Information Sciences 583 (2022) 219-238

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins e

PCTBagging: From inner ensembles to ensembles. A trade-off N
between discriminating capacity and interpretability ks

Igor Ibarguren?, Jesiis M. Pérez", Javier Muguerza ”, Olatz Arbelaitz ", Ainhoa Yera®

2Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), 20500 Arrasate-Mondragén, Spain
b Department of Computer Architecture and Technology, University of the Basque Country (UPV/EHU), Manuel Lardizabal 1, 20018 Donostia, Spain

ARTICLE INFO ABSTRACT

Afficfe history: The use of decision trees considerably improves the discriminating capacity of ensemble
Received 16 March 2021 classifiers. However, this process results in the classifiers no longer being interpretable,
Received in revised form 9 October 2021 although comprehensibility is a desired trait of decision trees. Consolidation (consolidated

Accepted 5 November 2021

Available online 17 November 2021 tree construction algorithm, CTC) was introduced to improve the discriminating capacity of

decision trees, whereby a set of samples is used to build the consolidated tree without sac-
rificing transparency. In this work, PCTBagging is presented as a hybrid approach between
bagging and a consolidated tree such that part of the comprehensibility of the consolidated
tree is maintained while also improving the discriminating capacity. The consolidated tree
is first developed up to a certain point and then typical bagging is performed for each sam-

Keywords:
Comprehensible classifiers
Interpretable models
Decision trees

Consolidation ple. The part of the consolidated tree to be initially developed is configured by setting a
Ensembles consolidation percentage. In this work, 11 different consolidation percentages are consid-
4.5 ered for PCTBagging to effectively analyse the trade-off between comprehensibility and
CTC discriminating capacity. The results of PCTBagging are compared to those of bagging,
Bagging CTC and C4.5, which serves as the base for all other algorithms. PCTBagging, with a low

Machine learning consolidation percentage, achieves a discriminating capacity similar to that of bagging

while maintaining part of the interpretable structure of the consolidated tree.

PCTBagging with a consolidation percentage of 100% offers the same comprehensibility

as CTC, but achieves a significantly greater discriminating capacity.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Classification is a machine learning technique used in many fields to build models or classifiers based on training data.
Patterns are sought in a set of independent features that determine the value of a dependent feature to correctly predict
the value of previously unobserved dependent features in the data. In some of these fields, understanding how the classifi-
cation is performed is very important, especially in fields where classification is a decision support system for the human
user, such as medical diagnosis, law, or fraud detection. As stated in [1], interpretability can be beneficial as an additional
design driver for three reasons: to ensure impartiality in decision making, detect, and consequently, correct for bias in
the training dataset. It also facilitates robustness by highlighting potential adversarial perturbations that can impact the

* Corresponding author.
E-mail addresses: igor.ibarguren@ikerlan.es (I. Ibarguren), txus.perez@ehu.eus (J.M. Pérez), jmuguerza@ehu.eus (J. Muguerza), olatz.arbelaitz@ehu.eus
(O. Arbelaitz), ainhoa.yera@ehu.eus (A. Yera).

https://doi.org/10.1016/j.ins.2021.11.010
0020-0255/© 2021 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2021.11.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ins.2021.11.010
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:igor.ibarguren@ikerlan.es
mailto:txus.perez@ehu.eus
mailto:j.muguerza@ehu.eus
mailto:olatz.arbelaitz@ehu.eus
mailto:ainhoa.yera@ehu.eus
https://doi.org/10.1016/j.ins.2021.11.010
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

prediction. Finally, interpretability can act as an insurance such that only meaningful variables are used to infer the output,
guaranteeing that an underlying truthful causality exists in the model reasoning.

Not all classification algorithms produce models that are interpretable by humans. A widely known and used classifica-
tion algorithm with explaining capacity, which is transparent according to [1], is the decision tree algorithm. Decision tree
models are easily interpretable because they can be graphically displayed as a hierarchy of nodes, where each node creates a
path to its child nodes depending on the value(s) of an attribute of the data.

One of the weaknesses of decision tree algorithms is their structure; consequently, the explanation they provide is highly
dependent on the training data. Small changes in the data can result in models that are significantly different while still
equivalent in their ability to correctly classify data. This property is called instability and can result in users losing confidence
in the algorithm [2].

The typical way to improve the results of decision tree algorithms is to create ensemble algorithms. Ensemble algorithms
are multiple classifier systems that build several classifiers from the training sample by combining them in some way, such
as voting as in bagging [3], to classify new examples. However, as Domingos pointed out, the ensemble voting process obfus-
cates the reasoning behind the classification because a single set of conditions is no longer related to the values of the vari-
ables; there are usually dozens of separate sets of conditions, and even the most patient user cannot handle that [4]. Thus, as
stated in [1], tree ensembles increase the generalisation capacity but cause loss of transparency and, as such, are not con-
sidered comprehensible.

The consolidation approach was proposed as an alternative to improve the results of decision tree algorithms by main-
taining the interpretability of the models [5]. Consolidation also uses multiple samples but creates a single classifier by
applying the voting process during the model building phase instead of applying it during the classification of new examples.
‘Inner Ensembles’ was coined to represent such approaches in [6]. The first algorithm consolidated was the widely known
C4.5 decision tree algorithm [7], resulting in the consolidated tree construction (CTC) algorithm. The results demonstrated
that not only did consolidation improve the discriminating capacity of C4.5, but also created classifiers that were much more
stable [8,9]. However, compared to bagging [3], CTC cannot achieve a low error rate [10,11].

This study proposes a hybrid approach between CTC and bagging, referred to as partially consolidated tree bagging, or
PCTBagging. The CTC classifier is developed up to a certain point, and from then on, the tree is developed with each of
the samples as in the case of standard bagging. The part of the CTC initially developed is determined by the consolidation
percentage, which is a parameterizable value. This way, the comprehensible structure of the consolidated tree is partly main-
tained, and the bagging part provides an increase in accuracy. PCTBagging represents a trade-off between model inter-
pretability and accuracy. Experiments for 11 consolidation percentages (100%, 90%, 80%, ...10%, and 0%) were performed,
and the results were compared with those of bagging (0% consolidation), CTC (100% consolidation), and C4.5 itself. The algo-
rithms were compared in terms of discriminating capacity, the complexity of the explanation provided by the comprehen-
sible algorithms, and the computational cost of building the classifiers. The results demonstrate that PCTBagging with low
consolidation percentage achieves a similar discriminating capacity to bagging, while retaining part of the CTC explanation.
PCTBagging with high consolidation percentage can also significantly improve the discriminating capacity of CTC without
losing interpretability.

The remainder of this paper is organised as follows. In Section 2, insight into previous work is provided. Section 3 explains
the PCTBagging proposed in this paper. In Section 4, the experimental setup is presented. In Section 5, the empirical results of
the experiments are outlined. Finally, in Section 6, concluding remarks are presented along with suggestions for future work.

2. Background work

This section describes the classification algorithms that serve as the basis for PCTBagging proposed in this paper.

2.1. (45

The C4.5 algorithm [7], which is one of the most commonly used transparent algorithms and which is still considered
among the top 10 machine learning algorithms’, was designed by Ross Quinlan to build decision trees. C4.5 was also identified
as one of the top 10 algorithms in data mining at the IEEE International Conference on Data Mining held in 2006 [12] and has
been widely used in multiple classifier systems since the very beginning [3].

2.2. Bagging

Bagging or bootstrap aggregating [3] is an ensemble algorithm that aggregates multiple models (decision trees, linear
regression models, etc.), and the final outcome is obtained by voting among the built classifiers.

Bagging uses the same algorithm, originally C4.5 in 3], to build classifiers with different training samples. These different
samples are bootstrap samples (samples of the same size as the original sample, obtained repeatedly selecting examples
with replacement), which is the origin of the name bootstrap aggregating.

T https://www.kdnuggets.com/2017/10/top-10-machine-learning-algorithms-beginners.html

220

https://www.kdnuggets.com/2017/10/top-10-machine-learning-algorithms-beginners.html

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Ensemble classifiers usually obtain higher model accuracy than their constituent classifiers [13] as long as the individual
classifiers that compose the ensemble disagree with each other [14,15]. Tests run by Breiman show a reduction in misclas-
sification rates in the range of 20% to 47%.

A variant of bagging, called subsample aggregating (subbagging) [16], uses samples generated by random undersampling
to create individual classifiers instead of bootstrap samples. This variant provided results that were competitive with bag-
ging with a smaller computation cost.

2.3. Consolidation

The consolidation of decision tree algorithms uses the ensemble voting mechanism during the building process of the
classifier [17]. Consequently, a single classifier is built to maintain the transparency and interpretability of the base classifier
algorithm. Such approaches were dubbed ‘Inner Ensembles’ and were also applied to Bayesian networks and the k-means
clustering algorithm [6].

Consolidation works by first creating multiple samples (N_S), as does bagging. CTC originally created stratified samples:
samples that retained the class distribution of the original dataset with subsample sizes determined relative to those of the
original dataset.

For clarification, CTC could be regarded as a bagging of C4.5 decision trees that are built concurrently but not indepen-
dently as in bagging. From each subsample, a C4.5 (sub) tree begins to grow, but instead of splitting the subset on its
own, each subtree casts a vote for the best split for the particular sample, and all subtrees comply with the majority vote
and split their sample accordingly, even if it is not what they originally voted for. If the most voted variable is a discrete vari-
able, a child is created for each possible value, as in C4.5. If the most voted variable is continuous, the algorithm collects all
the proposed cut points and selects the median value among them. The process continues until the majority decides not to
split. When a consolidated tree has to classify new examples, the average of the class membership probabilities of that leaf
node on each subtree is assigned.

In essence, a CTC classifier can be considered a subbagging of C4.5, where all of the individual decision trees share the
same structure and node conditions, with each subtree having different class probabilities on their leaves. From an imple-
mentation point of view, however, it is not necessary to build all the subtrees. Because all subtrees have the same structure,
the actual output model of the algorithm is a decision tree having a structure identical to that of the subtree and leaf class
probabilities computed from the probabilities of the subtrees. Thus, being C4.5 interpretable, CTC is also interpretable, even
if it combines the knowledge of multiple samples as black-box ensembles.

CTC was subsequently directly compared to bagging and to a post-hoc explainability technique designed to explain the
decisions of bagging, referred to as combined multiple models (CMM) [4]. The results of the comparison [10,11] demon-
strated that bagging achieves the best discriminating capacity, followed by CTC, with CMM performing worst. Considering
the stability of the classifiers, CTC created decision trees that were significantly more stable than CMMs. CTC benefited from
changing the domain class distribution during resampling to create multiple samples. Specifically, samples with the optimal
class distribution proposed by Weiss and Provost [18] created the best classifying consolidated trees [5]. Instead of using a
fixed number of samples, a new resampling strategy was tailored to account for the different degrees of information loss
occurring when balancing samples from domains with imbalanced class distributions, such as, coverage-based resampling
[19].

Coverage is defined as the percentage of examples of the training sample present in (or covered by) the set of generated
(sub) samples. The number of samples required to achieve a specific value of coverage depends on the type of samples used,
such as balanced, bootstrap, and stratified (the specific formulations and examples can be found in [20]). As stated in [19], an
empirical study determined that 99% is the best coverage value for CTC.

3. Partially consolidated tree bagging

This paper proposes partially consolidated tree bagging (PCTBagging), which is a hybrid approach between CTC and bag-
ging, with objective to maintain the interpretability of CTC while also harnessing the discriminating capacity increase offered
by bagging. PCTBagging first creates multiple samples from the original training sample using a resampling strategy deter-
mined by the resampling type and number of samples. From these samples, a partially developed CTC tree is created. Sub-
sequently, as many copies of the CTC tree as samples were created are developed independently, similar to during bagging.
PCTBagging has to decide when to stop the consolidation process. To analyse the effect of this decision on the results, the
consolidation process is stopped at different percentage points in the process of building the complete consolidated tree.
Thus, the complete CTC tree is initially built in this work and, once the number of internal nodes is determined, a percentage
of them (consolidation percentage) can be selected to stop consolidation, removing the rest, and start with bagging. A per-
centage of 100% indicates that no internal nodes will be removed (close to CTC), and a percentage of 0% will result in no inter-
nal nodes being kept (same as in bagging). This same pattern of experiments can be repeated for every database.

To implement PCTBagging for different consolidation percentages, once the number of nodes to keep is determined, the
internal nodes are ordered according to their size, that is, the number of instances covered by each node. Nodes are deleted

221

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

according to their size, starting from the smallest ones. Internal nodes are ‘removed’ by turning them into leaf nodes, thus
collapsing the subtree hanging from that node. An algorithmic description of the procedure can be found in Algorithm 1.

Algorithm 1: PCTBagging Algorithm.

Inputs:
S: training set
Criteria: split criteria for building decision trees (C4.5, CHAID...)
N_S (Number_Samples): number of samples to generate
R_M (Resampling_Mode): method used to generate samples
Perc: consolidation percentage
procedure PCTBagging (S, Criteria, N_S, R_M, Perc)
ct := CTC (S, Criteria,N_.S,R_M) /| Build consolidated tree
|[ct — consolidated tree + N_S subtrees
//Build a list with the internal nodes (not leaf) of ct sorted by size
LiNodes — {}
CurrentNode := ct.GetRootNode()
while CurrentNode!= null do
if CurrentNode is not leaf then
Obtain (id_node, size_node) of CurrentNode
LiNodes := LiNodes U (id_node, size_node)
end if
CurrentNode := ct.NextNodelInPreOrder(CurrentNode)
end while
Sort LiNodes by size of node in descending order
/| Remove from LiNodes the nodes to maintain as consolidated
ConsoPerc :=0
while ConsoPerc < Perc do
LiNodes.DeleteHead|()
Update ConsoPerc
end while
for each CurrentNode in LiNodes do
ct.Collapse(CurrentNode)
/| Develop all subtrees independently as Bagging does
fori:=1toNSdo
Let S; be the i-th sample according CurrentNode(c) in ct
/| Build decision tree according to Criteria (C4.5, CHAID...)
dt :=DecisionTree(Criteria,)
Let subt be the subtree associated with the i-th sample in ct
subt := subt(CurrentNode) U dt
end for
end for
end procedure

Fig. 1 graphically illustrates an example of the process. In the first frame, a fully built consolidated tree is shown, with
internal nodes shaded and marked as I; where size(l;) >= size(l;), Vi < j. The figure simulates PCTBagging with a consolidation
percentage of 60%. This means that because the consolidated tree shown in the first frame has 10 internal nodes, 6 will be
kept. The four nodes to be removed —I;, I3, Is, and I;o— are marked with a thick border.

From a structural point of view, a consolidated tree looks like a simple decision tree—C4.5, in this case. However, inter-
nally, each consolidated node has N_S number of instance subsets, that is, one subset for each of the multiple samples cre-
ated at the beginning. The last stage of building a PCTBagging classifier consists of growing normally C4.5 trees for each
instance subset, as would have been done in bagging. Therefore, N_S trees which have identical structures in the consoli-
dated part, differ from this point onward. The classification of new examples is performed in the same way as in bagging.
The resulting PCTBagging is illustrated in the second frame of Fig. 1, where there are N_S trees that maintain 60% of the struc-
ture of the original CTC (shaded internal nodes), and the rest are developed independently from the corresponding sample,
analogous to C4.5 (white internal nodes and leaves).

PCTBagging represents a trade-off between the inner ensembles, full-fledged ensembles, CTC, and bagging in this case.
The interpretability of CTC (or part of it) is maintained, and the discriminating capacity increase of bagging is also partially
harnessed. The consolidation percentage determines how much of the comprehensible model is maintained. A consolidation

222

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Fig. 1. Partially consolidated tree bagging creation.

percentage of 100% keeps the original consolidated tree intact and grows a bagging on each leaf node. A consolidation per-
centage of 0%, on the other hand, results in the tree being fully collapsed onto the root, from which a bagging is grown. Using
0% is impractical because it is equivalent to creating a bagging model afresh, which would require about twice as much time.
However, low consolidation percentage values can maintain part of the interpretability of CTC while achieving a model accu-
racy similar to that of bagging.

For documentation and diffusion purposes, PCTBagging was implemented for the popular WEKA framework?.

4. Experimental setup

The experiments were conducted on 96 datasets from the KEEL repository [21] using a 5-fold 5-run cross-validation.
These datasets were originally used in [22] to compare the performance of 16 genetic machine learning (GBML) algorithms
for rule induction with six classical nonevolutionary algorithms, such as decision trees, all having explaining capacity. The
datasets were divided into three categories. One of the contexts represented classification problems as a whole and included
datasets with a wide set of characteristics: two-class and multi-class, small and big datasets, and nominal and continuous
variables, as well as a wide range of class distributions. The next context used two-class datasets representing a specific
problem within the classification, namely the problem of class imbalance [23]. Finally, the third group used the same context
on training sets balanced using the synthetic minority oversampling technique (SMOTE) [24]. In our work, the 96 datasets
are grouped as a whole to obtain a global point of view of the performance of the classifiers. A summary of the characteristics
of the datasets is provided in Table 1, which includes number of examples (#Examples), number of attributes (#Attributes),
number of classes (#Classes), proportion of minority class examples (% Minority Class), and number of examples of the
minority class (#Examples Min. Class). Statistics for these characteristics and each of the subgroups of datasets are reported:
the minimum, maximum, mean, standard deviation, and median. The full tables detailing each dataset in this article have
been moved to additional material®.

The metric used to assess the performance of the classifiers is the area under the ROC curve (AUC) [25]. AUC evaluates
classifiers in multiple contexts of the classification space without assuming any misclassification costs or prior probabilities
[26]. AUC is considered a better metric than the overall accuracy (correct classification rate) [27], especially in the presence
of class imbalance [28], which is the case for most of the datasets used in this study. Accordingly, in the final analysis, the
results include balanced accuracy and sensitivity, two metrics widely used in the context of imbalanced datasets because
they focus on the accuracy obtained for single classes, expressed as the average of all classes and the minority class,
respectively.

2 http://www.aldapa.eus/res/weka-pctbagging/
3 http://www.aldapa.eus/res/pctbagging/

223

http://www.aldapa.eus/res/weka-pctbagging/
http://www.aldapa.eus/res/pctbagging/

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Table 1
Summary description of the 96 datasets.
#Examples #Attributes #Classes % Minority Class #Examples Min. Class

Standard 30 datasets
Min. 80 3 2 0.08 1
Max. 1902 33 22 45.59 668
Mean 638.93 11.77 4.27 21.10 139
Standard deviation 493.55 6.44 3.9 16.41 158.42
Median 521.5 9.5 3 23.06 73
Imbalanced 33 datasets
Min. 150 3 2 0.77 9
Max. 5472 19 2 35.51 560
Mean 919.94 9.39 2 17.61 120
Standard deviation 1151.99 417 0 11.70 132.19
Median 482 8 2 15.48 52
Imbalanced + SMOTE 33 datasets
Min. 200 3 2 50 100
Max. 9824 19 2 50 4912
Mean 1599.88 9.39 2 50 799.94
Standard deviation 2160.06 417 0 0 1080.02
Median 888 8 2 50 444

For more details see: http://www.aldapa.eus/res/pctbagging/

The complexity of the explanation provided by the models is calculated as the number of internal nodes within the deci-
sion trees [29]. Bagging is not comprehensible; therefore, it is not calculated. In the case of PCTBagging classifiers, only the
consolidated part is considered.

Finally, the computational cost is defined as the time taken to build the classifiers (construction time), measured in mil-
liseconds. All experiments in this work were performed using the same hardware and software. The hardware node had an
Intel Core i7-4790 processor (3.60 GHz) and 16 GB of RAM. The operating system was Windows 7 Enterprise SP1, and all the
algorithms were developed with Visual C++ within a proprietary platform for algorithms with explaining capacities called
Haritza (oak in Basque).

In the experiments, the best resampling strategy for bagging and CTC was initially determined. The default recommended
configuration for each algorithm is not the same. Bagging, as the name suggests, should be used with bootstrap samples. A
fixed number of 50 is widely accepted. In contrast, for CTC, the use of balanced subsamples using 99% coverage to determine
the number of samples for each dataset is recommended [19]. The number of samples varied according to the class distri-
bution in the database. The greater the imbalance, the greater the number of samples required. Table 2 displays a summary
of the number of samples required for all databases (The number of samples required for each dataset can be found in the
additional material). The balanced samples are generated by undersampling the majority classes until the size matches that
of the smallest class, to obtain the largest possible balanced subsample without oversampling the minority classes. To
explore all the possibilities outside the recommended resampling strategy, two other possibilities were considered for each
algorithm: using a set of 50 balanced subsamples and using bootstrap samples with the number of samples determined by
the 99% coverage. Only five bootstrap samples were required for any dataset to achieve a coverage value of 99% [20]. There-
fore, each algorithm was evaluated with four resampling strategies combining two types of samples (bootstrap and bal-
anced) and two methods to determine the number of samples (fixed to 50 samples and based on 99% coverage). Table 3
displays the abbreviations used for the resampling strategies appearing throughout the paper.

gzlrzllreniry of number of balanced samples required to achieve a coverage value of 99%.
Average Median Minimum Maximum Standard Deviation
53 23 6 585 90.25
Table 3
Abbreviations to refer to the resampling strategies used throughout the paper.
Resampling strategies Bootstrap Balanced
N_S =50 Coverage = 99% N_S =50 Coverage = 99%
Abbreviation boot_ N_S boot_cov bal_N_S bal_cov

224

http://www.aldapa.eus/res/pctbagging/

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

After determining the best resampling strategies for bagging and CTC, they were compared to PCTBagging and C4.5. For
PCTBagging, 11 consolidation percentage values were considered: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%.

4.1. Used statistical procedures

The results were tested using state-of-the-art statistical procedures to determine the significance of the differences. Non-
parametric tests have been used with great success for more than a decade since being proposed by Demsar in 2006 in the
Journal of Machine Learning Research [30]. At the time of writing this paper, there were 6351 citations in the main collection
of the Web of Science. Several studies have complemented the procedure, particularly by adding multiple comparison tests
(comparisons involving more than two algorithms) and more powerful post-hoc tests (to be applied to the differences
detected over the whole multiple comparison) [31-33] (with 899, 1144, and 2368 citations, respectively, to date). More
recently, Benavoli and Corani opted to use Bayesian tests instead of Null Hypothesis Statistical Tests (NHST) [34-36] and
published a paper in 2017 in conjunction with DemSsar also in the Journal of Machine Learning Research with a very sugges-
tive title: ‘Time for a change: a Tutorial for .. .’[37]. This paper has 83 citations to date, and at the time it was published the
DemSar paper [30] had around 3000 citations (it has had more than 3300 additional citations since then). The evolution of
the number of citations of the most relevant papers published during the last years in the context of the analysis of statis-
tically significant differences in classification problems can be found in Fig. 2. The figure includes the reference work [30]
preceding that of Dem3ar, the parametric test proposed by Dietterich in 1998 [38], which is still cited. A critical review of
these tests, along with a very interesting practical illustration of their use based on the developed R package rNPBST*
[39], was recently published [40] in the context of [33] by the same research group.

The authors claim that Bayesian tests avoid some of the main pitfalls of NHST. A common mistake in the interpretation of
the results of the NHST appears when the null hypothesis is not rejected. The affirmation ‘there is no statistical difference
between the compared algorithms’ is not correct, the true statement should be: ‘based on the data, there is not sufficient
evidence to reject the null hypothesis’. Bayesian tests compute the distribution of the analysed parameters. The distribution
function provides the probability of the null hypothesis being true which is what we usually want to know. Meanwhile,
NHST tests actually compute the probability of obtaining a new sample as far from the null hypothesis as the data, assuming
that the null hypothesis is true. On the downside, Bayesian tests require a deeper understanding of the underlying statistics
and the way to obtain conclusions is not as direct as in NHST, which results in this type of test to being used less often in
experimentation.

In [40], the authors state that there is no single way of obtaining conclusions and encourage the joint use of nonparamet-
ric and Bayesian tests in experimental studies to obtain a complete perspective on the results.

Following their advice, the graphs in this study were created with the scmamp R package’ [41]. The graphs reflect on the
one hand, the ranking obtained by comparing the algorithms based on the Friedman aligned ranks test [32], and on the other
hand, whether there are statistical differences between each pair of algorithms based on the powerful post-hoc Bergman-Hom-
mel procedure [33], or, when the number of compared classifiers > 8, based on the Shaffer test [31]). In each graph, the algo-
rithms are the nodes and two nodes are linked if the null hypothesis of being equivalent cannot be rejected, that is, if the
behaviour is statistically similar. Therefore, if two nodes are not linked, there are statistically significant differences between
the two algorithms. See for instance left of Fig. 4 or Fig. 8.

In the Bayesian paradigm, as in [40], after having rejected the equivalence of all the mean ranks of the algorithms with the
Friedman test, the Bayesian signed-rank test is repeatedly performed for every pair of algorithms, summarising the results in
figures similar to those in the reference. The Bayesian signed-rank test computes the posterior distribution which describes
the distribution of the mean accuracy difference between the two algorithms. With this procedure, the probability of Algo-
rithm 1 was determined to be better than the probability of Algorithm 2 (0,), the probability that the two algorithms are prac-
tically equivalent (rope) (0.), and the probability that Algorithm 2 is better than Algorithm 1 (0,). According to [37], in
classification, it is sensible to define two classifiers with a mean accuracy difference of smaller than 1% as practically equiv-
alent, and therefore, the authors define a region of practical equivalence, called rope. The width of the rope region depends on
the range of the compared values. In this work, magnitudes with very different value ranges were compared, such as AUC,
structural complexity, and construction time. In the case of construction times, values ranged from 0 to 150000 ms. Based on
the example given in [40], the region of practical equivalence was defined as [-10, 10] instead of [-0.01,0.01], as used nor-
mally in the classification context. Accordingly, in the case of structural complexity, where values range from 0 to 150 for
internal nodes, the region of practical equivalence was defined as [-1, 1].

The table in Fig. 3 displays, for example, the results of the Bayesian signed-rank test applied to the comparison of AUC
values for bagging using bootstrap samples with the number of samples fixed to 50 (boot_N_S) versus 50 balanced samples
(bal_N_S). Based on these results, the rope region is the hypothesis with the greatest probability. Although not significant, the
equivalence of the two algorithms is the most probable situation. The origin of these values can be seen in the rNPBST pack-
age, which enables plotting the posterior probability density of the parameter, as shown in the chart in Fig. 3. The vertices of
the triangle represent the points where the probability of the true location being in this region is 1. The proportion of the

4 NPBST, An R package covering non-parametric and Bayesian statistical tests
5 scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems

225

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

6351
6000
=== [38] === [30] [31] =#—[32] [33]
5000
== [35] == [36] [37] —@=[40]
4000
3000
2000 1617
133072
3
1000 718 784 14
e 0w
260 294 . - 830
164 2 693
opg 112 144 . o 547 o 35 55 83 106
el e S
0 i (A B B T 108 131 oD T T Lo — a PN ! o
g g8 2°8 2 ¥ 9 ¢ 3 ¥ 2 g8 g9 5 g g3 2 8 & o
o o o o o o o o o o o o o o o o o o o f=}
N N N N N N N N N N N N N N N N N N N N
o > c Q > o 5 c o) 5 =] 5 > = 5 © o 5 3 =3
& &§ s 3 § ¢ 6 3 & ¢ ~ 2 &2 5 & & 2 < & &

Fig. 2. Evolution of the number of citations of the most relevant papers in the context of the analysis of statistically significant differences.

AUC - Bagging, bootstrap N_S=50 vs balanced N_S=50

rope

%100

&P

Bagging Posterior probability

2

boot_N _S 0.1869079

rope 0.5944750 ;

bal_N_S 0.2186171 boot NS S S ER
Posterior probabilities Posterior probability density

Fig. 3. Example of use of the Bayesian signed-rank test on the AUC values for bagging using two different resampling strategies.

locations of the points used to obtain the posterior probabilities is shown in the table in Fig. 3. These tables and figures can be
used to counteract the statistical differences between the two algorithms with respect to those obtained on the basis of non-
parametric tests. However, in this work, when an n x n comparison of multiple algorithms is conducted, the results of the
tests for each pair of compared algorithms are displayed in figures similar to those presented in Section 9 in [40]. In these
figures, only the posterior probability of the most probable option is shown for each pair of algorithms. Each coloured cell
represents the comparison of two algorithms, Algorithm 1 in rows versus Algorithm 2 in columns. The colour depends on the
result of the comparison, indicating that the greater probability is associated with the region of one of the algorithms or with
rope. The probability of the hypothesis is written in the tile as well as represented by the opacity of the colour, to highlight
greater probabilities. In Fig. 4, on the right, is the first example of this type of figure in this paper.

226

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Bagging Bagging
bal_N_S boot_N _S
127.50 131.32 Bagging
(1) (2) +~ boot N_S- 097 059 0.44 Winner
E boot _cov- | 0.97 093 0.85 Alg. 1
Bagging | | Bagging S bans- 059 093 0.64 Ag. 2
bal_cov boot_cov < palcov- 0.44 | 0.85 0.64 rope
185.87 325.36 bootiNfsboothov ba/!N78 ba/;cov
(3) (4) Algorithm 2

Fig. 4. Statistical tests on the AUC values for bagging with different resampling strategies: Friedman aligned ranks test and the Bergman-Hommel post-hoc
procedure (left) and Bayesian signed-rank tests (right).

5. Results

Our goal is to find the best PCTBagging approach and compare it to bagging and CTC. Therefore, the first step was to find
the best resampling strategy for these algorithms. Although ideally there would be a single resampling strategy for all, pre-
vious results suggest that this is not the case. First, the results for bagging were analysed in terms of discriminating capacity
using the four resampling strategies: bootstrap or balanced samples and number of samples set to 50 or based on a 99% cov-
erage. Next, we analyse the results for CTC, and finally, the results for PCTBagging in terms of discriminating capacity, struc-
tural complexity, and computational cost. All the previous analyses provided us with information to finally select the most
convenient configuration for PCTBagging in each case.

5.1. Results for bagging

Table 4 shows the average values of the area under the roc curve (AUC) obtained for bagging in the 96 datasets. The table
also shows the average Friedman aligned rank for each resampling strategy. In this case the average value and the aligned
ranks fully agree, indicating that the best strategy is to use a fixed number of 50 balanced samples, closely followed by a fixed
number of 50 bootstrap samples and, then, a variable set of balanced samples, different for each dataset, to achieve a cov-
erage of 99%. The results of statistical tests to determine the significance of the differences based on the Bergman-Hommel
post-hoc procedure (Fig. 4 left) show that there are no significant differences between PCTBagging and regular bagging using
50 samples. These two perform significantly better than any bagging for the number of samples determined by 99% coverage.
In addition, it should be noted that using the coverage combined with balanced subsamples still yields significantly better
performance than combining coverage with bootstrap samples.

The results of the pairwise Bayesian signed-rank tests comparing all possibilities are displayed in Fig. 4. Evidently, the
results are against the use of bootstrap samples; based on 99% coverage (boot_cov) in comparison to the other three options,
the probability is worse by 85%. On the other hand, using 50 balanced samples (bal_N_S), the first option based on the Fried-
man aligned rank test tends to be practically equivalent (rope) to the other two, (boot_N_S and bal_cov), although not with
high significance. Based on the Bayesian tests, boot_N_S seems to be somewhat better than bal N_S when compared to the
other two options. However, in terms of computational cost, bal_N_S is much less expensive than boot_N_S, with average exe-
cution time of 1567.35 ms and 7381.91 ms, respectively, and with similar performance in AUC, considering all 96 datasets.
Table 5 displays the results of the Bayesian signed-rank test applied to the time values used to build the bagging classifiers
for these two types of resampling. The values indicate that using balanced samples is faster than using bootstrap samples
with a probability of 93%.

In summary, based on AUC, the best choice for bagging is to use a set of 50 samples instead of the number of samples
determined by the coverage; however, the differences with respect to the different sample types were not found to be sig-
nificant, although using balanced subsamples achieved better average AUC and rank. In addition, with respect to the time it
took to build the model, using balanced samples was significantly faster than using bootstrap samples. When both baggings

Table 4
AUC values for bagging using different resampling strategies.
Bagging Bootstrap Balanced
N_S =50 Coverage = 99% N_S =50 Coverage = 99%
Average .9064 .8576 9101 9019
(2) 4) (1) (3)
FriedmanAligned Rank 131.32 325.36 127.45 185.87
(2) (4) (M (3)

227

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Table 5
Posterior probabilities of Bayesian signed-rank test on the time values for bagging using two different resampling strategies.
Bagging Posterior probability
boot_N_S 0.05090338
rope 0.01622566
bal NS 0.93287096

used the same number of samples, the construction time was mostly determined by the size of the samples. Bootstrap sam-
ples are always the same size as the original sample, and balanced samples are always smaller than the original sample (on
average, 43% of the original sample in the datasets considered). In fact, the more imbalanced the dataset, the smaller the size
of the balanced samples. Consequently, it is expected that bagging would work faster using balanced subsamples instead of
bootstrap samples. Therefore, because both options are practically equivalent in terms of discriminating capacity, we
selected the bagging built with 50 balanced samples. Previous studies have already demonstrated the potential of these
ensembles, called subbagging [16,42,43], compared to bagging.

5.2. Results for CTC

The results in Table 6 demonstrate that the best resampling strategy for CTC is to use balanced subsamples and to deter-
mine the number of samples according to coverage, followed by a fixed set of 50 for balanced subsamples; the same order is
repeated for bootstrap samples. Both the average AUC value and the Friedman aligned ranks concur in this order. As
observed in Fig. 5, according to the Bergman-Hommel procedure, all resampling strategies are found to be significantly dif-
ferent from other strategies. Therefore, based on nonparametric tests, it can be stated that using balanced subsamples with
the number of samples determined by 99% coverage achieves a significantly better AUC value than any of the other three
strategies considered.

In Fig, 5, on the right, the results obtained with the pairwise Bayesian signed-rank tests are displayed. The conservative
nature of these tests stands out. There is one strategy that is clearly worse than the other three, using bootstrap with a fixed
number of samples, boot_N_S, with probabilities ranging from 63% to 79%. Balanced samples based on coverage, bal_cov, is
the strategy having the greatest advantage over bootstrap and is practically equivalent (rope) to using a fixed number of bal-
anced samples.

As was pointed out at the beginning of this section, the ideal situation was expected to be the same resampling strategy
for both bagging and CTC. However, a different strategy emerged for each algorithm. For bagging, it is better to use a fixed set
of 50 balanced samples, whereas, for CTC, it is better to use a different number of balanced samples for each dataset, as deter-
mined by the 99% coverage value.

Table 6
AUC values for CTC using different resampling strategies.
CTC Bootstrap Balanced
N_S=50 Coverage = 99% N_S =50 Coverage = 99%
Average .8069 .8246 .8316 .8379
(4) (3) (2) (1)
FriedmanAligned Rank 281.41 197.56 165.04 125.98

(4) (3) (2) (1)

bal_cov 1 ' bal NS

19508 1T 165,04 cTeC

ORI — boot N_S- 063 070 079" Winner
"""""""" * £ bootcov-| 063 040 0.48 Ag. 1
Voore Ty YT T S balN.S- 070 0.40 0.64 Alg. 2
Vhootcov v oot N-SY T balco-| 079 048 064 rope

boot_l N_Sbootl_ cov bal_ IN_S bal_l cov
Algorithm 2

Fig. 5. Statistical tests on the AUC values for CTC with different resampling strategies: Friedman aligned ranks test and the Bergman-Hommel post-hoc
procedure (left) and Bayesian signed-rank tests (right).

228

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238
5.3. Discriminating capacity of PCTBagging

To determine the best resampling strategy for PCTBagging, the results of the best resampling strategies for bagging and
CTC were analysed.

Fig. 6 displays the AUC values obtained using the two resampling strategies, for bagging (dotted lines), 11 variations of
PCTBagging (continuous lines), CTC (dashed lines), and C4.5 (continuous lines without markers) built using the full training
sample. In the figure, lines with triangular markers show the values obtained using a fixed number of 50 samples (best
resampling for bagging), and lines with circular markers show the values obtained using the number of samples determined
by the coverage (best resampling for CTC).

As expected, in Fig. 6 it is observed that bagging achieves better AUC than CTC, and PCTBagging forms a curve between
CTC and Bagging. Ideally, this curve would be vertically mirrored, with the greatest discriminating capacity being gained
from the initial percentage values, sacrificing only little of the explaining capacity for a significant increase in AUC. On
the other hand, CTC, even with suboptimal resampling, achieves better AUC than C4.5. With regard to PCTBagging, at a con-
solidation percentage of 100%, the optimal resampling strategy could be expected to be identical to that of CTC because CTC
shares the same tree with PCTBagging. Then, at some consolidation percentage, the curves would cross, making the optimal
resampling strategy for PCTBagging identical to that of bagging as the percentage gets closer to 0%. The resampling strategy
for bagging with 50 balanced samples is preferred to all consolidation percentages for PCTBagging, and therefore, it is
selected as representative of this algorithm. The values of the two curves display a strictly monotonical increase as the con-
solidation percentage decreases. However, even if the gap between the curves increases when the consolidation percentage
approaches 0%, the results for the pairwise Bayesian signed-rank tests in Fig. 7 show that based on AUC, for the same con-
solidation percentage, the behaviour for the two resampling strategies is practically equivalent. The gap between CTC and
PCTBagging when the consolidation percentage is 100% and the same samples are used is notable. These values could be
expected to be closer; however, it seems that the effect of allowing the trees to develop from the leaf nodes of the consol-
idated tree, as in bagging, has more weight: that is, it is more relevant than sharing 100% of the structure of the CTC.

PCTBagging U
AUC | CAS 1 CTCH o000 909 80% 70% 60% 50% 40% 30% 20% 10% 0% | C0esine
Bal-N-5 | ooy | 5316 | STIL 8722 8741 8760 8705 8836 8968 8910 8960 9025 0101 | 0101
balcov | 8379 | 8682 8602 8707 8720 8750 .8788 .8812 .8849 8891 .8953 .9019 | .9019

0.92

091

‘Area Under ROC Gurve (AUC)

& PCTB00NT | —oom
085 —e— CIC
0.84
- = e = e = = = = = = e = = = = = = = = = = = = = = = = === === =
083
0.82 : ;
100% 0% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Consolidation Percentage
Fig. 6. Average AUC values for all algorithms using two resampling strategies with balanced subsamples.
AUC - PCTBagging, bal N_Svs bal _cov Winner
bal N_S
0.64 0.69 0.72 0.75 0.77 0.80 0.78 0.82 0.82 0.82 0.83 bal
al_cov
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% rope

Consolidation percentage

Fig. 7. Bayesian signed-rank tests on the AUC values for PCTBagging using balanced samples to compare the use of a fixed value of 50 samples and a
variable number of samples determined by the 99% coverage value.

229

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Bagging
180.25
(1)

PCT 10% PCT 20%
215.24 268.84
2) PCT 30% 3)
351.16
(4)

PCT 40% PCT 50%
439.96 550.99
) PCT 60% (©)
694.78
(7)

PCT 70% PCT 80%
760.19 800.16
(8) 9)
PCT 90% PCT 100%
822.61 830.47
(10) (11)

;. CTC
» 10033377
Coo(12)

PCT]; PCT PCT PCT PCT PCT PCTE CTCE

Baggin: PCT
99IN9 110% 20%)i 30%

60% 70% 80% 90% 100%;:

Fig. 8. Friedman aligned ranks and pair-wise p-values on the AUC values for bagging, PCTBaggings and CTC.

AUC - CTC-PCTBagging-Bagging

CTC- 068 0.71 0.75 0.80 0.86 0.89 0.91 093 094 0.95 0.96

PCT100- 0.68 1.00 095 082 066 055 0.67 0.75 0.82 0.86 0.88
PCT90- 0.71 | 1.00 0.98 092 0.72 051 065 0.74 0.81 0.86 0.88
PcTeo- 0.75 0.95 0.98 0.99 0.85 059 058 0.71 0.80 0.85 0.88
PCT70- 0.80 0.82 0.92 0.99 0.99 0.76 0.53 065 0.77 0.83 0.86 Winner
PCTe0- 0.86 0.66 0.72 0.85 0.99 095 0.73 0.53 0.71 0.80 0.84 Alg. 1
PCT50- 0.89 0.55 0.51 0.59 0.76 0.95 0.98 0.72 058 0.73 0.79 Alg. 2
PCT40- 0.91 0.67 0.65 0.58 0.53 0.73 | 0.98 0.95 059 0.68 0.76 rope
PCT30- 0.93 0.75 0.74 0.71 0.65 0.53 0.72 0.95 090 0.52 0.69
PCT20- ' 0.94 0.82 0.81 0.80 0.77 0.71 0.58 0.59 0.90 0.79 0.57
PcTi0- 0.95 0.86 0.86 0.85 0.83 0.80 0.73 0.68 0.52 0.79 0.72

Bagging-1 0.96 0.88 0.88 0.88 0.86 0.84 0.79 0.76 0.69 0.57 0.72

CTC PCT100 PCT90 PCT80 PCT70 PCT60 PCT50 PCT40 PCT30 PCT20 PCT10 Bagging
Algorithm 2

Algorithm 1

Fig. 9. Bayesian signed-rank tests on the AUC values for bagging, PCTBagging and CTC.

Once the best resampling strategies for bagging, CTC, and PCTBagging have been determined, they are subjected to an
n x n comparison to statistically determine whether the differences between the algorithms is significant. Fig. 8 displays
the Friedman aligned ranks and the pairwise differences determined by the Shaffer procedure®, comparing bagging and
PCTBagging with 10 different percentages using 50 balanced samples and CTC using a number of samples based on coverage.
In addition, in the table below, the graph is further simplified: algorithms with similar behaviour appear in the same group. This
figure shows that the differences between bagging, PCTBagging at 10%, and PCTBagging at 20% are not significant. PCTBagging at
30% already performs significantly worse than bagging. The rest of the PCTBagging options also perform significantly worse than
bagging, and no differences are found between PCTBaggings with consolidation percentages between 60% and 100%. Finally, CTC
performs worse than all PCTBagging options (even at 100%).

6 used instead of Bergman-Hommel because the number of classifiers is greater than 8

230

L. Ibarguren, Jestis M. Pérez, J. Muguerza et al. Information Sciences 583 (2022) 219-238

Based on the Bayesian tests results in Fig. 9, the behaviour of bagging is similar only to PCTBagging with a 10% consol-
idation percentage. From 20% consolidation, bagging is initially better, with low probability (57%), and with values above
80% probability when the 60% consolidation percentage is exceeded. The figure shows that all PCTBaggings with a consoli-
dation percentage between 60% and 100% have practically equivalent behaviour (rope) (the curve in Fig. 6 is less steep in this
range), similar to the results of the nonparametric tests.

5.3.1. Balanced accuracy and sensitivity

To confirm the conclusions inferred from AUC, a balanced accuracy analysis was also included for the 96 datasets and a
sensitivity analysis was conducted for the imbalanced datasets. The results are shown in Figs. 10a and 10b. In the case of
balanced accuracy, CTC, classifies all individual classes better, whereas PCTBagging performance is equivalent to bagging

0,88
0,85 <voa-- Bagg —
> ng, belanced
o A PCTBAOGNG |\ g0
g 0,84 = A= CTC -
K4 —5
'du, ...+ Baggng
[0,83 PCTE belanced [———
S ° "9 |eov=000%
" - o= CIC
Q 0,82
0,81
0,80 : : : : : : : : :)
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Consolidation Percentage

(a) Balanced accuracy values for all datasets.

Imbalanced datasets

1,05

0,90

0,85

0,80

Sensitivity

= = == e P = = o M = o e e e e = e mm = e mm e mm Em e = = e =) m= = e = P e o = e == = = =

0,75 —k - e —k * A —k i & -

0,70

0,65

0,60 T T T T T T T T T d
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Consolidation Percentage

(b) Sensitivity values for imbalanced datasets.

Fig. 10. Average balanced accuracy and sensitivity values for all algorithms using the two resampling strategies with balanced subsamples.

231

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

for every percentage. When assessing the classification of the minority class (sensitivity), the previous trends displayed by
AUC are confirmed.

5.4. Structural complexity of PCTBagging

Fig. 11 displays the number of internal nodes for CTC, for the 11 PCTBagging options, and for C4.5. With this metric, the
goal is to measure the complexity of the classifiers, not the overall complexity. To explore the trade-off between classifica-
tion accuracy and interpretability, the focus has been only on the complexity of the transparent part of the classifiers. Bag-
ging is not considered interpretable because all the trees tend to be very structurally different and, therefore, the classifiers
lose every transparent property [1]. Consequently, the internal node values for bagging are not provided and for PCTBagging,
only the consolidated portion of the models is considered. Results show an almost linear relationship for the consolidated
nodes of PCTBagging as a function of consolidation percentage extending from 100% (i.e. the entire CTC tree) down to 0%
for zero internal nodes. This could be expected because the number of internal consolidated nodes that are maintained dur-
ing consolidation correspond to the displayed percentage.

The need to statistically test the differences between different consolidation percentages, using the same resampling
strategy, is questionable because the number of internal nodes in PCTBagging is not a ‘natural’ occurrence. Starting from
a baseline (the full CTC tree), the internal nodes are forcefully removed from one consolidation percentage to the next,
and a specific consolidation percentage always has the same or a lower number of internal nodes than a greater consolida-
tion percentage. It is of interest, however, to know for which values of consolidation percentage (close to 100%) the PCTBag-
gings built with 50 balanced samples are similar to the CTC built with balanced samples, with the number of samples being
based on coverage. Fig. 12 displays the results of the Friedman aligned ranks and the pairwise differences based on the Shaf-
fer procedure, comparing CTC and PCTBagging with 11 different percentages. The results demonstrate that CTC, the second
most complex option, displayed no statistically significant difference for the consolidation percentage values of PCTBagging
within the range of 70% to 100%. Symmetrically, the same holds true for the lowest consolidation percentage values of
PCTBagging, between 0% and 30%. There were significant differences between two large sets of classifiers: those with a con-
solidation percentage above 50% (including CTC) versus those with a consolidation percentage below 50%. In this case, the
pairwise Bayesian tests (Fig. 13) demonstrate that PCTBaggings with a lower consolidation percentage value are simpler by
more than 95% probability in most cases. However, CTC is simpler than PCTBagging 100%, equivalent to PCTBagging 90%, and
is more complex than PCTBagging 80% (although with only 52% probability).

When comparing the number of internal nodes for the same consolidation percentage and the two resampling strategies
considered, the results in Fig. 11 demonstrate that the use of coverage to set the number of samples results in simpler expla-
nations with fewer internal nodes. The results of the pairwise Bayesian tests in Fig. 14 demonstrate that classifiers built with

PCTBagging
Internal Nodes | G451 CTC g0 9000 0% 70% 60% 50% 40% 30% 20% 10% 0%
bal_N_S l0.5 | 2181 [2181 1060 1745 1523 1309 1065 872 643 436 211 0.00
bal_cov 2911897 [18.97 17.05 1517 13.23 11.39 924 7.57 564 3.79 1.81 0.00
25
20

PCTBagging | balanced

15 Ccrc NS=50 |[—

—e— PCTBagging | balanced
10 —e—CTC cov=09%]

Number of Intermal Nodes
Q
w

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Consolidation Percentage

Fig. 11. Average Internal Node values for all algorithms using two resampling strategies with balanced subsamples.

232

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

PCT 0%
190.37
)
|
PCT 10% PCT 20% PCT 30%
207.56 243.74 155.33
PCT 40% PS5T5 gg%
35308 || 0
(5) (6)
PCT 60%| [PCT 70%
72104 || SI455
(7 (8)
PCT 80% PCT 90%
87532 91327
(9) (10)
______ CrC i PCT 100%
92030 7 941.37
1y (12)
B o \
—PCT PCT PCT . PCT | PCT i PCT | PCT) PCT PCT PCT
[Bagg'“g 110% _20_%__390/_0-];303@ 50% :(60% 170% | 80% 90% ' 100%

Fig. 12. Friedman aligned ranks and pair-wise p-values for numbers of internal nodes between PCTBaggings and CTC.

Internal nodes — CTC-PCTBagging

CTC- 0.50 0.51
PCT100- 0.50 0.65
PCT90- 0.51 0.65

PCT80 -

~— PCT70- Winner
E rcreo- 0 Aig. 1
'é’ PCT50- [Aig.2
< pcrao- . rope
peTa0 94 081 065
PCT20- : 0.66

PCT10-

PCTO - g 0.62

CTC PCT100 PCT90 PCT80 PCT70 PCT60 PCT50 PCT40 PCT30 PCT10 PCTO
Algorithm 2

Fig. 13. Bayesian signed-rank tests on the numbers of internal nodes for PCTBagging and CTC.

two types of samples are equivalent (rope), with 100% probability for the 0% consolidation percentage (with no internal
nodes, regardless of the number of samples). This probability decreases as consolidation percentage increases such that

the classifiers built with balanced samples based on 99% coverage, bal_cov, are simpler (for consolidation percentages
over 90%).

Internal nodes — PCTBagging, bal N_Svs bal _cov Winner
I bans
-# 079 0.72 0.66 0.60 0.55 0.50 0.48 0.48 0.50 ool oo
[_cov

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% . rope
Consolidation percentage

Fig. 14. Bayesian signed-rank tests on internal nodes for PCTBagging using balanced samples; the comparison uses a fixed value of 50 samples or a coverage
value of 99%.

233

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

5.5. Computational cost of PCTBagging

The results for the average times required to build the classifiers are displayed in Fig. 15. It is observed that using 50 bal-
anced samples takes much more time than determining the number of samples to be used by the coverage. This can be
attributed to the same explanation provided for the number of internal nodes: the median N_S value determined by the cov-
erage is 23, and the number of samples used (considering all samples are equal in size) is directly related to the time needed
to build the consolidated or bagging models. Fig. 16 shows that, based on the pairwise Bayesian signed-rank tests between
the two types of resamplings, the construction time of the PCTBaggings based on coverage is lower for all values of consol-
idation percentage with probabilities above 80%. As expected, the base decision tree algorithm, C4.5, is the fastest. Among
the ensemble methods, bagging is the fastest, followed by CTC for every resampling strategy.

The gap between bagging and CTC can mostly be attributed to the construction process. While bagging independently
creates each model, stopping each individual classifier as called by the sample, CTC forces subtrees, which would otherwise
stop, to keep splitting depending on the majority vote. Another contributing factor, albeit to a lesser degree, is the fact that
CTC requires some time to compile each individually proposed split by the subtrees and to compute the consolidated split. A
more in-depth analysis of the computational cost of bagging and CTC was conducted in [11].

In the implementation in this work, PCTBagging for any percentage first requires the full CTC tree to be built, and thus, the
construction time for PCTBagging is greater than that for CTC.

A pattern is observed in the figure: the time it takes for higher consolidation percentages is more or less the same, with a
slight increase when reaching 10% and a greater increase when approaching 0%. Interestingly, based on the figure, it is
impossible to determine how the time required for the built varies for higher consolidation percentages. However, the
results displayed in the table of Fig. 15, show that for N_S = 50, with the exception of 90%, it takes an average of 3 ms more
for percentages higher than 80%, whereas the rest of the slope is upward, with increasing differences from 40% onward. In

. PCTBagging .
Time 1 G451 CTCH o000 g0 0% 70% 60% 50% 40% 30% 20% 10% 0% | DAeeine
bal_N_S 994 4366 | 4407 4559 4556 4556 4558 4575 4609 4668 4751 4895 5416 1567
bal _cov 924 | 958 1011 1008 1006 1005 1006 1010 1019 1032 1065 1193 627

6000
5000
4000 ,
Baggng_ balanced
g CTBAgING |\ ¢y
5 crc
% 3000 —as
E ce®ee Bagg‘ngl e
F —e— PCTBagging A
2000 —e— CTC .
1000 ————i—————i—————i—————‘-————I—————i—————‘—————o————:of::
beveereeneereenee PO e PR €reereenrearens o ereerrenreanas PO e PR €rreenrereneas o
0 : : : : : ‘
100% 0% 80% 70% 60% 50% 0% 30% 2% 10% 0%
Consolidation Percentage

Fig. 15. Average construction time values for all algorithms using two resampling strategies with balanced subsamples.

Time — PCTBagging, bal N_Svs bal_cov Winner
bal_N_S
0.81 |0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.81 ool oo
al_cov
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% rope

Consolidation percentage

Fig. 16. Bayesian signed-rank tests on construction time for PCTBagging using balanced samples, comparing the use of a fixed value of 50 samples and a
coverage value of 99%.

234

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

contrast, determining the number of samples by coverage leads to much more stable construction times until a consolidation
percentage of 10% is reached, and even then, the differences are relatively small compared to using 50 subsamples. In both
cases, a consolidation percentage of 10% requires a relative increase of 11% in construction time compared to a consolidation
percentage of 100%.

Fig. 17 shows the results of the Friedman aligned ranks and Shaffer tests for statistical significance using construction
time as metric. Bagging and PCTBagging use 50 balanced samples, and CTC uses a variable number of samples based on
99% coverage. In this case, PCTBagging at 0% is also included because even if the final classifiers are the same as in bagging,
from a construction point of view, they are not. Although the diagram may look a little intricate, it is easy to interpret. CTC is
significantly faster than any other algorithm. There is no difference between PCTBagging at 100%, the next fastest algorithm,
and bagging, which, while placing third, is significantly faster than any other PCTBagging. Bagging is significantly faster than
any PCTBagging except for 60% consolidation, and the differences among the rest of PCTBaggings are not found to be signif-
icant. The ranking position of bagging is surprising based on the average construction times for bagging and PCTBagging
100%, given as 1567 and 4407 ms, respectively in the table of Fig. 15. This can be explained by an analysis of the additional
material in the table displaying the times to build the classifiers for the 96 datasets. The values vary greatly from one dataset
to another, with the median for bagging being 689 ms and values ranging from 500 to 653 ms for PCTBagging from 100% to
0% consolidation percentage. The median suggests that bagging would be more costly than any of the PCTBaggings (contrary
to what the average suggests). With the basic Friedman test proposed by Dem3ar in 2006 in [30] and even for its Bayesian
version proposed in 2017 in [36], the two first positions in the ranking are maintained by CTC and PCTBagging 100%; PCTBag-
ging 60% becomes third (instead of fourth), and bagging falls to ninth position. The Bayesian test results displayed in Fig. 18
confirm the conclusions drawn from the nonparametric tests, where CTC is noticeably less expensive wih respect to time
than the rest of the options with probabilities greater than 83%; PCTBagging 100% is also less expensive than the rest, except
for CTC and bagging. The same occurs with bagging, although with lower probability values. A change in PCTBaggings
between 50% and 90% can also be confirmed where the most probable option becomes the equivalence of classifiers (rope).

5.6. Selection of the final PCTBagging based on the consolidation percentage

Taking into account all the results, the choice of the consolidation percentage to be used becomes a matter of preference
for the end user. Users weigh the three measures, discriminating capacity, interpretability, and construction time differently
based on their interests and needs, but most agree that discriminating capacity is the most important. Considering inter-
pretability, speed, and construction time, it should be noted that building each individual classifier does not take much
time—>5 s on average using the datasets of this study. Therefore, interpretability is presumably the second most-valued fea-

i__CTC__: |PCT 100% Bagging
E 236.49 ! 456.48 |— 494.88
O 2 3)

PCT 60% PCT 70%

662.82 |— 665.64

& (5)
PCT 80% PCT 90%
670.46 673.82
(6) (7)

PCT 50% PCT 40%
674.14 678.42
® [T —1 o
PCT 30% PCT 20%

690.28 704.64
(10) (11)

PCT 10% PCT 0%

733.55 776.89
(12) (13)
cre |iPeT ng[PCT PCT PCT PCT PCT PCT PCT PCT PCT]

100% ;2999 70% 80% 90% 50% 40% 30% 20% 10% 0%

Fig. 17. Friedman aligned ranks and pair-wise p-values for construction time between bagging, PCTBaggings and CTC.

235

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

Time — CTC-PCTBagging-Bagging

CTC- 0.83 085 085 085 085 085 085 085 0.85 0.86 0.86 0.83
PCT100- 0.83 080 0.79 0.78 0.79 083 084 086 0.88 092 095 0.58
PCT90-10.85 0.80 0.81 0.75 0.61 044 040 047 0.52 0.67 0.80 0.63
PCTs0-10.85 0.79 0.81 0.87 0.70 0.51 044 049 055 0.68 0.81 0.63
PCT70- 0.85 0.78 0.75 0.87 0.81 058 0.50 0.51 0.57 0.71 0.83 0.63 Winner
g PCTe0-1 0.85 0.79 0.61 0.70 0.81 0.70 0.57 0.52 0.58 0.73 0.85 0.63 Alg. 1
% PCTs0- 0.85 0.83 0.44 0.51 0.58 0.70 0.70 0.51 057 0.71 0.84 0.63 Al ' »
?? PCT40-10.85 0.84 0.40 0.44 050 0.57 0.70 0.57 0.51 0.71 0.84 0.63 ¢
rope
PCT30- 0.85 0.86 047 049 0.51 0.52 0.51 0.57 0.51 0.69 0.84 0.63 P
pcT20- 0.85 0.88 0.52 0.55 0.57 0.58 0.57 0.51 0.51 0.65 0.83 0.63
PCT10- 0.86 0.92 0.67 0.68 0.71 0.73 0.71 0.71 0.69 0.65 0.78 0.64
PCTo- 0.86 095 080 081 083 085 084 084 0.84 0.83 0.78 0.66
Bagging- 1 0.83 0.58 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.66
C'i'C PC'I11 00 PC'II'90 PC:I'SO PC:I'7O PC'II'GO PC:I'SO PC:I'4O PC'II'SO PC:I'ZO PC'II'1 0 PCITO Baglging
Algorithm 2
Fig. 18. Bayesian signed-rank tests on construction times for bagging, PCTBagging and CTC.
Table 7
Results for PCTBagging with consolidation percentage of 20 % in all the analysed aspects compared to the rest of the algorithms.
Cc4.5 CTC PCTBagging %20 Bagging
AUC 0.8281 0.8371 0.8960 0.9101
Balanced Acc. 0.8102 0.8749 0.8619 0.8631
Sensitivity 0.6477 0.7709 0.9842 0.9927
Internal nodes 19.35 18.97 4.36 —
Construction time 224 924 4751 1567

ture of the three, with speed being the last. The best option may be a trade-off solution that offers a good level of perfor-
mance with a certain level of explanation, without neglecting the computational cost.

If performance is the most important consideration, bagging achieves the best average value and rank. However, the two
lowest consolidation percentages for PCTBagging achieve a performance that is not significantly worse than that of bagging
(based on nonparametric tests). Sacrificing this insignificant amount of AUC would allow the user to keep up to 20% of the con-
solidated tree comprehensible structure. This means that, on average, 4.36 internal nodes of the consolidated decision tree
would be maintained according to the results in the table of Fig. 11. Table 7 illustrates this with a concrete example showing
values for all metrics and algorithms. This should be more than sufficient to orient the user to how the classification is done.

Based on the Bayesian tests, considering that the probability of bagging is not any better than 80%, the consolidation per-
centage can be raised to 40%-50%, which is close to half of the tree resulting in an average of 8.72-10.65 internal nodes. Cer-
tainly, some discriminating capacity would be sacrificed in bagging, but considerable interpretability would be gained.

If interpretability is essential, PCTBagging offers an alternative to CTC. At a consolidation percentage of 100%, PCTBagging
offers the same comprehensibility but a significantly better accuracy, albeit at a significantly higher computational cost, and
it is still computationally less expensive than any other PCTBagging.

6. Conclusions and future work

Consolidation was proposed as an alternative to bagging to improve the performance of decision trees using techniques
from multiple classifier systems while maintaining interpretability. Bagging is an ensemble algorithm that creates multiple
samples, and a classifier is generated from each sample. The model classifies new examples by putting them through each
independent classifier and assigns the class voted by the majority of the classifiers. The multiclassifier nature of bagging
leads to a loss of transparency in decision trees. However, interpretability is a desirable trait in many classification domains.
When decisions derived from such systems affect human lives, there is an emerging need to understand how such decisions
are made. Consolidation follows the ‘Inner Ensemble’ approach. Multiple samples are created, but the voting process is per-
formed during the classifier building phase, such that the knowledge of multiple samples is used to create a single transpar-
ent classifier. CTC, the consolidated version of C4.5, achieved better accuracy and stability while maintaining the
interpretability of the decision tree. However, CTC has never matched bagging in terms of discriminating capacity.

In this work, PCTBagging is presented as an approach that sacrifices part of the CTC transparency to obtain a greater classi-
fication performance—closer to bagging. This is done based on a set of samples, by building a consolidated tree up to a certain
point, that is, partially, and then developing the trees associated with each sample independently, as in bagging. To evaluate the

236

L. Ibarguren, Jestis M. Pérez,]. Muguerza et al. Information Sciences 583 (2022) 219-238

performance of these classifiers according to the degree of development of the consolidated tree, in this work, a whole CTC tree
was initially built. A percentage of internal nodes was then removed, and finally, a bagging model was created by building a C4.5
tree from each subset of instances found on the leaf. The consolidation percentage can be adjusted, and in this study, 11 possible
values from 0% (bagging) to 100% (CTC) were used for consolidation. These 11 PCTBaggings were compared to bagging, CTC, and
C4.5 (the base classifier) from three points of view: discriminating capacity, structural complexity, and computational cost. In
addition, different resampling strategies were analysed for these algorithms to realise the best potential for each option.
Balanced samples (instead of bootstrap), with the number of samples fixed to 50, were selected for bagging and PCTBagging.
For CTC, balanced samples, with the number of samples determined by 99% coverage, was selected.

The results demonstrated that PCTBaggings with a low consolidation percentage (10% and 20%) achieved a similar AUC
compared to bagging while keeping, on average, up to 4.36 internal nodes from the consolidated tree. Increasing the percent-
age of consolidation gradually led to a decrease in the classification capacity. The highest consolidation percentage (100%)
offers the same comprehensible explanation as CTC but achieves a significantly higher AUC than CTC. Accordingly, the deci-
sion of determining the consolidation percentage is left to the user to weigh the trade-off between accuracy and inter-
pretability. The lower the consolidation percentage, the greater the discriminating capacity is, but the lower the
explaining capacity, bringing it closer to bagging; conversely, the higher the consolidation percentage, the lower the discrim-
inating capacity and the higher the explaining capacity, bringing it closer to a consolidated tree.

In future work, we would first like to develop hybrid versions of PCTBagging. The current implementation creates a C4.5
consolidated decision tree, then removes part of the tree, and creates a bagging of C4.5 decision trees on each node with the
subsets (one for each sample) that are assigned to that node (now turned into a leaf). However, there is no need for the bag-
ging to use the same decision tree algorithm, it could be a bagging of any other algorithm. Taking this idea even further, the
model grown from the leaves does not have to be an ensemble algorithm: a simple classifier can be built by combining the
multiple subsets on the leaves into a single subset. Approaches such as the logistic model tree (LMT) [44] already do this.
LMT first builds a simple decision tree and then creates a logistic regression model for each leaf. Another possibility could
be to use the naive Bayes algorithm on the leaves, as already proposed by Kohavi with the NBTree algorithm [45].

If, after partially creating a consolidated tree, we use any other strategy to build ensemble classifiers instead of using bag-
ging with the set of samples in the leaves of the tree, other alternatives can be realised. Algorithms such as boosting [46] and
random forests [47] have been shown to be great alternatives to bagging [48,49]. This, combined with the option of devel-
oping hybrid versions of PCTBagging, opens limitless possibilities.

Finally, for this analysis, a version of PCTBagging was implemented, in which a completely consolidated tree was initially
developed and then some nodes were eliminated to leave the desired percentage of internal nodes as consolidated nodes. How-
ever, according to the definition of PCTBagging, this is not necessary in practice. The user can decide on the specific number of
nodes to be consolidated and develop the consolidated tree until this number is reached, always selecting the most populated
node as the next node to be developed. Most decision tree construction algorithms include a parameter that indicates the min-
imum number of instances that must be in a node to allow a particular division. This parameter can be used to stop the devel-
opment of a tree based on the percentage of the number of cases in the sample compared to the size of the root node. In addition,
metalearning can be used to predict the size of the consolidated trees based on dataset characteristics (size, number and type of
attributes, variable values, and initial entropy) to determine the number of nodes to be consolidated a priori.

CRediT authorship contribution statement

Igor Ibarguren: Investigation, Software, Writing - original draft. Jesis M. Pérez: Conceptualization, Methodology, Soft-
ware, Formal analysis, Visualization, Writing - original draft, Writing - review & editing. Javier Muguerza: Conceptualization,
Supervision, Funding acquisition. Olatz Arbelaitz: Methodology, Supervision, Funding acquisition, Writing - original draft,
Writing - review & editing. Ainhoa Yera: Investigation, Software.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was funded by the Department of Education, Universities and Research of the Basque Government (ADIAN, IT-
980-16); and by the Ministry of Economy and Competitiveness of the Spanish Government and the European Regional Devel-
opment Fund - ERDF (PhysComp, TIN2017-85409-P). We would also like to thank our former undergraduate student Ander
Otsoa de Alda, who participated in the implementation of the PCTBagging algorithm for the WEKA platform.

References

[1] A. Barredo Arrieta, N. Diaz-Rodriguez, J.D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera,
Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai, Inform. Fusion 58 (2020) 82-115.

237

http://refhub.elsevier.com/S0020-0255(21)01120-8/h0005
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0005

L. Ibarguren, Jestis M. Pérez, J. Muguerza et al. Information Sciences 583 (2022) 219-238

[2] P. Turney, Technical note: bias and the quantification of stability, Mach. Learn. 20 (1-2) (1995) 23-33, https://doi.org/10.1023/A:1022682001417.

[3] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123-140.

[4] P. Domingos, Knowledge acquisition from examples via multiple models, in: Proceedings of the Fourteenth International Conference on Machine
Learning (ICML'97), Morgan Kaufmann, 1997, pp. 98-106.

[5] J.M. Pérez, J. Muguerza, O. Arbelaitz, I. Gurrutxaga, J.I. Martin, Combining multiple class distribution modified subsamples in a single tree, Pattern
Recogn. Lett. 28 (4) (2007) 414-422.

[6] H. Abbasian, C. Drummond, N. Japkowicz, S. Matwin, Inner ensembles: Using ensemble methods inside the learning algorithm, in: H. Blockeel, K.
Kersting, S. Nijssen, F. ++elezn++ (Eds.), Machine Learning and Knowledge Discovery in Databases, Vol. 8190 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2013, pp. 33-48..

[7] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann (1993).

[8] J.M. Pérez, J. Muguerza, O. Arbelaitz, I. Gurrutxaga, Consolidated tree construction algorithm: Structurally steady trees, in: Proceedings of the 6th
International Conference on Enterprise Information Systems (ICEIS-2004), Porto, Portugal, 2004, pp. 14-21..

[9] J.M. Pérez,]. Muguerza, O. Arbelaitz, I. Gurrutxaga, A new algorithm to build consolidated trees: study of the error rate and steadiness, in: M. Klopotek,
S. Wierzchon, K. Trojanowski (Eds.), Intelligent Information Processing and Web Mining, Advances in Soft Computing, vol. 25, Springer, Berlin
Heidelberg, 2004, pp. 79-88.

[10] 1. Gurrutxaga, .M. Pérez, O. Arbelaitz, J. Muguerza,].I. Martin, A. Ansuategi, CTC: An alternative to extract explanation from bagging, in: D. Borrajo, L.
Castillo, J.M. Corchado (Eds.), Current Topics in Artificial Intelligence, no. 4788 in Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007,
pp. 90-99..

[11] J.M. Pérez, 1. Albisua, O. Arbelaitz, I. Gurrutxaga, J. Martin, J. Muguerza, 1. Perona, Consolidated trees versus bagging when explanation is required,
Computing 89 (2010) 113-145.

[12] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, D. Steinberg, Top
10 algorithms in data mining, Knowl. Inf. Syst. 14 (1) (2008) 1-37.

[13] T.G. Dietterich, Machine-learning research: four current directions, Al Magazine 18 (1997) 97-136.

[14] LK. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell. 12 (10) (1990) 993-1001, https://doi.org/10.1109/34.58871.

[15] E.Bauer, R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Mach. Learn. 36 (1-2) (1999) 105-139.

[16] P. Bithlmann, B. Yu, Analyzing bagging, Ann. Stat. 30 (2001) 927-961.

[17] J.M. Pérez, Arboles consolidados: construccién de un arbol de clasificacién basado en miiltiples submuestras sin renunciar a la explicacién (Ph.D.
thesis), University of the Basque, Country, 2006..

[18] G.M. Weiss, F. Provost, Learning when training and data are costly: The effect of class distribution on tree induction, J. Artif. Intell. Res. 19 (2003) 315-
354,

[19] L Ibarguren,].M. Pérez, J. Muguerza, I. Gurrutxaga, O. Arbelaitz, Coverage based resampling: building robust consolidated decision trees, Knowl.-Based
Syst. 79 (2015) 51-67, https://doi.org/10.1016/j.knosys.2014.12.023.

[20] I Ibarguren, J.M. Pérez,]. Muguerza, O. Arbelaitz, I. Gurrutxaga, An update of the J48Consolidated WEKA'’s class: CTC algorithm enhanced with the
notion of coverage, Technical Report EHU-KAT-IK-02-14, University of the Basque Country (UPV/EHU), 2014, pp. 1-48..

[21]]. Alcala-Fdez, A. Fernandez, J. Luengo,]. Derrac, S. Garcia, L. Sanchez, F. Herrera, KEEL data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework,]. Multiple-Valued Logic Soft Comput. 17 (2-3) (2011) 255-287.

[22] A. Ferndndez, S. Garcia, J. Luengo, E. Bernad6-Mansilla, F. Herrera, Genetics-based machine learning for rule induction: State of the art, taxonomy and
comparative study, IEEE Trans. Evol. Comput. 14 (6) (2010) 913-941.

[23] N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, Tech. Rep. AAAI Technical Report WS-00-05, AAAI (2000).

[24] N.V. Chawla, KW. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (1) (2002) 321-357,
https://doi.org/10.1613/jair.953.

[25] T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Mach. Learn. 31 (2004) 1-38.

[26] C. Seiffert, T.M. Khoshgoftaar,].V. Hulse, A. Folleco, An empirical study of the classification performance of learners on imbalanced and noisy software
quality data, Inf. Sci. 259 (2014) 571-595.

[27] J. Huang, C.X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Trans. Knowl. Data Eng. 17 (3) (2005) 299-310.

[28] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21 (9) (2009) 1263-1284.

[29] I Ibarguren, A. Lasarguren, J.M. Pérez,]. Muguerza, I. Gurrutxaga, O. Arbelaitz, BFPART: best-First PART, Inf. Sci. 367-368 (2016) 927-952.

[30] J. Demsar, Statistical comparisons of classifiers over multiple data sets, . Mach. Learn. Res. 7 (2006) 1-30.

[31] S. Garcia, F. Herrera, An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, J. Mach. Learn. Res. 9
(2008) 2677-2694.

[32] S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational
intelligence and data mining: experimental analysis of power, Inf. Sci. 180 (10) (2010) 2044-2064.

[33] J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm Evolut. Comput. 1 (1) (2011) 3-18.

[34] G. Corani, A. Benavoli, A bayesian approach for comparing cross-validated algorithms on multiple data sets, Mach. Learn. 100 (2) (2015) 285-304.

[35] A. Benavoli, G. Corani, F. Mangili, Should we really use post-hoc tests based on mean-ranks?,] Mach. Learn. Res. 17 (5) (2016) 1-10.

[36] G. Corani, A. Benavoli, J. Dem3ar, F. Mangili, M. Zaffalon, Statistical comparison of classifiers through bayesian hierarchical modelling, Mach. Learn. 106
(11) (2017) 1817-1837.

[37] A. Benavoli, G. Corani, J. Dem3ar, M. Zaffalon, Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis, J. Mach. Learn.
Res. 18 (77) (2017) 1-36.

[38] T.G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput. 10 (7) (1998) 1895-1923.

[39] J. Carrasco, S. Garcia, M. del Mar Rueda, F. Herrera, rNPBST: an R package covering non-parametric and bayesian statistical tests, in: F.J. Martinez de
Pisén, R. Urraca, H. Quintian, E. Corchado (Eds.), Hybrid Artificial Intelligent Systems, Springer International Publishing, 2017, pp. 281-292..

[40] J. Carrasco, S. Garcia, M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical tests for comparing swarm and evolutionary computing
algorithms: Practical guidelines and a critical review, Swarm Evolut. Comput. 54 (2020) 100665.

[41] B. Calvo, G. Santafé Rodrigo, scmamp: statistical comparison of multiple algorithms in multiple problems, R J., vol. 8/1, Aug. 2016 (2016)..

[42] P.L. Bithlmann, Bagging, subagging and bragging for improving some prediction algorithms, in: Research report/Seminar fiir Statistik, Eidgendssische
Technische Hochschule (ETH), Vol. 113, Seminar fiir Statistik, Eidgendssische Technische Hochschule (ETH), Ziirich, 2003, pp. 1-17..

[43] G.M.-M. noz, A. Suérez, Out-of-bag estimation of the optimal sample size in bagging, Pattern Recogn. 43 (2010) 143-152..

[44] N. Landwehr, M. Hall, E. Frank, Logistic model trees, Mach. Learn. 59 (1-2) (2005) 161-205.

[45] R. Kohavi, Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid, in: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, AAAI Press, 1996, pp. 202-207.

[46] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the Thirteenth International Conference on Machine Learning,
1996, pp. 148-156.

[47] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32.

[48] R.E. Banfield, L.O. Hall, KW. Bowyer, W. Kegelmeyer, A comparison of decision tree ensemble creation techniques, IEEE Trans. Pattern Anal. Mach.
Intell. 29 (1) (2007) 173-180.

[49] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles for the class imbalance problem: bagging-, boosting-, and
hybrid-based approaches, Syst., Man, Cybern., Part C: Appl. Rev., IEEE Trans. 42 (4) (2012) 463-484.

238

https://doi.org/10.1023/A:1022682001417
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0015
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0020
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0020
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0020
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0025
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0025
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0035
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0055
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0055
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0060
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0060
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0065
https://doi.org/10.1109/34.58871
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0075
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0080
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0090
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0090
https://doi.org/10.1016/j.knosys.2014.12.023
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0105
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0105
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0110
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0110
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0115
https://doi.org/10.1613/jair.953
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0125
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0130
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0130
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0135
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0140
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0145
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0150
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0155
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0155
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0160
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0160
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0165
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0165
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0170
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0175
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0180
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0180
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0185
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0185
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0190
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0200
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0200
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0220
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0225
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0225
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0225
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0230
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0230
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0230
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0235
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0240
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0240
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0245
http://refhub.elsevier.com/S0020-0255(21)01120-8/h0245

	PCTBagging: From inner ensembles to ensembles. A trade-off between discriminating capacity and interpretability
	1 Introduction
	2 Background work
	2.1 C4.5
	2.2 Bagging
	2.3 Consolidation

	3 Partially consolidated tree bagging
	4 Experimental setup
	4.1 Used statistical procedures

	5 Results
	5.1 Results for bagging
	5.2 Results for CTC
	5.3 Discriminating capacity of PCTBagging
	5.3.1 Balanced accuracy and sensitivity

	5.4 Structural complexity of PCTBagging
	5.5 Computational cost of PCTBagging
	5.6 Selection of the final PCTBagging based on the consolidation percentage

	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

