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Abstract: Candida albicans is the major etiological agent of invasive candidiasis but the increasing
prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely
related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences
in virulence among these species and their therapeutic responses using in vivo non-mammalian
models are scarcely analysed. The aim of this study was analyse the survival of G. mellonella and
host-pathogen interactions during infection by C. glabrata, C. nivariensis and C. bracarensis. Moreover,
therapeutic responses to echinocandins were also assessed in the G. mellonella model of candidiasis.
These three species produced lethal infection in G. mellonella; C. glabrata was the most virulent
species and C. bracarensis the less. Haemocytes of G. mellonella phagocytised C. bracarensis cells more
effectively than those of the other two species. Treatment with caspofungin and micafungin was most
effective to protect larvae during C. glabrata and C. nivariensis infections while anidulafungin was
during C. bracarensis infection. The model of candidiasis in G. mellonella is simple and appropriate
to assess the virulence and therapeutic response of these emerging Candida species. Moreover, it
successfully allows for detecting differences in the immune system of the host depending on the
virulence of pathogens.

Keywords: emerging pathogen; pathogenesis; antifungal susceptibility; invertebrate models

1. Introduction

There is a substantial change in the aetiology of candidiasis worldwide, with an increas-
ing prevalence of non-Candida albicans species, such as Candida parapsilosis, Candida glabrata,
Candida tropicalis, Candida krusei and Candida auris. C. glabrata is an emerging pathogen
and the second cause of candidaemia in the USA, Canada, Australia and Northern and
Eastern Europe. In Latin America, Africa, and the European Mediterranean countries
such as Spain, candidiasis due to C. glabrata are the third most frequent, behind those
caused by C. albicans and C. parapsilosis [1]. Candida bracarensis and Candida nivariensis
are species phylogenetically close to C. glabrata that should be identified by molecular
methods, including MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionization Mass
Spectrometry), due to their high phenotypic similarities and genetic closeness [2–5].

C. glabrata often develops resistance to widely used azoles, especially fluconazole [6].
Since the echinocandins, anidulafungin (AND), caspofungin (CAS), and micafungin (MCF),
present high activity against C. glabrata, there are the treatment of choice for C. glabrata inva-
sive infections. These antifungal drugs inhibit the synthesis of cell wall β-1,3-glucan, which
is encoding in FKS1, FKS2, and FKS3 genes. However, echinocandin resistance, associated
with FKS genes mutations, has been reported in C. glabrata [7–10], specifically in the hot
spot mutations of FKS1 and FKS2 genes [6,11,12]. Moreover, differences in the expression
of these two FKS genes were detected between young and old C. glabrata cells [13]. Besides
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point mutations, overexpression of FKS genes were also noted in 14-generation-old cells
of C. glabrata resistant to MCF and in the biofilms formed by this specie after contact with
MCF [13,14]. Frequency of C. nivariensis and C. bracarensis candidiasis is low (0.05–0.2%)
and evidence on echinocandins activities against these species is scarce [15–17]. However,
it is necessary a deeper knowledge to avoid therapeutic failures [18].

Common mammalian models of infection are linked to ethical concerns that rec-
ommend limiting their use. Models in invertebrate animals, such as those developed
in Caenorhabditis elegans (Rhabditida: Rhabditidae) and in Galleria mellonella (Lepidoptera:
Pyralidae), are being increasingly introduced for studying host-pathogen interactions
and for evaluating antimicrobial efficacy of conventional antimicrobial agents and new
molecules [18–21]. The caterpillar larvae of G. mellonella, commonly known as the greater
wax moth, is a useful model for studying host-pathogen interactions because its immune
system has conserved similarities with the mammal innate defences [22–24]. These in-
teractions can be evaluated by assessing the larvae response against pathogens and the
phagocytic capacity of haemocytes present in the haemolymph of the larvae [25,26]. Fur-
thermore, the G. mellonella model of candidiasis has been successfully applied to monitor
the difference virulence between young and old cells of C. glabrata [27,28].

In this work, we analyse the virulence of C. glabrata, C. nivariensis and C. bracarensis
in G. mellonella, and the interactions between these Candida species and the G. mellonella
haemocyte density and phagocytic response. Moreover, the effectiveness of echinocandins,
AND, CAS, and MCF, for treating invasive candidiasis caused by these Candida species
was evaluated in the G. mellonella host model.

2. Materials and Methods
2.1. Candida Strains and Growth Conditions

Six commercially available reference strains, including two strains of each species C.
glabrata, C. nivariensis and C. bracarensis, were obtained from different culture collections
(Table 1).

Table 1. Survival of G. mellonella larvae infected with 1 × 106 cells/larva of C. glabrata, C. nivariensis and C. bracarensis with
and without treatment with echinocandins.

Strain Origin Collection Reference Survival Percentages of
G. mellonella at 120 h

Most Effective Antifungal Treatments
(Survival Rate Increase of

G. mellonella at 120 h)

Candida glabrata

ATCC 90030 Blood American Type Culture
Collection 38.7%

Micafungin, 8 µg/larva (34.6%)
Micafungin, 4 µg/larva (33%)

Caspofungin, 4 µg/larva (33%)

NCPF 3203 Blood National Collection of
Pathogenic Fungi 39.2%

Anidulafungin, 4 µg/larva (45.8%)
Micafungin, 8 µg/larva (42.5%)

Caspofungin, 8 µg/larva (42.5%)

Candida nivariensis

CBS 9984 Bronchoalveolar
lavage

Westerdijk Fungal
Biodiversity Institute 43.3%

Micafungin, 4 µg/larva (41.7%)
Caspofungin, 8 µg/larva (38.4%)
Caspofungin, 4 µg/larva (35%)

CECT 11998 Blood Spanish Type Culture 45.8%
Caspofungin, 4 µg/larva (35.9%)
Caspofungin, 8 µg/larva (34.2%)
Micafungin, 4 µg/larva (29.2%)

Candida bracarensis

NCYC 3397 Blood National Collection of
Yeast Cultures 42.5%

Anidulafungin, 4 µg/larva (29.2%)
Caspofungin, 8 µg/larva (19.2%)

Anidulafungin, 8 µg/larva (14.2%)

NCYC 3133 Catheter National Collection of
Yeast Cultures 55.7%

Micafungin, 4 µg/larva (24.3%)
Anidulafungin, 8 µg/larva (21%)
Caspofungin, 8 µg/larva (14.6%)

Yeasts were cultured overnight in yeast extract peptone dextrose broth (YEPD; 1%
yeast extract, 2% bacteriological peptone, 2% d-glucose) medium (Panreac, Spain) at 30 ◦C
under shaking conditions. Then, yeast cells were washed three times with phosphate-
buffered saline solution (PBS) and resuspended in PBS supplemented with ampicillin
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(20 mg/L) to prevent infection with bacteria naturally present on the surface of G. mellonella
larvae. Cell counting was performed by microscopy using a Burker haemocytometer and
three concentrations of 1 × 107, 1 × 108 and 1 × 109 yeast cells/mL were prepared in
PBS-ampicillin (20 mg/L) to use as inocula.

2.2. Survival of Galleria mellonella

Larvae of G. mellonella weighing between 0.3 and 0.5 g (Bichosa, Spain) were placed in
groups of 20 individuals in Petri plates to perform the experiments. The last left pro-leg
of larvae was cleaned with ethanol 70% before injecting 10 µL of Candida suspension into
the larvae haemocele with a precision syringe (ref. P/N 5190-1493, Agilent, Santa Clara,
CA, USA). The final inocula tested were 1 × 105, 1 × 106 and 1 × 107 cells/larva. Two
uninfected larvae groups were used as controls in all trials: a group of untouched larvae
and a group of larvae injected with 10 µL of PBS-ampicillin to control the possible impact
of the injection and the effect of the PBS-ampicillin buffer on larvae survival (sham group).
The larvae were incubated at 37 ◦C in dark for 120 h, and survival was monitored every
24 h by visual inspection of melanisation and the absence of movement. Each trial was
performed at least three times on different days. A total of 180 larvae were used to assess
the infection caused for each of the six Candida strains and 40 larvae were used as control
in each trial.

2.3. Haemocyte Density Determination

Groups of five larvae of G. mellonella were inoculated with 1 × 105, 1 × 106 and
1 × 107 cells/larva. As control, a group of uninfected larvae inoculated with 10 µL PBS-
ampicillin was used (sham group). Larvae were incubated at 37 ◦C in dark for 3 h and then,
50 µL of haemolymph was collected from each larva and mixed with insect physiological
saline buffer (IPS buffer; 150 mM sodium chloride, 5 mM potassium chloride, 10 mM
Tris-HCl pH 6.9, 10 mM EDTA and 30 mM sodium citrate) to avoid melanisation and
coagulation of haemolymph. Haemocyte density was determined by microscopy counting
using a haemocytometer. Each assay was performed at least three times on different days.

2.4. Phagocytic Activity of Haemocytes

Five G. mellonella larvae were used for each Candida strain. Yeast cells were stained
with 0.4 mg/mL of Calcofluor white (Sigma Aldrich, St. Louis, MO, USA) for 30 min
at 30 ◦C and washed twice with PBS before inoculated in each larva 1 × 106 cells/larva.
Larvae were incubated at 37 ◦C for 2 h and afterwards, 50 µL of haemolymph of each
larva was collected in the same volume of IPS buffer. Phagocytosis quantification was
performed by fluorescence microscope Nikon Eclipse 80i (Nikon, Tokyo, Japan) counting a
minimum of 100 haemocytes with and without yeast phagocytised from each larva. Trials
were performed at least three times on different days.

2.5. Antifungal Treatments with Echinocandins

Groups of 20 larvae of G. mellonella were inoculated with 1 × 106 cells/larva. These
infected larvae were treated with the echinocandins, AND (Pfizer SA, Madrid, Spain), CAS
(Merk & Com Inc., Kenilworth, NJ, USA) and MCF (Astellas Pharma Inc., Tokyo, Japan)
at concentrations of 4 and 8 µg/g larva. The stock solutions of the three echinocandins
were dissolved in dimethyl sulfoxide (DMSO) according to the manufacturer’s recom-
mendations, and then, the doses of antifungal drugs for treatments were prepared with
PBS-ampicillin. The treatments were administrated with the pathogen inocula in a final
volume of 10 µL per larva, 20 larvae were included in each condition. Moreover, three
control groups with uninfected larvae were included, a group of untouched larvae, a group
of larvae injected with PBS-ampicillin (sham group), and a third group of larvae injected
with each antifungal drug to evaluate their possible toxicity. The larvae were incubated
at 37 ◦C in dark for 120 h, and survival was monitored every 24 h by visual inspection
of melanisation and the absence of movement. Each trial was performed at least three
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times on different days. A total of 780 larvae were used to assess the effect of the different
treatments against each of the six Candida strains and 100 larvae were used as control in
each trial.

2.6. Statistics

The results obtained of haemocytes production and phagocytic activity were analysed
using one-way ANOVA with the statistical program SPSS v24.0 (IBM, Chicago, IL, USA).
Survival analysis curves were prepared with the Kaplan-Meier method using GraphPad
Prism 5 software (GraphPad Software, San Diego, CA, USA). Differences in G. mellonella
survival infected with the Candida strains and exposed to the different antifungal treatments
were analysed by the log-rank test using SPSS v24.0. The value of p < 0.05 was considered
as statistically significant.

3. Results
3.1. Virulence of Candida in the G. mellonella Model

C. glabrata, C. nivariensis and C. bracarensis caused invasive candidiasis in the G. mellonella
model. Significant differences were observed in the survival of infected and uninfected
larvae used as controls (p ≤ 0.003). Survivals of untouched larvae and those PBS-ampicillin
injected larvae were 87% ± 1.45% and 88.5% ± 1.5%, respectively, without significant
differences among them (p = 0.663).

Three inocula were assayed to evaluate the virulence of the strains of C. glabrata,
C. nivariensis and C. bracarensis observing that larval mortality was inoculum-dependent.
Mortality rate was directly proportional to the injected inoculum: 34.7% ± 7.1%, 55.9% ± 6.4%
and 76.8% ± 10.3% from lowest to highest inocula, respectively. Moreover, there were
significant differences among the three species (p ≤ 0.001) (Figure 1). The virulence of
these species in the G. mellonella model was categorised as C. glabrata > C. nivariensis >
C. bracarensis, in all the cases regardless of the inoculum applied. However, there were
mortality rate differences among the injected inocula with the strains of each species.

The infection caused by 1 × 107 cells/larva showed that C. glabrata was significantly
more virulent than C. nivariensis (p ≤ 0.024) and C. bracarensis (p ≤ 0.001), showing dif-
ferences in their killing kinetics. At 48 h of infection, larvae inoculated with C. glabrata
achieved mortality rates above 80%, while the mortality rate was 50–60% for those inoc-
ulated with C. nivariensis and C. bracarensis. However, during the next 72 h of infection,
C. glabrata killed 8% more larvae, and C. nivariensis and C. bracarensis killed more than
20% (Figure 2a). There were also significant differences between the C. nivariensis CBS
9984 strain and the C. bracarensis NCYC 3133 strain, being the last one the least virulent of
tested strains (p = 0.048).

Strikingly, there were no significant differences in virulence among the three species
when larvae were inoculated with 1 × 106 and 1 × 105 cells/larva, except for the C. bracarensis
NCYC 3133 strain that achieved the highest survival rate (55.7% and 75%, respectively) at
120 h post-infection. Survival of G. mellonella inoculated with 1 × 106 cells/larva was lower
than 55% at 48 h post-infection except with the C. bracarensis NCYC 3133 strain, which
it took more than 120 h to reach a mortality rate of 44% (Figure 2b). This latter and the
C. nivariensis CECT 11998 strains did not kill more than 28% of the larvae after 120 h with
the inoculum of 1 × 105 cells/larva, and the remaining Candida strains failed to kill more
than 42% of the larvae (Figure 2c).

No differences in the larvae survival were found within the two C. glabrata strains or
within both C. nivariensis strains, regardless of the inoculum used. However, the survival
for larvae infected with 1 × 106 cells of C. bracarensis strain NCYC 3397 was significantly
lower than that of larvae infected with the C. bracarensis NCYC 3133 strain (p = 0.013).
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3.2. Haemocyte Production during Candidiasis

G. mellonella larvae were injected with 1 × 105, 1 × 106 and 1 × 107 cells/larva and
haemocytes density was calculated at 3 h post-infection (Figure 3). The injection of PBS-
ampicillin and the two lowest inocula of all species, except 1 × 106 cells/larva of both
C. nivariensis strains (p ≤ 0.492), induced a significant increase (p ≤ 0.005) in the number of
haemocytes compared with the control group of untouched larvae. It is noteworthy that the
density of haemocytes from larvae infected with the highest inoculum (1 × 107 cells/larva)
of both strains of C. glabrata, and C. nivariensis strain CECT 11998 was significantly lower
in comparison to that from larvae infected with both C. bracarensis strains (p ≤ 0.041).

Larvae infected with C. bracarensis showed the highest haemocyte density to overcome
the infection caused with any of the three inocula tested, without significant differences
among them. Neither was difference between the haemocyte densities of the larvae infected
with the three inocula of the C. nivariensis CBS 9984 strain. However, larvae infected with
1 × 105 and 1 × 106 cells of C. glabrata showed a higher haemocyte number than those
infected with 1 × 107 yeasts (p ≤ 0.004).
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C. glabrata, C. nivariensis and C. bracarensis. Statistically significant differences compared to larvae infected with C. bracarensis
(*), 1 × 107 cells/larva of C. glabrata (**), and 1 × 107 and 1 × 106 cells/larva of C. nivariensis strain CECT 1198 (#).

3.3. Phagocytic Activity of G. mellonella Haemocytes during Candidiasis

Phagocytosis was evaluated with larvae infected with 1 × 106 Candida cells/larva,
which was considered, according to the results of haemocyte density determination, the
most suitable inoculum because of the adequate number of haemocytes and yeasts.

The three Candida species were phagocytosed after 2 h of the infection (Figure 4).
C. bracarensis was more effectively phagocytosed than C. glabrata and C. nivariensis. The
percentage of haemocytes that phagocytosed C. bracarensis strain NCYC 3397 was the
highest observed (11.26% ± 0.91%) and it was significantly different to the other two
species (p ≤ 0.041). In contrast, cells of C. nivariensis strain CECT 11998 were the least
phagocytosed (5.31% ± 0.71%, p ≤ 0.001).

3.4. Efficacy of Echinocandins Treatment of Invasive Candidiasis in G. mellonella

In a previous study we reported the in vitro antifungal activity of echinocandins
against these six strains of Candida. All strains were susceptible to the three echinocandins
tested. MIC values for AND of 0.06 µg/mL and 0.03 µg/mL for MCF were obtained against
all strains. MIC values for CAS of 0.5 µg/mL were observed against the C. glabrata ATCC
90030 strain and 0.25 µg/mL against the other five Candida strains [15].

Treatment with three different echinocandins was analysed in vivo after the injection
of 1 × 106 cells/larva in G. mellonella. This inoculum was selected as the most appropriate
because the larvae survival was similar during the infection by all six strains, so the effect of
the antifungal treatment could be more accurately assessed. The antifungal drugs were not
toxic for G. mellonella; survivals of larvae injected with antifungal drugs were 86% ± 3.4%,
without significant differences among the other two controls (p ≥ 0.29).

Echinocandin treatment was very effective against C. glabrata candidiasis. After 120 h
there was a reduction in larvae mortality of between 33% and 45.8% (Table 1). However,
the efficacies of these echinocandins against C. glabrata infection were strain-dependent
(Table 1 and Figure 5a,b).
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Figure 5. Activity of echinocandins in the treatment of G. mellonella infection by C. glabrata ATCC
90030 (a), C. glabrata NCPF 3203 (b), C. nivariensis CBS 9984 (c), C. nivariensis CECT 11998 (d),
C. bracarensis NCYC 3397 (e), and C. bracarensis NCYC 3133 (f). Larvae were inoculated with 1 × 106

cells/larva and treated with anidulafungin (AND), caspofungin (CAS) and micafungin (MCF) at
concentrations of 4 and 8 µg/g larva.

Candidiasis caused by both C. glabrata strains responded to MCF at the two concen-
trations tested, achieving a significant increased larvae survival with respect to infected
and untreated larvae (p = 0.000). Specifically, treatment with MCF (8 µg/larva) against
ATCC 90030 strain infection increased larvae survival from 38.7 to 73.3%. During treatment
against CBS 3203 strain candidiasis, survival increased from 39.2 to 81.7% compared to the
survival of infected and untreated larvae.

CAS was also effective against C. glabrata candidiasis: the larvae survival was signifi-
cantly higher than that of infected and untreated larvae (p ≤ 0.004). Treatment of NCPF
3203 strain infection with 4 µg/g larva of CAS reached a 39.1% increase in survival of
larvae. This survival increase was higher (42.5%) using 8 µg/g larva of CAS. However,
when candidiasis caused by ATCC 90030 was treated with 8 µg/g larva of CAS the survival
of G. mellonella increased to 18%, while with 4 µg/g larva of CAS, it increased up to 33%.

C. glabrata NCPF 3203 infection only responded adequately to 4 µg/g larva of AND.
An increase of larvae survival of 45.8% with respect to infected and untreated control group
was achieved (p ≤ 0.011). The G. mellonella larvae infected with the ATCC 90030 strain
showed no improvement with AND treatment. Although the mortality of larvae infected
with this strain and treated with 8 µg/g larva of AND increased up to 7%, there were
no differences in the survival when compared with infected and untreated control larvae
group (Figure 5a).

C. nivariensis infection was successfully treated with MCF and CAS (Figure 5c,d). The
survival rates of larvae infected with both strains of C. nivariensis and treated with CAS
ranged from 61.6% to 65.8%, and there were significant differences compared to those
infected and untreated larvae (p = 0.000). A statistically significant increase in larvae
survival was also detected when G. mellonella infected with C. nivariensis was treated with
MCF (p ≤ 0.001). Larvae survival increased up to 41.7% with 4 µg/g larva of MCF against
the infection by the C. nivariensis CBS 9984 strain. Strikingly, this significant difference was
not detected in larvae infected with the C. nivariensis CBS 9984 strain and treated with MCF
at the highest concentration (8 µg/g larva) that only got a survival increase of 8.4%.

AND treatment of C. nivariensis infection was the least effective. Only 4 µg/g larva
of AND significantly increased G. mellonella survival (33.4%) during infection with the
C. nivariensis CBS 9984 strain (p = 0.000) (Figure 5c). The treatment of candidiasis by
C. nivariensis strain CECT 11998 with AND even increased the larvae mortality (28.3% with
4 µg/g larva of AND, and 38.3% with 8 µg/g larva of AND) (Figure 5d).
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C. bracarensis infection was the least susceptible to treatment with echinocandins
(Figure 5e,f). It is noteworthy that AND was the most effective during G. mellonella infection
with this Candida species. The concentration of 4 µg/g larva of AND presented the highest
protective effect during larvae infection with the C. bracarensis NCYC 3397 strain: infected
and untreated larvae survival was 42.5% and treatment with AND increased survival to
71.7%. The therapeutic agents MCF (4 µg/g larva) and AND (8 µg/g larva) reached also
high effect against C. bracarensis NCYC 3133 infection: larvae survival rate significantly
increased by 24.3% (p = 0.002) and 21% (p = 0.008), respectively. Although the rest of
MCF treatments achieved mortality reductions between 5.8% and 11%, there were no
differences with the infected and untreated control group. The antifungal agent CAS
during C. bracarensis infection reduced the larvae mortality rate between 6.3% and 19.2%,
and there were also no differences with untreated larvae, except in larvae infected with the
C. bracarensis NCYC 3397 strain and treated with 8 µg/g larva of CAS (19.2% of survival
increase) (p = 0.015).

4. Discussion

Alternative animal models, such as those in C. elegans and G. mellonella, have been
explored as a useful option to study the pathogenesis and treatment of invasive candidiasis.
The use of G. mellonella has acquired relevance as larva size makes possible to control the
infection development and treatment more easily, since it allows the injection of microor-
ganism suspensions and antimicrobial treatments at specific concentrations [19,25,26,29].
However, there are few studies about C. glabrata, C. nivariensis and C. bracarensis candidiasis
using in vivo non-mammalian models [18,20,22]. These three species present similar phe-
notypic characteristics and are difficult to differentiate from each other without molecular
methods based on PCR, sequencing or MALDI_TOF MS; they are taxonomically different,
and their pathogenesis and antifungal susceptibility can also be very different. Although
the incidence of candidiasis caused by C. nivariensis and C. bracarensis is low, several authors
consider that the difficulty in achieving a correct identification may be causing a misjudg-
ment of the real medical importance of these species [2–4]. In addition, the emergence of
isolates resistant to antifungal drugs, such as amphotericin B, fluconazole, voriconazole
and even echinocandins, makes it necessary to deepen the knowledge on C. glabrata and
these two closely related species [15,30–33].

Therefore, in the present study the usefulness of G. mellonella model to assess the
pathogenicity of C. glabrata, C. nivariensis and C. bracarensis was analysed. The six strains
studied of these Candida species developed invasive candidiasis in larvae of G. mellonella:
C. glabrata and C. bracarensis were the most and less virulent species, respectively, just as we
had previously observed in a model of candidiasis in C. elegans in which C. glabrata killed
the highest percentage of nematodes followed by C. nivariensis and C. bracarensis [20].

A notable difference between these two models, C. elegans and G. mellonella, is the
yeast inoculum administered. In the case of G. mellonella model, Candida cells are injected
into haemolymph, allowing a more precise control and better knowledge of the effect of
yeast inocula [29]. In an attempt to detect the most appropriate inoculum, three different
Candida concentrations were evaluated. The highest concentration (1 × 107 cells/larva)
showed significant virulence differences between the three Candida species. Ames et al. [18]
also reported that the highest injected dose tested (7.5 × 106 cells/larva) was the best for
studying C. glabrata virulence in G. mellonella. Nevertheless, other Candida species such as
C. albicans, C. tropicalis, C. krusei and C. parapsilosis complex required lower yeast inocula to
cause candidiasis in this model, even detecting higher larvae mortality rates than those
observed for C. glabrata [21,22,25]. Furthermore, and in agreement with previous studies,
an increase in mortality was observed in G. mellonella as the injected fungal load was
higher [18,19,26].

An additional highlight of the G. mellonella model of invasive candidiasis is the analy-
sis of host-pathogen interactions. This lepidopteran uses different mechanisms to combat
pathogens, such as a variable production of haemocytes and the phagocytic activity of
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haemocytes according to the virulence of pathogens [33]. Larvae of G. mellonella infected
with C. glabrata and C. nivariensis produced fewer haemocytes than those infected with
C. bracarensis, and the latter species was the most effectively phagocytized by haemo-
cytes. This was consistent with the ability of these three species to develop infection in
G. mellonella. Several authors have attributed the decrease of haemocytes in haemolymph
to the formation of nodules at the sites of infection in order to contain the spread of
pathogens [19,26,33]. The haemocyte production observed in other studies during the
infection caused by C. albicans, C. krusei, C. tropicalis, C. parapsilosis or C. orthopsilosis was
even lower, likely due to a higher virulence of these species [19,25,26]. C. bracarensis as well
as other not so virulent species, such as C. metapsilosis, generated a low G. mellonella haemo-
cyte response. Although the phagocytic rate detected in larvae infected with C. parapsilosis
complex was higher than that detected with C. glabrata, a significant difference was ob-
served in the less virulent species, C. metapsilosis and C. bracarensis, respectively, compared
to other close-related species [25]. Nevertheless, it has been reported that the presence
of C. glabrata enhances the activity of G. mellonella haemocytes enough to protect larvae
against subsequent lethal fungal infections by C. albicans, C. tropicalis and Cryptococcus
neoformans [21]. The increased expression of redox related proteins, the presence of mul-
tidrug transporter such as CgTpo4 or the expression of the transcription factor CgTog1 to
survive upon phagocytosis are determinant mechanisms of virulence recently described
in C. glabrata; and this species requires them to survive host defence, quickly develop
resistance to drugs and kill G. mellonella [23,24,34,35]. On this issue, both species closely
related to C. glabrata, C. nivariensis and C. bracarensis, are very poorly studied, therefore,
their research using the great potential of the G. mellonella model of candidiasis is promising
and encouraging.

In vitro antifungal susceptibility has been widely studied in C. glabrata, C. nivariensis,
and C. bracarensis, indicating a reduced susceptibility or even resistance to azoles and
amphotericin B [30,31]. Specifically, the six strains of these three closely related species,
used in the current study, were in vitro susceptible to amphotericin B, azoles (posaconazole
and voriconazole) and all three echinocandins [20].

Echinocandins are mainly indicated for the treatment of candidiasis caused by C.
glabrata [11,36,37]. However, an increase in echinocandin resistance has been described,
mainly due to acquired FKS mutations associated to previous exposure to these drugs.
Although the incidence of these mutations is still low, it could be useful to know the local
resistance patterns to establish adequate empirical treatment strategies [7,8,17]. Echinocan-
dins treatment was effective against the infection caused by these three Candida species
in G. mellonella host model. CAS and MCF showed in vivo efficacy during C. glabrata
and C. nivariensis infections while AND during C. bracarensis candidiasis. These find-
ings are strongly consistent with those previously observed in the C. elegans model of
candidiasis [20]. Treatment with CAS protected the larvae during C. glabrata infection,
maintaining survival above 72% after 120 h infection. Ames et al. [18] also detected
up to 80% survival rate in C. glabrata infection treated with 4 µg/g larva of CAS. This
effectiveness of CAS has also been reported in C. glabrata murine models of invasive can-
didiasis [38–40]. However, Healy et al. [41] reported that administration of high doses of
CAS (20 mg/kg) to murine for 5–9 days selected C. glabrata strains with FKS mutations
resistant to echinocandins. Although in time-kill studies echinocandins showed a lower
effect against C. nivariensis [42], we observed that CAS achieved a reduction in larval mor-
tality during C. nivariensis infection. Lopez-Soria et al. [43] observed that CAS was very
effective in resolving a catheter-associated fungemia caused by C. nivariensis. Moreover,
C. nivariensis and C. bracarensis have been susceptible to CAS in vitro [15,17,31].

The effectiveness of treatment with MCF of candidiasis caused by C. glabrata in murine
was also reported [44,45]. However, in these studies a higher MCF concentration than
those used of CAS was required to achieve the same effect. In the present study, MCF was
also effective against C. nivariensis infection confirming the in vitro susceptibility of this
species to the MCF [15,38,46].
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Treatment with AND was the least effective against infection caused by C. glabrata and
C. nivariensis in G. mellonella. Strikingly, larvae infected with C. glabrata ATCC 90030 and
C. nivariensis CECT 11998 strains and treated with AND showed an increase in mortality
up to six times higher than that of infected and untreated larvae. This lower effect of AND
treatment has also been reported in a murine model of C. glabrata infection [38]. However,
infected larvae treated with AND showed a reduction in mortality rates higher than with
CAS and MCF in C. bracarensis infection in G. mellonella. This is consistent with observations
reported in other C. bracarensis candidiasis models and in vitro susceptibility [15,20,31].

In conclusion, our findings demonstrate that G. mellonella is a suitable model to analyse
the virulence and host-pathogen interactions caused by emerging species of Candida and
to assess the efficacy of echinocandins as therapy. This study contributes to encourage
future research to extend this model in the studying of candidiasis by C. albicans and other
emerging Candida species.
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