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ABSTRACT: We demonstrate that a conditional wave function theory enables a
unified and efficient treatment of the equilibrium structure and nonadiabatic
dynamics of correlated electron−ion systems. The conditional decomposition of the
many-body wave function formally recasts the full interacting wave function of a
closed system as a set of lower-dimensional (conditional) coupled “slices”. We
formulate a variational wave function ansatz based on a set of conditional wave
function slices and demonstrate its accuracy by determining the structural and time-
dependent response properties of the hydrogen molecule. We then extend this
approach to include time-dependent conditional wave functions and address
paradigmatic nonequilibrium processes including strong-field molecular ionization,
laser-driven proton transfer, and nuclear quantum effects induced by a conical
intersection. This work paves the road for the application of conditional wave
function theory in equilibrium and out-of-equilibrium ab initio molecular simulations
of finite and extended systems.

1. INTRODUCTION

Emerging experimental capabilities in the precise manipulation
of light and matter are opening up new possibilities to
understand and exploit correlations and quantum effects that
can be decisive in the functional properties of molecules and
materials. Light-driven states can not only be designed to
monitor and/or control the structure of molecules1−7 and
solids8−12 but also form light−matter hybrid states with new
physical properties.13−21 In view of these exciting developments,
accurate first-principles theoretical techniques are also needed
to help interpret observations, to enable the predictions of
simplified models to be scrutinized, and, ultimately, to help gain
predictive control. Our ability to treat the full correlated
quantum structure and dynamics of general electron−ion
systems unfortunately remains limited by the unfavorable
scaling of the many-body problem.
A standard approach to address this problem inmolecular and

solid-state systems has been to “divide-and-conquer” in the
sense that the electronic structure and the electron−nuclear
interactions are treated separately. Introduced almost a century
ago by Born and Oppenheimer,22 the adiabatic approximation,
i.e., the assumption that electrons adjust instantaneously to the
motion of nuclei, is the cornerstone of this so-called standard
approach. The Born−Oppenheimer (BO) approximation has
been crucial to the development of a vast majority of approaches
in quantum chemistry and condensed-matter theory,23,24 and
the concept of ground-state Born−Oppenheimer potential-
energy surface (BOPES) is the foundation for understanding the
properties of systems at thermal equilibrium such as chemical

reactivity25−27 and nuclear quantum effects,28−31 as well as of
systems driven out of equilibrium.32−35

Accurately describing systems driven away from equilibrium
and including nonadiabatic electron−nuclear effects places even
more stringent demands on the development of practical first-
principles tools. In the standard approach, one directly builds
upon the BO approximation by expanding the full molecular
wave function in the Born−Huang basis.36 Within this
framework, nonadiabatic processes can be viewed as nuclear
wavepacket dynamics with contributions on several BOPESs,
connected through nonadiabatic coupling terms that induce
electronic transitions.37 In this picture, trajectory-based
quantum dynamics methods offer a trade-off between physical
accuracy and computational cost.38−40 Of these approaches,
perhaps the most popular are the Ehrenfest mean-field theory41

and Tully’s surface hopping dynamics.42 Both of these
approaches consist of an ensemble of uncorrelated trajectories.
Reintroducing correlation, for example, using a variety of wave
function ansatz,43−48 semiclassical techniques,49,50 the quan-
tum-classical Liouville equation,51−53 path-integral meth-
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ods,54,55 or methods based on the exact factorization,56−58

allows for further accuracy with increased computational effort.
While advances in the ab initio electronic structure theory in

quantum chemistry and condensed matter have made
computing the ground-state energies both routinely efficient
and rather accurate in many cases, obtaining accurate excited-
state information remains a challenging problem in its own right.
Even in cases where the excited-state electronic structure is
available, performing fully quantum nuclear dynamics calcu-
lations using the standard approach quickly becomes
infeasible35,43 as the memory required to store the information
contained in the BOPESs grows rapidly with the number of
correlated degrees of freedom. In this respect, gaining the ability
to rigorously treat selected nuclear degrees of freedom quantum
mechanically without incurring an overwhelming computational
cost is the goal.
An alternative approach for describing quantum effects in

coupled electron−ion systems is using a real-space representa-
tion of all degrees of freedom. This route might sound less
intuitive as it avoids routine concepts such as BOPESs and
nonadiabatic couplings that are fundamental in the present
description and understanding of quantum molecular dynamics.
However, this feature might be turned into an attractive
playground from the computational point of view, as these
quantities are usually demanding to obtain and fit from ab initio
electronic structure calculations. In this framework, one of the
leading approximate methods to describe the coupled electron−
nuclear dynamics for large systems is time-dependent density
functional theory coupled to classical nuclear trajectories
through the Ehrenfest method.59 Due to its favorable system-
size scaling, the real-space picture Ehrenfest method has been
successful for a great many applications, from capturing
phenomena associated with vibronic coupling in complex
molecular systems60 and photodissociation dynamics in small
molecules61 to radiation damage in metals;62 its efficiency allows
calculations on large systems for even hundreds of femto-
seconds.63 It has also been recently combined with the nuclear-
electronic orbital method as a way to include quantum effects for
selected nuclear degrees of freedom to study proton transfer
processes in molecular excited states.64

It is well known, however, that the Ehrenfest approach can be
inaccurate due to its mean-field nature. One classic example of
this breakdown occurs in photochemical reaction dynamics,
where mean-field theory can often fail to correctly describe the
product branching ratios.39,65 Generally speaking, the mean-
field description of any transport property can potentially suffer
some deficiency; this is sometimes referred to as a violation of
detailed balance,66 but it ultimately stems from the lack of time-
translational invariance that is inherent to any approximate
method that does not rigorously preserve the quantum
Boltzmann distribution.67

The conditional wave function (CWF) framework introduced
in ref 68 offers a route to go beyond the limits of mean-field
theory while retaining a real-space picture; it is an exact
decomposition and recasting of the total wave function of a
closed quantum system.69 When applied to the time-dependent
Schrödinger equation, the conditional decomposition yields a
set of coupled, non-Hermitian, equations of motion.68 One can
draw connections betweenCWF theory and other formally exact
frameworks proposed in the literature to develop novel
approximate schemes that provide a completely new perspective
to deal with the long-standing problems of nonadiabatic
dynamics of complex interacting systems.70,71 An example is

the time-dependent interacting conditional wave function
approach (ICWF),72,73 a recently introduced method for
performing quantum dynamics simulations that is multi-
configurational by construction. Using a stochastic wave
function ansatz that is based on a set of interacting single-
particle CWFs, the ICWF method is a parallelizable technique,
which achieves quantitative accuracy for situations in which
mean-field theory drastically fails to capture qualitative aspects
of the dynamics, such as quantum decoherence, using orders of
magnitude fewer trajectories than the converged mean-field
results.72

In this work, we introduce an exact time-independent version
of the CWF mathematical framework. The time-independent
CWF framework is formulated in real space, and it is an exact
decomposition of the time-independent wave function of a
closed quantum system that yields a set of coupled nonlinear
eigenvalue problems and associated conditional eigenstates.
Based on this framework, we put forth a static-basis version of
the ICWF method, which allows us to establish an efficient and
accurate algorithm for calculating the ground- and excited-state
structures of correlated electron−nuclear systems and even-
tually extended systems. Importantly, the combination of the
static version of the ICWF method using a time-dependent
conditional eigenstate basis sets the stage for the implementa-
tion of a general-purpose ab initio molecular simulator that is
formulated in the real-space picture and that self-consistently
treats stationary states, as well as driven dynamics.
This manuscript has the following structure: in Section 2, we

define the mathematical structure of the time-independent
version of the CWF framework. Based on these results, we put
forth an imaginary-time version of the ICWF technique in
Section 3 for solving the time-independent Schrödinger
equation and the performance of the resulting algorithm is
assessed through the calculation of the ground-state and the low-
lying excited-state BOPESs of the hydrogen molecule in one
dimension (1D). In Section 4, a real-time extension of this
multiconfigurational ansatz is presented, along with an
algorithm for solving the time-dependent Schrödinger equation
using a stochastic static-basis ansatz. The ability of the resulting
algorithm in capturing static and dynamic properties is then
assessed by evaluating the absorption spectrum and a laser-
induced dynamics of the aforementioned H2 model system. In
Section 5, we revisit the exact time-dependent CWF framework,
and in Section 6, we present the dynamical ICWF (dyn-ICWF)
approach to the time-dependent Schrödinger equation. The
performance of the time-dependent ICWF method in
combination with its imaginary-time variation for preparing
the initial state is demonstrated for three model systems, viz., a
laser-driven proton-coupled electron transfer model, an
electron-atom scattering process, and an example of nuclear
quantum effects in the dynamics through a conical intersection
(CI). A summary of the main results of this work and an outlook
on future directions are offered in Section 7.

2. CONDITIONAL EIGENSTATES

We begin by considering a closed system with n electrons andN
nuclei, collectively denoted by x = (r, R). We use the position
representation for both subsets; lowercase symbols will be used
for the electronic subsystem, e.g., r = {r1s1, ..., rnsn}, and
uppercase symbols R = {R1σ1, ..., RNσN} for the nuclear
subsystem. Hereafter, electronic and nuclear spin indices,
respectively, sj and σj, will be made implicit for notational
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simplicity, and, unless otherwise stated, all expressions will be
given in atomic units.
The time-independent CWF can be constructed starting from

the nonrelativistic time-independent Schrödinger equation in
the position representation

̂ Ψ = Ψγ γ γx xH E( ) ( ) (1)

where Ψγ(x) is an eigenstate of the molecular Hamiltonian Ĥ
with label γ and the corresponding energy eigenvalue Eγ. The
molecular Hamiltonian operator Ĥ in eq 1 can be written as

∑̂ = ̂ +
=

×

x xH T W( ) ( )
j

N n

j j
1 (2)

w h e r e t h e k i n e t i c e n e r g y o p e r a t o r s a r e
̂ = − ℏ∇ − xT z A( i ( ))j m j j j

1
2

2
j

, mj and zj being the characteristic

mass and charge of particle j, respectively. The full electron−
nuclear potential energy of the system is W(x) (written in the
position basis rather than, say, the BO or Born−Huang basis),
and A is the vector potential due to an arbitrary static external
electromagnetic field.
Note that the total Hamiltonian in eq 1 is invariant under

translations and rotations of all particles. This means that the
eigenstates of the system will be invariant under transformations
by the translation and rotation groups. Together with the
inversion symmetry, this implies that all one-body quantities
such as the electron density or any nuclear-reduced density are
constant and that two-particle position correlation functions
only depend on the distance between their arguments. This is
obviously not a convenient starting point to describe the
structure of a quantum system. The solution to this problem
relies on transforming the Hamiltonian to a fixed coordinate
system that reflects the internal properties of the system.a This
is, in general, not a trivial task, and hereafter, we will assume that
eq 1 already reflects such internal properties, either by exploiting
a particular symmetry of the system or by simply introducing a
parametric dependence on, e.g., a fixed (heavy) nuclear position.
At this point, we can decompose the eigenstates Ψγ(x) in

terms of single-particle conditional eigenstates of either of the
two subsystems, which are defined as follows

∫ψ δ≔ ̅ ̅ − ̅ Ψα γ α γx x x x( ) d ( )i i i i i
,

(3)

Here, the index α denotes the particular conditional slice and x̅i
= (x1, ..., xi−1, xi+1, ..., xn×N) are the coordinates of all degrees of
freedom in the system except xi. Similarly, x̅i

α = (x1
α, ..., xi−1

α , xi+1
α ,

..., xn×N
α ) are some particular positions of all system degrees of

freedom except xi. As shown schematically in Figure 1, the
conditional eigenstates in eq 3 represent one-body slices of the
full many-body eigenstates Ψγ(x) taken along the coordinate of
the ith degree of freedom. The particle placement xα defining the
CWFs has not yet been specified, and although, in principle, it
can be chosen arbitrarily, it will be proven convenient in practice
to exploit important sampling techniques.
Evaluating eq 1 at x̅i

α by applying the integral operator in eq 3
yields conditional eigenstates that are the solutions of the
following eigenvalue problem

η ψ ψ̂ + + =α α γ α γ γ α γT W E( )i i i i i
, , ,

(4)

where we introduced Wi
α(xi) = W(xi,x̅i

α), with W(x) being the
full electron−nuclear interaction potential appearing in the
Hamiltonian of eq 2. In addition, ηi

α,γ(xi) are the kinetic
correlation potentials given by

∑η =
̂Ψ
Ψ

α γ
γ

γ
≠

×

̅
α

x
T

( )
x

i i
j i

n N
j,

i (5)

Provided a large enough collection of CWFs satisfying eq 4, an
exact solution of eq 1 can be reconstructed by undoing the
conditional decomposition of eq 3 (see Figure 1b).68 That is,
given a set of conditional slices that sufficiently span the support
of Ψγ, then the corresponding conditional eigenstates can be
used to reassemble the full electron−nuclear wave function

ψΨ =γ α γx( ) ( )x i
,

i (6)

using the transformations xi
, which are discussed in more

detail in Appendix A. This expression, eq 6, can be used to
evaluate the kinetic correlation potentials in eq 5. In this way, the
generalized one-body eigenvalue problem in eq 4 can be
understood as an exact decomposition and recasting of the
eigensolution of the full electron−nuclear system, which yields a
set of coupled, non-Hermitian, eigenvalue problems.

Figure 1. Schematic representation of the CWF approach to the time-independent Schrödinger equation for one electron and one nucleus in one
dimension, i.e., x = (r, R). (a) The full ground-stateΨ0(r, R) is plotted together with a pair of conditional ground statesϕα,0(r) for the electronic degree
of freedom (in red) and χα,0(R) for the nuclear degree of freedom (in blue) for a given position of the full configuration space {rα, Rα}. Contour plots of
the molecular wave function are also shown for clarity. (b) The exact solution of the time-independent Schrödinger equation in eq 1 can be
reconstructed provided a sufficiently large ensemble of sampling points xα = {rα, Rα}. This can be done by applying the reassembling transformation r
or R (whose definition can be found in Appendix A) to the ensemble of electronic ϕα,0(r) or nuclear χα,0(R) conditional eigenstates, respectively.
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2.1. Time-Independent Hermitian Approximation. An
approximate solution to eq 4 can be formulated by expanding
the kinetic correlation potentials around the sampling
coordinates xα using Taylor series and then truncating at zeroth
order, i.e.

η ≈ ̅
α γ αx xf( ) ( )i i i

,
(7)

At this level, the kinetic correlation potentials engender only a
global phase that can be simply omitted as expectation values are
invariant under such global phase transformations. Note that
these approximated kinetic correlation potentials can be
alternatively obtained by introducing a mean-field ansatz
Ψγ(x) = ∏i=1

n×Nψ(xi) into eq 5. By making this approximation,
the eigenvalue problems in eq 4 are restored to aHermitian form

ψ ψ̂ + ≈α α γ γ α γT W E( )i i i i
, ,

(8)

The Hermitian limit allows the full many-body problem to be
approximated as a set of independent single-particle problems.
That is, the superscript γ refers exclusively to the conditional
eigenstate excitation number.

3. STATIC PROPERTIES WITH CONDITIONAL
EIGENSTATES

In general, the higher-order terms in the Taylor expansion of the
kinetic correlation potentials are non-negligible. However, one
can still take advantage of the simple Hermitian form of the
conditional eigenvectors (hereafter referred to as conditional
wave functions (CWFs)) in eq 8 to design an efficient many-
body eigensolver by utilizing them as bases for electronic and
nuclear degrees of freedom in a variational wave function ansatz.
While there is a diverse literature spanning decades on

different forms for variational electron−nuclear wave function
ansatz, for illustrative (and practical) purposes, we employ a
sum-of-product form, which in the language of tensor
decompositions is referred to as the canonical format.76 For
each degree of freedom xi, we utilize a given electronic or nuclear
CWF, respectively, coming from solutions to eq 8, to
approximate the γth full system exact excited state as follows

∑ ∏

∑ ∏

ψ

ψ

Ψ =

=

γ

λ ν
λ ν
γ λ ν

α
α
γ α

= =

×

= =

×

x x

x

C

C

( ) ( )

( )

N M

i

n N

i i

N M

i

n N

i i

( , ) (1,1)

( , )

,
1

,

1 1

c

c

(9)

where in the second line, we have rearranged the sum over
particle position λ ∈ {1, ..., Nc} and excited CWF ν ∈ {1, ...,M}
into a single index α = λ +Nc(ν− 1), such that α∈ {1, ...,NcM}.
The particle placement xα defining the conditional potentialsWi

α

has not yet been specified, and, in principle, it can be chosen
arbitrarily; however, in practice, we choose to sample from initial
guesses for the reduced densities of the electronic and nuclear
subsystems.
We refer to this ansatz (eq 9) as being in canonical format

because we do not mix all possible CWFs ψi
λ,ν for all possible

degrees of freedom xi, as one does with a single-particle function
bases across the different system degrees of freedom in the
Tucker format employed in the multiconfigurational time-
dependent Hartree (Fock)MCTDH(F)43 and multiconfi-
gurational electron−nuclear dynamics ansatz.77 In principle, this
choice can be relaxed, and one can utilize various choices of
tensor network representation for the expansion coefficients C,

such as matrix product states or hierarchical Tucker formats,
which when employed in the multilayer extension78,79 of
MCTDH allow for an increase in efficiency for certain problems.
However, since the time dependence of the ansatz in eq 9 is
entirely within the expansion coefficients, one only needs to
calculate the matrix elements at time zero, creating a quite
efficient time propagation framework. Note that although we use
a simple Hartree product over electronic degrees of freedom, the
above ansatz can be straightforwardly extended to have
fermionic antisymmetry via treating the CWFs as the spatial
component of spin orbitals in Slater determinants.
Hereafter, and for reasons that will be apparent later, we will

call eq 9 the static-basis ICWF (or sta-ICWF) ansatz. With this
ansatz in hand, we then consider a solution of eq 1 based on the
imaginary-time propagation technique,80 i.e.

τ
τ τΨ = − ̂ Ψγ γ γx xH

d
d

( , ) ( , )
(10)

where

i

k

jjjjjjj
y

{

zzzzzzz
i

k

jjjjjjj
y

{

zzzzzzz∑ ∑̂ = − ̂ ̂ − ̂γ

ζ

γ
ζ

ζ

γ
ζ

=

−

=

−

 x xH P H P( ) ( )
1

1

1

1

(11)

and P̂ζ = ΨζΨζ† are projectors used to remove the wave
functions Ψζ from the Hilbert space spanned by Ĥ. The first
excited state, for instance, is thus obtained by removing the
ground state from the Hilbert space, which makes the first
excited state the ground state of the new Hamiltonian.
By introducing the ICWF ansatz of eq 9 into eq 10, we find an

equation of motion for the coefficients Cγ = {C1
γ, ..., CNcM

γ }

∑

∑ ∑

τ
τ τ

τ

= − + +

−

γ
γ

ξ

γ
ξ ξ γ

ξ

γ

ν

γ
ξ ν γ

− −

=

−

−

=

−

=

−

      

   

C
C C

C

d
d

( ) ( ) ( )

( )

1 1

1

1

1

1

1

1

1

(12)

where =ξ ξ ξ † C C , , and the matrix elements of  and  are

∫∏ ψ ψ=αβ
α β

=

×
* xd

i

n N

i i i
1 (13)

∫∏ ψ ψ= ̂αβ
α β

=

×
* x Hd

i

n N

i i i
1 (14)

where again, the α, β indices refer to the index over particle
placement and excited CWFs. Obtaining these matrix elements
involves a sum over all two-body interactions across each degree
of freedom and a sum across one-body operators. In practice, 
may be nearly singular, but its inverse can be approximated by
the Moore−Penrose pseudo-inverse.
Based on solving the system of equations in eq 12 for Cγ, one

already has the ingredients to put forth a time-independent
ICWF eigensolver algorithm that will ultimately be used to
evaluate the expectation value of generic observables Ô(x).
Given an approximate solution to the eigenfunction Ψγ(x), the
expectation value of  reads

⟨ ̂⟩ =γ
γ γ†O C C (15)

with the matrix elements of  being given by an analogous
expression to eq 14.
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3.1. Example I: Ground and Excited BOPESs of H2.As an
illustrative example, we now calculate the BOPESs of amodel for
the H2 molecule. We adopt a model where the motion of all
particles is restricted to one spatial dimension, and the center-of-
mass motion of the molecule can be separated off.81,82 In this
model, the relevant coordinates are the internuclear separation,
R, and the electronic coordinates, r1 and r2. The Hamiltonian,
written in terms of these coordinates, is

i

k
jjjjj

y

{
zzzzz∑

μ

μ

= − ∂
∂

+ +

+ − ∂
∂

+
=

H r r R
R R

W r r

r
W r R

( , , )
1

2
1

( , )

1
2

( , )
i i

i

1 2
n

2

2 ee 1 2

1

2

e

2

2 en
(16)

where for M being the proton mass, μe = M/(2M + 1) is the
reduced electronic mass and μn = M/2 is the reduced nuclear
mass. In eq 16, the electron−electron repulsion and the
electron−nuclear interaction are represented by soft-Coulomb
potentials

=
− + ϵ

W r r
r r

( , )
1

( )
ee 1 2

1 2
2

ee (17)

= −
− + ϵ

−
+ + ϵ

W r R
r R

r R

( , )
1

( /2)
1

( /2)

en 2
en

2
en (18)

i.e., the Coulomb singularities are removed by introducing
smoothing parameters ϵee = 2 and ϵen = 1. The above model
system qualitatively reproduces all important strong-field effects
such as multiphoton ionization, above-threshold ionization, or
high-harmonic generation.83−85 Moreover, it has provided
valuable information in the investigation of electron correlation
effects.86−88

For this model, the BOPESs are defined by the following
electronic eigenvalue problem

Φ = ϵ Φγ γ γr r R r r R R r r R( , ; ) ( , ; ) ( ) ( , ; )el 1 2 1 2 1 2 (19)

where = ̂ − ̂H Tel nuc, and {Φγ(r1, r2; R)} are the (complete,
orthonormal) set of BO electronic states. A parametric
dependence on the nuclear coordinates is denoted by the
semicolon in the argument. The BOPESs, ϵγ(R), can be
calculated using the imaginary-time sta-ICWF method
described in eqs 10−14 along with a simplified version of the
ansatz in eq 9 that is specialized to this particular case of
parametric nuclear dependence. A thorough description of the
numerical procedure, as well as the convergence behavior of the
sta-ICWF method for this model can be found in Appendix B.1.
In Figure 2, we show the first five BOPESs calculated via the

sta-ICWF approach using (Nc,M) = (32, 5). In the top panel, the
exact BOPESs are plotted against the sta-ICWF data, overlaid as
solid gold lines. The results demonstrate that the sta-ICWF
ansatz used in a variational context captures the entire group of
the excited BOPES landscape over this energy range. As a point
of comparison, in the bottom panel of Figure 2, we also show the
result of mean-field-type calculations of the BOPESs for this
system. Specifically, we show Hartree−Fock and configuration
interaction singles (CIS) data for the ground-state and excited-
state BOPESs, respectively, which suffer from well-known

inaccuracies in capturing the binding energy and excited-state
properties of the system.

4. TIME-DEPENDENT PROPERTIES WITH
CONDITIONAL EIGENSTATES

The sta-ICWF eigensolver described above can be easily
extended to describe dynamical properties. For that, we consider
the time-dependent Schrödinger equation

Ψ = ̂ Ψx x
t

t H t ti
d
d

( , ) ( ) ( , )
(20)

where Ψ(x, t) is the electron−nuclear time-dependent wave
function, and the Hamiltonian of the system Ĥ(t) may contain a
time-dependent external electromagnetic field.
In practice, we are interested in situations where the initial

wave function is the correlated electron−nuclear ground state,
i.e., Ψ(x, 0) = Ψγ=0(x), and some nonequilibrium dynamics is
triggered by the action of an external driving field (hereafter, we
omit the superscript γ for clarity). We can then decompose the
time-dependent many-body wave function as in eq 9 by
restricting it to the case of γ = 0. We choose to restrict, for the
moment, the time dependence of our ansatz to the expansion
coefficients Cα. Although in this formulation the basis remains
static, by choosing sufficient excited CWF states, γ > 0 in eq 8,
for xα covering some anticipated range of motion for the
dynamics, we can expect to capture the support of Ψ(t). The
equations of motion forCα can be obtained either by inserting eq
9 directly into eq 20 or by utilizing the Dirac−Frenkel variational
procedureb

= − − 
t

t t tC C
d
d

( ) i ( ) ( )1
(21)

In eq 21, the matrix elements of  and  are identical to those
defined in eqs 13 and 14, with the Hamiltonian’s time
dependence coming from any external fields and the wave
function decomposed into single-particle CWFs for the nuclear
and both electronic degrees of freedom. The values of the
coefficients at time t = 0, i.e., C(0), may be obtained from the

Figure 2. Exact first five BOPESs of the one-dimensional H2 model
system (solid black lines). sta-ICWF results for (Nc, M) = (32, 5) are
shown in the top panel (solid gold lines). Hartree−Fock andCIS results
for the ground-state and excited-state BOPESs, respectively, are shown
in the bottom panel (dashed lines) alongside exact results (solid lines)
and color-coordinated via calculated excited states.
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imaginary-time sta-ICWF method of eq 12. In this way, the
combination of the imaginary-time and real-time sta-ICWF
methods yields a “closed-loop” algorithm for the structure and
dynamics of molecular systems that does not require explicit BO
state information as an input to the method. For the interested
reader, a detailed flowchart of the resulting sta-ICWF method
can be found in Appendix D.
4.1. Example II: Optical Absorption Spectrum of H2.

Here, we demonstrate an application of the real-time sta-ICWF
approach to simulate the optical absorption spectrum for the
molecular hydrogen model introduced in Section 3.1. We utilize
the “δ-kick” method of Yabana and Bertsch,89 where an
instantaneous electric field E(t) = κδ(t) with perturbative
strength κ≪ 1 au−1 couples to the dipole moment operator μ =
r1 + r2 and thereby produces an instantaneous excitation of the
electronic system to all transition dipole allowed states. The
resulting (linear) absorption spectra can then be calculated via
the dipole response, Δμ(t) = μ(t) − μ(0−)
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Ç
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(22)

In practice, due to the finite time propagation, the integrand is
also multiplied by a mask function t( ) that smoothly vanishes
at the final simulation time Tf.
The system is first prepared in the ground state using the

imaginary-time sta-ICWF. See Appendix B.2 for a thorough
description of the imaginary-time sta-ICWF method and its use
for preparing the ground state of theH2model system. The field-
driven dynamics is then generated by applying the kick operator
to the relevant degree of freedom. A thorough description of the
numerical procedure, as well as the convergence behavior of the
sta-ICWFmethod for this model, can be found in Appendix B.3.
The reader can also find a detailed flowchart of the (real and
imaginary) sta-ICWF method in Appendix D.
For the H2 model, the occupation of excited electronic states

and subsequent coupled electron−nuclear dynamics produce a
characteristic vibronic peak structure usually explained via the
Franck−Condon vertical transition theory. In the top panel of
Figure 3, we show vibronic spectra calculated both with sta-
ICWF for the absorption from S0 to S2 in comparison with the
numerically exact results also calculated via the δ-kick approach.
For sta-ICWF, we found thatNc = 4096 andM = 3 was sufficient
to obtain accurate results. The results demonstrate that the sta-
ICWF ansatz used in a variational context achieves an accurate
vibronic spacing, and furthermore, it not only captures the

electron−nuclear correlation inherent to vibronic spectra but
also solves the electron−electron subsystem accurately. The
deviation from the exact results does grow with increasing
energy, although this is ameliorated with increasing Nc and M,
and can, in principle, be eliminated at large enough values of
these parameters (see Appendix B.3).
For comparison, we also showmean-field, semiclassical results

for the vibronic spectra. Specifically, we calculated the
absorption spectrum with the multitrajectory Ehrenfest δ-kick
(MTEF-kick) method,60 overlaid as dashed blue lines. The
electronic subsystem was solved exactly as a two-particle wave
function over the real-space grid for each independent nuclear
trajectory. We see that the vibronic spacing calculated with the
MTEF-kick approach fails in capturing the correct peak spacing
in addition to showing unphysical spectral negativity.

4.2. Example III: Laser-Driven Dynamics of H2. The
present formalism is not restricted to just perturbative fields and
can deal with any arbitrary external field. Going beyond the
linear response regime, we investigate the effect of strong driving
by a few-cycle, ultrafast laser pulse for this same H2 model
system. The system is first prepared in the ground state using the
imaginary-time sta-ICWF, and then the field-driven dynamics is
generated by applying an electric field of the form E(t) =
E0Ω(t) sin(ωt), with E0 = 0.005 au and an envelopeΩ(t) with a
duration of 20 optical cycles. The carrier wave frequency ω =
0.403 is tuned to the vertical excitation energy between the
ground and second excited BOPESs at the mean nuclear
position of the ground-state wave function. A thorough
description of the numerical procedure, as well as the
convergence behavior of the sta-ICWF method for this model,
can be found in Appendix B.4, as well as in Appendix D.
The intense laser pulse creates a coherent superposition of the

ground and second excited BO states whereby the bond length
of the molecule increases, as shown in the bottom panel of
Figure 4. The nuclear wavepacket then eventually returns to the
Franck−Condon region, creating the resurgence of the
electronic dipole oscillation seen in the top panel of Figure 4.
In the MTEF mean-field description of this process, the short-

Figure 3. S2 ← S0 spectra of ICWF-kick (gold) and multitrajectory
Ehrenfest δ-kick (MTEF-kick) (blue) compared to the exact peak
placement overlaid as a black line, showing that while mean-field theory
is unable to capture qualitatively the correct vibronic line shape spacing
and intensity, the sta-ICWF approach accurately captures the exact
spectrum.

Figure 4. Top panel: evolution of the expectation value of the dipole
operator ⟨μe⟩ for the 1DH2 model system forNc = 4096 (from bottom-
up) andM = 3. Bottom panel: evolution of the expectation value of the
nuclear interseparation ⟨R⟩ for the 1D H2 model system for Nc = 4096
and M = 3.
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time limit is rather accurately captured, while the subsequent
effects of the laser pulse on the nuclear dynamics and the
resurgence in the dipole response are not. These results show
that the sta-ICWF method is able to capture the electronic
correlations inherent to the electronic dipolemoment during the
initial laser-driven dynamics, as well as the electron−nuclear
correlations that arise during the subsequent nonequilibrium
dynamics. For this particular problem, we found that (Nc,M) =
(4096, 3) was sufficient to obtain highly accurate results for both
the expectation value of the electronic dipole moment (top
panel of Figure 4) and the expectation value of the internuclear
separation (bottom panel of Figure 4). Further details can be
found in Appendix B.4.

5. TIME-DEPENDENT CONDITIONAL WAVE
FUNCTIONS

While the sta-ICWF method shows promising performance in
the examples studied thus far, it faces the same limitations as any
method that relies on a static basis. Perhaps, the most significant
aspect can be framed in terms of capturing the full support of the
time-dependent wave function, which is exacerbated in cases
where the time-dependent state strays far from the span of the
static basis. One strategy to address these scenarios would be to
incorporate time-dependent conditional wave functions in the
ICWF ansatz. Hence, we take advantage of the time-dependent
version of the CWF framework introduced in ref 68, which relies
on decomposing the exact many-body wave function,Ψ(x, t), in
terms of time-dependent single-particle CWFs of either the
electronic or nuclear subsystems as

∫ψ δ≔ ̅ ̅ − ̅ Ψα αx x x x xt t t( , ) d ( ( ) ) ( , )i i i i i (23)

Evaluating the time-dependent Schrödinger equation in eq 20
at xi

α(t), one can show that the CWFs in eq 23 obey the following
equations of motion

ψ η ψ= [ ̂ + + ]α α α α

t
t T W t t ti

d
d

( ) ( ) ( ) ( )i i i i i (24)

whereWi
α(xi, t) =W(xi,x̅i

α(t), t), and we remind thatW(x) is the
full electron−nuclear interaction potentials that appear in the
Hamiltonian of eq 2. In eq 24, ηi

α(xi, t) are time-dependent
complex potentials containing kinetic correlations and advective
terms, i.e.
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As in the time-independent CWF framework, the conditional
wave functions in eq 23 represent slices of the full wave function
taken along single-particle degrees of freedom of the two disjoint
subsets. Each individual CWF constitutes an open quantum
system, whose time evolution is nonunitary, due to the complex
potentials ηi

α(xi, t), which now include advective terms due to
the inherent motion of the trajectories xα(t), which evolve
according to Bohmian (conditional) velocity fields68
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An exact solution to eq 20 can be then constructed provided we
use a sufficiently large number of slices {xα(t)} that explore the
full support of |Ψγ(x, t)|2 (in analogy with Figure 1b), i.e.

ψΨ = αx xt t( , ) ( ( , ))x i ii (27)

where the transformations can be found in Appendix A. The
one-body equations of motion in eq 24 can be then understood
each as a coupled set of nonunitary and nonlinear time-
dependent problems.
The derivation of the exact time-dependent CWF mathemat-

ical framework corresponds to the transformation of the many-
body time-dependent Schrödinger equation to the partially
comoving frame in which all coordinates except the ith move
attached to the electronic and nuclear flows and only the ith
coordinate is kept in the original inertial frame. Within the new
coordinates, the convective motion of all degrees of freedom
except for the ith coordinate is described by a set of trajectories
of infinitesimal fluid elements (Lagrangian trajectories), while
the motion of the ith degree of freedom is determined by the
evolution of the CWFs in a Eulerian frame.71 The purpose of this
partial time-dependent coordinate transformation is to prop-
agate all trajectories along with the corresponding probability
density flow such that they remain localized where the full
molecular wave function has a significant amplitude.

5.1. Time-Dependent Hermitian Approximation. In
general, the effective potentials in eq 25 exhibit discontinuous
steps, which could introduce instabilities in a trajectory-based
solution of the many-body dynamics based on eq 24. Therefore,
in a similar manner to the time-independent case, an
approximate solution can be formulated by expanding the
kinetic and advective correlation potentials around the condi-
tional coordinates xα(t), such that

η = ̅
α αx xt f t( , ) ( ( ))i i i (28)

In this limit, the kinetic and advective correlation potentials only
engender a global phase that can be omitted, as expectation
values are invariant under such global phase transformations.
The resulting propagation scheme is restored to a Hermitian
form. That is, eq 24 is approximated as

ψ ψ= ̂ +α α α

t
t T W t ti

d
d

( ) ( ( )) ( )i i i i (29)

while the trajectories xα(t) are constructed according to eq 26.
This approximation to the time-dependent CWF formalism is

clearly a major simplification of the full problem, as it recasts the
many-body time-dependent Schrödinger equation as a set of
independent single-particle equations of motion. Despite the
crudeness of the approximation in eq 28, the set of equations of
motion in eq 29 has found numerous applications, e.g., in the
description of adiabatic and nonadiabatic quantum molecular
dynamics68,70 and quantum electron transport.90−94 In ref 68,
for example, results using eq 29 for an exactly solvable model
system showed a great degree of accuracy of the time-dependent
Hermitian approximation in capturing nonadiabatic dynamics.
Alternatively, in ref 70, the set of equations in eq 29 was used to
describe the adiabatic double proton transfer for an exactly
solvable model porphine, showing great promise in capturing
quantum nuclear effects. Regarding the comparison of the time-
dependent Hermitian approach in eq 29 with conventional
mean-field methods, in ref 91, it was shown that quantum
electron transport simulations using eq 29 represent an
improvement with respect to time-dependent (Hartree-type)
mean-field simulations. Similar conclusions were reported in ref
95, where a simplified semiclassical method based on eq 29 was
compared with classical mean-field results.
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Methods based on eq 29, however, are known to fail to
describe important nonadiabatic processes such as the splitting
of the time-dependent reduced nuclear density with influences
from different BOPESs.68 This type of dynamics has been
commonly associated with decoherence effects that neither the
Hermitian approximation in eq 28 nor other mean-field
methods such as Ehrenfest or Tully’s surface hopping dynamics
are able to capture.

6. SIMULATING FAR-FROM-EQUILIBRIUM DYNAMICS
WITH CONDITIONAL WAVE FUNCTIONS

In general circumstances where the kinetic and advective
correlation potentials are important, we can make use of the
simple Hermitian form of the conditional equations of motion in
eq 29 to design an efficient many-body wave function
propagator. For that, we expand the full electron−nuclear
wave function using the ansatz

∑ ∏ ψΨ =
α

α
α

= =

×

x xt C t t( , ) ( ) ( , )
N M

i

n N

i i
1 1

c

(30)

where the coefficients Cα(t) and the CWFs ψi
α(xi, t) are

initialized using the sta-ICWFmethod and propagated afterward
using the approximated equations of motion in eq 29 along with
trajectories obeying eq 26.
The time evolution of the coefficients C(t) can be then

obtained by inserting the ansatz of eq 30 into eq 20
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where the matrix elements of ,  are defined as in eqs 13 and
14, with the time dependence coming from external fields in the
Hamiltonian and the time-dependent CWFs, while i are
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where hi
α(t) are the Hermitian Hamiltonians in eq 29 and Ĥ(t) is

the full time-dependent Hamiltonian in eq 20.
Obtaining these matrix elements is straightforward, involving

a sum across single-body operators in eqs 13 and 32 and all sums
of two-body interactions across each degree of freedom in eq 14.
Note that any operator involving only a single species, e.g., the
kinetic energy, is canceled out, and thus the evolution of C is
governed exclusively by matrix elements of operators, which
either fully (through ) or conditionally (through i) correlate
the degrees of freedom.
Equations 26, 29, and 31 define a set of coupled differential

equations that hereafter will be referred to as the dynamical
ICWF (dyn-ICWF) method. One can then evaluate the
expectation value of a generic observable ⟨Ô(x)⟩ as given in
eqs 15 with dyn-ICWF by simply taking into account that ψi

α(t)
are now time-dependent CWFs.
The above dyn-ICWF method was first put forth in ref 72. At

the time of publishing the work in ref 72, however, there was no
theory sustaining the construction of the initial conditional wave
function basisψi

α(xi,t) without relying on an exact solution of the
time-independent Schrödinger equation. That has been the
main limitation of the method thus far. Here, instead, we have
shown that the imaginary-time sta-ICWF method (derived in
Section 3) not only allows us to solve accurately the time-
independent Schrödinger equation but also serves as a method

to define an optimal set of conditional wave function basis
ψi
α(xi,0). Therefore, the dyn-ICWF in combination with

imaginary-time sta-ICWF provides a self-consistent approach
to describe observables that are relevant to equilibrium, as well
as far-from-equilibrium processes. An example combining these
two methods will be shown in the example of Section 6.2, where
an initial ground state is prepared using imaginary-time sta-
ICWF and a later dynamics, triggered by a laser pulse, is
described using dyn-ICWF. The interested reader can find a
complete flowchart of the combined method in Appendix D.

6.1. Example IV: Impact Electron Ionization. The
theoretical description of electron scattering remains challeng-
ing, as it is a highly correlated problem that generally requires
treatment beyond perturbation theory.96,97 We here study a
model system of electron−hydrogen scattering that can be
exactly solved numerically.98 In atomic units, the Hamiltonian of
this one-dimensional two-electron model system reads
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are, respectively, the soft-Coulomb interaction and the external
potential that models the H atom located at r = 10 au. The initial
interacting wave function is taken to be a spin singlet, with a
spatial part

ϕ ϕ ϕ ϕΨ = +r r r r r r( , )
1
2

( ( ) ( ) ( ) ( ))0 1 2 H 1 WP 2 WP 1 H 2 (36)

where ϕH(r) is the ground-state hydrogen wave function and
ϕWP(r) is an incident Gaussian wavepacket
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with α = 0.1 representing an electron at r =−10 au, approaching
the target atom with a momentum p.
The time-resolved picture presents scattering as a fully

nonequilibrium problem, where the system starts already in a
nonsteady state, and so, the imaginary-time sta-ICWF cannot be
applied here to prepare the initial wave function. Instead, we
stochastically sample the initial probability density |Ψ0(r1, r2)|

2

with Nc trajectories {r1
α(0), r2

α(0)} that are used to construct
CWFs ϕ1

α(r1, 0) and ϕ2
α(r2, 0), as defined in eq 23. A thorough

description of the numerical procedure, as well as the
convergence behavior of the dyn-ICWF method for this
model can be found in Appendix C.1. See also Appendix D for
a description of the corresponding workflow.
We study the dynamics of the electron−hydrogen scattering

by evaluating the time-dependent one-body density, ρe(r1, t) =
2∫ |Ψ(r1, r2, t)|2 dr2, for two different initial momenta, viz., p =
0.3 and 1.5 au. For p = 0.3 au, the energy is lower than the lowest
excitation of the target (which is aboutω = 0.4 au) and hence the
scattering process is elastic. In this regime, mean-field results
(here represented by extended time-dependent Hartree−Fock
calculations) and dyn-ICWF results with Nc = 128 results both
capture the correct dynamics accurately (see Figure 5). In
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approaching the target atom with the larger momentum p = 1.5
au, the incident wavepacket collides inelastically with the target
electron at around 0.24 fs, after which, a part of the wavepacket is
transmitted while some is reflected back leaving the target
partially ionized. In this regime, the mean-field method fails to
describe the transmission process quantitatively and the
reflection process even qualitatively due to its inability to
capture electron−electron correlation effects. This is in contrast
with dyn-ICWF results, which quantitatively capture the
correlated dynamics for Nc = 256, although a lower number of
CWFs already reproduces qualitatively the dynamics (see
Appendix C.1 and Figure 5).
6.2. Example V: Laser-Driven Proton-Coupled Electron

Transfer. We now show dyn-ICWF results for a prototypical
photoinduced proton-coupled electron transfer reaction, using
the Shin−Metiu model.99 The system comprises donor and
acceptor ions, which are fixed at a distance L = 19.0a0, and a
proton and an electron that are free to move in one dimension
along the line connecting the donor−acceptor complex. Based
on the parameter regime chosen, this model can give rise to a
number of challenging situations where electron−nuclear
correlations play a crucial role in the dynamics.
The total Hamiltonian for the system is

̂ = − ∂
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− ∂
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where m is the electron mass, and M is the proton mass. The
coordinates of the electron and the mobile ion are measured
from the center of the two fixed ions and are labeled r and R,
respectively. The full electron−nuclear potential reads
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where erf() is the error function. The parameter regime studied
for this model (Rf = 5a0, Rl = 4a0, and Rr = 3.1a0) is chosen such
that the ground-state BOPES, ϵBO

1 , is strongly coupled to the first
excited adiabatic state, ϵBO

2 , around the mean nuclear
equilibrium position Req = −2a0. The coupling to the rest of
the BOPESs is negligible.
We set the system to be initially in the full electron−nuclear

ground state obtained from the imaginary-time propagation
method described above, i.e., Ψ(r, R, 0) = Ψ0(r, R) (the
interested reader can find a general workflow of the simulation in
Appendix D). We then apply an external strong electric field,
E(t) = E0Ω(t) sin(ω t), with E0 = 0.006 au, Ω(t) = sin(πt/20)2,
and ω = ϵBO

1 (Req) − ϵBO
0 (Req). The external field induces a

dynamics that involves a passage through an avoided crossing
between the first two BOPESs, with further crossings occurring
at later times as the system evolves. When the system passes
through the nonadiabatic coupling region, the electron transfers
probability between the ground state and the first excited state.
This is shown in the top panel of Figure 6, where we monitor the

BO electronic state populations Pn(t) (whose definition can be
found in Appendix C.2). As a result of the electronic transition,
the reduced nuclear density changes shape by splitting into two
parts representing influences from both ground- and excited-
state BOPESs. This can be seen in the bottom panel of Figure 6,
where, as a measure of decoherence, we use the indicatorDnm(t)
(whose definition can be found in Appendix C.2). As
nonadiabatic transitions occur, the system builds up a degree
of coherence that subsequently decays as the system evolves
away from the coupling region.
As shown in Figure 6, the dyn-ICWF method reaches

quantitative accuracy for (Nc, M) = (256, 1) and vastly
outperforms the multitrajectory Ehrenfest mean-field method
in describing both the adiabatic populations and the

Figure 5. Top panel: reduced electron density at t = 1.8 fs for p = 0.3 au
andNc = 128. Bottom panel: reduced electron density at t = 0.85 fs for p
= 1.5 au and Nc = 256 and Nin = 10.

Figure 6. Top panel: population dynamics of the first two adiabatic
electronic states P0,1(t). Solid black lines correspond to exact numerical
results. Solid blue and red lines correspond to dyn-ICWF results with
(Nc, M) = (256, 1) for the ground and first excited adiabatic
populations, respectively. Dashed blue and red lines correspond to
mean-field MTEF results. Bottom panel: decoherence dynamics
between the ground state and first excited adiabatic electronic states,
i.e.,D01. Solid black lines correspond to exact results. The solid blue line
corresponds to dyn-ICWF results with (Nc,M) = (256, 1). The dashed
blue line corresponds to mean-field MTEF results.
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decoherence measure. More specifically, while both the dyn-
ICWF method and MTEF dynamics correctly capture the exact
adiabatic population dynamics at short times, the latter breaks
down at long times as it fails to capture the qualitative structure
of the time-evolving indicator of decoherence. Noticeably, all of
these aspects of this problem are qualitatively well described by
the dyn-ICWF method using only (Nc, M) = (16, 1) (these
results can be found in Appendix C.2).
6.3. Example VI: Interference Effects Near a Molecular

Conical Intersection.We next study dynamics around conical
intersections (CIs) using a minimal generalization of the above
Shin−Metiu model first proposed by Gross and co-workers100

and extended further by Schaupp and Engel.101 The model
consists of a quantized electron and proton that can move in two
Cartesian directions, along with two fixed “classical” protons, R1,
R2. A CI occurs in this model when (treating the quantized
proton as a BO parameter) the protons are in a D3h geometry.
The potential energy is
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(40)

and we use the parameter values a = 0.5, b = 10, R0 = 1.5, R1 =
(−0.4√3, 1.2), and R2 = (0.4√3, 1.2).
We initialize the total systemwave function as a direct product

of the first excited electronic BO state and a nuclear Gaussian
state centered at Rc = (0, 0.4) with standard deviation σ

2 = 5. For
this placement of R1, R2, the CI occurs at the origin and, in the
BO picture, the initial nuclear wavepacket “falls toward” the CI
(see Figure 14 in Appendix C.3). In this picture, the nuclear
motion occurs on a single BOPES and the two portions of the
nuclear wavepacket around the CI (i.e., the clockwise and
anticlockwise components) cause an interference pattern to
develop when they do recollide (see Figure 7).
While the interference pattern described in Figure 7 can be

understood as the adiabatic circular motion around the position
of a conical intersection, it is important to emphasize that the
concept of CI makes sense only when the adiabatic picture, i.e.,

the Born−Huang basis expansion, is used to represent the
molecular wave function. However, any observable effect that
can be explained on the adiabatic basis must arise also in any
other picture such as the diabatic picture or the full real-space
grid picture used by the dyn-ICWF method. Therefore, while
not depending on the BO picture (beyond defining the initial
state), the dyn-ICWF method is able to capture the correct CI
curvature effects, as well as any interference pattern that forms in
the fully reduced nuclear density

∬ρ = |Ψ |R R r r r r R R( , ) d d ( , , , )x y x y x y x y
2

(41)

See Appendices C.3 and D for further details on the dyn-ICWF
calculation.

7. CONCLUSIONS
In this work, we have introduced an exact mathematical
framework that avoids the standard separation between
electrons and nuclei and hence enables a unified treatment of
molecular structure and nonadiabatic dynamics without relying
on the construction and fit of Born−Oppenheimer potential-
energy surfaces and the explicit computation of nonadiabatic
couplings.
We have introduced a time-independent conditional wave

function theory, which is an exact decomposition and recasting
of the static many-body problem that yields a set of single-
particle conditional eigenstates. Based on the imaginary-time
propagation of a stochastic ansatz made of approximated
conditional eigenstates, the resulting method, called sta-ICWF,
is able to accurately capture electron−electron correlations
intrinsic to molecular structure. A real-time counterpart of the
above method has been also derived following the Dirac−
Frenkel variational procedure, and its combination with the
imaginary-time version yields an accurate method for solving
out-of-equilibrium properties of molecular systems where
nonadiabatic electron−nuclear correlations are important.
This has been shown by reproducing the exact structural, linear
response, and nonperturbatively driven response properties of
an exactly solvable one-dimensional H2 model system that
standard mean-field theories fail to describe.
We have also considered a broader class of conditional wave

functions that was formally introduced through time-dependent
conditional wave function theory, yielding a set of coupled
single-particle equations of motion. An approximated set of
these time-dependent conditional wave functions are utilized as
time-dependent basis of a stochastic wave function ansatz that is
meant to describe observables that are relevant to far-from-
equilibrium processes. The resulting propagation technique
(called dyn-ICWF) in combination with sta-ICWF provides a
fully self-consistent approach and, moreover, the method
achieves quantitative accuracy for situations in which mean-
field theory drastically fails to capture qualitative aspects of the
combined electron−nuclear dynamics.
The sta- and dyn-ICWF methods are wave function-based

approaches. Therefore, while the simple sum-of-product forms
that we have employed for our ansatz in eqs 9 and 30 can be
made more efficient, by introducing a tensor network
representation for the expansion coefficients such as matrix
product states or hierarchical Tucker formats, for example, an
exponential scaling with respect to the number of correlated
degrees of freedom is expected unless approximations are
introduced. That being said, we want to emphasize that the
ICWF method is fundamentally different from wave function

Figure 7. Exact and dyn-ICWF reduced nuclear density showing the
interference pattern after having traversed the conical intersection at
the origin.
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methods that rely on the Born−Huang expansion of the
molecular wave function. Alternatively, the ICWF method
describes electronic and nuclear degrees of freedom on the same
mathematical footing, viz., the real-space grid picture. It is this
particular trait that makes the ICWF an original starting point for
developing novel, unexplored, approximations that could
eventually yield a significant computational advantage compared
to methods that rely on the Born−Huang expansion.
Importantly, the conditional decomposition holds for an

arbitrary number of subsets (up to the total number of degrees of
freedom in the system) and applies to both fermionic and
bosonic many-body interacting systems. Our developments thus
provide a general framework to approach the many-body
problem in and out of equilibrium for a large variety of contexts.
For example, using conditional wave functions in a form
compatible with time-dependent density functional theory in
connection with alternative tensor network decompositions or
in combination with classical/semiclassical limits for specified
degrees of freedom are particularly appealing routes to follow,
and work in this direction is already in progress.102 Furthermore,
the extension to periodic systems is currently under inves-
tigation and should allow the ab initio description of driven
electron−lattice dynamics such as, for example, laser-driven
heating and thermalization,103−108 correlated lattice dynam-
ics,109−111 and phase transitions.112−114

A. Definition of the “Reassembling” Transformation xi
of

Equation 6
Here, we consider a reconstruction of the full wave function
Ψγ(x) from conditional wave functions defined as in eq 3 of the
main text, i.e.

∫ψ δ≔ ̅ ̅ − ̅ Ψα γ α γx x x x x( ) d ( ) ( )i i i i i
,

(42)

Here, the index α ∈ {1, 2, ..., Nc} denotes the particular
conditional slice, and x̅i = (x1, ..., xi−1, xi+1, ..., xn×N) are the
coordinates of all degrees of the system except xi. Similarly, x̅i

α =
(x1

α, ..., xi−1
α , xi+1

α , ..., xn×N
α ) are the position of all system’s degrees

of freedom except xi.
Assuming that the conditional sampling points, x̅i

α, are
distributed according to a normalized distribution ̅

αx( )i , one
can approximately reconstruct the full wave function based on
the interpolation with a Gaussian function Gσ(x̅i) with a given
width σ as
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In this way, the full wave function is reconstructed as a Gaussian
weighted average: in the numerator of eq 43, the contribution
from each conditional slice α is weighted with a Gaussian
distribution, and it becomes larger if the evaluated point, x̅, is
closer to the sampling point x̅α. To compensate the nonuniform
sampling distribution contribution, the interpolation weight is
divided by the distribution function ̅

αx( )i . In addition, the
denominator of eq 43 ensures normalization of the interpolation
weight.
By considering a dense sampling (Nc→∞), the reconstructed

wave function of eq 43 can be rewritten as

∫ ψΨ = ̅ ̅ − ̅σ
γ α σ α α γ

→∞
x x x x xGlim ( ) d ( ) ( )

N
N i i i i,
Rec, ,

c
c (44)

and substituting eq 42 into eq 44, one obtains

∫Ψ = ̅ ′ ̅ − ̅′ Ψ ̅′σ
γ σ

→∞
x x x x xGlim ( ) d ( ) ( )

N
N i i i,
Rec,

c
c (45)

where x̅′ = (x1′, ..., xi−1′ , xi, xi+1′ , ..., xn×N′ ). Therefore, for a dense
sampling,ΨNc,σ

Rec,γ(x) can be understood as the convolution of the
full wave function Ψ(x) and the Gaussian weight Gσ(x̅i).
Furthermore, in the narrow Gaussian width limit, (σ → 0),
Gσ(x̅i) can be treated as a Dirac δ function and hence eq 45 can
be written as

Ψ = Ψ
σ

σ
γ

→
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x xlim ( ) ( )
N

N
0

,
Rec,

c

c

(46)

In conclusion, one can exactly reconstruct the full electron−
nuclear wave function in terms of conditional wave functions
using the reassembling operator xi

defined as

ψ
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B. Convergence of the Real- and Imaginary-Time Versions
of the sta-ICWF Method
In this section, we discuss the convergence of the imaginary- and
real-time sta-ICWF methods for the examples in Sections 3.1,
4.1, and 4.2. For that, we first notice that, due to the stochastic
nature of the sta-ICWF method, given a set of sampling points
Nc and their conditional eigenstates M, we may also consider a
number Nin of different sets of Nc sampled points and their
associatedM conditional eigenstates. This can be accounted for
by rewriting the expectation value of eq 15 as

∑⟨ ̅ ⟩ = ⟨ ̂ ⟩
=

O t
N

O t( )
1

( )
p

N

p
in 1

in

(48)

The dispersion of ⟨O̅(t)⟩ with respect to Nin is then quantified
through its standard deviation, i.e.

Δ ̅ = ⟨ ̅ ⟩ − ⟨ ̅ ⟩O t O t O t( ) ( ) ( )2 2
(49)

B.1. Ground and Excited BOPESs of H2.We discuss here the
convergence of the imaginary-time version of the sta-ICWF
method in capturing the ground-state and excited-state BOPESs
for the H2 model system introduced in Section 3.1. Finding the
BOPESs for this particular model is equivalent to solving eq 19
using the imaginary-time evolution technique

τ
τ τΦ = − ̂ Φζ ζ ζr r R r r R

d
d

( , ; , ) ( , ; , )1 2 el 1 2 (50)

where {Φγ(r1, r2; R)} are the (complete, orthonormal) set of BO
electronic states, and we have defined Ĥel

ζ as
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where P̂ξ = ΦξΦξ† and ̂ = ̂ − ̂H Tel nuc.
The BO electronic states, Φγ(r1, r2; R), are then expanded in

terms of CWFs with the following simplified version of the
ansatz in eq 9 that is specialized to the particular case of
parametric nuclear dependence

∑ ϕ ϕΦ =γ

α
α
γ α α

=

r r R C r R r R( , ; ) ( ; ) ( ; )
N M
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(52)
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Slicing points (r1
α, r2

α) are generated by sampling from reduced
one-body electronic densities, which in this case are simply

chosen to be Gaussian functions ρe(ri) = A e−ri
2/10. The

conditional eigenstates ϕi
α,ν(ri; R), for ν ∈ {1, ..., M} are then

evaluated on each slice using the Hermitian approximation, i.e.

i
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y
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(53)

whereWi
α(ri, R) =Wee(ri,ri̅

α) +Wen(ri, R). The coefficient vector
Cγ is randomly initialized and then propagated in imaginary time
until the target state is reached according to eq 12 of the main

text, with Ĥ being substituted with ̂
el.

To achieve converged results, a grid (0, 9] au for the
internuclear separation with 181 grid points is chosen for the
nuclear degrees of freedom. For the electron coordinates, the
grid covers the interval [−35, +35] au with 200 grid points. The
fourth-order Runge−Kutta integration method was used to
propagate the imaginary-time sta-ICWF equation of motion
(i.e., eq 12) with a time-step dτ = 0.01 au, and the Moore−
Penrose pseudo-inversion method with a tolerance of 10−8 was
used to approximate the numerical inversion of the overlap
matrix in eq 13. Importantly, the matrices and of eqs 12 and
14 need only be constructed at the initial time, requiring only the
repeated multiplication of an Nc × M vector by an Nc

2 × M2

matrix for the imaginary-time propagation.
In Figure 8, we show sta-ICWF results for the first five

BOPESs for two different sets of parameters: (Nc,M) = (32, 1)

(top panel) and (Nc,M) = (8, 1) (bottom panel). The sta-ICWF
data are presented alongside (standard deviation) error bars
defined in eq 49. Noticeably, even for M = 1 (i.e., when only
ground-state conditional eigenstates are used in the expansion of
eq 52), the results in Figure 8 demonstrate the convergence of
the imaginary-time sta-ICWF method to the exact BOPESs. For
a large enough number of sampling points and excited CWFs,
viz., (Nc,M) ≳ (32, 5), the sta-ICWF results are fully converged
to the exact BOPESs and the associated error bars become
negligible due to the completeness of the CWF basis.
B.2. Ground State of H2.We investigate here the ground-state

energy for the model H2 introduced in Section 3.1, as well as the

convergence behavior of the imaginary-time version of the sta-
ICWF method in capturing it. We aim to solve eq 10, which for
this particular model system reduces to

τ
τ

τ
Ψ

= − ̂ Ψ
r r R

H r r R
d ( , , , )

d
( , , , )

(0)
1 2 (0)

1 2 (54)

where Ĥ is the Hamiltonian in eq 16. For that, we choose the
conditional eigenstate basis by sampling Nc points (r1

α, r2
α, Rα)

from guesses to the reduced electronic and nuclear densities

ρe(ri) = Ae e
−ri

2/10 and ρn(R) = An e
−(R−2)2, respectively. Starting

from the full H2 Hamiltonian of eq 16, these positions are then
used to construct and diagonalize the Hermitian Hamiltonians
in eq 8. In this way, we obtain 3×Nc×Mconditional eigenstates
{ϕ1

α,ζ(r1), ϕ2
α,ζ(r2), χ

α,ζ(R)}. This allows us to expand the full
ground-state wave function as

∑ ϕ ϕ χΨ =
α

α
α α α
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N M

(0)
1 2

1

0
1 1 2 2

c

(55)

Given a random initialization of the coefficient vector C, we
then evolve it in imaginary time according to eq 12 and the
matrix elements of eqs 13 and 14. To achieve converged results,
a grid (0, 9] au for the internuclear separation with 181 grid
points is chosen for the nuclear degrees of freedom. For the
electron coordinates, the grid covers the interval [−35, +35] au
with 200 grid points. The fourth-order Runge−Kutta algorithm
with a tolerance of 10−8 was used to propagate the imaginary-
time sta-ICWF equations of motion with a time-step dτ = 0.01
au, and the Moore−Penrose pseudo-inversion method was used
to approximate the numerical inversion of the overlap matrix in
eq 13. Importantly, the matrices  and  of eq 12 need only be
constructed at the initial time.
From the exact symmetric ground-state wave function, we

found an equilibrium separation of ⟨R⟩ = 2.2 au and the ground-
state energy is E0 =−1.4843 au We then define the relative error
of the sta-ICWF calculation with respect to the exact calculation
as Er = |⟨H̅⟩0 − E0|/|E0|, where

∑⟨ ̅⟩ = ⟨Ψ | ̂ |Ψ ⟩
=

H
N

H
1

n

N

n0
in 1

(0) (0)
in

(56)

and Ψ0 has been defined in terms of CWFs in eq 55.
The error Er is presented in Figure 9 as a function of the

number of sampling points and for a different number of excited
conditional eigenstates, i.e., (Nc, M). Error bars represent the
standard deviation ΔH̅0 defined in eq 49 for a number of
different initial sampling points. Due to the variational nature of
the method, the relative error decreases with an increasing

Figure 8. First five BOPESs reproduced with the sta-ICWF method for
(Nc, M) = (8, 1) (bottom panel) and (Nc, M) = (32, 1) (top panel).
These data are presented alongside (standard deviation) error bars.

Figure 9. (Left) Logarithm of the mean relative energy error Eer as a
function of the logarithm of the number of sampling points Nc and for
different number of excited CWFsM = {1, 2, 3, 4}. Error bars represent
the standard deviation of the relative error.
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number of sampling points Nc. Noticeably, even for M = 1 (i.e.,
when only ground-state conditional eigenstates are used in the
expansion of eq 9), the results in Figure 9 demonstrate the
convergence of the imaginary-time sta-ICWF method to the
exact ground state. The convergence process is accelerated
though as we allow a number of excited conditional eigenstates
(i.e., M > 1) to participate in the ansatz. For a large enough
number of basis elements Nc × M, the CWF bases become a
complete basis of the problem. This is independent of the initial
distribution of sampling points and hence the associated error
bars vanish for large enough values of Nc × M.
B.3. Optical Absorption Spectrum of H2.We discuss here the

convergence of the real-time version of the sta-ICWFmethod in
capturing the optical absorption spectrum of the H2 model
system introduced in Section 3.1. The simulation starts with the
preparation of the ground-state coefficients C(0) using the
imaginary-time version of the sta-ICWF method described in
Appendix B.2. The relevant degree of freedom of the kick
operator is then applied to each CWF, the Hamiltonian and
inverse overlap matrices of eqs 13 and 14 are reconstructed, and
C is propagated to the desired time according to eq 21. A kick
strength of κ = 10−4 au−1 was sufficient to generate the kick
spectra within the linear response regime, and a total
propagation time of Tf = 1500 au was used to generate the
s p e c t r a , a l o n g s i d e t h e m a s k f u n c t i o n

= = − +x t T x x( / ) 1 3 2f
2 3.

A grid [−35, +35] au with 200 grid points was chosen for the
electronic coordinates. The fourth-order Runge−Kutta algo-
rithm was used to propagate the imaginary-time sta-ICWF
equations of motion with a time-step dt = 0.01 au, and the
Moore−Penrose pseudo-inversion method with a tolerance of
10−8 was used to approximate the numerical inversion of the
overlap matrix in eq 13. Again, the matrices  and  of eq 12
need only be constructed at the initial time.
In Figure 10, we show convergence results for sta-ICWF

calculations of the optical linear absorption spectra (eq 22) for
four different sets of parameters: (Nc,M) = (512, 3), (Nc,M) =
(2048, 3) (top panel), and (Nc, M) = (4096, 1) and (Nc, M) =
(4096, 3) (bottom panel). In all of these cases, we considered a
number of different initial sampling points, which have been

used to calculate the associated (standard deviation) error bars
as in eq 49. As the number of conditional eigenstate basis
elements in the ansatz expansion of eq 55 increases, the
variational nature of the method ensures convergence to the
exact linear absorption line shape. Similarly, the error bars shrink
as the number of conditional eigenstates in the basis Nc × M
allows us to span the relevant part of the Hilbert space.

B.4. Laser-Driven Dynamics of H2. We discuss here the
convergence of the real-time version of the sta-ICWFmethod in
capturing the laser-driven dynamics of the H2 model system
introduced in Section 3.1. As explained in Section 4.2 of the
main text, the system is first prepared in the ground state using
the imaginary-time sta-ICWF as explained in Appendix B.2, and
then the field-driven dynamics is generated by applying an
electric field of the form E(t) = E0Ω(t) sin(ωt), with E0 = 0.005
au and an envelopeΩ(t) with a duration of 20 optical cycles. The
carrier wave frequency ω = 0.403 is tuned to the vertical
excitation between the ground BO state and second excited
electronic surface.
For the dynamics we used, a grid (0, 9] au for the internuclear

separation with 181 grid points is chosen for the nuclear degrees
of freedom. For the electron coordinates, the grid covers the
interval [−35, +35] au with 200 grid points. The fourth-order
Runge−Kutta algorithm was used to propagate the sta-ICWF
equation of motion in eq 21 with a time-step dt = 0.01 au, and
the Moore−Penrose pseudo-inversion method with a tolerance
of 10−8 was used to approximate the numerical inversion of the
overlap matrix in eq 13.
In Figure 11, we show convergence results for the real-time

sta-ICWF calculation of the electronic dipole moment ⟨μ̂e⟩. We

considered four different sta-ICWF configurations, viz., (Nc,M)
= (512, 3), (Nc,M) = (4096, 3) (in the top panel), and (Nc,M) =
(4096, 1) and (Nc,M) = (4096, 3) (in the bottom panel). As the
number of CWFs in the ansatz expansion of eq 55 increases, the
variational nature of the method ensures convergence to the
exact dynamics. The deviation from the exact results does grow
with increasing time lapse, although this is ameliorated with
increasing either Nc and/or M and can, in principle, be
eliminated at large enough values of these parameters. Similarly,
the error bars become negligible when the CWF bases expand

Figure 10. H2 spectrum for ICWF-Kick with different number of
sampling points and excited CWFs. Top panel: (Nc,M) = (512, 3) and
(Nc,M) = (2048, 3). Bottom panel: (Nc,M) = (4096, 1) and (Nc,M) =
(4096, 3). The results are presented alongside (standard deviation)
error bars.

Figure 11. Evolution of the expectation value of the dipole operator
⟨μe⟩ for the 1D H2 model system for a number of conditional basis
configurations. Top panel: (Nc, M) = (512, 3), (Nc, M) = (4096, 3).
Bottom panel: (Nc,M) = (4096, 1) and (Nc,M) = (4096, 3). These data
are presented along with (standard deviation) error bars.
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the full support of the Hilbert space explored during the
dynamics. This happens for (Nc, M) ≳ (4096, 3).
C. Convergence of the dyn-ICWF Method
In this section, we discuss the convergence behavior of the dyn-
ICWF method for the examples of Sections 6.1−6.3. As it
happened for the sta-ICWFmethod, the stochastic nature of the
dyn-ICWF method allows us to consider a number Nin of
different initial sampling points for a given set of parameters (Nc,
M). This is taken into account by writing expectation values as in
eq 48 and its standard deviation as in eq 49.
C.1. Impact Electron Ionization. We discuss here the

convergence behavior of the dyn-ICWF method in capturing
the laser-driven proton-coupled electron transfer described in
Section 6.1.
The time-resolved picture presents scattering as a fully

nonequilibrium problem, where the system starts already in a
nonsteady state, and so, the imaginary-time sta-ICWF cannot be
applied here to prepare the initial wave function. Instead, we
stochastically sample the initial probability density |Ψ0(r1, r2)|

2

with Nc trajectories {r1
α(0), r2

α(0)} that are used to construct
CWFs ϕ1

α(r1, 0) and ϕ2
α(r2, 0), as defined in eq 23. These CWFs

are then used to construct the ansatz in eq 30, i.e.

∑ ϕ ϕΨ =
α

α
α α

=

r r t C t r t r t( , , ) ( ) ( , ) ( , )
N M

1 2
1

1 1 2 2

c

(57)

with an initial C vector that is obtained using

= −C G(0) 1 (58)

where G is the vector containing the overlap between the initial
wave function and the CWFs, i.e.

∬ ϕ ϕ= Ψα
α α* *G r r r r r rd d ( , 0) ( , 0) ( , )1 2 1 1 2 2 0 1 2 (59)

Given C(0), and ϕ1
α(r1, 0) and ϕ2

α(r2, 0) for an ensemble of
sampling points {r1

α(0), r2
α(0)}, these objects are then

propagated according to the dyn-ICWF equations of motion
in eqs 29 and 31.
To achieve converged results, we choose the size of the

simulation box to be 150 × 150 au2 with a homogeneous grid
consisting of 500 grid points in each direction. The fourth-order
Runge−Kutta algorithm was used to propagate the dyn-ICWF
equations of motion with a time-step dt = 0.01 au, and the
Moore−Penrose pseudo-inversion method with a tolerance of
10−8 was used to approximate the numerical inversion of the
overlap matrix in eq 31.
In Figure 12, we show the one-body electronic density ρe(r1,

t), for two different initial momenta and final times, viz., p = 0.3
and 1.5 au and t = 1.8 and 0.85 fs. For p = 0.3 au, a very small
number of CWFs ((Nc,M) = (16, 1)) is already able to capture
the correct dynamics quantitatively. In approaching the target
atom with the larger momentum p = 1.5 au, the conventional
mean-field method fails to describe the ionization process due to
the lack of electron−electron correlation effects. This is in
contrast with dyn-ICWF results, which qualitatively captures the
correlated dynamics for a small number of CWFs (Nc,M) = (64,
1).
C.2. Laser-Driven Proton-Coupled Electron Transfer. We

discuss here the convergence behavior of the dyn-ICWFmethod
in capturing the laser-driven proton-coupled electron transfer
described in Section 6.2. We suppose the system to be initially
seating in the full electron−nuclear ground state, i.e., Ψ(r, R, 0)
= Ψ0(r, R). This state is prepared using the imaginary-time

version of the sta-ICWF method with ground-state CWFs only
(i.e., M = 1)

∑ ϕ χΨ =
α

α
α α

=

r R C r R( , ) (0) ( , 0) ( , 0)
N

(0)

1

c

(60)

The sta-ICWF provides as output the initial expansion
coefficients C(0) and the ground-state electronic and nuclear
CWFs, ϕα(r, 0) and χα(R, 0), respectively. We then apply an
external strong electric field, defined in Section 6.2 of the main
text, and the coefficients and the CWFs are propagated using the
dyn-ICWF equations of motion in eqs 29 and 31.
To achieve converged results, a grid [−9, 9] au with 301 grid

points is chosen for the nuclear degrees of freedom. For the
electron coordinates, the grid covers the interval [−75, +75] au
with 250 grid points. The fourth-order Runge−Kutta algorithm
was used to propagate the dyn-ICWF equations of motion with a
time-step dt = 0.1 au, and theMoore−Penrose pseudo-inversion
method with a tolerance of 10−8 was used to approximate the
numerical inversion of the overlap matrix in eq 31.
By introducing the Born−Huang expansion of the molecular

wave function, Ψ(r, R, t) = ∑nΦR
(n)(r, t)χ(n)(R, t), we then

monitor the dynamics through the BO electronic state
populations, Pm(t) = ∫ dR|χ(m)(R, t)|2, and the overlap integral
of projected nuclear densities evolving on different BOPESs,
Dnm(t) = ∫ dR|χ(n)(R, t)|2|χ(m)(R, t)|2. These quantities can be
written in terms of the dyn-ICWF basis by re-expressing the
adiabatic nuclear components as

∫∑χ χ ϕ| | = Φ
α

α
α α

=

R t C t R t r r r t( , ) ( ) ( , ) d ( ) ( , )m
N M

R
m( ) 2

1

( )
2

c

(61)

In Figure 13, we show dyn-ICWF results for (Nc,M) = (16, 1).
This very small number of CWFs, even if associated with large
deviations across different stochastic particle placements, is able
to capture nearly quantitatively both the adiabatic populations
and the decoherence indicator. This result demonstrates that the
dyn-ICWF technique achieves quantitative accuracy for
situations in which the mean-field theory drastically fails to
capture qualitative aspects of the dynamics using 3 orders of
magnitude fewer trajectories than a mean-field simulation.

Figure 12. Top panel: reduced electron density at t = 1.8 fs for p = 0.3
au and (Nc,M) = (16, 1). Bottom panel: reduced electron density at t =
0.85 fs for p = 1.5 au and (Nc, M) = (64, 1).
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C.3. Interference Effects Near a Molecular Conical
Intersection. We discuss here some of the technical details of
the interference effect calculation demonstrated in Section 6.3.
As in ref 101, we took an electronic spatial grid [−12, 12] au with
81 grid points and a nuclear grid [−1.5, 1.5] au with 51 grid
points alongside a time step of dt = 0.02 au. The initial wave
function was constructed on this grid, and the exact dynamics
were propagated directly using a fourth-order Runge−Kutta
integrator.
The time-resolved picture presents this problem as a fully

nonequilibrium problem, where the system starts already in a
nonsteady state, and so, the imaginary-time sta-ICWF cannot be
applied here to prepare the initial wave function. Instead, we
stochastically sample the initial probability density |Ψ0(r, R)|

2

with Nc trajectories {r
α(0), Rα(0)} that are used to construct

CWFsϕr
α(r, 0) and ϕR

α(R, 0), as defined in eq 23. In this process,
we respected the symmetry of the underlying initial state by
symmetrizing the initial particle placement (and thereby
complementarily symmetric slice CWFs) around the Ry, ry
axes, meaning for each particle Rα = (Rx

α, Ry
α), we set Rα+1 =

(−Rx
α, Ry

α).
These CWFsϕr

α(r, 0) andϕR
α(R, 0) are then used to construct

the ansatz in eq 30, i.e.

∑ ϕ ϕΨ =
α

α
α α

=

r R r Rt C t t t( , , ) ( ) ( , ) ( , )
N

r R
1

c

(62)

with an initial C vector that is obtained using

= −C G(0) 1 (63)

where G is the vector containing the overlap between the initial
wave function and the CWFs, i.e.

∬ ϕ ϕ= Ψα
α α* *r R r RG r rd d ( , 0) ( , 0) ( , )r R 0 1 2 (64)

Given C(0), and ϕ1
α(r1, 0) and ϕ2

α(r2, 0) for an ensemble of
sampling points {r1

α(0), r2
α(0)}, these objects are then

propagated according to the dyn-ICWF equations of motion
in eqs 29 and 31.
In the dyn-ICWF, the pseudo-inverse tolerance for  was set

to 10−8 and the evaluation matrix elements of the electron−
nuclear interaction potential term of eq 40

∬ ϕ χ ϕ χ=αβ
α α β β* * R r r R r rWd d ( ) ( ) ( ) ( )en (65)

was accelerated using a singular value decomposition (SVD) to
break up the four index potentials Wen(rx, ry, Rx, Ry) into a sum
over electronic and nuclear two index vectors

∑ σ=
=

σ

W r r R R u r r v R R( , , , ) ( , ) ( , )x y x y
l

N

l l x y l x yen
1 (66)

By tossing out σl < 10
−4, we found that we were able to retain the

accuracy of this potential to within a numerically tolerable limit
with a speedup in computation time at a factor between 3.6 and
4.3 depending on hardware. A cubic interpolation to a grid twice
as fine was used to smooth the images of the nuclear density
In Figure 14, we show the first and second excited BOPESs

associated with the extended Shin−Metiu model introduced in

Section 6.3. dyn-ICWF results for Nc = {1024, 1600, 2400} are
shown in Figure 15. Due to the finesse of the interference pattern
and its fragility with respect to the symmetry of the problem, the
number of CWFs required to reproduce quantitatively the exact
dynamics is relatively high compared to previous examples in
Appendices C.1 and C.2. And yet, note that while theNc = 1024

Figure 13. Top panel: population dynamics of the first two adiabatic
electronic states P0,1(t). Solid black lines correspond to the exact
numerical results. Solid blue and red lines correspond to dyn-ICWF
results with (Nc,M) = (16, 1) for the ground and first excited adiabatic
populations, respectively. Bottom panel: decoherence dynamics
between the ground state and first excited adiabatic electronic states,
i.e.,D01. Solid black lines correspond to exact results. The solid blue line
corresponds to dyn-ICWF results with (Nc, M) = (16, 1).

Figure 14. BOPESs for the first two excited states with electronic
quantum numbers ζ = 1 (lower surface) and ζ = 2. As mentioned in the
main text, the initial nuclear state is initialized as a Gaussian centered at
R = (0, 0.4) on the lower surface.

Figure 15. Convergence of the interference pattern arising from the CI
with respect to the number of basis elements, Nc. The computational
time for each fourth-order Runge−Kutta time step scales as

=t N(( ) )c
a for a = 1.59 ± 0.06.
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result do not reproduce the interference pattern accurately, they
do qualitatively capture the nuclear dynamics by avoiding the
forbidden region surrounding the conical intersection. This is in
contrast to the mean-field result (Figure 7 of ref 101), which fails
to capture this qualitative feature of the nuclear dynamics.

D. Implementing the ICWF Method
We discuss here the general workflow associated with the
different versions of the ICWF method, as well as some general
remarks concerning their scalability with respect to the number
of degrees of freedom.
Figure 16 illustrates all possible situations of interest. State

preparation using imaginary-time sta-ICWF for equilibrium
states is described in the top-left panel. A number Nc of particle

positions xα(0) are sampled from educated guesses of the single-
particle reduced probability densities. These positions are used
to construct the Hermitian Hamiltonians of eq 8 and a number
M of eigenstates. The randomly initialized vector of coefficients
Cγ(0) of the Ansatz in eq 9 is then propagated in imaginary time
until convergence according to eqs 12−14. At this point, any
(equilibrium) property of interest can be evaluated using eq 15
and 48 and 49.
The simulationmay continue if the perturbation of an external

agent is included. Thereafter, state propagation can be carried
out using real-time sta-ICWF (bottom left) or dyn-ICWF
(bottom right). As explained in the main text, if one chooses to
propagate according to the sta-ICWF equation of motion (eq

Figure 16. Flowchart of the ICWF method. The flowchart illustrates all possible situations of interest, viz., state preparation using either imaginary-
time sta-ICWF for equilibrium states (top-left) or direct matrix inversion for nonequilibrium states (top right), and state propagation using real-time
sta-ICWF (bottom left) or dyn-ICWF (bottom right).
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21) together with eqs 13 and 14, a sufficient number of excited
CWF states, γ > 0 in eq 9, for xα(0) covering some anticipated
range of motion for the dynamics must be considered.
Alternatively, in cases where the time-dependent wave function
is expected to stray far apart from the initial sta-ICWF basis, one
may choose to address the dynamics using a time-dependent
CWF basis as in eq 30 and the corresponding equations of
motion in eq 29, together with eqs 31 and 32 and 13 and 14. At
this point, any (nonequilibrium) property of interest can be
again evaluated using eq 15 together with eqs 48 and 49.
Finally, note that in cases where one aims to study a certain

dynamics that is triggered by some predefined out-of-
equilibrium initial state, obtaining the initial coefficients C(0)
is done through direct matrix inversion (top right). Afterward,
the dynamics must be simulated using the dyn-ICWF algorithm
described above.
Importantly, at this level of approximation, the ICWFmethod

is a wave function approach. That is to say that, while the simple
sum-of-product form that we employed for our ansatz in Figure
16 can be made more efficient by introducing a tensor network
representation for the expansion coefficients (such as matrix
product states or hierarchical Tucker formats), an exponential
scaling is not expected to be circumvented without introducing
any further approximation.
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