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Abstract 

A growing body of research investigates individual differences in the learning of statistical 1 

structure, tying them to variability in cognitive (dis)abilities. This approach views statistical 2 

learning (SL) as a general individual ability that underlies performance across a range of 3 

cognitive domains. But is there a general SL capacity that can sort individuals from “bad” to 4 

“good” statistical learners? Explicating the suppositions underlying this approach, we suggest 5 

that current evidence supporting it is meager. We outline an alternative perspective that 6 

considers the variability of statistical environments within different cognitive domains. Once 7 

we focus on learning that is tuned to the statistics of real-world sensory inputs, an alternative 8 

view of SL computations emerges with a radically different outlook for SL research.9 
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Individual differences in statistical learning 10 

Recent years have seen a growing body of research tying variation in a range of cognitive 11 

capacities to success or failure in assimilating the statistical structure of the input. This reflects 12 

an increased appreciation that our environment—be it perceptual, cognitive, or social—is 13 

saturated with statistical regularities that are the target of learning and processing. The 14 

neurocognitive mechanism for detecting and assimilating the range of regularities in the input 15 

has been labelled “statistical learning” (SL) [1–4]. Although the impact of statistical 16 

regularities (see Glossary) on cognitive processing had been previously recognized, the 17 

interest in SL surged after the seminal paper by Saffran and colleagues on speech segmentation 18 

[1]. The concept of SL has subsequently permeated many other cognitive domains (e.g., visual 19 

perception, music, social cognition, attention, etc.; see [5] for review), because they all involve 20 

statistical structure.  21 

 22 

     With this new perspective on cognition came a novel prediction: That individual 23 

differences in these various domains are fundamentally linked to SL capability. As a result, 24 

the last decade has seen a growing body of work targeting SL as a general individual ability 25 

for perceiving and assimilating regularities in the input. The main premise of this research is 26 

that individuals range from “good” to “bad” statistical learners, and that “good” statistical 27 

learners are expected to have better skills across the wide range of cognitive functions that 28 

require the assimilation of statistical structure (e.g., reading [6–8], early language development 29 

[9,10], syntactic processing [11,12], object and scene perception [13,14], music [15,16] etc.). 30 

Many recent studies, ours included [7,17,18], have consequently assessed correlations between 31 

performance in laboratory SL tasks and cognitive abilities in a variety of domains, in normal 32 

and special populations. A few studies, in particular those investigating language and literacy 33 

acquisition, have tested more narrow and nuanced predictions about the predictive power of 34 

individual differences in SL, for example by linking the sensitivity to orthography-to-35 

phonology regularities to early reading skills [19], or by establishing a relation between infants’ 36 

knowledge of their native language’s sound structure and their vocabulary size [20]. However, 37 

most studies have selected a given SL task, assuming that performance on the chosen task is 38 

sufficiently representative of one’s general SL capacity to be predictive of the targeted 39 

cognitive ability (or disability), be it reading, musicality, or social skills, to name a few. 40 

Although results have not been unequivocal [18,21–23], and although effect sizes are often 41 

small, most published work has reported significant positive correlations between SL 42 

performance and performance in multiple cognitive functions (see Table 1). Typically, null 43 
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effects within this research line have been discussed in terms of insufficient variability in 44 

performance [24] and poor task reliability more generally [18,23]. Importantly, underlying this 45 

experimental approach is the (typically implicit) supposition that an individual has a general, 46 

unitary ability for discovering regularities which assists the learning of any type of statistical 47 

structure. In some studies this supposition is formulated explicitly, as can be seen in the 48 

following quotes:  49 

Parks et al. [25] state “We are interested in how the ability to learn patterns overall is 50 

related to language and social competency skills […]. It is therefore expected that 51 

auditory and visual statistical learning will contribute similarly […] given that both 52 

tasks assess the ability to learn statistical patterns in general.” (p. 3) 53 

Kirkham, Slemmer and Johnson [26] write “These results are consistent with the 54 

existence of a domain general statistical learning device that is available to even very 55 

young infants […].” (p. 40) 56 

 

 Table 1. Examples of studies tying individual differences in the learning of statistical 

structure to variance in cognitive abilities. 

 
Predicted 

cognitive 

ability 

Cognitive 

measure 

Statistical 

learning task, 

learning 

measure(s) 

Stimuli 

of 

statistical 

learning 

task 

Sample (age) Main findings Reference 

Literacy 

Sentence 

reading  

 

Word and 

nonword 

reading 

 

Auditory triplet 

learning, 

acceleration of 

target detection 

times during 

familiarization & 

2-Alternative 

Forced Choice 

(2-AFC) 

familiarity test 

Pure 

tones 

 

Adults (18–34 

years) 

 

Children (8–16 

years) 

 

 

Full sample: 

positive 

correlation 

between 2-AFC 

measure and 

sentence 

reading, null 

findings with 

acceleration 

measure 

 

Children:  

positive 

correlations 

between the 

acceleration 

measure and 

word and 

nonword 

reading, null 

findings with 2-

AFC 

 

[27] 

Visual triplet 

learning, 

acceleration of 

target detection 

times during 

familiarization & 

Alien 

figures 

 

Full sample: 

positive 

correlation 

between 2-AFC 

measure and 

sentence 

reading, null 
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2-AFC 

familiarity test 

findings with 

acceleration 

measure 

 

Children:  null 

findings  

Word and 

nonword 

reading 

 

Morphological 

priming 

 

Visual triplet 

learning, 

2-AFC 

familiarity test 

Abstract 

shapes 

Adults (18–34 

years), native 

English speakers 

learning Hebrew 

 

Positive 

correlation with 

all reading 

measures 

[7] 

Word reading 

 

Visual triplet 

learning, 

2-AFC 

familiarity test 

Alien 

figures 

 

Adults (18–34 

years) 

 

Children (6.4-12.5 

years) 

 

Adults: Positive 

correlation  

Children: 

Positive 

correlation 

[28] 

Word and 

nonword 

reading 

 

Spelling test 

 

 

Visual triplet 

learning, self-

paced measure 

during 

familiarization & 

Pattern 

completion test  

&  

2-AFC 

familiarity test 

 

 

Alien 

figures 

 

 

 

 

 

 

 

 

Children (8.3–11.2 

years) with and 

without a dyslexia 

diagnosis 

Null findings: 

no evidence of a 

relationship 

between any of 

the SL measures 

and reading or 

spelling skills 

above and 

beyond 

participant-level 

variables 

 

[23] 

Serial reaction 

time task 

4 

locations 

Oral 

language 

processing 

Lexical-

processing 

efficiency 

 

Vocabulary 

size 

Auditory pair 

learning, 

2-AFC 

familiarity test 

with head-turn 

preference 

measure 

Syllables 

 

Infants (15-16 

months) 

Positive 

correlations with 

lexical- 

processing 

efficiency, null 

findings for 

vocabulary size 

[9] 

Words 

Vocabulary 

size & growth 

Auditory non-

adjacent 

dependency 

learning, 

2-AFC 

familiarity test 

with head turn 

preference 

measure 

Syllables Infants (15.5-17.5 

months, tested at 

multiple time points 

till the age of 30 

months) 

Positive 

correlation with 

vocabulary size 

(at multiple time 

points), null 

findings for 

vocabulary 

growth 

 

[10] 

Syntax 

comprehension 

 

Vocabulary  

Visual triplet 

learning, 

2-AFC 

familiarity test 

Alien 

figures 

 

Children (6.1–8.1 

years) 

 

SL 

independently 

predicts 

comprehension 

of passives and 

object relative 

clauses, null 

findings for 

other 

grammatical 

structures and 

vocabulary 

 

[24] 

Music skills 

Melody 

discrimination 

& Rhythm 

discrimination 

Auditory triplet 

learning, 

2-AFC 

familiarity test 

Pure 

tones 

Children 

(M = 10.3 years) 

with and without 

musical training 

Positive 

correlation with 

general music 

score 

[29] 
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(combined in a 

general music 

score) 

 

Visual triplet 

learning, 

2-AFC 

familiarity test 

Alien 

figures 

 

Positive 

correlation with 

general music 

score  

Social 

competency  

 

Social 

competency 

questionnaire 

 

Autistic traits 

questionnaire 

 

 

Receptive and 

expressive 

language 

abilities 

 

Visual triplet 

learning, 

psychometrically 

optimized 

familiarity test 

 

 

Abstract 

shapes 

 

 

 

 

 

Young adults (16-

21 years) 

Positive 

correlation with 

receptive 

language and 

social 

competency 

abilities, null 

finding for 

relation with 

autism 

symptomatology 

[25] 

Auditory triplet 

learning, 

2-AFC 

familiarity test 

 

Syllables 

 

Null findings for 

receptive 

language and 

social 

competency 

abilities, 

positive 

correlation to 

autism 

symptomatology 

 

Feature-

comparison 

skills 

Visual 

comparison 

performance 

Visual 

distributional 

statistical 

learning, 

psychometrically 

optimized 

familiarity test 

&  

frequency 

estimates 

Abstract 

shapes 

Young adults (17-

26 years), trained 

forensic examiners 

and novices 

(informed, 

uninformed and 

misinformed)  

Informed 

novices: 

Positive 

correlation 

between 

familiarity 

measure and 

visual 

comparison 

performance, 

null findings for 

frequency 

estimates 

measure 

 

Null findings for 

all other groups 

[30] 

 

 

     From a historical perspective, this approach to individual differences in SL resonates with 57 

research into other general cognitive capacities, such as the study of human intelligence, with 58 

its G-factor, or memory, with its general working memory factor (see Box 1). It assumes that 59 

a general SL capacity determines individual performance in regularity learning across domains, 60 

resulting in something akin to a “general SL-factor.” As the qualification “general” has also 61 

been used in the context of discussing domain-specificity vs. domain-generality (see [31] for 62 

discussion), we should clarify that a “general SL capacity,” as used here, implies that SL is a 63 

domain-general ability, whereas domain-generality does not require the existence of a unitary 64 

SL capacity. Rather, “domain-generality” in the context of SL research reflects the recognition 65 

that sensitivity to regularities is found across all cognitive domains, and extends beyond the 66 
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original finding of sensitivity to trisyllabic patterns in a continuous speech stream [1] (see [5] 67 

for discussion). The idea of a general SL capacity is a more specific claim: It presupposes that 68 

individuals differ in their general ability for learning regularities, whatever those regularities 69 

are, and that this general capacity contributes to their learning in any domain. As such, 70 

sensitivity to statistical regularities is taken to be a major cognitive construct, subserving basic 71 

and higher-order cognitive functions, thus impacting human performance across the board. 72 

Importantly, this unitary view assumes that there is something common to the computation of 73 

statistical regularities across modalities and domains, leading to some shared variance in 74 

individuals' performance in assimilating regularities across cognition.  75 

 76 

     The possibility of a general SL-factor, common to learning regularities across domains, has 77 

far-reaching theoretical and practical implications. It suggests that a general computational 78 

device assimilates the wide range of regularities in the environment, and that individuals differ 79 

in its efficiency. Even more importantly, since performance in multiple SL tasks was found to 80 

be independent of intelligence, working memory, and executive functions [32,33], a general 81 

SL-factor has the promise to account for a substantial portion of unexplained variance in 82 

cognitive performance. If a general SL-factor could be comprehensively assessed through a 83 

validated and normed test battery, similar to the G-factor, a general SL score could provide a 84 

reliable estimate of an individual’s SL capacity relatively to the population distribution. Then, 85 

this single general SL score could predict, at least to some extent, an individual's performance 86 

in a given cognitive function over and above intelligence or memory. Because SL is an 87 

important building block of virtually all current theories of cognitive processing, this could 88 

revolutionize research on individual differences in cognitive science.  89 

 90 

     In this paper, we evaluate this intriguing prospect and outline some of the challenges it 91 

might face. We start by discussing what a general SL-factor would imply as a theoretical 92 

construct, before considering evidence for the notion of a “good statistical learner.” Next, we 93 

outline a broader ecological perspective on the variety of statistics that need to be 94 

accommodated and consider existing challenges for the notion of “good statistical learners.” 95 

We then outline an alternative view of SL computations and discuss its implications for future 96 

research. 97 

 98 

What would a general statistical learning factor imply? 99 
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Theoretical constructs should be well-defined so that they can be empirically validated. We 100 

thus start by outlining three implicit suppositions that underlie the concepts of “good statistical 101 

learners” and a general SL-factor. 102 

 103 

     First, and foremost, there is the supposition of nesting and sharing. A general SL-factor 104 

implies that all modality- and domain-specific SL abilities (e.g., detecting word-boundaries, 105 

learning spatial contingencies, etc.) are nested within it, just as vocabulary, comprehension, 106 

and visual-spatial abilities are nested within intelligence. Nesting could be hierarchical or not 107 

[34], but it necessarily entails a relation of whole and parts between the general factor and its 108 

components. Nesting leads inevitably to sharing. Given that statistical regularities vary in 109 

sensory modality, material, type of contingencies, etc., recent studies have argued that SL is a 110 

componential ability spanning an array of dimensions [35–39]. However, if all SL dimensions 111 

are nested within a general SL-factor, they should share some variance, which reflects the 112 

commonality of all SL computations. Sharing could result from all facets having some positive 113 

load on the general factor (as Spearman originally postulated for intelligence [40]), and/or from 114 

some facets partially overlapping because they implicate shared computations. We note that 115 

sharing does not preclude the possibility that some (additional) shared variance in performance 116 

is due to factors external to SL per se (e.g., attention); we clarify, however, that the sharing 117 

assumption refers to common variance originating specifically from shared SL computations 118 

rather than from an external third factor. 119 

 120 

 The next two suppositions are related to the possibility of assessing individuals’ SL ability 121 

as ranging from “good” to “bad.” First, tying “low,” “mid-range” or “high” scores in a 122 

cognitive function to “low,” “mid-range” and “high” scores in an SL task (as done in the studies 123 

of Table 1) assumes that SL performance displays monotonicity. Monotonicity implies that 124 

given valid and reliable measurements, higher scores would reflect better SL performance, 125 

pointing to “good” statistical learners, whereas lower scores would reflect worse SL 126 

performance, pointing to “bad” statistical learners. Monotonicity by no means implies linearity; 127 

it simply requires an ordinal scale. It is worth noting that monotonicity could still hold even in 128 

the absence of a general factor, if performance in different SL systems displays a monotonic 129 

continuum. However, the backbone of the concept of a “good statistical learner,” as it currently 130 

appears in the literature, is that individuals can be differentiated along a unified continuum, 131 

once their ability is reliably and validly measured. Second, from a psychometric perspective, 132 

the alluring prospect of assessing individuals’ general SL ability using a single score through 133 
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a test battery requires aggregability: Performance across the range of SL dimensions could, in 134 

principle, be aggregated (potentially with weighting, so that some facets contribute more than 135 

others), to give rise to a single score reflecting the general factor, similar to the aggregation of 136 

subtest of intelligence to provide a general score of intellectual ability.  137 

 138 

     Now that the basic suppositions underlying the notion of “good statistical learners” are laid 139 

out, we examine to what extent they withstand empirical and theoretical scrutiny. 140 

 141 

Evidence in favor of a general statistical learning ability 142 

Several studies (listed in Table 1) have found significant positive correlations between 143 

performance on a SL task and a range of cognitive skills. Importantly, some of these 144 

correlations were observed when the same task predicted different functions in different 145 

modalities (e.g., a similar visual embedded pattern learning task with alien-like figures 146 

correlates with both reading abilities [28] and musical skills [29]). This suggests that a given 147 

SL task reflects a general ability for learning regularities, so that it can simultaneously predict 148 

performance across different cognitive domains. In the same vein, a given cognitive function 149 

(e.g., reading skill) was predicted by two different SL tasks, one involving abstract shapes [7] 150 

and one involving auditory tones [27]. The finding that two different SL tasks in different 151 

sensory modalities both have predictive value for individual differences in a given domain, 152 

suggests that they at least partially represent the same general ability. Another piece of evidence 153 

for shared computations across modalities comes from work that revealed shared variance 154 

between visual and auditory SL tasks. For example, a study using non-linguistic auditory 155 

materials, which do not implicate learners' prior language knowledge, obtained a significant 156 

correlation between SL performance in the visual and the auditory modality [41]. Further, from 157 

a neurobiological perspective, imaging studies consistently report activation of the same subset 158 

of brain regions in SL tasks across modalities and stimuli (see [42] for review). These domain-159 

general regions seem to point to common neurocircuitry involved in processing statistical 160 

regularities regardless of specific input characteristics. Taken together, all these findings 161 

coincide with the claim that the variety of SL tasks taps a common factor, presumably related 162 

to a general ability to register statistical regularities across domains. 163 

 164 

     We argue, however, that these findings should be interpreted with caution. The correlations 165 

between visual and auditory SL tasks might be driven by the significant similarity in the 166 

statistical patterns they employ (e.g., pairs or triplets within a continuous sensory stream). 167 



 10 

Thus, finding similarities in learning embedded pairs or triplets of syllables, musical tones, 168 

natural sounds, shapes, aliens figures, or objects may speak to the uniformity of the artificial 169 

tasks that are typically employed to tap SL, not to capturing the statistics of real-world sensory 170 

environments. Furthermore, most of these studies use a two-alternative forced-choice paradigm 171 

to test knowledge of regularities and thus all require meta-cognitive decision processing [43], 172 

which may contribute to the observed correlations. In the same vein, the domain-general 173 

neurocircuitry that is activated in these tasks (mainly the Medial Temporal Lobe (MTL) 174 

memory system, [44,45]) may reflect the inevitable hippocampal involvement in learning a 175 

limited set of embedded patterns in the artificial stream, and does not necessarily speak to the 176 

long, continuous process of assimilating the statistical distributions characteristic of the real-177 

world environment. As to the reported correlations between SL and cognitive outcomes, they 178 

are generally weak—significantly weaker than those reported in the domain of general 179 

intelligence and memory, and furthermore, there are multiple reports of null results (see Table 180 

1). Even when observed, the weak correlations could have been driven by a range of mediating 181 

factors and overlap in task demands. For example, typical SL tasks engage sustained attention 182 

and require fast intuitive judgments [33,46–48], hence inter-individual differences in these 183 

capacities could similarly impact performance in the SL tasks and the measured cognitive 184 

outcome, leading to the observed small correlations (see [49] for discussion). 185 

 186 

An ecological perspective 187 

Our starting point is that SL mechanisms are meant to assimilate the statistics of the real-world 188 

environments, be it print, spoken language, objects, or visual scenes. As such, an adequate SL 189 

account of a given domain should consider the rich and idiosyncratic scope of the statistical 190 

regularities that characterize it. When this approach is adopted, it becomes apparent that the 191 

statistical patterns that need to be assimilated for different cognitive functions differ, and can 192 

vary quite dramatically. In light of these differences in input structure across domains, a key 193 

question is whether there are overarching SL computations that are involved regardless of the 194 

nature of the input, and if so, what are they?  195 

Computational models of SL have mainly focused on co-occurrence learning and the 196 

segmentation of continuous, patterned input streams. For example, models such as PARSER 197 

[50] and TRACX [51,52] have proposed chunk extraction as an alternative learning 198 

mechanism. A recent biologically inspired neural network model offered an architecture where 199 

a hippocampal monosynaptic pathway drives the learning of regularities [45]. This model can 200 

simulate the learning of simple patterns in an artificial SL task, and also more complex statistics 201 
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(e.g., small ‘community structures’ [53]). However, since these computational accounts focus 202 

on the specific issue of how boundaries are extracted from continuous input, they are limited 203 

in their explanatory scope when it comes to explaining the learning of the large set of real-204 

world regularities. It remains an open question whether a single computational mechanism 205 

can deal with them all.  206 

 207 

     To exemplify this issue, we consider two well-studied cognitive functions as test cases: 208 

reading and visual object perception. We show that on a conceptual level, the to-be-learned 209 

regularities vary substantially even within two domains that both involve the visual modality, 210 

suggesting that uncovering a common computational principle might not be an easy task. 211 

Finding common computational principles across all domains and modalities is likely to be 212 

even more challenging.  213 

 214 

     Reading. Readers are sensitive to a range of statistical regularities, including frequency of 215 

letters and words [54,55], the co-occurrence of letters [56,57], correlations between letters and 216 

speech sounds [58], between letter combinations and stress patterns [59], and between letters 217 

and semantic meaning through morphological structure [60,61]. Readers are also affected by 218 

the likely position of letters within words (e.g., ‘er’ being a likely word ending), the 219 

morphological information letters convey given their location (e.g., ‘er’ anywhere but in final 220 

position is probably not a morpheme [62]), the predictability of words in sentences [63,64], the 221 

contextual similarity among alpha-numeric characters in text [65], the sequential order of 222 

potential word lengths in sentences [66], syntactic and semantic plausibility [67,68], and this 223 

is not an exhaustive list. All of these different types of regularities are “statistical” in nature, 224 

and thus fall under the general label of “statistical learning.” However, the computations that 225 

they implicate are potentially quite different from one another. To exemplify, the 226 

computational solutions for learning the correlations of letters with sounds and meaning do not 227 

have clear overlap with the computational solution for predicting, say, the length of an 228 

upcoming word given the previous word-lengths. Importantly, as detailed in the next section, 229 

these statistical computations are even more distant from those that subserve efficient visual 230 

object recognition and scene perception. 231 

 232 

     Visual object and scene perception. Our visual world is complex in nature, but rarely 233 

presents randomness. Humans are sensitive to both the physical and contextual regularities that 234 

characterize our visual environment. One striking example is that vertical and horizontal 235 
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orientations occur much more frequently than oblique orientations in both man-made and 236 

natural environments [69]. Indeed, participants have been found to perceive vertical and 237 

horizontal orientations better then oblique orientations, suggesting a tuning of the perceptual 238 

system to real-world statistics. Similarly, light usually comes from above [70] and this results 239 

in a strong perceptual prior to interpret the source of light as such [71]. Further, different scene 240 

and object categories (e.g., forests, beaches, streets, natural objects vs. man-made objects, 241 

portraits, etc.) were found to have characteristic spectral signatures which can be determined 242 

by averaging hundreds of images of the same category [72]. These summary statistics seem to 243 

aid perception of objects which are congruent with the category [73], suggesting that our 244 

perceptual system tracks spectral statistics. Recent work further suggests that if visual objects 245 

regularly co-occur in time, their representations within the MTL become more similar one to 246 

the other [44], so that the system is tuned to track temporal co-occurrence statistics. In the same 247 

vein, the perceptual system also tracks co-occurrence in space, so that objects that appear 248 

together in a given spatial composition engage attention as if they are a single object [74,75]. 249 

Another source of statistical regularities concerns the typical location of objects in specific 250 

types of scenes. Object identification has been shown to be facilitated by presentation in 251 

congruent context scenes (e.g., a teapot in a kitchen rather than at a beach), and within a typical 252 

scene structure (e.g., a computer mouse positioned on the table next to the computer rather than 253 

on a computer screen [76,77]; see [78] for review).  254 

 255 

     Similar to reading, this very brief summary outlines the wide range of statistical regularities 256 

that are computed by the visual system in the domain of object and scene perception. Merging 257 

the two overviews together, it is clear that printed texts and scenes are characterized by a range 258 

of probabilistic regularities creating structure, and that readers and scene perceivers assimilate 259 

these. Shared variance in SL performance across these two cognitive functions would only 260 

emerge if they rely on mechanisms that share input representations or computations. Finding a 261 

computational common denominator for such distinct domains is perhaps possible, but does 262 

not seem an easy task.  263 

 264 

Challenges for “good statistical learners” 265 

We now consider whether computations of statistics of real-world sensory environments 266 

display the three implicit suppositions underlying the concepts of “good statistical learners” 267 

and a general SL-factor. When it comes to our test cases of reading and visual object 268 

perception, the existence of nesting and variance sharing remains an open question. Do 269 
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efficient readers also perceive objects and scenes faster or better? Do participants who more 270 

rapidly identify objects in a congruent context and within a typical scene structure [77] also 271 

show, say, higher predictability effects of words in a sentence [64]? The assumption of good 272 

general statistical learners implicates that some individuals are proficient at picking up the 273 

statistical structure of the environment across all cognitive domains, while others are relatively 274 

poor across all domains. However, to our knowledge, there is no empirical evidence that speaks 275 

to this issue. In Box 2 we outline specific types of evidence that are predicted by a general SL 276 

device.  277 

 278 

     The concept of “good statistical learners” faces additional challenges when considering 279 

monotonicity. Some environments are characterized by stable statistics while other are 280 

characterized by constant change. For example, the statistics of the visual world are more or 281 

less constant, whereas the characteristics of printed material change across different genres of 282 

text [79,80]. In fact, even at a given time and a given developmental phase, the statistical 283 

environment of one text may be quite different than that of another (e.g., different novels 284 

written in different periods, etc.). Recent evidence suggests that readers adapt to the statistical 285 

properties of a particular novel (for example, the sequential combinations of word-lengths in 286 

sentences and characteristic syntactic structures), and this results in more efficient ocular 287 

movements, as reflected by reduced viewing time [66]. Hence, for optimal reading 288 

performance, SL computations should be optimally flexible; not too flexible, so as to preserve 289 

the accumulated reading experience, but not too rigid, to allow efficient adaptation to novel 290 

statistics. Such a “sweet-spot” in the sensitivity and the attention to regularities in the input 291 

[81] challenges the monotonicity assumption. It further suggests that what it takes to be a good 292 

statistical learner may be quite different across domains. In some domains, a good statistical 293 

learner displays high sensitivity to statistical properties as well as high rigidity, relying strongly 294 

on long-term statistics. In others domains, a good statistical learner is characterized by more 295 

flexibility, relying more heavily on recent experiences (see also [82] for an implementation in 296 

a Bayesian framework). One could propose a definition specifying that individuals are good 297 

statistical learners when they optimally weight both long-term statistics and recent experiences, 298 

depending on the task at hand and the stability of the relevant input, but the definition of a good 299 

statistical learner then becomes domain-dependent. In all laboratory SL tasks as currently used, 300 

the more novel patterns are assimilated, the better learning is considered to be. However, 301 

moving to real-world sensory environments with some domains implicating monotonicity and 302 

some not, the aggregability assumption, too, faces significant challenges. The goal of 303 
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aggregating SL abilities across domains in the hope of converging on a general score may thus 304 

be intractable. 305 

 306 

An alternative approach: Statistical learning from an ecological perspective  307 

To understand how individual differences in SL might contribute to variation in cognition, we 308 

need a different perspective. Figure 1 illustrates the general SL ability account, contrasting it 309 

with an alternative theoretical approach which posits multiple specific SL-computations in 310 

different cognitive domains. At the cognitive level, the difference between the two accounts is 311 

most prominent in the presence of a single SL construct involved in assimilating a range of 312 

regularities in different environments vs. independent SL computations which are bound to a 313 

given domain. At the mechanistic level, a general ability implies one common computational 314 

mechanism that assimilates the range of regularities across different types of environments 315 

independently of the statistics involved. The figure exemplifies this through one recent 316 

candidate model where the extraction of regularities across domains relies on computations in 317 

the hippocampus [45]. Whereas in this example both the computations and the neurobiological 318 

substrate are unified, this is not a necessity. In principle, a shared set of SL computations could 319 

be carried out by different neural substrates (i.e., either because computations are distributed 320 

across multiple separate substrates or because multiple separate substrates each perform the 321 

same set of computations on different representations [42]), yet when resulting in shared 322 

variance this would per our view still be a general SL ability. For the alternative account, on 323 

the other hand, sensitivity to specific regularities is an emergent property of different 324 

mechanisms that process input in particular domains (e.g., reading [83], syntactic processing 325 

[84], object perception [85]) given their differing computational constraints.  326 

 327 

Contrasting the two accounts: Empirical implications 328 

Generic laboratory tasks (e.g., focusing on the ability to extract pair/triplet patterns based on 329 

transitional probabilities between individual stimuli) have helped establish SL as a powerful 330 

form of implicit learning. They have shown that the learning of statistical structure is possible 331 

across a variety of sensory modalities and domains (e.g., [11,37,86–88] and see [5] for a 332 

review), throughout the human lifespan [36,89–91], across species [92–94], and does not 333 

require instruction, reinforcement, or feedback [95]. However, changing the focus to SL 334 

mechanisms which are tuned to the complex range of statistical regularities characterizing real-335 

world sensory environments (rather than the simple statistics of typical SL tasks) leads to a 336 
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radically different course of future SL research, where such generic tasks no longer suffice. 337 

Box 3 outlines the blueprint for such future research program. 338 

 339 

     It is evident that to determine whether there is such a thing like a “good statistical learner,” 340 

a deeper understanding of the statistical environments that characterize a range of cognitive 341 

domains is required as a first step. This research should be complemented by empirical 342 

evidence regarding which of the revealed statistical regularities are the target of learning ([73], 343 

see also [97–99]), and modulate behavior. In addition, future advances in computational 344 

models are needed, to explicitly connect the statistical regularities learners actually assimilate 345 

in different domains to the cognitive and neural mechanisms that are responsible for learning 346 

them. Once theories and models of the statistical computations across cognitive domains are 347 

formulated, the viability of a general SL ability can be assessed through the study of individual 348 

differences, neurological patients and special populations with hypothesized deficits in SL. 349 

Research on impaired populations is particularly informative for this debate. The general SL 350 

capacity perspective predicts that impaired SL would result in difficulties acquiring sensitivity 351 

to statistical structure across the board. The alternative account of multiple specific SL abilities 352 

is, in contrast, consistent with domain-selective impairments [100].  353 

 

Concluding Remarks 354 

If a general SL-factor exists and a methodology for its comprehensive assessment can be 355 

developed, the practical and theoretical implications would be far-reaching. However, as we 356 

have argued above, the existence of SL as a general individual ability faces significant 357 

challenges. We have suggested an alternative perspective according to which sensitivity to 358 

statistical regularities in different domains is more likely grounded in different computational 359 

mechanisms. In this perspective, what all SL computations have in common is a very abstract 360 

notion of dealing with some sort of “regularity.” Current evidence on individual differences in 361 

SL performance has severe limitations in determining which model should be favored. Most 362 

experimental SL paradigms mimic one another in terms of the statistical patterns they employ, 363 

rather than mimicking the statistical regularities that are the object of learning in different 364 

domains. To contrast theoretical approaches to SL, future work should focus on characterizing 365 

the different statistical environments in a multitude of cognitive domains (see Outstanding 366 

Questions). Without evidence from tasks that tap regularities characteristic of real-world 367 

environments in different domains, research that ties individual differences in a cognitive 368 

function to a general SL capacity stands on shaky theoretical grounds. 369 
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Box 1. A short history of salient general factors in cognitive science 370 

Higher-order latent variables have been proposed across a wide range of cognitive abilities. 

Here we outline two examples of impactful general factors.  

Intelligence. More than a century ago, Charles Spearman demonstrated that different measures 

of intelligence tend to correlate with each other to various degrees—known as the positive 

manifold. He proposed the two-factor theory of intelligence, stating that intellectual abilities 

are comprised of two kinds of factors: (1) a general ability labeled the G-factor, and (2) a 

number of specific abilities (S-factors), all having some load on the general factor [40]. 

Whereas conceptualizations of intelligence have since further evolved, the G-factor is still 

omnipresent and has been validated cross-culturally [101]. The current version of the Wechsler 

Adult Intelligence Scale (WAIS-IV, [102]) still provides a broad IQ-score to summarize 

general intellectual ability, which results from aggregating performance across a range of 

specific tasks and is taken to predict a wide range of cognitive functions. 

Working memory. Together with intelligence, working memory has been one of the most 

frequently studied constructs in cognitive science. Working memory has been suggested to 

modulate a range of cognitive abilities (e.g., reading, mathematics [103]). Some work 

employing confirmatory factor analyses has supported the concept of a general, higher-order 

working memory capacity factor and hence the view that a broad set of tasks that use different 

working memory contents (e.g., verbal, visuospatial) and tap different processing demands 

(e.g., maintenance, updating) all purportedly engage a higher-level capacity [104–106]. 

 

Box 2. Hypothetical empirical evidence in support of a general SL ability  

• Systematic positive correlations between sensitivity to regularities across domains: 

e.g., individuals who are more sensitive to spelling patterns in print are also more 

sensitive to chord and note co-occurrence in music, to conditional probabilities of 

objects in visual scenes, and to correlations between facial features and emotions. 

These correlations are found between tasks that tap sensitivity to these statistical 

structures but not with other tasks, demonstrating that they are not driven by factors 

external to SL.  

• A similar developmental trajectory of sensitivity to statistical regularities across 

different domains, mirroring the developmental stages of the general learning device.   

• Evidence from special populations (individuals with brain damage or 

neurodevelopmental disorders) of hindered learning of regularities across domains, 
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which can be traced back to an impairment of the general SL device, and cannot be 

explained by general cognitive factors such as memory, attention, etc.   

• A unified (neuro)computational model architecture, implemented in different domains 

and operating on different inputs, can successfully learn different real-world 

regularities, from vision to language to social cognition.  

 

Box 3. Proposed blueprint for future research 

Developing and testing an ecologically-valid theory of regularity learning could proceed 

along the following sequence of 3 steps: 

1. Map the domains of cognition that are characterized by significant structure (e.g., 

speech, print, syntax, music, objects, scenes, etc.) to identify the range of statistical 

regularities that characterize a given domain and could be the target of learning. Corpus 

analyses are an important tool in revealing the statistical regularities that exist in a 

domain [72,107,108]. In identifying domain-bound regularities, an important 

consideration is the experience of the learner, and how it is shaped over time and across 

development. “Big data” capturing everyday environments from the learner’s point of 

view are therefore of great value (see [109] for discussion). 

2. Use computational modeling to elucidate the possible computations that can account 

for the learning of different regularities within a given cognitive domain. This modeling 

should involve datasets that capture the environment within which real-world learning 

takes place, to show whether and how the relevant statistical information can be 

utilized. 

3. Provide empirical evidence regarding which of the revealed real-world statistical 

regularities are indeed perceived and learned by individuals (at different stages of 

development), as well as the role they play in assisting processing in a given domain.  
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Glossary 

• Computational mechanism: defined by the representations that are being processed, 

and by the transformation(s) applied to the input to generate the output (i.e., the 

assimilated regularities). 

• Domain: cognitive performance can be conceptualized in terms of different domains 

of functioning (e.g., language, visual perception, attention, social cognition). 

• Embedded pattern learning task: a classic task used to measure SL ability. It involves 

the presentation of a continuous visual or auditory stream made up of embedded 

patterns, followed by a test that assesses the preference for the embedded patterns (over 

foil patterns).  

• Ecological validity: concerns the ability to generalize from the data observed under 

experimental settings to the state of affairs and natural behaviors in the world. 

• Individual differences: in the context of SL, individual differences typically refer to 

quantitative differences in learning outcomes between learners, but could in principle 

refer to any quantitative or qualitative inter-individual variance (differences in the 

speed and trajectory of learning, individual variation in the adaptability to changing 

environments, etc.). 

• Modality: the sensory mode of stimuli (e.g., vision, audition, touch). Note the 

dissociation between modality and domain: e.g., music and language are both in the 

same (auditory) modality but constitute separate domains.  

• Statistical regularities: here we focus on the wide range of constancies in the input 

that provide information regarding patterning (in time and/or space) in the environment.  

 

Figure legend 

Figure 1. Depiction of the general SL ability vs. multiple specific SL-abilities. The upper 

panels illustrate the differences at the cognitive level, the bottom panel illustrates these 

differences at a mechanistic/computational level. The selected models of domain-general SL 

computation [45], reading [83] (as depicted by [110]), syntactic processing [84] and object 

perception [85] are taken as figurative examples of computational implementations of SL and 

the specific domains. 
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 1 

Outstanding questions 1 

• What are the relevant statistical computations in different real-world perceptual and 2 

cognitive environments as encountered by learners? How does the statistical structure 3 

characterizing different domains change over time (short-term and long-term across 4 

development)?  5 

• What are the endogenous biological factors that contribute to individual differences in 6 

sensitivity to different structural regularities? How do potential differences in 7 

genotypes interact with environmental variability to produce variation in an 8 

individual’s neural mechanisms involved in the learning of different types of 9 

regularities? 10 

• Do patients with damage to the medial temporal lobe memory system, thought of as the 11 

main neural substrate of SL, show no or strongly reduced learning of regularities in all 12 

cognitive domains? 13 

• Does SL imply that statistics are stored as such? If so, how might this be implemented? 14 

If not, might statistical regularities instead be stored not as statistics but as cumulative 15 

weight changes in neural networks? 16 


