
AUDIO EMBEDDINGS HELP TO LEARN BETTER DIALOGUE POLICIES

Asier López Zorrilla, M. Inés Torres

University of the Basque Country UPV/EHU, Spain

Heriberto Cuayáhuitl

University of Lincoln, U.K.

ABSTRACT

Neural transformer architectures have gained a lot of interest
for text-based dialogue management in the last few years.
They have shown high learning capabilities for open domain
dialogue with huge amounts of data and also for domain
adaptation in task-oriented setups. But the potential benefits
of exploiting the users’ audio signal have rarely been ex-
plored in such frameworks. In this work, we combine text
dialogue history representations generated by a GPT-2 model
with audio embeddings obtained by the recently released
Wav2Vec2 transformer model. We jointly fine-tune these
models to learn dialogue policies via supervised learning and
two policy gradient-based reinforcement learning algorithms.
Our experimental results, using the DSTC2 dataset and a sim-
ulated user model capable of sampling audio turns, reveal that
audio embeddings lead to overall higher task success (than
without using audio embeddings) with statistically significant
results across evaluation metrics and training algorithms.

Index Terms— Spoken dialogue systems, audio embed-
dings, reinforcement learning

1. INTRODUCTION

Spoken dialogue systems are inherently devoted to process
the users’ audio signal and to provide the most convenient
response given the dialogue context. But due to the difficul-
ties of working directly with audio signals, these are often
mapped into words using an Automatic Speech Recogniser
(ASR), and then Natural Language Processing (NLP) tech-
niques are applied to understand the user and act accordingly.
This is probably the go-to approach, which has been moti-
vated by recent advances in both ASR and NLP. However, a
speech audio signal is much richer than the words it can be
mapped into—even with perfect recognition—it contains in-
formation about prosody, the users’ emotional mood or the
noise level of the environment, for instance, which should be
relevant for a better decision making in human-machine dia-
logues. This argument is supported by previous studies with
young adults that have compared video chat, audio chat and
text-based chat, where the latter has shown lower levels of
bonding than the other forms of interaction [1].

In this work, we study how audio embeddings can be used
to include this kind of information in the dialogue manager

(DM) of a dialogue system, and whether including it would
yield better dialogues policies. To this end, our first contri-
bution is the creation of a transformer-based DM capable of
processing both the text dialogue history and the audio signal
of the last user’s turn. We employ a fine-tuned GPT-2 [2] net-
work to process the dialogue history and the recent Wav2Vec2
model [3] to handle the users’ audio. We compare this DM
against a version of itself that does not use audio in different
conditions and with different learning algorithms.

Regarding algorithms for training dialogue policies, we
train them first via supervised learning (SL) and then via pol-
icy gradient-based reinforcement learning (RL) with different
reward functions. Spoken dialogue policies are often trained
via RL using user models (UMs) that output dialogue acts or
text. The effect of the dialogue being spoken is usually sim-
ulated by introducing artificial ASR errors. However, using
such UMs is not suitable in our framework for two reasons:
(1) the audio signal corresponding to the user’s turn needs to
be fed into the DM; and (2) the amount of audio data of real
users is very limited and often scarce. We overcome these
limitations with our second contribution: a novel User Au-
dio Sampler. This module is capable of sampling an audio
turn that corresponds to the output of the UM from the corpus
taking into account the dialogue state (including dialogue act,
turn, and repetitions). Our experiments are carried out using
the DSTC2 dataset, since the most recent dialogue datasets
do not include audio. The results on the test UM are in favour
of our hypothesis: audio embeddings help to learn better dia-
logue policies.

The rest of the paper describes related works in Section
2, our proposed approach for audio-based policy learning in
Section 3, our experimental framework (corpus, simulation
pipeline and learning algorithms) in Section 4, experimental
results in Section 5, and Section 6 presents our conclusions.

2. RELATED WORK

Transformer architectures such as BERT [4] or GPT-2 [2]
have shown great potential for text-based dialogue manage-
ment, both in open domain [5] and goal oriented setups [6].
More recently, transformers such as Wav2Vec2 [3] have been
successful in audio-related tasks. Similar to the NLP trans-
formers, Wav2Vec2 has been pretrained on large amounts of
data via self-supervised learning, and has demonstrated to be

(c) 2021 IEEE. Published in the 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (ASRU
2021), scheduled for 14-18 December 2021 in Cartagena, Colombia. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

easy to fine-tune for audio-related tasks like ASR [3], emotion
recognition [7] or spoken language understanding [8] – even
if (very) small domain specific data is available. We are not
aware of any work combining these two kinds of transformers
to build any similar DM to the one presented in this paper.

Moreover, the number of previous works describing dia-
logue systems that process the users’ audio directly (without
an ASR) is rather scarce. [9] and [10] present sequence-to-
sequence models that process audio features in the context of
audio visual scene-aware dialogue [11, 12], where the system
has to answer a number of questions related to an audio visual
scene. However, the audio to be analysed is not the users’ au-
dio, but the scenes’ one. Closer to our approach is [13], who
explore the inclusion of user sentiments in end-to-end dia-
logue systems. They train a dialogue policy that takes some
audio features as input via SL. They found however that us-
ing the output of an external sentiment classifier worked bet-
ter than the raw features. They also fine-tuned their DM using
RL, but without including audio features. The work presented
in [14] is probably the closest to our proposal. They investi-
gate the inclusion of users’ audio in an LSTM-based encoder-
decoder network for response generation in open-domain di-
alogue – without reinforcement learning. To this end, they
first train word-level audio embeddings in a response selec-
tion task and then concatenate those to traditional word em-
beddings to form the input to the network. In contrast to their
work, our approach is based on reinforcement learning, it is
simpler in terms of implementation, it requires no further pre-
training, and we apply it to task-oriented dialogue data for the
first time. In addition, the audio representations used in [14]
were trained without taking into account the word order in
the turns, which could miss valuable audio information such
as the prosody.

In this paper we show that our DM can be easily fine-
tuned using both SL and RL. Even though (deep) RL has es-
tablished methodologies to train many kinds of dialogue sys-
tems [15, 16, 17, 18], the user simulators employed in previ-
ous works only generate either words or dialogue acts – not
audio. The proposed user audio sampler allows the simula-
tion of audio-based dialogue turns. This is novel in the area
of dialogue policy learning. We refer the readers to [19] for a
more-in-depth analysis of RL in spoken dialogue systems.

3. AUDIO EMBEDDINGS APPROACH

This section describes the methodological contributions of the
proposed approach: the transformer-based dialogue model
that creates and processes audio embeddings, and the User
Audio Sampler that enables dialogue policy learning via RL.

3.1. Text dialogue history combining audio information

The proposed dialogue model, illustrated in Figure 1, com-
bines two inputs to represent the state of the dialogue: the

Fig. 1. Proposed dialogue manager diagram.

text dialogue history and the last user turn’s audio. Dialogue
acts are used as output because they facilitate the integration
of a user model (UM) and the policy optimisation with RL.

Dialogue history. In order to keep our approach as sim-
ple and general as possible, each turn in the dialogue history
is represented as text, i.e. no dialogue acts or name entities
are used here. The sequence of turns are processed with a
(pretrained) GPT-2 tokenizer and transformer network. The
GPT-2 tokenizer is based on based on byte-level Byte-Pair-
Encoding, which breaks each turn into sub-words and given
as input to the transformer. To indicate whose turn is (user
or system), we employ a similar strategy to [20]. First, we
add a special token (<sys turn> or <user turn>) at
the beginning of each turn. Second, we introduce a parallel
sequence of inputs of the same length of the main input con-
sisting of segment/speaker embeddings, which is also repre-
sented with the same<sys turn> and<user turn> to-
kens. Last, we add a<da pred> token at the end of both se-
quences to indicate the GPT-2 model that the input sequences
are complete and the dialogue act prediction should be made.
We use the hidden state of the last decoder layer of the GPT-2
model after processing the <da pred> token as the fixed-
length vector representation of the dialogue history.

Last user’s turn’s audio. We use a Wav2Vec2 neural
architecture to extract the audio embedding vectors for dia-
logue act prediction, alongside the aforementioned represen-
tation of the dialogue history. Wav2Vec2 [3] consists of two
main components: a feature encoder that processes a raw au-
dio signal via temporal convolution layers, and a transformer
network on top of it. We follow the same approach to extract
the fixed-length vector representation of the last user’s audio.
We use the hidden state of the transformer’s last layer after
processing the last chunk of the audio. As recommended by

the authors, we keep the feature encoder frozen during train-
ing, and update the transformer to adapt it to our task.

Last, the dialogue history and audio representations are
concatenated, and the unnormalised probability distribution
of the next dialogue act is computed via a single linear layer.

3.2. User Audio Sampler

User simulations often output a dialogue act corresponding to
the next user turn, which is then converted to text via a user
Natural Language Generator (NLG). This approach, however,
is not appropriate in the proposed framework because of the
requirement of an audio signal corresponding to that text.

In order to optimise the chance of finding an audio corre-
sponding to the output of the user model (UM), we do not use
any NLG. Instead, we directly search for turns labeled with
the same dialogue act and associated slots in the corpus of real
dialogues. Multiple user turns are found in most cases, unless
the UM generates dialogue act-slot combinations not appear-
ing in the corpus. From the set of candidates, any turn should
already be valid and its audio and transcription (if needed)
could be provided to the next module in the dialogue system.
However, we consider a couple of factors that make some can-
didates potentially more suitable than others.

First, we take into account the turn number of the current
simulated dialogue compared to the turn number of a given
candidate. The justification is as follows. Assume that a dia-
logue is taking too long and the user starts to feel tired of the
interaction. The user may speak in a different way than in the
first few turns (when the user first met the system). We as-
sume that selecting a turn that occurred in a similar situation
(turn number-wise) of the dialogue to the one the simulation
is in should lead to more realistic simulated dialogues, and
with potentially more relevant audio information.

The second factor is the number of repetitions of the di-
alogue act output by the UM in the dialogue, and its reason-
ing is the following. Assuming that a given dialogue act/slot
combination has been used more than once in a dialogue, it
is probably due to the system not understanding it correctly
and requesting the same information again. When such a sit-
uation happens in a dialogue, users tend to get upset on the
one hand, and to speak louder and slower on the other hand.
This information should also be reflected in the audio signal
and could be exploited to improve dialogue policies.

Thus, the sampling probability of the candidate user turns
is computed as follows. First, we compute a score for each
candidate in terms of the aforementioned two criteria accord-
ing to si =

1

|ti − td|
+

1

|ri − rd|
, where si is the score ob-

tained by the i-th candidate, ti is the turn number of the candi-
date in the original dialogue in the corpus, td is the turn num-
ber of the simulated dialogue, ri is the number of repetitions
of the dialogue act/slot combination in the original dialogue
until the appearance of the candidate, and rd is the number
of repetitions of the dialogue act/slot combination in the sim-

ulated dialogue so far. The scores are then converted into
probabilities by dividing them by the sum of all the scores:
pi =

si∑N
j sj

, where pi is the probability of sampling the i-th

candidate and N is the number of candidates.

4. EXPERIMENTAL FRAMEWORK

4.1. Corpus

Recent dialogue corpora released in the last few years (e.g.
MultiWOZ [21], STAR [22] or SGD [23]) have focused on
text based dialogue modelling and none include audio. The
DSTC2 dataset [24] is by far the most used corpus for re-
search in spoken dialogue technology and we use this corpus
in this work. It contains 3235 human-machine dialogues on
the topic of restaurant search acquired with three different dia-
logue systems. There are 8 slot types in the corpus: area, food
type, restaurant name, price range, address, phone, postcode
and signature. All the slots are requestable, i.e. the user can
ask information about any of those. On the contrary, only the
first 4 slot types are informable, i.e. they can be used as a con-
straint in the restaurant search. The corpus is split into three
partitions: train, dev and test, which contain 1612, 506 and
1117 dialogues respectively. We merge the dev and test par-
titions to build the test UM. In that way the training and test
UMs use similar amounts of data, and therefore this will not
bias the behaviour of the User Audio Sampler, which is sen-
sitive to the number of available audio turns to sample from.

4.2. Dialogue pipeline for simulations

We first initialise our dialogue policies with some iterations
of SL, and then we will further improve them using RL on a
UM built using the same corpus. To this end, we will use the
simulation pipeline described next and illustrated in Figure 2.
Let us describe its components.

Fig. 2. Complete simulation pipeline, see DM in Figure 1.
Boxes in purple indicate our contributions.

Dialogue Manager. For comparison purposes we use two
DMs: our proposal (described in Section 3.1) and the same di-
alogue model but without using audio embeddings. For GPT-
2 we use the publicly available small pretrained architecture,
and for the Wav2Vec2 network the base one.

Regarding the dialogue act format, in the original DSTC2
challenge each turn was labeled with multiple dialogue acts,
for example confirm | area and request | food. In order to sim-
plify the learning task we follow the same procedure as in the
DeepPavlov DSTC2 example [25], and whenever more than
one dialogue act is found in the dataset, we concatenate them
to form a new dialogue act. The example would correspond
to confirm | area + request | food. Our dialogue history was
truncated to include the last 9 turns.

Database. Although no database was released as part of
DSTC2, database calls can be inferred from the data to form
a large enough dataset to perform dialogue simulations with
it. Our DMs are able to make database queries. In order
to log this activity in the text dialogue history, every time a
database query is made, a <db search> token is added to
the dialogue history. If the query is succesful and one or more
restaurants are found, a <db result> token is added next.
A <no db result> token is concatenated otherwise.

Name Entity Recognizer. The outputs of our DMs are di-
alogue acts, and some of them contain one or a few slots. We
use a simple Name Entity Recognizer (NER) based on fuzzy
matching to extract name entities that can then be used to fill
these slot of the dialogue acts. Our NER is a slightly improved
version of the NER of DeepPavlov for this task.

Slot Filler and NLG. We use a rule-based slot filler to se-
lect the slot values associated to a dialogue act. As the dia-
logue progresses, we keep track of the name entities recog-
nised by the NER and the output of the DB searches. De-
pending on the dialogue act, we fill the slots with the last val-
ues recognised by the NER or provided by the DB. The NLG
module generates text corresponding to the system turns given
a pair of dialogue act and selected slots using predefined tem-
plates. Since the UM works at the dialogue act level, this text
is only used to fill the dialogue history processed by the DM.

User Model. The employed UM is based on Attributed
Probabilistic Finite State Bi-Automata [26] and is an extended
version 1 of the work presented in [27, 28]. This data-driven
UM works at the dialogue act level, both for its input and
output, and its goal is selected at the beginning of the sim-
ulations according to the same goal probability distribution
found in the training data. In the DSTC2 corpus the user turns
are labeled with one or more dialogue act and slot value com-
binations. In order to sample a user turn (audio included)
according to a given UM output, the User Audio Sampler
(Section 3.2) selects as candidates those user turns that ex-
actly match all the dialogue act and slot combinations in the
selected dataset partition (train for the training UM, dev and

1We would like to acknowledge Manex Serras for providing us with the
Bi-Automata-based UM.

test for the test UM). If no candidates are found (20% of the
dialogues) the simulation is prematurely finished. Fortunately
and in 96% of cases when this happens, the sampling errors
occur in the very first user turn, due to the constraint combina-
tion of the user goal not appearing in the dataset. This means
that only very rarely—in 0.8% of the simulated dialogues—
computation time is wasted without adverse effects.

ASR/Transcription. Our experiments are carried out
with two types of text input: perfect speech recognition
corresponding to manual transcriptions (TRS), and auto-
matic speech recognition (ASR) corresponding to noisy out-
puts. For the latter we use a separate and publicly available
Wav2Vec2 network, the wav2vec2-base-960h checkpoint that
was fine-tuned for ASR on 960 hours of Librispeech [3].

4.3. Evaluation metrics

We measure the quality of the dialogue policies according to
the following metrics based on [29].

User Request Score (URS): this score (between 0 and 1)
indicates whether the system answers to the user in focus. For
example, this score is high if the system provides a phone
number after the user has requested it. This metric does not
take into account, however, whether that phone number is cor-
rect or not, i.e., if it corresponds to the restaurant the user was
talking about or not. Note that whenever the user did not ex-
plicitly request any information, this score is not computed. A
typical case where this happens is when the system provides
information to the user without the user requesting it. This
happens in 15% of the simulated dialogues.

System Offered Valid Venue (SOVV): this score (also be-
tween 0 and 1) indicates how correct the system informs are.
It is the ratio of the system informs that satisfy the constraints
of the user over the total informs.

Can’t Help Score (CHS): this score (also between 0 and
1) is only computed in a fraction of the dialogues, about 20%
approximately. Sometimes the UM has unreachable goals, for
example a user may want to find a Basque restaurant in the
north but there is none. In that case, the system should inform
that there is no way to find such a restaurant. This score is 1
if the system provides this information, and 0 otherwise.

4.4. Supervised Learning (SL)

Prior to RL, we fine-tune four versions of the DM to adapt the
GPT-2 and Wav2Vec2 models to the DSTC2 task via SL: (1)
a DM without audio embeddings using the users’ transcrip-
tions; (2) a DM with audio embeddings using the users’ tran-
scriptions; and (3,4) another pair of DMs where the textual in-
put is generated by the aforementioned ASR. Each model was
fine-tuned using the training data and optimised according to
the cross entropy loss at the dialogue act level for 3 epochs.
A batch size of four was used throughout all the experiments,
and the loss was minimised using the Adam optimiser with a
learning rate of 5e-5.

4.5. Reinforcement Learning (RL)

We further optimised the models above using policy gradient
RL algorithms. To do that, we used the REINFORCE algo-
rithm [30] with three different reward functions. In addition,
we used an Actor-Critic algorithm [31] with the best of the
three designed reward functions described as follows.

R1 =

{
100× evaluation score, if end of dialogue
−1, otherwise,

R2 =

{
100× evaluation score, if end of dialogue
−0.1, otherwise,

R3 =

100× evaluation score− 50λ, if end of dialogue
50× evaluation score− 25λ, if λ has changed
−0.1, otherwise,

where evaluation score is a weighted average of the eval-
uation metrics, and λ = 1− evaluation score.

While the justification of R2 is due to dialogue optimisa-
tion with less weight on dialogue length, R3 is motivated by
using denser rewards as opposed to sparse ones. The weights
for the URS, SOVV and CHS scores in evaluation score are
0.2, 0.4 and 0.4 respectively in the case of R2; and 0.1, 0.5
and 0.4 in the case of R3. If any metric value is NaN after the
dialogue evaluation, the weights of the remaining scores are
increased proportionally according to their value.

The hyperparameter and implementation details of the RL
algorithms is as follows. In all the cases a discount factor of
0.95 and ADAM optimiser were used with a learning rate of
5e-6. In the case of the Actor-Critic algorithm, the Actor and
the Critic use separate networks initialised with the resulting
weights after the SL stage (except the last linear layer of the
critic). We experienced some convergence problems with the
actor-critic algorithm. We solved them by implementing two
separate losses, one for the actor and the other for the critic.
We also used gradient clipping to prevent gradient exploding.
Each training run, out of 7 runs to provide statistically signif-
icant results, used 10K simulated dialogues.

5. RESULTS

For each learning algorithm-model pair, the results corre-
spond to 7K simulated dialogues (1000 after each of the 7
experiments in the case of the RL algorithms) with the test
UM. Table 1 shows the cumulative reward obtained in the
test UM both after SL and RL. The evaluated reward in the
RL algorithms is the same that was used during the training
stage. Values in bold indicate that a given model performs
better than its counterpart. We have additionally performed
unpaired t-tests for statistical significance with the perfor-
mance values obtained after the 7000 test dialogues: one star
(*) means that the obtained p-value < 0.05 and two stars (**)

Table 1. Cumulative reward on the test UM after SL and RL.

ASR
ASR
+ AE TRS

TRS
+ AE

SL R1 50.4 50.8 67.3 74.4**
SL R2 61.2 62.1 76.2 81.5**
SL R3 74.9 83.9** 127.2 142.4**
REINFORCE R1 62.3 66.2** 78.9 79.7
REINFORCE R2 68.8 71.6** 84.1 87.7**
REINFORCE R3 92.1 95.4** 134.4 145.2*
Actor-Critic R3 114.7 119.8** 166.5 179.3**

that the p-value < 0.01. We used the Welch’s t-test to this
end, which tests whether two populations have equal means
without assuming equal variances.

Our results above provide evidence to support the argu-
ment that learnt dialogue policies using audio embeddings are
superior than their counterpart (without audio embeddings),
both after SL and RL. The cumulative reward—overall per-
formance of the evaluation metrics—is always higher, and
statistically significant in most of the cases. Breaking down
the results into the three evaluation metrics, as shown in Table
2, we can see that the biggest difference in performance lies
in the SOVV metric. This makes sense because its weight is
the highest in the reward functions. The other metric with a
similar weight is CHS, but since it is only computed around a
20% of the times, its total contribution to the cumulative re-
ward is much lower, and therefore CHS is not optimised as
much as the SOVV metric by the RL algorithms. Our results
also show that the USR metric is harder to optimise because
the policies trained via SL already achieve near optimal per-
formance. This justifies a low weight for this metric in the
reward functions. As expected, better results in the test UM
are derived from a more successful training. Figure 3 shows
the evolution of dialogue policy learning with reward R3 and
the Actor-Critic RL algorithm.

To analyse our results further, we plotted the dialogue act
frequency distribution of different DMs. Figure 4 shows this
using the best REINFORCE-based DM (with R3 rewards) in
two ways: in general terms (using all user turns), and filtering
noisy user turns where the audio could be potentially relevant.
We have grouped the dialogue acts in general categories and
have plotted the most frequent ones to keep the histogram as
clear as possible. We should note that the noisy user turns oc-
cur in ∼ 7% in our dataset. In this Figure (4) we can observe
that the audio-driven DMs select more informs and restaurant
offers instead of requests, especially after noisy user turns.
This behaviour indicates that the system is probably aware
that it has difficulties in understanding the user, and prefers to
provide information according to the data it has gathered until
that point in the dialogue, which could possibly be what the
user is looking for – as supported by our SOVV metric.

Table 2. Evaluation metrics comparing policies after SL and RL. Notation: R.=REINFORCE algorithm, AC=Actor-Critic.

SOVV URS CHS

ASR
ASR
+ AE TRS

TRS
+ AE ASR

ASR
+ AE TRS

TRS
+ AE ASR

ASR
+ AE TRS

TRS
+ AE

SL 0.746 0.748 0.873 0.938** 0.969 0.976* 0.985 0.991** 0.658 0.681 0.976 0.971
R. R1 0.744 0.766** 0.868 0.872 0.980** 0.958 0.994* 0.990 0.550* 0.505 0.920** 0.842
R. R2 0.747 0.769** 0.874 0.913** 0.961 0.957 0.990 0.988 0.579 0.569 0.863 0.852
R. R3 0.765 0.795** 0.906 0.921** 0.958** 0.933 0.979 0.981 0.627 0.623 0.903 0.921
AC R3 0.765 0.777* 0.938 0.951* 0.985 0.986 0.993 0.992 0.728 0.710 0.916 0.922

(a) With ASR output.

(b) With manual transcription.

Fig. 3. Cumulative rewards on the training UM with the R3

reward function using the Actor-Critic RL algorithm.

6. CONCLUSION AND FUTURE WORK

We have presented a novel methodology to fine-tune strong
pretrained transformers capable of processing audio and text
for dialogue policy learning. Compared to those that do not
use the users’ audio, audio-driven policies obtain signifi-
cantly higher rewards on a simulated test user model with the

(a) General.

(b) After noisy user turns.

Fig. 4. Histograms of frequent dialogue acts produced by four
versions of the DM on the test UM after REINFORCE R3.

DSTC2 dataset, both after SL and RL. The higher rewards
also lead to higher task-completion rates. Among the evalu-
ation metrics, SOVV improves the most, while the URS and
CHS scores do not improve as much because the URS perfor-
mance was already very high even with the SL-baseline, and
the CHS is only computed in 20% of the dialogues. In future
work we plan to optimise the contribution of each metric in
our reward function using learnt rewards, to test our approach
using a larger set of RL algorithms and DM networks, and
further validate our contributions in other tasks and corpora.

7. REFERENCES

[1] Lauren E. Sherman, Minas Michikyan, and Patricia Greenfield,
“The effects of text, audio, video, and in-person communica-
tion on bonding between friends,” Cyberpsychology: Journal
of Psychosocial Research on Cyberspace, vol. 7(2), 2013.

[2] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever, “Language models are unsuper-
vised multitask learners,” 2019.

[3] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” in NeurIPS, 2020.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[5] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary
Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster,
Eric M Smith, et al., “Recipes for building an open-domain
chatbot,” arXiv preprint arXiv:2004.13637, 2020.

[6] Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and Kee-
Eung Kim, “End-to-end neural pipeline for goal-oriented dia-
logue systems using gpt-2,” in ACL, 2020.

[7] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “Emo-
tion recognition from speech using wav2vec 2.0 embeddings,”
arXiv preprint arXiv:2104.03502, 2021.

[8] Seunghyun Seo, Donghyun Kwak, and Bowon Lee, “Integra-
tion of pre-trained networks with continuous token interface
for end-to-end spoken language understanding,” arXiv preprint
arXiv:2104.07253, 2021.

[9] Dat Tien Nguyen, Shikhar Sharma, Hannes Schulz, and
Layla El Asri, “From film to video: Multi-turn ques-
tion answering with multi-modal context,” CoRR, vol.
abs/1812.07023, 2018.

[10] Hung Le, Doyen Sahoo, Nancy F. Chen, and Steven C. H.
Hoi, “Multimodal transformer networks for end-to-end video-
grounded dialogue systems,” in ACL, 2019.

[11] Huda AlAmri, Vincent Cartillier, Abhishek Das, Jue Wang,
Anoop Cherian, Irfan Essa, Dhruv Batra, Tim K. Marks, Chiori
Hori, Peter Anderson, Stefan Lee, and Devi Parikh, “Audio vi-
sual scene-aware dialog,” in CVPR, 2019.

[12] Huda AlAmri, Vincent Cartillier, Raphael Gontijo Lopes, Ab-
hishek Das, Jue Wang, Irfan Essa, Dhruv Batra, Devi Parikh,
Anoop Cherian, Tim K. Marks, and Chiori Hori, “Audio visual
scene-aware dialog (AVSD) challenge at DSTC7,” CoRR, vol.
abs/1806.00525, 2018.

[13] Weiyan Shi and Zhou Yu, “Sentiment adaptive end-to-end di-
alog systems,” in ACL, 2018.

[14] Tom Young, Vlad Pandelea, Soujanya Poria, and Erik Cambria,
“Dialogue systems with audio context,” Neurocomputing, vol.
388, 2020.

[15] Iñigo Casanueva, Pawel Budzianowski, Pei-Hao Su, Stefan
Ultes, Lina Maria Rojas-Barahona, Bo-Hsiang Tseng, and Mil-
ica Gasic, “Feudal reinforcement learning for dialogue man-
agement in large domains,” in NAACL-HLT, 2018.

[16] Heriberto Cuayáhuitl, Seunghak Yu, Ashley Williamson, and
Jacob Carse, “Scaling up deep reinforcement learning for
multi-domain dialogue systems,” in IJCNN, 2017.

[17] Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang, “Guided
dialog policy learning: Reward estimation for multi-domain
task-oriented dialog,” in EMNLP-IJCNLP, 2019.

[18] Jason D. Williams and Geoffrey Zweig, “End-to-end lstm-
based dialog control optimized with supervised and reinforce-
ment learning,” CoRR, vol. abs/1606.01269, 2016.

[19] Siddique Latif, Heriberto Cuayáhuitl, Farrukh Pervez, Fahad
Shamshad, Hafiz Shehbaz Ali, and Erik Cambria, “A survey
on deep reinforcement learning for audio-based applications,”
CoRR, vol. abs/2101.00240, 2021.

[20] Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement
Delangue, “Transfertransfo: A transfer learning approach for
neural network based conversational agents,” arXiv preprint
arXiv:1901.08149, 2019.

[21] Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng,
Inigo Casanueva, Stefan Ultes, Osman Ramadan, and Milica
Gašić, “Multiwoz–a large-scale multi-domain wizard-of-oz
dataset for task-oriented dialogue modelling,” arXiv preprint
arXiv:1810.00278, 2018.

[22] Johannes EM Mosig, Shikib Mehri, and Thomas Kober, “Star:
A schema-guided dialog dataset for transfer learning,” arXiv
preprint arXiv:2010.11853, 2020.

[23] Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav
Gupta, and Pranav Khaitan, “Towards scalable multi-domain
conversational agents: The schema-guided dialogue dataset,”
in AAAI, 2020, vol. 34.

[24] Matthew Henderson, Blaise Thomson, and Jason D Williams,
“The second dialog state tracking challenge,” in SIGDIAL,
2014.

[25] Mikhail Burtsev, Alexander Seliverstov, Rafael Airapetyan,
Mikhail Arkhipov, Dilyara Baymurzina, Nickolay Bushkov,
Olga Gureenkova, Taras Khakhulin, Yurii Kuratov, Denis
Kuznetsov, et al., “Deeppavlov: Open-source library for di-
alogue systems,” in ACL System Demonstrations, 2018.

[26] M Inés Torres, “Stochastic bi-languages to model dialogs,” in
FSMNLP, 2013.

[27] Manex Serras, Marı́a Inés Torres, and Arantza del Pozo, “Goal-
conditioned user modeling for dialogue systems using stochas-
tic bi-automata.,” in ICPRAM, 2019.

[28] Manex Serras, Marı́a Inés Torres, and Arantza del Pozo, “Im-
proving dialogue smoothing with a-priori state pruning.,” in
ICPRAM, 2020.

[29] Florian Kreyssig, Iñigo Casanueva, Paweł Budzianowski, and
Milica Gasic, “Neural user simulation for corpus-based policy
optimisation of spoken dialogue systems,” in Proceedings of
the 19th Annual SIGdial Meeting on Discourse and Dialogue,
2018, pp. 60–69.

[30] Ronald J Williams, “Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning,” Machine
learning, vol. 8, no. 3-4, 1992.

[31] Vijay R Konda and John N Tsitsiklis, “Actor-citic agorithms,”
in NIPS, 1999.

