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Abstract

A detailed geochronological study was conducted on zircons from a diorite sample of the Posets
pluton (Axial Zone, Pyrenees). The extracted igneous zircons constrain the emplacement of the
pluton to 302 ± 2Ma and 301 ± 3Ma, by means of U–Pb sensitive high-resolution ion microp-
robe (SHRIMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS) analyses, respectively. Considering the syn- to late-tectonic emplacement of the Posets plu-
ton during the main Variscan deformation event (D2), the obtained ages constrain the long-
lasting D2, associated with the dextral transpression registered through the Axial Zone of
the Pyrenees.

1. Introduction

The Pyrenees, the E–W-trending orogenic belt that runs parallel to the French–Spanish border,
were raised in response to the convergence of the Iberian and European plates in Cenozoic times.
A main feature of this belt is its asymmetric fan shape with opposed vergences of the principal
Alpine structures that rework previous Variscan ones. The North and South Pyrenean Zones,
where sedimentary rocks of Mesozoic and Cenozoic ages predominate, border the Axial Zone of
the Pyrenees. The Pyrenean Axial Zone is a fragment of the European Variscan belt incorpo-
rated into the core of the Pyrenean mountain range from Cretaceous to Miocene times
(Mattauer, 1968; Matte, 1991). The rocks that currently make up the Axial Zone experienced
a complex Variscan tectonothermal evolution resulting from overall compressional tectonics
dominated by dextral transpression (e.g. Bouchez & Gleizes, 1995; Gleizes et al. 1998a;
Carreras & Druguet, 2014). The main Variscan tectonic phase, D2 (Gleizes et al. 1998a), cor-
responds to a transpressional event characterized by N120° E-directed great hectometric tight
folds verging southwest. A penetrative foliation (S2) develops parallel to the axial plane of these
folds, temporally close to the thermal peak of the metamorphism (Gleizes et al. 1998b). Late
tectonic phases generated localized strike-slip ductile shear zones in granitoids and high-grade
metamorphic rocks (Carreras & Capellà, 1994). In this context, the Variscan magmatism in the
Pyrenees is mainly represented by calc-alcaline plutons of granite to granodiorite compositions
emplaced into intermediate to shallow structural levels.

Structural and anisotropy-of-magnetic-susceptibility (AMS) studies of the granitoids in the
Pyrenees (Porquet et al. 2017) have demonstrated that their emplacement was coeval with the
main Variscan D2 transpressive event (see Bouchez & Gleizes, 1995; Carreras & Druguet, 2014).
Most plutons are of Carboniferous age and their emplacement age extends over 70 Myr from
339–337 Ma (granite stocks situated in the core of the Ordovician Aston and Bossòst domes;
Mezger &Gerdes, 2016) to 267 ± 1Ma (Aya pluton in theWestern Pyrenees; Denèle et al. 2012).
This long timespan makes it difficult to establish an accurate time relationship between the
development of S2 and the emplacement age for any given pluton from geological constraints
alone.

In this work, we present new U–Pb sensitive high-resolution ion microprobe (SHRIMP) and
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of zircons
from a diorite sample of the Posets pluton (PO-52) to determine the precise age for the emplace-
ment of the pluton.

2. Geological setting

The Posets pluton has a slightly elliptical shape on a map, with an aspect ratio (short to long axis
quotient) of 0.85 and a N130° E elongation (Fig. 1). From the petrographic point of view, it
displays a normal and concentric compositional zoning (Fig. 2), with a gradual transition rang-
ing from granodiorite in the inner part to tonalite towards peripheral zones (Enrique, 1989;
A Hilario, unpub. PhD thesis, Univ. Basque Country, 2004). Diorite is locally found in the bor-
der tonalite zone. All of these facies have a very homogeneous fine-grained holocrystalline
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(c. 2–3 mm) texture and include microgranular enclaves with
angular borders and xenoliths from the country rocks that preserve
S2, and even S2-related folds occasionally. The dominant mineral-
ogical composition in the Posets pluton consists of quartz, plagio-
clase, K-feldspar, biotite, amphibole and sphene. Geochemical data
from 12 igneous samples reflect calc-alkaline and alumino-cafemic
trends and point to a hybrid magmatic source for the Posets pluton
(A Hilario, unpub. PhD thesis, Univ. Basque Country, 2004). P–T
estimations of two samples from the Posets pluton using the
‘amphibole–plagioclase’ geothermometer (Blundy & Holland,
1990) and ‘Al-in-hornblende’ geobarometer (Schmidt, 1992)
yielded temperatures and pressures of 719 ± 30 °C / 1.9 ± 0.2 kbar
and 728 ± 20 °C / 1.6 ± 0.2 kbar, respectively (A Hilario, unpub.
PhD thesis, Univ. Basque Country, 2004).

The Posets granite intrudes into slates and limestones of
Silurian to Lower–Medium Devonian age (Figs 1 and 2). The con-
tact with the country rocks is sharp and generally concordant with
the bedding and the main tectonic foliation (S2) of the country
rocks. This foliation is an axial-planar cleavage associated with iso-
clinal upright folds next to the northern pluton contact and tight,
south-verging folds in the southern contact zone. These structures
form part of a progressive process of coaxial deformation that led
to fold interference patterns of type 3. As the dominant foliation is
linked to the youngest folding stage, it is referred to as S2. There is a
previous cleavage (S1) that can be recognized in the field, crenu-
lated by S2 in hinges of D2-folds. The preservation of S1 is
fairly widespread at the thin-section scale, as a residual foliation

crenulated by S2 in intrafoliar folds in samples from the limbs
of young folds. At the regional scale, the strike of S2 ranges between
N90° and N120° E, with an average dip of 50° N (Fig. 2). The tra-
jectories of the S2 cleavage are, however, distorted at the eastern
and western edges of the Posets pluton, where foliation triple
points developed (Fig. 2). The country rocks were affected by a
weak regional metamorphism that reached green-schist facies
conditions. The pluton intrusion also produced a metamorphic
aureole of 1 km thickness (Fig. 2), represented by andalusite/
cordierite-bearing or even sillimanite-bearing hornfels very near
the intrusive contact and mineral associations with garnet ±
diopside ± epidote and minor olivine in the marbles (A Hilario,
unpub. PhD thesis, Univ. Basque Country, 2004). In most areas
of the metamorphic aureole these minerals grow on S2 as idiomor-
phic porphyroblasts with random orientations, but they appear as
porphyroclasts with pressure shadows in a narrow fringe (nearly
10 m thick) on the innermost southern aureole. This solid-state
deformation has its counterpart in sparse dextral S-C mylonites
developed in tonalites that are in contact with the country rocks.

Field and AMS data from the Posets pluton (García Maiztegi
et al. 1991; A Hilario, unpub. PhD thesis, Univ. Basque Country,
2004) reveal a concentric structural pattern, defined by spatial var-
iations in the orientation of the magmatic and magnetic foliations
(Fig. 2). The internal structure is roughly parallel to the pluton bor-
der. The foliation trajectories display a NW–SE ellipsoidal geom-
etry with variable NNE dips, moderate dips and steep dips
dominating in the southern and northern part of the pluton,

Fig. 1. Schematic geological map of
the Central Pyrenees with the Posets
pluton location (modified from Vissers,
1992).

Geochronological study of Posets pluton 2265

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756821000686
Downloaded from https://www.cambridge.org/core. Universidad del Pais Vasco UPV/EHU, on 14 Dec 2021 at 16:09:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0016756821000686
https://www.cambridge.org/core


respectively (Fig. 2). In contrast, the N- and NE-plungingmagnetic
lineation outlines S-shaped sigmoidal patterns (A Hilario, unpub.
PhD thesis, Univ. Basque Country, 2004).

3. U–Pb SIMS SHRIMP dating

A diorite sample (PO-52: 42° 38 0 3.52″ N, 0° 27 0 8.52″ E) was proc-
essed according to routine zirconmineral separation (crushing, grind-
ing, sieving under 250 μm,Wilfley table, Frantz isodynamic magnetic
separator and methylene iodide) at the University of the Basque
Country (UPV/EHU). The selected zircon crystals were placed
in epoxy resin together with the TEMORA 1 and 91500 reference
zircons, sectioned approximately in half, polished and analysed on
a SHRIMP-II SIMS at the Centre of Isotopic Research (CIR) at
VSEGEI (St Petersburg). The results were obtained following the pro-
cedure described by Larionov et al. (2004). The U–Pb ionmicroprobe
datawere processedwith the SQUID1.02 (Ludwig, 2001) and Isoplot/
Ex 3.00 (Ludwig, 2003) software using the decay constants of Steiger
and Jäger (1977) and are presented in Appendix Table 1 (in the
Supplementary Material available online at https://doi.org/10.1017/
S0016756821000686). Cathodoluminescence images were used to
select target areas for analysis.

Most of the analysed zircon crystals are devoid of inherited
cores and present: (1) prismatic and euhedral morphologies,

(2) concentric undisturbed oscillatory growth zoning (both in
Fig. 3) and (3) high Th/U ratios, scattered between 0.42 and
0.76 (Fig. 4). The few composite zircons that display inherited xen-
omorphic cores (e.g. zircon crystals 3.1 and 10.1 in Fig. 3) are sur-
rounded by an external rim with concentric oscillatory zoning.
These cores display corroded and rounded geometries, oscillatory
zoning and high Th/U ratios (0.87). Ten local analyses were carried
out (online Appendix Table 1, in the Supplementary Material
available online at https://doi.org/10.1017/S0016756821000686)
in the oscillatory zoned parts of single zircons and in the external
parts of composite zircon crystals (zircon crystals 3.1 in Fig. 3).
These analyses yielded a 238U–206Pb Concordia age of 302 ± 2
(2σ) Ma (Fig. 5). Otherwise, the spot analyses taken from a xeno-
morphic and rounded core afford a Neoarchaean age (online
Appendix Table 1, in the Supplementary Material available online
at https://doi.org/10.1017/S0016756821000686).

4. U–Pb LA-ICP-MS dating

Zircon crystals were analysed by LA-ICP-MS at the University of
the Basque Country (SGIker) using a 213 nm New Wave Nd:YAG
laser with a pulse energy density of ~4 J cm−2 and a frequency of
10 Hz coupled to a Thermo Fisher XSeries-2 quadrupole ICP-MS.
The analytical spot size was 40 μm in diameter, and in most cases

Fig. 2. Structural map (modified from
A Hilario, unpub. PhD thesis, Univ.
Basque Country, 2004) and synthetic
cross-section (A–B) of Posets pluton.
The star indicates the analysed sample
location. Foliation data of the country
rocks were also compiled from Ríos
et al. (1982, 2002).
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the zircon crystals were completely pierced through. Analytical
acquisition times were up to 56 s. The external calibration was per-
formed to GJ-1 zircon, and the laboratory staff reduced the data
using the Iolite 2.5 software package (Paton et al. 2011; Paul
et al. 2012).

Following the acquisition of the electron backscattered
images with a JEOL 6400-JSM of the University of the Basque
Country (UPV/EHU-SGIker), only the prismatic zircon crystals
with oscillatory zoning (Fig. 6) were selected as targets. These
prismatic zircons also have high Th/U ratios (0.28–0.50; Appendix
Table 2, in the Supplementary Material available online at https://
doi.org/10.1017/S0016756821000686; Fig. 4). Thirty zircon crystals
were analysed and seven of themwere rejected, due to their discordant
ages, for the geological interpretation (online Appendix Table 2, in
the Supplementary Material available online at https://doi.org/10.
1017/S0016756821000686). Data from the analysed spots were
projected on a 207Pb/206Pb vs 238U/206Pb diagram (Tera &
Wasserburg, 1972). Twenty-three of the 30 analyses (online
Appendix Table 2, in the Supplementary Material available
online at https://doi.org/10.1017/S0016756821000686) yielded
a lower interception age of 302 ± 3 (2σ) Ma (Fig. 7). The

weighted average 206Pb–238U age of 301 ± 3 (2σ) Ma (Fig. 7) also
agrees with the result obtained by means of U–Pb SHRIMP
analysis.

5. Discussion

The 3-D geometry of the Posets pluton is well constrained as an
asymmetric inverted drop tilted towards the south (A Hilario,
unpub. PhD thesis, Univ. Basque Country, 2004), which is also
consistent with the southward vergence of themajor Variscan folds
and the N-dipping associated slate cleavage, S2, in the country
rocks (Fig. 2). The pressure crystallization conditions specified
for the Posets pluton suggest an emplacement level at depths of
c. 4 km (A Hilario, unpub. PhD thesis, Univ. Basque Country,
2004). An issue that requires further clarification is the temporal
relationships between the emplacement and the development of
the metamorphic aureole at this shallow level with the inclusion
of metamorphic roof-pendants that preserve the S2 and S1 cleav-
ages. Gleizes et al. (1998b) reported similar observations in the
country rocks of the Cauterets–Panticosa pluton. This observation
would apparently conflict with a synkinematic emplacement dur-
ing D2 and could be interpreted as evidence of a postkinematic
emplacement. However, the following structural and regional
arguments seem to support its emplacement during an event of
dextral transpression associated with D2: (1) the Posets pluton is
confined between two other granites (Fig. 1), 2 km to the SW of
the Lys pluton (Hilario et al. 2003) and 1 km to the NE of the
Millares pluton (Román-Berdiel et al. 2006), the emplacement
of which took place under dextral transpression at the end of
D2; (2) the emplacement ages of the Posets (this work) and Lys
(Esteban et al. 2015) plutons agree within the error limits; and
(3) the existence of S-shaped lineation patterns in the Posets pluton
is similar, in both its layout and orientation (Fig. 2), to sigmoidal
lineation patterns that have been linked with dextral transpression
in many other synkinematic Pyrenean granites (Bouchez &
Gleizes, 1995; Gleizes et al. 1998b; Román-Berdiel et al. 2004;
Porquet et al. 2017). It thus seems reasonable to consider the
Posets pluton as a syn- to late-kinematic granite emplaced during
the dextral transpression triggered at the end of the long-lasting
Variscan deformational event (D2). Therefore, the foliation in
the roof-pendants and xenoliths would correspond to incipient
stages in the development of the S2 foliation within the framework
of a long-lasting regional stress field, whereas the pluton

Fig. 3. Cathodoluminescence images of analysed zircon crystals by SHRIMP.

Fig. 4. Discriminatory and compositional U vs Th diagram of the analysed zircon
crystals
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emplacement and the development of themetamorphic aureole are
short-lived processes that took place in a subsequent stage.

Our new geochronological data (U–Pb SHRIMP and LA-ICP-
MS zircon analyses) from the Posets pluton provide a fairly accu-
rate age of 302 ± 2 Ma. Considering that the morphological
features and high Th/U ratios (>0.1; e.g. Hoskin & Schaltegger,
2003) of the zircon crystals are consistent with its magmatic origin,
the result obtained (≈302 Ma) can be considered as the emplace-
ment age of the Posets pluton. The emplacement age of most syn-
kinematic plutons (syn-D2) from the central Pyreneees falls into a
broad timespan constrained between 298 and 310Ma: for example:
301 ± 9 Ma for the Eaux-Chaudes massif (Guerrot, 2001; Ternet
et al. 2004); 301 ± 9 Ma (Guerrot, 1998) and 306 ± 2 Ma

(Denèle et al. 2014) in the Eastern Cauterets pluton; 298 ± 2 Ma
(NG Evans, unpub. PhD thesis, Univ. Leeds, 1993) and 303 ± 4Ma
(Pereira et al. 2014) in the Maladeta massif; 309 ± 4 Ma (Gleizes
et al. 2006) for the Bordères–Louron pluton; and 300 ± 2 Ma
(Esteban et al. 2015) for the Lys pluton. The new age, 302 ± 2 Ma,
we have obtained for the emplacement of the Posets pluton fits into
the time range specified for the emplacement of the above-
mentioned syn-D2 granite plutons of the central Pyrenees (298
to 310 Ma).

A few Pyrenean granite plutons have yielded much younger
ages: 267.1 ± 1.1 Ma in the Aya pluton (Denèle et al. 2012) and
279.6 ± 3 Ma in the Vielha granodiorite (Pereira et al., 2014), for
example. These ages nearly overlap with those of the Permian

Fig. 5. Tera–Wasserburg plot of the
analysed zircon crystals by SHRIMP.

Fig. 6. Backscattered electron images
of zircon crystals analysed by LA-ICP-MS.
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volcanism recognized more than 60 km to the west, in the Midi
d’Ossau and Anayet volcanic edifices (278–272 Ma; Briqueu &
Innocent, 1993) or in subvolcanic dykes from the Sallent area
(259 ± 3.2 Ma; Rodríguez-Méndez et al. 2014). Owing to this time
convergence, it has been suggested that the Aya pluton wouldmark
the transition from the late Variscan transpression to dextral trans-
tensional conditions that first promoted the opening of
Stephanian–Permian basins and subsequently led to the formation
of the Bay of Biscay rift during the Mesozoic extension (Dènele
et al. 2012). In contrast, according to Pereira et al. (2014), the mag-
matism of the Variscan Pyrenean would be the expression of the
subduction of the Palaeotethys Ocean in a long time interval, from
c. 304 Ma to c. 266 Ma. Nevertheless, certain regional issues would
question the geological meaning of the youngest ages of the
Pyrenean granites. For instance, according to Pesquera and Pons
(1990) and Olivier et al. (1999) the Aya Pluton was synkinemati-
cally emplaced during the main D2 tectonic phase that is uncon-
formably sealed by Stephanian deposits (Campos, 1979). If true,
these facts would require an emplacement older than 290 Ma
for the Aya pluton and the age of 267.1 ± 1.1 Ma (Denèle et al.
2012) could reflect the younging effect of the Alpine Aritxulegi
fault that completely traverses the pluton. Regarding the Vielha
granodiorite the sample is very close to the southern contact of
the pluton (Pereira et al. 2014; Fig. 2), which could have been reac-
tivated as a shear zone during the Alpine orogeny (Leblanc et al.
1994). Consequently, further geochronological work focused on
the possible overprinting effect of the Alpine orogeny would be
desirable to test these interpretations.

6. Conclusions

(1) U–Pb SHRIMP and LA-ICP-MS analysis of zircon crystals
from a diorite of the Posets pluton yields an age ~302 Ma
for its emplacement in the Variscan upper crust, now the
Axial Zone of the Pyrenees, in shallow depth conditions.

(2) The obtained age fits into the wide timespan (310 to 298 Ma)
established from other synkinematic plutons of the central
Pyrenees.

(3) The emplacement and development of the metamorphic
aureole must be considered as short-lived events along the
long-lasting D2 deformational process that led to S2 formation
in a dextral transpressional field.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756821000686
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