significant at 10%. 

Table 5 
ANOVA and Kruskal-Wallis tests.   

ANOVA Kruskal-Wallis 

F-value P-value χ 2 P-value 

Country 94 (<2e-16)*** 214.69 (<2.2e-16)*** 
Year 0.274 0.601 3.9737 0.9989 

Notes. 
One-way analysis of variance (ANOVA) and Kruskal-Wallis rank sum test (non- 
parametric alternative to ANOVA test) for the left-tail risk of catches (LTRjt) by 
country and year. 
P-values: *** significant at 1%, ** significant at 5%, * significant at 10%. 

10 Tukey HSD (Tukey Honest Significant Differences) multiple pairwise- 
comparisons between the means of countries takes the fitted ANOVA as an 
argument and with 95% family-wise confidence level and calculates the dif-
ference between means of the two countries. 
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high-risk countries is comprised by The Netherlands, France, Lithuania, 
Germany and Sweden. Poland, Latvia and Estonia constitute the group 
of the three moderately low-risk countries. Portuguese risk level is low and 
rather similar to the Estonian and Latvian one. Finally, Belgium and 
Finland constitute the group of the two lowest-risk countries. 

4. Discussion 

The difficulties to design effective conservation strategies to manage 
fish stocks sustainably encourages an increasing demand for indicators 
and methods to get a better understanding of the vulnerability of fish 
species and ecosystems, so as to program preventive actions to increase 
their resilience. Fisheries management may be controversial when the 
conservation goals and the vulnerability of fish species are not properly 
defined. Certainly, due to the complexity to measure vulnerability of fish 
species and the difficulties to provide quantitative scores, the informa-
tion given by conventional ecological indicators is to some extent 
limited. Some of these indicators, such as resilience and vulnerability 
(FishBase, Froese and Pauly (2018)) or conservation status (Red List of 
Threatened Species (RLTS), IUCN (2018)), are in essence qualitative 
indicators, and besides, many species are not still included. 

Thus, there is a global need of vulnerability indices to improve 
foresighting capacity to develop effective and sustainable management 
tools to steer the implementation of ecosystem-based fisheries man-
agement. Obtaining a classification of the fish species based on their 
inherent risk is beneficial to reduce uncertainty of fisheries and, 
potentially, apply them to prediction models. Moreover, expectations 
could be generated through these models, which could also favour the 
improvement of fisher’s outcomes. Therefore, inspired by the field of 
finances, we propose a new species-level synthetic vulnerability indi-
cator, namely the left-tail risk of catches. This indicator aims to com-
plement the species level vulnerability measures in FishBase (Froese and 
Pauly, 2018) and IUCN (IUCN, 2018), and could be used to infer the 
overall vulnerability of different ecosystems. Specifically, based on the 
left-tail risk of catches of the species in the FAO area 27 (Ω) we measure 
the left-tail risk of the EU fishing countries operating in the target area. 

The paper provides managers and decision-makers with a tool that 
can be used to evaluate the inherent risk of the fish species, and 
accordingly measure the weighted risk of a fishing country, region, fleet 
or any other concerned aggregation level. Our results could facilitate the 
design of the establishment of quotas and, even, generate relevant in-
formation for the fishing companies themselves, which could evaluate 
their basket of catches in the same way that a financial investor builds its 
optimal portfolio of securities. Notice that, whenever policy makers 
establish fishing quotas, they are not only deciding catching rights but 

also assigning a certain level of risk. This way, based on our species’ left- 
tail risk of catches (LTRi) we could derive the risk of the fishing TAC and 
quotas, and accordingly, the risk of the overall portfolio of the quotas for 
each of the EU fishing countries. Thus, any change in quotas can be 
directly measured in terms of risk. This direct and immediate method for 
deriving the risk to any aggregation level opens up a wide range of 
opportunities to measure the policy implications affecting, first, the risk 
of the countries/regions/fleets/companies; second the risk changes over 
the time; and third, the inherent risk of potential quota transfers among 
countries. 

There are three major considerations in analysing and interpreting 
our results. First, we are conscious that selecting one risk indicator is not 
a trivial exercise, since results may entirely depend on the choice. In this 
paper, the Modified Expected Shortfall (MES) has been selected as the 
most appropriate proxy for risk, since it is more robust to the non- 
normality of returns. Nevertheless, alternative risk indicators, such as 
Expectiles, may be a better approximation of risk (Newey and Powell, 
1987; Abdous and Remillard, 1995; Waltrup et al., 2015). Indeed, 
Expectiles are suggested as the only elicitable, law-invariant and 
coherent risk measures (Bellini and Bignozzi, 2015; Ziegel, 2016; Chen 
et al., 2018). Besides, inference on Expectiles is much easier than the 
inference on quantiles, the use of available data is more efficient to make 
estimations and Expectiles are more sensitive to the magnitude of 
infrequent catastrophic losses (Martin, 2014; Daouia et al., 2018). 
Alternative selection of different but appropriate indicators as a proxy 
for risk could be useful to highlight how the selection of the risk indi-
cator affects the classification of the fish species and fishing countries. 

Second, risk is a concept that entirely depends on the time horizon of 
the analysis, which may significantly condition the taxonomy of species. 
For example, we found that Atlantic herring is a low-risk fish species 
(LTRHER = 0.27). In fact, Atlantic herring represents the 19% of the total 
catches in the EU on average (EUROSTAT, 2020), which have been 
relatively stable during the last two decades. Nevertheless, Atlantic 
herring stocks in the FAO area 27 collapsed in the 70s and the volume of 
catches declined from 2 million tons in 1966 to 20 thousand tons in 1971 
(Sigurdsson, 2006). A change in the time horizon from the period 
(2000–2018) to (1970–2018) would surely imply different results. 
Certainly, it is commonly reiterated in the literature that extending the 
time period increases robustness (Pesaran and Timmermann, 1995; De 
Nicolao et al., 1996; Malagon et al., 2015). Nevertheless, this may not 
necessarily hold when measuring the risk of the fish species, because 
capturing severe but remote shocks might not be currently realistic. 
Therefore, the inclusion of a decay factor could be useful to adjust the 
presence of these improbable and negative events in the distant past by 
giving more emphasis to recent negative shocks. 

Table 6 
Tukey multiple pairwise-comparisons test.   

DK ES IE UK NL FR LT DE SE PL LV EE PT BE 

Denmark (DK)               
Spain (ES) ***              
Ireland (IE)               
United Kingdom (UK)               
The Netherlands (NL)               
France (FR)     ***          
Lithuania (LT)     *** ***         
Germany (DE)     *** *** ***        
Sweden (SE)     ** ** *** ***       
Poland (PL)               
Latvia (LV)          ***     
Estonia (EE)          *** ***    
Portugal (PT)           * **   
Belgium (BE)               
Finland (FI)              *** 

Notes. 
Pairwise-comparison for the left-tail risk of catches (LTRjt). Blank means there are statistically significant differences between the left-tail risk of catches of the 
countries, *** not significant differences at 99%, ** not significant differences at 95% and * not significant differences at 90%. 
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Third, results also depend on the data availability. This case study 
focuses on the period 2000–2018, since previous data regarding catches 
is not available on Eurostat. Selecting the optimal period would be a 
different but complementary case study. If previous data were available, 
we could address a multi-horizon approach to observe how risk patterns 
may change over different time periods. In fact, this methodology could 
be easily replicated using previous or different data. This extension 
would be important because risk measures related to past collapses may 
be certainly different depending on the period within the time horizon. 
This way, species such as Atlantic herring, which is considered a low-risk 
fish species nowadays, would be probably identified as very-high risk in 
previous periods. After all, the procedure of measuring risk could be 
carried out selecting different and/or longer periods in order to observe 
how the selection of the time horizon affects the taxonomy of species in 
terms of their left-tail risk. 

5. Concluding remarks 

Our approach to estimate fish species-level risk contributes to the 
literature providing an innovative perspective of measuring fish vul-
nerabilities through the application of five left-tail financial risk in-
dicators, including the Value-at-Risk, Modified Value-at-Risk, Expected 
Shortfall, Modified Expected Shortfall, and Expectiles. Using catches 
(Qit) as data, the species-level left-tail risk of catches (LTRi) is a proxy for 
the risk related to the fishing activity itself, that is to say, the worst-case 
loss/reduction on the volume of fish caught based on negative severe 
reduction on catches in the past. We have been able, not only to measure 
the risk of each individual species, but also to detect how risk measures 
may be ambiguous depending on the formulation of the risk indicator 
used. Although all the five risk indicators we focus on are theoretically 
consistent, however, Modified Expected Shortfall (MES) was the most 
accurate and preventive risk indicator based on the specific distribu-
tional characteristics of our data. 

Obtaining primarily species-level risk indicators is essential to clas-
sify fish species and later infer to whatever the aggregation level and 
fishing area. Based on the period (2000–2018) the average left tail risk 
of the catches in the FAO area 27 is 0.65. This means that in the worst- 
case, the catches would be reduced by 65%. The riskiest fish species are 
European anchovy (LTRANE = 1), blackbellied angler (LTRANF = 1) and 
blue whiting (LTRWHB = 1), while the low-risk ones (lowest LTRi) are 
turbot (LTRTUR = 0.17), European plaice (LTRPLE = 0.19) and common 
sole (LTRSOL = 0.20). Additionally, our species level synthetic risk in-
dicators may be also employed to infer the risk of any other aggregation 
level by choosing the appropriate weights (following step 3 in subsection 
2.2.), so as to, for example, estimate the inherent risk level of a fishing 
community, fishing region or fleet segment. We have estimated the risk 
for each of the 15 EU fishing countries inferring from the previous 
species-level risk analysis and using country specific catches by species 
as individual weights. 

The country-level risk estimations reveal that the EU fishing coun-
tries subject to the highest country-based left-tail risk of catches (quar-
tile 4), are Denmark, Spain, Ireland and United Kingdom, the high-risk 
ones (quartile 3) are The Netherlands, France and Lithuania; the coun-
tries facing a moderate-risk (quartile 2) are Germany, Sweden, Poland 
and Latvia; while the low-risk ones (quartile 1) are Estonia, Portugal, 
Belgium and Finland. In fact, based on ANOVA and Kruskal-Wallis tests, 
the left-tail risk of fish catches is significantly different among EU fishing 
countries whereas their risk does not significantly change over time. 
These significant differences among countries entirely depend on the 
risk of the key leading fish species. Certainly, there are some countries 
such as Spain, in which the most captured fish species are risky fish 
species (i.e. European anchovy (LTRANE = 1), European hake (LTRHKE =

0.78) and Atlantic mackerel (LTRMAC = 0.65)). Whereas in other 
countries such as Finland, the catches are heavily concentrated (around 
90%) in just one very-low risk fish species (i.e. Atlantic herring (LTRHER 
= 0.27)). Therefore, not only the risk of individual fish species matters, 

but also the distribution of the catches on each of the countries will 
definitely determine the overall risk on these countries. 
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