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A B S T R A C T   

The activity and stability of a 10 wt%NiO/CaO catalyst were tested in the sorption enhanced ethanol steam 
reforming (SEESR) in a fluidized bed reactor. The effect of temperature in the 600–750 ◦C range was analyzed 
and the performance of the catalyst at 700 ◦C was assessed by conducting cycles of SEESR reaction and CO2 
desorption. At zero time on stream, an increase in temperature enhanced ethanol steam reforming reactions, and 
therefore H2 production increased from a yield of 20.3 wt% at 600 ◦C to 22 wt% at 750 ◦C. However, high 
temperatures hindered the catalyst sorption performance, i.e., CO2 capture declined from 7.9 to 2.1 mmolCO2 
gcat

− 1. In order to evaluate the catalyst performance throughout the cycles and relate it with its features, both 
fresh and deactivated catalysts were characterized in detail by N2 adsorption-desorption, X-ray fluorescence 
(XRF), X-ray diffraction (XRD), temperature programmed reduction (TPR) and oxidation (TPO) and transmission 
electron microscopy (TEM). Subsequent to 12 cycles, the catalyst CO2 capture performance was slightly lower 
than that of the fresh one (approximately 7%) and hardly changed in the next cycles. Furthermore, the use of the 
same temperature for SEESR reaction and CO2 desorption led to the highest adsorption capacity of the catalyst 
over multiple cycles.   

1. Introduction 

Humans are increasingly contributing to climate change and global 
mean temperature rise by over-exploitation of fossil fuels, cutting down 
forests and livestock farming. Thus, great amounts of greenhouse gases 
are added to those naturally present in the atmosphere, accelerating the 
greenhouse effect and global warming. EU’s 2030 climate target plan 
proposes to reduce greenhouse gas emissions from energy, industry and 
transport sectors by at least 55% by 2023 and become climate neutral by 
2050 [1–3]. 

Hydrogen makes viable the decarbonisation of industrial processes 
by reducing carbon emissions, as it only produces water after combus
tion. Up to present, hydrogen represents a modest fraction of the 
worldwide energy mix and is almost fully produced from non-renewable 
resources, such as natural gas or coal. Therefore, the development of 
hydrogen production technologies from renewable energy sources, such 
as biomass or biomass-derived feedstock, has been considered as a vital 
strategy to achieve the European Green Deal [4–7]. 

Among the diverse bio-based products, ethanol has generated a 
growing interest in recent years due to its high hydrogen content, wide 
availability, low cost, non-toxicity, easy handling and storage, and 
safety matters. Ethanol catalytic steam reforming is considered as the 
route with the highest potential to produce hydrogen. However, this 
process is a rather complicate one involving a wide variety of reactions, 
which lead to several undesired by-products. Moreover, the reversible 
nature of these reactions results in low H2 yields, with the maximum 
theoretical H2 purity being as low as 75%. Since the reaction pathway is 
very complex, H2 yield and selectivity are strongly influenced by reac
tion conditions (temperature, S/C ratio and space-time) and catalyst 
formulation [8–11]. Thus, efforts have been directed towards the 
development of active and selective catalysts to enhance H2 production. 
Although noble metal catalyst, such as Pt, Ru, Re, Rh and Pd, showed 
high activity and stability for ethanol steam reforming, they are so 
expensive that are industrially unviable [12–14]. Ni-based catalysts are 
highly active for C-C bond breakdown, which makes them a suitable 
choice for steam reforming processes. However, they are prone to coke 
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formation, and therefore undergo fast deactivation [15–17]. 
Many different supports have been used to make Ni based catalysts, 

with γ-alumina being the most used one [18–24]. Recently, CaO sup
ports have attracted great attention, as they can capture CO2 [25–31]. 
These catalysts are known as bifunctional catalysts and combine cata
lytic and sorption properties in one material, possessing exceptional 
advantages over their monofunctional counterparts [32,33]. This hybrid 
process of CO2 capture and catalytic reforming of ethanol is called 
sorption-enhanced steam reforming, and is based on Le Chatelier’s 
principle. Thus, bifunctional catalysts contribute to shifting the reaction 
equilibrium towards H2 production by the in-situ removal of CO2 
[34–36]. According to this strategy, operation temperature may be 
lowered, and catalyst deactivation by sintering or coking may therefore 
be reduced [37,38]. 

CaO-based solids are considered efficient sorbents for CO2 capture 
due to their thermal stability, high theoretical CO2 sorption capacity 
(0.786 gCO2 gCaO

− 1), broad availability, low cost, and fast carbo
natation/calcination kinetics. During the operation, CaO undergoes 
sorption/desorption cycles based on the reversible gas-solid carbo
natation reaction involving CaO with the CO2 in the product stream, 
forming CaCO3 in the capture stage [39–41]. 

CaO carbonatation is an exothermic reaction consisting of an initial 
fast reaction step followed by a substantially slower second reaction 
step. In the first step, CO2 is rapidly chemisorbed on the CaO surface, 
generating a thick layer of CaCO3 around the CaO, whereas, in the 
second step, CO2 is slowly diffused through the thick layer of CaCO3, 
reacting with the inner unreacted CaO [42,43]. However, this process 
faces two main challenges: (i) sorption capacity loss over successive 
carbonatation/calcination cycles due to the high temperatures used in 
the desorption step, which leads to CaO sintering (ii) loss of the physical 
strength of the sorbent material, which leads to its attrition [44–46]. 

This paper assesses the potential benefits of using a bifunctional 10 
wt%NiO/CaO catalyst in the sorption enhanced ethanol steam reform
ing (SEESR) in a micro-fluidized bed. The effect of temperature on the 
in-situ CO2 capture and H2 production was investigated in the 600–750 
◦C range and 700 ◦C was selected as the optimum temperature to analyse 
the stability of the catalyst in the cyclic operation. The novelty of this 
paper is associated with catalyst regeneration. Thus, operation with the 
same temperature in the SEESR reaction and CO2 desorption is proposed 
to improve the catalyst stability over multiple cycles. Moreover, a 
thorough characterization (BET surface area, X-ray fluorescence (XRF), 
X-ray diffraction (XRD), temperature programmed reduction (TPR) and 
oxidation (TPO), and transmission electron microscopy (TEM)) of the 
fresh and spent catalysts was conducted to determine the main cause of 
the decay in activity and CO2 capture capacity. 

2. Experimental 

2.1. Catalyst synthesis 

The Ni/CaO catalyst was prepared by wet impregnation. Ni loading 
was determined by accurately controlling the ratio of CaO to Ni2+

chemicals (10 wt%NiO/CaO). After mixing all the chemicals together 
and stirring at room temperature for 1 h, temperature was raised to 85 
◦C to evaporate the excess water. It was then dried overnight in an oven 
at 130 ◦C and calcined in a muffle furnace at 750 ◦C for 5 h. The heating 
rate in the calcination step was 2 ◦C min− 1. Moreover, a commercial Ni 
catalyst (G90LDP) provided by SüdChemie was used for comparison 
purposes. This catalyst has a NiO content of 14 wt%, and is supported on 
Al2O3 and doped with Ca. Its characterization can be found elsewhere 
[47]. In addition, the catalysts were ground and sieved to a particle size 
between 250 and 400 µm, as this size was determined to be suitable for 
using in this micro-fluidized bed reactor. Before testing the catalysts, 
they were fluidized in a methacrylate spouted bed contactor for several 
hours in order to round the particles, improving their mechanical 
strength and therefore, minimizing possible attrition problems. 

2.2. Characterization techniques 

The physical properties of the catalyst (specific surface area, pore 
volume and average pore size) were determined by Micromeritics ASAP 
2010 automatic adsorption equipment. BET and BJH methods were 
applied to the N2 adsorption–desorption isotherms at 77 K. 

X-ray diffraction (XRD) was conducted to identify the crystalline 
structure of the fresh and deactivated catalysts by using a Bruker D8 
Advance diffractrometer with CuKα radiation at 1.5406 Å wavelength. 
Data were continuously registered from 10◦ to 90◦ 2θ range. The 
diffraction spectra were indexed by their comparison with JCPDS files 
(Joint Committee on Powder Diffraction Standards). The crystallyte size 
of the phases were obtained from Scherrer equation using the full width 
at half maximum (FWHM) of the most intense line in each phase. 

X-ray fluorescence (XRF) spectrometry was used to measure the 
chemical composition (wt%) of both fresh and deactivated catalysts. The 
chemical analysis of the particles was carried out under vacuum atmo
sphere using a sequential wavelength dispersion X-ray fluorescence 
(WDXRF) spectrometer (Axios 2005, PANalytical) equipped with a Rh 
tube, and three detectors (gaseous flow, scintillation and Xe sealing). 
The calibration lines were determined by means of well-characterized 
international patterns of rocks and minerals. 

Temperature programmed reduction (TPR) was performed to 
determine the reducibility of the catalyst in an AutoChem II 2920 
Micromeritics. Around 200 mg of fresh catalyst were placed in a U-shape 
tube, which was heated to 900 ◦C at a rate of 10 ◦C min− 1 in a reducing 
atmosphere (10 vol% hydrogen in argon). A thermal conductivity de
tector (TCD) was used to analyze the hydrogen consumption of the 
samples, with its signal being recorded continuously. 

Carbon deposition on the deactivated catalyst was monitored by 
temperature-programmed oxidation (TPO) in a Thermobalance (TGA 
Q5000 TA Instruments). Around 20 mg of deactivated catalyst were 
placed in a plate and heated under N2 atmosphere to 500 ◦C to 
decompose Ca(OH)2. The sample was then cooled down up to 200 ◦C 
and N2 was changed for air and heated to 800 ◦C at a ramp of 5 ◦C min− 1. 
It was then hold for 30 min to ensure total carbon combustion. 

The nature of coke was analyzed by Philips CM200 transmission 
electron microscopy (TEM). Nanometer level catalyst images were ob
tained with a supertwin lens (0.235 nm point resolution), equipped with 
a 137.4 eV resolution EDX (energy dispersive X-ray spectroscopy) 
microanalysis system. The samples were placed in a double inclination 
sample holder (Philips PW6595/05) under vacuum to obtain the images. 

2.3. Experimental equipment 

Ethanol steam reforming experiments were carried out in the micro- 
fluidized bed reactor shown in Fig. 1. The main element of the experi
mental setup is the Inconel reactor, which is 10 mm in internal diameter 
and 300 mm long. The reactor is placed within a radiant oven and 
temperature was controlled by two thermocouples: one placed in the 
catalyst bed and other one close to the wall of the electric oven. Thus, 
solid circulation ensures temperature homogeneity in the whole reactor. 
Nitrogen was fed during the heating process and its flow rate was 
measured by a mass flow meter (Brooks SLA5800), which allowed 
feeding up to 1 L min− 1. Furthermore, the water flow rate was measured 
by a high pressure ASI 521 pump and that of ethanol by a syringe pump 
(Harvard apparatus PHD 4400). Both ethanol and water were vaporized 
and mixed within an evaporator located below the fluidized bed reactor. 
As the catalyst bed was placed in the middle section of the reactor 
supported on a very fine stainless steel mesh (<90 µm), the reactant 
gases had enough time to be preheated before contacting the bed. 
Moreover, another fine mess was placed at the reactor outlet in order to 
avoid catalyst entrainment during the experiments. The volatile stream 
leaving the reactor passed through a stainless steel filter (60 µm) and 
coalescence filter to ensure total condensation of the liquid products 
prior to collecting the permanent gases in a Tedlar bag. 
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2.4. Operating conditions 

Steam reforming experiments were performed in the 600–750 ◦C 
temperature range using steam as fluidizing gas. Thus, a water flow rate 
of 0.24 mL min− 1 was employed and ethanol (96 vol%; 0.8905 kg L− 1 

density) was fed at a rate of 0.0725 mL min− 1, which corresponds to a 
steam/ethanol (S/E) ratio of 3.3 (S/C=4.8). The bed consisted of 1.5 g of 
Ni/CaO catalyst, with particle size being in the 250–400 µm range, 
which accounted for a space-time of 20 gcat min mLEtOH

− 1. It should be 
also noted that the comparative experiments of conventional steam 
reforming on a Ni/Al2O3 commercial catalyst were performed under the 
same experimental conditions (temperatures, S/C ratio and space time). 
Prior to the reactions, the catalyst was subjected to an ex-situ reduction 
process at 710 ◦C for 4 h with a stream containing 10 vol% of H2, being 
the total flow rate 100 mL min− 1 (10 mL min− 1 H2 + 90 mL min− 1 N2). 

Each reaction lasted 8 min, which is the time corresponding to 
catalyst saturation, as longer times led to a decrease in its capacity for 
CO2 capture. All the gases produced during this time were collected into 
a Tedlar bag. After catalyst saturation, the feeds of ethanol and steam 
were cut off and the flow was switched to 300 mL min− 1 of N2 to 
regenerate the catalyst. CO2 desorption was carried out using the same 
temperature as in the ethanol steam reforming runs. 

Among all the temperatures tested, 700 ◦C was chosen to evaluate 
the catalyst performance by cycles, as it strikes a balance between the 
time needed for CO2 desorption and the joint process of in-situ CO2 
capture and H2 production. Overall, 22 cycles of SEESR and CO2 
desorption were performed. The experimental procedure followed was 
the same as for the runs at zero time on stream. Thus, the gases gener
ated during the first 8-minutes SEESR reaction were collected in a Tedlar 
bag. Subsequently, ethanol and steam feeds were stopped and 
300 mL min− 1 of N2 was introduced to desorb the CO2. The temperature 
was maintained at 700 ◦C in both reaction and desorption steps. This 
procedure was repeated 22 times, in which the spent catalyst was sub
jected to CO2 desorption process in order to decompose CaCO3. 

The mass balance was closed based on the quantification of carbon in 
the product gas by means of micro-GC and GC techniques. The amount 
of adsorbed CO2 was calculated in order to attain a balance closure 
above 95% for carbon, hydrogen and oxygen under all the experimental 
conditions. 

2.5. Product analysis 

Samples of the volatile stream were analysed on-line by means of a 
GC Agilent 7890 chromatograph provided with a flame ionization de
tector (FID). The sample was injected into the GC through a line ther
mostated at 280 ◦C to avoid the condensation of heavy compounds. 
However, the non-condensable gases were analyzed off-line in a micro 
GC (Varian 4900) equipped with three modules (molecular sieve, Por
apak (PPQ) and plot alumina) and thermal conductivity detectors 
(TCD). The micro-GC was also used to monitor the CO2 desorption 
process, but in this case, it was used on-line. 

2.6. Reaction indices 

Several reaction indices were defined in order to assess the perfor
mance of Ni/CaO catalyst in the SEESR process. The yield of each 
gaseous compound was defined by mass unit of the ethanol fed into the 
reactor, which is calculated as follows (Eq.(1)): 

Yi =
mi

mEtOH
⋅100 (1)  

where mi and mEtOH are the mass flow rates of each compound and the 
ethanol feed into the reactor, respectively. Note that these yields are not 
the result of a carbon balance to the compounds. 

The maximum theoretical H2 yield was determined as a percentage 
of the maximum allowed by stoichiometry (Eq.(2)). 

Y0
H2

=
mH2

m0
H2

⋅100 (2)  

where mH2 is the H2 mass flow rate and m0
H2 the maximum allowable by 

stoichiometry. 
CO2 adsorption efficiency (Eqn 3) was expressed as the amount of 

CO2 captured during the reaction divided by the total amount of CO2 
produced in the ethanol steam reforming, which is the sum of the CO2 
adsorbed by the Ni/CaO catalyst and the average CO2 produced in the 
sorption enhanced ethanol steam reforming during the first 8-minute 
reaction. 

CO2 adsorption efficiency, %:
mCO2ads

mCO2total
⋅100 (3)  

3. Results 

3.1. Catalyst characterization 

Table 1 shows the physical properties and chemical composition of 

Fig. 1. Schematic diagram of the experimental system.  

Table 1 
Physical properties and chemical composition of the fresh Ni/ 
CaO catalyst.   

Ni/CaO 

Physical properties 
SBET (m2 g− 1) 3.16 
Vpore (cm3 g− 1) 0.012 
dpore (Å) 237.3 
Average crystallite size (nm)* 
Ni 58 
Chemical composition (wt%) 
MgO 0.70 
SiO2 0.30 
NiO 9.66 
CaO 82.33 
Al2O3 0.52 
TiO2 0.03 
P2O5 0.05 
Fe2O3 0.06  

* Calculated at 2Ɵ= 44◦ for Ni from X-ray diffraction 
patterns. 
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the fresh 10 wt%NiO/CaO catalyst. Thus, surface area and pore volume 
are essential parameters in CO2 adsorption processes. The surface area of 
the catalyst gives an indication of the area available for CO2 adsorption 
and the pore volume determines the space for CO2 diffusion through the 
adsorbent [48]. As observed, the specific surface area of the catalyst was 
rather low (3.16 m2 g− 1) and the pore volume of 0.012 cm3 g− 1 was 
evidence of a non-developed porous structure. Moreover, the results also 
show that it was a slightly mesoporous material because its pore size was 
in the 2–50 nm range. Sang et al. [49] reported similar physical prop
erties for the Ni/CaO catalyst. However, other authors synthesized a 
Ni/CaO catalyst with a higher surface area (around 15 m2 g− 1), with 
CaO being prepared by the sol-gel method [28,50,51]. In fact, the 
catalyst synthesis method can affect the morphology and properties of 
CaO [52–55]. 

The NiO content of the catalyst determined by XRF analysis was 
9.66 wt%, which is very consistent with the intended metal loading of 
10 wt%. The crystallite size of the Ni metal was calculated based on the 
Scherrer equation. 

As shown in Fig. 2a, the XRD pattern of the reduced Ni/CaO catalyst 
revealed that it was composed of CaO, Ca(OH)2, NiO and Ni0. CaCO3 was 
not observed, which is evidence that CaO carbonatation during storage 
did not occur. Undoubtedly, the most intense diffraction lines belonged 
to CaO located at 2Ɵ= 32, 38 and 55◦. The intensity of the other 
diffraction lines was much lower than for CaO. The Ca(OH)2 diffraction 
peaks indicated that CaO absorbed humidity from the atmosphere to 
form Ca(OH)2 (CaO is a highly hygroscopic material). The presence of 
this compound was also observed by several authors [28,50,56]. How
ever, before starting ethanol steam reforming reactions, this compound 
was eliminated from the catalyst, as reaction temperatures were higher 
than that required for Ca(OH)2 decomposition in all the runs. The 
presence of NiO was evidence of its incomplete reduction to nickel 

metal. It seems that H2 did not reach all the Ni sites in the catalyst, as 
NiO was possibly coated with CaO. Sang et al. [56] also observed both Ni 
and NiO in the 5 wt%Ni/CaO catalyst. 

The temperature programmed reduction (TPR) profile of the Ni/CaO 
catalyst is shown in Fig. 2b, and it enables determining the temperature 
needed for the reduction of metallic species. It is well-known that the 
profile depends not only on the nature of the metallic species, but also on 
the metal-support interactions. The reduction profile of 10 wt%NiO/ 
CaO catalyst had two main peaks located at 500 ◦C and 720 ◦C. A third 
one may also be observed at a reduction temperature of 400 ◦C over
lapped with the peak at 500 ◦C. The first two peaks were easily reducible 
species due to their low reduction temperature (400 and 500 ◦C). The 
former was due to the reduction of bulk NiO, with minimal or no 
interaction with the support, and the latter to the reduction of NiO 
located on the catalyst surface, which had a significant interaction with 
CaO. Given the great diversity of compounds shown in the XRF analysis, 
no clear associations may be established for the peak located at 720 ◦C. 
However, this peak may be attributed to the very strong interaction of Ni 
with some of the compounds detected by XRF, probably Al2O3 or MgO, 
as they are not easily reduced. No diffraction lines were observed in the 
XRD spectra for any Ni solution, which was probably because they 
overlapped with other diffraction lines or cannot be identified due to its 
poor crystallinity. 

3.2. Effect of temperature at zero time on stream 

The SEESR is an exothermic process defined by the following reac
tion (Eq.(4)):  

C2H5OH + 3 H2O + 2 CaO → 6 H2 + 2 CaCO3 ΔH◦

=− 185.3 kJ mol-1                                                                            (4) 

However, the reaction mechanism is complex due to parallel sec
ondary reactions generating intermediate products and by-products. 
Side reactions, such as dehydrogenation (Eq.(5)), decomposition (Eq. 
(6)) and dehydration (Eq.(7)) of ethanol, steam reforming of methane 
and ethylene (Eqs, (8) and (9)) and WGS (Eq.(10)) take place in parallel 
with the main reaction. Thus, the efficiency of the process strongly de
pends on selecting adequate reaction conditions (temperature, S/E ratio 
and space time) and catalyst composition. The optimum temperature is 
the one striking a balance between thermodynamics and kinetics [57].  

C2H5OH→CH3CHO +H2                                                                 (5)  

C2H5OH→CH4+CO +H2                                                                 (6)  

C2H5OH→C2H4+H2O                                                                      (7)  

CH4+H2O↔CO +3H2                                                                     (8)  

C2H4+2H2O→2 CO+4H2                                                                 (9)  

CO+H2O↔CO2+H2                                                                      (10) 

Temperature was varied in the 600–750 ◦C range and its influence on 
gas composition is shown in Fig. 3. As observed, an increase in tem
perature leads to a lower hydrogen content in the gaseous stream, as the 
overall SEESR reaction is thermodynamically hindered as temperature is 
increased due to its exothermic nature [58]. Thus, hydrogen concen
tration decreased from 85.95 vol% at 600 ◦C to 75.18 vol% at 750 ◦C. 
Furthermore, the concentration of CO increased by increasing temper
ature, reaching a value of 6.29 vol% at 750 ◦C, which is evidence that 
CO2 adsorption decreased and a lower amount of CO underwent WGS 
reaction (Eq.(10)) due to the equilibrium displacement towards the 
reverse reaction. The concentration of methane also decreased as tem
perature was raised, since its steam reforming (Eq.(8)) was promoted 
[48]. It should be noted that CO2 removal at high temperatures may 
efficiently hinder the methanation reaction, lowering CH4 concentration 
in the gaseous product stream [57]. The concentration of the C2-C4 

Fig. 2. X-ray diffraction (XRD) patterns (a) and TPR profile (b) of the reduced 
Ni/CaO catalyst. Crystalline phases: (þ) Ca(OH)2, (❖) CaO, (•) NiO and 
(∇) Ni0. 
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hydrocarbon fraction was negligible under the temperature range 
studied, which is evidence that, under these reaction conditions, steam 
reforming reactions involving light hydrocarbons (Eq.(9)) were 
enhanced. The previous results proof that operation at 600 ◦C with this 
bifunctional catalyst allowed capturing effectively the CO2 generated in 
the SEESR process, leading to the shift of the thermodynamic equilib
rium towards high purity hydrogen production [56]. It should be noted 
that the adsorption process involves the chemical reaction of CaO with 
CO2 in the product stream in order to form CaCO3. 

Fig. 4 shows the effect temperature has on the yield of the products. 
It should noted that CO2 yield was divided into two fractions; i) the CO2 
adsorbed on the Ni/CaO catalyst and ii) the CO2 in the gaseous product 
stream. It is noteworthy that ethanol conversion on the 10 wt%NiO/CaO 
catalyst was full in the 600–750 ◦C temperature range, as no acetalde
hyde, acetic acid or acetone were detected in the product stream. Ac
cording to Montero et al. [59], the reactions involving 
formation/consumption of these compounds are very fast or do not 
occur under these experimental conditions. 

H2 yield increased slightly with temperature in the 600–750 ◦C range 

from 20.3 to 22 wt%. In fact, it peaks at 700 ◦C (22.3 wt%). It seems that 
the decrease in CO2 capture capacity was not fully balanced with the 
enhancement of ethanol steam reforming from 700 ◦C to 750 ◦C. 
Methane yield decreased from 10.9 wt% at 600 ◦C to 4.3 wt% at 750 ◦C 
and that of CO increases to 25.7 wt%, with the increase being more 
pronounced from 700 to 750 ◦C. These results are evidence that methane 
steam reforming reactions (Eq.(8)) were enhanced at high temperatures. 
When temperature was raised, the adsorption efficiency on the 10 wt% 
NiO/CaO catalyst decreased from 77% to 23%. Thus, in the 600–700 ◦C 
temperature range, the catalyst adsorption capacity decreased from 77% 
to 59%, while in the 700–750 ◦C range, it decreased from 59% to 23%. 
For temperatures above 700 ◦C, the amount of captured CO2 decreased 
drastically, since CO2 carbonatation rate was much lower due to the 
competition of CaO carbonatation and calcination reactions. From these 
results, it is clear that high temperatures inhibit CO2 removal, yielding 
large amounts of CO2 in the product stream (107.1 wt% at 750 ◦C). 

The comparison of these results with those in the literature is a 
challenging task due to the diversity of the operating conditions used 
and adsorption capacities reported. Nevertheless, most of the authors 
[60–65] distinguish between pre-breakthrough and breakthrough 
stages, and followed the sorption performance of both sorbents and 
bifunctional catalysts in different processes. 

A comparison of the conventional ethanol steam reforming with the 
sorption enhanced ethanol steam reforming showed that higher H2 
yields were obtained in the latter in the 600–750 ◦C temperature range 
(of around 20–22 wt%), even though full conversion was reached in 
both cases. Prior to the set of runs described in the experimental section, 
several tests with a commercial Ni/Al2O3 catalyst (14 wt% NiO) were 
carried out in this reactor to define the suitable operating conditions and 
confirm the effect of CO2 adsorption. At 700 ◦C, similar H2 productions 
(of around 22.2 wt%) were obtained with both catalysts, although the 
commercial catalyst had a higher metal loading, and therefore should 
have been more active in reforming reactions. However, more remark
able results were obtained concerning CO2 production. Thus, Ni/Al2O3 
catalyst produced 87.3 wt% of CO2, whereas the NiO/CaO catalyst 
generated an average of 63.0 wt% of CO2 after 8-min reaction. In the 
literature, Di Michele et al. [66] worked with 10 wt%Ni/MgAl2O4 
catalyst in a downflow reactor and obtained 16.83 wt% H2 at 625 ◦C. 
Olivares et al. [67] used 8 wt%Ni/CeO2-MgAl2O4 and reported a higher 
H2 yield of 19.56 wt% at 650 ◦C, which was explained by the 
improvement in catalyst dispersion when Ce is added. Furthermore, 
Bussi et al. [68] tested a Ni-La-Sn trimetallic catalyst in a fixed bed 
reactor at 650 ◦C and attained a lower H2 yield of 16.56 wt%. However, 
Shao et al. [69] used a LaNi0.85Zn0.15O perovskite structured catalyst at 
700 ◦C without CO2 capture and reported a H2 yield value (21.74 wt%) 
close to that obtained in this work. 

The structural features and the amount of CaO influence the 
adsorption capacity per catalyst mass unit, with the balance between 
these two factors determining the CO2 adsorption performance of the 
catalyst [50]. Moreover, the different techniques used for measuring the 
CO2 uptake make it difficult a comparison of the results. TGA analysis 
has been widely used to determine the sorption capacity of sorbents. 
However, the experimental conditions in TGA are very different from 
those in the reforming reaction environment. Table 2 shows the 
adsorption capacity of the 10 wt%NiO/CaO catalyst at various 

Fig. 3. Effect of temperature on the gas composition in the 600–750 ◦C tem
perature range (S/E=3.3; τ=20 gcat min mLEtOH

− 1). 

Fig. 4. Effect of temperature on the individual product yields in the 600–750 
◦C temperature range (S/E=3.3; τ=20 gcat min mLEtOH

− 1). 

Table 2 
CO2 capture on the 10 wt%NiO/CaO bifunctional catalyst in the 600–750 ◦C 
temperature range.  

Temperature (◦C) Adsorption capacity (mmolCO2 gcat
− 1) 

600  7.9 
650  6.7 
700  6.0 
750  2.1  
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temperatures. 
As temperature was increased, the catalyst sorption capacity was 

hindered, and therefore declined from 7.9 to 2.1 mmolCO2 gcat
− 1. In this 

work, the maximum sorption capacity was obtained at 600 ◦C. Similar 
CO2 adsorption capacities have been reported for the Ni/CaO catalyst 
under comparable temperature ranges. Thus, Chanburanasiri et al. [49] 
reported that 12.5 wt%Ni/CaO catalyst had a CO2 sorption capacity of 
5.06 mmolCO2 gcat

− 1 at 500 ◦C, which is consistent with the value ob
tained in this work at 600 ◦C. Wang et al. [27] obtained a slightly higher 
sorption capacity (7.43 mmolCO2 gcat

− 1) at 700 ◦C for the 10 wt% 
Ni/CaO catalyst. Furthermore, Jo et al. [51] reported much higher 
adsorption capacities for the 10 wt%Ni/CaO catalyst at 600 and 700 ◦C, 
i.e., 15.49 mmolCO2 gcat

− 1 and 16.22 mmolCO2 gcat
− 1, respectively. 

However, this catalyst was synthesized by the sol-gel method and its 
specific surface area was almost six times higher (16.8 m2 g− 1) than that 
of the one used in this study, which contributes to improving its initial 
sorption capacity. In the case of other CaO-based catalysts, Di Giuliano 
et al. [70] obtained a slightly higher sorption capacity for the 3 wt% 
Ni/CaO-mayenite catalyst (8.20 mmolCO2 gcat

− 1) at 650 ◦C. 

3.3. Catalyst performance in reaction cycles 

The evolution of gas composition throughout 22 reaction cycles on 
the10 wt%NiO/CaO catalyst is shown in Fig. 5 in order to evaluate the 
stability of the catalyst. As observed, the concentration profiles of the 
products in the outlet stream underwent a small decay or increase 
(depending on the product) up to the 12th cycle, and they then remained 
stable throughout the remaining cycles, until the 22 cycles were 
completed. H2 concentration declined from 82.89 vol% in the first cycle 
to 78.02 vol% in the 12th cycle, and therefore those of CO and CH4 
increased from 3.95 and 2.40 vol% to approximately 6.2 vol%, with this 
value being unchanged for subsequent cycles. In addition, C2-C4 con
centration also increased slightly to 0.65 vol%. The change in gas 
composition over multiple cycles was due to the deterioration of catalyst 
sorption and reforming capacities. The decrease in sorption capacity 
shifted the equilibrium of WGS reaction (reverse WGS was enhanced), 
whereas the decay in catalyst reforming activity reduced the reforming 
extent of CH4 and light hydrocarbons. At 700 ◦C, the reforming reactions 
involving CH4 and C2-C4 hydrocarbons were much enhanced and they 
are not therefore affected by the WGS reaction. 

The evolution of the products yields is plotted in Fig. 6. In order to 
ease the evaluation of process efficiency, this figure also shows the 
maximum theoretical H2 yield defined based on the maximum allowable 

by stoichiometry. Ethanol conversion was full during all the cycles, i.e., 
no ethanol was observed in the product stream. Moreover, intermediate 
products, such as acetaldehyde, were not observed. After 12 cycles the 
catalyst seemed to be relatively stable. Thus, it underwent a small decay 
in both CO2 capture (7% lower) and reforming performance, and there 
was therefore a small variation in the products yields. H2 production 
slightly declined from 22.24 wt% in the first cycle to 18.46 wt% in the 
12th cycle and those of CO and CH4 increased from 14.85 and 5.15 wt% 
to 17.64 and 11.96 wt%, respectively, with the increase in CH4 being 
more pronounced. In turn, the C2-C4 yield also increased slightly to 
1.71 wt%. The increase in CH4 yield, and especially in that of C2-C4 
hydrocarbons (they are very reactive), was evidence of the lower cata
lyst reforming activity. After multiple cycles, the extent of the steam 
reforming reactions involving CH4 end C2-C4 hydrocarbons was lower 
than in the first cycle. Furthermore, as CO2 capture capacity declined, a 
greater amount of CO2 was in the reaction environment, and therefore 
the WGS reaction shifted to the left (reverse WGS was enhanced), 
thereby favouring CO production. In the case of H2 yield, its decrease 
was due to the combined effect of both lower CO2 capture and lower 
reforming extent on the bifunctional catalyst. 

The adsorption capacity of the catalyst decreased from 6 to 
5.6 mmolCO2 gcat

− 1 after 22 cycles, which accounts for 6.7% reduction. 
Thus, CO2 capture capacity decreased during a few initial cycles, and it 
then stabilized, as was also reported by Aloisi et al. [71]. This result 
confirms that the use of the same temperature for desorption and 
ethanol steam reforming is beneficial for the catalyst stability. Accord
ing to Wang et al. [27], this slight decrease in the carbonatation con
version over the initial cycles may be attributed to the agglomeration 
and sintering of CaO and carbon deposition on the surface of the 
catalyst. 

More pronounced decays have been reported in literature for the 
same catalyst. Xu et al. [72] tested the stability of Ni/CaO catalyst at 650 
◦C during 10 cycles, and observed that CO2 adsorption capacity 
decreased from 12.73 to 10.68 mmolCO2 gcat

− 1, which accounts for 16% 
reduction. Liu et al. [50] worked with the same catalyst and at the same 
temperature as the previous authors, but reported that the sorption ca
pacity decreased by approximately 54% (from 10.23 to 4.77 mmolCO2 
gcat

− 1) after 20 cycles. The same authors supported CaO on Al2O3 and 
concluded that Ni/CaO-Al2O3 catalyst stability was improved, since 
sorption capacity declined from 14.55 to 10.1 mmolCO2 gcat

− 1 after 20 
cycles, which accounts for 31% reduction instead of 54% without Al2O3. 
Li et al. [73] followed the same strategy as the previous authors, but 
supported CaO on ZrO2. The initial CO2 capture capacity of Fig. 5. Influence of CO2 adsorption-desorption cycles on the gas composition. 

(T = 700 ◦C; S/E=3.3; τ =20 gcat min mLEtOH
− 1). 

Fig. 6. Influence of CO2 adsorption-desorption cycles on the product yields 
(T = 700 ◦C; S/E=3.3; τ =20 gcat min mLEtOH

− 1). 
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Ni/ZrO2-CaO catalyst was lower (7.95 mmolCO2 gcat
− 1) than that of 

Ni/CaO-Al2O3 catalyst, but this capture capacity remained over 15 cy
cles. CaZrO3 may inhibit sintering during the carbonatation/calcination 
cycles. 

3.4. Causes of bifunctional catalyst decay 

Catalyst deactivation is the main factor conditioning viability and 
operation of any industrial catalytic process. Thus, the spent catalyst 
was characterized in detail in order to determine the main causes of 
catalyst activity decay. 

In order to ascertain the deterioration of the porous structure, the 
deactivated catalyst was analyzed by N2 adsorption-desorption. Table 3 
shows the values of the specific surface area, pore volume and diameter 
for the reduced and deactivated Ni/CaO catalysts. After 22 cycles, the 
specific surface area of the catalyst, as well as the pore volume and their 
size, increased, which is attributed to the amount and morphology of the 
coke deposited and/or re-dispersion of CaO particles during the SEESR. 
Furthermore, the Ni crystallite size was also calculated at 2Ɵ= 44◦ for Ni 
from the X-ray diffraction pattern. The average Ni crystallite size 
increased from 58 to 155 nm, which is evidence that Ni sintered, and the 
dispersion of the bifunctional catalyst was therefore worse. Christensen 
et al. [74] reported that sintering is accelerated by large metal particles. 
Regarding CaO crystallites, it was estimated they decreased in size after 
22 cycles, which is evidence of the structural changes undergone by the 
catalyst over the cycles. Although it seems that XRF analysis reveals 
small differences between the fresh and spent catalysts, it should be 
noted that the total amount of oxides was not the same in the fresh and 
deactivated catalysts. As shown in the XRD (Fig. 7a), the deactivated 
catalyst had a larger amount of Ca(OH)2, which was obtained by 
decomposition during sample preparation before the XRF analysis. 

The XRD pattern in Fig. 7a shows the changes in the metallic struc
ture of the Ni/CaO catalyst after the cycles. The same species as in the 
fresh catalyst were found in the deactivated sample. The main crystal
line structure was still CaO, although more diffraction lines of Ca(OH)2 
were identified in the deactivated catalyst as a result of introducing 
steam as fluidization agent. No significant changes in Ni0 and NiO 
crystalline species were detected. 

Coke deposition has been reported as the main catalyst deactivation 
cause in the reforming processes [75–79]. The intermediate reactions 
during ethanol steam reforming (dehydrogenation, dehydratation, 
polymerization and decomposition of different byproducts) are liable to 
form carbon deposits on the surface of the catalyst [16,80]. 

The morphology and nature of coke are determined by its combus
tion temperature. Thus, the combustion temperature of the coke 

encapsulating the Ni sites is low (Ni may activate coke oxidation), and 
that of the coke deposited on the support is higher [81–84]. Moreover, 
the coke deposited on similar locations may also have different com
bustion temperatures due to their condensation degree i.e., the higher 
the burning temperature the higher the condensation degree; that is, 
more organized structures with lower H/C ratios. The TPO profile of the 
spent Ni/CaO catalyst is shown in Fig. 7b, in which two oxidation peaks 
appear at around 623 ◦C and 653 ◦C. Both peaks were related to the coke 
deposited on the support, although there were small differences in their 
condensation degree. As explained in the experimental procedure, the 
catalyst was subjected to CO2 desorption after the last cycle, and 
therefore TPO analysis did not show any peak corresponding to CaCO3. 

The total amount of coke and its characteristics vary with the oper
ating conditions, such as the nature of the reformed compound, the 
catalyst and the reaction conditions, especially temperature and S/B 
ratio, as carbon deposition is a consequence of a balance between its 
formation and removal [85]. Thus, the total amount of carbonaceous 
deposits on the spent catalyst was 0.31 wt%. 

Aceves et al. [86] studied the SEESR process by using a mixture of 
Ni/Al2O3 catalyst with CaO, and reported no carbon formation, whereas 
higher amounts of coke (14 wt%) were reported in the conventional 
ethanol steam reforming process. Likewise, Montero et al. [87] studied 
the deactivation of Ni/La2O3-Al2O3 catalysts in the conventional ethanol 
steam reforming using similar operating conditions as in this work 
(T = 650 ◦C; S/E=3; τ =0.18 gcat h gEtOH

− 1), and coke formation was of 
10.8 wt%. 

In this study, a few factors inhibiting coke formation were gathered. 
At 700 ◦C, WGS reaction led to an increase in hydrogen production, and 
therefore carbon deposition decreased. Moreover, more water than that 
corresponding to stoichiometry was used, which also had an inhibitory 
effect on coke formation. The catalyst support may also contribute to 
generating carbonaceous matter on the catalyst surface. Accordingly, 

Table 3 
Physical properties and chemical composition of the reduced 
and deactivated Ni/CaO catalyst.   

Ni/CaO fresh/deact 

Physical properties 
SBET (m2 g− 1) 4.26/6.40 
Vpore (cm3 g− 1) 0.015/0.034 
dpore (Å) 232.3/291.5 
Average crystallite size (nm)* 
Ni 58/155 
Chemical composition (wt%) 
MgO 0.70/0.67 
SiO2 0.30/0.50 
NiO 9.66/9.06 
CaO 82.33/71.92 
Al2O3 0.52/0.66 
TiO2 0.03/0.03 
P2O5 0.05/0.01 
Fe2O3 0.06/0.09  

* Calculated at 2Ɵ= 44◦ for Ni from X-ray diffraction 
patterns. 

Fig. 7. XRD pattern (a) and TPO profile (b) of the deactivated Ni/CaO catalyst. 
Crystalline phases: (þ) Ca(OH)2, (❖) CaO, (•) NiO and (∇) Ni0. 
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CaO was used as catalyst support and, since it is basic, intermediate 
hydrocarbon (ethylene and methane) deposition and Boudouard reac
tion were hindered, and therefore coke formation decreased. Addition
ally, calcium enables water dissociation for producing sufficient O 
intermediates for C oxidation [88]. 

The TEM images of the deactivated 10 wt%NiO/CaO catalyst are 
presented in Fig. 8, in which the location and morphology of the 
deposited coke may be observed. In these images, Ni0 particles are 
identified as dark areas, whereas the grey shapes are related to CaO 
support. Moreover, an incipient formation of the coke deposited (blur
red filaments) is also observed, which has a structured morphology. It 
seems that all the coke was mainly deposited on the support, which was 
also deduced from the TPO analysis. This structured and filamentous 
coke did not block Ni particles, even though its progressive deposition 
may hinder the contact between reactants and Ni particles. In addition, a 
tip-growth mechanism may be responsible for the filamentous carbon 
formation, as Ni particles were above the coke. In the case of large metal 
particles, carbon deposits had a weak binding with metal particles, and 
therefore their diffusion to the metal-support interface was favored, 
leaving the top surface of the metal particle for further adsorption of 

carbonaceous compounds [89]. Other authors reported the formation of 
filamentous coke in the ethanol steam reforming [27,28,56,90]. As 
detected by XRD analysis, TEM images also proved that growth of Ni 
particles took place, since large Ni agglomerates appeared. Sharma et al. 
[16] stated that the size of the metal particles plays a key role in coke 
location. An increase in the metal particle size promotes coke formation 
and favours the growth of especially filamentous coke. 

The decay in the activity of 10 wt%NiO/CaO bifunctional catalyst 
may be attributed to the poor dispersion of Ni and the location of the 
coke. In fact, low amounts of coke together with poor Ni dispersion 
influence catalyst activity [89]. Several authors report Ni sintering as 
the main deactivation cause in sorption enhanced steam reforming 
processes [91–94]. 

4. Conclusions 

A 10 wt%NiO/CaO bifunctional catalyst performed well in the 
sorption enhanced ethanol steam reforming in the 600–750 ◦C temper
ature range. At zero time on stream, an increase in temperature 
enhanced ethanol steam reforming reactions and increased H2 

Fig. 8. TEM images of coke deposition on the deactivated Ni/CaO catalyst.  
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production, reaching a peak of 22.3 wt% at 700 ◦C. However, high 
temperatures hindered catalyst sorption performance, and so CO2 
sorption capacity, with the maximum CO2 uptake being 7.9 mmolCO2 
gcat

− 1 at 600 ◦C. 
The stability of the catalyst was tested over 22 SEESR/desorption 

cycles. The adsorption capacity of the catalyst decreased from 6 to 
5.6 mmolCO2 gcat

− 1 after 12 cycles, which meant a reduction of around 
7%, and therefore a slight decrease in H2 production from 22.24 wt% in 
the first cycle to 18.46 wt% in the 12th cycle. This value remained 
approximately constant in subsequent cycles. These results evidenced 
that desorption at the reforming temperature attenuated catalyst deac
tivation and improved its stability, since it allowed slowing down 
catalyst sorption decay. 

Due to the CO2 sorption capacity of CaO, its particles re-disperse 
during SEESR and subsequent desorption. These structural changes 
over multiple cycles were responsible for the moderate decrease in the 
sorption capacity of the support. As a result, Ni particles also relocated 
and tended to agglomerate and form larger Ni crystallites. Therefore, 
changes in the catalyst structure together with coke deposition lead to 
the loss of active sites, hindering the adsorption of ethanol and water. 
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