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Abstract: Achieving geometrical accuracy in cylindrical traverse grinding for high-aspect slender
parts is still a challenge due to the flexibility of the workpiece and, therefore, the resulting shape
error. This causes a bottleneck in production due to the number of spark-out strokes that must be
programmed to achieve the expected dimensional and geometrical tolerances. This study presents an
experimental validation of a shape-error prediction model in which a distributed load, corresponding
to the grinding wheel width, is included, and allows inclusion of the effect of steady rests. Headstock
and tailstock stiffness must be considered and a procedure to obtain their values is presented.
Validation of the model was performed both theoretically (by comparing with FEM results) and
experimentally (by comparing with the deformation profile of the real workpiece shape), obtaining
differences below 5%. Having determined the shape error by monitoring the normal grinding force,
a solution was presented to correct it, based on a cross-motion of the grinding wheel during traverse
strokes, thus decreasing non-productive spark-out strokes. Due to its simplicity (based on the shape-
error prediction model and normal grinding force monitoring), this was easily automatable. The
corrective compensation cycle gave promising results with a decrease of 77% in the shape error
of the ground part, and improvement in geometrically measured parameters, such as cylindricity
and straightness.

Keywords: cylindrical traverse grinding; slender; shape error; deformation; steady rest

1. Introduction

Grinding is an abrasive machining process carried out in the last step of manufac-
turing due to its capability to obtain smooth surfaces and precise geometrical tolerances.
Traverse grinding is an extended type of the cylindrical grinding process used for parts
such as electric motor shafts, pneumatic cylinders and hydraulic cylinders and is based
on the kinematics of plunge grinding with a cross-feed motion parallel to the workpiece
axis. This process comes with several non-controlled variables that change during the
operation, producing defects in the workpiece topography [1], including shape errors [1]
and chatter [1–3]. This study is focused on the shape error of slender parts because shape
form for these parts must be very accurate. For this purpose, the grinding machine’s
structural stiffness must be very high because the system flexibility will determine the
part’s geometrical accuracy. The forces produced in the contact between tool and work-
piece generate relative displacements between them, affecting the workpiece geometry [4].
In the case of slender parts, the main stiffness problem is with the part itself, due to its
high flexibility (which varies depending on its geometry along its length). Although, for
slender parts, the part itself is the least rigid element of the system, system stiffness and
headstock-center eccentricity must be considered to determine the shape error in slender
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parts [5]. Several studies have demonstrated that the main cause of workpiece deformation
during the traverse grinding cycle is the normal force [6,7]. The grinding wheel pushes
the workpiece, and the part is not ground to the required diameter because of its elastic
deformation, so the material removal rate decreases at the point where the flexibility is the
highest [8]. A representative scheme of this process is shown in Figure 1a, where vt is the
traverse speed, Ft is the tangential or axial force, and Fn is the radial or normal force. Shape
error is presented in Figure 1b, where tolerances of diameter dimension, straightness, or
cylindricity can be out of order. In other machining processes, such as turning, where the
machine configuration is based on a cross-slide, a follower rest is a comprehensive solution
for avoiding slender-part deformation [9]. Nonetheless, in a machine configuration where
the table is movable, a follower rest is not viable due to its complexity. In a movable-
table machine configuration, the element that significantly controls the deformation of the
workpiece is the steady rest.
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Figure 1. Elastic deformation of the workpiece: (a) during the grinding cycle; (b) the resulting form.

This geometrical issue comes with a poor productivity index because the shape error
must be corrected in the spark-out due to the shape quality requirements for ground
workpieces. Depending on the shape-error magnitude, the number of spark-out strokes
can be excessive and, in the case of slender workpieces, the wheel must translate long
distances end-to-end, which involves an increase in machining time.

Some research has been conducted to clarify and predict the deformation behavior
of slender parts during the traverse grinding process, based on the radial force induced
by the wheel pushing the workpiece, both in external [7,10] and internal [11] grinding
processes. Having presented the prediction model, various solutions have been described
to minimize the predicted shape error. Intelligent artificial monitoring of the traverse
operation has been developed to correct the shape error, by stabilizing the motion trajectory
of the grinding wheel [1]. High-frequency oscillations are induced in the radial depth of the
wheel in the workpiece. Modifying wheel transversal speed along the workpiece is another
technique [6] that has been proposed for turning operations [12]. Due to a decrease in the
zone of the workpiece, where the stiffness is most critical, the normal forces decrease, thus
decreasing the shape error. Ding et al. [13] presented an intelligent optimization control
for the shape-error correction by varying the transversal speed, as reported by Onishi
et al. [6]. Based on the elastic deformation equation, variation in the traverse speed and
workpiece speed were combined to optimally affect the normal force, and therefore the
real depth of cut, decreasing the shape error. Automation for this solution is complicated,
particularly as with a different transversal speed, topography and geometric parameters
will change throughout the length of the workpiece. The same approach was presented
by Fujii et al. [14], but also took into consideration the use of steady rest, which leads to a
more expensive- and difficult-to-set-up solution.
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In this paper, a new model is presented to simplify the prediction of the shape error
in a traverse grinding operation for long slender parts. The effect of steady rests on
the deformation of the workpiece can be considered if required by the application. The
position and the number of steady rests are considered, along with a proposal for the
optimal position of the steady rests. This model is based on the computer simulation of the
deformation of slender multi-diameter rollers developed by Gao [10]; in this case, the model
required normal-force data as an input. Other variables were analyzed, such as center
eccentricity [1]. However, the main reason for observing the shape error of the part during
traverse grinding operations is the elastic deformation of the workpiece due to grinding
normal force [6,7]. Thus, the depth of cut is affected due to the deflection of the workpiece,
and this varies along the length of the ground workpiece. The present experimental study
examines slender parts in the traverse grinding cycle without steady rests to validate
the estimation of the shape error based on grinding normal force. Stiffness of headstock
and tailstock was measured and considered within the model. An improvement was
included by also considering a distributed load, corresponding to the grinding wheel
width. A solution for correcting the shape error based on the normal grinding force was
then presented by applying a cross-compensation of the grinding-wheel trajectory based
on the part deformation predicted by the model. Automating this solution is easy because
the only variable input needed from the process is the normal force, which can be readily
measured. Thus, more complicated solutions based on steady rests can be avoided. This
automatization will reduce excessive machine times due to the number of spark-outs
needed to correct the shape error produced in the workpiece.

2. Theoretical Approach

Based on previous work by Gao et al. [10], a theoretical approach for the prediction
of shape error in traverse grinding is presented. The case study for the model was based
on a multi-diameter part, with various diameters and lengths divided into four different
sections. The part was clamped between two points; point A was a static support, and B a
movable support. A distributed load, q, was applied in a length, Ls, corresponding to the
grinding wheel width. In this paper, q is considered as a distributed force. However, Gao
et al. [10] considered the grinding force to be punctual. Therefore, the expression for the
distributed load, without considering steady rests, is presented in this study.

X[i− 1] ≤ x ≤ X[i] → E · I[i] · y′′ =
−q ·

(
L− aj

)2 · x
2 · L for i = 1, 2, 3 (1)

X[i− 1] ≤ x ≤ X[i] → E · I[i] · y′′ =
−q ·

(
L− aj

)2 · x
L

+
q ·
(
x− aj

)2

2
for i = 4, 5 (2)

where E is the elasticity modulus of the material, I is the inertial moment point for the
described section, L is the workpiece length, aj is the distance between the static support A
and the distributed load q.

The model allowed for the introduction of steady rests into the system. In the case
study, three steady rests were distributed between diameters 2, 3, and 4. A scheme is
presented in Figure 2, including the support reactions. Finally, the system was divided into
the study of each reaction produced by the steady rests.
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Figure 2. Multidiameter workpiece with steady rests.

First, every isostatic case, produced by every support and force, was solved, consider-
ing q, RF (reaction of the steady rest in the second diameter), RG (reaction of the steady rest
in the third diameter), and RH (reaction of the steady rest in the fourth diameter). Bj is the
distance between the movable support and the distributed load, q. RA is the static support
reaction (headstock), and RB is the movable support reaction (tailstock). A and B support
reactions were calculated, and the horizontal component for the A reaction was zero.

RA =
RF · b1

L
(3)

RB =
RF · a1

L
(4)

Applying the general elastic equation for each section, the following two expressions
were obtained: (5) for the section in front of the load and (6) for the section behind the load.

E · I[i] · y′′ 1 =
−RF · b1 · x

L
(5)

E · I[i] · y′′ 2 =
−RF · b1 · x

L
+ RF · (x− a1) (6)

Integrating twice:

E · I[i] · y1 =
−RF · b1 · x3

6 · L + C1F[i] · x + C2F[i] for i = 1, 2 (7)

E · I[i] · y2 =
−RF · b1 · x3

6 · L +
RF · (x− a1)

3

6
+ C1F[i] · x + C2F[i] for i = 3, 4, 5, 6, 7 (8)

Fourteen integration constants needed to be calculated (i times for C1 and i times
for C2). For calculation of the integration constants, it needed to be assumed that, for every
section changing point and every load application point, the derivation of the deformation
must be the same for both sections:

y′(X[i]) = y′(X[i]) → C1F[i]
I[i]

= RF · K[i] +
C1F[i + 1]

I[i + 1]
for i = 1, 2, 3, 4, 5, 6, 7 (9)

K is dependent on whether the section is in front (10) or behind (11) the load applica-
tion point.

K[i] =
b1 · X2[i]

2 · L ·
(

1
I[i + 1]

− 1
I[i]

)
for i = 1, 2 (10)
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K[i] =

(
b1 · X2[i]

2 · L − (X[i]− a1)
2

2

)
·
(

1
I[i + 1]

− 1
I[i]

)
for i = 3, 4, 5, 6, 7 (11)

For each section changing point and every load application point, the deformation
must be the same for both sections:

(X[i]) = y(X[i]) → · · ·

· · · C2F[i]
I[i] = X[i] · RF ·

(
C1F[i+1]

I[i+1] −
C1F[i]

I[i]

)
+ RF · K1[i] +

C2F[i+1]
I[i+1]

(12)

K1 is dependent on whether the section is in front (13) or behind (14) the load applica-
tion point:

K1[i] =
b1 · X3[i]

6 · L ·
(

C1F[i + 1]
I[i + 1]

− 1
I[i]

)
for i1, 2 (13)

K1[i] =

(
b1 · X3[i]

6 · L − (X[i]− a1)
3

6

)
·
(

1
I[i + 1]

− 1
I[i]

)
for i = 3, 4, 5, 6, 7 (14)

Boundary conditions were applied:

x = 0 →

 yAC(0) =
RA
KA

= RF ·b1
L·KA

y1(0) =
−RF ·b1

6·L ·03+C1F[1]·0+C2F[1]
E·I[1]

→ C2F[1] =
−RF · b1 · E · I[1]

L · KA
(15)

x = L →

 yDB(L) = RB
KB

= RF ·a1
L·KB

yDB(L) =
−RF ·a1

6·L ·L3− RF
6 ·(L−a1)

3+C1F[7]·L+C2F[7]
E·I[7]

→ · · ·
· · · C1F[7] =

RF ·a1 ·E·I[7]
L·KB

− RF ·a1
6·L ·L

3+
RF ·(L−a1)

6 −C2F[7]
L

(16)

Resolution of the linear equation system was carried out:

C2F[1] = RF ·
−b1 · E · I[1]

L · KA
(17)

C2F[i] = I[i] ·
(

C2F[i− 1]
I[i− 1]

− K1[i− 1] + K[i− 1] · X[i− 1]
)

for i = 2, 3, 4, 5, 6, 7 (18)

C1F[7] =
(−E · I[7] · a1/(L · KA))−

(
b1 · L3/(6 · L)

)
+
(
(L− a1)

3/6
)
− C2F[7]

L
(19)

C1F[i] = I[i] ·
(

K[i] +
C1F[i + 1]

I[i + 1]

)
for i = 6, 5, 4, 3, 2, 1 (20)

For calculation of the integration constants of the reactions produced by the steady
rest in the third diameter (RG) and fourth diameter (RH), the same calculation must be
made as for that of the second diameter steady rest reaction (RF).

For the solution of the hyperstatic system, three compatibility equations and the degree
of system hyperstaticity were considered. The compatibility equation for the deformation
in the steady rest application point F is as follows:

δF = δ
q
F + δRF

F + δ
RG
F + δRH

F =
RF
KF

(21)

The following terms comprise the compatibility equation:

δ
q
F = yresultant(x = a1) (22)
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δRF
F = y11(x = a1) =

RF · b1 · a3
1

6 · L · E · I[i ≡ F]
+ RF · C1F[i ≡ F] · a1 + RF · C2F[i ≡ F] (23)

δ
RG
F = y12(x = aF) =

RG · b2 · a3
1

6 · L · E · I[i ≡ F]
+ RG · C1G[i ≡ F] · aF + RG · C2G[i ≡ F] (24)

δ
RG
F = y12(x = aF) =

RG · b2 · a3
1

6 · L · E · I[i ≡ F]
+ RG · C1G[i ≡ F] · aF + RG · C2G[i ≡ F] (25)

Replacing each term in the compatibility equation for the F point:

δF = yresultant(x = a1) + RF ·
(

b1·a3
1

6·L·E·I[i≡F] + C1F[i ≡ F] · a1 + C2F[i ≡ F]− 1
KF

)
+ · · ·

· · · RG ·
(

b2·a3
1

6·L·E·I[i≡F] + C1G[i ≡ F] · a1 + C2G[i ≡ F]
)
+ · · ·

· · · RH ·
(

b3·a3
1

6·L·E·I[i≡F] + C1H[i ≡ F] · a1 + C2H[i ≡ F]
)
= 0

(26)

For the deformation due to RG and RH, the same calculation must be made as in the
case of the RF reaction. The result is an equation system with three unknowns (RG, RH,
and RF):

yresultant(x = a1) + RF ·M11 + RG ·M12 + RH ·M13 = 0 (27)

yresultant(x = a2) + RF ·M21 + RG ·M22 + RH ·M23 = 0 (28)

yresultant(x = a3) + RF ·M31 + RG ·M32 + RH ·M33 = 0 (29)

The equation system can be represented as a matrix: M11 M12 M13
M21 M22 M23
M31 M32 M33

×
 RF

RG
RH

 =

 −yresultant(x = a1)
−yresultant(x = a2)
−yresultant(x = a3)

 (30)

This example is applicable for n number of steady rests:
m11
m21

m12
m22

...
mn1

...
mn2

· · ·
· · ·

m1n
m2n

. . .
· · ·

...
mnn

×


R1
R2
...

Rn

 =


yq(x = a1)
yq(x = a2)

...
yq(x = an)

 (31)

yq is the result of the positive and negative deformation. The expression for the
elements of the M matrix is as follows:

mjj =

(
bj · a3

j

6 · L · E · I[i ≡ j]
+ C1j[i ≡ j] · aj + C2j[i ≡ j]− 1

Kj

)
(32)

mjk =

(
bk · a3

j

6 · L · E · I[i ≡ j]
+ C1k[i ≡ j] · aj + C2k[i ≡ j]

)
(33)

mkj =

(
bj · a3

k
6 · L · E · I[i ≡ k]

−
(
ak − aj

)3

6 · E · I[i ≡ k]
+ C1j[i ≡ k] · ak + C2j[i ≡ k]

)
(34)

The (30) equation system must be solved following the presented steps to resolve the
three unknown reactions. An example of the model output is presented in the Figure 3,
where the deformation of the workpiece without steady rests (dotted–dashed line) and
with steady rests (dotted line) is shown. The example case was similar to the workpiece
and steady rest location shown in Figure 2. Steady rests reduced the deformation of the
workpiece from 73.15 µm to 8.343 µm. Table 1 shows the input data used for the model.
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lated to the material and system stiffness were introduced, and are detailed in Table 2. 
Both workpiece rests were articulated, the left-side rest was non-movable in the axial di-
rection (headstock), and the right-side rest was movable (tailstock). 
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Young modulus (GPa) 210 (steel) 
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Supports stiffness (N/µm) 54–32 

Figure 3. Model output example with and without steady rests.

Table 1. Model input parameters.

Workpiece density (Kg/m3) 7850 (steel)
Workpiece Young modulus (GPa) 210 (steel)

Workpiece diameters (mm) 25, 50, 40 and 25 mm
Workpiece lengths (mm) 50, 50, 150 and 150 mm

Distributed load (N) 500 N applied in 400 mm
Wheel width (mm) 50

Supports stiffness (N/µm) 54–32
Steady rest stiffness (N/µm) 60 applied in 75, 175 and 325 mm

3. Results
3.1. Validation of the Theoretical Approach
3.1.1. Validation of the Deformation Prediction Approach with Steady Rests

The model validation presented was based on comparing the analytical model results
with those obtained from the finite element method. The study was based on the workpiece
shown in Figure 4.
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Figure 4. Case study for validation of the analytical model.

For the analytical calculation, apart from the geometric parameters, parameters related
to the material and system stiffness were introduced, and are detailed in Table 2. Both
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workpiece rests were articulated, the left-side rest was non-movable in the axial direction
(headstock), and the right-side rest was movable (tailstock).

Table 2. Model input parameters.

Density (Kg/m3) 7850 (steel)
Young modulus (GPa) 210 (steel)

Distributed load 500 N applied in 526 mm
Wheel width (mm) 50

Supports stiffness (N/µm) 54–32
Steady rest stiffness (N/µm) 60 applied in 500 mm

A scheme of the FEM analysis is shown in Figure 4. Analytical model output and
finite element results are shown in Figure 5.

Metals 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

Steady rest stiffness (N/µm) 60 applied in 500 mm 

A scheme of the FEM analysis is shown in Figure 4. Analytical model output and 
finite element results are shown in Figure 5. 

 
(a) 

 
(b) 

Figure 5. Deformation results for: (a) analytical model with and without steady rests; (b) finite ele-
ment method with and without steady rests. 

The values and the error between the analytical model and FEM are presented in 
Table 3. 

Table 3. Deformation results for both methods. 

 No Steady Rest With Steady Rest 
Analytical 162.2 µm 8.9 µm 

FEM 165 µm 9.1 µm 
Difference 1.7% 2.1% 

The results showed a good correlation between both calculation methods, thus vali-
dating the proposed analytical approach for calculation of the workpiece deformation in 
the case where steady rests are used. 

Figure 5. Deformation results for: (a) analytical model with and without steady rests; (b) finite
element method with and without steady rests.

The values and the error between the analytical model and FEM are presented in
Table 3.
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Table 3. Deformation results for both methods.

No Steady Rest With Steady Rest

Analytical 162.2 µm 8.9 µm
FEM 165 µm 9.1 µm

Difference 1.7% 2.1%

The results showed a good correlation between both calculation methods, thus vali-
dating the proposed analytical approach for calculation of the workpiece deformation in
the case where steady rests are used.

3.1.2. Experimental Validation of the Theoretical Approach

Experimental work was conducted to validate the flexion model presented in the
previous section. This work was carried out in a Danobat LG600 B6 cylindrical grinding
machine, a Tyrolit grinding wheel of 474 mm in diameter, and a blade dressing tool. The
setup conditions are shown in Table 4.

Table 4. Set up of the grinding cycle tests.

Grinding machine Danobat LG600 B6
Wheel specifications CS65A 60.2 HH5 VB3

Wheel dimensions (mm) 475 × 50 × 50.2
Workpiece material Hardened F5520 (53 HRC)

Workpiece dimensions (mm) Ø25 × 400
Grinding fluid Castrol 75EF coolant (4%)

Tailstock pressure (bar) 5

Tailstock pressure was sufficiently low to avoid the buckling effect due to excessive
axial load in the piece. The workpiece material was hardened steel, with a full tempered
process with a known Young’s modulus (210 GPa) and density (7850 Kg/m3). Tailstock and
headstock stiffness were measured for the experimental tests (tailstock was 20 mm away
from its repose position). A magnetic base was placed against the point, and a load cell
was placed between the magnetic base and the grinding wheel (in this study, a corundum
wheel was used). Magnetic base stiffness was assumed to be much greater than headstock
stiffness. A dial gauge was placed against the grinding wheel and another at the other
side of the magnetic base. With increments of 10 µm, the displacements and forces were
registered (from 0 to 60 µm). Figure 6 shows the setup for the stiffness measurement for
headstock (a) and tailstock (b).
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Five measurements were taken to ensure accuracy. Figure 7 shows one measurement
for the headstock (a) and the tailstock (b).
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Figure 7. Static stiffness measurement results for: (a) headstock; (b) tailstock.

The averages of 5 measurements were calculated and used for this test:

• KTailstock = 74 N/µm;
• KHeadstock = 50 N/µm;

In this analysis, accuracy of the flexion model was validated in comparison with the
measurement of the grounded workpiece diameters. Diameter measurements were taken
with a micrometer. For this work, two grinding conditions were tested, as shown in Table 5:

Table 5. Grinding and dressing conditions for a traverse cycle.

Grinding Conditions Roughing Finishing

Cutting speed (m/s) 60 60
Part rotational speed (RPM) 171 161

Stock Ø (mm) 0.05 0.02
Traverse speed (mm/min) 3000 1318

Grinding pass (mm) 0.01 0.002
Spark-out strokes 0 0

Infeed position Both sides Both sides

Dressing conditions

Cutting speed (m/s) 60
Feed rate (mm/min) 241
Dressing pass (mm) 0.015

Strokes 2
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Figure 8 shows the analysis scheme for the part. The part was 400 mm in length,
but was limited to 374 mm; the rest of the part was used to support the drive bolt, which
ensured the part would drive. The measurement length was divided into 12 equidistant
measurement points, i.e., distance between measurement points was 34 mm. The diameter
of the part was 25 mm. According to the length and the workpiece diameter, the slenderness
ratio was 16.
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Figure 8. Experimental set up for a workpiece with a slenderness ratio of 16.

The normal force (X-axis force) in the traverse stroke of each cycle was measured by
the Servotrace system integrated into the machine CNC. The signal was obtained from the
machine and processed in MATLAB. Before starting to grind the part, it was necessary to
determine the grinding force and to consider idle force (130.8 N in Figure 9) produced by
the coolant pressure between the grinding wheel and the workpiece. Figure 9 shows the
analysis of the net normal force during the traverse grinding cycle. Stable values of the
force in the middle of the traverse stroke were considered in order to avoid force peaks
at the beginning of the signal caused by the in-feed movement of the grinding wheel into
the workpiece.
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Once the normal grinding force was obtained, the inputs of the model could be deter-
mined. A maximum deformation and a deformation graphic were obtained from the output
of the model. A fit between model output and profile of the measured diameters was made
to quantify the model’s predictive accuracy. Some examples of the comparison between
model flexion prediction and the differences in diameters are presented in Figure 10. Two
finishing conditions and two roughing conditions are presented in Figure 10: (a) belongs to
finishing grinding conditions, and (b) belongs to roughing conditions. The solid line refers
to the model prediction, and the dashed and dashed–dotted lines denote the measured
diameter difference. Since the model gave the deformation of the part, the measured diam-
eters were divided by two to obtain the corresponding radial difference for each analyzed
axial point. The vertical axis represents the deformation in µm, and the horizontal axis the
position in the workpiece in mm. The force remained stable in both conditions (±1 N).
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Model prediction accuracy (obtained by comparing with the diameter measurement)
is shown in Table 6. Four finishing condition results and seven roughing conditions were
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considered for the presented results. The average and deviation included every point of
the predicted shape form.

Table 6. Model prediction accuracy.

Condition Roughing Finishing

Average error (µm) 0.969 0.404
Deviation (µm) 1.724 0.472

3.2. Solution for the Shape Error

A solution was presented for correcting the workpiece shape error produced in the
traverse operation. A cross-compensation cycle was applied to change wheel trajectories.
The wheel drive was not linear because the main objective was to apply different forces
at every point of the workpiece. The trajectory was commanded by an ISO code for
each condition, depending on the normal force. Traverse linear trajectory (solid line) and
cross-compensation trajectory (dash line) are both shown in Figure 11. Since the traverse
movement was performed in both axial directions, the compensation trajectory was axially
symmetrical for every two traverse strokes.
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traverse cycle and (b) a single pass.
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Shape-error model curves were used as an input for the trajectories in the cross-
compensation cycle. As shown in Table 4, the same conditions were used for roughing and
finishing without spark-out strokes to validate the solution in both conditions. Figure 12
displays the results for both (a) roughing conditions and (b) finishing conditions.
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The results are shown in Table 7.

Table 7. Results obtained from the solution for deformation improvement.

Condition Non-Compensated
Maximum Error (µm)

Compensated
Maximum Error (µm)

Improvement
Percentage (%)

Roughing 36 8 77.8%
Finishing 13 3 76.9%

The improvement percentage of around 77% is near the value of 82% obtained by
Fujii et al. [14] for a workpiece with a similar slenderness of around 18, but without the
need of using a steady rest and with variation in the traverse feed rate.

Furthermore, geometric parameters were measured to compare the nominal cycles and
the compensation cycle, in order to have an overall analysis of the impact of this solution in
an industrial application. Previous solutions for shape-error improvement proposed in the
literature have omitted this important analysis. Measurements were made using a Jenoptik
Roundscan 555HR. Roundness, cylindricity, and straightness were measured in three parts
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of the workpiece. While roundness was measured in three different axial positions of the
workpiece along its ground length, straightness was measured in three different angular
positions, taking into account the whole ground length. The results, as mean values of the
different measurements, are shown in Table 8.

Table 8. Geometric results.

Condition Compensation g (µm) e (µm) Straightness (µm)

Finishing Nominal (no
compensation) 9.98 0.59 9.06

condition Compensated 6.95 0.63 1.82

Roughing Nominal (no
compensation) 20.43 1.15 19.01

condition Compensated 11.68 0.94 7.57

Straightness and cylindricity showed an improvement in the compensated cycle,
while roundness remained stable (with a slight decrease in the roughing condition) for
both conditions. Geometrical results match with those of the diameter differences along the
workpiece length, concluding that the workpiece shape deformation can affect dimensional
and geometric tolerances in the same way.

4. Conclusions

The main conclusions of this work can be summarized as follows:

1. First, a new prediction model for characterizing the deformation of the slender work-
piece was presented, updating previous models by including a distributed load
(corresponding to the grinding wheel width) and the capacity to use different steady
rests. Second, validation of the analytical model was achieved by comparison with
FEM, with high accuracy. The difference between analytical model prediction and
FEM was 2.7%. In future analyses, this will be validated in a real process.

2. A procedure to experimentally obtain the stiffness of the headstock and the tailstock
was presented. The addition of this input to the model was necessary to achieve a
good correlation between theoretical and experimental results.

3. The accuracy of the shape error prediction model was validated experimentally
by comparing this with the measured diameters. Differences in results between
theoretical and experimental approaches were below 5%.

4. A solution for improving the shape error in the slender workpiece in the traverse cycle
was presented, reducing the shape error by 77% without the need to include steady
rests in the solution, as in previous proposals. Moreover, the number of spark-out
strokes could be reduced by applying cross-compensation. This could considerably
reduce the cycle time.

5. The automation of shape-error correction was simplified by using the model output
(shape error defined by the normal force) and cross-compensation cycle. The main
reason for the simplicity of the solution for the shape error was that the only input
needed for the model was the normal force, which was easily measurable by the
Servotrace acquisition system of the Siemens CNC.

6. Workpiece geometric measurements from the nominal and compensated roughing
and finishing cycles were presented, so an overall analysis of the influence of the solu-
tion in the grinding process was performed. Cylindricity and straightness decreased,
as expected, in a similar fashion to shape error, while roundness remained stable.
Thus, it is feasible to integrate this solution into real processes to improve geometrical
characteristics of the workpiece.
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