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1 Introduction

Benign familial neonatal seizures (BFNS) is a rare disease with an incidence of 1 in 100,000
people that affects newborn children in their first year of life. It is characterised by an
early onset of seizures (starting within the first three days after birth) that gradually
disappear. Studies show that it is very often linked to mutations in the Kv7.2 potassium
channel located in the membrane of neuronal cells, but it is yet unknown what are the
specific processes that cause the disease [32].

In this work we used a computational approach to compute the stability of a series
of 12 mutations in the Kv7.2 channel sent by neurology research doctors in the Sant
Joan de Déu hospital in Barcelona. The stability was computed considering the energetic
penalization of introducing the mutation. To avoid biases we did not know if all of these
mutations were found in patients with the mentioned phenotype or if there were any
control subjects, neither any other information about the patients. We did our analysis
using Rosetta software [20], a macromolecular modeling suite that evaluates the physical
plausibility of biological macromolecules, such as the protein we are analysing. Within
Rosetta we chose the MPddG package because it is designed to calculate the change in
stability upon mutation in the specific case of proteins that are located in the membrane,
like Kv7.2. With the aim of gaining accuracy we tried to enhance its prediction power
by slightly modifying the algorithm, and finally we compared the results with the ones
given by the Flex ddG package. This package performs the same calculation with a more
computationally expensive protocol to get more accurate results, but it is not able to
consider the effects of the membrane.

Therefore, after introducing the biophysics involved in this study, and the physical
approach taken, we will dive into the Rosetta software, how does it work and how could
it be applied to the subject we worked on. We also used this chance to evaluate Rosetta’s
performance in the analysis of stability of mutations where no experimental analysis had
been done before, so future users know which are its strong and lacking points. Finally, we
analysed the results given by the programs we run, trying to give a physical explanation
why certain mutations were considered stabilizing and others destabilizing.

Due to the complexity of biological processes it is a fairly difficult task to experimen-
tally prove theoretical hypothesis. Computational modeling provides a way to systemati-
cally analyse biophysical systems both to predict results and interpret experimental data,
extending our knowledge of the laws that govern the macromolecular world. Even if in
recent years technological advances have made work in laboratories easier, computational
biophysics is being established as a partner to experiments and a widely used tool. For the
development of efficient algorithms it is crucial to test them in the most varied problems
so that they can be improved. Thus, in the following pages we try to understand, use and
get results of the biophysical software Rosetta for mutations in a potassium channel that
result in BFNS.
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2 Brief introduction to membrane proteins

The basic architecture of any amino acid is a central tetrahedral carbon atom (Cα) that
is attached to a hydrogen atom, an amino group (NH2) and a carboxyl group (COOH)
(Fig. 1). Each amino acid is distinguished from the others by the side-chain attached to

Figure 1: Basic structure of
an amino acid [7].

the remaining valence of the Cα. The DNA encodes 20 dif-
ferent side chains from which the canonical 20 amino acids
are created [1].

Amino acids are commonly classified in three different
classes considering the chemical nature of their side chains:
hydrophobic, charged and polar. Hydrophobic amino acids
are non-polar and in consequence do not interact with water,
while charged and polar tend to be hydrophilic. However,
the electrical properties vary in solution due to the possible
different pH values.

A protein is a polypeptide chain, meaning that it is
formed by amino acids joined by the formation of peptide
bonds (Fig. 2). This is done when the carboxyl group of one
amino acid covalently bonds to the amino group of another
amino acid, losing in the process a water molecule and forming a peptide bond. The chain
is elongated repeating the same process until the whole protein is formed. As a conse-
quence, the first amino acid keeps its amino group intact and the last amino acid keeps
its carboxyl group, the chain then is said to extend from its amino terminus (N-terminus)
to its carboxyl terminus (C-terminus) [7].

Figure 2: Formation of a peptide
bond between to amino acids re-
leasing a water molecule. Source:
en.wikipedia.org/wiki/Peptide bond.

Thus, a protein has a “main chain” or “back-
bone” consisting of the succession of the sequence
NH-CαH-C

�=O, where C� is the carbon of the car-
boxyl group, of each amino acid and the various side
chains are projected from there. The peptide bonds
are effectively rigid groups, so the degrees of free-
dom of the backbone are the rotations around the
Cα-C

� and the N-Cα bonds. The angles these rota-
tions make are called φ and ψ for N-Cα bonds and
Cα-C

� bonds, respectively. The remaining degrees of
freedom of the protein structure come from the con-
formations that side-chains can acquire by rotations
of the bonds between carbon atoms, these are called
torsion angles and referred as χ. Since some confor-
mations are considerably more energetically favor-
able than others, most side-chains have few confor-
mations that occur more frequently, called rotamers
[33].

For the polypeptide chain to become a biologically functional protein it must fold
into a specific three-dimensional conformation. The protein synthesis and folding is char-
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acterised in four orders of protein structure: primary, secondary, tertiary and quaternary
structure:

Primary structure refers to the sequence of amino acids in a polypeptide chain,
while secondary structure considers the folding of short contiguous segments into ge-
ometrically ordered units. This happens when series of residues1 adopt similar φ and ψ
angles, the most known secondary structures are the α-helix and β-sheet. The first one
is characterised by a twisted backbone containing an average of 3.6 amino acids per turn
with the side-chains facing outward; this structure has additional stability due to the hy-
drogen bonds created between the oxygen of the carbonyl and the hydrogen of the amide
group of the peptide bonds of the fourth amino acid down the chain (Fig. 3). β-sheets are
characterised by a zigzag pattern where the side-chains of adjacent residues face in oppo-
site directions; this structure is also more stable due to the hydrogen bonds between the
carbonyl oxygens and amide hydrogens in the peptide bonds. Other secondary structure
are loops, turns and bends (see Fig. 3).

Figure 3: Left: orientation of the backbone atoms in a α-helix. Center: three strands of
polypeptide chains linked by hydrogen bonds (dotted lines) to form a β-sheet. Right: tertiary
structure of and enzyme (triose phosphate isomerase); arrows represent β-sheets and coils α-
helices [28].

Tertiary structure refers to how the secondary structure features assemble to form
domains, a region of a protein structure able to perform chemical or physical tasks (such
as binding a ligand), and how different domains relate spatially to one another. Finally,
Quaternary structure considers the polypeptide composition of a protein, taking into
account if it is formed by a single polypeptide chain or many and if these are different or
identical [28].

In humans approximately one-third of proteins are located in the cell membrane. The
cell membrane is composed of two phospholipid layers with their hydrophobic tails facing
each other creating a lipid bilayer. Phospholipids are mainly constructed from fatty acids
and glycerol. Fatty acids are characterised by a long hydrocarbon chain (hydrophobic)
and a carboxyl group that is ionized in solution. In phospholipids glycerol is joined to two

1In biochemistry amino acids are often also referred as residues as they loose both their amino and
acid groups in the peptide bond.
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fatty acid chains and a hydrophilic phosphate group that it is linked to some hydrophilic
compound. Thus, the membrane bilayer is hydrophobic on the inner side and hydrophilic
on the outer side (see Fig. 8).

Figure 4: Composition of phospholipids and how they are positioned to form the membrane
bilayer [1].

Given the properties of the membrane environment, membrane proteins have unique
features. These proteins can be classified in two main groups: integral and peripheral. In-
tegral proteins have one or more segments embedded in the phospholipid bilayer, usually
containing hydrophobic groups that interact with the fatty groups of the phospholipids.
On the other hand, peripheral proteins are bound to the membrane indirectly by integral
proteins or directly by interactions with the polar heads of the phospholipids. Trans-
membrane (integral) proteins tend to have α-helix domains that span the membrane and
interact hydrophobicly with the lipids of the membrane as well as by ionic interactions
with the polar heads. β-sheets also appear in membrane proteins, often creating barrel
like structures [22].

The functional ability of membrane proteins is very diverse. Furthermore, since they
are located in the membrane, there are certain functions only them can fulfil. For example,
these proteins allow transportation through the membrane bilayer and into or out of the
cell; in addition, they are used for intracellular joining, connecting different cells, as well
as attaching filaments and fibers that create the cytoeskeleton. They also accomplish cell
recognition which is crucial in the immune system [10].

Throughout this work, all of the visualizations of proteins are done with VMD [14]
and for simplicity we will only use the three visual representation methods in Fig. 5.
The first two will be useful for understanding the spatial configuration of the protein,
while the third one shows the secondary structure (arrows indicate β-sheets while coils
are α-helices). In addition, each amino acid has a unique name and a one-letter and a
three-letter code for identification. For simplicity, each relevant amino acid and its name
will be described when considered necessary and only the one-letter code will be used.

Moreover, to refer to the mutations we will use the AxxxB nomenclature where xxx

1Color-code for amino acid types in VMD is white: nonpolar, green: polar, blue: basic, red: acidic.
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Figure 5: Visual representation of a single monomer of Kv7.2 using a representation where
each atom’s Van der Waals radius is shown and each element has a different colour (left); a
representation where the bonds between atoms are shown as cylinders and each type of amino
acid has a different colour (center); and a representation where the secondary structure is shown
(right). All three created with VMD.

is the position in the sequence of the mutation, A is the original amino acid and B is the
new amino acid after the mutation (both using the one-letter code). As an example, the
change of the arginine (R) in position 213 to a tryptophan (W) will be called R213W. All
the mutations we will analyse here are substitutions of a single amino acid by another.

2.1 Potassium channel Kv7.2

Potassium channels are proteins located in the cell membrane and regulate the trans-
fer of potassium ions in and out of the cell. In consequence, they control cell volume,
proliferation, differentiation and survival, with a primary roll in intrinsic electrical prop-
erties in excitable cells. This very diverse functional ability comes from the remarkably
heterogeneous genetic and structure of the K+ channel family.

Kv7.2 is a voltage-gated (Kv) K+ channel mainly present in neurons and skeletal
muscle cells of the Kv7 family. Within this same family (encoded by the KCNQ genes),
there are other four potassium channels (Kv7.1-5). Kv7.1 is mainly expressed in cardiac
cells, while Kv7.3-5 are distributed in neuronal and primary sensory cells.

Unlike voltage-gated Na+ or Ca+ channels, K+ channels are not translated from a
single gene, but they are made up of four identical or compatible monomers that come
together in the membrane to form the pore (see Fig. 6) [29]. This enhances the diversity
of the channels, since not only can they be built by four identical subunits (say, Kv7.2)
but they can also mix different subunits (i.e. two Kv7.2 and two Kv7.3 monomers) to
form the desired tetramer. This combinations do not happen between all of the family
subunits, and can only be arranged between compatible monomers.
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Figure 6: Left: monomer of the potassium channel KCNQ2; center: full Kv7.2 channel built
with four monomers; right: upper view of the channel showing the pore in the middle through
which ions are transported.

Each monomer in the Kv7 channels is topologically arranged with six transmembrane
segments (S1-S6) with a pore loop between the last two segments. The region from S1
to S4 forms the voltage-sensing domain (VSD), whereas the ion-selective pore is between
the last two segments and form the outer half of the K+ channel pore. The S4 segment
is thought to have a major role in voltage sensing since it is built with a distribution of
four (for KCNQ1) to six positively charged arginines separated by two to three uncharged
residues [35]. The channel pore contains the selectivity signature T/SxxTxGYG amino-
acid sequence (Fig. 7).

Figure 7: KCNQ channel structure: the transmembrane segments of a monomer are shown, the
gray rectangle represents the membrane bilayer. For KCNQ2 the P-loop contains the selectivity
sequence TxxTxGYGxxY. [30].

To properly comprehend the relevancy of the KCNQ family, we first need to un-
derstand how potassium channels work. In the particular case of neurons, if we take a
cross section of the axion, the inner part of the membrane bilayer is negatively charged
while the outer part is positively charged, resulting in a resting potential of -70mV. This
potential is sustained by electrochemical gradients of different ions that come in and out
through leak channels and bumps in the membrane.

8



When the membrane gradient rises to -55mV the sodium voltage-gated channels open
up, letting a noticeably big amount of Na+ ions into the cell. The potential in consequence
goes even higher (depolarization) and when it reaches 30mV, potassium channels open
up in order to get K+ ions out of the cell to restore the electrochemical balance (repo-
larization). At this stage there is an undershoot of the membrane potential, which goes
lower than -70mV, but the resting potential is recovered by the aforementioned membrane
permeability. This change in potential is called action potential (AP) and it is carried
along the axion of the neuron by local changes, i.e. a potassium channel that has been
activated by the input of sodium ions by the previous channel will heighten the voltage
in the vicinity of the next sodium channel provoking a new input of sodium, and so on.

Figure 8: Change in voltage
of an action potential. Source:
www.moleculardevices.com.

The four members of the Kv7 family that
are expressed in the nervous system form sub-
units of the originally termed “M-channel”.
This channels activate at subthreshold poten-
tials, around -60mV, and induces outwardly
rectifying currents with little or no inactivation.
Since the activation is relatively slow (tens of
milliseconds) they do not contribute materially
to the repolarization of individual action po-
tentials, but they have significant dampening
effects in neuron excitability. Thus, they assist
in stabilizing the membrane potential when de-
polarizing currents are present and contribute
to the resting potential [8].

The KCNQ gene family is one of the first
K+ channel families where mutations have been
directly linked to human diseases and most of
the expressed family of channel genes may have
a clear physiological correlate. Benign familial
neonatal seizures (BFNS) is a rare disease with an incidence of 1 in 100,000 people that
has been found to be caused by mutations mostly in KCNQ2 (Kv7.2) and more rarely
in KCNQ3 (Kv7.3) genes. It is characterised by an early onset of generalised seizures
(starting a few days after birth) that disappear after the first months of life, being mostly
non-appearing after a year. Some patients (around 16%), however, display seizures later in
life. The mutations in these channels have mostly a very subtle effect on the functionality
of the protein. Studies show that there is no apparent alteration in the ionic selectivity
of the gating, and the total current is reduced by only 20-30%. This reduction in the
postnatal brain development is critical but it gets less crucial later in life [35].

Furthermore, mutations in Kv7.2 have also been found in patients with a more severe
disease called KCNQ2 enthephalopathy (EOEE). This patients have a similar onset with
seizures early in life, being more frequent in BFNS, and the main discrepancy in diagnoses
lies in the suppression-burst pattern on the electroencephalography (EEG). Poor outcomes
in EOEE include severe development delay [17].
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3 Physical approach

In physics, the natural procedure to solve a problem is through identifying the components
of the system and deriving the Hamiltonian by analysing the interactions between the
“particles”. For that purpose the potential energy of the interaction of a particle with
every other particle needs to be considered. By summing this contributions we get the
total potential of the system as:

V (r1, ..., rN) =
N�

i

N�

j>i

φ(|r1 − rj|) (1)

where ri are the coordinates of particle i, and N is the total number of particles.

Proteins can have from a couple hundred atoms to hundred thousands, which makes
that approach unfeasible. With the development of faster and more powerful computers
and algorithms the dream of modeling biomolecules in detail has come true. However,
nowadays it is still very time consuming and not viable for most computers and biological
systems. Particularly, for protein simulations to be realistic they should be surrounded by
water molecules, which would exponentially increase the number of particles. Thus, many
modeling programs use different approximations to simulate as accurately as possible the
biological systems.

Rosetta uses a “score function” to approximate the energy of the system. This is
based on the hypothesis that native conformations2 are low energy thermodynamically
stable conformations. These conformations are called folded states and they can be en-
ergetically compared to the unfolded states, where the tertiary structure is not formed
and the components of the protein are spread. Therefore, the folded states correspond to
minima in the energy gradient and they have a net favorable change in Gibbs free energy
with respect to the unfolded states: ΔG = ΔH + TΔS.

The score function is a set of different energy terms (explained in section 4.2.1.)
weighted and summed to fit experimental results representing the change in Gibbs free
energy [3]. In the particular case of membrane proteins this change of Gibbs free energy is
the energy contribution of each amino acid isolated in solution (water) minus the energy
contribution when they are embedded in the membrane with the rest of the conformation.

Since we are working with the stability of mutations, our focus is in the change of
the energy when we produce the mutation. Consequently, what we are going to calculate
is the variation of the change in Gibbs free energy, namely ΔΔG. The lower the energy
is the more stable the system is and since ΔΔG is defined as

ΔΔG = ΔGmutant −ΔGnative (2)

a mutation is considered to be destabilizing when ΔΔG is positive, because the native
conformation has a lower score than the mutant conformation (ΔGmutant > ΔGnative) and
stabilizing when it is negative, because ΔGmutant < ΔGnative.

2Configurations that are found in nature.
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4 Computational tool: Rosetta

4.1 Overview and architecture

Rosetta is a software suite for macromolecular modeling mainly written in C++ where
the evaluation of the physical plausibility of biological macromolecules such as proteins,
nucleic acids and ligands, is performed. For this purpose the software contains different
protocols that are appropriate for evaluation of specific environments. It uses an object-
oriented software design, encapsulating the individual concepts for biomolecule modeling
into software objects. This objects contain specific data and methods to represent the
concepts needed.

The main object where the biomolecule is stored is called Pose. Withing the Pose, the
class Conformation contains three objects that altogether define the protein’s physical and
chemical properties. Firstly, the Residue object stores the coordinate information for each
individual residue, and it points to the ResidueType, which contains the information on
the chemical connectivity of a single abstract residue under one specific name. Lastly, the
AtomTree stores the information on how internal coordinate changes propagate through
the system. To achieve this the general way of doing it is by generating a tree3 whose nodes
represents the atoms of the molecule and whose edges represents kinematic connections.
To keep track of the changes in the tree, residues are “colored”: two residues that have
not moved with respect to each other will have the same color.

As previously mentioned, Rosetta relays on the score function to compute the energy
of the system. To manage this information the Energy object was designed, where the
most recent score function evaluation is stored in an EnergyGraph (using Graph Theory
technology). Each vertex in the EnergyGraph represent a residue in the Pose and each
edge represents an interaction between two residues. The scoring procedure starts by the
score function iteration across all edges of the EnergyGraph and it updates them consid-
ering the color of the nodes. After that, it detects residue neighbours and iterates across
them creating new edges for any pair of residue with non-matching colors (see AtomTree).
The energetic calculus in the Rosetta environment is done in Rosetta Energy Units, which
has no direct interpretation as real physical energy but it is useful for modeling changes
in energy. Recently, it has been said that it fairly approximates units of kcal/mol [3].

Finally, Movers are used to interact with a pose either to change it, reference it or
analyze it. Thus, Movers are used to build the protocols in Rosetta, which can be seen
as processes where an input Pose is taken, treated by the Movers and an output Pose
is given. For example, the Monte Carlo technique is a mover of its own. Other objects,
classes and protocols are also designed in Rosetta.

For analyzing proteins in the transmembrane region of cells the RosettaMP (Rosetta
Membrane Protein) framework was developed, containing the specific physical and chem-
ical characteristics of the membrane environment. It uses the same object-oriented design
as Rosetta but expanding it by creating new objects to represent the membrane environ-
ment and adding scoring and sampling routines that account for the lipid bilayer.

3“Tree” as in graph theory.
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The information about the membrane is stored in a classed called MembraneInfo
that is part of the Conformation object inside the Pose. It attaches a “virtual” residue
to the Pose that represents the membrane bilayer chemistry and geometry. For that it
uses three virtual atoms that define the membrane center, normal vector and thickness.
It also stores the information about the transmembrane spans of the protein (normally
α-helices or β-sheets) so that the biomolecule can be correctly placed in the membrane.
By default, the membrane thickness is chosen to be 30Å, including both the hydrophobic
membrane core and the membrane-water interface. As any other residue, the membrane
can be fixed or movable during modeling [4].

Lastly, Rosetta contains several servers and interfaces for different types of users.
The most well known ones are PyRosetta [9], written in Python, and RosettaScripts [12],
using XML format. We mainly used PyRosetta since the MPddG package was developed
in Python, but Flex ddG is scripted in RosettaScripts so it was also used.

4.2 MPddG Package

Since the main goal of this work is to analyze mutations in order to know which ones
destabilize the system, the Rosetta package that we used is the one that revolves around
the calculation of ΔΔG: MPddG. As previously explained, ΔΔG is the change of the
variation of Gibbs free energy of the molecule upon mutation, thus it is a measure of the
thermodynamic cost of the substitution. In the particular case of membrane proteins, the
ΔG is calculated as the energy change between the separated residues in solution (water)
and the whole protein in the membrane. The lower the energy, G, the more stable the
amino acid is in that environment.

Furthermore, since we need information about the change of energy after mutations,
the package will give the difference of the change in ΔG between the native molecule and
the mutant molecule, ΔΔG. If this value is negative the mutation applied stabilizes the
molecule since it would mean that the new amino acid generates an environment with lower
free energy than the native configuration and in consequence it is more stable. On the
other hand if ΔΔG is positive the mutation destabilizes the molecule. Since experiments
have a certain error, we modified the range of stabilizing and the destabilizing ΔΔG. For
that purpose we used Khatun et al. work [18] as reference, the maximum experimental
error for ΔΔG that they derived was of 0.48kcal/mol and since Rosetta Energy Units
are said to be compared to kcal/mol, we considered a mutation to be destabilizing when
ΔΔG > 0.5, stabilizing when ΔΔG < 0.5 an neutral when 0.5 < ΔΔG < 0.5.

4.2.1 Score Function

The score function used in the original mpddG package is called mp framework smooth fa
2012 [37], a score function dedicated to membrane proteins with several terms where the
membrane is explicitly considered. These terms are mainly knowledge based and take
into account the position of a residue with respect to the membrane and other residues
to benefit or penalize a certain structure.
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This score function uses the default Rosetta score function for modeling soluble pro-
teins ref2015 [3] as basis where the membrane terms are added. However, since the
membrane terms date back to 2012 we searched for a newer version that could also take
into consideration the distinct effects of a molecule in a lipidic bilayer. We found the
recently designed score function franklin2019 by Alford et al. [2] and chose it as our to-go
energy function. This score function is also based in ref2015 with one added term. We
are intending to describe the package and not our own program, thus we will explain here
the default score function ref2015 and in section 4.3.1 we will go deeper into the new
term.

As any other score function, the ref2015 is computed as a linear combination of
independent energy terms, Ei, that are a function of geometric degrees of freedom (Θ)
and chemical identities (aa), scaled by individual weights (wi) chosen to best approximate
real energies.

ΔETOT =
�

i

wiEi(Θi, aai) (3)

All the score terms and its weights are shown in Table 1 and can be found published
in Alford et al. work [3]. In this section we will focus on the non-zero scores that were
most relevant in our later analysis.

Firstly, we will explain the energy terms that consider atom-pair interactions within
the molecule. Van der Waals interactions are short-range forces that vary with the dis-
tance between atoms. These can be attractive (due to cross-correlated motion of electrons
in neighboring non-bonded atoms) or repulsive (caused by the Pauli exclusion principle).
Rosetta models this interaction using the Lennard-Jones 6-12 potential [16], which calcu-
lates said interaction between atoms i and j using the atom radii, σi,j, distance between
atoms, di,j, and the geometric mean of well depths, �i,j, as:

EV dW (i, j) = �i,j

��
σi,j

di,j

�12

− 2

�
σi,j

di,j

�6
�

(4)

Rosetta uses two different terms, fa atr and fa rep, to consider the Van der Waals
atractive and repulsive forces, respectively. For that, the potential is split at its minimum,
when di,j = σi,j, and both terms are weighted separately. However, this terms are designed
to consider atoms in different residues, ref2015 also contains a repulsive Van der Waals
term for interactions between atoms in the same residue, fa intra rep.

For the electrostatic interactions that arise between non-bonded atoms that are
partially or fully charged Coulomb’s Law is used. This term is a function of the distance
between both atoms, di,j, partial atomic charges, qi, dielectric constant, �, and Coulomb’s
constant, C0 = 322 Åkcal/mole−2. To better adapt the law to biomolecules, the dielec-
tric constant is substituted by a more complex function that accounts for the difference
between the protein core and solvent-exposed surface, �(di,j).

ECoulomb(i, j) =
C0qiqj

�

1

di,j
(5)
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It is known that protein conformations minimize the exposure of hydrophobic side
chains to the surrounding polar solvent. To accurately consider this it would be needed
to model the interactions between solvent and protein atoms, but as it is computationally
expensive, Rosetta uses the Lazaridis-Karplus implicit Gaussian exclusion model to rep-
resent the solvent as bulk water [19]. The core of this model resides in the energy required
to desolvate (remove contacting water) atom i when atom j approaches it.

Rosetta considers three different terms regarding solvation. The first of them is
fa sol, that assumes that bulk water is uniformly distributed around atoms and its
computed as a weighted sum that includes atom i desolvating atom j and vice-versa. The
second of them is the intra residue version of this one, fa intra sol, and the third one is
lk ball wtd that accounts for specific waters nearby polar atoms that form the solvation
shell. This term essentially increases the desolvation penalty when ideal water sites where
hydrogen bonds may have formed are occluded to polar atoms. When this three terms
are considered together and there is no occlusion of polar atoms the penalty comes solely
from the fa sol term.

To consider the contribution of hydrogen bonds to the conformational energy
ref2015 considers five different terms, from which one of them is the previously explained
fa elec, Coulomb’s electrostatic term, and the remaining four evaluate the energies based
on the orientation preferences of hydrogen bonds found in crystal structures. This en-
ergy is then separated in four terms: hbond ls bb, long range backbone hydrogen bonds;
hbond sr bb, short range backbone hydrogen bonds; hbond bb sc, hydrogen bonds be-
tween backbone and side chain atoms; hbond sc, hydrogen bonds between side chain
atoms.

For protein backbone and side chain torsions, the energy function has three score
terms. Rosetta uses knowledge-based terms for the angles to more accurately model the
preferred conformations. For the backbone φ and ψ angles the term rama prepro, based
on Ramachandran maps4, computes the energies of each configuration by inverting the
probabilities with the inverted Boltzmann relation. It also considers the difference in the
probability in the specific case of an amino acid when it is located before a proline.

Furthermore, ref2015 takes into account the likelihood of an amino acid side chain
being placed given a certain φ, ψ backbone conformation. The term p aa pp shows
the propensity of observing one amino acid relative to the other 19 canonical amino acids.
For that, the propensity, P (φ,ψ|aa), was derived using adaptive kernel density estimates
and Bayes’ rule:

Ep aa pp =
�

r

− ln
P (aar|φr,ψr)

P (aar)
(6)

Protein side chains mostly occupy discrete conformations, called rotamers, that are
separated by large energy barriers. To evaluate the contribution of the rotamers, Rosetta
derives the probabilities from the backbone-dependent rotamer library [34]. There are
three components of the probability to take into account: (1) given the backbone dihedral
angles, observing a specific rotamer; (2) observing specific angles between the bonds of the
carbon atoms, χ, given the rotamer, and (3) observing the terminal χ angle distribution.

4Maps where all the combinations that the dihedral angles can have in proteins are shown.
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The logarithmic sum of this probabilities for each residues yields then the energy term
fa dun.

Energy Term Weight Function

fa atr 1.0 Van der Waals atractive interaction from LJ potential
fa rep 0.55 Van der Waals repulsive interaction from LJ potential
fa intra rep 0.005 Van der Waals repulsive term for atoms in the same residue
fa elec 1.0 Coulomb electrostatic interaction

fa sol 1.0
Considerss ability of an atom being solvated by the surround-
ing atoms

fa intra sol
xover4

1.0 Intra residue solvation term

lk ball wtd 1.0
Considers specific water around polar atoms forming the sol-
vation shell

hbond sr bb 1.0 Long range backbone hydrogen bonds
hbond lr bb 1.0 Short range backbone hydrogen bonds
hbond bb sc 1.0 Hydrogen bonds between backbone and side chain atoms
hbond sc 1.0 Hydrogen bonds between side chain atoms
dslf fa13 1.25 Covalent bonds between sulfur atoms in cysteine
rama prepro 0.45 Backbone torsions considering Ramachandran maps
fa dun 0.7 Backbone dependent probability of finding a given amino-acid
omega 0.4 Peptide bond dihedral angle penalty

p aa pp 0.6
Propensity of locating one amino acid considering the sur-
rounding amino acids

pro close 1.25 Consideres proline’s special case torsion
yhh planarity 0.625 Consideres tyrosine’s χ3 angle

ref 1.0
Design reference term considering energy gap between folded
and unfolded states

Table 1: Summary of all the score terms in ref2015.

Lastly, ref2015 contains a design reference term (ref) dedicated to protein design
to compare relative stability of different amino acid sequences given a desired structure to
identify models that exhibit a large free energy gap between folded and unfolded states.
Rosetta calculates the free energy of the unfolded state as a sum of individual constant
unfolded state reference energies, ΔGref

i , that are empirically optimized to maximize
native sequence recovery during design simulations.

4.2.2 Minimization

The original MPddG package contains a fixed backbone protocol when the mutation is
introduced, being the only energy minimization process a side chain conformation opti-
mization. This optimization is performed by taking the residues within 8Å of the mutated
residue and trying different rotamers in a Monte Carlo process until the best scoring con-
figuration is chosen by a Metropolis algorithm. The process is called “packing”.
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This is carried by the Packer mover that first evaluates the TaskOperations that con-
trols which residues are packable, designable, or held fixed. By default, everything is able
to pack and design. Then, the packer makes a list of all possible rotamers at each position
and performs a precomputation where all possible pairs of interacting rotamers are listed
and their pairwise interaction energies are calculated. These conformations are chosen
from a library of possible rotamers that was developed by doing a Bayesian statistical

Figure 9: Process of the improved
MPddG program.

analysis [11]. After that, simulated annealing is per-
formed by choosing a random position and replac-
ing the current rotamer with a randomly chosen one
from the allowed ones at that position.

The Metropolis criterion is used to accept the
new rotamers where if the new conformation has a
lower energy than the previous one it is always ac-
cepted and if it has a higher energy it is accepted

with a probability of e
− ΔE

kBT . The temperature factor
kBT determines the likelihood of large increases of
energy being accepted, meaning that the larger the
factor the more frequently conformations with large
increases in energy are accepted. Simulated anneal-
ing starts with high temperature factors to avoid
getting stuck in local minima and explores the space
more accurately and ramps it down throughout the
simulation to get to the bottom of the lowest-energy
well that it has found [31].

4.2.3 Input preparation: PDB and span file

The MPddG program requires for two input files: a PDB and a span file. The PDB
(or Protein Data Bank) file is a text file where the three dimensional structure of the
protein is stored. In it the information is stored in lines which can take up to thousands
of them. In the first lines information about the researchers that defined the structure
and other facts about the molecule are written; they can also contain information on
how to compute the coordinates and the list and number of amino acids in the molecule.
Following, the “ATOM” lines fully describe in different columns the position of each atom
of the molecule in three dimensions as well as other information such as in what amino
acid they are, the occupancy, temperature factor and the element name. Finally, the
“HETATM” lines add information of the atoms that are not part of the molecule itself
but are useful to fully understand the system. The only essential lines in the PDB are
the ATOM lines, but in our case the HETATM are also important since they store the
positioning of the membrane.

The coordinates for the potassium channel Kv7.2 can be found in the PDB called
7CR3 [21] in RCSB (Research Collaboratory for Structural Bioinformatics), the US data
center for the global PDB archive [6]. This PDB contains eight chains from which four
are the monomers that form the channel, while the remaining four are the calmodulines
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(a calcium binding messenger protein). To prepare the PDB for the package, PyRosetta
contains the clean pdb program that takes one chain of the protein and renumbers the
residues as well as erases any atom that is not essential.

The span file is also a text file that contains information on how a molecule spans a

Figure 10: Potassium channel Kv7.2 in
the membrane (red line: outer layer of
the membrane, blue line: inner layer). In
the intracellular part calmodulines are at-
tached to each of the monomers [23].

membrane. The first line is left as a comment
while the second one contains the number of
predicted transmembrane helices and the total
number of residues of the molecule. The third
line is used to explain the topology of the helices
as parallel or antiparallel and the rest of the file
is used to describe the identification number of
the first and last residue of each of the helices,
writing the two numbers of each helix in a dif-
ferent line.

For Kv7.2 we found this information in
OPM, the database for Orientation of Proteins
in the Membrane [23]. Simply put, these trans-
membrane spans are found computationally by
considering the protein as a rigid body floating
in a hydrophobic slab of adjustable thickness
and calculating the transfer energies ΔGtransfer

until the optimal positioning is found. Once we
have the information, the span file can be man-
ually created.

4.3 Improvements

As previously mentioned, the original MPddG program had two things that we wanted
to improve. On the one hand, the membrane terms of the score function dated back to
2012 so we searched for a more updated one, franklin2019. On the other hand, when the
mutation was introduced, the repacking step was the only energy minimization process
and we found it insufficient. Thus, we tried to build an appropriate protocol that could
adapt the structure better.

4.3.1 Score Function

The new term that the franklin2019 score function added to ref2015 is called fa water to

bilayer and is designed to take into account the membrane’s effect in the conformation
[2]. For that purpose, a set of water-to-bilayer transfer energies was derived for each
atom type. This was done by taking the Moon and Fleming hydrophobicity scale [27]
that provides the transfer energies for the 20 canonical amino acids and using regression
(least-squares fitting) to get the corresponding energies to atom types, ΔGatom

w,l . After,
all-atom molecular dynamics simulations were performed to get properties of membranes
with different phospholipid compositions. With all the data captured, a water-density
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analytic profile was designed as:

fthk =
1

1 + τexp(−κz)
(7)

where z is the membrane depth and κ and τ are the steepness and width, respectively,
and are derived for all simulated lipid compositions.

Additionally, a pore was introduced for proteins with more than three transmembrane
segments. The transition between the water-filled pore and lipid phase is defined by the
radius, gradius, of the ellipse that bounds the coordinates of pore-facing atoms (previously
computed) given the transition steepness, n.

fpore = 1− gnradius
1 + gnradius

(8)

To summarize, Alford et al. [2] modeled a biologically realistic implicit membrane model
as a continuum of (1) an isotropic phase representing bulk lipids, (2) isotropic phase
representing bulk water and (3) an anisotropic phase representing the interfacial region.
The result is an energy term dependant on ΔGatom

w,l and the fractional hydration, defined
as fhyd = fthk + fpore − fthkfpore. This last term is null when the atomic group is exposed
to the lipid phase and 1 when it is exposed to the water phase.

ΔGmemb =
Nres�

r=1

Natom(r)�

a=1

(1− fhyd)(ΔGatom
w,l (a)) (9)

This term is summed to the rest of the ref2015 energy terms with a weight of 0.5.

4.3.2 Minimization

To improve the energy minimization of the structure we added a minimization process
that is performed by the Minimizer in Rosetta, which calls for the minimization method of
our choice. It is recommended to use the BFGS, the acronym stands for Broyden-Fletcher-
Goldfarb-Shanno algorithm, an iterative method for solving unconstrained nonlinear op-
timization problems. It is a Quasi-Newton method where firstly a vector is chosen as
descent direction and, after determining an appropriate step along that vector, it moves
through the gradient. Then a new vector and step size are selected and the process is
repeated. The second-derivative (Hessian) matrix is approximated and used to modify
the descent step direction so that is no longer straight down the gradient, but results in
a faster convergence.

The minimization used by default in Rosetta is the limited memory variant, L-BFGS.
Additionally, the Armijo variant is used, which is an inexact line search version where
the step along the search direction only needs to improve the energy by a certain amount
flatter (but not necessarily reach the minimum). This is more efficient than the exact line
search. Furthermore, the recommended version is the nonmonotone, an even less exact
line search along the descent direction so that the step need only be better than one of
the last few points visited. This allows temporary increases in energy so that the search
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may escape shallow local minima and flat basins. Convergence is checked by the norm of
the gradient, || ∇f(�xk) ||< tolerance, and we set the tolerance to 10−6. The maximum
iterations of the minimization can also be set in case the tolerance threshold is not reached
sufficiently soon, it is by default set to 200 iterations.

The energy minimization is carried out through the MinMover which essentially per-
forms the minimization of the backbone and side chains. For this purpose the mover
requires a MoveMap that defines which degrees of freedom are available to be minimized.
The default setting of MoveMap depends on the protocol, but for the MinMover all back-
bone, χ, and jump degrees of freedom are allowed to change. However, this can be
changed, we chose to set all χ and backbone angles movable for the residues within 8Å of
the mutated residue by using the same calculation the original program had. The rest of
angles and jumps were set not movable.

Lastly, we also added a structural change that was more suitable to the minimizer.
The original program performed one repacking step in the input structure and that same
structure was mutated suffering another repacking step. Since the packer is not very
strong, the double repacking did not give any advantage to the mutated conformation.
However, the minimizer is more exhaustive so the result was affected by the fact that the
structure was minimized twice. Thus, we decided to perform the minimizations indepen-
dently, one for each of the structures and then compare them, which yielded more logical
results (see Fig. 9).

4.3.3 Benchmarking

To test if our changes were beneficial for the calculation we tried the modified program
in two membrane proteins: palmitoyl transferase (PagP) and phospholipase A1 (Om-
pLA), shown in Fig. 11. We chose these two proteins because experimental values are

Figure 11: Proteins PagP (left) and OmpLA (right) embedded in the membrane (represented
by two stright lines). Mutation sites are shown with a black sphere [24].

known [24][27]. We performed mutations in position 111 and 210 for PagP and OmpLA,
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respectively, substituting the original amino acid for every other canonical amino acid.

The IDs of the needed PDBs are 1QD6 (OmpLA) and 3GP6 (PagP). The treatment
for these files and the rest of input files and commands is the one described in section
4.2.3. We first run the original program, with the only energy minimization process being
the repacking; and later we run our modified program containing the minimizer. The
results and correlation with experimental values are shown in figure 12. For PagP results
could not be taken straightforwardly because experimental results were described respect
to the change of ΔG of the mutation to alanine (A) [24], considering this the value we
used to make the comparison was ΔΔG subtracting the ΔΔG of the result for alanine.

Figure 12: Correlation plots between Rosetta results and experimental values. Each dot repre-
sents a mutation and the red line is the fit.

The Pearson correlation coefficient (R) is considerably higher when using the mod-
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ified program, which encouraged us to consider positively its results with the potassium
channel.

5 Result analysis

5.1 Repack within 8Å from mutation

5.1.1 Monomer

Firstly, we will analyze the results we got from running the original program for a single
monomer of the channel. Since the energy minimization method was only a repacking
step in the vicinity of the mutations, most of the results showed an overestimation of
the Van der Waals repulsive term. It can be seen in Table. 4 that fa rep is one to two
orders of magnitude bigger than the rest of the scores. This happens because the best
conformations the packing can get are not realistic and probably have clashes between
residues. However, we could get four mutations that can be analysed: E130K, R198Q,
R213W and Y284D.

Figure 13: Non-zero scores given by the origial MPddG program for the mutations without Van
der Waals energy term overestimation.

Therefore, we will begin our analysis by analyzing those mutations. Firstly, we will
study E130K mutation, located in the S2 segment, which is a mutation from a negatively
charged side chain, glutamic acid, to a positively charged one, lysine; thus it is a change
from an acidic amino acid to a basic one.
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The most relevant scores to the final results are fa elec, ref, fa water to bilayer

and hbond sc. In the case of the Coulomb electrostatic interaction term (fa sol) most
probably the destabilization comes from the need for the lysine to bend away from the
arginine in the segment S4. Because of this an its large nature it gets very close to
the non-polar residues around, destabilizing the electrostatic equilibrium between them.
Furthermore, that same arginine and the wildtype5 (WT) glutamic acid generate an at-
tractive Coulombian force that does not exist any more after the mutation. The reference
term also plays a big role in determining that the mutation is destabilizing, this might be
due to lysine having two more CH2 groups distancing the Cα atom from the polar end; as
the CH2 groups are hydrophobic the reference term is more positive for the lysine. Ad-
ditionally, the membrane term is positive, which is also related to the more hydrophobic
nature of lysine compared to glutamine, because Rosetta models the four segments as a
water filled pore.

Figure 14: Visualization of mutation E130K
with the original amino acid, E, in orange and
the mutant, K, in purple. The rest of the sur-
rounding residues are color coded by charge.
The opaque blue residue is the arginine in S4.

Figure 15: Visualization of mutation R198Q
with the original amino acid, R, in orange and
the mutant, Q, in purple. The rest of the sur-
rounding residues are color coded by charge.
The opaque blue residue is the arginine 201,
the cyan colored residue is the same arginine
but in the mutant configuration. Opaque
green is threonine 114.

Secondly, R198Q is located in the S3 segment and it is a mutation from an arginine
to a glutamine, thus from a positively charged residue to a nonpolar one. The program
considers that the mutation is not destabilizing since the total score is -0.375, but it is
not as low as -0.5 to be considered stabilizing. The most relevant scores in this case are
fa atr, fa sol and ref.

Starting from the Van der Waals terms, it is clear that it is favorable to glutamine,
since the repulsive term is almost zero (fa rep) while the attractive term is negative.
This might be because glutamine’s lack of charge lets the arginine in position 201 to get

5Native protein.
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closer and more packed and it can have attractive forces between both glutamine’s and
threonine’s (position 114) dipole. The solvation term (fa sol), on the other hand, is more
favorable to the original amino acid. This might be due to the large shape of arginine in
comparison with glutamine, as well as the closeness of the previously mentioned arginine.
Since this term favours the closeness of atoms with the same nature, the presence of
another arginine makes the solvation term go lower.

Mutation Total score fa rep

S122L 279.810 286.657
E130K 5.434 1.365
A178V 17.220 20.893
R198Q -0.375 0.072
R213W 1.883 3.340
C242F 94.971 101.930
F261Y 35.669 33.559
T263I 16.762 17.115
L263P 303.197 294.329
W270K -43.341 -55.019
Y284D -1.043 -4.317
F305L -106.455 -102.088

Table 2: Scores for each mutation given by the
unmodified MPddG package (inputting a single
monomer). Yellow-colored rows show mutations
without VdW overestimation.

In the same transmembrane segment,
S4, mutation R213W is located. In this
case the replaced residue (arginine) is a p-
charged residue and it is mutated to tryp-
tophan, an aromatic residue. While argi-
nine is positively charged, tryptophan is in
principle non-polar, but due to an electron
deficit in the ring hydrogen atoms it has
significant potential for electrostatic inter-
actions an electron transfer. It is mild hy-
drophobic because its aromacity is juxta-
posed with polar properties.

As it can be seen in Fig. 13 the
most relevant scores are fa atr, fa elec,
fa rep and ref. For the Van der Waals in-
teraction terms it is clear that the attrac-
tive term, fa atr, has a bigger absolute
value than the repulsive term, fa rep, thus
implying that the Van der Waals interac-
tion favours the mutation. This might be
due to the next arginine on the 214 position
being able to get closer to the tryptophan
because it does not have the positive charge that the arginine has. This way, that arginine
lies closer to a glutamic acid, which has a negative charge and stabilizes the attractive
term. Coulomb electrostatic potential interaction, however, is less stable upon mutation.
Arginine might be favored because, being itself a basic amino acid with positive charge
is closely surrounded with two acidic amino acids, aspartic acid and glutamic acid. This
can potentially form salt bridges which help stabilizing proteins.

The membrane energy term favours the mutation, being the only one among the four
here explained that is more negative upon mutation. This result is probably because in the
empirically determined hydrophobicity scale tryptophan is more stabilizing than arginine.
Overall, the program applied with only repacking close to the mutation considers that
R213W is a destabilizing mutation.

Lastly, in the S5 segment we find mutation Y242D, which is a change in amino acid
from tyrosine (aromatic) to aspartic acid (negatively charged). While tyrosine is mildy
hydrophobic because the aromacity is juxtaposed with the hydroxyl group’s negative
charge, aspartic acid is hydrophilic because of its acidic nature. The only difference
between the two is the aromatic ring between the CH2 group and the hydroxyl group in
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Figure 16: Visualization of mutation R213W
with the original amino acid, R, in orange and
the mutant, W, in purple. The rest of the sur-
rounding residues are color coded by charge.
The opaque blue residue is the arginine 214, the
opaque cyan residue is the same arginine but in
the mutant conformation.

Figure 17: Visualization of mutation Y242D
with the original amino acid, Y, in orange
and the mutant, D, in purple. The rest of
the surrounding residues are color coded by
charge.

tyrosine, this makes it larger and more hydrophobic. Rosetta considers that this mutation
is stabilizing and the most relevant scores are ref, rama prepro, fa sol and p aa pp.
Even if the Van der Waals atractive and repulsive score terms are bigger in absolute
value than any other, the whole VdW interaction term is less relevant than the previously
mentioned ones.

The Ramachandran map term (rama prepro) is lower upon mutation. This happens
because the dihedral angles for both of them are φ = −125.203◦ and ψ = 142.114◦ and
while it is a very populated region of the Ramachandran map for most of the residues,
aspartic acid has a smaller probability of having those angles than tyrosine because its
Ramachandran map is more scattered than tyrosine’s. Also related to the dihedral angles,
p aa pp accounts for the superior probability of tyrosine to have said angles.

The solvation term is also positive, meaning that it favours Y over D. This might be
due to the fact that position 242 is surrounded by polar uncharged and nonpolar amino
acids, and tyrosine, being itself a uncharged amino acid with potential for polarity, has
a higher capability of solvation compared to a charged polar amino acid as aspartic acid.
Tyrosine its also considerably bigger making it more favorable to solvation.

5.1.2 Full protein

With the goal of having more accurate results, we modified the program so that it could
account for the whole protein. For this purpose we mutated each of the monomers and
run a repacking in the surroundings of each mutation as in the previous part. Results for
the mutations with overestimation of Van der Waals interaction where still overestimated
except for W270K, which yielded a logical result this time.
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Figure 18: Non-zero scores given by the origial MPddG program (modified to consider the four
monomers) of the protein for the mutations without Van der Waals energy term overestimation.

This mutation is in the pore region of the protein and it is a change between an
aromatic amino acid (tryptophan) and a positively charged one (lysine). As explained in
the previous section, tryptophan is mildly hydrophobic because of the combination of the
indole-ring nitrogen polarity and the aromacity. On the other hand, lysine is one of the
longest amino acids and it is charged. Rosetta considers this change as destabilizing and
the most relevant scores are fa sol, fa water to bilayer, fa dun, ref and the Van der
Waals energy terms.

In the solvation term tryptophan is favored, this is because it fills the space in between
residues better and it is surrounded with a lot of non-polar residues so tryptophan’s mild
hydrophobicity is helpful in the stabilization of the area.

The rotamer energy term (fa dun) is also less stable upon mutation. This term
accounts for the probability of the the side-chain to have the specific rotamer that the
repacking has chosen. Due to the largeness of lysine and the packed conformation of
tryptophan, there are more possible rotamers for lysine than tryptophan, making the
probability of the chosen rotamer for the mutation smaller than the original and thus
being less stable.

For the Van der Waals energy terms, it is interesting to see that the overestimation
did not come in the first place by the repulsive forces of the mutant, but by the repulsive
forces of the wildtype. In the case of the full protein the difference is more balanced, but
still tryptophan is considered less stable due to the repulsive VdW forces. This might be
due to the negative polarity that the indole-ring nitrogen brings that is repelled by the
rest of negative charges around, like glutamic acid (254).

Between the previously analyzed mutations only Y284D changes the qualitative result
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Figure 19: Visualization of mutation W270K
with the original amino acid, W, in orange and
the mutant, K, in purple. The secondary struc-
ture of the monomer is color-coded showing the
type of residues, it can be seen that it mostly
white, that is non-polar. Other monomers are
shown in cyan.

Figure 20: Visualisation to show where are
the non-overestimated mutations distributed.
Each monomer has a different colour and the
mutation sites are red: E130, blue: R198,
orange: R213, white: W270 and green Y284.

after the whole protein being considered, when only one monomer was inputted Rosetta
considered the mutation stabilizing, but as a full protein it is fairly destabilizing. The
change resides essentially in the Van der Waals interaction terms, while most energy terms
stay unchanged or even closer to 0, both fa atr and the repulsive term are almost two
units larger than in the monomer version. This happens because when considering the
full protein the S6 segment of the monomer in front approaches the position enough for
the Van der Waals interactions to apply. The residues completely surround the mutation
position so that the forces cancel each other out better. Furthermore, the close presence
of a lysine, an arginine and a histidine create a more atractive force to the tyrosine than
to the aspartic acid.

Since E130K is not near the pore region it is reasonable that the result did not change
for the full protein case. However, for R198Q and R213W it did change slightly because
some of the proteins in S5 and S6 segments of the previous chain lay within the influence
of the mutation position. They do not influence the result very drastically since they are
only three new residues for each of the mutations and they are on the limit of the effect
of the energy terms.

5.2 Repacking and minimizing within 8Å from mutation

When running our improved program for a single monomer and the whole protein the
minimization was apparently successful, only L268P showed overestimation in the Van
der Waals repulsive energy term, due to proline’s special nature. For consistency purposes
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Figure 21: Non-zero scores given by the improved program for the mutations that did not show
energy overestimation in the original program. Program run with the whole protein.

we will first analyze the change in the results of the mutations that gave a readable solution
in the only-repacking program. Both in the monomer and full protein versions for E130K
and R213W the results are mostly similar to the repack version, the tendency in the score
terms is the same and they only change slightly in value. This lack of noticeable difference
makes sense since E130K and R213W are close to the endings of segments S2 and S4,
respectively, and facing the interior of the barrel that segments S1-4 form, leaving not
much space to change (see Fig. 20).

For R198Q in the monomer version the total score goes high enough to make the
qualitative result uncertain. This is probably because it is at the top and facing outwards
of the S4 segment, so the surrounding residues and itself have more freedom of movement.
In the full protein version, however, the difference between repack and minimizer is not so
big and it is considered a stabilizing mutation with even a lower score. This is probably
because the residues in the S6 segment of the previous chain do not let the rest of the
residues move that much.

In the monomer version of Y284D the result changes quite drastically from stabilizing
to destabilizing, which approaches more the result with the whole protein (both with
minimizer and without it). This mutation is in the pore region, which is more flexible
than the transmembrane helices which explains why the minimizer is able to have a bigger
effect. In the whole protein versions the change is mostly visible in the electrostatic terms,
particularly in the VdW terms, while in the monomer versions a noticeable difference is
present in the solvation term as well. Overall, the minimizer is able to minimize the
wildype conformation more than the mutated one, so the total score is always higher
after minimizing.

Finally, for W270K the Van der Waals repulsive term was overestimated for the
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Mutation MPddG monomer MPddG full New monomer New full

S122L 279.810 279.736 -4.876 -3.056
E130K 5.434 5.279 4.324 4.134
A178V 17.220 17.299 -0.74 -0.754
R198Q -0.375 -1.439 -1.659 -2.752
R213W 1.883 1.391 1.946 1.033
C242F 94.971 95.052 1.304 1.149
F261Y 35.669 36.399 -0.252 3.751
T263I 16.762 36.024 2.195 2.560
L268P 303.197 305.129 16.757 19.449
W270K -43.341 5.863 8.757 10.286
Y284D -1.043 5.996 4.691 9.224
F305L -106.455 -110.359 -0.223 2.401

Table 3: Results for all the mutations for the original program (MPddG) and for the improved
program (New) for a single monomer and the full protein. Values for whole protein are divided
by four to consider the effect of one mutation.

wildtype so the total score was overly negative. This was fixed when running the program
with the full protein and also the minimizer fixed that problem. As the previous mutation,
this one is also in the pore region, which is more flexible for the minimization.

Figure 22: Non-zero scores given by the improved program for the mutations that showed energy
overestimation in the original program. Program run with the whole protein. Results for L268P
are excluded.

The mutants for which we could not get any acceptable result in the repack program
gave good results with the minimzer. Results were quite similar when running a single
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monomer and the whole protein, except for F261Y and F305L. We will focus on the full
protein results since a more accurate conformation is considered.

Starting with the mutation in the first segment, S122L, it is a mutation between two
non-polar amino acids, serine to leucine. While serine has an hydroxyl group, leucine has
two CH3 groups. Thus, both are aliphatic but serine is able to form hydrogen bonds.
Rosetta considers that this mutation is stabilizing with ΔΔG = −3.056 and the most rel-
evant scores are fa atr, fa sol, fa elec and fa dun. The attractive Van der Waals term
is more favorable to leucine because it is bigger and it can get closer to the surrounding
non-polar amino acids. As for the Coulomb term, a big part of it might come due to
the tyrosine in position 118 being able to get close to the tryptophan in S6 in the native
conformation and thus interacting favorably. The bigger size is also responsible for the
negative solvation term, since it gets closer to the surrounding residues interacting with
them instead of water.

Figure 23: Visualization of mutation S122L with
the original amino acid, S, in orange and the
mutant, L, in purple. The green residue is ty-
rosine 118 and the cyan residue the same amino
acid but in the mutant conformation. The blue
residue is the tryptophan in S6 and the rose color
shows how the secondary structure is move after
the mutation.

Figure 24: Visualization of the mutations
that showed overestimation. Blue: S122, red:
A178, yellow: C242F, green: F261Y, gray:
T263 and white: F305L. L268 is excluded.

Another non-polar to non-polar mutation is placed in the S3 segment, A178V, which
is a change from alanine to valine. Both are aliphatic and valine is like an alanine but with
an extension of two CH3 branches. It is not surprising then that Rosetta considers this
mutation as stabilizing withΔΔG = −0.754. The most relevant scores are fa atr, fa rep

and fa water to bilayer, but overall scores are mostly close to zero. As in S122L, valine
is longer and gets closer to the non-polar residues in the surrounding, provoking the Van
der Waals interaction to be negative.

Mutation C242F is located in the S5 segment where a sulfur containing amino acid
(cysteine) is replaced by an aromatic amino acid (phenylalanine). While cysteine is hy-
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drophobic due to the sulfur but is very reactive and can form disulfide bonds with other
cysteine’s, phenylalanine is mildly hydrophobic with significant potential for electrostatic
interactions. The most relevant terms in this case are fa sol, fa elec, fa dun and
fa water to bilayer resulting in a positive total score (ΔΔG = 1.419), implying that
the mutation is destabilizing. Since phenylalanine is bigger, it is closer to the nonpolar
residues in S6 and can help solvate the protein better. However, cysteine is not very flex-
ible while F can take other conformations, which results in a less probable conformation,
worsening the fa dun term.

T263I is a polar to non-polar mutation situated over the membrane bilayer in the
pore region. Threonine has an hydroxyl group and is capable of forming hydrogen bonds
while I is also aliphatic with only CH2 groups. The most relevant scores for a final
positive score (ΔΔG = 2.560) are fa sol, fa elec and hbond bb sc. Due to threonine
having potential for polarity it might interact with water which worsens the polarity in
comparison to isoleucine. This same reason is why the Coulombian interaction is worse
after mutation, since the surroundings are mainly polar and charged. The hydrogen
bonding term is favorable to threonine because it stabilizes the conformation by creating
H-bonds with the aspartic acid in position 266.

Figure 25: Visualization of mutation
C242F with the original amino acid, F, in
orange and the mutant, Y, in purple. The
residues color-coded showing the type of
amino acids, showing in the vicinity they
are mainly non-polar.

Figure 26: Visualization of mutation T263I with
the original amino acid, F, in orange and the mu-
tant, L, in purple. The residues color-coded show-
ing the type of amino acids. The bright red residue
is aspartic acid 266. Different shades of cyan indi-
cate different monomers.

Finally, considering the mutations that showed the biggest difference in score between
monomer and full protein, the difference lied mainly in the Van der Waals terms and both
are destabilizing when the whole protein is considered. This is reasonable since F305L is
in the S6 segment closely surrounded by the residues in the S6 segment of the next chain.
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Similarly, F261Y is located in the pore and outside of the membrane region.

The latter mutation is a change from phenylalanine to tyrosine, thus aromatic to
aromatic and the only difference between them is the hydroxyl group that tyrosine has
in the aromatic group, which makes it mildly hydrophobic instead of highly hydrophobic
as phenylalanine (it is sometimes considered uncharged polar). Fa sol, rama prepro and
fa elec are the score terms with the biggest effect in the total score. The solvation term
is higher for Y because F is more hydrophobic and does not want to interact with water,
interacting with the rest protein instead. The hydroxyl group is also responsible of having
less favorable electrical interactions with the surrounding non-polar residues and adopting
a worse conformation so the rama prepro is higher after the mutation.

F305L is also a mutation from phenylalanine but in this case to leucine, which is
non-polar and aliphatic. The final positive score (ΔΔG = 2.401) is dominated almost
entirely by the Van der Waals atractive term. Phenynalalinen is bigger so it can have
more favorable interactions. In addition, also due to its bulkiness and because it is in a
very populated region it does not have space to have the most probable conformation and
thus fa dun and pa aa pp are more favorable for leucine.

Figure 27: Visualization of mutation F261Y
with the original amino acid, F, in orange and
the mutant, Y, in purple. The residues color-
coded showing the type of amino acids, showing
in the vicinity they are mainly polar. Different
shades of cyan indicate different monomers.

Figure 28: Visualization of mutation F305L
with the original amino acid, F, in orange
and the mutant, L, in purple. The residues
color-coded showing the type of amino acids,
showing in the vicinity they are mainly non-
polar. Different shades of cyan indicate dif-
ferent monomers.

5.3 Membrane’s contribution

In order to understand the relevance that the membrane has in the results, we run the
previously mentioned two versions (for a single monomer and the whole protein), but
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ignoring the membrane and as a consequence using only the ref2015 score function without
the fa water to bilayer term. Since the repacking is not a very sensitive method for
energy minimization, in most cases the conformation taken in the membrane version and

Mutation With Without
Membrane
term

S122L -3.056 -1.155 -0.952
E130K 4.134 2.710 1.361
A178V -0.754 0.040 -0.774
R198Q -2.752 -2.614 -0.266
R213W 1.033 2.565 -1.567
C242F 1.419 3.032 -1.320
F261Y 3.751 3.300 0.419
T263I 2.560 3.101 -0.392
L263P 19.449 19.531 -0.364
W270K 10.086 7.540 2.656
Y284D 9.224 8.362 0.915
F305L 2.401 2.074 0.314

Table 4: Scores for each mutation by the im-
proved program with and without membrane
(with the whole protein). Fourth column is the
value of the membrane term in the program with
it.

the non-membrane version were the same.
As a consequence all the score terms had
the same value and the only difference in
the overall score was given by the addition
of the membrane term. The only excep-
tions to this appeared for S122L and C242F
in the monomer version and S122L and
W270K in the full protein version. How-
ever, only with the repacking the mem-
brane score term is not capable of chang-
ing the result qualitatively, the mutations
that were destabilizing with ref2015 are
still destabilizing with franklin2019.

On the other hand, when running the
improved program without membrane, the
minimization showed significant differences
in final score; nonetheless, the qualitative
result (stabilizing or destabilizing) did not
change in most of the mutations. Only
A178V (from stabilizing to uncertain when
not considering the membrane for both the
monomer and the full protein versions),
and F305L (from uncertain to stabilizing
in the monomer version) showed a qualita-
tive shift in the results. As expected, the improved program showed a more noticeable
effect in the minimization caused by the membrane term, resulting in a bigger gap than
the membrane energy term solely.

5.4 Flex ddG

Flex ddG is a protocol that focuses in the changes in binding free energy after mutation,
ΔΔGbind, defined as the change in Gibbs free energy of the complex compared to the
partners of the complex separated.

ΔGbind = ΔGcomplex −ΔGpartnerA −ΔGpartnerB (10)

To evaluate the effects of the mutations, the protocol calculates the Gibbs free energy
for both the wildtype and the mutant and compares them. Following Barlow et al. [5]
work, the criteria we will consider is the following: a mutation will be stabilizing when
ΔΔG < 1.0 destabilizing when ΔΔG > 1.0 and neutral otherwise.

ΔΔGbind = ΔGMUT
bind −ΔGNAT

bind (11)
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The key for the success for this protocol is the implementation of several rounds of
energy minimization. Initially, it performs a L-BFGS minimization with Armijo inexact
line search conditions in the input structure with all the binding partners. After that
a backrub protocol is performed, this is started by choosing random protein segments
consisting of three to twelve neighbouring residues in the neighbourhood of the mutated
position, which is defined by all the residues with the Cβ within 8Åof the mutation
position. Once the segment is chosen, up to 50,000 Monte Carlo steps are run with a
temperature of 1.2kT by rotating each segment locally around the vector between endpoint
Cα atoms. 50 output models are generated and from this point on two sets (of 50 models
each) are generated: one with the wildtype configuration, and the other one with the
mutant amino acid. Both sets go through the following protocol independently.

For each model the packer previously explained is applied and again the minimizer is
run as in the first step. Next up, the complex as a whole and the partners individually are
scored to get ΔG. For the latter, the scores are computed by separating the partners from
each other and calculating the score then. Finally, the ΔΔG is calculated by subtracting
the result for the native models to the mutated ones. This is done by averaging over all
models. The score function used is ref2015 by default and it is yet no prepared to consider
the membrane. We applied this program considering each of the chains as partners, thus,
calculating the binding affinity of binding the four monomers together:

ΔGbind = ΔGcomplex −
�

i

ΔGi (12)

where i is the chain ID.

5.4.1 Results

Flex ddG yielded the results shown in table 5. To approach the results for the protein in
the membrane, we chose for every mutation reference wildtype and mutated structures to
calculate the energy of the membrane term averaging over them.

As it can be seen in the summation, four mutations yield similar result between
Flex ddG and the improved program: S122L, A178V, W270K and Y284D; however, for
A178V the result comes purely from the membrane term which implies that it would
probably have a more noticeable difference in the Flex ddG result. Similarly, E130K,
R213W and C242F are uncertain if we only consider the result from the flex program,
and the membrane term is what yields a qualitative result. On the other hand, T263I and
F305L are stabilizing and destabilizing, respectively, and the membrane term enhances
it, while R198Q and F261Y are uncertain any way. Finally, it is important to realize
that using Flex ddG is the only way we could find a logical result for L268P. It is very
common to have problems computationally with proline, due to its cyclic nature, because
it can not get a proper conformation and it clashes with the surrounding residues. The
algorithm for Flex ddG is able to minimize the clashes to get proper results and Rosetta
considers that L268P is destabilizing.

Ultimately, Flex ddG could only give a qualitative certain result for five mutations
S122L, T263I (stabilizing), L268P, W270K and Y284D (destabilizing). These results are
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Mutation Flex ddG Membrane term Sum New full

S122L -3.32 -1.678 -4.999 -4.876
E130K -0.003 1.589 1.586 4.324
A178V 0.118 -0.690 -0.571 -0.740
R198Q 0.172 0.054 0.226 -1.659
R213W 0.066 -1.190 -1.125 1.946
C242F -0.447 -1.239 -1.685 1.304
F261Y -0.008 0.106 0.097 -0.252
T263I -1.395 -0.337 -1.732 2.195
L268P 4.556 -0.077 4.479 16.757
W270K 2.716 1.778 4.494 8.757
Y284D 6.607 0.255 6.323 4.691
F305L 0.885 0.315 1.199 -0.223

Table 5: Results for all the mutations got by Flex ddG. The third column shows the score of the
membrane term from franklin2019 for output structures of the program and the fourth column
is the sum between the second and third columns. Fifth column are the results of our program
for reference.

in agreement with the ones we got using the improved program for the whole protein,
except for T263I, that was considered destabilizing in our program.

5.5 Self-consistency of the results

Assessing the accuracy of the tools for the calculation of ΔΔG upon mutation is difficult
given the limitations and inconsistencies of experimental data. However, Thiltgen et al.
[36] evaluated different programs based on their ability to generate consistent results for
forward and backward mutations. They based their analysis on the fact that a mutation
in a given location of X to Y should have an opposite effect to the reverse mutation from
Y to X: ΔΔGY X = −ΔΔGXY Unknown changes in stability can cause fluctuations in
the results, so the computationally predicted values are ΔΔGP

XY and their errors δXY =
ΔΔGP

XY −ΔΔGXY .

Since the real values are unknown we consider the valueΔΔG∗
XY that would minimize

the error:

ΔΔG∗
XY =

ΔΔGP
XY −ΔΔGP

Y X

2
(13)

With the following error:

δ∗ = ΔΔGP
XY −ΔΔG∗

XY =
ΔΔGP

XY +ΔΔGP
Y X

2
(14)

Using the same self-consistency method we tried to assess the quality of our results.
We performed the following protocol for all the programs exposed previously: firstly, we
run the program with the input PDB being 7CR3 (wildtype) and performing the X to Y
mutation; secondly, we used the outputted mutated PDBs of this program to use as input
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structures in an independent run where we produce the mutation Y to X. As expected,
the programs with only repacking shows little to no error when comparing the normal and
the reverse results, thus our main interest lied in the minimizer version. The consistency
results we got are shown in Table 6.

Mutation Normal score Reverse score ΔΔG∗ δ∗

S122L -3.056 4.635 -3.845 0.790
E130K 4.134 -3.940 4.037 0.097
A178V -0.754 0.710 -0.732 0.022
R198Q -2.752 0.426 -1.589 1.163
R213W 1.033 0.225 0.404 0.629
C242F 1.149 -1.001 1.210 0.209
F261Y 3.751 -2.106 2.929 0.822
T263I 2.560 -2.339 2.450 0.110
L268P 19.449 -12.568 16.008 3.441
W270K 10.286 5.421 2.433 7.853
Y284D 9.224 -7.858 8.541 0.683
F305L 2.401 -2.622 5.11 0.111

Table 6: Self-consistency results using equations [16] and [17].

As we can see, results are consistent for most of the mutations, except for R198Q,
R213W and W270K which would suggest that those results need to be considered more
carefully.

5.6 Experimental data of mutations

Seven out of the twelve mutations that we were given to analyze had already appeared
in previous articles associated with epilepsy. Two of them were discovered in patients
diagnosed with BFNS: S122L [15] and R213W [25]. Our program considered the first
one as stabilizing with ΔΔG = −3.056 and the second one destabilizing with a score
of ΔΔG = 1.033. Functional analysis were performed for both of the mutations and
S122L showed a current reduction in the subthreshold range of an action potential of
75%. R213W also had a decrease in current density of 98,75% and it generated functional
voltage-dependent currents with maximal densities identical to those of WT but required
more depolarized potentials to become activated. This mutation was also found in a
patient with EOEE [38].

The other five mutations are E130K, L268P, Y284D [13], R198Q [26] and F305L
[38], and they were also found in patients diagnosed with EOEE. Our program identified
E130K, Y284D and F305L as destabilizing with scores ofΔΔG = 4.134 andΔΔG = 9.224
and ΔΔG = 2.401, respectively. On the other hand, R198Q was considered stabilizing
with ΔΔG = −2.752. Functional analysis had already been performed in this mutation,
the channels with the mutation were activated at less-depolarizing potentials, showing a
gain-of-function (GOF) effect [26]. This mutation is located in the S4 segment that is
thought to act as voltage-sensor, so further consideration is required for a proper analysis.

35



Lastly, we could not get results for L268P with our own program, but Flex ddG yielded
that it should also be destabilizing.

These results may suggest that Rosetta is not able to identify BFNS mutations as
destabilizing, but might be able to properly identify the mutations that cause EOEE,
which is a more deteriorating type of epilepsy. However, the thermodynamic stability is
only one of the components of the global stability and functionality of a protein, so a
broader set of sample mutations are needed to make a statement as such.

6 Conclusion

In this work we have analysed 12 mutations in the Kv7.2 potassium channel that could
be linked to BFNS, a rare disease occurring in newborn children. For that purpose we
have used Rosetta, a macromolecular modeling software, and particularly the packages
MPddG and Flex ddG included in it. In a first approach to the problem, using the
MPddG as it was designed for (with a single chain as input), the results indicated that
mutations E130K and R213W were destabilizing, while R198Q was neutral and Y284D
was stabilizing. The rest of the results were not suitable for analysis for the lack of energy
minimization power.

Extending the program to work for the four chains that the protein contains, re-
sults stated that mutations E130K, R213W, W270K and Y284D were destabilizing, while
R198Q was stabilizing. The rest of the results also contained a large overestimation of
Van der Waals interaction energies and were in consequence not suitable for analysis.
Finally, in a last attempt to improve the program, we used a more sophisticated energy
minimization process. This resulted in comprehensible results for all of the mutations
except for L268P due to proline’s ring. In this case, the mutations that were destabilizing
were E130K, R213W, C242F, F261Y, T263I, W270K, Y284D and F305L. On the con-
trary, mutations S122L, A178V and R198Q were considered stabilizing. These were the
best and more reasonable results that we could get considering the membrane.

Moreover, we also tried to understand the effect that the membrane had on the
results, both in the final result and as a parameter in the minimization process. In the
case of the program containing solely the repacking protocol, the membrane effect was
only visible in the final summation, since the membrane term was not present in the
nonmembrane program. Nonetheless, it did not suppose any difference in the repacking
process for almost any mutation. On the other hand, when the minimizer was applied, the
membrane term change considerably the minimized structure and thus the results were
different not only because of the summed term but also because of the rest of the terms
that changed. These results supposed a particular interest because we were under the
knowledge that Rosetta contained a more exhaustive protocol (Flex ddG) that could also
inform us of the stability of mutations, but it could not consider the membrane. Therefore
it was important to notice that even if we added the energy term for the membrane using
the output structures in Flex ddG ad hoc, it would not be enough to consider the whole
scope of effects of the membrane since it was not considered during minimization.

Nevertheless, we believe that this results are also interesting to consider to comple-
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ment our previous results. Three mutations L268P, W270K and Y284D, were considered
destabilizing, and other two mutations, S122L and T263I, stabilizing. Adding the mem-
brane term after the computation, E130K and F305L were considered destabilizing and
R213W and C242F were considered stabilizing. This analysis shows the importance of
the membrane term for ΔΔG calculations in membrane protein, since it can change con-
siderably the results. Creating a similar protocol to Flex ddG that could account for the
membrane would be interesting in the future of Rosetta.

We also used this work to evaluate Rosetta. Firstly, it is important to note that
the packages that we used perform only thermodynamic calculations, thus they do not
consider the functionality of the protein, nor know how to differentiate essential domains
from less important or variable ones. This is the reason why results can only be properly
analysed by understanding where the mutations are located and the importance of those
positions; and it shows a clear limitation of this kind of calculations.

In addition, we encountered some problems when it came to the minimization process.
We tried several protocols, such as FastRelax and MPRelax, with no success due to the
large error that they created. As we have seen, results are at most of an order of magnitude
of ten, which needs for minimization processes that are deterministic or with a very small
error. We also tried a statistical approximation of the results when using the mentioned
protocols, but it felt insufficient to yield proper results. It seems clear that in the specific
case of ΔΔG calculations Rosetta users have a very limited capacity to improve the
program, and protocols with statistical approaches, such as Flex ddG, need to be built
within the software to suitably select the results.

Furthermore, one of the main difficulties we faced during this process was the lack of
clear documentation. Rosetta is completely open when it comes to the code, being fully
accessible in the bundle, but is scripted in several languages. The core of the software is
written in C++ but it is enhanced in python (PyRosetta) and some other very important
protocols exist only in XML (RosettaScripts). In consequence, in some cases one needs to
understand three languages to fully comprehend what the program is doing. For the most
part this is an advantage since it suits a broader spectrum of users when they attempt to
get the results without going deeper, but it makes the work more complicated for users
who need to properly understand how the algorithm works. In spite of that, the main
advantage that we found in MPddG was that it could be run in ordinary computers giving
results in a few seconds, which makes it a very accessible protocol and worth using to get
preliminary results. Flex ddG, on the other hand, needed to be run for hours in a high
performance computer.

Lastly, it is important to understand that Rosetta is a fairly young software (2006)
and that its improvements depend on the comparisons with experimental results that
researchers give; the more it is used the better it will get. The potential that this kind
of softwares have is undeniable and they will surely predominate the future of theoretical
research. At the moment, Rosetta needs to be considered within its limitations. When
it comes to mutations in sites as sensitive as membrane channels, it seems clear that the
results can only be considered superficially, as thermodynamic approximations, and not
as indisputable statements.
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