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Chapter 1

Introduction and objectives

The digital electronics field is one of the most fast changing sectors of research and in-
dustry. Since the invention of the transistor back in 1947 the electronic circuit’s scale
of integration has grown swiftly. Indeed, in 1965 Gordon Moore set the globally known
Moore’s Law [1], that has ruled the plans of this field for years.

One of the greatest advances in digital electronics was the invention of the pro-
grammable devices, which allowed to reuse an electronic circuit without wasting resources.
This opened a door that was quickly explored and exploited. Among all the inventions
and discoveries that sprouted in those early years, field programmable gate arrays (FP-
GAs) appeared, arriving to the industry in the late 90s after a fast growth [2]. Nowadays,
they are still the preferred option for many digital implementation applications, due to
their flexibility, high parallelism and good cost-performance relation [3].

On a completely different evolution process, although almost parallel in time, neural
networks (NN) made their appearance thanks to an extensive experimentation during the
20th century [4]. From the original Perceptron network in the late 50s to the all around
use of today, NNs have evolved to become a cutting-edge research topic. For example, it
is being used in the autonomous driving tests that many research groups and companies
are carrying out [5], [6], as well as, in finance [7] and medical applications [8], among
others.

At the same time that FPGAs and NNs grew, a hardware description language (HDL),
called VHDL (Very high speed HDL), was created to aid in the development of the
increasingly common integrated circuits (IC). In the present, after various updates and
reworks, VDHL is a language that can describe the performance and behavioral of digital
circuits. It is widely used in the configuration of several programmable devices such as
FPGAs and CPLDs (Complex Programmable Logic Device) [9].

Nevertheless, VHDL is not the only hardware description language, Verilog is an-
other example. Indeed, both of them are IEEE (Institute of Electrical and Electronics
Engineers) standards, which means that they can describe any electronic circuit without
incompatibilities between companies or countries. This description includes the possibility
of simulating the working procedures of the circuit and testing its performance, becoming
great design tools.
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Chapter 1. Introduction and objectives 2

Objectives

The first objective of this work is to delve deeper into the use of FPGAs, taking into
account what was learned in the Digital electronics and Digital systems design subjects.
Starting with its theoretical background and finishing with its configuration in a physical
board. In addition, advanced digital techniques will be applied with the aim of simplifying
the hardware implementation, for example, using powers of two as numbers that turn
costly term products into simple bit shifts.

Related with the previous objective, learning how to design digital systems with an
optimal speed/cost tradeoff depending on the target application is also pursued. This can
be done by selecting a low latency architecture with a high use of resources (in a parallel
structure) or a higher latency one with a lower cost (a serial design).

A second objective is to serve as an introduction to the machine learning (ML) tech-
niques, focusing more in depth in the the neural network algorithms. Specifically, a type
of NN is of particular interest, extreme learning machines (ELM). Thus, their distinctive
characteristics are to be studied and its difference with the rest of NNs understood.

Another of the main objectives is to learn from the start how a hardware implemen-
tation application is carried out. The complete process of planning the project, coding
the modules in VHDL, simulating each of them, and in the end, implementing the design
in a FPGA is of great interest.

Finally, this work also aims to perform an exercise that gathers all the previous steps,
in this case, the classification of different kinds of soils in a multispectral image obtained
by a Landsat satellite. The reasons for choosing it are related to the common use of
FPGAs in satellite installations, due to the high quantity of data they can handle in
parallel processing steps. Additionally, the device configuring bitstreams can be easily
sent to the satellite.

The following chapters are organised as follows: Chapter 2 will give the theoretical
basis of ML algorithms, neural networks, and in particular, ELMs. Moreover, it will also
include an introduction to FPGAs, with the main resources and characteristics of the
Artix 7 family, and an explanation of the common design flow in a FPGA configuration
project. Chapter 3 will present an explanation of the basic blocks that form a common
NN, as well as a comparison between two of the main methods to implement an ELM.
Furthermore, Chapter 4 includes some simplifying measures for the already showed basic
blocks, together with various designs that include these measures. To conclude, Chapter
5 and Chapter 6 contain a final classification application with a new database and the
conclusions of this work respectively.



Chapter 2

Theoretical basis

In this chapter, the theoretical background of this work will be presented in order to
understand the followed process. First of all, machine learning techniques will be briefly
described together with a more detailed explanation of a particular type of structure
known as extreme learning machines (ELM). Secondly, field programmable gate arrays
(FPGAs) will be addressed since, in the end, the designed architecture will be implemented
in one of them. Finally, a summary of the main characteristics of the FPGA family that
will be used will be given, together with an outline of a common design flow.

2.1 Machine learning

Machine learning (ML) is a field of computational science that develops dynamic algo-
rithms capable of making decisions based upon the previously received data, this contrasts
with classical programming instructions that rely on static algorithms. One of the ob-
jectives of ML is enabling computer programs to learn and improve their performance at
some tasks through experience [10].

ML is already widely spread, and it has been used in several fields such as, finance [7],
medical applications [8], pattern recognition [11] and computer vision [12], among others.
It usually works with big databases, in order to have the best learning process and achieve
the highest generalization as possible. Generalization is a concept in ML that states how
well a model performs on unseen data [13].

The adaptation of the computational algorithm is commonly called training, during
this process it will be fed with input data, changing according to it. Depending on the
type of algorithm the training process will be different: some weights can be adjusted,
the internal network of computational pathways can be rearranged or the probability
distributions that predict the outputs can change [14].

Depending on the input data, ML can be divided into three categories: supervised,
unsupervised and semi-supervised learning. In the former, the desired output comes along
with the data and is correctly labelled, it is commonly used in classification and regression
problems. The objective is to estimate an output from new data based on previously given
samples, where the output was known. During the training process the algorithm will
configure itself according to the known inputs [14].

On the other hand, in unsupervised learning, the input data does not have any labelled
output targets, so the training will be done after knowing the difference between the given

3
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and the desired output. It is used in clustering and estimation of probability density
functions. Finally, semi-supervised learning is a combination of both methods, with only
part of the data labelled that will be used to infer the remaining portion. Its main use
are the text and image retrieval systems [14].

2.1.1 Neural networks

A typical NN is an effective distribution of different types of neurons and its interconnec-
tions, as shown in Figure 2.1. These neurons are organized in a parallel structure called
layer, that can fulfil different goals depending on their position in the network. There are
three types of layers: input, hidden and output ones.

Figure 2.1: Example of a multilayer neural network topology.

One of the parameters that will vary depending on the type of layer is the number of
neurons in each one. While the input layer has as many as input attributes, the output
layer is defined by the number of outputs of the network. On the other hand, for the
hidden one it is a decision taken by the designer.

Furthermore, those neurons are different depending also on the type of layer. The
most complex case is the hidden neuron, that counts with a multiplier, an adder and a
transfer function. Its input attributes, that come from the neurons in the input layer, are
organized into a vector x = (x1, x2, ..., xn) and multiplied by another vector of the same
dimension with the weights w, and then added to a bias b. Both parameters are unique
for each neuron, and thus, the result of one is different from the rest. This process is
shown in Figure 2.1. Both the weights and bias are tuned during the training process.

The last parameter of the neuron is the transfer or activation function f, that unlike
the previous variables initially set at random, is chosen by the designer according to the
desired output. Some of the most common functions are: the linear, the hard limit and
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the log-sigmoid functions [4]. Its input is given by the already mentioned sum of products
seen in Equation 2.1.

hi = f(wix + bi) (2.1)

Where hi is the scalar output of neuron i. It is important to note that while the
internal parameters, wi and bi, of a neuron in a layer are particular to it, the transfer
function is the same for all of them.

The other two types of neurons have a more straightforward functioning. While the
input ones receive the input attributes to distribute them to all the hidden neurons, the
output neurons usually have a proper transfer function depending on the application,
commonly a linear function [4].

Putting it all together, a multilayer distribution with a finite number of layers and
a variable quantity of neurons in each one can be built, as showed in Figure 2.1. This
type of topology is specially interesting because it allows to combine different transfer
functions, one per hidden layer, enabling the resolution of a great number of problems.

Another decision the designer must make is the selection of the NN training method.
This training process tunes the value of the internal parameters of the network, that were
initialised randomly, comparing the outputs computed by the network with the targets
provided in the training data. In addition, during this process the NN also optimises its
internal processes to minimise the analysis and processing time [4].

The main training methods are derived from the backpropagation algorithm, that
is based on the generalisation of the Widrow-Hoff learning rule. It starts with random
weights, and the goal is to adjust them to reduce this error until it reaches a certain
value [15]. The most common methods are: the Levenberg-Marquardt algorithm, the
scaled conjugate gradient and the gradient descent. In the three of them the gradient is
computed by the backpropagation algorithm.

2.1.2 Extreme Learning Machine

Extreme learning machine (ELM) is a particular type of NN, with a high-speed machine
learning method based on a simple tuning-free algorithm. In other words, it depends less
on the decisions taken by the designer compared to more common ML techniques such as,
the explained backpropagation neural networks (NN) or support vector machines (SVM)
[16]. ELM also does not present local minima or overfitting during the training period,
which avoids common training problems.

An ELM consists of a feed-forward neural network with just a hidden layer. This
architecture is specially interesting since the weights and biases of the hidden layer are
not only generated randomly, as it is common in other NNs, but they remain unchanged,
preventing them from being adjusted with every iteration. Thus, the learning time of an
ELM is shorter than more common training algorithms, which opens a door for multiple
real time response applications.
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Figure 2.2: Outline of an ELM architecture.

In Figure 2.2 an outline of the ELM architecture with n inputs, L neurons in the hidden
layer and m outputs can be seen. The output vector y will be computed as follows:

y(x) =
L∑
i=1

hi(x)βi = h(x)β (2.2)

Where β is the vector of beta weights that multiplies the output of each neuron of
the hidden layer, indicated by the vector h(x). This output is expressed by Equation
2.1, where f is the activation function, wi the random weights and bi the bias of the ith
neuron. Precisely, these last two parameters will be the ones set at random during the
initialisation and that will remain untouched. Furthermore, the activation function will
be chosen by the designer, the most common ones are the sigmoid function, the hardlimit
and the tangential function.

The learning process in an ELM algorithm is based on computing the output weights
β of Equation 2.2. Everything starts by taking a set of K training samples, each one with
n input attributes, and its target vector t, of dimension m. The relation between them is
expressed by Equation 2.3:

T = H(x)B (2.3)

Where H(x) is the output matrix of the hidden layer. Those matrices can be expressed
as follows:
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T =

 t1
...

tK


K×m

B =
[
β1 · · · βm

]
L×m (2.4)

H(x) =

h(x1)
...

h(xK)

 =

h1(x1) · · · hL(x1)
...

. . .
...

h1(xK) · · · hL(xK)


K×L

(2.5)

Solving Equation 2.3, that shows a system of linear equations, the output weights β
can be calculated:

β = H†T (2.6)

Being H† the Moore-Penrose generalized inverse of matrix H [16], [17]. When de-
signing the complete classifying algorithm there will be one output neuron, with its own
β weights, for each classification class. In this explanation, the dimension of the target
vector m is the one stating that number of classes, and thus, the dimensions of the β
matrix in the previous equation.

In addition, the n input attributes of each sample will determine the number of neurons
of the input layer. On the other hand, the number of hidden neurons is not fixed by
any external parameter but by the designer, that can choose depending on the target
application.

Finally, once the training stage is finished and all the parameters of the network are
set, Equation 2.3 can be used to calculate the outputs of the test database, that will
generate a new H matrix (Htest).

This fast training process, without recursive operations, enables the possibility of using
ELMs in high speed implementation applications. Indeed, the great parallelism inherent to
this architecture, that is shown in Figure 2.2, encourages the use of hardware devices with
a high parallelization capability. For example, field programmable gate arrays (FPGAs),
that present this characteristic and are commonly used in these cases.
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2.2 Field Programmable Gate Arrays

A field programmable gate array (FPGA) is a semiconductor device constituted of sev-
eral logic cells, generally called configurable logic blocks (CLB), that are interconnected
by a matrix of horizontal and vertical communication channels. By arranging these in-
terconnecting wires (with programmable elements) and configuring the CLBs, different
complex designs can be implemented. FPGAs can be reprogrammed to adjust to the
desired application, which entails its main characteristic [18]–[20].

FPGAs are the next step from CPLDs (Complex Programmable Logic Device), since
its logic blocks offer a better functionality than the set of term products and macrocells of
the CPLDs. These CLBs usually consist of multiplexers (MUX), look-up tables (LUT) and
flip-flops (FF), although each manufacturer does its logic blocks with certain differences
between them. In Figure 2.3 an outline of a common architecture of a FPGA can be seen,
with the interconnecting channels linking the I/O (Input/Output) blocks and the CLBs.

Figure 2.3: Scheme of a common architecture of a FPGA (Image from Wikimedia Com-
mons under the Creative Commons Attribution 2.5 Generic License).

Moreover, FPGAs also offer several benefits that other devices such as ASICs (Appli-
cation Specific Integrated Circuit), more focused on overall performance for niche appli-
cations, cannot match. First of all, FPGAs offer the possibility of implementing a higher
parallelism in the designs, enabling a faster computational speed. Actually, they have
certain embedded resources, DSP (Digital Signal Processing) slices and RAM (Random
Access Memory) memories among others, that allow FPGAs to be used as algorithm
accelerators, thanks to the level of parallelism they can reach [19].

Secondly, the flexibility that FPGAs offer, enabling its reprogramming if the appli-
cation changes, makes them more appealing for certain cases than more specific devices
such as the mentioned ASICs. This characteristic also has an economic impact, since

https://creativecommons.org/licenses/by/2.5/legalcode
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FPGAs allow the user to perform processes that in other cases will be done by designing
companies, which makes them more profitable [18].

Furthermore, due to the possibility of skipping manufacturing steps and their lower
cost, FPGA technology provides a faster path for prototyping and testing designs. Finally,
they can be remotely configured, which makes them attractive for installations in hardly
accessible platforms such as, satellites [21].

2.2.1 Architecture and resources of 7-Series FPGAs

One of the main manufacturers of FPGAs in the world is Xilinx [22], who has many device
families each one with different characteristics: amount of resources, processing speed or
number of I/O pins. In this work, the different designs will be implemented on an Artix-7
Xilinx FPGA. This device belongs to the 7-Series of the company. Therefore, a general
overview of the architecture of this family will be carried out.

Firstly, it has to be noted that all the FPGAs have the resources already mentioned
in the previous section. Secondly, the 7-Series [23] has many families (Artix, Kintex,
Virtex and Zynq) where the Artix is the one with the lowest power and cost. Anyway,
all the families have the same architecture showed in Figure 2.4, where it can be seen the
distribution of the different elements [24].

Figure 2.4: 7-Series architecture overview (courtesy of Xilinx).

To begin with, the CLBs count with two slices where the MUXs, FFs and LUTs are
organised so that their use is maximised. In addition, there are two types of slices, with
the difference that while the LUTs of one of them can only be used as logic, in the other
they can also act as memory.

Continuing with the I/O blocks, it is very interesting to note that the 7-Series FPGAs
can work at a single data rate (SDR) or a double data rate (DDR). Which means that
the data can be transferred with each rising or falling edge of the clock (SDR) or with
both of them (DDR). Moreover, these families have various power reduction features as
well as a digitally controlled impedance [24].

https://www.xilinx.com/
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Furthermore, the FIFO logic blocks link these I/O modules with the clock management
tiles (CMT) and the memory block RAMs (BRAM), all of them can be seen in the
architecture overview. Indeed, all the memory blocks will have a synchronous operation
[24].

Finally, the DSP blocks, that are able of performing sums of products such as Equation
2.1 at a very high speed, are embedded in the architecture. Which allows the different
CLBs to use them rapidly. In fact, these blocks are of great importance when a digital
circuit that involves the already mentioned sums of products is implemented, since there
is no other resource in the FPGA capable of replicating the calculations at a similar speed.
For example, they are widely used in the neuron modules of a NN.

2.2.2 Nexys A7 board

The old Nexys4 DDR [25], now renamed as Nexys A7, is a prototyping board that features
an Artix 7 FPGA. In particular, the XC7A100T-1CSG324C part number. It is optimised
for a high performance logic, and has more capacity and resources than earlier designs.
Indeed, it is the second highest capacity device of the Artix 7 family, with large external
memories and several I/O ports (USB and Ethernet among others) to increase it if desired.
The main features of the device are:

• 15,850 logic slices with 63,400 LUTs (4 each) and 126,800 flip flops (8 each) in total.

• 240 DSP slices.

• 4,860 Kbits of fast block RAM.

• Six clock management tiles (CMT)

• Internal clocks with speeds exceeding 450 MHz.

• On-chip analog-to-digital converter (XADC).

Figure 2.5: Image of the Nexys A7 board.
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In addition, the Nexys A7 board, shown in Figure 2.5, has various peripherals that
can be used to test the implemented applications: switches, LEDs, an accelerometer, a
temperature sensor, 7-segment displays and a microphone, apart from the several I/O
ports and memories already mentioned.

2.2.3 FPGA design steps

The usual FPGA design flow is showed in Figure 2.6, and as every other project, it starts
with a planning stage. Once this is done, the first step of the design is the coding of
the different modules that will form the complete project, as well as determining their
relations. This code can be written in any of the standard hardware description languages,
being VHDL and Verilog the most important ones.

Figure 2.6: Design flow of a VHDL project.

The next step is elaborating a register transfer logic (RTL) scheme, where the connec-
tions between modules are easily seen. In addition, a behavioral simulation, where the
timing delays and the common glitches are not taken into account, can be done to com-
plete the first revision of the design. Before launching this simulation it will be necessary
to create a testbench archive, also written in VHDL or Verilog, that controls the inputs
required by the top module of the project.

Then, constraint files must be added, their purpose is to fix the assignments of the
peripherals of the FPGA board to every input and output of the designed module. More-
over, they also serve to determine the width of the system clock pulses. These files are
very important to guide the routing of resources done in the synthesis and implemen-
tation processes. Later, another simulation can be carried out, in this case taking into
consideration the timing limitations of the device. It is called timing simulation.

Finally, the bitstream that will configure the FPGA can be generated. After that, the
design will be loaded and the device ready to be used in the target application.

It is important to remark that although Figure 2.6 shows a linear design flow, it is
possible to go back to any step whenever is needed. For example, this may happen if the
proposed design does not fulfil the target problem specifications.

In this work, Xilinx’s Vivado Design Suite [26] will be used to carry out all the ex-
plained steps of a FPGA design flow. It is worth noting that Intel (Altera in the past),
who is the other big manufacturer of the sector, has also its own designing tool called
Quartus Prime [27].



Chapter 3

ELM architecture design

In this chapter, a complete design of an ELM architecture will be done step by step,
starting from the basic blocks (the hidden neuron, the activation function and the output
neuron) up to a serial or parallel architecture. The objective is to implement in hardware
an algorithm that allows different levels of parallelism, being able to select an architecture
over another depending on the resources and speed parameters specified by the target
application.

A generic VHDL code will be developed that can be particularised for different exam-
ples and training datasets by changing the configurable parameters, such as the number
of neurons in each layer or the signals data format.

The ELM will be trained in Matlab using the code proposed by Guang-Bin Huang in
[28], then, the different weights and biases will be translated to a fixed point fractional
data format and stored in ROM memories using Vivado. After that, the results obtained
with the hardware implementation will be compared with the ones obtained by Matlab
and with the real targets.

As an example, the Breast Cancer Wisconsin dataset from the UCI machine learning
repository [29] will be used to train the network. Each sample has 9 input attributes
(n) and can be classified in 2 classes (m), benign and malign. Therefore, the input
layer will have 9 neurons and the output one, two. For the hidden layer L = 10 was
selected, based on a low resource implementation design published in [30], [31] that used
the same database. Anyway, this example is only for a qualitative comparison between
the architectures that will be presented.

3.1 Basic blocks

As it was explained in Section 2.1.1 there are two types of computing neurons, the ones
in the hidden layer, that implement Equation 2.1, and the output neurons with their β
weights. This difference is also showed in Figure 2.2. In this section, the design of both
modules together with an example of a transfer function will be exposed.

3.1.1 Hidden neuron block

General distribution

This block will be in the hidden layer seen in Figure 2.2, its objective is to receive the
input attributes x and multiply them by the random weights w before adding the bias b.

12
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In Figure 3.1 the RTL scheme of the designed block can be seen, with the multiplier
module (MultWX neuron) and the accumulator (FeedbackSum). The latter adds the
results of the former with the bias, storing the sum from one step to another. This
process will be done as many times as attributes has the input data. The code of these
modules can be seen in Appendixes B and C.

Figure 3.1: RTL schematic of the hidden neuron block generated by Xilinx Vivado soft-
ware.

Data format

As it can be observed, both the input attributes and weights are encoded in a 16-bit
format, although there is a difference between them. The values of x are scaled in the
[0, 1] range, and thus, all the 16 bits are fractional. On the other hand, weights w range
from -1 to 1, needing 1 bit as the sign to determine whether the number is positive or
not. The output of the multiplier is encoded in 21 bits, with a bit for the sign and 20 for
the fractional part.

It is important to remark that when a term product is performed, the result requires
of as many bits as both terms together to avoid loosing accuracy. Meaning, that in this
design the multiplier resizes the output from 32 bits to 21, loosing 11 bits of accuracy.
The same thing happens when adding z different terms, the result will need z additional
bits. Therefore, vectors have to be truncated to a fixed length to avoid an increasing
use of resources, since the result signals of a calculation will be used in another one,
accumulating extra bits with each process.

The bias b is also in the [-1, 1] range, with a 1.20 format (1 bit for the sign and 20
for the fractional part). In order to avoid overflow, the sums were carried out reserving
4 bits for the integer part, plus the sign bit, that leaves 16 for the fractional part (a 5.16
format). With this format, a precision up to the fourth decimal is reached, as showed in
the following expression:

Precision: log10(2
16) = 4.81⇒ 4 decimals of full precision (3.1)

The dynamic range stated above is valid for the example designs, but it will not be
for a generic problem. Indeed, the number of bits reserved for the integer part has to be
estimated depending on the maximum and minimum values that a series of operations can
take. Thus, for an exercise with more input attributes and hidden neurons the proposed
dynamic range will have to be changed.
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Simulation

Once all the signals are correctly defined and distributed, it is important to carry out
a simulation in order to see how they change. In addition, it is also useful for checking
possible errors. Figure 3.2 shows a behavioral simulation, run with a 100 MHz clock, of
the hidden neuron block where the final value (0.95579) is accurate just in the first three
decimals when compared with the Matlab calculations, done using 64 bit floating point
vectors. This decreasing in the precision of the result is explained with the cumulative
error due to finite resolution. In other words, the accumulator computes sums of elements
with a certain precision, which ends in a bigger aggregated error.

Figure 3.2: Behavioral simulation of the neuron block for the example problem generated
by Xilinx Vivado software.

Resource use and timing performance

Finally, the design can be implemented, obtaining the results showed in Table 3.1. The
timing parameters have been generalised with the number of attributes in each input, n,
that fixes the number of clock cycles needed to obtain the answer. This can be seen in
the previous simulation with the 9 attributes of the example. The total time needed to
obtain the final result will be the multiplication of the latency with the inverse of the
frequency, 26.4 ns for the example problem. In addition, it is interesting to explain that
the DSP is only used in the multiplier block.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

22 21 0 1 n = 9 341

Table 3.1: Resource demand and timing parameters of the hidden neuron block for the
example problem.

3.1.2 Activation function block

The activation or transfer function block comes after the neuron module, actually, its
input will be the output of the hidden neuron as it can be seen in Figure 2.2. There are
many types of activation functions, but the sigmoid is one of the most common, and in
fact, it is the one that has been implemented for the example. The main reason for this
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selection was its recurrent use and its higher accuracy in the final results when compared
to other transfer functions.

The sigmoid, showed in Equation 3.2, has a symmetry around the value x = 0. This
symmetry, that can be seen in Figure 3.3, enables the possibility of implementing just
half of the sigmoid while still being able to obtain all the values of the full range.

f(x) =
1

1 + e−x
= 1− f(−x) (3.2)

It is interesting to note that the function is defined in the [−∞,∞] range in the X axis
and between 0 and 1 in the Y axis. Thus, when implementing the sigmoid in a VHDL
module, it is of great importance to define its limits in the abscissa axis.

Hardware implementation

There are many methods to implement this function in hardware, such as, bit level map-
ping, piecewise linear methods or Taylor series [32], [33]. But in this design, the sigmoid
has been sampled and its outputs stored in a memory. There are two main reason for
choosing this method over the rest: first of all, it is simple and extremely fast, and sec-
ondly, it only uses LUTs, that are abundant in FPGAs.

The matrix that stores the sampled values has two key parameters: the number of
words and their length. For the latter, vectors of 16 bits have been selected, as the sigmoid
is always positive of module inferior to one, all the length is reserved for the fractional
part (unsigned 0.16 format).

The other parameter will be determined by the length of a selection vector, working
as a pointer in the memory, that depends on the desired accuracy. To make the election,
it has to be taken into account that the input of the sigmoid block, that will form the
selection vector, is a 21 bit vector with a sign bit, 4 bits for the integer part and 16 for
the fractional. In addition, if just half of the function is sampled, lets say the positive
part, the sign bit can be ignored and the precision is doubled since the same number of
samples are concentrated in half of the function.

In the end, a 10 bit vector was picked, which gave a memory of 1024 samples, from
zero to the desired positive range. This range is another tunable parameter and its choice
responds to a practical fact, it will depend on the selected number of bits of the inputs
integer part. In other words, the sigmoid will be sampled in ranges: [0, 2), [0, 4), [0, 8) and
[0, 16); based on whether 1, 2, 3 or the 4 bits of the integer part are chosen respectively.
For example, if two integer bits are selected the maximum number that can fit is 3.99...

Initially, a range up to 8 was chosen, thus, 3 bits of the selection vector were integers
and 7 fractional. This filled the last position of the array with the value corresponding
to f(x = 7.9922) = 0.9997. Which gives an accuracy error of: 1 − f(x) = 3.38 × 10−4,
ensuring that the results are reliable up to the third decimal [33].

However, there is another error that has to be considered, the one caused by the
truncation of the exact value of the sigmoid in a 16 bit binary number. The situation
is the same as in Equation 3.1, which in theory will commit a smaller error than the
previous one. Anyway, this can be checked by calculating the difference between both
values for each of the sampled points, the results are showed in Figure 3.3, where the
error is multiplied by 1× 104.
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It can be easily verified that this error is smaller than the previous one, therefore, the
real accuracy of the calculations is set in the third decimal number.

Figure 3.3: Sigmoid function (blue line) and the committed truncation error multiplied
by 1× 104.

On the other hand, in case that a negative input had to be redirected, the formula
expressed in Equation 3.2 was used, calculating the output for the two’s complement of
the input and subtracting the result to 1.

The code of this block, that shows these calculations, can be seen in Appendix D.

Finally, it is important to state that just 243 LUTs are needed to implement this
design, that is exclusively combinational since no flip flops are used.

3.1.3 Output neuron block

General distribution

This block will receive the output of the activation function, expressed by the vector h(x)
in Equation 2.2, and will multiply them by the β weights. Its output will be the sum of
these multiplications.

Figure 3.4: RTL schematic of the output neuron block generated by Xilinx Vivado soft-
ware.

The outline of the complete block, showed in Figure 3.4, has the same modules as
the hidden neuron (Figure 3.1) but in this case, there is no bias to be added to the final
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result. Indeed, that is the only difference from the hidden neuron modules code showed
in Appendixes A, B and C.

Data format

As for the previous case, both inputs of the block are vectors of 16 bits, the already
explained output of the sigmoid function and the β weights, with just a sign bit in a 1.15
format within the [-1, 1] range. The multiplier and the accumulator work as the ones in
the hidden neuron block. The former, giving a 21 bit vector with the most significant one
as the sign bit, and the latter, returning an output of the same length but in a signed
5.16 format.

Resource use and timing performance

Table 3.2 shows the results obtained after implementing the design. As before, the timing
parameters have been generalised, but in this case the important parameter is L, the
number of hidden neurons. Although, the most striking thing when looking at the tables
is that the resources used by both designs are equal, something that could be expected
after seeing their RTL schematics.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

22 21 0 1 L = 10 403

Table 3.2: Resource demand and timing parameters of the output neuron block for the
example problem.

3.1.4 Output comparator block

If a classifier is going to be implemented, the highest result among the output neurons
must be selected. Therefore, a module that computes the comparison between two inputs
and returns the largest of them can be done. In fact, if there are more than two output
classes a binary tree can be designed, this tree structure will take the results of previous
comparators and will use them as inputs of the next set of them, determining at the end,
the highest answer. The code of this block can be seen in Appendix E.

On the other hand, if the NN is going to be used in a regression problem, there is no
need of selecting the largest result. In these examples, all the outputs are part of the final
answer.

3.1.5 Memory blocks

The general architectures that will use the previous blocks will also need of memories
from which to take the weights and biases for their calculations. These memories will be
similar to the one that stores the sampled sigmoid, although this time, the number of
saved values will be determined by n and L. The random weight memory will have n × L
values, while the bias and β ones only L.
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3.2 Serial/parallel architectures

After explaining the basic blocks, it is time to put them together and form a complete
ELM design. Two different ways of arranging these modules will be presented: a serial
architecture, where there is only one block of each type that is reused constantly, and
a fully parallel one, that is the most straightforward implementation of the schematic
showed in Figure 2.2 with one block per neuron. Mixed models will not be taken into
account in this section.

3.2.1 Serial architecture

General distribution

As mentioned before, this model is based on the reusing of blocks. In fact, the neuron and
the sigmoid modules will work L times with the same x inputs but with different weights
and biases, emulating the L different neurons. These weights w and bias b are stored in
the memories explained before and can be seen in Figure 3.5 prior to the hidden neuron
block.

The output neuron requires of m different β weight memories, one per output class
of the problem. This forces to repeat completely the process of the previous blocks. In
summary, the neuron and the sigmoid modules will be used L × m times per set of input
attributes, while the output neuron and the w and b memories will need m runs. Finally,
the β weights memories will only be used once.

The selection of the weights and biases will be controlled from the outside and then
given as an entrance to the ELM module, as seen in Figure 3.5. The code of this archi-
tecture is not showed in the Appendix, since it is a direct use of the basic blocks.

Figure 3.5: RTL schematic of the ELM serial architecture generated by Xilinx Vivado
software.

Data format

The format of the signals will remain unchanged compared to the basic blocks explana-
tions. Therefore, the output should be accurate up to the third decimal, but, as well as
each module alone, the complete implementation also suffers from a cumulative error due
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to finite resolution. So, if the precision went from four decimal numbers to three in each
block, in this case the accuracy decreases up to the second decimal.

Even so, the implemented design works perfectly, since the objective of the algorithm
is to select the largest output between those given by the neurons in the last layer.

Simulation

If a simulation is carried out, the evolution of the output signal can be easily followed. In
this case, Figure 3.6 only shows the last cycles before a valid output is given, that will be
marked by the signal called ready. Its purpose is to point out that the final result, with
the highest answer among all the output neurons, is ready.

Moreover, the simulation shows two more signals that are worth of an explanation, save
and out aux. Both will be updated every time one of the m sweeps to all the architecture
is done, but while the former indicates when the result of a certain output neuron has to
be saved the latter stores the highest one of the already computed neurons.

Figure 3.6: Behavioral simulation of the serial architecture for the example problem gen-
erated by Xilinx Vivado software.

Resource use and timing performance

The main positive characteristic of this architecture is the small amount of resources that
needs compared with other models, as it can be seen in Table 3.3. It is interesting to note
that the multiplexers did not appear in the basic blocks resource tables because they are
usually needed for the selection of the weights and biases of each memory, something that
was not necessary before.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

301 42 84 2 (L·m)·(n+1) + m·(L+1) = 222 68

Table 3.3: Resource demand and timing parameters of the serial architecture for the
example problem.

On the other hand, it is a recursive architecture, which means that the final output
will need much more time to be computed. This time will be determined by the timing
parameters seen in Table 3.3: the latency, calculated following the explanations given in
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the ”General distribution” section, and the maximum working frequency. For the example
problem there is a 222 clock cycle latency, and thus, the correct result is obtained in
3.26 µs.

3.2.2 Parallel architecture

General distribution

Unlike the previous model, in this case the objective is not a low resource design but a
fast response architecture. Therefore, a direct implementation of Figure 2.2 will be done,
devoting an individual module for each neuron. The RTL parallel structure is shown in
Figure 3.7.

Figure 3.7: RTL schematic of the ELM parallel architecture generated by Xilinx Vivado
software.

It can also be seen that in this design there are no general memories storing all the
weights and the bias of every neuron, instead, each module has its parameters loaded in
an individual memory. Although this measure increases drastically the number of LUTs
needed, the controlling algorithm is simplified and the calculations accelerated, because
the weights are closer to the DSPs, as it can be seen in Figure 2.4. The top module of
this architecture, where all the parallel blocks are generated, is showed in Appendix F.
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Simulation

The simulation of this design, showed in Figure 3.8, has many differences with the serial
case. First of all, since there is no need of repeating any type of process nor having to reuse
any block, because each result is computed independently of the rest, the computation
of the final answer is straightforward. The outputs of every neuron in the last layer are
directly compared, giving just the index of the neuron with the largest value. For the
example seen in the simulation it will be ’0’ or ’1’. This output will only be saved when
the ready signal is ’1’, indicating the end of the calculations.

Figure 3.8: Behavioral simulation of the parallel architecture for the example problem
generated by Xilinx Vivado software.

Resource use and timing performance

As it can be seen in Table 3.4, this design needs of a DSP per neuron block (L+m = 12),
which gives an example of its dependency on the number of neurons in each layer.

For this architecture, the total latency is calculated adding the individual latencies of
every block, given that the sigmoid block, the comparator module and delivering the final
output need of a clock cycle each. If the example is taken, it will require just 22 cycles, 10
times less than the serial architecture, returning the result in 0.34 µs. Therefore, although
the maximum working frequency is slightly lower the computing speed is increased by the
great change in the latency.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

2407 252 823 12 n+1+(L+2) = 22 62

Table 3.4: Resource demand and timing parameters of the parallel architecture for the
example problem.

3.2.3 Comparative of architectures

As showed above, the differences between both architectures are very clear. The serial
model is focused on reducing the amount of resources needed to implement the algorithm,
thus, becoming the best option for applications where there is a lack of them. For example,
this situation can be reached using a low resource device. However, the reusing of blocks



Chapter 3. ELM architecture design 22

can lead to a high response time, making the parallel architecture a better choice, since
it centres its attention in reducing it without taking into account the resources used.

Another parameter that should also be considered is the final test classification accu-
racy that is obtained with both architectures. For the example explained in the introduc-
tion of this chapter, the ELM algorithm proposed by Guang-Bin Huang in [28] obtained
an average overall accuracy (OA) of 94.05% after 10 retries.

The proposed designs accomplished the same results after being given the weights
and the bias retrieved from the training previously done in Matlab. The test database,
obtained from [31] and used in both cases included 84 samples, each one with its 9
attributes. To sum up, Tables 3.5 and 3.6 gather all the implementation results of both
designs, including the resource used, the response time and the final accuracy.

Architectures LUTs Flip Flops MUXs DSPs

Parallel 2407 252 823 12

Serial 301 42 84 2

Table 3.5: Comparative of the resource demand for the example problem between the
parallel and the serial architectures.

Architectures
Latency

(cycles)

Max. Frequency

(MHz)

Time needed

(µs)

Overall Accuracy

(%)

Parallel 22 62 0.34 94.05

Serial 222 68 3.26 94.05

Table 3.6: Comparative of the timing parameters for the example problem between the
parallel and the serial architectures.

3.2.4 Implementation and test of the parallel architecture

If the FPGA design flow explained in Section 2.2.3 is followed, it can be seen that the
last steps are related to the configuration of the device. For that purpose, the already
explained test database can be stored in a memory connected to the ELM parallel top
module. Then, the bitstream can be generated and loaded into the device board.

Once this is done, the control signals can be introduced and modified, using the
available I/0 ports, and the output showed in the various LEDs. The relation of the
board peripherals with every signal will be defined by the constraint files.
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3.3 Chapter conclusions

First of all, it has to be said that the presented basic blocks were programmed separately
in different Vivado projects, following the VHDL design flow explained in Section 2.2.3.
Then, those modules were arranged so that they suited the desired architecture, either a
serial or parallel one. That way, every block could be tested and their implementation
results obtained independently.

As said before, the serial and parallel designs are just two types of architectures of the
many that can be used to implement a NN such as the ELM. Those two were selected
because each one represents a completely different approach to the same problem.

Nevertheless, sometimes there is no need of such a low resource implementation as
the serial one, or a fast response answer as the parallel architecture. Therefore, a mixed
model might be a better idea for certain applications. For example, general memories
can be maintained or the neuron block reused if the number of sweeps is low, while the
output is paralleled to avoid too many repetitions when the quantity of classes increases.



Chapter 4

Design of a simplified architecture
for ELM

As it has been explained in the previous chapter, it can be of great importance the quantity
of resources used by a hardware implemented design. The reasons can be diverse, from
the necessity to use a very low-cost resource device to the possibility of the application
being just a small part of a bigger project that has to be implemented together.

In addition, sometimes it is not enough to use an architecture such as the serial
one. Although it reduces the demand of resources by reusing the hardware blocks, other
measures have to be taken into account. The following two sections, that will explain some
of these measures, are based on the already mentioned low resource implementation design
published in [30], [31]. Basically, the characteristics of the binary digital arithmetics are
exploited. Finally, an analysis and comparison of different architectures that include these
simplified designs will be done.

4.1 Modified random weights w

One of the characteristics of the ELM algorithm is that the weights and biases of the
hidden neurons are set at random. Moreover, they remain unchanged during the training
phase because they serve to calculate the β weights of the output neurons. Thanks to
this quality, these parameters can be defined at will by the designer.

Therefore, the weights w can be selected in a way that the multiplier seen in Figure
3.1 is not needed, hence, avoiding the use of the DSP that is a more scarce resource than
others. The authors in [30], [31] define these weights as a power of two, following Equation
4.1:

wij = s · 2−k (4.1)

Being i the neuron number in the hidden layer, 1 ≤ i ≤ L, j the input attribute, 1 ≤
j ≤ n, s the sign of a random number stored in a memory and k a random integer in the
range [0, R] being R a parameter selected by the designer. Following what the authors
proposed, R was chosen to be 7, which sets the minimum absolute value for the weights
in 0.0078.

Defining the w weights in this way exploits a property of the binary numbers: when
dividing or multiplying a binary number by a power of two, the operation can be made

24
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directly by shifting the binary vector a number of positions marked by the exponent of
the power to the right or left respectively. In the case of Equation 4.1, the multiplied
input attributes xj will be shifted k positions to the right, completing the vector with ’0’s
from the left.

The sign s is then used as a selection bit for a multiplexer that will decide between the
explained wx product or its complement. The complete outline of the this hidden neuron
module is showed in Figure 4.1. In addition, the code of these new modules can be seen
in Appendix G.

Figure 4.1: RTL schematic of the simplified hidden neuron block generated by Xilinx
Vivado software.

Data format

The signals seen in the schematic are encoded in a 21 bit vector with a constant format:
a sign bit, 4 bits for the integer part and 16 for fractional. This format ensures that there
will not be overflow in the sums carried out by the accumulator, since the inputs x ∈ [0,
1] and the weights w ∈ [-1, 1].

Resource use and timing performance

Both the integers k and the signs s are stored in memories, they will be loaded after being
randomly generated in Matlab, guaranteeing that the random weights are completely
arbitrary. Although this proposal of a simplified hidden neuron eliminates the need of a
multiplier, avoiding the use of a DSP, it increases the number of LUTs since it replaces
the random weights memory with two of the same size, for the k and s values.

Anyway, for certain devices with low DSP resources this proposal is a better option.
On the other hand, this module is slightly slower than the original hidden neuron, although
the latency remains the same. The implementation results can be seen in Table 4.1:

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

65 21 0 0 n = 9 232

Table 4.1: Resource demand and timing parameters of the simplified hidden neuron block
for the example problem.

Looking at the first of them, it stands out the zero multiplexers used by the design,
specially when one of the modules is a MUX. This can be explained taking into account
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that the Vivado software implements that module using LUTs to avoid wasting resources,
since the multiplexers of the working FPGA are too large fot it.

4.2 Election of a different activation function

Apart from the sigmoid block explained in section 3.1.2, the activation function can be of
different types, such as, a hardlimit or a logaritmic function. Each one has its advantages
and disadvantages, but for a simplified implementation model the former becomes the
best option.

The hardlimit function is defined as follows:

f(x) =

{
1, if x > 0
−1, if x ≤ 0

(4.2)

As it can be seen, it is a very simple expression, since it only takes into account if
the input is positive or not. Therefore, the results of the calculations performed with
this function will be less accurate than with more complex elections. Nevertheless, the
ELM classification algorithm that is being used only considers the largest result given by
the different output neurons. Thus, the variation between answers will be set by the β
weights, allowing to change the transfer function without loosing too much accuracy.

In Figure 4.2 an outline of the proposed output neuron block is showed, where it is
interesting to note that it includes the activation function module as well, integrated in
the data path.

Figure 4.2: RTL schematic generated by Xilinx Vivado software of the simplified output
neuron block with the hardlimit function integrated.

Data format

The hardware implementation of Equation 4.2 is more straightforward than the sigmoid
case. First of all, instead of taking the complete 21 bit vector of the hidden neuron output,
only the sign bit is taken. Then, this bit will be used as the selector of the multiplexer that
will decide between the β weights or its two’s complement, simulating a multiplication
between the weight and 1 or -1. In addition, the MUX module also resizes the signal,
giving a 21 bit vector with a sign bit, 5 bits for the integer part and 15 for the fractional.
The final result of this block has the same format, loosing one fractional bit of accuracy
compared to the original output neuron design. The code of the new modules can be
checked in Appendix H.
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Resource use and timing performance

This design offers a great reduction in the use of resources, first of all, the 243 LUTs
needed in the sigmoid function block will not be necessary. Moreover, the DSP used for
the multiplier of the original output neuron module will also be unnecessary. On the other
hand, the maximum frequencies of both modules are very similar, as well as the latency.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

37 21 0 0 L = 10 401

Table 4.2: Resource demand and timing parameters of the simplified output neuron block
for the example problem.

In summary, it can be said that the proposed design reduces considerably the amount
of resources needed while maintaining the original data path speed. Although, it may
present a decrease in the final classification accuracy, something that should be kept in
mind.

4.3 Analysis of simplified architectures

Once these measures are explained, it is time to develop a complete ELM implementation.
First of all, it has to be remarked that the objective of these new architectures is to reduce
the use of resources. Therefore, a serial outline will be followed, since it would not make
much sense to apply a resource reduction measure in a high use architecture type.

So, in this section, designs for all the combinations of both simplifying measures with
the original modules will be presented. In addition, a comparison of resources and speed
will be made between them and with the original serial architecture.

4.3.1 Modified random weights with a sigmoid activation func-
tion

As a preliminary study, and based on the analysis of the previous section, this design will
be just slightly different from the original serial architecture. Basically, the multiplier of
the neuron block will be eliminated at the cost of introducing an extra memory. Although
it may seem that is not worth it, depending on the target application, eliminating that
DSP can be of great importance. Anyway, its usefulness will rely on maintaining or
improving the existing classification test accuracy and computing speed.

Figure 4.3 shows the outline of the design where the necessary 6 memories, including
the sigmoid function storage, can be seen.

Resource use and timing performance

Comparing Table 4.3 with its analogous of the original serial architecture, Table 3.3, the
initial estimations are confirmed, there are few changes between both designs. The main
ones are the elimination of a DSP and the small difference in the LUT number even
with an extra memory. The latter can be explained knowing that the Vivado software is
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Figure 4.3: RTL schematic generated by Xilinx Vivado software of a simplified serial
architecture with modified random weights and the sigmoid function integrated.

programmed to route the resources so that the least amount of them is used. Moreover,
the timing situation is almost identically the same.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

308 42 73 1 (L·m)·(n+1) + m·(L+1) = 222 67

Table 4.3: Resource demand and timing parameters of the simplified serial architecture
with modified random weights and a sigmoid activation function for the example problem.

4.3.2 Original weights with a hardlimit transfer function

In this case, a major change is performed, since the activation function largely determines
the network performance. It will also simplify the internal functioning of the network,
as well as reducing greatly the LUTs used in memories. Indeed, Figure 4.4 shows the
simplicity of this architecture, with just two memories for each of the neuron types.

Resource use and timing performance

In total, 189 look up tables, 68 MUXs and 1 DSP are saved, becoming a great option
for low-cost applications. On the other hand, although the latency does not change with
respect to the other serial models, the result will be computed in just 0.75 µs, due to the
high maximum working frequency of 298 MHz. Both, the low resource use and the high
frequency, are characteristics of the hardlimit transfer function.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

112 42 16 1 (L·m)·(n+1) + m·(L+1) = 222 298

Table 4.4: Resource demand and timing parameters of the simplified serial architecture
with a hardlimit activation function for the example problem.



Chapter 4. Design of a simplified architecture for ELM 29

Figure 4.4: RTL schematic generated by Xilinx Vivado software of a simplified serial
architecture with the hardlimit transfer function integrated.

4.3.3 Modified random weights with a hardlimit activation func-
tion

This design includes both simplifying measures, which should turn it into the most re-
source friendly architecture until now. Its outline, that is very similar to the previous
model, is shown in Figure 4.5 with the only difference of an extra memory and the change
of hidden neuron block type.

Resource use and timing performance

Once implemented, it can be seen from Table 4.5 that this is the architecture with the
lowest resource demand of the already presented ones, although there is a slight increase
in the LUTs compared to the previous model because of the extra memory.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

124 42 3 0 (L·m)·(n+1) + m·(L+1) = 222 303

Table 4.5: Resource demand and timing parameters of the simplified serial architecture
with the modified random weights and the hardlimit transfer function for the example
problem.

Furthermore, the hardlimit activation function not only saves resources but also in-
creases greatly the maximum working frequency, computing the final result in just 0.74 µs,
very similar to the previous case.
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Figure 4.5: RTL schematic generated by Xilinx Vivado software of a simplified serial
architecture with the modified random weights and the hardlimit transfer function inte-
grated.

4.3.4 General comparative with the original designs

Although a partial comparative of each architecture with the serial design has already been
done, it is interesting to put everything in context, not only between the serial models
but also with the parallel case. In addition, the total test classification accuracy or overall
accuracy (OA) has to be taken into account, since it is a very important parameter to
bear in mind when selecting an architecture over another.

Therefore, each model was initialised randomly and trained in Matlab 10 times with
the example data, for each retry the memories of the weights and the bias in Vivado were
updated with the new parameters. At last, the network was implemented and simulated
with the same test database, averaging its overall accuracy. The final results of all the
designs are showed in Tables 4.6 and 4.7.

Architectures LUTs Flip Flops MUXs DSPs

Parallel: Random w / Sigmoid 2407 252 823 12

Serial: Random w / Sigmoid 301 42 84 2

Serial: Power-of-2 w / Sigmoid 308 42 73 1

Serial: Random w / Hardlimit 112 42 16 1

Serial: Power-of-2 w / Hardlimit 124 42 3 0

Table 4.6: Comparative of the resource demand for the example problem between various
architectures.
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Architectures
Latency

(cycles)

Max. Frequency

(MHz)

Time needed

(µs)

Overall Accuracy

(%)

Parallel: Random w / Sigmoid 22 62 0.34 94.05

Serial: Random w / Sigmoid 222 68 3.26 94.05

Serial: Power-of-2 w / Sigmoid 222 67 3.32 94.53

Serial: Random w / Hardlimit 222 298 0.75 86.78

Serial: Power-of-2 w / Hardlimit 222 303 0.74 86.07

Table 4.7: Comparative of the timing parameters for the example problem between various
architectures.

As it can be seen, each model has its strengths and its weak points, and the selection
of a design over another has to be made once the characteristics of the target application
are set. However, it is interesting to note the importance of the transfer function in the
final accuracy, since the difference between the models with the sigmoid function and the
hardlimit is notorious. On the other hand, the hardlimit function enables to obtain the
result in a shorter time, only the parallel architecture with its high use of resources is able
to improve it.

4.4 Chapter conclusions

It is very common to try to reduce the resource demand in hardware implementation ap-
plications, since they are limited. Therefore, various simplifying measures can be applied
with that objective, such as the two different ideas presented in this chapter. Nevertheless,
it is important to bear in mind the inherent trade-off between speed, resource demand
and accuracy that every architecture has.

For example, if a very low resource implementation is needed, independently of the
rest of the parameters, the hardlimit models become the best options, specially with the
modified weights. They also give a fast response. However, if the key parameters of
the target application are time and accuracy, the parallel architecture needs to be used.
Simplifying methods have not been implemented for this type of structure, since it will
not make much sense to try to reduce the amount of resources used in a model that does
not care about them.

Moreover, the serial architecture with the sigmoid function, independently of the type
of random weights, gives the slowest response but with a high accuracy and a medium-low
use of resources. Then, between both models, the one with the modified weights is clearly
a better option, since it maintains the accuracy and speed but saves some multiplexers
and a DSP. This is due to the way the ELM algorithm is defined, as explained in Section
2.1.2, the w weights are set at random and remain unchanged. Later on, they serve to
determine the β weights, letting the designer define them at will. This allows to take
advantage of a property of binary numbers that verifies that a multiplication of a power
of two can be computed as a shift.



Chapter 5

Development of an FPGA-based
ELM for satellite images
classification

Nowadays, satellites are widely used in multiple applications, from weather forecasting
to Earth’s surface element detection. In fact, this chapter is related to the former, since
many of the hardware implementations done to classify the satellite images use FPGAs.
This is mainly because of the high parallelism that these devices allow, together with the
possibility of changing remotely, partially or totally, its internal configuration [21].

Many of the satellite imaging systems use sensors that are able of capturing light
from wavelengths outside of the visible range. These systems are called multispectral or
hyperspectral, depending on the quantity and width of the bands from which information
is acquired [34]. Usually, light from the visible (VIS) and the near infrared (NIR) ranges
is captured.

These spectral systems are of great interest since they are able of detecting elements
invisible to other types of sensors, for example, internal bruises and defects in food in-
spection procedures [35]. Therefore, they can become a very powerful tool when trying to
distinguish and classify different constituents in a sample or area. Indeed, one of the in-
dustry sectors where these images are of great interest is agriculture, because they can be
used to obtain information from soil degradation or crop chlorophyll content for example
[36].

In this chapter, a satellite image classification will be conducted applying what has
been explained throughout the work. First of all, the satellite image that will serve as
train and test databases will be selected. Then, one of the architectures already presented
will be chosen and configured, setting the number of neurons of the hidden layer. Finally,
an analysis of resource use, timing performance and classification accuracy will be done.

5.1 The data

In this application, a Landsat satellite image obtained from [28] will be used. This web-
site provides various databases of different types, and has a particularity, the train and
test datasets are randomly generated every time it is downloaded. Anyway, the original
repository from where the data is taken can be found in [37]. There, it can be seen that
the image has been acquired using a multispectral sensor that obtained information from
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four different spectral bands, two in the visible range (green and red) and the other two
in the NIR.

Each sample of the database has 36 input attributes, corresponding to a 3x3 square,
formed by the target pixel and its first neighbours, in every of the four bands. In addition,
the target or central pixels are classified in 6 different classes: red soil, cotton crop, grey
soil, damp grey soil, soil with vegetation stubble and very damp grey soil. In total, the
acquired data has 6435 samples, 3217 for train and 3218 for test. On the other hand,
since the datasets are formed in a random order and certain pixels have been removed, it
is not possible to reconstruct the original image, but an example of a Landsat image can
be seen in Figure 5.1.

Figure 5.1: Image of the Ebro delta taken by Landsat 8 on January 31, 2018 (Courtey of
NASA’s Earth Observatory).

As an interesting fact, the Landsat program was created by the United States of
America, and from 1965 has gathered Earth’s information from several remote sensing
missions. First in airborne flights but since 1972 using satellite platforms [38]. The
program has launched 9 different satellites in total, being Landsat 5 the most famous one.
Since it holds the Guinness World Record for the longest operating Earth observation
satellite, after delivering data for 28 years and 10 months [39].

5.2 Architecture selection

The next step is the architecture selection of the classifying neural network, which will
be an ELM, as in the examples given in previous chapters. When choosing between the
options available, a serial or parallel design, or even a mixed model, it is necessary to set
which is the most important characteristic for the target application. In other words, a
decision between speed and low resource use will have to be taken.

For this problem, speed has been prioritised selecting a parallel architecture, because
if the NN is going to be implemented in a FPGA mounted in a satellite a fast response
is needed. Moreover, the Nexys A7 FPGA board that will be used has enough resources
available to implement the desired design. On the other hand, the activation function of
the hidden layer neurons must also be chosen. Two different options have been presented
in Chapters 3 and 4, the sigmoid and hardlimit functions respectively. Each one has its
particular advantages and disadvantages, but following the reasoning exposed before, the
former was selected. Preferring a higher classification accuracy over a resource saving.

https://earthobservatory.nasa.gov/images/91832/the-sculpting-of-ebro-delta
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Lastly, the number of neurons in the hidden layer must be set. Therefore, a neuron
sweep from 1 to 500, calculating the average test classification accuracy over 10 retries,
was done. The results, seen in Figure 5.2, show a slow growing tendency after the first
hundred neurons. Hence, selecting an early value of the almost horizontal slope might be
the best decision.

Figure 5.2: Average test classification accuracy of the ELM network depending on the
number of hidden neurons.

In the end, a 150 hidden neuron configuration was chosen, obtaining an average accu-
racy of 87.66%, just 1% lower than the 500 neuron case. In this way, many resources can
be saved without an important loss in the final accuracy.

So, in summary, a parallel architecture with a sigmoid activation function and 150
neurons in the hidden layer will be implemented. In addition, the input and output layers
will have 36 and 6 neurons respectively.

On the other hand, the dynamic range of the data signals has to be checked, due to the
change in the number of neurons in the different layers. Until now, a signed 5.16 format
has been used, as shown in the modules of the Appendix, with 4 bits for the integer part.
But with 36 input attributes and 150 hidden neurons, the accumulators will compute
values that might overflow the previous range. Therefore, a signed 7.14 format will be
adopted in the hidden neuron blocks and a signed 9.12 in the output ones, avoiding this
possible problem.

To finish with the architecture design, the selection of the highest result among the
output neurons must be done. A very effective way to compute this calculation is to
implement a binary tree, that is to say, a two input comparator scheme. It is based on
a VHDL module, showed in Appendix E, that will give the largest value between two
inputs. This way, a tree structure can be defined, with the outputs of two comparators
being the inputs of the next one until the highest result is determined.

5.3 Analysis of the implementation results

Once the ELM architecture is fixed, the training phase begins, where the first of the
mentioned datasets is used to generate the weights and the bias of every neuron. This
process is done in Matlab before loading the parameters in different memories in Vivado.
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After that, the second dataset will serve to test the performance of the proposed design.
Finally, the NN can be implemented in a FPGA and its results analysed.

LUTs Flip Flops MUXs DSPs
Latency

(cycles)

Max. Frequency

(MHz)

Time needed

(µs)

36224 (57.14%) 3276 (2.58%) 12405 (26.09%) 156 (65%) 190 51 3.73

Table 5.1: Resource demand and timing parameters of the parallel architecture for the
satellite image classification.

The usage rates showed in Table 5.1 can be compared with the available resources of
the Nexys A7 board presented in Section 2.2.2. This way, it can be seen that the total
number of hidden neurons in a parallel architecture will be limited by the 240 DSP slices
of the FPGA. Therefore, the selected network could have had more, until a maximum of
234 hidden and 6 output neurons.

Nevertheless, there is another device in the Artix 7 family with higher capacity, the
XC7A200T part number packages, with up to 740 DSPs. Indeed, Figure 5.3 shows a
comparison of usage rates between both FPGAs. Moreover, the Virtex family has a
device with 3360 DSPs, being the highest value for the complete 7-Series [40].

Figure 5.3: Usage rates of the main resources of the used FPGA (XC7A100T) and the
highest capacity one in the Artix 7 family (XC7A200T) for the final application.

On the other hand, the design gives an answer in just 3.73 µs, fulfilling the speed
expectations. It has to be noted that Table 5.1 shows a 190 clock cycle latency, obtained
by computing the generic expression of Table 3.4 and adding an extra cycle due to the
delay introduced by the binary tree that selects the maximum output.

Furthermore, the classification test accuracy of the network was of 87.32%, near the
average presented in Figure 5.2.

To conclude, the alternative of implementing a serial architecture can be analysed.
This way, more neurons could be added without taking into account the resource demand,
increasing the classification accuracy. However, the response time will scale considerably.
In fact, if the 150 hidden neuron configuration was to be implemented in a serial design,
the latency will be of 34206 clock cycles according to the expression shown in Table 3.3.
Which supposing a maximum working frequency of 68 MHz, even though it will likely be
lower, means that the answer for just an input sample will come after 503 µs.
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Conclusions

First of all, it has to be said that designing every VHDL module separately, following
the design flow explained in Section 2.2.3, gives the possibility of achieving different
specifications for the same application. This can be easily seen when comparing the
architectures that implement both of the presented hidden neuron blocks, the original
and the simplified one. With the later accomplishing similar classification results but
with a certain resource saving, as showed in Tables 4.6 and 4.7.

When setting together the different modules several structures can be constructed,
depending on the characteristics of the target application. Indeed, knowing its specifi-
cations is fundamental to select a network architecture over another. For example, if a
short respond period is pursued, a parallel design must be implemented, once its inher-
ent resource cost is accepted. On the other hand, if the objective is a low resource use
application a serial model will fit better.

In addition, a high classification accuracy can also be demanded, forcing to select a
sigmoid transfer function over a hardlimit, that uses less resources. A complete compara-
tive of some designs can be seen in Tables 4.6 and 4.7, but there are several other options.
Indeed, mixed models have not been taken into account in this work, and having the
possibility of paralleling part of the computing process while letting the rest as a serial
structure might be of great interest in some cases.

In summary, when designing a network for a new application three main decisions
must be taken: the type of architecture, the number of neurons in the hidden layers and
the transfer function. These decisions have been addressed in Chapter 5 for a satellite
image classification process, in that case, time and accuracy were prioritised over the
resource demand. Therefore, a parallel model with a sigmoid function was selected.

As a future work, this design can still be further optimised if a pipeline structure is
implemented, which will reduce the latency greatly. However, this configuration needs of
a more sophisticated controlling algorithm to ensure that every signal reaches its desti-
nation when it has to. Moreover, the lengths of the signals of every module can also be
generalised, so that the user can set them.

Finally, it is worth noting that this work has led to a better understanding of the
capabilities of FPGAs, completing what was learned in various subjects throughout the
degree: Digital electronics, Digital systems design and Electronic devices, among others.
Furthermore, the potential of the NNs has been perceived, specially because of their
adaptability to very diverse applications, ranging from a function regression to an image
classification.
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