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Introduction

One of the main aims of condensed matter physics is the description of different
phases of matter. During the 1930s, Landau developed a successful theory that ex-
plained phase transitions in terms of symmetry breaking [1]. Within his framework,
phase transitions can be monitored by an order parameter which acquires an expec-
tation value that breaks some symmetry and distinguishes both phases. Taking a
ferromagnet as an example, a non-zero value of magnetization implies that there is a
preferred direction in space, thus, breaking full spin rotation SU(2) symmetry. The
only setback of the theory is that it only distinguishes phases of matter in terms of
symmetry breaking; it is thus blind to different phases of matter that preserve the
same symmetries.

However, in the decade of 1980, Von Klitzing’s work on the 2D electron gas under
large magnetic fields defied the Landau theory [2]. He discovered those systems
displayed plateaus of quantized Hall resistance in units of h/e2 as a function of the
applied magnetic field. The system, however, did not go through a phase transition
as described by Landau theory, so a new framework had to be developed. In 1982,
Thouless et al derived a Kubo formula for the Hall conductivity in a 2D electron
gas [3]. They related the Hall conductivity to a change in phase of the wavefunctions
in a loop around the BZ. Due to gauge symmetry, the change in phase has to be
of the form 2πC, with C an integer number, named Chern number, a topological
quantity. They also proved that this number could not change unless gaps are closed,
thus explaining the robustness of the plateaus in von Kitzing’s experiment.

The field of topological insulators (TI) took off when Haldane realized that the
QHE in a 2D electron gas under high magnetic fields could arise on lattice systems
in the absence of an external magnetic field [4]. Based on a simple hexagonal lattice
system with first nearest neighbors hopping, he added a time reversal symmetry
(TRS) breaking, second nearest-negihbors complex hopping that drives the system
from having Chern number 0 to Chern number 1. This model is a lattice realization
of the QHE, with C boundary modes (edge states) that are protected against back-
scattering due to the chiral nature of the states (they are forced to move on a definite
direction in the edge).
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3 Iñigo Robredo. Topological Materials from a Symmetry Perspective

Based on this model, Kane and Mele [5] derived a TRS-preserving model by
coupling two copies of the topological Haldane model in each spin sector with opposite
Chern numbers. Because TRS prevents TRS-related partners to mix, their model
realized a spin Chern insulator, in the boundary of which TRS-related partners would
propagate as do electrons in the QHE. Thus, they named this effect as quantum spin
Hall effect (QSHE). The main advantage of this model is that the hopping driving
the topological transition can be assigned to a physical effect, the spin-orbit coupling
(SOC). This model, though, cannot have indefinitely many edge states. Due to TRS,
there cannot be a net current; states have to move on opposing directions in the
boundary. States with opppsite spin polarization have opposite Chern numbers, so
there will be a net spin current, and states with different spin polarizations cannot
backscatter. However, if we add an extra edge state (one of each spin polarization,
so as not to break TRS), states that have the same polarization can scatter between
themselves and open a gap in the surface. This is why the topological classification
of the Kane-Mele model is twofold; it can either be topologically trivial (even number
of edge states) or topologically non-trivial (odd number of edge states. This can be
encoded in a new topological invariant, the νZ2 = 0 invariant, which represents the
parity of the number of edge states. Later on, Fu and Kane [6] developed a method
for computing this topological invariant by means of the Pfaffian1.

In 2007, Fu and Kane [7] proved that the topological properties observed in 2D
systems could be promoted to 3D. Analogous to 2D TIs that have gapped bulk and
conducting edge states, they found a type of 3D insulators that have conduction
states in the 2D boundary. Similarly to the results in 2D QSHE, 3D TIs’ surface
states are robust and protected against backscattering by TRS. However, these states
live on a much larger surface, making them good conductors that could be exploited
for electronic applications [8]. Moreover, since the desired electronic properties are
linked to a topological invariant, they will be robust against (a certain amount of)
disorder, such as doping or temperature.

The computation of the topological invariants by means of the Pfaffian proved to
be hard in general, since it is necessary to have a smooth continuous gauge in the
whole BZ. However, in the presence of inversion symmetry, they were able to map
the topological invariant to the inversion symmetry eigenvalues. For the particular
case of a 3D TI, it is sufficient to compute the inversion symmetry eigenvalues of the
filled bands. If there is an odd number of bands with eigenvalue -1, then the bands
have an odd (non-trivial) Z2 topological invariant.

Apart from being useful to diagnose, crystal symmetries can also create (and
protect) different topological phases of matter. This work was started by Fu in
2011 [9]. He extended the notion of TIs to topological crystalline insulators (TCIs),

1Defining wmn(k) = 〈um,−k|Θ |un,k〉, the topological invariant is defined as δi =

√
det(w(Γi)

Pf(w(Γi))
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systems in which crystalline symmetries stabilize topology. These systems would be
rendered trivial without the protection of crystal symmetries, thus, topological surface
states can only exist in facets where the symmetries are preserved. As a paradigmatic
example, take the mirror Chern insulator. This system has topological bands in the
different subspaces of mirror symmetry, namely Chern number C = n and C = −n,
with n an integer number. Then, in facets where the mirror symmetry is preserved,
there will be two counterpropagating states, belonging to the two different eigenvalue
subspaces of the mirror symmetry. However, in facets that do not preserve the mirror
symmetry, bands will not be distinguished and the total Chern number will add up
to 0 (C = 0).

The connection between topology and symmetry has been elucidated by the re-
cently formulated theory of topological quantum chemistry (TQC) [10–13] and sym-
metry indicator formalism [14, 15]. It maps the symmetry properties of Bloch wave-
functions in reciprocal space to real space Wannier functions, which are localized
around the atoms. The topological properties of an occupied set of bands can be
characterized by the localization properties of those Wannier functions. A topolog-
ically trivial set of bands arises from exponentially localized, symemtry preserving
Wannier functions. On the other hand, a set of bands arising from Wannier functions
that do no satisfy one of these two properties must be topologically non-trivial. The
set of bands that arise from exponentially localized, symmetric Wannier functions
transforms under a representation of the symmetry space group called band repre-
sentation (BR). Following the works of Zak et al [16–19], they showed that all BRs
can be formed as a stacking of elementary band representations (EBR), which form a
basis of trivial insulators. Thus, following TQC, a topological insulator is one whose
BR cannot be decomposed as a sum of EBRs. TQC has also allowed for the discovery
of new topological phases of matter, such as higher order TIs (d-dimensional systems
with anomalous states in d-2, d-3 boundaries) and fragile topological phases (can be
trivialized by the addition of topologically trivial bands). In this thesis, we will re-
view the basic aspects of the theory solving step by step a very well known material,
graphene. It will also be used to diagnose a mirror Chern insulator phase in PbTe,
based on an old tight binding model [20–22]. There are few material realizations
of the diverse topological phases of matter that have been theoretically predicted.
The lack of materials is due to the expensive calculations required to diagnose them.
However, the application of TQC has allowed for high-throughput searches of topo-
logical materials, rising the number of known topological insulators from hundreds to
thousands [23,24].

At the same time, there has been an increased interest in semimetallic systems.
These systems, which lay in the boundary of metals and insulators, got under the
spotlight after the synthesis of graphene, a 2D, one atom thick semimetal wherein
electrons have a linear energy-momentum dispersion and behave as if they were mass-
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less. The interest in this type of materials grew when the first Weyl semimetal was
both predicted and confirmed experimentally in the TaAs family [25–28]. In Weyl
semimetals conduction and valence bands meet at a finite number of points (Weyl
nodes) inside the Brillouin Zone (BZ). Unlike TIs, they do not have a gap in the whole
BZ, but, like TIs, they have non-trivial topological properties. In fact, Weyl nodes
act as sources of Berry curvature, which translate into anomalous open surface states
connecting their projection onto a surface. These are so-called Fermi arcs, and have
a wide variety of properties [29–37] and promising applications [38–40]. Remarkably,
any system with broken inversion or TRS can host these crossings, with no extra
symmetry needed. In 2016, Bradlyn et al [32] proved that when non-symmorphic
crystal symmetries are taken into account, Weyl nodes can be generalized. Instead
of 2-band crossings, 3, 6 and 8-band degeneracies can be stabilized. These multifold
fermions, display larger Berry curvatures, with a larger number of Fermi arcs too. As
an important remark, these multifold fermions do not have an analogue in high energy
physics, being only present in condensed matter systems where the symmetries are
lowered with respect to vacuum. We will present our work on CoS2, a ferromagnetic
metal in which we found Weyl nodes and Fermi arcs, as well as a magnetic 4-fold
fermion. We also found Nodal lines, the 1-dimensional generalization of crossings,
that also have protected surface states. As aforementioned, the lack of symmetries
has implications in topology too. We explore this issue by studying the response of
a chiral magnet to time dependent strain. We find a new, purely 3-dimensional Hall
viscosity, which gives rise to a dissipationless force. This viscosity has implications in
the phonon spectrum of magnetic materials in tetrahedral point group, such as the
family of Mn3IrSi chiral magnets.

This thesis is focused on the role of symmetries in topological materials. It is di-
vided in six chapters. In the first chapter, we review basic aspects of electronic band
theory and topology. In the second chapter, we describe the recently introduced for-
malism of Topological Quantum Chemistry (TQC), [41] that generalizes the relation
between topology and crystal symmetry. We use it to solve the well known exam-
ple of graphene. We apply the described method of TQC and symmetry indicators
to PbTe in the third chapter, a material that was predicted to host Dirac fermions
in an anti-phase boundary in 1986, which translates to a mirror Chern insulator in
modern terms. Next we study the role of TRS breaking in our recent discovery of
Weyl nodes and Nodal lines on ferromagnetic pyrite CoS2 in chapter four. We also
found surface drumhead states and Fermi arcs. At the end of the chapter, we show
the results of the collaboration with the experimental team that found the Fermi arcs
using ARPES. In the last chapter, we show the effect that strain has on a topological
chiral metal. Apart from breaking crystal symmetries and TRS, we find a novel,
non-dissipative viscosity coefficient in 3D, the first pure 3D Hall viscosity. We also
compute its numeric value on a toy model, as a proxy for chiral magnetic metals.
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Finally, we summarize the main results of this thesis and the future work.



Chapter 1

Fundamentals of Topological Band
Theory

1.1 Fundamentals of Electronic Band Theory

To study the macroscopical properties of solids from first principles (ab initio), we
solve the microscopic Schrödinger equation of the crystal. As a first approach, we can
think of solids as being formed by small units of repetition, where the relevant unit
of measure is Angstrom, with atoms sitting inside. This unit cell is then repeated
many1 times in 1, 2 or 3 dimensions. Looking away from the boundaries, in the bulk,
there is translational symmetry, which we will exploit to simplify the problem. If we
focus on the bulk region, we have a system that can be solved; the nuclei of the atoms
will create a periodic Coulomb potential in which we will insert electrons. We can
then write the Hamiltonian of the system:

H =−
Nn∑
i

~2

2Mi

∇2
Ri
−

Ne∑
i

~2

2me

∇2
ri

+
∑
i 6=j

ZiZj
|Ri −Rj|

−
∑
i 6=j

Zi
|Ri − rj|

+
∑
i 6=j

1

|ri − rj|
+ VSOC + VF( ~B, ~E...)

(1.1)

where Nn, Ne represent the number of nuclei and electrons. The first two terms cor-
respond to the kinetic energy of nuclei and electrons, while the next three represent
the Coulomb interaction between nuclei, electron-nuclei and electron-electron respec-
tively. VSOC , represents the Spin-Orbit Coupling, a relativistic effect that will have

1Macroscopic systems are formed by ∼ 1023 unit cells
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important consequences. The last term, VF , represents different external fields (mag-
netic, electric) and internal ones, such as spin polarization (intrinsic magnetization).
This last term will be very important in the particular physics of magnets as we will
see later on.

In a system with Ne electrons and Nn nuclei in 3D, we will have 3(Ne+Nn) degrees
of freedom, which for real materials is an untractable big number. As a consequence,
we need to make approximations to solve the problem. The first simplification one can
apply is the Born-Oppenheimer approximation [42], in which we assume that the nu-
clei and electron description can be separated. This follows from the big difference in
mass between nuclei and electrons. We thus neglect the many-body nature of the first
two Coulomb terms, namely Vnn =

∑
i 6=j

ZiZj
|Ri−Rj | and Vne = −

∑
i 6=j

Zi
|Ri−rj | . It is also

standard to work in the limit of lowest temperature, T → 0, named frozen nuclei ap-
proximation. Considering these two approximations, Vnn reduces to a constant while
Vne can be treated as a background (periodic) Coulomb potential. These approxima-
tions allows for a decoupling of the degrees of freedom Ψ(Ri, rj, t) = ψ({Ri}, t)φ({rj}).
VSOC and VF are not many-body terms, so the we will now focus our attention on the
Vee =

∑
i 6=j

1
|ri−rj | term.

The assumptions we made so far have been based on the real physical problem;
nuclei are really close to their equilibrium position (when cold) and they are much
heavier than electrons, so they move much slower. If we want to transform Vee
to a one-body operator, though, we will have to make further assumptions. The
most straightforward way to tackle this is to do a mean-field approximation. In this
scenario, we treat the interaction between electrons as if there was a background
effective potential created by Ne−1 electrons in which the remaining electron moves.

We can now rewrite the Hamiltonian of a single particle as follows:

H1p =
1

2m
∇2
r + Veff(r) + VSOC + VF (1.2)

where Vnn and Vne have been absorbed in Veff, as well as the approximated Vee. Notice
that we dropped the subindex ‘e’ from the mass in the kinetic term; we are dealing
with an effective theory now, so the particles that are described this way aren’t
electrons anymore. We will see that in some cases the theory is successful enough
to make the parallelism between these quasiparticles and real electrons. We have
now reduced the many-body problem to many one body problems, which consists on
solving the following eigensystem:

H1p |ϕi〉 = Ei |ϕi〉 . (1.3)

If we neglect the VSOC term, wavefunctions ϕi(r) = 〈r|ϕi〉 are scalar functions.
However, the addition of VSOC makes it necessary to introduce spinors, vectors of
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2-components in the spin Hilbert space, (ϕi(r), χi(r))T . This way, all terms other
than VSOC act the same on both spins (proportional to the identity Pauli matrix in
spin space, σ0), while VSOC ∝ σ · (∇Veff(r))× p manifestly mixes spins.

1.2 Periodic Crystal Potential and Bloch theorem

We have greatly reduced the difficulty of solving our problem, but we have done it so
far in a very general way. We will now exploit the translational symmetry crystals to
find general results.

1.2.1 Crystal lattice: Real and Reciprocal Spaces

Crystals are formed by a periodic repetition of identical unit cells in 3 space direction.
Then, Rn labels the position of all each unit cell. The Rn points form a lattice, which
can be described by means of some basis vectors, ai, in the following way2:

Rn = n1a1 + n2a2 + n3a3 (1.4)

where ai are 3 vectors that serve as a basis for the lattice (not all co-planar) and ni
are integer numbers. The set of all R vectors (n1, n2, n3) is defined as Bravais lattice.

When dealing with periodic lattices, the standard way to exploit translational
symmetry is by means of Fourier analysis, working on reciprocal space. Then, the
periodicity of the lattice in real space transforms into periodicity in reciprocal space.
The basis vectors of this reciprocal lattice (bj) are defined through real space lattice
vectors as

ai · bj = 2πδij (1.5)

where δij is Kronecker’s delta, which is 1 when i = j and 0 otherwise. In 3 space
dimensions, the standard way to define the bj basis vectors is the following:

b1 = 2π
a2× a3

a1 · a2× a3

b2 = 2π
a3× a1

a1 · a2× a3

b3 = 2π
a1× a2

a1 · a2× a3

.

(1.6)

Thus, the reciprocal lattice is defined as

2In 3 space dimensions.
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Gm = m1b1 +m2b2 +m3b3. (1.7)

From Fourier analysis we know that we can always express real space periodic
functions as reciprocal space periodic functions via the relation:

f(r + R) = f(r) → f(r) =
∑
G

eiG·rf̂(G). (1.8)

Then, we can apply it to the space-dependent functions relevant to our problem;
the Hamiltonian and its eigenvectors.

1.2.2 Bloch Theorem

Even though the effective potential can have a complicated structure, it follows from
the periodicity of the system that it must display the same translational symmetry.
Let’s forget for the time being about the external field term VF

3 so that the only
remaining potential is the Coulomb potential created by the ions, which must have
the same periodicity as the lattice. Let’s start by reviewing the properties of the
translation operator.

We define the translation operator T̂ as the one that has the following action on
a space-dependent function:

T̂ (R)f(r) = f(r + R). (1.9)

Notice that it doesn’t matter the order in which translations are applied, since

T̂RT̂R′f(r) = T̂Rf(r + R′) = f(r + R′ + R) =

= f(r + R + R′) = T̂R′f(r + R) = T̂R′T̂Rf(r)
(1.10)

so the composition of translations is commutative. If translations form a group, we
can apply the group theory to simplify the underlaying problem. We will now check
if the translation operator also satisfies the properties of a group:

� Identity

T̂0f(r) = f(r + 0) = f(r), (1.11)

so T̂0 leaves f invariant and, thus, is the identity element.

3We will include it later, without lose of generality.
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� Inverse

T̂−RT̂Rf(r) = T̂−Rf(r + R) = f(r + R−R) = f(r), (1.12)

so T̂−R is the inverse element for each T̂R.

� Associative

T̂R

(
T̂R′T̂R′′f(r)

)
= f(r + R + R′ + R′′) =

(
T̂RT̂R′

)
T̂R′′f(r) (1.13)

� Closed

T̂RT̂R′ = T̂R′′ , (1.14)

with R′′ = R + R′ also a Bravais lattice vector.

This operation satisfies all properties of a group, plus commutativity, so that trans-
lations form an Abelian group. In group theory, these groups have the special property
that all of its irreducible representations are 1 dimensional. Thus, we can assign a
1x1 matrix to each translation such that these matrices (or matrix representations,
matrix representatives) satisfy the algebra of the group.

From group theory, we know that the representation for such groups are complex
exponentials [43]. Let’s define our representation as

ρk(T̂R) = eik·R. (1.15)

where k is a vector that, for the moment, labels the different irreducible representa-
tions of the translation group. It is straightforward to see that this representation
complies with all the requirements aforementioned. Let us now apply these group
theory tools to our problem.

Since the Hamiltonian H1p is periodic, we conclude that

T̂R (H1p(r)Ψ(r)) = H1p(r + R)Ψ(r + R) = H1p(r)Ψ(r + R) = H1p(r)T̂RΨ(r), (1.16)

so that [T̂R, H] = 0. Thus, we can diagonalize at the same time the translation
and Hamiltonian operators. In the group theory, this implies the eigenstates of the
Hamiltonian will transform under the irreducible representations of the translation
group. Then, if Ψk(r) is an eigenstate of the Hamiltonian, under translation operator
the eigenstate will transform according to an irreducible representation ρk of the
translation group:

T̂RΨk(r) = Ψk(r + R) = ρk
(
T̂R

)
Ψk(r) = eik·RΨk(r) (1.17)
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which is the definition of Bloch’s theorem from a group theory perspective. Follow-
ing this result, we can further decompose the eigenstate of the Hamiltonian in the
following form

Ψk(r) = eik·ruk(r), with uk(r + R) = uk(r), (1.18)

whith Ψk(r) being the Bloch wavefunction.

We will now apply periodic boundary conditions4 in the direction of the lattice
vectors:

Ψk(r +Niai) = Ψk(r). (1.19)

where Ni is the number of unit cells in the ith direction.

Following previous derivations, we get:

Ψk(r +Niai) = eik·(r+Niai)uk(r +Niai) = eik·(r+Niai)uk(r) = eik·ruk(r) = Ψk(r).
(1.20)

If we write k =
∑

i xibi, then:

eik·(Niai) = 1, → ei(xjbj)·(Niai) = e2πiNixjδij = e2πiNixi = 1. (1.21)

From here we extract that the only allowed values for k are xi = m
Ni

, with m an

integer number in {0, Ni−1}5. Notice that there are exactly as many different values
of k as there are unit cells in real space N1N2N3, so we haven’t lost any information
in the process. All values of k lie within the cell created by reciprocal basis vectors
which is called First Brillouin Zone (FBZ or BZ when the context is clear), and it
will be of great importance through the work, since all bulk properties come from the
information that we can extract from this region6.

So far we have showed that the vector k can be used to label states that diagonalize
simultaneously both the Hamiltonian and translation operator, but we haven’t given
any physical interpretation. If we compute the expected value of momentum operator
−i~∇ on a Bloch wavefunction, we get

− i~∇Ψk(r) = −i~∇eik·ruk(r) = ~kΨ(r) + eik·r∇uk(r). (1.22)

4This is the standard way to describe bulk periodic systems, we will have to revisit the point
when discussing finite systems.

5Notice that the case where m = Ni is the same as the m = 0 case.
6The rest of Brillouin zones are copies of the first, due to periodicity, that’s why we only study

the first one.
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We can see here that the vector k behaves in the same way as the wavevector of
wavefunctions, so that the ~k term seems to be the linear momentum of a wavefunc-
tion. However, there is an extra term, eik·r∇uk(r), which does not vanish and breaks
the analogy. The standard procedure is then to interpret it as the electron crystal
momentum.

Taking into account all this, we can rewrite the Hamiltonian eigenproblem in the
new basis to find [

~2

2m
(−i∇+ k)2 + Veff(r)

]
uk(r) = Ekuk(r) (1.23)

where VSOC is included inside Veff.

When we solve the eigensystem, the resulting energies come in packages; densely
populated groups of energies that are split between themselves by a finite amount.
Each level has a finite width in energy and is called a band [44]. Although a good
visualization of the energy states, this gives us very limited information on the system.
We can choose, however, to plot the energy bands as a function of momentum. This
gives further information that, as we will see later, will be of crucial importance in
terms of symmetry and, in general, in terms of topology.

1.3 Computing Methods

In this section we will review the two main methods employed in this thesis to solve
the electronic structure of materials: Density Functional Theory (DFT) and tight
binding (TB) method.

1.3.1 Density Functional Theory

Simplifying the many-body problem Hamiltonian to a single particle picture has been
a drastic approximation, especially the mean-field treatment of Vee. However, in 1964,
Hohenberg and Kohn [45] proved that the exact energy E of the ground state system
can be written as a functional of the exact electron density n, E[n]. The power of
this result is that the electron density doesn’t understand about many-body or single-
body physics; Kohn and Sham then proposed [46] that we can choose a single-body
problem that has the exact same density as the many-body one and get the exact
energy.

The only thing left to find is the auxiliary system that mimics the properties of
the real many-body system. However Hohenberg and Kohn only proved that such
functional exists, not its actual functional form. The exact Hamiltonian reads
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H = T + Vee = T + VH + Vxc, (1.24)

with T = −
∑Ne

i
~2

2me
∇2
ri

describing the kinetic term, VH = e2

2

∫
drdr′ n(r)n(r′)

|r−r′| the
Hartree term and the last term, the exchange correlation functional, which is the
exact term minus the Hartree one, Vee − VH.

We can then write the expected value of the ground state energy as a functional
of the electron density. If we denote by φi the occupied states (and n =

∑
i φ
∗
iφi),

then the energy functional takes the following form:

E[n] =
∑
i

∫
drφ∗i

(
− ~2

2me

∇2

)
φi +

e2

2

∫
drdr′

n(r)n(r′)

|r− r′|
+ Exc[n]. (1.25)

Following the Kohn Sham scheme mentioned earlier, we can rewrite the equations
in terms of an effective potential, veff, that encodes all the interactions:

veff = e2

∫
dr′

n(r′)

|r− r′|
+
δExc[n]

δn
. (1.26)

From here we get the Kohn-Sham equations,(
− ~2

2me

∇2 + veff[n0]

)
φi = εiφi. (1.27)

Thus, the many-body problem has been reduced to a 1-body problem that has
the same exact electron density and ground state energy. There are several approx-
imation schemes one can use that perform well at describing real materials though.
Local (Spin) Density Approximation (L(S)DA) [46], which uses the exact exchange
correlation term for the free electron gas, has succeeded in predicting the electronic
properties of materials where electrons are mostly free, such as graphene, with very
delocalized electrons coming from carbon pz orbitals. The General Gradient Approx-
imation (GGA) [47] and its generalizations (MBJ) [48] have succeeded in accurately
predicting the value of the gap for several insulators. As we will see explicitly in the
case of PbTe, the correct prediction of the gap can drastically change the properties
of a material, especially the topological ones.

DFT is the standard method to compute electronic structures of materials. There
is a numerical algorithmic procedure that, starting from an initial guess, finally con-
verges in an iterative way. In what follows, we describe the procedure of numerically
solving the equations.

� We start with an initial guess for the electron density, n0. There are many
schemes to choose the first electron density, such as a random combination of
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atomic orbitals or the most common one in electronic bandstructure codes (such
as VASP), which is based on a superposition of spheric atomic densities.

� Then, we choose the Exc and construct the effective potential veff[n].

� We now solve the Kohn Sham equation (see Eq. 1.27) and find the eigenstates
φ1
i .

� From these eigenstates, we construct the new electronic density, n1 =
∑

i φ
1∗
i φ

1
i .

� We now compare n0 and n1. If the difference is below a certain threshold, then
we decide that the process converged and we take n1 as the electronic density
solution. In case this condiciton is not satisfied, we will go to the second step
and solve the Kohn-Sham equation again until it converges.

Throughout this thesis, we will mainly use the Vienna ab initio simulation package
(VASP) [49–52] and Quantum Espresso (QE) [53–55].

Before finishing this part, we will introduce a technique that is widely used as a
simplification for faster convergence, the Pseudopotential approximation. Since the
main properties of solids stem from the states close to the Fermi level, it is safe to
integrate out the electrons that are very low in energy, the core electrons. Then,
we consider the core electrons to be frozen, and we neglect them. We are left with
valence electrons then. The ab initio codes we use in this thesis are plane-wave based;
they expand the Kohn-Sham orbitals in terms of planes waves with a fixed cutoff
energy. When considering valence electrons, they are from high atomic levels, so they
oscillate rapidly near the origin (this is in order to satisfy the orthogonality relations
of atomic orbitals). These functions are numerically expensive to represent in terms
of plane-waves, due to the large cutoff required. Then, by using pseudopotentials we
can regularize the highly oscillating functions near the origin while keeping it exact
beyond some specific distance called the cutoff radius.

The effectiveness of the pseudopotentials is also affected by the surrounding crys-
tal structure, thus there is no a unique choice of pseudopotential that works for a
particular atom in all situations, and we must be careful to check different ones and
compare the results.

1.3.2 Tight Binding

Other than ab initio methods, we can also think of other ways to get energy bands that
reproduce key properties of the systems we want to study at a qualitative level. This
proves to be a good approach for topological phases, which are equivalent to simpler
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systems if they are adiabatically connected7. This is the reason why the tight binding
method is extensively used throughout all topology literature as an easy method to
visualize complex topological non-trivial systems. In this section, we review the main
aspects of the method.

First, we assume that atoms have a finite set of orbitals sitting at the atomic
positions that are mainly decoupled from the orbitals in other sites (atomic insulator
limit) and we start considering all possible tunnelings between neighboring sites. Let
us analyze the case where we have no atomic orbitals per atom, and ns atomic sites
per unit cell. For simplicity of notation, we denote by n the tuple (no, ns), which
labels all states inside a unit cell.

At first glance, a sensible choice of basis for the crystal would be to consider
N1N2N3n atomic orbitals sitting at the different unit cells of the crystal, φnR(r) =
φn(r − R) (due to periodicity). However, the basis functions are not eigenstates of
the translation operator or the Hamiltonian. This can be solved by constructing
Bloch wavefunctions out of these localized orbitals in the following way:

Φn
k(r) =

∑
R

eik·(R+rn)φn(r− (R + rn)) = 〈r|nk〉 (1.28)

where rn denotes the position of the orbital with respect to the origin of the cell. In
what follows, as introduced in the last step, we will use Dirac notation. We can now
express the tight binding Hamiltonian as a n×n, k-dependent matrix in the following
way

HTB(k)mn = 〈mk|H |nk〉 (1.29)

Notice that we haven’t lost any degree of freedom. We went from a Hamiltonian,
which in the basis of localized functions was a N1N2N3n × N1N2N3n matrix to a k
dependent (N1N2N3 k values) n×n matrix. As you can see, the problem just became
more easily treatable. We will see examples of tight binding models in following
sections and chapters.

1.4 Wannier functions

So far, to solve the problem we have exploited translational symmetry in reciprocal
space rather than in real space. In that case, we got a basis of Bloch wavefunctions
Ψn(k) that are eigenstates of the Hamiltonian both with definite energy En(k) and

7Two systems are topologically equivalent if it can be found an adiabatic deformation that turns
one into the other. In the context of topological insulators, preserving the gap is standardly what is
referred to as adiabatic deformation.
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crystal momentum k. These wavefunctions, however, are poorly localized in real
space (they are plane waves). So we can try to find another basis that describes the
same physics, but that is localized in real space. As we will see later, this basis will
have important prediction capabilities for topological phases.

The standard way to construct a basis in real space out of a basis on recipro-
cal space is to Fourier antitransform (the opposite way we did when defining Bloch
wavefunctions for the tight binding basis):

|Rn〉 =

∫
dke−ik·R |kn〉 . (1.30)

As we can infer from Eq. 1.30, after the transformation we will have a basis of
functions such that we get n functions per real space unit cell R.

An important property of Wannier functions is that they are not unique. Wave-
functions are defined up to a phase factor eiθ, which does not change the energies.
This is the definition of a gauge symmetry, which we can exploit. In the particular
case of m occupied bands, we can apply any U(n) unitary transformation to Ψm(k),
at any k, such that the energy spectrum of the m bands remains unchanged. This
gauge choice translates into a different set of Wannier functions that will have different
properties, in particular, with respect to localization. Then, the accurate definition
of Wannier functions would be:

|Rn〉 =

∫
dke−ik·RUnm(k) |km〉 , (1.31)

where Unm(k) is a unitary n× n matrix, that can be written as a function of k.
It is known from Fourier analysis that a necessary condition for a function to be

localized in real space is that the function has to be smooth in reciprocal space. In
fact, the smoother the function in reciprocal space, the more localized it will be in
real space. This is how we can exploit the gauge symmetry. Through a procedure
nowadays named as “Wannierization” [56], we can choose the Unm(k) matrices to
make the Bloch wavefunctions as smooth as possible, making the Wannier functions,
thus, maximally localized8.

Throughout this thesis, we will make use of the Wannierization procedure to con-
struct maximally localized Wannier functions out of Bloch wavefunctions, to then
obtain an effective TB model that reproduces the electronic properties the systems.
Even though ab initio calculations are computationally expensive, from a coarse
grained grid of k-points in the Brillouin zone we can interpolate the Hamiltonian
to a finer grid through the Wannierization process as follows.

8In this context, maximally localized implies that the tail of the Wannier functions has to decay
exponentially with the distance, instead of polynomially.



Chapter 1. Fundamentals of Topological Band Theory 18

Once obtained the |Rn〉 Wannier functions out of the |kn〉 Bloch wavefunctions,
we can construct Bloch wavefunctions out of those Wannier functions again,

|kn〉 =
∑
R

eik·R |Rn〉 , (1.32)

and write the interpolated Hamiltonian in the Wannier basis:

HW
nm(k) = 〈kn|H |km〉 =

∑
R

eik·R 〈0n|H |Rm〉 , (1.33)

where there are as many R terms as k-points in the original ab initio calculation. This
is however computationally inexpensive, and, given that the Wannierization process
is accurate, will give us the possibility to explore the electronic bands in very fine
meshes of momentum space.

To end the section, it is important to mention that there is an intermediate step
between Bloch wavefunctions and Wannier functions. We can define the so called
Hybrid Wannier functions; wavefunctions that are localized on one direction but still
Bloch wavefunctions in the other directions:

∣∣R‖k⊥n〉 =

∫
dk‖e

−ik‖·R‖
∣∣k‖,k⊥n〉 . (1.34)

These functions are called Hybrid Wannier functions and will have an important
role in diagnosing topology.

1.5 Topology: Zak phase, Chern number and Wil-

son loop

In periodic systems that can be described by the previosuly introduced machinery,
there is a special quantity one can compute that is related to topology: the Zak
phase9. In the following section, we will derive the main results regarding Zak phase
and its generalizations, the Wilson Loops.

Let us start with the simplest case; a system that is periodic on 1 direction and has
1 band. Then, the eigenstates of the system can be denoted by the crystal momentum
k (not a vector, but a number). We define the Berry connection as

9For the sake of clarity, we will keep the name of Zak phase during the whole section. In the
topological physics field, however, it is customary to interchange Zak’s and Berry’s name when
referring to this and related quantities. That is why in following chapters we will refer to these
quantities as Berry phase.
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A(k) = i 〈k| d
dk
|k〉 . (1.35)

Notice that this quantity is not a gauge invariant quantity. In fact, if we change
|k〉 → eiθ(k) |k〉, we get that the Berry connection changes by a total derivative,
A(k)→ A(k) + dθ

dk
, which means that it is gauge covariant. However, if we integrate

it along the whole BZ ∫ 2π

0

dkA(k) = φ. (1.36)

we get a gauge invariant quantity φ which is known as Berry phase, or Zak phase
in the context of band theory. Because it is gauge invariant, this quantity can have
physically measurable consequences.

Actually, in 1D systems, φ is related to the expected value for the position of
the Wannier function of the band in real space, in other words, the center of charge.
Notice that the operator inside the bracket is the definition of the position operator
in momentum space (with a missing 2π factor). Then, the relationship between Zak
phase and Wannier Charge Center (WCC) is the following

x0 =
φ

2π
. (1.37)

There is a huge variety of Wannier functions that we can construct depending on
the gauge we choose. All of them, though, share the same center, since the Zak phase
is gauge invariant. Then, if we can relate physical properties to the WCCs, we won’t
need to go through the whole computation of Wannier functions. As we will see in
following sections/chapters, the WCCs are intimately related to the topology of the
bands.

The values of this phase can be constrained by symmetries. As an example, if
we have a symmetry that takes k to −k (inversion, mirror, C2...), it will take φ to
−φ. Since the phase φ is only defined modulo 2π, this symmetry forces the Berry
phase to be either 0 or π. This particular result will be useful when we study the
Su-Schrieffer-Heeger model and Nodal line semimetals.

The Berry connection can be easily generalized to a set of more bands, realizing
the so called Non-Abelian Berry connection

Amn(k) = i 〈mk| d
dk
|nk〉 , (1.38)

and non-abelian Zak phases,

φmn =
1

2π

∫ 2π

0

dkAmn(k), (1.39)
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which are the eigenvalues of the φmn matrix.
We can also generalize it to the case of greater dimension and construct another

important object for topology: the Berry curvature. In 2D, starting as before, we can
construct the non-Abelian Berry connection:

Amn(k) = i 〈mk|∇k |nk〉 . (1.40)

We can also define a Zak phase with the path of integration being any closed loop
in the 2D BZ:

φmn =
1

2π

∮
δS

dk ·Amn(k). (1.41)

Applying Stokes’ theorem:

φmn =
1

2π

∮
dk ·Amn(k) =

1

2π

∫
S

dS∇k×Amn(k). (1.42)

We translated the computation of the phase along the line to the computation
of the flux of ∇k ×Amn(k) to the enclosing surface S. This tensor is called Berry
curvature:

Ωmn(k) =∇k×Amn(k). (1.43)

One interesting calculation would be to compute the Zak phase by integrating the
Berry curvature on the whole 2D BZ. For the case of one band we have:

φ =
1

2π

∫
S

dS Ω(k) = 2πC, (1.44)

where C is a well known quantity in topology; the first Chern number. If we generalize
it to multiple bands it will read:

C =
1

2π
Tr

(∫
S

dS Ωmn(k)

)
. (1.45)

Since the 2D BZ has no boundary (it is a 2-Torus), applying Stokes’ theorem the
other way round, the Berry phase vanishes as the boundary vanishes. This would
mean that the Berry phase of all 2D periodic systems had to vanish, which we know
not to be true (Topological Insulators). The problem, then, has to lie in the applica-
bility of Stokes’ theorem. In other words, a non-zero Chern number is an obstruction
to apply Stokes’ theorem, which cannot be applied if we cannot build a smooth gauge
in the whole region of integration, in this case, the BZ. So the Chern number is an
obstruction to find a smooth gauge on the 2D BZ.
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In terms of Wannier functions, this has a very interesting consequence; in order to
find maximally localized Wannier functions it is necessary to find a smooth gauge in
the whole BZ. Then, since having a non-zero Chern number forbids the construction
of such gauge, having a non-zero Chern number is an obstruction to find maximally
localized Wannier functions. This is the first example of how topology obstructs the
construction of maximally localized Wannier functions, and why the Wannier function
formalism is useful to diagnose topology, as we will see later in the description of the
theory of Topological Quantum Chemistry [41].

Apart from computing the Chern number by integrating the Berry curvature to
the whole BZ, we can compute the Wilson Loops, which are computationally more
efficient and have a close relation to the bulk-boundary correspondence of Topological
Insulators. In this context, we can define the Wilson loop as the calculation of Zak
phases integrating on one momentum direction as a function of the other momentum
direction:

φ1(k2) =
1

2π

∫ 2π

0

dk1A1(k1, k2). (1.46)

As it shown in Fig. 1.1 (a), starting from k0
1 point, we compute the Berry phase

integrating on k2. We then plot the resulting phases as a function of momentum k1.
Notice that the spectrum of the Zak phase φ is periodic both in φ (because phases
are only defined mod 2π) and k1 (the BZ is periodic in both k1 and k2). Then, we can
have two qualitatively different plots, as shown in Figs. 1.1 (b-c). In Fig. 1.1 (b), the
phase φ always stays close to 0. We can adiabatically deform that path to be always
exactly at 0. As we argued in Sec. 1.4, the Berry phase is related to the expected
value of the center of Wannier functions. If we only localize on one direction (as in
this case, integrating only on k2), we get Hybrid Wannier Charge Centers (HWCCs).
Then, a flat Wilson Loop spectrum (φ1(k2) = 0) translates into a Hybrid Wannier
function being located at the origin for every value of k1.

On Fig. 1.1 (c) we have a qualitatively different case. Now we cannot deform
the Wilson loop spectrum to be exactly at 0. Starting at the origin, as k1 varies, it
moves from the origin of one unit cell to the origin of the next one. Thus, when trying
to compute the center of the Wannier function on the other direction (k1) we would
meet an obstruction. Indeed, as k1 goes over a whole cycle, the Zak phase changes
an integer number of times 2π, one in this case. This is another way to compute the
Chern number; the winding of the HWCCs is the Chern number. Connecting with
the definition of Chern number, the winding of HWCCs represents an obstruction to
computing maximally localized Wannier functions.

This can be generalized to the multiband case. We can plot the partial phases,
i.e., the eigenvalues of the phase matrix in Eq. 1.41 to see the partial windings, with
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Figure 1.1: Wilson loop in the case of a single band. (a) Zak phase integration in
the k2 direction, as a function of k0

1. (b) and (c) Wilson Loop calculation. (b) Chern
number C = 0 Wilson Loop. (c) Chern number C = 1 Wilson loop.

the net Chern number being the sum of all partial phases, i.e., the trace of the Zak
phase matrix.

In the next section we will see examples of how these quantities are computed in
real models and the consequences on the surface spectrum.

1.6 Su-Schrieffer-Heeger model

In this section we will solve the Su-Schrieffer–Heeger (SSH) model, the simplest model
with edge states in 1D. We start by defining the system as shown in Fig. 1.2. The
lattice is formed by two s orbitals placed at the 2c Wyckoff position, in the coordinates
−x and x, which we denote as sites A and B, and the orbitals at the nth unit cell
as |nA〉 and |nB〉. We choose a = 1 for simplicity. Then, following the tight binding
procedure described in Sec. 1.3.2 we construct the basis of Bloch wavefunctions:

|kA〉 =
1√
N

∑
n

e−ik(n−x) |nA〉

|kB〉 =
1√
N

∑
n

e−ik(n+x) |nB〉 ,
(1.47)

with N the number of unit cells.

Setting the on-site energies to 0, the only energetic terms are the nearest neighbors
(NN) hopings t and t′, which are defined as:
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Figure 1.2: Crystal structure of the SSH model. Solid points represent orbital posi-
tions and solid lines represent tight binding hopping parameters. Red points represent
the location of inversion symmetry centers.

〈nA|H |mB〉 = tδn,m + t′δn+1,m. (1.48)

The hopping t will be referred to as intracell hopping (connects two sites in the
same unit cell) and t′ as intercell hopping (connects sites at two different unit cells).
The Hamiltonian in reciprocal space then will be off-diagonal, with components

〈kA|H |kB〉 =
1

N

∑
n,m

eik(n−x)e−ik(m+x) 〈nA|H |mB〉 =

1

N

∑
n,m

eik(n−m−2x)(tδn,m + t′δn+1,m) =
1

N

∑
n

t+ t′e−ik(2x+1) = t+ t′e−ik(2x+1),
(1.49)

so, the resulting Hamiltonian in momentum space reads

H(k) =

(
0 t+ t′e−ik(2x+1)

t+ t′eik(2x+1) 0

)
. (1.50)

We now diagonalize it following standard methods and we obtain the eigenvalues

E±(k) = ±
√
t2 + t′2 + 2tt′ cos(k), (1.51)

and eigenvectors

|k±〉 =
1√
2

(
e−ikx,

t+ t′eik(1+x)

E±

)
. (1.52)

The spectrum becomes gapless at k = 1
2

for t = t′. We will now study analytically
two limits; t′ = 0 and t = 0.

In the case of t′ = 0, the eigenvalues and eigenstates become
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Figure 1.3: Limit cases of the SSH model. (a) Trivial case. The crystal becomes a
succession of isolated dimers. (b) Non-trivial case. The dimers connect neighboring
cells, so there will be an edge state when making the model finite. Notice that a
redefinition of the origin would reverse the definition of trivial and non-trivial.

E± = t

|k±〉 =
1√
2

(
e−ikx,±eikx

)
.

(1.53)

Considering the system at half-filling (one occupied band), we compute the Zak
phase as described in Sec. 1.5

φ = i

∫ 2π

0

dk 〈k−|
d

dk
|k−〉 = i

∫ 2π

0

dk(−ix+ ix) = 0. (1.54)

Remember that the Zak phase in 1D was equivalent to the center of charge of the
Wannier function. This implies that, in this case, the center of the charge would be
in the bond of the dimer depicted in Fig. 1.3 (a), which coincides with an inversion
symmetry center and is the origin of the unit cell. This was the physically expected
result. If we cut the model following the unit cell definition of Fig. 1.2, there would
not be edge states, since all orbitals would be dimerized.

In the case of t = 0, the eigenvalues and eigenstates become

E± = t′

|k±〉 =
1√
2

(
e−ikx,±eik(x+1)

)
.

(1.55)

Considering the system at half-filling as before, we compute the Zak phase

φ = −i
∫ 2π

0

dk 〈k−|
d

dk
|k−〉 =

−i
2

∫ 2π

0

dk(i(−x+ x+ 1)) = π. (1.56)

In this case, the Wannier charge center is located at the other inversion center,
the one in the boundary of the unit cell. Now, if we construct a finite version of the
system (following the same definition of the unit cell), then we will cut the system
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through a Wannier charge center. Thus, in this case the system will have an edge
state in each of the ends of the chain. We could also see it in another way. If the
only hopping is t′, then, when we make the model finite, there will be two orbitals
sitting at the edges, with no tunneling hoppings. Then, the energy of those orbitals
is forced to be 0 (the on-site energies are 0) and they will be localized at the edges.

This edge state is protected by symmetry in the following sense: due to inversion
symmetry (k to −k), the Zak phase is forced to be either 0 or π. Then, if there is a
state located at the boundary in the case where the Zak phase is π, we cannot remove
the state from there unless we break inversion symmetry.

We are then inclined to label these two phases as trivial (t′ = 0) and topological
(t = 0), following that the topological one has a non-trivial Zak phase and edge states.
We can, though, change the origin of the cell from one inversion point to the other
one, as shown in Fig. 1.3. If we were to compute the Zak phases in both cases now,
we would encounter the contrary; t = 0 is the trivial case and t′ = 0 the topological
one. Thus, we cannot say that the surface states are topological. However, they are
inversion symmetry protected once we fix the definition of a unit cell. Then, if we
had an analogous system in a 2D or 3D material, provided that we define the unit
cell in a particular way, we could find surface states that are protected symmetry. As
we will see later on, this is the case of drumhead states in Nodal line semimetals.



Chapter 2

Topological Quantum Chemistry

In general, the relevant electronic transport properties of a crystal stem from the
available electronic states close to the Fermi level. For instance, the metallic behavior
of a system can be described from the size of the gap between valence and conduction
states. In the last decades, thanks to the development of new techniques that can
probe states several electronvolts below the Fermi level, there has been an increased
interest in describing the properties of electronic bands as a whole.

There are several ways in which we can define the concept of band. The standard
way is in terms of energies; we solve the Schrödinger equation as described in Sec.
1.1 to get both eigenstates and eigenvalues. The eigenvalues will form dense packages
that span an energy window. If we label the energies by the corresponding wave
vector k of the Bloch wavefunction, we can define bands as a function that maps k
to energies, En(k), where n is the band index.

Considering the symmetry of the crystal we can define the concept of band in an
different way. Bloch wavefunctions with wavevector k will transform under irreducible
representations of the symmetry group that leaves k invariant. Thus, we can define a
band by a vector containing the irreducible representations of the Bloch wavefunctions
across the BZ. This is the definition of band representation (BR). Note that this is a
global description of the band in reciprocal space and, thus, the Bloch wavefunction
is not a well suited basis to describe it. Instead, it is preferred to describe it in terms
of localized orbitals in real space (Wannier functions). These Wannier functions will
encode the symmetries of the system and span the bands, in an analogous way to
Bloch wavefunctions.

During his research, Zak et al [17–19, 57] developed the formalism of BRs. They
discovered a special class of BRs that could not be further decomposed into smaller
BRs. They named them elementary band presentations (EBR), and they form a
basis for all possible BRs. If we consider time reversal symmetry in addition to the
crystalline symmetries, we can extend the concept of EBR to physical EBR (PEBR).

26
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Later, Zak and Michel examined the connectivity of the (P)EBRs1 and claimed
that all of them were connected [16, 58]. However, it has been recently proven that
this is not the case [41]. In fact, if a (P)EBR happens to be disconnected2, then
at least one of the disconnected sets is not a (P)EBR, and cannot come from a set
of localized orbitals. This is one sufficient condition for a set of bands to have a
topologically non-trivial [13,59–61] gap, which translates into the impossibility to find
maximally localized Wannier functions that respect the symmetries of the system. In
the course of this research, the theory of Topological Quantum Chemistry (TQC) was
developed, which we present in this chapter. This formalism can predict whether a
material in a particular space group (SG) can hold topological band gaps by analyzing
the symmetry of the bands and how atoms are arranged in a lattice.

Before the introduction of TQC, diagnosing the topology of bands was not an easy
task, given the complexity of numerical calculations of topological invariants. In a
hallmark paper by Fu and Kane [7], they found a connection between the Z2 index of
2D TIs and inversion symmetry eigenvalues. It consists on computing the symmetry
eigenvalues of the occupied set of bands. In case there is and odd (even) number of
negative eigenvalues, the bands will also have an odd (even) topological Z2 index.
This is the first example of a symmetry indicator (SI); a symmetry calculation that
diagnoses non-trivial topology. The theory of SIs has been recently generalized by
Song et al in Ref. [15], where they developed explicit formulas that map symmetry
eigenvalues to topological invariants in all non-magnetic SGs. In the same paper,
they also tabulate the relation between the topological invariants and the topological
systems that are characterized by them (such as mirror Chern insulators or higher
order TIs).

The full discussion of TQC, results and applications can be found in a recent
series of papers [12, 13, 41, 62–64], with the very recent addition of magnetic space
groups (MSG) [65]. In this chapter, we introduce the main concepts and results of
the theory by solving two widely known examples, spinless and spinful graphene.
We will try to describe the theory in a self-contained way, thus providing a brief,
practical explanation of the tools and concepts before using them, such as general
group theory and the Bilbao Crystallographic Server [66–69], where all elementary
band representations are tabulated.

The chapter is organized as follows: in Sec. 2.1 we review the basic aspects of the
hexagonal lattice and present our convention. In Sec. 2.2 we compute the symmetry
transformation properties of p orbitals at carbon atom sites of graphene. In Sec. 2.3

1The connectivity represents the number of energy bands that are connected together throughout
the whole BZ and cannot be disconnected without breaking the crystal symmetry. In a more
graphical sense, a set of connected bands is the one that can be drawn without lifting the pencil.

2A set of bands are disconnected if there is a direct gap (not necessarily indirect) in the whole
BZ that breaks them into different sets.
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Figure 2.1: Hexagonal lattice on the 6mm (17) wallpaper group.

we show the procedure of induction of a BR. In Sec. 2.4 we compute the little groups
for the high-symmetry points in the BZ. In Sec. 2.5 we analyze the cases of graphene,
both spinless and spinful. In Sec. 2.6 we analyze the connectivity of the (P)EBRs
induced in graphene. Finally, in Section (2.7) we summarize the main results.

2.1 Hexagonal lattice

In this section we review some basic aspects of the hexagonal lattice and present our
conventions.

Taking as origin the center of the hexagonal tiles, and the x, y axes as shown in
Figure (2.1), the vectors describing the Bravais lattice are:

e1 =

√
3

2
x̂+

1

2
ŷ

e2 =

√
3

2
x̂− 1

2
ŷ,

(2.1)

where we have taken length units such that the norm of the vectors, i.e. the lattice
constant, is 1. The generators of the symmetry (point) group of the lattice are {C3|0},
{C2|0} and {m11̄|0}34. Their effect on the basis vectors is shown in Fig. 2.2.

3Here, by 11̄ we denote the mirror plane which is perpendicular to the direction e1 − e2, in this
case, orthogonal to the y axis

4We could have used {C3|0} as the generator of all the rotations in this group. However, for
reasons that will be clear later, we use a different set of generators.
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Figure 2.2: Action of the symmetry operators on the basis vectors.

C3 : (e1, e2)→ (−e2, e1 − e2)

C2 : (e1, e2)→ (−e1,−e2)

m11̄ : (e1, e2)→ (e2, e1) .

(2.2)

Before proceeding, let’s define some important concepts5:

Definition 1. (Orbit of q). The orbit of q is the set of all positions in the same unit
cell related to q by the elements of the symmetry group G, i.e., Orbq = {gq|g ∈ G}.

Definition 2. (Stabilizer group/Site-symmetry group). The stabilizer group or site-
symmetry group of a position q is the set of symmetry operations g ∈ G that leave
q fixed. It is denoted by Gq = {g|gq = q} ⊂ G. There are two important points to
take into account:

� Gq can include elements {R|~r} with non-zero translations, ~r 6= 0.

� Since any site-symmetry group leaves a point invariant, it is isomorphic to a
crystallographic point group (there are 32 crystallographic point groups).

Definition 3. (Wyckoff position). A Wyckoff position is any position in the unit
cell of the crystal. Besides this general definition, there are special Wyckoff positions,
which are positions that are left invariant by some symmetry operations, such as
mirror planes and rotation axis.

Definition 4. (Maximal Wyckoff position). A Maximal Wyckoff position is a Wyckoff
position whose site-symmetry group is a maximal subgroup of the Point Group of the
crystal. In other words, Maximal Wyckoff positions have the larger site-symmetry
groups out of all positions in the unit cell. They are the maximal symmetric positions.
In real materials, atoms tend to sit in these.

5See Apeendix A for a more complete set of definitions.
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Figure 2.3: Maximal Wyckoff positions for the wallpaper group 17.

Definition 5. (Coset representatives). The coset representatives of a site-symmetry
group can be defined as the set of elements that generate the orbit of a Wyckoff
position.

Now that we have defined the relevant concepts, we can start to analyze the
symmetry of different Wyckoff positions. In what follows, we compute some site-
symmetry groups for special Wyckoff positions (see Fig. 2.3).

� q = (e1 − e2)/2 = ey/2 (blue cross)

{m11|0} : (e1, e2)→ (−e2,−e1)

q =
e1 − e2

2
→ e1 − e2

2
= q

{C2|11̄} : (e1, e2)→ (−e1,−e2) + (e1 − e2)

q =
e1 − e2

2
→ −e1 + e2

2
+ e1 − e2 =

e1 − e2

2
= q.

(2.3)

Thus the generators for the site-symmetry group at q = e1−e2

2
are the following:

{m11|0}, {C2|11̄}, (2.4)
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which generate a group isomorphic to C2v.

� q = (e1 + e2) /3 (green square)

{m11̄|0} : (e1, e2)→ (e2, e1)

q =
(e1 + e2)

3
→ (e1 + e2)

3
= q

{C3|01} : (e1, e2)→ (−e2, e1 − e2) + (e2)

q =
(e1 + e2)

3
→ −e2 + e1 − e2

3
+ e2 =

(e1 + e2)

3
= q.

(2.5)

In this case, the site-symmetry group is isomorphic to C3v
6.

� q = 0 (red dot)

In this case all elements in the point group leave this point invariant, and the
stabilizer group at q = 0 is isomorphic to the point group C6v.

� q = x (e1 + e2) , x ∈ (0, 1
3
) (line connecting the dot and the square)

In this case we consider the line that goes from the origin to one of the vertices
of the hexagon. This set of points is left unchanged by the mirror plane m11̄.
The position q = (x, x) interpolates between the origin and the corner of the
lattice. Note that the element m11̄ is common to the site-symmetry groups of
the origin and the vertex of the hexagon.

2.1.1 Orbits for the different q points

Let’s compute now the orbits of the points we have just discussed. For this, we only
need to consider symmetry operations that do not belong to the site-symmetry group.
However, there is an ambiguity as to which of them to choose, because there are more
than necessary7. The ones we choose are the coset representatives.8

6See Appendix B
7Imagine that our full group has 15 elements and that our site-symmetry group has 5. Then, the

orbit of that point will have 15/5=3 positions, i.e., we need 3 out of the 15-5=10 remaining elements
to generate the orbit. The other 7 elements will generate the same positions in the orbit.

8See Apeendix A for a more formal definition.
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� q = (e1 − e2)/2 = ey/2

Since the site-symmetry group for this point contains as generators the mirror
plane and the C2 axis, we will use the C3 axis to generate the orbit:

{C+
3 |0}(

1

2
,−1

2
) = (−1

2
, 0)

{C−3 |0}(
1

2
,−1

2
) = (0,

1

2
).

(2.6)

So the orbit of q is composed by 3 points. We call these the 3c Wyckoff positions.

� q = (e1 + e2) /3

In this case, the site-symmetry group contains the mirror plane and the C3 axis,
so we need to consider the C2 axis:

{C2|0}(
1

3
,
1

3
) = (−1

3
,−1

3
). (2.7)

These positions are labeled as 2b Wyckoff positions.

� q = 0

Since the site-symmetry group at this point is the whole point group, there are
no other position in its orbit. This position is denoted as 1a.

� q = x (e1 + e2)

The site symmetry group for this set of points contains just the mirror plane,
so any combination of the axes (the C2 and C3 axes) will generate a position
in the orbit. In this case, there will be 6 positions in the orbit, which coincide
with the ones generated by the C6 axis.

The site-symmetry groups at any two points in the orbit of q are conjugate to each
other and, hence, isomorphic9. We are interested in the maximal Wyckoff positions,

9See appendix B
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which are the positions whose site-symmetry group is a maximal subgroup of the full
point group. Thus, as C6v has only 3 maximal subgroups, C6v, C3v, and C2v, the
maximal Wyckoff positions will be the ones whose site-symmetry group is isomorphic
to one of these. As we showed, the site-symmetry groups for the positions 1a, 2b, and
3c are isomorphic to the maximal subgroups of C6v

10. However, the last position for
which we computed the site-symmetry group and the orbit is not a maximal Wyckoff
position since its site-symmetry group is not maximal.

2.1.2 Adding orbitals

To respect crystal symmetry, when we add an orbital at a Wyckoff position, we have
to add the same orbital at all positions in the orbit. These orbitals, once placed
in their positions, will transform under a representation of the site-symmetry group.
Then, if we know the representation under which the orbitals in particular Wyckoff
position transform, we can get the representation of the orbitals in the rest of the
orbit by applying the following procedure.

Let ρq1 be the representation11 under which a set of orbitals in the position q1

transform, h an element of the site-symmetry group Gq1 and gα one of the coset
representatives. Then

hq1 = q1, gαq1 = qα → q1 = g−1
α qα

gαhg
−1
α qα = gαhq1 = gαq1 = qα.

(2.8)

Thus gαhg
−1
α belongs to the site-symmetry group of qα. Then, if we know ρq1 we

also know that ρqα(h) = ρq1(g−1
α hgα)12. This is precisely the definition of conjugate

groups, which proves that the site-symmetry groups of all Wyckoff positions in the
same orbit are conjugate to each other and, thus, isomorphic.

So far, we have been discussing about placing atomic orbitals. However, it is more
accurate to speak of crystal orbitals. Atomic orbitals transform under irreducible rep-
resentations of the full rotation group O(3)13. When placed on a crystal environment,

10One can see the reason behind Wyckoff position naming; the number indicates multiplicity
(number of elements in the orbit) while the letters, in alphabetical order, order the positions form
more symmetric to less.

11A representation assigns a square matrix or operator ρ(g) to each element of the group, in such
a way that when we compose two elements the product of the two matrices is equal to the matrix
assigned to the resulting element, i.e., ρ(g1)ρ(g2) = ρ(g1g2).

12See Appendix C.
13To be precise, the full rotation group would be SO(3), because rotations have determinant 1.

however, this does not cover all crystalline symmetry operations, since we are leaving out both
mirrors, inversion, and combinations of these. If we add these two, i.e., SO(3)⊕ I⊗ SO(3) what we
get is the full 3D symmetry group, O(3).
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the symmetry is reduced and atomic orbitals are not orthogonal anymore. Then, one
must consider crystal orbitals, which transform under irreducible representations of
the site-symmetry group, a subgroup of the full rotation group. In general, these crys-
tal orbitals will be formed by a linear combination of atomic orbitals that transform
in the same way now that we reduced the symmetry group.

Crystal orbitals can be described by a set of Wannier states (highly localized as
explained in Sec. 1.4), one per orbital, that transform under an irreducible represen-
tation of the site-symmetry group [59,60].

2.2 Adding p orbitals at 2b positions

In this section, we will study how p orbitals transform when placed in an environment
with a reduced amount of symmetry. In this case, at Wyckoff 2b position of the space-
group P6mm (the wallpaper group 17).

2.2.1 Spinless p orbitals

Angular momentum l = 1 orbitals or, as the are commonlly known, p orbitals, are
a basis for the 3-dimensional (l = 1) or vector (V) representation of O(3). The site-
symmetry group for Wyckoff 2b is not the whole rotation group O(3) but just one of its
subgroups, namely C3v. Thus, we want to analyze how p orbitals transform under the
point group C3v. Mathematically, we want to express the vector representation of O(3)
in terms of irreducible representations of C3v, a process that is known as subduction.
In mathematical terms, if we denote by V the representation of O(3) under which
p orbitals transform, we want to find the corresponding subduced representation
V ↓ Gq2b ≡ V ↓ C3v (the down arrow represents the operation of subduction).

To determine how the three orbitals px, py and pz transform under the symmetries
of the group C3v we only need to analyze the effect of the generators, since the rest of
the elements can be obtained by matrix multiplication (group element composition).
The action of the generators is shown in Table 2.1.

C3v E C3 m11̄

px px cpx + spy px
py py cpy − spx −py
pz pz pz pz

Table 2.1: Effect of C3v group elements on p orbitals.

where c, s stand for cos(2π
3

), sin(2π
3

). We can now construct the matrices of the
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C3v E C±3 mi

V 3 0 1
ρpz 1 1 1
ρpx,py 2 -1 0
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table 2.2: Table of characters of the group C3v. The first row gives the traces of the
matrices for the vector representation, while the next two correspond to the blocks
formed by pz and px, py. Under the solid line we have written the characters of the
irreps (irreducible representations) of C3v.

representation14:

V (E) =

1 0 0
0 1 0
0 0 1

 , V (m11̄) =

1 0 0
0 −1 0
0 0 1

 , V (C3) =

 cos(2π
3

) sin(2π
3

) 0
−sin(2π

3
) cos(2π

3
) 0

0 0 1

 .

(2.9)
It is important to note that all the symmetry elements of the group, not just

the generators, must appear in the character table. To save space, the elements that
belong to the class are written together, since they the same traces. In this case,
our group has 6 elements (E, C±3 and three mirror planes mi), but there are only
3 different classes. In this case, the three classes correspond to the identity, the C3

rotations and the mirror planes.
Although there is an algorithmic method15 to compute how a group representation

decomposes into irreducible representations (irreps) of one of its subgroups [43], in
this case it is not hard to see by simple inspection that V = A1(pz) +E(px, py). This
is an example where an irreducible representation of O(3) becomes reducible when
restricted to a subgroup, that is, when the symmetry is reduced.

So far, we have been working with single-valued or spinless group representations,
representations of subgroups of O(3). If we want to take spin into account, we have

14These matrices correspond to the basis of px, py, pz. There is another convention where we
change (px, py)→ (px− ipy, px + ipy) so that the vectors in this new basis are eigenstates of Lz and
ρ(C3) becomes diagonal, ρ(C3) = diag(e−2πi/3, e2πi/3, 0)). On this basis the matrix for the mirror

plane is non-diagonal, (ρ(m11̄) =

0 1 0
1 0 0
0 0 1

. The traces are invariant under such transformations,

so the character of the representation stays the same.
15See the explanation around Eq. (2.17) below.
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to extend our methods to the so called ”double-valued” representations. The reason
is that spin transforms under SU(2), which is a different group16.

2.2.2 Spinful p orbitals

We will now focus on pz orbitals with spin up and down, also at the Wyckoff 2b posi-
tion. Angular momentum eigenstates rotate with the unitary operator exp(in · JΩ),
where J is the total angular momentum operator, n is a unit vector in the direction of
the rotation axis and Ω is the rotation angle. Representations of SO(3) correspond to
integer total angular momentum. However, for half-odd angular momentum, a rota-
tion of 2π gives a minus sign instead of the identity. As mentioned earlier, this reflects
the fact that half-odd angular momentum states transform under representations of
SU(2). Following the procedure described in the previous section, we construct the
representation for spin up and down pz orbitals.

For a 2π
3

rotation around the C3 axis in the z direction, we have ei
π
3 for the spin-up

state (sz = 1
2
) and e−i

π
3 for spin down( sz = −1

2
)17. We can write this representation

in a more compact way as ρ(C3) = exp
(
iπ

3
σz
)

where σz is the third Pauli matrix.
We can think of a mirror plane as a π degree rotation around an axis orthogonal to
the mirror plane followed by inversion18. Spin rotates, but inversion has no effect on
it, so, for spin states, a mirror plane is equivalent to a π degree rotation around the
direction orthogonal to the mirror. In this case, the mirror is perpendicular to the y
axis. Thus the representation for the mirror plane is ρ(m11̄) = exp

(
iπ

2
σy
)

= iσy. The
matrices for the generators will then be:

ρ(C3) =

(
ei
π
3 0

0 e−i
π
3

)
, ρ(m11̄) =

(
0 1
−1 0

)
. (2.10)

Now we can write the character of this representation by computing the traces,
and compare them to the irreducible representations of the double-group. Remember
that for double groups a rotation of 2π is equal to minus the identity, so the number
of elements doubles. For each element of the ordinary group we have to include the
result of composing the element with a 2π rotation, namely Ē.

We can see that the representation under which our orbitals transform is an irre-
ducible representation (Γ̄6) of the site-symmetry double-group. The other two spinful
irreps are total angular momentum 3

2
representations. More precisely, the basis for

16In fact, SU(2) is the universal covering of the (proper) rotation group SO(3). Above we argued
that the appropriate group to describe all symmetry operations is O(3), not SO(3). Then, you may
wonder why we consider SO(3) when discussing double-valued representations. Since spin is not
affected by inversion symmetry we can restrict ourselves to SO(3).

17Remember that pz orbitals have Lz = 0
18In this case, as the π degree rotation and inversion commute, we can apply them in any order.
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C3v E C±3 mi Ē C̄±3 m̄i

ρ 2 1 0 -2 -1 0
Γ̄4 1 -1 -i -1 1 i
Γ̄5 1 -1 i -1 1 -i
Γ̄6 2 1 0 -2 -1 0

Table 2.3: Table of characters of the group C3v.

Γ̄5 is
∣∣3

2

〉
+ i
∣∣−3

2

〉
, while the basis for Γ̄4 is

∣∣3
2

〉
− i
∣∣−3

2

〉
, made from px, py spin-

ful orbitals19 [62, 64]. The remaining combinations of px, py spinful orbitals, like pz,
transform under Γ̄6. 20.

We have obtained the representations under which both spinless and spinful pz
orbitals transform under C3v group, which is the site-symmetry group of the Wyckoff
2b position, the sites where carbon atoms lie in graphene. In what follows, we will
compute the band representations induced from these orbitals.

2.3 Inducing a Band Representation

From the Wannier states Wiα(r− tµ)21 we define Fourier transformed Wannier states
(Bloch waves):

aiα(k, r) =
1√
N

∑
µ

eiktµWiα(r− tµ), (2.11)

where tµ are all vectors in the Bravais lattice. We have gone from a n × nq × N
(n positions in the orbit times nq orbitals per site in the orbit times N cells in the
crystal) dimensional basis to a finite n × nq basis for each k. This corresponds to
n×nq bands. These functions are a set of Bloch waves that span bands in reciprocal
space. We want to compute under which irreducible representations transform these
Bloch waves, since that is the basis to induce a Band Representation.

Here is the power of this theory: even if we don’t know the actual form of the
Hamiltonian, if it complies with the symmetries of the crystal, the eigenstates will
transform under a certain representation of the space group, what is called a band
representation [57]. Thus, we do not need to know the very specific energy spectrum

19
∣∣ 3

2

〉
= (|px〉+ i |py〉)⊗ |↑〉,

∣∣− 3
2

〉
= (|px〉 − i |py〉)⊗ |↓〉

20The combinations are (|px〉+ i |py〉)⊗ |↓〉 and (|px〉 − i |py〉)⊗ |↑〉.
21Here, the i index labels the orbital (s, p, d...) while α labels the position on the orbit (1, 2,

3...). The last index is tµ, which labels the cell of the crystal. This way we have labeled all orbitals
in our crystal. We can see here how there is one Wannier function per orbital.
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to make predictions. Predictions that range from crossings at high symmetry k points
or, using the mapping between symmetry and topology, to prediction of topological
phases..

We now proceed to compute aiα(k, r) functions’ transformation properties un-
der any element h of the full group G. We can derive it from Wannier functions’
transformation properties22:

[ρG(h)]jβ,iαWjβ(r− tµ) = [ρ(gβα)]jiWjβ(r−Rtµ − tβα). (2.12)

Then, using Eq. (2.11):

[ρG(h)]jβ,iαajβ(k, r) =
1√
N

∑
µ

eik·tµ [ρG(h)]jβ,iαWjβ(r− tµ)

=
1√
N

∑
µ

eik·tµ [ρ(gβα)]jiWjβ(r−Rtµ − tβα)

=e−iRk·tβα [ρ(gβα)]ji
1√
N

∑
µ

ei(Rk)·( ~Rtµ+tβα)Wjβ(r−Rtµ − tβα)

=e−iRk·tβα [ρ(gβα)]jiajβ(Rk, r),

(2.13)

where gβα = g−1
β {E| − tβα}hgα ∈ Gq

23. For each value of k on the reciprocal space,
this expression tells us how the Bloch waves transform. This is what we call a Band
Representation.

The representation ρG(h) is a (n× nq) dimensional unitary square matrix at each
pair of (k, k′) vectors. The only non-zero blocks are the (k, k′ = Rk), as can be seen
from the above equation, since it relates the a(k) state to the a(Rk) one. This block
can be written as:

[ρkG(h)]jβ,iα = e−iRk·tβα [ρ(g−1
β {E| − tβα}hgα)]ji. (2.14)

2.4 Little groups at k-points in the first BZ

Let’s denote by Gk the little group of a k-point in the reciprocal space. We will
see that the most interesting k-points will be the ones with highest symmetry but,
for the time being, k can have any value in the first BZ. The character of the band
representation is the set of traces of the [ρkG(h)]jβ,iα matrices for each h, i.e.,

22See Appendix C for a complete derivation of the transformation properties of Wannier functions.
23See Appendix C for further details.



39 Iñigo Robredo. Topological Materials from a Symmetry Perspective

χk
G(h) = [ρkG(h)]iα,iα =

∑
α,i

e−iRk·tαα [ρ(g)]ii =
∑
α

e−iRk·tααχk(g−1
α {E| − tαα}hgα).

(2.15)
At a particular k-point, Bloch waves transform under representations of its little

group Gk. If we have the character of the representation under which they transform
at any k-point in the first BZ, we can subduce the full representation, from the full
group G to the little group, Gk

24. Once we do this, we know the small representation
under which Bloch waves transform at each k-point. We can now ask ourselves if
this subduced representation is reducible. In general, it will be reducible, and we
will be able to express our representation as a sum of irreps of the little group25. In
mathematical terms, we want to construct:

(ρ ↑ G) ↓ Gk u
⊕
i

miσ
k
i , (2.16)

where σk
i are irreps of the little group Gk and the mi are the multiplicities of the

representation, i.e., how many times that irrep appears in the decomposition. This
number can be easily obtained using the so called magic formula [43]:

mi =
1

n

∑
h

χ̄i(h)χk(h), (2.17)

where n is the number of elements in the group (order of the group), h are the elements
of the group, the bar indicates complex conjugate, χi denote the characters of the
irrep and χk is the character of the representation we want to decompose. We have
then shown that some properties of the bands are inherited from the way orbitals
transform in real space. Out of all the k-points inside the BZ, not all of them provide
us with the same information; points in which the small group is trivial give trivial
information. This is why we can encode the Band Representation by looking at the
transformation properties in a finite set of highly symmetric k-points.

2.5 Example of band representation

In this section we will explicitly compute the band representation arising from spinless
and spinful pz orbitals in graphene. We will see how, even if we are not using any

24This is a rigorous mathematical procedure, common in group theory. In practice, it is like
constructing the table of characters for the big group and remove the elements that do not belong
to the little group.

25Here, the term ”sum” has to be understood as sum of representations. For example, a 1-
dimensional representation ”plus” a 2-dimensional representation gives a 3-dimensional one.
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specific Hamiltonian, we can predict that spinless graphene has Dirac cones, while
spinful does not, and that spinful graphene is always topological.

2.5.1 Spinful graphene

Graphene is described by carbon atoms sitting at 2b Wyckoff positions, with coor-
dinates q1 =

(
1
3
, 1

3

)
and q2 =

(
−1

3
,−1

3

)
. The site-symmetry group of this site is

isomorphic to C3v and we choose the representation of the generators to be (see Sec.
2.2.2):

ρ(C3) = exp
(
i
π

3
σz

)
, ρ(m11̄) = iσx. (2.18)

The coset representatives are chosen to be g1 = {E|0}, g2 = {C2|0}. The first
thing we need to compute are the tβα. The action of an element of the full group will
have the following form:

hqα = {E|tβα}qβ, g−1
β {E| − tβα}hgαq1 = q1 ≡ gq1 = q1, (2.19)

where the vector tβα represents the possibility of an element to take some Wyckoff
away to another cell. It can be shown that (see Appendix C):

tβα = hqα − qβ. (2.20)

We will use this last equation to compute the ~tβα for the different generators.

� {C3|0}

tβα = hqα − qβ

t11 = {C3|0}
(

1

3
,
1

3

)
−
(

1

3
,
1

3

)
=

(
1

3
,−2

3

)
−
(

1

3
,
1

3

)
= (0,−1)

t22 = {C3|0}
(
−1

3
,−1

3

)
−
(
−1

3
,−1

3

)
=

(
−1

3
,
2

3

)
+

(
1

3
,
1

3

)
= (0, 1) .

(2.21)

Once determined that tβ1 exists for a certain β, there is no other β for which
tβα makes sense. We can see in Fig. 2.4 how t11 connects two q1 positions
in different cells, due to the action of the C3 axis. But this C3 axis does not
connect a position q1 to a position q2, so t21 does not exist. What this really
means is that when constructing the representation for the C3 axis with indices
(jβ, iα), the block with α = 1, β = 2 will be full of zeroes, while the block with
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Figure 2.4: Action of the C3 axis on Wyckoff positions. In green, the original positions.
In blue, the new position after the action of the rotation. In red, the unit cells.

α = 1, β = 1 will be the representation of some element of the site-symmetry
group of position q1. But this element can only be the one we obtained before,
g = g−1

β {E| − tβα}hgα. We can use this equation to find this g element:

g11 = {E|0}−1{E| − t11}{C3|0}{E|0} = {E| − 01̄}{C3|0} = {C3|01}
g22 = {C2|0}−1{E| − t22}{C3|0}{C2|0} = {C3|01}.

(2.22)

So we can construct now the representation of this element. We will write it
by blocks, each block defined by coordinates (β, α) being a matrix with indices
(i, j). Using Eq. (2.14):

[ρkG({C3|0})]jβ,iα =

(
ei(C3k)e2 0

0 e−i(C3k)e2

)
⊗ei

π
3
σz =

(
ei(C3k)e2ei

π
3
σz 0

0 e−i(C3k)e2ei
π
3
σz

)
,

(2.23)
where the product is tensor product.

� {m11̄|0}

Following the same procedure as before:
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t11 = {m11̄|0}
(

1

3
,
1

3

)
−
(

1

3
,
1

3

)
= (0, 0)

t22 = {m11̄|0}
(
−1

3
,−1

3

)
−
(
−1

3
,−1

3

)
= (0, 0).

(2.24)

The no-null blocks will be diagonal and, in this case, both tαβ are zero. Let’s
find the elements g:

g11 = {E|0}−1{E| − t11}{m11̄|0}{E|0} = {E|0}{m11̄|0} = {m11̄|0}
g22 = {C2|0}−1{E| − t22}{m11̄|0}{C2|0} = {C2|0}−1{E| − ~t22}{C̄2|0}{m11̄|0} = {m̄11̄|0},

(2.25)

where in the last step we have used the commutation relation of the C2 axis
and the mirror plane, but notice that, in double groups, C2

2 = Ē = −E 6= E.
We are able to build the representation for this element:

[ρkG({m11̄|0})]jβ,iα =

(
1 0
0 1

)
⊗ iσx =

(
iσx 0
0 −iσx

)
. (2.26)

� {C2|0}

So far, we have found that the induced representations are diagonal, giving
us the feeling that it could be reducible. This has happened because the el-
ements for which we have been constructing the representation were in the
site-symmetry group, or differ by an integer lattice translation. However, we
will find now that, since C2 is not contained in the site-symmetry group, the
representation will be off-diagonal, and, thus, will make this representation ir-
reducible. Let’s compute the representation for C2.

t21 = {C2|0}
(

1

3
,
1

3

)
−
(
−1

3
,−1

3

)
= (0, 0)

t12 = {C2|0}
(
−1

3
,−1

3

)
−
(

1

3
,
1

3

)
= (0, 0).

(2.27)

We see that, in this case, the non-vanishing blocks are the ones with coordinates
α = 1, β = 2 and α = 2, β = 1. So the representation will be off-diagonal. Let’s
compute the elements g:
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g21 = {C2|0}−1{E| − t21}{C2|0}{E|0} = {E|0}
g12 = {E|0}−1{E| − t12}{C2|0}{C2|0} = {Ē|0}.

(2.28)

So, the representation for this element is:

[ρkG({C2|0})]jβ,iα =

(
0 −I
I 0

)
= −iσy ⊗ σ0, (2.29)

where I is the 2x2 identity.

2.5.2 Spinless graphene

Having determined the spinful representation, it is easy to see what the spinless
representation is, by just getting rid of the spin degree of freedom. Now, the 4x4
matrices are 2x2 matrices:

[ρkG({C3|0})]βα =

(
ei(C3k)·e2 0

0 e−i(C3k)·e2 ,

)
(2.30)

[ρkG({m11̄|0})]βα =

(
1 0
0 1

)
, (2.31)

[ρkG({C2|0})]βα =

(
0 −1
1 0

)
. (2.32)

Now that we have the representation under which Bloch waves transform at any
k-point, we can see which symmetry enforced degeneracies we will have, by looking
at the dimension of the subduced representation at different k-points. Let’s see what
happens at the k = (1

3
, 2

3
) point.

The little group of the k = (1
3
, 2

3
) point is formed by a C3 axis and a mirror

plane (isomorph to C3v), but the mirror plane is not m11̄ but m11. We can compute
explicitly the representation of this mirror plane to obtain the character to define
its representation, but it is not necessary. Following the argument we gave before,
the representation of an element that is not part of the site-symmetry group is off
diagonal when we induce it, since it mixes the two positions. Thus, the trace of
the representation of the mirror plane m11 will be 0. Because the C3 axis is in the
little group, (C3k)e2 = K · e2 and we can compute the trace of the C3 axis matrix:
[ρkG({C3|0})]αα = 2 cos(K · e2) = 2 cos

(
4π
3

)
= −1. So our representation has the

following character in C3v:
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C3v E C±3 mi

ρkG 2 -1 0
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table 2.4: Table of characters of the group C3v.

C6v E C±3 C2, C̄2 C±6 m11 m11̄ Ē C̄±3 C̄±6
ρΓ
G 4 2 0 0 0 0 -4 -2 0

Γ̄7 2 1 0 −
√

3 0 0 -2 -1
√

3

Γ̄8 2 1 0
√

3 0 0 -2 -1 −
√

3
Γ̄9 2 -2 0 0 0 0 -2 2 0

Table 2.5: Table of characters of the group C6v.

We see that this representation is already an irreducible representation of C3v,
i.e., there will be a band crossing at the k-point of the two bands that are doubly
degenerate due to trivial spin degeneracy. And this crossing is protected by symmetry.
We have found the famous Dirac cones of spinless graphene.

2.6 Subducing the Band Representation

We will focus now on spinful graphene, since it is the one that can display topological
properties. We will subduce now the representation at different, high-symmetry points
in the first Brillouin Zone, which are Γ, K andM (see Fig. 2.5).

2.6.1 Γ point

The little group at this point is the full point group, C6v. This group contains C3

axis, C2 axis, planes and C6 axis also. We have not computed the representation
for the C6 axis, but we can obtain it from the representations of 2 and C3 axis by
combining them (a 6 axis is a C2 axis minus a C3 axis). We can see the character of
the representation in Table (2.5).

Just by inspection of the table we get that the representation is reducible, in fact,
ρΓ
G = Γ̄7 ⊕ Γ̄8.
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Figure 2.5: First Brillouin Zone for graphene.

C3v E C±3 mi Ē C̄±3 m̄i

ρKG 4 -1 0 -4 -1 0
K̄4 1 -1 -i -1 1 i
K̄5 1 -1 i -1 1 -i
K̄6 2 1 0 -2 -1 0

Table 2.6: Table of characters of the group C3v.

2.6.2 K point

The little group of this point is C3v. We compute the character of the representation
as before:

In this case we find that (see Table 2.6):

ρKG = K̄4 ⊕ K̄5 ⊕ K̄6. (2.33)

We see that if we have SOC, the Dirac cones break, since there is no 4-dimensional
representation; the 2 dimensional spinless breaks into two 1 dimensional irreps (K̄4, K̄5)
and a 2 dimensional one (K̄6).
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C2v E C±2 m11̄ m11 Ē
ρKG 4 0 0 0 -4
M̄5 2 0 0 0 -2

Table 2.7: Table of characters of the group C2v.

Cs E m Ē m̄
Γ̄7 2 0 -2 0
Γ̄8 2 0 -2 0
Λ̄3 1 -i -1 i
Λ̄4 1 i -1 -i

Table 2.8: Table of characters of the group Cs.

2.6.3 M point

In this case, the little group is C2v Looking at the character table (see Table 2.7), we
see that we have no more work to do, since there is only one representation of the
double group, M̄5, so the subduced representation will be a sum of two M̄5. We can
still carry out the calculation to check that it is true. Explicitly:

ρMG = M̄5 ⊕ M̄5. (2.34)

2.6.4 High-symmetry lines

We can use this machinery to see how this crossings will split when we get a bit away
from the high symmetry points. If we follow the high-symmetry lines depicted in Fig.
2.5 (in red), we see that the little group for all the points that lie in any of the lines
is Cs, i.e., a mirror plane. Let’s start by computing how our degeneracies break down
when moving away from the Γ point to the K point.

In Table (2.8), we can see the traces of the relevant representations at Γ for
the symmetries of the line that connect Γ and K. Since there are only 2 symemtry
operations, there can only be 2 irreps. In this case, both Λ̄ irreps are 1 dimensional,
so both Γ̄7 and Γ̄8 representations split into unidimensional ones, which is the sum of
both Λ̄ irreps. We can repeat this procedure for all irreps at high-symmetry points
to obtain:
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Figure 2.6: Different connectivities allowed by compatibility relations: (a) Connected
set of bands, (b) disconnected set of bands.

Γ̄7 → Λ̄3 ⊕ Λ̄4

Γ̄8 → Λ̄3 ⊕ Λ̄4

K̄4 → Λ̄3

K̄5 → Λ̄4

K̄6 → Λ̄3 ⊕ Λ̄4

M̄5 → Λ̄3 ⊕ Λ̄4.

(2.35)

Now we can try connect bands. The only restriction is that a band cannot change
the representation along a high-symmetry line, so a band that comes from a Λ̄3 at
the Γ point cannot arrive at a Λ̄4 at K point. Following this, we get the qualitative
pictures on Fig. 2.6 (a) and (b).

We see in Fig. 2.6 (a) that the bands are connected, in the sense that we can draw
them in a single trace. However, since Group Theory does not give us any prediction
on the energetics, we can have another picture, as displayed in Fig. 2.6 (b).

The first one is an Elementary Band Representation, i.e., it is not the sum of
smaller dimensional band representations. But in Fig. 2.6 (b) we see that the EBR
is disconnected now. Since they both together form an EBR, it cannot be that both
of them are EBRs independently. So it must happen that at least one of them is
not a BR, i.e., not Wannier representable and, thus, topological. Therefore, graphene
with SOC is topological in both cases; either as a topological insulator (disconnected
EBR) or as a topological semimetal (symmetry protected degeneracy at the Femrmi
level).
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2.7 Conclusions

In this chapter we reviewed the recently developed formalism of topological quan-
tum chemistry. We showed how we can predict topological phases from symmetry
arguments. The formalism can be used for diagnosing topology too, as we will show
in the following chapter. We will apply the mechanism described here to identify a
topological material through its symmetry properties, PbTe, which is a mirror Chern
insulator for some experimental structures in the literature.



Chapter 3

Mirror Chern insulator PbTe

As an application of previously described formalism of Topological Quantum Chem-
istry, a high-throughput calculation of all high-quality1 stoichiometric materials in
the Inorganic Crystal Structure Database (ICSD) [23] was performed. In this chapter
we will focus our attention on PbTe, that was predicted to be topologically non-trivial
for some crystal structures. We will start by reviewing the formalism of symmetry in-
dicators (TI). Then, we focus on an old simplified tight binding model of PbTe which
was predicted to host four Dirac fermions on a two-dimensional antiphase bound-
ary [20–22], hereafter referred to as Fradkin Dagotto Boyanovski (FDB) model. Next,
we will modify the model in order to respect all symmetries of the crystal SG Fm3̄m
(225). In particular, we will show that our improved TB model captures the tran-
sition between a trivial insulator and a mirror Chern and higher-order topological
insulator (HOTI), with symmetry indicated topological index νZ8 = 4. We will prove
that the four Dirac cones in the FDB model at an antiphase domain wall are the
boundary modes of this mirror and higher-order topological insulator. Finally, we
will demonstrate that any symmetric completion of the FDB model has νZ8 = 4, with
mirror Chern number νm11̄0

= 2 and higher-order “S4” invariant δS4 = 1 [15, 70, 71]
(here m11̄0 denotes the mirror about x̂− ŷ , and S4 signifies a fourfold rotoinversion).
Finally, we will connect these results to the recent prediction [72,73] that PbTe may
be, in some cases, a TCI/HOTI. In doing so, we will see the relevance of careful
structural determination for finding small-gap topological materials.

3.1 Symmetry Indicators

In the previous chapter we showed how the formalism of topological quantum chem-
istry is used to determine the possible symemtry configurations of the bands starting

1Crystals with very accurate measurements of atomic positions and structure

49
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from localized orbitals in real space. We found that if an EBR is split, then at least on
set of bands has to be topological. This is a particular example of symmetry-indicated
topology. The theory, however, does not predict the precise topological phase of the
system. The first quantitative mapping between symmetry and topology was intro-
duced by Fu and Kane [7]. Using the so-called Fu-Kane criterion (or formula), they
related the Z2 topological index to a Z2 symmetry index, based on inversion eigen-
values of filled bands. An odd number of negative inversion eigenvalues in the set of
occupied bands translates into non-trivial Z2 topological index. This work has been
recently generalized into symmetry indicator formalism [14, 15]. We will now review
the basic aspects of the formalism.

Following TQC formalism, symmetry data of occupied bands can be described by
its band representation, an array containing the irreducible representations at high
symmetry momenta. We define {BS} as the set of all possible gapped band structure
described by band representations. The authors of [41] tabulated all possible atomic
insulators (AI) starting from localized orbitals in real space, which form a linear space
we denote as {AI}. Then, topologically non-trivial band structures are those that
belong to {BS} while not belonging to {AI}. This can be mathematically expressed
as the quotient spaceXBS = {BS}/{AI}. XBS is always a finitely group of the form Zn,
with n = 2, 3, 4, 6, 8, 12. Each generator of XBS is called a symmetry indicator. Even
though the authors of Ref. [14] derived the group structure of XBS for all 230 non-
magnetic space groups, they did not give the explicit formulas for the generators or the
mapping between generators and topological invariants. This work has been recently
developed by the authors in Ref. [15], where they provide explicit formulas to compute
the generators (symmetry indicators) based on the band representations. They also
compute the mapping between symmetry indicators and topological invariants, which
determine the topological features of the band structure.

It is worth noting that this system has both advantages and disadvantages. On
the one hand, the diagnose power is limited; topological phases can be diagnosed as
trivial if the required symmetries are not present. As an example, a strong 3D TI is
protected by TRS and can be diagnosed by inversion symmetry if present, but the 3D
TI topological phase can exit regardless of inversion symmetry. However, symmetry
indicators have proved useful for high-throughput ab-initio calculations of tens of
thousands of materials, revealing that more than 27% of all materials in Nature are
topological [23].

3.2 Effective Tight Binding model

Let us start as did the authors of Ref. [20] considering the rocksalt structure of PbTe
(see Fig. 3.1 (a)), in the space group Fm3̄m (225), a centrosymmetric, symmorphic
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Figure 3.1: (a) PbTe crystal structure. It has the same structure as rocksalt (NaCl),
in SG Fm3̄m (225). (b) Brillouin Zone for SG Fm3̄m (225) [67–69].

space group with a face-centered-cubic (FCC) Bravais lattice and octahedral point
group (see Fig. 3.1 (b)). We take the following basis for the Bravais lattice 2:

t1 = (0, 1/2, 1/2), t2 = (1/2, 0, 1/2), t3 = (1/2, 1/2, 0). (3.1)

The rocksalt structure has Te atoms located at the 4a Wyckoff position, with
reduced coordinates qa = (0, 0, 0), and Pb atoms at the 4b Wyckoff position with
reduced coordinates qb = (1/2, 1/2, 1/2). The point group of PbTe is generated by a
threefold rotation C3,111 about the body diagonal of the unit cell, a fourfold rotation
C4x about the x̂ = t2+t3−t1 axis, spatial inversion I , and time-reversal symmetry T.
The original model of FDB consisted of spin-1/2 s orbitals on the 4a and 4b Wyckoff
positions as a proxy for the Te and Pb atoms (whether we start from s or p orbitals,
the sign of the inversion matrix will change, but all topological properties remain
invariant). They added a staggered on-site potential taking opposite values ±m on
the Te and Pb sites, and a nearest-neighbor spin-dependent hopping. Letting τ be
a set of Pauli matrices acting in the orbital (Te,Pb) basis, and letting σ be the set
of Pauli matrices acting on spin, we can write the Bloch Hamiltonian for the FDB
model as

HFDB = mτz + tτy
∑

µ=x,y,z

σµ cos

(
kµ
2

)
, (3.2)

where we have taken the liberty of restoring a neglected factor of i in the hopping
term to restore TRS [4] 3. Eq. 3.2 is manifestly time-reversal, inversion, and C3,111

2We set the lattice constant a = 1 for simplicity
3While this makes our Eq. 3.2 formally different from the original FDB model, we view the lack

of time-reversal symmetry in Ref. [20] to be a simple oversight.
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symmetric; each of these symmetries acts trivially in the orbital τ space, and as a
rotation (the identity rotation for inversion) on the spin degrees of freedom. Precisely,
we have for these symmetries g that ∆(g)−1HFDB(k)∆(g) = HFDB(gk), with the
matrix representation ∆ specified by

∆(C3,111) = exp

[
−iπ
3
√

3
(σx + σy + σz)

]
,

∆(I) = I4x4,

∆(T ) = iσyK,

(3.3)

with K being complex conjugation.
The spectrum of this Hamiltonian consists of two sets of doubly degenerate bands

(due to IT symmetry) separated by a spectral gap which is smallest at the L point
(1/2, 1/2, 1/2) and given by δEL = 2m. Depending on the sign of m, there is a band
inversion at the L point: for m > 0 the valence bands carry the representation L̄9 of
the little group of L [with inversion eigenvalues (-1, -1)], while for m < 0 the valence
bands carry the representation L̄8 of the little group of L [with inversion eigenvalues
(+1,+1)]. Because there are four L points in the FCC Brillouin zone, this is not a Z2

nontrivial TI [7], and so we must look for nontrivial TCI invariants.
Here, however, we run into a problem: The Hamiltonian HFDB is C4x symmetric,

but the matrix representative of C4x can be seen to be

∆(C4x) = iτzσy exp
(
−iπ

4
σx

)
. (3.4)

This has the unfortunate property that ∆(C4x)
4 = +1, rather than −1 as needed

for a double-valued representation. Repairing this by multiplying by a factor of
√
i is

futile, as the ∆(C4x and ∆(T ) no longer commute. Thus, the FDB Hamiltonian does
not have the symmetries of SG Fm3̄m.

To repair the symmetries, we seek hopping terms which vanish at the L point, are
non-vanishing elsewhere and transform in the representation given by Eq. 3.3, along
with

∆(C4x) = exp
(
−iπ

4
σx

)
. (3.5)

In this way, we will replicate the band inversion at L in our symmetric model.
Let us first fix the spin-orbit coupling (SOC) term. Noting that the matrices τx,y, σµ
transform in a pseudovector representation under rotoinversions, we need them to be
multiplied by functions of k which are also pseudovectors. Combining this observation
with time-reversal invariance and the boundary conditions on the Bloch Hamiltonian,
we find that the simplest choice of SOC term which vanishes at L is
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HSOC = tτy
∑

µ,ν,λ=x,y,z

(
εµνλσµsin

(
kν
2

)
sin(kλ)

)
. (3.6)

For now, let us overlook the long (fifth nearest-neighbor) range of this coupling in
light of its mathematical simplicity. We may be tempted to take mτz +HSOC as our
improved Hamiltonian; however, HSOC vanishes along the whole Γ − L line, rather
than just at the L point. To remedy this, we can add two additional spin-independent
hopping terms:

Hhop =
∑

µ=x,y,z

[
δ1τz(1 + cos(kµ)) + δ2τxcos

(
kµ
2

)]
. (3.7)

We take for our full improved Hamiltonian

HiFDB = mτz +HSOC +Hhop. (3.8)

When m = 0 with t and δ2 nonzero, this model is gapless only at the L point. For
m 6= 0, a nonzero δ1 ensures that the spectrum of this Hamiltonian is gapped. We see
that there is thus an insulator-to-insulator transition driven by an inversion of bands
at the L point, just as in the original FDB model. We show the bulk spectrum for
positive and negative values of m in Fig. 3.2 (a) and Fig. 3.2 (b).
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Figure 3.2: (a) and (b) Spectrum of the iFDB Hamiltonian given in Eq. 3.8, with
parameter values t = δ2 = 0.5, δ1 = 0.1. In (a) we take m = 0.3, while in (b) we take
m = −0.3. (c) Wilson loop in the k2 direction evaluated in the space of the lowest
two bands of the model in Eq. 3.8 with m < 0, as a function of k3, with k1 = 0. We
see that the Wilson loop phases Θ wind twice around the circle (−π, π]. This implies
that the model is in a topological phase with mirror Chern number νm10̄

= 2. (d)
Spectrum for the topological phase of the iFDB model for a ẑ-normal slab. Note the
mirror-symmetry protected Dirac fermion on the Γ̄− L̄ line.

3.3 Topological properties

Let us now examine the topological nature of this band-inversion transition. We will
start by analyzing the band representations in the model following Refs. [11, 23, 41].
Following the notation of the Bilbao Crystallographic Server [67–69], our model is
induced from orbitals transforming under the Ē1g representation of the point group
Oh on the 4a site, and a second set of orbitals transforming in the same representation
on the 4b site. The four bands in our model thus transform under the composite band
representation (Ē1g)4a ↑ G⊕(Ē1g)4b ↑ G. These two elementary band representations
subduce representations of the little group Gk at each of the high-symmetry momenta
Γ, X, W , and L in the Brillouin zone; we summarize these representations in Table
3.1 below. In the atomic limit of HiFDB, we have m � t, δ1, δ2, and so the valence
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EBR Γ X L W

(Ē1g)4a ↑ G Γ̄6 X̄6 L̄9 W̄6

(Ē1g)4b ↑ G Γ̄6 X̄6 L̄8 W̄7

Table 3.1: Little group irreps subduced by each of the elementary band representa-
tions in our model. The first column gives the name of the elementary band repre-
sentation (EBR). The subsequent columns give the little group irreps at each of the
high-symmetry points.

bands of our model transform in the (Ē4b ↑ G) elementary band representation, with
occupied little group representations Γ̄6, X̄6, W̄6, L̄9; this can be checked explicitly
using the representation ∆ defined in Eqs. 3.3 and 3.5 and taking into account
the boundary conditions |unk+nigi> = (τz)

∑
i ni |unk>, where {gi} is a basis for the

reciprocal lattice, and {ni} are integers; this expresses the “tight-binding gauge”
boundary conditions [74]. Upon inverting bands by taking t ≥ δ2 � δ1 > 0 > m,
|m| � t, we see that the occupied band irreps at Γ, X, and W have not changed.
At L, however, the wave functions now transform under the L̄8 irrep. Examining
the full table of elementary band representations for Fm3̄m [67–69], we find that the
collection (Γ̄6, X̄6, W̄6, L̄8) of occupied little group representations cannot be subduced
by an integer sum or difference of elementary band representations; we thus conclude
that this phase of our model is a symmetry-indicated, stable topological crystalline
insulator. Going further, we can attempt to express the irrep multiplicities in this
model as a rational sum of those in elementary band representations (EBRs). Reading
off the denominator of the rational coefficients, we find that symmetry-indicated TCIs
in this space group are classified by an index νZ8 . The index νZ8 can be expressed
as [15,70,71]

νZ8 = κ1 − 2κ4, (3.9)

where 4κ1 is the sum of occupied band inversion eigenvalues ans 2
√

2κ4 is the sum of
occupied band IC4z eigenvalues. Note that both κ1 and κ4 are integers [71]. For our
model, we have νZ8 = 4 in the topological phase, and νZ8 = 0 in the trivial phase.
As shown in Refs. [15, 71], a minimal model for a TCI with νZ8 = 4 arises through a
“stacking” (in Hilbert space) of four Z2 odd topological insulators. We thus expect to
find protected gapless states on symmetric surfaces of this model, as we will discuss
further below.

Furthermore, note that while the original FDB model is not C4z symmetric, it is
inversion symmetric. Thus, the sum of occupied band inversion eigenvalues κFDB1 can
be computed for that model and is given by
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κFDB1 =

{
0, m > 0

4, m < 0.
(3.10)

Next, note that IC4z is not in the little group of any of the L points. Therefore, in
any symmetric completion of the FDB model the occupied band IC4z eigenvalues do
not change as a function of m, and so neither does κ4. Thus, in any symmetric com-
pletion of the FDB model, the index νZ8 must change by 4 as the sign of m changes.
Assuming additionally that the m > 0 phase is connected to the (unobstructed [10])
atomic limit, we deduce that the band inversion in the FDB model becomes, when
cubic symmetry is enforced, the transition between phases with νZ8 = 0 and νZ8 = 4.

As discussed in detail in Refs. [15,71], the value of νZ8 does not uniquely determine
the topological phase of a system in space group Fm3̄m. In particular, with νZ8 = 4,
there are two possible types of topological phase: the first has a mirror Chern number
νmz = 4 mod 8 associated with the mz mirror symmetry, while the second has both
a mirror Chern number νm11̄0

= 2 mod 8 associated with the diagonal x̂ − ŷ mirror
symmetry, as well as a nonvanishing higher-order topological index. It is this latter
phase which describes our current model.

We can make these statements more precise by examining the low-energy k · p
theory for the topological transition in both HFDB and HiFDB. Starting with the
original FDB model, we find by expanding Eq. 3.2 that

HFDB(L+ k) ≈ mτz +
∑

µ=x,y,z

t

2
τyσµkµ. (3.11)

On the other hand, performing the same expnsion of HiFDB, setting δ2 = t, and
defining the rotated coordinates (ka, kb, kc) and spin matrices (sa, sb, sc) as in Eqs.
3.12 and 3.13) k1
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yields, to quadratic order:

HiFDB(L+ k) ≈ [m+ 2δ1(k2
a + k2

b + k2
c )]τz +

√
3δ2kcτx + 2T

√
3τy(kasa + kbsb). (3.14)
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Up to a choice of basis for the Dirac matrices, this is the Bernevig-Hughes-Zhang
model Hamiltonian for a topological insulator [75,76] (note that because of our choice
of boundary conditions and our expansion about the L point, inversion symmetry is
represented by ∆L(I) = τz in the k · p expansion). Eq. 3.14 is also equivalent to Eq.
3.11 if we take δ2 = 2T = t/2. Since there are four L points, we see that this is a TCI
rather than a TI transition. Furthermore, note that the plane kx = ky corresponds to
the plane kb = 0, and is invariant under m11̄0; this symmetry is represented at the L
point by the matrix ∆L(m11̄0) = exp

[
iπ/(2

√
2)(sa)

]
. Restricting HiFDB to the mirror

plane, we find that the Hamiltonian is block diagonal in the basis of m11̄0 eigenstates,
and describes a Chern insulator transition in each mirror subspace. Since there are
two L points in this mirror plane, we thus deduce, following Ref. [77], that this model
corresponds to a mirror Chern insulator with νm11̄0

= 2. To verify this, we extract
the mirror Chern number from the flow of hybrid Wannier charge centers [78,79], i.e.,
from the Wilson loop [80,81]. We show in Fig. 3.2 (c) the k2 directed Wilson loop for
the occupied bands as a function of k3. We see that in the k1 = 0 plane the Wilson
loop phases exhibit a nontrivial winding with winding number 2; since in the FCC
Brillouin zone this is the only mirror invariant plane [77], this signifies the mirror
Chern number νm11̄0

= 2 [82].

As pointed out in Refs. [15, 71, 83], models in space group Fm3̄m1′ with νZ8 = 4
and νm11̄0

= 2 also have a nontrivial higher-order index δS4 = 1 protected by fourfold
rotoinversion symmetry. This phase has four Dirac cones on a ẑ-normal surface, thus
explaining the four Dirac fermions on an antiphase boundary found in Refs. [20–22].
At the level of the tight-binding model, an antiphase domain wall is simply a boundary
between the trivial (m > 0) and topological (m < 0) phase of the model. These
domain-wall fermions are indeed of topological origin, and are symmetry protected in
any symmetric extension of the FDB model. We show the spectrum of the topological
phase of Eq. (3.8) on a ẑ-normal slab in Fig. 3.2 (d).

Finally, note that the original low-energy FDB Hamiltonian in Eq. 3.2 has an
accidental mirror symmetry ∆̃(m11̄0) = τz exp

[
iπ/(2

√
2)(sx − sy)

]
, which leaves the

plane kx = ky invariant. While this symmetry is inconsistent with the inversion
symmetry for the full model (and also will be broken by crytal-symmetry preserving
perturbations, including higher-order terms in the k · p expansion), it explains why
the authors of Ref. [20–22] were able to find domain-wall fermions in their model.

3.4 Ab initio results

In the previous sections, we have seen how symmetrized completions of the FDB
model of PbTe yield higher-order topological and mirror Chern insulators. Under
certain conditions, the band structure for realistic PbTe as computed with ab initio
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Figure 3.3: Bulk band structure of PbTe, calculated using the structure reported in
Reference [48]. The inset shows the small gap and band inversion at the L point.

methods realizes this same νZ8 = 4 symmetry-indicated phase. This can be seen by
analyzing the material catalogs of Refs. [23,72], which both report the value of νZ8 = 4
for PbTe. For confirmation, we have recomputed the ab initio band structure of PbTe
using density functional theory (DFT) [45,46] as implemented in the Vienna Ab initio
Simulation Package (VASP) [49, 50]. We use the structural parameters as reported
in Ref. [84]. The interaction between ion cores and valence electrons was treated by
the projector augmented-wave method [51], the generalized gradient approximation
(GGA) for the exchange-correlation potential with the Perdew-Burke-Ernkzerhof for
solids parametrization [52], and spin-orbit coupling was taken into account by the
second variation method [85]. A Monkhorst-Pack centered at Γ k-point grid of (11 Ö
11 Ö 11) for reciprocal space integration and 500 eV energy cutoff of the plane-wave
expansion have been used. We show the band structure in Fig. 3.3, with an inset
highlighting the rather small gap at L. Employing the VASPtoTrace tool [23,67–69],
we compute the little group irreps of the occupied bands at the high-symmetry points,
shown in Table 3.2; we give the irreps of SnTe as well for comparison. By using Eq.
3.9, we see that νZ8 = 4 for both SnTe and PbTe. Note, in fact, that the irrep
labels for SnTe and PbTe differ only in a shift of the origin of the system by (1

2
, 1

2
, 1

2
).

Furthermore, the topological transition to νZ8 = 4 in the realistic material is driven
by a band inversion of the irreps at L relative to W , just as in the FDB model. To
fully determine the topological phase, we evaluate the mirror Chern number of the
occupied bands using Quantum Espresso and Z2PACK [53–55,79]. We find a mirror
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Figure 3.4: Hybrid Wannier charge centers for the +i mirror subspace of the occupied
bands of PbTe in the m110-invariant plane. (a) Raw Wannier centers (Wilson loop
eigenvalues). (b) Trace of the Hybrid Wannier charge centers matrix (see Sec. 1.5).
Since the trace winds twice across the unit cell, we deduce that the mirror Chern
number νm110 = 2.

Chern number νm110 = νm11̄0
= 2, just as in the iFDB model 4 (see Fig. 3.4).

k SnTe PbTe
Γ Γ̄6 Γ̄6, Γ̄8, Γ̄11 Γ̄6 Γ̄6, Γ̄8, Γ̄11

X X̄6, X̄6, X̄8, X̄8, X̄9 X̄6, X̄6, X̄8, X̄8, X̄9

L L̄9, L̄8, L̄8, L̄4L̄5, L̄9, L̄8, L̄9, L̄9, L̄6L̄7, L̄8,
W W̄6, W̄7, W̄7, W̄6, W̄7 W̄7, W̄6, W̄7, W̄6, W̄6

Table 3.2: Occupied band irreps for SnTe and PbTe at the high- symmetry points.
Irreps are listed in order of increasing energy, i.e., those states closest to the Fermi
level appear at the end of the list. Note that the irreps at Γ and X are identical for
the two materials.

However, it is well accepted that the mirror Chern number νm11̄0
in PbTe is zero

under ambient experimental conditions, while it is 2 for SnTe [77]. To reconcile this
with the non- trivial νZ8 = 4 topological index, we note that in addition to the
structure used for the ab initio calculations here and in Refs. [23, 72], PbTe has 41
other entries in the ICSD [86] in the space group Fm3̄m1′ [23]. A DFT analysis of

4These two mirror Chern numbers are equal due to the cubic symmetry of the system.
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other structures (for instance, the structure reported in Ref. [87]) yields a trivial index
νZ8 = 0 due to a band deinversion at L, in agreement with the experimental findings.
This highlights the fact that for small band-gap insulators, one must be cautious in
extracting the band topology from ab initio calculations; for PbTe in particular, the
failure of semilocal DFT to correctly produce the (correct sign of the) experimental
band gap in certain cases has been noted previously [88].

To investigate this systematically, we have computed the band structures and
topological index νZ8 for all 42 entries of PbTe in the ICSD, using the Perdew-Burke-
Ernzerhof (PBE) functional. The input parameters for these compounds differ only
in the reported lattice constant a0, which range between 6.157 and 6.543 Å. For the
six reported structures with a0 ≤ 6.44Å, PBE predicts νZ8 = 4; for the remaining
with larger lattice constants we find νZ8 = 0. In Table 3.3 we give a table summa-
rizing our DFT calculations. Taken optimistically, this shows that PbTe is very close
to a topological phase transition, which may be tunable as a function of external
parameters such as hydrostatic pressure.

ICSD a0(Å) Top? ICSD a0(Å) Top? ICSD a0(Å) Top? ICSD a0(Å) Top?
48585 6.47 NO 194220 6.46 NO 648586 6.458 NO 648599 6.459 NO
38295 6.462 NO 648616 6.462 NO 648587 6.456 NO 648600 6.452 NO
600522 6.461 NO 648617 6.463 NO 648603 6.458 NO 600843 6.47 NO
96500 6.459 NO 648589 6.461 NO 648605 6.4591 NO 602956 6.46 NO
96504 6.461 NO 648590 6.445 NO 648606 6.4603 NO 604178 6.460 NO
96505 6.461 NO 648591 6.46 NO 648607 6.463 NO 96506 6.460 NO
648592 6.460 NO 648608 6.4564 NO 63099 6.454 NO 648593 6.459 NO
648612 6.452 NO 648583 6.464 NO 648594 6.459 NO 182661 6.500 NO
648584 6.46 NO 648596 6.46 NO 182662 6.543 NO 648614 6.46 NO
648597 6.439 YES 648615 6.157 YES 648588 6.44 YES 63098 6.4384 YES
153711 6.4245 YES 648613 6.439 YES

Table 3.3: Summary of computed topological phases for all reported structures of
PbTe in the ICSD [23, 86]. The first column gives the ICSD id of the reported
structure. The second column gives the lattice constant a0, measured in Angstroms.
The third column indicates the computed value of the topological index νZ8 : “Yes”
corresponds toνZ8 = 4, while “No” corresponds to νZ8 = 0.

3.5 Conclusions

We have revisited the effective model of PbTe as presented in Refs. [20–22]. We
have shown that the domain-wall fermions in the FDB model, long derided as non-
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topological, are signatures of the topological surface states present in any symmetric
completion of the model, protected by mirror and fourfold rotoinversion symmetries.
Furthermore, we show that ab initio calculations reveal that some of the reported
structures of realistic PbTe are in this same symmetry-indicated class of materials,
at least within the GGA. This shows that PbTe is an ideal platform for exploring
structurally tunable topological behavior. Finally, while within the context of our
effective model there is no difference between an antiphase domain wall and a domain
wall with the vacuum, this is not necessarily true in a more realistic system. Given
the recent focus on defect response of higher-order topological insulators [89–91], it
would be interesting to examine this more carefully for both SnTe and PbTe structural
variations in future work.



Chapter 4

Time Reversal symmetry breaking:
CoS2

So far we have reviewed the theory of Topological Quantum Chemistry and applied
it to a specific case of Topological Insulator, spinful graphene and PbTe. There
are, however, topological phases of matter that are not insulationg. This is the
case of Topologicla Semimetals, systems in which degeneracies at the Fermi level
are protected by topology, symmetry or both. In this chapter we will analyze our
most recent recent work on the discovery of a new topological semimetal phase on a
ferromagnetic pyrite, CoS2. Contrary to previous chapters where we analyzed very
symmetric systems, in this case the magnetization breaks many symmetries of the
system, but we still manage to predict topological features. At the end of the chapter,
we compare our theoretical predictions to recent experimental data, which shows good
matching between theory and experiment.

4.1 Introduction

Topological semimetals are a class of materials that display protected band crossings
close to the Fermi level with nonzero Berry phase [23,24,34,92–94]. In 3 dimensions
(3D) one can find three types of topological band crossings, namely, nodes, lines
and planes. When nodes have a linear dispersion in all directions and they carry a
topological charge, they are named Weyl nodes. Weyl nodes can only exist in systems
with broken inversion or time-reversal symmetry (TRS). They are stable even in the
absence of symmetries and have very interesting surface states called Fermi arcs, that
connect the surface projection of the nodes. From each Weyl node with topological
charge 1, there will be a Fermi arc stemming from its projection in the surface.
Important examples of inversion symmetry breaking Weyl semimetals are transition

62
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metal monophosphides [95], MoTe2 [96] and TaAs [25–27]. Contrary to the prolific
discovery of inversion symmetry-broken Weyl semimetals, time reversal symmetry-
broken (magnetic) ones are still scarce. They were first predicted in pyrochlore iridates
[97], HgCr2Se4 [98] and the Heusler family of XCo2Z (X=IVB or VB; Z=IVA or
IIIA) [99], and recently measured experimentally in EuCd2As2 [100], Co3Sn2S2 [37,
101] and Co2MnGa [102]. These materials usually display a large anomalous Hall
effect [37], which is important for both electronic and spintronic devices [103], and
they played a fundamental role in the first experimental realization of the chiral
anomaly [104]. Higher order generalizations of Weyl nodes have been proposed [32]
and confirmed experimentally [105–109]. These so called multifold fermions have
higher Chern numbers, which produce more Fermi arcs in the surface. It has also
been shown that space group chirality (no inversion or mirror symmetries) has an
important effect on the connectivity of such Fermi arcs [105,110]. Even if the search
for multifold fermions has been focused on non-magnetic materials, there has been
an increased shift of attention to magnetic systems. There are, however, few material
predictions that can host magnetic multifold fermions [111, 112], thus, making it a
priority to find new material realizations of such multifold fermions.

Another notable topological feature are Nodal lines. These crossings are protected
by inversion-TRS, spin rotation or reflection symmetries [113–120]. Compared to
Weyl semimetals, Nodal line semimetals are more difficult to diagnose, since the topo-
logical invariants [121] and, thus, the surface spectrum, are protected by crystalline
symmetries, so surfaces not preserving them will not display topologically protected
surface states [122–125]. In the facets where symmetries are preserved, however, there
will appear what are known as drumhead states, a set of surface states covering the
projection of the nodal line in the surface. In the cases in which spin-orbit coupling
(SOC) can be neglected, Nodal lines protected by inversion-TRS can occur at any
point in the Brillouin zone (BZ), as well as in high symmetry planes. When includ-
ing SOC, though, inversion-TRS can no longer protect the crossings, and these will
generally be gapped. This is the case for spin rotation symmetry protected Nodal
lines too, because SOC mixes spin components and gaps the crossings. Then, in the
cases in which SOC cannot be neglected, only mirror symmetries can protect Nodal
lines. This is why there are few examples of real materials that host Nodal lines when
SOC is taken into account [122,126], and why finding new ones is exciting both the-
oretically and experimentally. Like in Weyl semimetals, Nodal line semimetals have
recently been found to have large Spin Hall current [127], expanding the family of
topological materials promising for topological electronic applications. Generalizing
Nodal lines, non-symmorphic symmetries can force crossings on entire high symme-
try planes in the boundary of the BZ. These are named nodal planes, which give rise
to Topological Protectorates; regions of the Fermi surface that intersect the Nodal
planes. They have been predicted to be large sources of Berry curvature [128,129].
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Pyrites of the form XS2 (with X being Fe, Ni and Co) are a notable family of
TRS-breaking materials that have been studied for decades due to the large size of
pure crystals that can be found in nature or easily grown experimentally [130, 131].
Among this family, CoS2 has been experimentally confirmed to be ferromagnetic and
extensively studied for its spin polarization and magnetic properties. Unlike many
magnetic materials, CoS2 is an itinerant ferromagnet [132, 133], that is, the ferro-
magnetism does not stem from highly localized electrons. Thus, electron-electron
interactions can be neglected when studying the electronic properties of the system.
This implies that standard mean field approximations such as density functional the-
ory (DFT) within the local spin density approximation (LSDA) are an excellent way
to obtain reliable and accurate electronic properties [134].

Topological condensed matter physics is a relatively new field of physics. Thus,
it is possible that ‘old’ materials could display topological properties that have been
missed. This is the case on point; it has been recently reported experimentally that
CoS2 is a Weyl semimetal, with spin-polarized single and double Fermi arcs stemming
from the projections of the Weyl nodes in the surface [35]. In this work, we perform
an extensive study of the topological properties as a function of its crystal symmetries
and also report several Nodal line structures near the Fermi level that survive the
addition of SOC interaction. We also find novel drumhead surface states emerging
from the Nodal lines.

The presence of both Nodal lines and Weyl nodes near the Fermi level, along
with the big size of pure crystals and ferromagnetic nature of the pyrite, make CoS2 a
promising platform to probe topological phenomena in an accessible material that can
be used in all sorts of electronic applications, from new magnetic memories to spin
injector junctions, in which the spin polarized Fermi arcs will contribute to reduce
the weight of the minority spin pocket [135].

This work is structured as follows: First we review the basic aspects of Weyl
nodes and Nodal lines. Next, we study the symmetry of the crystal and electronic
structures. We then analyze the symmetry enforced 4-fold degeneracy arising at the
M = (1

2
, 1

2
, 0) point and the effect of spin-orbit coupling on it. Finally we study the

Nodal lines and Weyls nodes in CoS2. We conclude by summarizing the results of
this work.

4.2 Topological properties of Weyl nodes and Nodal

lines

In topological semimetals, conduction and valence bands intersect at some points in-
side the Brillouin Zone (BZ). These crossings can be either accidental or protected,
either by symmetry or non-trivial topology. Accidental crossings can be broken by
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small perturbations that respect the symmetries of system. By definition, protected
crossings cannot. We can think of two main types of protection, protection by crys-
talline symmetry and topological protection. In the first case, bands that cross have
different transformation properties under some symmetry element that leaves the de-
generacy point invariant in momentum space; in this case we say that the bands
belong to different irreducible representations [43] and thus can not hybridize. This
is the case for Dirac semimetals [136–138], in which Cn rotational symmetry protects
the Dirac nodes in the Γ − Z direction. We can also think of crossings that can be
protected by mirror symmetries that leave a plane in variant in the BZ. Analogous to
Dirac nodes, in-plane crossings can be mirror symmetry-protected. In this case, in-
stead of 0-dimensional crossings, collections of 0-dimensional crossings span the whole
plane, thus giving rise to 1-dimensional Nodal lines [113–120]. These nodal lines come
in a variety of ways; they can form closed rings inside the BZ, closed rings connecting
neighboring BZ, open strings that connect two BZ or even connected loops so that
they form nodal chains.

Besides being protected by symmetry, band crossings can be protected by topol-
ogy too. In systems with broken TRS or inversion symmetry, there exist two-band
crossings that can be locally described effectively by the Weyl Hamiltonian, thus the
name of Weyl nodes [36,139–145]. This effective theory is formally equivalent to the
basic example of Berry curvature monopole; Weyl nodes are sources (sinks) of Berry
curvature with topological charge +1 (-1). Following the Nielsen-Ninomiya theorem,
these crossings have to occur by pairs, though crystalline symmetry can increase the
number of pairs. To this date, several examples of Weyl semimetals have been both
predicted and identified [25,33,35,36,139–145]. The most remarkable feature of these
materials are the Fermi arcs; open Fermi surfaces that connect the projection of Weyl
nodes on the surface of the material.

Nodal lines also have a topological non-trivial structure [121,146–148]. It has been
shown that nodal lines can be characterized by a series of topological invariants [149].
One way to check that a nodal line is topologically protected is to see if a closed loop
enclosing the nodal line is contractible until it disappears. This can be done by means
of the Berry phase; if the calculation of the Berry phase on a loop that is linked to the
nodal line is non-trivial (Berry phase equal to π), then the loop is non-contractible
and the crossing is topologically protected. On the other hand, if the Berry phase was
found to be trivial (Berry pahse equal to 0) then the nodal line would be topologically
trivial. Topological nodal lines also display surface states [123,124,150–152], although
they are not as robust as the Fermi arcs coming from Weyl nodes. In particular, spin-
orbit coupling can break the nodal line degeneracy [153,154].



Chapter 4. Time Reversal symmetry breaking: CoS2 66

4.3 Crystal and electronic structures

4.3.1 Symmetries and structure

CoS2 crystallizes in SG Pa3̄ (205). This is a non-symmorphic cubic Space Group,
generated by {I|0}, {C2z|1201

2
} and {C31|0}, whose combination produces glide sym-

metry planes, {mx|1/2, 1/2, 0}, {my|0, 1/2, 1/2} and {mz|1/2, 0, 1/2}. Cobalt atoms
sit in the 4a Wyckoff position, while sulfur atoms sit in the 8c Wyckoff position.
The structure is shown in Fig. 4.1(a). Experimental measurements [155, 156] reveal
that the system has ferromagnetic ordering, which mainly stems from the cobalt d
orbitals. This is represented by red arrows on cobalt atoms in Fig. 4.1(a). Exper-
imental measurements determine that the magnetization is on the (100) direction
family. We choose the direction of the magnetization in the z direction, without loss
of generality.

When taking into account magnetization, the symmetry of the system is lowered.
The 3-fold axes are broken, as well as TRS. The only surviving unitary symmetries
are the 2-fold screw {C2z|1201

2
}, the glide {mz|1/2, 0, 1/2} and inversion symmetry.

The screws in the x and y directions, as well as the glides orthogonal to x and y axis
are preserved in combination with TRS. All these properties are summarized in its
magnetic space group, which is Pb’c’a (No. 61.436) [67–69].

4.3.2 Electronic structures

To study the electronic structure, we performed density functional theory (DFT) cal-
culations as implemented in the Vienna ab initio simulation package (VASP) [49–52].
As it was shown in previous studies [35,157], the appropriate method to compute the
electronic structure is the local spin density approximation (LSDA) with no Hubbard
U correction [134], with the Dudarev simplified exchange correlation term, together
with PAW pseudopotentials. We used a grid of 7x7x7 k-points for the self-consistent
calculation.

The resulting band structures, with and without the effect of spin-orbit coupling
are shown in Fig. 4.1(b) and Fig. 4.1(c). Notice that the bands below the Fermi level
are polarized mainly in the direction of the majority spin (up, following the magneti-
zation), with a small minority pocket at the R point, as experimentally demonstrated
in Ref. [35].

Without SOC in a ferromagnet, the Schrödinger equation can be decoupled into
spin up and spin down sectors where spin is labeled in the quantization axis of the
ferromagnet. In one of the spin sectors, the symmetry thus appears to be the non-
magnetic one Pa3̄ (205), regardless of the orientation of the magnetization. This
artifice breaks down when SOC is included. Since SOC interaction has small effect



67 Iñigo Robredo. Topological Materials from a Symmetry Perspective

Figure 4.1: (a) Crystal and magnetic structure of CoS2. (b) and (c) Electronic band
structures near the Fermi level. (b) without and (c) with SOC interaction. Inside light
green circles, effect of the SOC interaction mixing spins. Inside dark green circles,
3fold degeneracy breaking when symmetry is lowered due to the SOC interaction.
Inside blue circles, symmetry enforced 4fold degeneracy.

on the band structure (see Fig. 4.1(b) and Fig. 4.1(c)), we expect the symmetry
breaking effects to be small. In the band structure plots shown in Fig. 4.1(b) and
Fig. 4.1(c), SOC couples both spins and opens gaps when spin-up and spin-down
bands meet (see light green circles). In addition, the 3-fold degeneracy at the Γ
point in the SOC-free plot is lifted when including SOC (see dark green circles). As
expected, the gaps are small.

4.4 Effective 4-fold k · p model

In Fig. 4.1 (b) we see that there is a 4-fold degeneracy near the Fermi level in k-point
M = (1

2
, 1

2
, 0) (see blue circles), which survives the addition of SOC as shown in Fig.

4.1 (c). Since we are interested in band crossings close to the Fermi level, we analyse
this degeneracy. It is a symmetry-protected degeneracy, following the 4-dimensional
irreducible co-representation at the M point. Following Group Theory tools, we can
construct the most general, symmetry allowed, low-energy Hamiltonian that describes
the 4-fold degeneracy in the vicinity of the M point. The resulting k ·p Hamiltonian
at first order in momentum and magnetization reads

H(k) = Bxf · σ ⊗ τ3 + kxvxBzσ0 ⊗ τ1 + kyvy · σ ⊗ τ1 + kzvzσ0 ⊗ τ3, (4.1)

where momentum k = (kx, ky, kz) is measured from M , σ, τ are Pauli matrices, Bx

is the magnetic field in the x direction and f , vx,vy, vz are undetermined constants.
This resembles the Hamiltonian of a Dirac fermion, but there are two main differences:
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first, the momentum-independentBxf ·σ⊗τ3 term, which gaps the 4-fold whenBx 6= 0
and second that both kx and ky go with τ1 and there is no τ2, so the resulting energy
dispersion does not result in a 3D cone:

E(k) = ±
√

(Bxf)2 + (vxBzkx + vyky)2 + (vzkz)2 (4.2)

where f =
√
f 2 and vy =

√
v2
y . To see that this is not a cone, we can do a rotation

of coordinates such that k1 = vxBzkx + vyky and k2 is orthogonal to k1 and lies in
the kz = 0 plane. In that case, the resulting energy dispersion would be cone-like in
k1, kz but completely flat in k2. Thus, we cannot compute topological quantities such
as the Chern number of half-filled bands, because they are completely degenerate in
the k2 direction.

Furthermore, we can rotate the model to find the corresponding k · p model in
the other M points, M2 = (1

2
, 0, 1

2
) and M3 = (0, 1

2
, 1

2
). {C31|0} symmetry transforms

momentum and magnetization in the same way, C31(kx, ky, kz) = (kz, kx, ky) and
C31(Bx, By, Bz) = (Bz, Bx, By). Then,


C31M1 = C31(1

2
, 1

2
, 0) = (0, 1

2
, 1

2
) = M3

C31Bx = C31(B, 0, 0) = (0, B, 0) = By

C31M3 = C31(0, 1
2
, 1

2
) = (1

2
, 0, 1

2
) = M2

C31By = C31(0, B, 0) = (0, 0, B) = Bz.

(4.3)

Notice that the momentum independent term that goes with Bx in M1 will go
with Bz in M2. Since we have chosen the direction of the magnetization in the z axis,
we predict that the 4fold will gap in the M2 point. We confirmed this by computing
the energy bands in the 3 Mi points (see Fig. 4.2 (a)) and we found two of them
degenerate (M1,M3) and one with a gap of 5.5meV, as shown in Fig. 4.2 (b). The
size of the gap is directly related to the energy scale of the SOC interaction. Thus,
as SOC effect is small, the gap opening is small too.

Apart from 4-fold degeneracy at the M1 and M3 points, we also found that the
planes kx = ±0.5 and ky = ±0.5 only have 2-dimensional magnetic irreducible co-
representations. This implies that the bands will always be 2-fold degenerate at
those planes, thus, they are Nodal planes. However, due to the presence of inversion
symmetry, they will not have topological charge [128].
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Figure 4.2: (a) Brillouin zone of the MSG Pb’c’a (No. 61.436) depicting the position
of unequivalent Mi points (extracted from the BCS). (b) Dispersion from Γ to the
different Mi points. The red arrow indicates the gap opening in M2, as predicted by
the k · p model.

4.5 Topological analysis: Nodal lines and Weyl

nodes

We now study the topological properties of CoS2 focusing on both Weyl nodes and
Nodal lines. The calculations in what follows are based on the interpolated Tight
Binding model in the Wannier basis [56] constructed from VASP ab-initio calculation
[49–52]. We performed Berry phase calculations, as well as surface calculations as
implemented in WannierTools [158].

We focus on the crossings between the last two valence bands near the Fermi
level (the two top bands polarized in the majority spin in Fig. 4.1(c)). We found
two nodal lines, one in the plane kz = 0 and another one in kz = π. Both planes
are left invariant by {mz|1/2, 0, 1/2} (see Fig. 4.3(a)), which is the symmetry that
protects both Nodal lines. In order to characterize the topological protection of the
Nodal line, we computed the Berry phase around a loop enclosing it. The location
of the Berry phase integration paths (red rectangles) is shown Fig. 4.3(a). Each red
rectangle represents an integrated Berry phase of π, thus, non-trivial Z2 index. We
conclude that the Nodal lines in both planes are topologically protected.

In Fig. 4.3 (b) we show the projection of both Nodal lines in the (001) direction.
We showed that the Nodal lines are topologically protected, but which region of the
kz = 0 plane will host surface states depends on the choice of cell origin [159]. We fix
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Figure 4.3: (a) Position of the Nodal lines in the BZ. Each red rectangle represents an
integrated Berry phase of π. (b) Projection of the Nodal lines in the (001) direction.
(c) and (d) Berry phase calculations on the paths depicted in (b). (e) Surface calcu-
lation in the (001) cleavage plane, computed along the red path shown in (b). Notice
that the drumhead surface states gap in regions where the Berry phase is equal to 0.
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Figure 4.4: (a) Position of the Weyl nodes in the BZ. (b) Surface calculation in the
(100) cleavage plane in the path depicted in (d). (c) Zoomed-in schematic depiction
of the surface states in the (100) cleavage plane near the M̄2-R̄ line. The location of
the projection of the Weyls into the surface is shown by red and blue dots. Dots with
a surrounding circle represent the projection of two Weyl nodes with equal chirality.
(d) Spin polarization of Fermi arcs in the surface calculation. They are polarized in
the direction of the majority spin, just like the bulk bands.
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our unit cell as shown in Fig. 4.1 (a). We compute the Berry phases (integrating on
kz) along the momentum paths depicted in Fig. 4.3 (b). The results of the calculation
are shown in Fig. 4.3 (c) and Fig. 4.3 (d). The calculations show that the Berry
phase inside the blue Nodal line is equal to π, while the Berry phase outside, or inside
the projection of both Nodal lines is equal to 0. Thus, the inside of the blue Nodal
line is the non-trivial region, with expected drumhead surface states, while the rest
of the regions are trivial. Berry phase calculation in Fig 4.3 (d) and surface spectrum
calculation in Fig. 4.3 (e) are done in the same momentum path, as depicted in
Fig. 4.3 (b). We performed the surface spectrum calculation via the Green’s function
iterative method [160], building a semi-inifinite slab as implemented in WannierTools
[158], based on the effective Tight Binding model in the Wannier basis [56] constructed
from VASP ab-initio calculation [49–52] We observe that drumhead surface states
survive only in regions where the Berry phase of Fig. 4.3 (d) is equal to π, while they
gap in regions where it is equal to 0.

By carefully examining the region close to the Fermi level we found a total of 8
Weyl points close to the Fermi level, whose location in momentum space is displayed
in Fig. 4.4 (a). In Fig. 4.4 (b), we show (100) surface spectrum for ky = 0, along
the momentum path depicted in Fig. 4.4 (d) in green. In this path, we cross the
projection of 4 Weyl nodes, projected pairwise with the same chirality. We can see
two bright surface states that connect the projection of the Weyl nodes, one within
the BZ and the other going through the boundary. Notice that Fermi arcs connect
Weyl nodes across the boundary of the BZ but they avoid the Nodal planes, which
are located at ky = ±π. In the (100) cleavage plane, we can observe 4 different Fermi
arcs as depicted in Fig. 4.4 (c). The Fermi arc close to the R̄ point connects the
projection of two opposite chirality Weyl nodes. Near the M̄ points, though, we can
see two Fermi arcs connecting the projections, instead of one. This is due to pairs of
Weyl nodes (with the same chirality) being projected in the same point. In Fig. 4.4
(d), we see the Fermi surface calculation on the (100) surface, schematized in Fig. 4.4
(c). The connection of the Fermi arcs is the same one as in the scheme of Fig. 4.4
(c), with single Weyl nodes connected by a single Fermi arc and double Weyl nodes
connected by two Fermi arcs. From the ab initio calculation we know that the bands
in the relevant energy window are predominantly polarized in the direction of the
majority spin. We computed the spin polarization of the Fermi arcs to see if they
inherit the polarization from the bulk. We show in Fig 4.4 (d) that the Fermi arcs
are completely polarized in the direction of the majority spin, as is the case in the
bulk.

There are several proposed applications for topological semimetals. In the field
of quantum optics, it has been shown that Weyl semimetals could be used to re-
alize a Veselago lens for electrons [38] (negative refractive index). It has also been
confirmed experimentally that Weyl semimetals have a quantized circular photogal-
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vanic effect [40, 161] due to their topological charge. In the field of electronics, Weyl
semimetals show signatures of the Chiral anomaly. There are materials that show a
large magnetorresistance, such as the family of TaAs [143], which can be harnessed
for the next generation of memory devices. The spin polarization of the Fermi arcs
can also influence the performance of a Weyl semimetal as a spin injector, improving
the expected bulk results [39].

4.6 Experimental results

In this section we will compare the theoretical predictions we made to recent angular
resolved photo-emission spectroscopy (ARPES) experimental results. This work has
been carried out by the teams lead by Niels Schröter (MPI Halle) and Leslie Schoop
(Princeton University).

In order to measure the bulk electronic band structure, two distinct cleavage
planes were obtained, one with a surface normal pointing along (111) and the other
one pointing along (100). They performed photon energy-dependent ARPES mea-
surements with soft X-ray photons (hν = 350− 800 eV) to locate the high-symmetry
planes along the kz direction normal to the sample surface. For the data measured
on the (111) cleavage plane in Fig. 4.5 (a), we can clearly identify circular Fermi
surface pockets at the R point in the corner of the Brillouin zone. Our calculated
Fermi surface (following the methods described in Sec. 4.5) in Fig. 4.5 (b) is in
good qualitative agreement with the experimental data, confirming the existence of
Fermi surface pockets at the point. When inspecting the experimental band disper-
sion along the R-X-R direction (see Fig. 4.5 (c)), we see that the circular pockets at
the R point are electron-like, and are related to another parabolic band with a min-
imum at around 0.65 eV by the exchange splitting. The magnitude of the exchange
splitting extracted from the energy distribution curve at the R point (see Fig. 4.5
(d)) is ∆E = 0.60(3) eV. Our LSDA calculations of the band dispersion shown in
Fig. 4.5 (e) are in good qualitative agreement with the experimental data and in-
dicate that the observed electron pocket is of minority-spin character, which implies
that CoS2 is not a true half-metal. However, the experimentally observed exchange
splitting is approximately 250 meV smaller than in the LSDA calculations, such that
the majority spin-bands are located closer to the Fermi-level in the experiment than
expected from the calculations.

To search for the topological Nodal line and Weyl-nodes in CoS2, they also probed
the bulk band structure in both cleavage planes containing the Γ point. Fig. 4.6 (a-
d) display the experimental and calculated Fermi-surfaces for the (111) and (100)
cleavage planes containing the Γ point, which are in good qualitative agreement.
Fig. 4.6 (e) shows the band dispersion along the M − Γ direction measured on the
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Figure 4.5: (a) ARPES Fermi surface on the (111) cleavage plane that cuts R. We can
identify circular electron pockets centered at the R point. (b) Ab initio calculation
on the same cleavage plane as (a). We observe that there is qualitative agreement
between experimental and theoretical calculations. (c) Experimental band dispersion
on the k path depicted in (a) (black arrow). Red arrows depict electron pockets
at the R point. (d) Experimental energy distribution curve at the R point. From
here we extract the value of the exchange splitting (∆E = 0.60(3) eV). (e) Ab-initio
calculation of bands in the same direciton as (c). We confirm that the electron pocket
in R is polarized in the direction of the minority spin.
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(111) surface (black arrow in Fig. 4.6 (a)), and the Γ −M direction, measured on
the (100) surface (black arrow in Fig. 4.6 (c)). Note that the observable bands
along these two directions are very different, possibly due to matrix element effects.
The line cut obtained from the (111) surface shows a V-shaped feature centered at
the M point, and a quasi-parabolic band centered at the Γ point. In contrast, the
dispersion obtained from the (100) surface shows a single band dispersing in the
opposite direction from the quasi-parabolic band. To enhance the contrast of our
data, we also show the corresponding second derivative spectrum in Fig. 4.6 (f). The
combined band dispersion from both surfaces is illustrated in Fig. 4.6 (g), which
displays the peak positions from a fit of the momentum distribution curves (MDCs).

By comparison with the calculated band dispersion shown in Fig. 4.6 (h), we can
see that the band crossing between the blue and red bands (from the (111) surface
and (100) surface, respectively) is part of a topological nodal line, while the blue
bands form a cone-like dispersion. The Weyl node that corresponds to the cone-like
dispersion is shown in Fig. 4.6 (i), which displays the calculated band dispersion
along the M∗ − Γ direction, where M∗ = (0.5, 0.458, 0.0) is a point that is slightly
displaced from M , such that we cross the Weyl node, which is identical to the M
point within the experimental uncertainty. Since we cannot observe the band top of
the blue bands along the M −Γ direction in the experimental data, we conclude that
the Weyl node must be located slightly above (but very close to) the Fermi-level.

To detect the theoretically predicted Fermi arcs, they used surface-sensitive VUV-
ARPES to investigate the surface electronic structure of the (100) surface in CoS2.
Fig. 4.7 (a) shows the experimentally obtained Fermi-surface, which was measured
on a strongly tilted crystal plane. Comparing to the LSDA calculation in Fig. 4.7
(b), we can clearly identify the Fermi arcs around M̄2, while the ones close to the
R̄ point are not visible. In Fig. 4.7 (c) we show the experimental line-cut in the
direction depicted in Fig. 4.7 (a) (black arrow). It displays a surface state band
crossing the Fermi level that connects two hole-like pockets that are located at the
points at opposite ends of the Brillouin zone. Comparing to the LSDA calculated
surface spectrum (see Fig. 4.7 (d)), we conlcude that those states are in fact Fermi
arcs. Note that the renormalized energy scale of the Fermi arcs in the calculation
compared to the experiment is expected due to the reduced exchange splitting, which
we already observed for the bulk band structure. Therefore, the Fermi arcs cross the
Fermi-level in the experiment, while they are located below the Fermi-level in the
calculation.
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Figure 4.6: (a-d) Experimental vs ab-initio calculation of Fermi surfaces. (a-b) On the
(111) cleavage plane that cuts Γ. Ab-initio calculation shows qualitative agreement.
(c-d) On the (100) cleavage plane that cuts Γ. Ab-initio calculation shows qualitative
agreement. (e) Line cuts of the M − Γ path extracted from both (111) and (100)
cleavage planes. We clearly see the location of the 4fold degeneracy. (f) Second
derivative of the spectrum in (e), improving contrast. (g) Combined band dispersion
from both cleavage planes, showing the location of the Nodal line and the Weyl node.
(h-i) Ab-initio calculation of bands in two close paths. (h) Location of the Nodal line.
(i) Location of the Weyl node. Notice that the separation of the two paths is smaller
than experimental accuracy.
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Figure 4.7: (a) Fermi surface calculation of surface spectrum in the (100) cleavage
plane. We indicate the location of the Femri arcs experimentally observable. (b)
Ab-initio Fermi surface calculation of surface spectrum in the (100) cleavage plane,
showing the location of Fermi arcs. (c) Line cut of experimental band spcetrum in the
direction depicted in (a) (black arrow). Red arrow shows the location of one of the
Fermi arcs. (d) Ab-initio calculation showing the Fermi arcs connecting Weyl nodes.
There is good agreement between experimental data and ab-initio calculations.

4.7 Conclusions

In this work we revisited the recently discovered Weyl semimetal CoS2 ferromagnetic
pyrite. We analyzed both Nodal lines and Weyl nodes found on the ferromagnetic
system. We found two nodal lines close to the Fermi level, with surface drumhead
states in the (001) surface. We also found a family of Weyl nodes close to the Fermi
level, with their distinctive Fermi arcs on the (100) surface. Compared to trivial dan-
gling bond surface states, Fermi arc surface states are more robust against attempts of
passivation, because they are protected by the topological invariants (Chern numbers,
chirality) of the bulk Weyl nodes; hence engineering of the interface potential cannot
easily remove the Fermi arcs. These surface states increase the number of available
electrons in the surface, thus improving its metallic properties for junctions. Follow-
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ing the spin polarization in the direction of the majority in the bulk, we checked if the
Fermi arcs are polarized in the same direction too, being this one of the few example
of spin polarized Fermi arcs in real materials [30]. The Fermi arcs would contribute to
the spin majority polarization, making it an interesting material for spintronics, like a
possible spin injector [31]. Therefore, CoS2 provides a prime example of a spintronic
material whose performance is affected by its topologically nontrivial band structure.

CoS2 is also known to be a good catalyst, e.g. for the hydrogen evolution reac-
tion [29], and it has recently been speculated that Fermi arcs in Pt- and Pd-based
chiral topological semimetals [110, 162] may play a role in catalysis due to their d-
electron character and their robustness against hydrogen passivation [163]. Since
the Fermi arcs in CoS2 are also derived from bulk bands of d-orbital character (see
supplementary), they might contribute to the catalytic performance of CoS2.

Finally, our findings of new Physics on this extensively studied ‘old’ material
raise the idea that we should continue looking for new phenomena in already well
established materials, which, apart from having some well known properties, are
more easily growable in the lab or encountered in nature.



Chapter 5

Breaking symmetries with strain:
Hall viscosity

Apart from magnetization, there are other physical phenomena that can lower the
symemtry of a system, possibly changing its topological porperties. In this chapter,
we will analyze the effect time-dependent strain has on one type of the multifold
fermions described in the introduction: the threefold fermion. We will focus on
the 3-fold fermion realized in cubic systems, such as SG P213 (198), with topological
charge C = 2. In what follows, we analyze the response of this 3-fold fermion to time-
sependent strain. During the research, we found a new, fundamentally 3 dimensional
Hall viscosity. We develop a model to analytically compute this new viscosity on a
toy model, to later generalize in which families of real materials it could be found.
The main results have been published in [164].

5.1 Introduction

One of the most important properties of topological systems is the robustness of the
topological indices. Since they are left invariant under small, adiabatic perturbations
of the system, physical properties that are directly dependent on them share this
robustness. The already classical example of this robustness is the Integer Quantum
Hall effect, which, if the necessary experimental conditions are met [165], can be
typically measured with an error of few parts per billion [166]. This is why Quantum
Hall Resistivity (QHR) was used to define the resistivity standard. The reason behind
the extraordinary quantization of the QHR is that this quantity is proportional to a
topological invariant; the first Chern number. Thus, this effect, that is not material
dependent, can be measured with high precision even in ”dirty” samples, making it
reachable for different samples and widely reproducible.

79
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Then, it is natural to ask if there exist other transport quantities that are tied
to topological invariants. Examples of this are the Quantized Circular Photogalvanic
Effect, a photocurrent whose response is quantized in Weyl semimetals [161] and the
dissipationless odd Hall viscosity in 2D [167], which is quantized in Chern insulators.
In this chapter, we will study the antisymmetric response of a multifold fermion with
Chern number C = 2 to strain, the Hall viscosity. Although we found it not to be
quantized, it can still be measured in systems measuring the local flow profiles or
thermoelectric transport coefficients in chiral magnets.

Classically, the relation between the stress and strain tensors can be described as
follows:

Tαβ = ξαβµνuµν + ηαβµν u̇µν , (5.1)

where u is the strain tensor, u̇ is the strain rate tensor (time-derivative of strain
tensor), ξ is the elastic modulus and η is the viscosity tensor. The part of the viscosity
tensor that is antisymmetric (ηAαβµν = −ηAµναβ) is called Hall viscosity, and gives rise
to a dissipationless force.

In rotationally invariant 2D fluids, there is a single Hall viscosity coefficient, re-
lated to the topological properties of the occupied electronic states [168–176]. Anal-
ogous to the QHE, the Hall viscosity is proportional to the integral of an adiabatic
curvature and is proportional to the Chern number. Then, it is quantized in 2D
Chern insulators. In clean systems, the Hall viscosity manifests in width-dependent
corrections to the Hall conductance of mesoscopic channels, backflow corrections to
the local current density near point contacts, and in moments of the semiclassical
distribution function [177–180]. Local voltage measurements on graphene samples in
magnetic fields have shown signatures of the Hall viscosity [181]. Hall viscosity also
appears in classical fluids with broken TRS like chiral active fluids [182, 183]. This
“momentum” Hall viscosity (MHV), describes a stress response that can be related to
a change in momentum density. The momentum Hall viscosity contains meaningful
information even beyond the hydrodynamic regime [168,184–186].

In parallel, a related geometric response coefficient (the phonon Hall viscosity
(PHV)) has gained attention. A response to dynamic strains via electron-phonon
coupling, and also a rank four tensor, the PHV is expected to appear in the disper-
sion for acoustic phonons [185, 187], and in spin-phonon coupled systems through a
contribution to thermal Hall conductance [188–191].

Beyond 2D, the role of nondissipative viscosity in transport remains largely unex-
plored. Reports of hydrodynamic behavior in TSMs [192], and the growing interest
in magnetic TSMs [193], raise the question of how to generalize the Hall viscosity
to 3D. Preliminary efforts have focused on quasi-2D transport [194–200], or made
use of preferred “polar” directions such as the Weyl node separation direction in
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TSMs. Furthermore, octahedral symmetry forbids the presence of a nonzero Hall
viscosity [184,201]. However, magnetic crystals may have nonpolar point group sym-
metries that are not octahedral; the nondissipative geometric response of such systems
remains an open question.

Looking beyond 2D, in this chapter we find that tetrahedral symmetry allows for
the appearance of a new, fundamentally 3D “cubic” Hall viscosity. To our knowledge
this has not been encountered before in the literature, and could be realized in a
wide array of classical and quantum fluids with broken TRS. For uniaxial flows, this
new viscosity gives raise to a force perpendicular to the flow direction which vanishes
when the velocity is constant along the direction of flow. As a proof-of-principle, we
focus on a toy model in the experimentally interesting case of the cubic MSG P213
(No. 198.9), with TRS breaking chiral magnetism. Chiral multifold fermions such
as these act as point sources of Berry curvature in the Brillouin zone [63, 202–209],
making them ideal models to explore topological response functions [204, 210–212].
We compute the MHV and PHV for this model. For the PHV, we consider an electron-
phonon coupling ansatz to derive the “phonon” strain coupling [185,187,199,213,214]
which will yield a resulting “phonon” stress tensor. For the MHV, we use the recently
introduced lattice formulation of stress response [176] to derive a coarse-grained strain
coupling corresponding to a conserved momentum density. Using the Kubo formula
for viscosity [175], we derive both the MHV and PHV for a spin-1 fermion. We
discuss the implication of our work for chiral magnetic TSMs such as the family
Mn3IrSi, Mn3IrGe, Mn3Ir1−yCoySi, and Mn3CoSi1−xGex [193,215,216] in MSG P213
(No. 198.9).

5.2 Properties of Point Group 23

Before we move on to compute the Hamiltonian of the system and derive the stress
tensors, we review the properties of Point Group 23, the Point Group associated to
SG P213 (198). We will describe the representations of 23 and their products. This
will allow us to identify the possible Hall viscosity components, and also provide a way
of writing down the most general, symmetry allowed strained Hamiltonian necessary
for the phonon-stress approach.

The set of generators we choose for the Point Group 23 is, in the vector represen-
tation V ,

V (C2z) =

−1 0 0
0 −1 0
0 0 1

 , V (C2y) =

−1 0 0
0 1 0
0 0 −1

 , V (C−31
) =

0 1 0
0 0 1
1 0 0

 .

(5.2)
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The character table for the representations of 23 can be found below:

(23) (T) E C2i C−3j C+
3j

A 1 1 1 1
2E 1 1 w w∗
1E 1 1 w∗ w
T 3 -1 0 0

Table 5.1: Character table for Point Group 23. w = e2πi/3. Notice that the vector
representation subduces to the T irreducible representation.

In this chapter we use the following irreducible tensors for 23: the Kronecker delta
δij, the Levi-Civita symbol εijk and two new tensors Θ and Λ, irreducible only for
Point Group 23, which can be used to contract indices and thus take products of
irreducible representations:

Θa
ij =

{
1√
3

(δ1iδ1j + δ2iδ2j − 2δ3iδ3j) a = 1

δ1iδ1j − δ2iδ2j a = 2

Λijk =

{
1 i 6= j 6= k

0 else.

(5.3)

Note that Θ carries an index a = 1, 2 relating to the two dimensional represen-
tation 1E2E, which is physically irreducible as introduced in Chapter (2). Indices
i, j, k represent coordinates in 3-dimensional space. By means of these tensors, we
can write explicitly the Kronecker Product table of the group1

A(x)⊗ A(y) = A(xy)

A(x)⊗ 1E2E(ya) = 1E2E(xya)

A(x)⊗ T (yi) = T (xyi)
1E2E(xa)⊗ 1E2E(yb) = A(δabx

ayb)⊕ A(εabx
ayb)⊕ 1E2E(−x1y1 + x2y2, x1y2 + x2y1)

1E2E(xa)⊗ T (yi) = T (x1yi)⊕ T (x2yi)

T (ai)⊗ T (bj) = A(δijaibj)⊕ 1E2E
(
Θa
ijaibj

)
⊕ T (Λijaibj)⊕ T (εijkajbk).

(5.4)

In the non-interacting regime, we can express Hamiltonians in the second quanti-
zation as combiantions of field bilinears. We can express these bilinears in terms of
square matrices, with the following interpretation:

1Remember that the product of irreducible representations is commutative.
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(Ψ†Ψ)a = Ψ†iλ
a
ijΨj, (5.5)

where a labels the different bilinears.

We can see how λ matrices transform from Ψ transformation rules. If we fix a
bilinear, we can do the following:

Ψ†iλ
a
ijΨj → Ψ†iR

−1
ik Rkmλ

a
mnR

−1
nl RljΨj = Ψ′†i Rikλ

a
klR
−1
lj Ψ′j, λaij → Rikλ

a
klR
−1
lj . (5.6)

These are the transofmration rules λa matrices transform.

The multifold fermion we are interested in transforms under the T representation
of 23, which is the little group of SG P213 at Γ. In this case, since our fermionic field
is 3 dimensional, there will be 3 × 3 = 9 independent λ matrices. One can use the
Gell-Mann matrices as a basis for bilinears, since they form a complete basis of 3x3
Hermitian matrices,

λ0 =

1 0 0
0 1 0
0 0 1

 , λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 ,

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

(5.7)

to parametrize the Hamiltonian near the Γ point,for states spanning the spin-1 multi-
fold fermion. At Γ, the basis states for this degeneracy transform under the irreducible
representation T of 23. In the non-interacting picture (and in second quantization),
the Bloch Hamiltonian is a matrix, which, as we said, is a bilinear form of the eigen-
states near that point (Ψ) that transoforms in the T̄ (Ψ̄i) ⊗ T (Ψj) = T (Ψ̄i) ⊗ T (Ψj)
representation, where indices i, j label the states. Thus, the nine Gell-Mann matrices
will transform under T ⊗ T . Following the Kronecker Product table, we can write
the subduced representation and symmetry adapted coordinates of the Gell-Mann
matrices in the point group 23. We find

ρΨ̄Ψ ≡ ρλ = A(λ0)⊕ 1E2E(λ8, λ3)⊕ T (λ6, λ4, λ1)⊕ T (λ7,−λ5, λ2). (5.8)
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For simplicity of notation, we will use through the chapter the following names
for the T representaitons:

L↔ T (λ7,−λ5, λ2)

L̃↔ T (λ6, λ4, λ1).
(5.9)

Notice that L forms a Pauli vector of spin-1 matrices. Thus, they are not only a
3-dimensional irrep of 23 but of the whole SO(3) group. L̃, though, does not, and only
transforms as vector in Point Group 23. We also use the letter indices a, b, c = 1, 2 to
write va, an element of the two dimensional representation 1E2E(λ8, λ3).

5.3 Threefold k · p model from Group Theory

We can exploit the Group Theory results in the previous section to write the most
general, symmetry allowed k · p Hamiltonian of the threefold degeneracy at Γ. For
that purpose, we will combine λ matrices with a general field2, which will transform
as a sum of the irreps of the group:

ρQ = A(Q0)⊕ 1E2E(Qa)⊕ T (Qi). (5.10)

Hamiltonians, being energy, have to be scalars. In terms of Representation Theory,
they transform under the identity or trivial representation. So the number of Hamil-
tonians we can construct is equal to the number of times the identity is contained in
the representation product of bilinears and the general field.

T (23) E C2i C−3j C+
3j

ρλ 9 1 0 0
ρQ 6 2 0 0

ρλ ⊗ ρQ 54 2 0 0

Table 5.2: Character table of the representations on the group T(23).

We can use the “Magic Formula” to compute the number of independent Hamil-
tonians allowed by symmetry (See Table 5.2):

mA1 =
1

12
(54 + 2 · 3) = 5, (5.11)

2Notice that by combining bilinear with the general field we will obtain all possible Hamiltonians
that are symmetry allowed. It might seem an overkill if we only want to know the first order
in momentum k · p Hamiltonian, but it will let us generalize our Hamiltonian to any interaction
immediately. It will be useful when trying to couple to magnetic field and strain.
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so we have 5 independent Hamiltonians. These Hamiltonians come from the product
of the representations ρλ and ρQ, explicitly,

(
A(λ0)⊕ 1E2E(λa)⊕ T (λSi )⊕ T (λAi )

)
⊗
(
A(Q0)⊕ 1E2E(Qa)⊕ T (Qi)

)
. (5.12)

Looking at the relations in equation (5.4), it is straightforward to see which are
the Hamiltonians that we get:

A(λ0)⊗ A(Q0)→ H0 ∝ Q0λ
0

1E2E(λa)⊗ 1E2E(Qb)→ H1, H2 ∝ δabλ
aQb, εabλ

aQb

T (λSi )⊗ T (Qj)→ H3 ∝ δijλ
S
i Qj

T (λSi )⊗ T (Qj)→ H4 ∝ δijλ
A
i Qj.

(5.13)

The most general Hamiltonian we can build will be a linear (complex) combination
of these pieces. Written in matrix form for a clearer understanding:

α0

Q0 0 0
0 Q0 0
0 0 Q0

+ α1


1√
3
Q1 +Q2 0 0

0 1√
3
Q1 −Q2 0

0 0 − 2√
3
Q1

+

α2


1√
3
Q2 −Q1 0 0

0 1√
3
Q2 +Q1 0

0 0 − 2√
3
Q2

+ α3

 0 Q5e
−iω Q4e

iω

Q5e
iω 0 Q3e

−iω

Q4e
−iω Q3e

iω 0

 .

(5.14)

where all coupling constants are now real (α0, α1, α2, α3, ω) and we have imposed
hermiticity. Also, to simplify notation, we have used that α′1H1 + α′2H2 = α1(H1 +
H2) + iα2(H2 −H1) and α′3 + iα′4 = α3e

iω.

5.4 k · p Hamiltonian: First Order Approximation

For studying the behavior of the bands near the degeneracy point we can construct
a Hamiltonian that depends on the crystal momentum and make a Taylor expansion
near that point. We will make that expansion in terms of δk, a small displacement
from the degeneracy point, Γ = (0, 0, 0). Since δk = (δkx, δky, δkz) is a vector, it
transforms under the T representation, T (δkx, δky, δkz). Comparing with equation
(5.14), we see the relation Qi → δki, so the most general Hamiltonian at first order
in momentum in the vicinity of Γ is:
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H(δk) = αk

 0 δkze
−iθ δkye

iθ

δkze
iθ 0 δkxe

−iθ

δkye
−iθ δkxe

iθ 0

 , (5.15)

where the precise value of the coupling constants (αk, θ) is to be determined for
each specific case. In general, what we will obtain is the most general form of the
Hamiltonians; Group Theory does not give any information on what their precise
values can be3. They have to be obtained experimentally or using some approximation
(DFT, Tight Binding...). The coefficient in the front, αk, can be thought of as the
Fermi velocity, in analogy to Dirac semimetals (graphene, for instance).The other
coefficient, the phase θ, is of great importance, since it controls the relative slope of
the bands at first order near the degeneracy point. If our system is TRS invariant,
this adds an extra restriction on w. Since TR operator complex conjugates, it leaves
the (λ6, λ4, λ1) matrices invariant, while changes the sign of (λ7,−λ5, λ2). Since the
momentum k also changes sign, if the system is TR symmetric there cannot be a
coupling with (λ6, λ4, λ1) at first order in k, which forces w = π/2. This is equivalent
to saying that the momentum k will only couple to matrices of L, without coupling
to L̃. Thus, we will have a Hamiltonian of the form S · k, with S the spin-1 matrices.
In this case, which we will later dub flat or isotropic, the model is symmetric not only
under Point Group 23 but under the full SO(3) group.

5.5 Hall viscosity with cubic symmetry

Let us examine the symmetry properties of the Hall viscosity tensor in systems with
tetrahedral symmetry. The symmetry analysis in this section holds for both the MHV
and PHV, although the interpretation of the resulting stress differs. We define the
Hall viscosity tensor as the antisymmetric (and therefore nondissipative) component
of the viscosity tensor ηi kj `, [169,176,184,194,217]

(ηH)i kj ` ≡
1

2

(
ηi kj ` − ηk i` j

)
. (5.16)

where i, j, k, ` index the three spatial directions. The Hall viscosity is odd under
TRS [218], and for a fluid with a nonuniform velocity field v`, leads to a viscous
stress4

δτ ij = −(ηH)i kj `∂kv
` (5.17)

3As it is often said in the field, the only exact result Group Theory outputs is 0 (symmetry
forbiden).

4We use the notation τ for the stress tensor and T for the integrated stress tensor Tµν =
∫
τµνd

3x
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Our goal is to identify the independent symmetry-allowed Hall viscosity coefficients.
Since these coefficients are scalars, we can determine them by using the invariant
tensors of Point Group 23 defined in the previous section. With them, we can identify
two viscosity coefficients compatible with tetrahedral symmetry:

(ηH)i kj ` = −η1εabΘ
ai
jΘ

bk
` +

η2√
3

(Λmijε
k

m ` − Λmk`ε
i

m j)

= η1(λ3 ∧ λ8)i kj ` +
iη2√

3
(λ1 ∧ λ2 + λ6 ∧ λ7 − λ4 ∧ λ5))i kj `,

(5.18)

where εab is the two-dimensional Levi-Civita symbol. In the second line we have
reexpressed the antisymmetric product of irreducible tensors in terms of the Gell-
Mann matrices λ. This shows that the η2 term is the antisymmetric dot product of
matrices transforming in two 3-dimensional T (vector) irreps,

L ≡ T (λ7,−λ5, λ2)

L̃ ≡ T (λ6, λ4, λ1).
(5.19)

each spanned by a triplet of Gell-Mann matrices.
Crucially, neither of η1,2 require a preferred spatial direction. This contrasts with

the familiar “quasi-2D” Hall viscosities which are proportional to a pseudovector (i. e.
a magnetic field). Thus, η1 and η2 are new, essentially 3D Hall viscosities, which can
be nonzero in systems with broken rotational symmetry. By contrast, octahedral
symmetry requires η1 = η2 = 0, as the two tensors in Eq. (5.18) do not transform
in the trivial representation of the group 432 (O). Furthermore, η1 and η2 can be
nonzero in centrosymmetric point groups such as Th (m3̄).

Next, we compute the viscous force density that is produced by these Hall viscosi-
ties, noting a difference in interpretation for forces due to MHV and PHV5,

f ηj = −∂iδτ ij = (ηH)i kj `∂i∂kv
`, (5.20)

where f η is the force density and δτ ij is the viscous stress tensor. We find that η1

and η2 contribute additively to f η:

f ηj =
η1 + η2√

3
Λmik∂i∂k

(
εmj`v

`
)
. (5.21)

We see that the fully symmetric tensor Λ, which is only invariant in systems with
tetrahedral symmetry, plays a key role in generating the nondissipative forces. Con-
trast this with quasi-2D Hall viscous forces, which take the form

f η,2Dj = η2DB
m∇2(εmj`v

`), (5.22)

5Both the MHV and PHV will give rise to viscous forces dictated by Eq. (5.20), the force density
MHV should be thought of as a rate of change of momentum density while the PHV force density
is a term in the phonon equation of motion.
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Figure 5.1: Schematic of η1 and η2. Dynamic strains (yellow) and viscosity give rise to
stresses (orange). In response to a dynamic strain that elongates the length and width
of a cubic parcel of fluid while compressing the depth, η1 produces a diagonal shear
stress. In response to a dynamic rotation of the parcel, η2 produces an off-diagonal
shear stress.

and require a symmetry-breaking pseudovector B.

Finally, since only the sum η1 + η2 appears in the viscous forces, there must exist
a divergenceless contact term which shifts between η1 and η2 in the bulk. This term
is

δτ ij = C0ε
mikΛmj`∂kv

`, (5.23)

which shifts

η1 → η1 +

√
3C0

2
(5.24)

η2 → η2 −
√

3C0

2
, (5.25)

analogous to the bulk redundancy between Hall viscosity and odd pressure in two-
dimensional systems [176,219]. We show the effects of η1,2 in Fig. 5.1.

5.6 Tight Binding model

Let us now consider a model for a cubic chiral magnetic system, and compute η1,2 for
both the MHV and PHV, as a proof-of-principle 6. Our tight-binding Hamiltonian is

6Note that this noninteracting model is not in the hydrodynamic regime
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Figure 5.2: (a) Lattice model for SG P213 (198). In red, neraest neighbors hopping.
In blue, complex phase φ, which is responsible for TRS breaking. The arrow shows the
effective magnetic field the phase creates. (b) Tight Binding model band spectrum.
We set the chemical potential to cut through the threefold at Γ. (c) Continuum
dispersion of the threefold fermion close to the Γ point. Λ denotes the momentum
cut-off.

H =
∑
nm,r,r′

c†nr′t
r,r′

nmcmr, (5.26)

consisting of s-type orbitals at the 4a Wyckoff position of SG P213 (No. 198), as
shown in Fig. 5.2 (a):

q0 = (x, x, x)

q1 = (1/2 + x, 1/2− x,−x)

q2 = (−x, 1/2 + x, 1/2− x)

q3 = (1/2− x,−x, 1/2 + x).

(5.27)

For simplicity, we take x = 0 in this work. However, we must take care that
simply setting x = 0 for this choice of orbitals leads to a lattice with the symmetries
of space group Fm3̄m (225) rather than P213 (No. 198.9). To avoid this, we will
determine the nearest neighbor hoppings with generic x, and then take the limit
x → 0. Considering hopping processes for nearest neighbor sites, the Hamiltonian
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matrix reads [202,204,205]:

H = 2t


0 e

−ikya
2 cos

(
kxa
2

+ φ
)

e
−ikza

2 cos
(
kya

2
+ φ
)

e
−ikxa

2 cos
(
kza
2

+ φ
)

e
ikya

2 cos
(
kxa
2

+ φ
)

0 e
−ikxa

2 cos
(
kza
2
− φ
)

e
ikza

2 cos
(
kya

2
− φ
)

e
ikza

2 cos
(
kya

2
+ φ
)

e
ikxa

2 cos
(
kza
2
− φ
)

0 e
−ikya

2 cos
(
kxa
2
− φ
)

e
ikxa

2 cos
(
kza
2

+ φ
)

e
−ikza

2 cos
(
kya

2
− φ
)

e
ikya

2 cos
(
kxa
2
− φ
)

0

 ,

(5.28)
where t is the overlap integral parameterizing hopping from neighbor to neighbor.
The phase φ represents a time-reversal symmetry breaking magnetic flux, introduced
via a Peierls substitution (see Fig. 5.2 (a)). In Fig. 5.2 (b), we can see the band
dispersion for the system with t = 1 and φ = 0.1.

5.6.1 Symmetry

This Hamiltonian satisfies the symmetry constraints of the MSG P213 (No. 198.9),
with:

ρ
(
{C−31
|000}

)
=


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , (5.29)

ρ

(
{C2x|

1

2

1

2
0}
)

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 e−
1
2
i(kx−ky), (5.30)

ρ

(
{C2y|0

1

2

1

2
}
)

=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 e−
1
2
i(ky−kz), (5.31)

so that
ρ(g)†H(k,Q)ρ(g) = H(gk, gQ), (5.32)

where k is crystal momentum and Q is any external field. When exactly at the
Γ point, Γ = (0, 0, 0), bands with different eigenvalues decouple, so we can rewrite
the Hamiltonian into the basis of symmetry adapted coordinates at Γ. These are the
coordinates that block diagonalize the symmetry operators in Eq. (5.29). The change
of basis matrix is:
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U =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (5.33)

5.6.2 Threefold at the Γ point: energies and states

We can expand the Hamiltonian Eq. (5.28) around the Γ = (0, 0, 0) point, and apply
the unitary transformation Eq. (5.33) to obtain the low-energy model

H =
∑
nmk

c†nkf(k)cmk,

f(k) =

(
6t cos(φ) ivF e

iφkT

−ivF e−iφk h

) (5.34)

where the Fermi velocity is vF = ta, with t the Tight Binding hopping parameter
and a the lattice constant. The lower-right block corresponds to the ‘spin-1’ bands
(threefold fermion) with

h = vF

(
cos(φ) k · L + sin(φ) k · L̃

)
− 2t cos(φ)λ0. (5.35)

If we take θ = φ+ π
2
, the energies for general φ are given by [204]

En =
2|k|√

3
cos

(
1

3
arccos

(
3
√

3kxkykz
|k|3

cos(3θ)

)
− 2π(n− 1)

3

)
. (5.36)

Above n ∈ {1, 2, 3} indexes the three states 7, for small φ, the threefold dispersion
takes a form that matches Fig. 5.2 (c),

E1 = |k|+ 3φ
kxkykz
|k|2

+O(φ2)

E2 = −6φ
kxkykz
k2

+O(φ2)

E3 = −|k|+ 3φ
kxkykz
|k|2

+O(φ2)

(5.37)

which have normalized eigenfunctions given by

ψn =
1√

(3E2
n − |k|2)(E2

n − k2
z)

 E2
n − k2

z

Enkxe
−iθ + kykze

2iθ

Enkye
iθ + kxkze

−2iθ

 . (5.38)

7We neglect the constant shift given by the λ0 term
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Now that we have the effective model of the threefold near the Γ point, we can
analyze its symmetries. Dropping the constant term in Eq. 5.35 and making vF = 1,
we have that the effective Hamiltonian takes the form:

HΓ = cosφk · L + sinφk · L̃. (5.39)

The contribution L · k, with k = (kx, ky, kz), has full SO(3) invariance, while L̃ · k is
invariant only under point group 23. We understand this as follows: the Gell-Mann
matrices in Eq. (5.7) belong to T ⊗ T , which can be obtained via subduction from
the (l = 1)⊗ (l = 1) representation of SO(3). Denoting the irreps of SO(3) by their
dimension 2l+1, the rules of angular momentum composition give 3⊗3→ 1 (scalar) +
3 (antisymmetric rank 2 tensors) + 5 (traceless symmetric rank two tensors). Now,
L = (λ7,−λ5, λ2) are antisymmetric and belong to 3, the vector representation of
SO(3). On the other hand, L̃ = (λ6, λ4, λ2) are symmetric and together with the
two traceless symmetric matrices (λ3, λ8) form a basis for the irrep 5 (l = 2) of
SO(3). Thus L̃ can not be promoted to a vector of SO(3) and, as a consequence,
L̃ · k can not be invariant under SO(3). Instead we have the subduction rule 5
(λ6, λ4, λ2, λ3, λ8) → T (λ6, λ4, λ2) + 1E2E(λ8, λ3). Thus, we see directly why φ 6= 0
implies a breaking of continuous rotational symmetry.

From Eq. (5.34), we see that when φ is small there is a gap of order t separating
the spin-0 and spin-1 fermions at Γ. Thus for small φ and k, transitions from the
threefold to onefold degeneracies mediated by the off-diagonal elements of f(k) are
parametrically small, and we can restrict our attention to the spin-1 fermion. Fur-
thermore, in the continuum limit a → 0 with vF = ta fixed, we see that the gap
becomes infinitely large. With this in mind, we focus specifically on the threefold
fermion.

5.7 Stress Response

In this section we will analytically compute the stress tensor derived from both phonon
and continuity methods. To compute the MHV and PHV, we employ the stress-stress
form of the Kubo formula [175] (in the limit ω+ → 0)

(ηH)µ λ
ν ρ =

1

2ω+V

∫ ∞
0

dteiω
+t
(
〈[T µν (t), T λρ (0)]

−[T λρ (t), T µν (0)]〉
)
. (5.40)

To do so we first must define a stress tensor

Tµν =
∑
nmk

c†nkTµν(k)cmk, (5.41)
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corresponding to Eq. (5.26). For the PHV, we define the stress by considering an
electron-phonon coupling ansatz [185,187,220] and perturbing the background lattice,
yielding the phonon stress tensor. The phonon stress results from microscopically
perturbing the lattice via phonons, relating to atomic displacements. For the MHV,
we perturb the electronic degrees of freedom directly via coupling to background
geometry [175, 176], yielding the continuity stress tensor. This is a coarse-grained
stress tensor that directly corresponds to momentum transport in the long-wavelength
limit, and can be identified with the stress tensor of fluid dynamics.

5.7.1 Phonon Stress Tensor

In the phonon method, strain is introduced into the model through small displace-
ments of the orbital positions, modifying the hopping parameters tr,r

′
nm as

tr,r
′ → e−(δr)tr,r

′
+O(δr2). (5.42)

Above, δr is the change in distance between orbitals given by the applied (unsym-
metrized) strain as uµν = ∂µδrν

8. Applying this prescription to Eq. (5.26) we define
the phonon stress tensor as

T (p)
µν =

δH(uµν)

δuµν
(5.43)

Given the structure of the viscosity tensor Eq. (5.18) and the fact that antisym-
metric strains enter only at higher orders in δr in Eq. (5.42), it suffices to consider
“diagonal” strains (i.e. uxx, uyy and uzz)

9. Following Eq. (5.42) and Eq. (5.43), we
get the following changes to the hopping parameters in terms of strain:

t01, t23 → t+ (uxx + uyy)t

t02, t13 → t+ (uyy + uzz)t

t03, t12 → t+ (uzz + uxx)t

(5.44)

Plugging this into the tight binding model of Eq. (5.28), we have that the strained
Hamiltonian takes the following form:

8Note that we do not symmetrize the strain tensor, and though this object is sometimes called
the distortion tensor, we choose this convention to be consistent with [175,176]

9off-diagonal yet symmetric strains do not contribute to η1
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H = 2t


0 fabe

−ikya
2 cos

(
kxa
2 + φ

)
fbce

−ikza
2 cos

(
kya
2 + φ

)
face

−ikxa
2 cos

(
kza
2 + φ

)
fabe

ikya

2 cos
(
kxa
2 + φ

)
0 face

−ikxa
2 cos

(
kza
2 − φ

)
fbce

ikza
2 cos

(
kya
2 − φ

)
fbce

ikza
2 cos

(
kya
2 + φ

)
face

ikxa
2 cos

(
kza
2 − φ

)
0 fabe

−ikya
2 cos

(
kxa
2 − φ

)
face

ikxa
2 cos

(
kza
2 + φ

)
fbce

−ikza
2 cos

(
kya
2 − φ

)
fabe

ikya

2 cos
(
kxa
2 − φ

)
0

 ,

(5.45)

with fab = 1+a+ b and (a, b, c) ≡ (uxx, uyy, uzz). We now transform tha Hamiltonian
into the symmetry adapted coordinate basis using Eq. (5.33) and expand to first
order in the product of strain and momentum. The resulting perturbed Hamiltonian
is:

t


0 −kx(a+ b)sφ + ikx(a+ c)cφ −ky(b+ c)sφ + iky(a+ b)cφ −kz(a+ c)sφ + ikz(b+ c)cφ

−kx(a+ b)sφ − ikx(a+ c)cφ 0 kz(a+ c)sφ − ikz(b+ c)cφ ky(b+ c)sφ + iky(a+ b)cφ
−ky(b+ c)sφ − iky(a+ b)cφ kz(a+ c)sφ + ikz(b+ c)cφ 0 kx(a+ b)sφ − ikx(a+ c)cφ
−kz(a+ c)sφ − ikz(b+ c)cφ ky(b+ c)sφ − iky(a+ b)cφ kx(a+ b)sφ + ikx(a+ c)cφ 0

 ,

(5.46)

with (sφ, cφ) ≡ (sin(φ), cos(φ)) and (a, b, c) ≡ (uxx, uyy, uzz). When taking into
account lab frame effects10 [221], we get an extra term in the first row (column)
of the Hamiltonian that can be expressed as a vector δH = 2icφ (0, ckz, akx, bky)

(δH = −2icφ (0, ckz, akx, bky)
T ). There is no contribution to the bottom 3x3 block at

this order, so the viscosity tensor for the threefold fermion remains unchanged.

When coupling to antisymmetric strain, the distances between orbitals do not
change at first order in strain, so the contribution to the stress tensor is zero within
our series expansion. There is a coupling, however, when considering lab-frame effects.
Just as above, there is no contribution to the 3x3 or 1x1 blocks describing the low en-
ergy physics of the system, but there is a contribution to the row connecting them. In
this case, this contribution reads δH = 2icφ (0, u13kx + u23ky,−u12ky − u13kz, u12kx − u23kz).
Thus there is no coupling of the spin-1 fermion to anti-symmetric strain in the phonon
method. This translates in η2 being zero at this order of approximation.

We can now compute explicitly the phonon stress tensor as defined in 5.43. The

10When introducing strain into the Hamiltonian as a displacement of the lattice, there are two
places in which it enters; first, the one we already described, as a change in the hopping parameter
sue to the distance change. Second, in the Bloch phases exp(ik · qi), which depending on the frame
(lab vs crystal) would get an extra term in the exponent due to the strain of the atomic positions
qi → (1 + uij)qj
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diagonal phonon stress tensor restricted to the spin-1 fermions is

T (p)
xx (k) = vF cos(φ) (kxLx + kyLy)

+vF sin(φ)
(
kxL̃x + kzL̃z

)
(5.47)

T (p)
yy (k) = vF cos(φ) (kyLy + kzLz)

+vF sin(φ)
(
kxL̃x + kyL̃y

)
. (5.48)

T
(p)
µν transforms as a tensor in the point group 23, which is the point group describing

both the underlying lattice and the Γ point. Note that even when φ = 0, although
the Hamiltonian h is invariant under SO(3), T

(p)
µν is covariant only under the discrete

group 23. This comes from the fact that the phonon stress is sensitive to the actual
position of orbitals in the unit cell. As we will see afterwards, this is not the case for
the continuity method, which is isotropic for φ = 0.

5.7.2 Momentum Continuity Stress Tensor

In this section we describe the continuity method (corresponding to the “momentum”
Hall viscosity), which is the approach to long-wavelength momentum transport and
stress response for lattice systems recently formulated in Ref. [176] for two dimen-
sional systems. First we describe the generalization of the approach in Ref. [176] to
three dimensions, focusing specifically on cubic lattices. Next, we present the long-
wavelength lattice stress tensor for the full four band tight binding model, which
simplifies to T

(c)
µν when considering the threefold fermion at the Γ point.

In this approach, the stress tensor is identified through a long-wavelength analog
of a continuity equation for momentum density. In the continuum, the momentum
continuity equation describes a relationship between momentum density and stress:

∂tgν(r) + ∂µτµν(r) = f ext
µ (r). (5.49)

Above f ext is the density of external forces acting on the continuum system. In a
system with Hamiltonian H, internal angular momentum generator Lint, and f ext =
0, we can write the integrated stress tensor Tµν =

∫
d3rτµν(r) in terms of strain

generators Jµν as [175,222]
Tµν = −i[H,Jµν ]. (5.50)

The strain generators are made up of two terms, the first below accounting for
spatial deformations (which we call the “kinetic” part) and the second due to rotations
of internal angular degrees of freedom:

Jµν = −1

2
{xµ, pν} −

1

2
εµνρL

ρ
int. (5.51)
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On the lattice, with discrete rather than continuous translation invariance, we
no longer have the continuity equation Eq. (5.49), and our notion of momentum
transport outlined above must be modified.

We start by considering the lattice momentum density operator gLµ , which can be
decomposed into a kinetic part and a contribution due to internal angular momentum
Lint. The kinetic piece can be written

gkinµ (R) =
i

4|aµ|
∑
n

(
c†nR+aµ

cnR − c†nR−aµcnR + c†nRcnR−aµ − c
†
nRcnR+aµ

)
, (5.52)

We note the Bravais lattice vectors for this cubic lattice can be written aµ = aeµ,
where eµ denote Cartesian basis vectors. The internal angular momentum contribu-
tion is given by [176,222]

gintµ (R) =
∑
nmν

1

4|aν |
εµνρ(Lint)

nm
ρ

(
c†nR+aν

cmR − c†nR−aνcmR + c†nRcmR+aν − c
†
nRcmR−aν

)
.

(5.53)
If we write the total lattice momentum density gL(R) ≡ gkin(R) + gint(R) in

momentum space with coordinate q, we can expand in powers of q in the long-
wavelength limit q→ 0, finding

gL
µ(q) = Pµ + i

∑
ν

qνJL,νµ +O(q2). (5.54)

We see that the momentum density in orders is given by the zeroth order contri-
bution – the total momentum Pµ (which is identically gLµ (0)) – and the first order
contribution which is expressed in terms of the lattice strain generators, which gen-
eralize the continuum strain generators found in Ref. [175],

JL,µν ≡ −
i

2

∑
knm

c†nk

[{
sin k · aν
|aν |

,
∂

∂kµ

}
δnm + i

∑
ρ

εµνρ cos k · aµ(Lint)
nm
ρ

]
cmk.

(5.55)
The long-wavelength lattice stress can now be calculated from the strain generators

Eq. (5.55) in the same way as in the continuum:

TL,µν = −i[H,JL,µν ]. (5.56)

The continuity stress T
(c)
µν is defined via a lattice analog of the momentum conti-

nuity equation (See SM) [176], resulting in:
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T (c)
µν (k) =

(
kν∂µf(k) +

i

2
εµνρ

[
f(k), Lint

ρ

])
. (5.57)

T
(c)
µν contains contributions from “kinetic” strains (spatial deformations) and from

“spin” strains due to the internal angular momentum Lint. The continuity stress
generalizes the Belinfante (improved) stress tesnor [176,222,223]

In our model, we have LΓ
int = 0 ⊕ L describing the spin-0 and spin-1 fermions.

Using this, we can compute the stress tensor near the Γ point restricted to the spin-1
fermion to find:

T (c)
µν =

vF cos(φ)

2
(kµLν + kνLµ)

+
vF sin(φ)

2

(
3kνL̃µ − kµL̃ν +

∑
aρλ

εµνρΘ
a
ρλkλε

abvb

)
, (5.58)

where a, b = 1, 2 as in Eq. (5.3).

Note that T
(c)
µν 6= T

(p)
µν . In the continuity approach, antisymmetric stress (caused

by anisotropy) enters at order φ and T
(c)
µν matches the symmetries of the Bloch hamil-

tonian at the Γ point (when φ = 0 the continuity stress is SO(3)-covariant). By
contrast, when φ = 0 the phonon stress is anisotropic. The distinction between the
two stress tensors stems from their different physical interpretations: the phonon
stress is sensitive to the nonzero orbital positions of the 4a Wyckoff position, which
results in anisotropy in T

(p)
µν when φ = 0. Contrarily, the continuity stress averages

over intra-unit cell momentum transport, and so is sensitive only to the symmetries
of the effective Hamiltonian. Below, we will compute the PHV with T

(p)
µν , and the

MHV with T
(c)
µν .

5.8 Hall Viscosity

Next we compute the Hall viscosity coefficients η1 and η2 from Eq. (5.18), and the
physical response ηtot = η1 + η2, for both the MHV and PHV.

5.8.1 PHV and MHV

Focusing on the spin-1 fermion, we can simplify the Kubo formula Eq. (5.40) in terms
of eigenstates |n〉 of h as

ηH
ijkl =

−1

4π3

∫
d3k

∑
n6=m

Onm
∆ε2nm

Im (〈n|Tij |m〉 〈m|Tkl |n〉) , (5.59)
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where ∆εnm = εn − εm, and the relative occupation factor is Onm = n(εn − µ, T ) −
n(εm−µ, T ) with n(ε, T ) = (1+eε/T )−1 the Fermi distribution with chemical potential
µ and temperature T 11.

For the PHV, the stress tensor Eq. (5.43) is explicitly symmetric under µ↔ ν and
therefore η2 = η1221 is zero. The total PHV in this case is entirely due to η1 = η1122,
and given by (to first order in φ):

η
(p)
tot = η

(p)
1 =

v2
F

8π3

{
β1 (−17Λ3 + 60µ3)φ, µ > 0

β1 (−17Λ3 + 42µ3)φ, µ < 0,
(5.60)

where the momentum cut-off Λ in Fig. 5.2 (c) regulates the integral in Eq. (5.59),
and β1 = 4π

2835
≈ 0.00443.

By contrast, for the MHV, the total viscosity to first order in φ is entirely due to
η2. Using the energies and eigenvectors given in Eq. (5.37) and Eq. (5.38), we find
that the integrand for η1 in Eq. (5.59) has an energy denominator that is odd in kz at
order φ, which suppresses the zeroth order contribution from the numerator. When
the states are taken to zeroth order in φ, the numerator is odd in kx and ky, and
when the states are taken to first order in φ the only nonvanishing matrix elements
in the numerator are odd in kz, all of which leads to η1 = 0 12. The total MHV is

η
(c)
tot = η

(c)
2 =

v2
F

8π3

{
β2 (Λ3 − µ3)φ µ > 0

−β2 (Λ3 + µ3)φ µ < 0,
(5.61)

where β2 = 4
405
π ≈ 0.0310. Around µ = 0, the viscosity is discontinuous. This arises

from the fact that, since the antisymmetric part of the coninuity stress is linear in
φ, we must consider the unperturbed band structure in the energy denominators in
Eq. (5.59). When φ = 0, the band structure has a flat band bisecting two linealry
dispersing bands. The filling of the flat band when µ passes through zero then causes
the discontinuity in η2, which we can attribute to the contribution of this band to the
Hall viscosity. We plot η

(c,p)
tot in Fig. 5.3.

Similar to the Hall viscosity for Dirac fermions in 2D [176, 185, 224], we see that

both η
(p)
tot and η

(c)
tot consist of two terms, one of which depends explicitly on the cutoff Λ.

We can interpret the cutoff-independent contribution (or, more properly, its derivative
with respect to chemical potential) as the Fermi surface contribution to the Hall
viscosity, while the cutoff-dependent term parametrizes unknown contributions to
the viscosity from occupied states at large momenta.

11We introduced temperature to regularize the angular integral, and then took the T → 0 limit
12There are no zeroth order contributions to the Hall viscosity as the model gains an effective

rotational symmetry as φ = 0
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Figure 5.3: Integrated Hall viscosity as a function of chemical potential. Notice there
is a jump in the MHV when µ = 0.

5.8.2 Lattice Viscosity

Using the continuity stress tensor, we can go beyond this approximation to compute
the MHV for the full tight-binding model numerically. The general form of the lattice
stress for three dimensional cubic lattices (where we can write aµ = aeµ) is given by

Tµν =
∑
nmk

c†nk

(
∂µfnm(k)

sin(k · aν)
|aν |

+ i
∑
ρ

cos(k · aµ)εµνρ [f(k), (Lint)ρ]nm

)
cmk

≡
∑
k

c†kTµν(k)ck.

(5.62)
We now specify to our tight-binding model in MSG P213 (No. 198.9). In the sym-

metry adapted coordinates described by the transformation Eq. (5.33), the internal
angular momentum generator takes a block diagonal form with a spin zero and spin
one (threefold) contributions

Lint = 0⊕ L. (5.63)

It’s also possible to view the internal angular momentum generator in the non-
symmetry adapted coordinates (which Eq. (5.28) is written in) where we write the
internal angular momentum as L′int = ULintU

T . For our model in Eq. (5.28), the
stress is therefore given by

Tµν(k) = T kin
µν (k) + T spin

µν (k) =
sin(kνa)

a
∂µf(k) + i cos(kµa)εµνρ

[
f(k), L′ρ

]
. (5.64)
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Figure 5.4: (a-b) Momentum cuts (kz = 0) of lattice Hall viscosity density. Notice
that it complies with the symmetries of the system. (c) Numeric integration of the
lattice Hall viscosity. Notice that there is no jump at µ = 0.

Equipped with a long-wavelength stress tensor we can compute the Hall viscosity
on the lattice using the stress-stress Kubo formula from the main text. Unlike in the
main derivations of PHV and MHV, where we consider the physics the Γ point at
small φ and consider only the threefold fermion, we must take into account the full
four band model in Eq. (5.28) to compute the viscosity. This can be seen in Fig.
(5.2) (b), where at the Γ point the gap between the threefold and the fourth band is
not sizable enough to neglect the fourth band.

In contrast to the result for the total viscosity in the main text, we see in Fig. 5.4
(c) that there is no discontinuity across the µ = 0 point. We also plot some cuts of
the Hall viscosity density, to see that it is non-zero along whole planes (in particular,
kz = 0) and that it complies wuth the symmetries of the system in. We show the
results in Figs. 5.4 (a) and (b).

5.9 Conclusions

We have highlighted a manifestly 3D cubic Hall viscosity (MHV and PHV), which
appears in systems with tetrahedral symmetry. As a proof-of-concept, we have shown
that these viscosities are nonzero for a threefold fermion at the Γ point in MSG P213
(No 198.9). Using our phonon and continuity methods to examine the stress response
in this model, we found that both the MHV and PHV were nonzero in this system.
We also emphasize that the MHV and PHV are responses defined for distinct stress
tensors. The MHV corresponds to the “continuity” stress that exactly matches the
symmetries at the Γ point, while the PHV corresponds to the “phonon” stress which
is intimately connected to the elastic response of the underlying lattice model.

Beyond our proof-of-principle calculation, the manifestly 3D nature of the cubic
Hall viscosity suggests that viscous transport in three-dimensional magnetic materials
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can be phenomenologically different than in two dimensions.
In particular, measuring the local flow profiles [196, 225] or thermoelectric trans-

port coefficients [192] in magnets in the tetrahedral SGs (Nos. 195–206) would reveal
the signatures of our 3D viscosity. For example, outside of MSG 198.9, we could con-
sider a 3D cubic magnet with approximate Galilean symmetry at low energies. For
such a system the force tensor Eq. (5.20), and therefore the MHV13, is proportional
to the wavevector dependent Hall conductivity [175,217,226]

ω2δσHij ∝ η
(c)
totΛ

mk`qkq`εmij ≡ η
(c)
totV`(q)ε`ij, (5.65)

where the vector V(q) highlights the structural parallel with the natural optical
activity of a crystal [204].

We can decompose V into longitudinal and transverse components as V‖ =
q̂(q̂ · V) = 6ηtotqxqyqz/|q| and V⊥ = V − V‖. We then see that V‖ gives a q-
dependent correction to natural optical activity, while V⊥ leads to a Hall current
proportional to the longitudinal component of the electric field. Note, crucially,
that V‖ vanishes for plane waves at normal incidence. Furthermore, in tetrahedral
systems without Galilean invariance, this wavevector-dependent contribution to the
conductivity need not be zero; the fate of the viscosity-conductivity relation in these
systems (generalizing work such as Ref. [227]) is an interesting avenue for further
study. Analogous considerations for flow in narrow channels suggest that ηtot may
play a role in interaction-dominated transport in narrow channels [177, 178]. The
physical signatures of PHV proposed in spin-phonon and electron-phonon coupled
systems [187,189–191], such as contributions to thermal Hall conductance and modi-
fications to phononic dispersion, could be probed as well in these systems to measure
the cubic PHV. The frequency and disorder [228] dependence of the MHV and PHV
could also yield interesting insights. As none of our results are specific to the hydro-
dynamic regime, we expect disorder that preserves the symmetry on average will not
modify our qualitative conclusions.

Chiral magnets such as the family of Mn3IrSi [215,216] are promising platforms to
study these effects. As shown in Ref [193], this compound has a noncollinear magnetic
configuration preserving the size of the unit cell; group theory analysis showed further
that the ground state magnetic order preserved all of the unitary symmetry operations
consistent with MSG P213. Another interesting candidate is MnTe2 in MSG Pa3̄
(No. 205.33) [65, 229, 230]. It has a reported noncollinear magnetic structure, with
the magnetic moments of the four inequivalent manganese ions pointing along the
cubic body diagonals. Although naturally a semiconductor, Ag-doping could increase
the carrier concentration [231].

13The viscosity-conductivity relation [175] applies to the MHV and not the PHV, as it relies on
the continuity equation
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Concluding thoughts

In this thesis we study topological physics from the lens of symmetry. First, in Chap-
ter 2, we introduce the formalism of topological quantum chemistry, which relates
topological properties of filled bands to their Wannier description. As we show in
depth for the particular case of graphene, we can extract the wannierizability of the
bands from the symmetry properties of Bloch wavefunctions at high symmetry mo-
menta in the BZ. Following the resulting symmetry analysis, we predict that any
ordering of graphene bands is topological, either a topological insulator or a topolog-
ical semimetal.

Other than predictive power, TQC can also diagnose realistic materials. In Chap-
ter 3, we apply the formalism to PbTe, which was predicted to host Dirac fermions on
a two-dimensional antiphase boundary on an ”old”, simplified tight binding model.
Within TQC, we compute the symmetry indicators of filled bands to find a non-
trivial νZ8 = 4 index, which could correspond to two different topological insulator
states. By means of Wilson loop calculations both in the TB model and ab initio
calculations, we conclude that PbTe is a mirror Chern insulator. Furthermore, we
show that even if the original model lacked the symmetries of the PbTe lattice, any
symmetric completion of the model is analogously topological. Thus, their findings
are now well understood in the framework of topological crystalline insulators. Even
though PbTe has been experimentally found to be a trivial insulator, our calculations
for several values of the lattice constant show that, taken optimistically, PbTe is close
to a TI transition. These results remark the importance of finding the appropriate
exchange correlation functional to describe the system at hand, which is necessary
to achieve a good prediction of the gap but it is crucial to determine the topology of
narrow-gapped materials.

We showed the important role crystalline symmetries have on topology, both for
predicting and protecting topological phases. We then study the effect symmetry
breaking has on topology. In Chapter 4, we study a particular example of time reversal

102
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symmetry breaking (magnetic) material, extensively studied metallic ferromagnetic
CoS2. We found a family of 8 Weyl nodes close to the Fermi level, which are allowed
due to TRS breaking, even though inversion symmetry is present. Following the
surface spectrum analysis, we also find single and double Fermi arcs connecting the
projection of Weyl nodes into the (100) surface facet. Remarkably, the Fermi arcs are
completely spin polarized in the direction of the majority spin. Thus, even if there
is a minority spin pocket in the bulk, we expect the density of states of the majority
spin to be increased due to the spin polarized Fermi arcs. We also find Nodal lines
near the Fermi level, which have drumhead states in the (001) facet. One of the most
remarkable results of this work is that new physics can be hidden in materials that
have been extensively studied in the past. Thus, there are whole families of very well
characterized materials, which are accesible either by growing or found in nature, that
can host new topological phases that can be accessed experimentally.

Lastly, we analyze the symemtry breaking of crystalline symmetries by means of
strain. We analyze the effect strain has on a topological multifold fermion, the 3-fold.
It can be found in 3D materials with tetrahedral space groups, such as P213 (198).
We found a new, purely 3 dimensional response to time-dependent strain, which we
name Hall viscosity analogously to the 2D case. Following the phonon and continuity
methods, we compute the value of this viscosity explicitly in a toy model, that serves
as a proxy for 3D chiral magnets, such as the family of Mn3IrSi. We expect this
viscosity has measurable effects both from the phonon method as new force terms in
the phonon dispersion and from the momentum coninuity method in measurements
of local flow profiles or in thermoelectric transport coefficients. Our work paves the
way for studying purely 3D Hall viscosity coefficients for other systems with reduced
symmetry, such as the cubic chiral magnet MnTe2 in MSG Pa3̄ (205.33).
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N. B. M. Schröter∗, Iñigo Robredo∗, S. Klemenz, R. J. Kirby, J. A. Krieger, D.
Pei, T. Yu, S. Stolz, T. Schmitt, P. Dudin, T. K. Kim, C. Cacho, A. Schnyder,
A. Bergara, V. N. Strocov, F. de Juan, M. G. Vergniory, L. M. Schoop
Science Advances 6, (2020)

� Theoretical study of topological properties of ferromagnetic pyrite CoS2
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Appendix A

Definitions

Definition 6. (Bravais lattice). A Bravais lattice is an infinite set of translations t
generated by d linearly independent vectors ~ai, where d is the dimension of the crystal

t = n1~a1 + . . .+ nd~ad , ni ∈ Z (A.1)

The Bravais lattice is thus isomorphic to Zd.

Definition 7. (Crystal). A crystal is a Bravais lattice arrangement of atoms, invari-
ant under a space group G.

Definition 8. (Group of the crystal). The group of the crystal is the space group G
under which the crystal remains invariant. G is always an infinite group, as it includes
all integer translations along the Bravais lattice. In Seitz notation the elements of a
space group G are denoted

g = {R|~r} (A.2)

where R is a point group element and ~r is a translation, which may or may not belong
to the Bravais lattice. The action of g ∈ G on a real space point ~q is given by

g~q = {R|r}~q = R~q + ~r (A.3)

The Bravais lattice is always a subgroup of the space group G. Its elements are of
the form {E|t}, where E is the identity operation.

Definition 9. (Stabilizer group/Site-symmetry group). The stabilizer group or site-
symmetry group of a position q is the set of symmetry operations g ∈ G that leave q
fixed. It is denoted by Gq = {g|gq = q} ⊂ G. There are a couple of things to remark:

� g ∈ Gq may include a translation, g = {R|~r}, with ~r 6= 0
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� However, since any site-symmetry group leaves a point invariant, Gq is neces-
sarily isomorphic to one of the 32 crystallographic point groups.

Definition 10. (Wyckoff position). A general Wyckoff position is a position q in the
unit cell of the crystal with a trivial site-symmetry group, i.e., the only element in Gq

is the identity operation. A special Wyckoff position is a position q in the unit cell
of the crystal with a non-trivial site-symmetry group, i.e., q is invariant under some
symmetry operations, such as mirror planes and rotation axis.

Definition 11. (Orbit of q). The orbit of q is the set of all positions which are related
to q by elements of the symmetry group G, i.e., Orbq = {gq|g ∈ G} and belong to
the same unit cell.

Definition 12. (Coset representatives). The coset representatives of a site-symmetry
group can be defined as the set of elements that generate the orbit of a Wyckoff
position. Then each element qα in the orbit of q may be written as qα = gαq.

Definition 13. (Coset decomposition). The coset decomposition of the full space
group is defined by

G =
⋃
α

gα(Gq n Zd) (A.4)

where Gq is the site-symmetry group and gα are the coset representatives. The piece
multiplying the coset representatives is obtained as the semi-direct product of Gq

and the translation group, that in d dimensions is isomorphic to Zd. Each term
gα(Gq n Zd) in Eq. (A.4) is a (left) coset.

This can be understood as follows. Let us take a position q with site-symmetry
group Gq.Then Gq plus the translations in the Bravais lattice creates a replica of q at
every primitive cell in the crystal. Acting with each coset representative gα creates,
throughout the crystal, replicas of every position in the orbit of q.

Definition 14. (Multiplicity of a Wyckoff position). The multiplicity of a Wyckoff
position is defined as the number of elements (positions) in the orbit of some Wyckoff
position. It is obviously equal to the number of coset representatives

This is what motivates the names for the different maximal Wyckoff positions 1a,
2b, 3c... The number tells you the multiplicity of the position, while the letter labels
the positions, from more to less symmetric.

Definition 15. (Maximal Wyckoff position). A Wyckoff position q is said to be
non-maximal if there exists a group H such that Gq ⊂ H ⊂ G. A Wyckoff position
that is not non-maximal is maximal.



Iñigo Robredo. Topological Materials from a Symmetry Perspective

A sufficient (although not necessary) condition for a position q to be maximal is
that q is the unique point fixed by every operation in Gq. As a particular case, in 2D,
any site-symmetry group that contains rotations is maximal.

Definition 16. (Little group). Two reciprocal space vectors k1 and k2 are said to be

equivalent, k1 ≡ k2, if there exists a reciprocal lattice vector ~K such that k2 = k1+ ~K.
Then the little group Gk of a vector k in reciprocal space is the set of elements g ∈ G
such that gk ≡ k. Note that the action of space group elements on reciprocal space
vectors is defined by

gk = {R|t}k = Rk (A.5)

Definition 17. (Small representation). A small representation is a representation of
the little group.
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Proof that the site symmetry
groups for the 3c Wyckoff positions
are isomorphic to C3v

In this appendix we will proof two statements; first, that the site-symmetry group
for the position q =

(
1
3
, 1

3

)
is isomorphic to C3v and second, that the site-symmetry

groups for positions in the same orbit are isomorphic to each other.

B.1 Site-symmetry group of q =
(

1
3,

1
3

)
First, we introduce the set of relations that define the group C3v:

C3
3 = 1 :

(x, y)→ C3 → (y,−x− y)→ C3 → (−x− y, x)→ C3 → (x, y)

C3m11̄ = m11̄C
−1
3 :

(x, y)→ m11̄ → (y, x)→ C3 → (x,−x− y)

(x, y)→ C2
3 → (−x− y, x)→ m11̄ → (x,−x− y)

(B.1)

Now, let’s see if the generators of the site-symmetry group follow the same relations:
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{C3|01}3 = 1 :

(x, y)→ {C3|01} → (y,−x− y + 1)→ {C3|01} → (−x− y + 1, x)→ {C3|01} → (x, y)

{C3|01}{m11̄|0} = {m11̄|0}{C3|01}−1 :

(x, y)→ {m11̄|0} → (y, x)→ {C3|01} → (x,−x− y + 1)

(x, y)→ {C3|01}2 → (−x− y + 1, x)→ {m11̄|0} → (x,−x− y + 1)

(B.2)

As we see, the group generators satisfy the same relations. Thus the groups are
isomorphic.

B.2 Site-symmetry group of positions in the same

orbit

We know that the positions for the different elements in the same orbit are related to
each other by

qα = gαq (B.3)

for some q in the orbit and gα a coset representative. Thus, for some h ∈ Gq,

hq = q → gαhg
−1
α qα = qα (B.4)

and we see that gαhg
−1
α ∈ Gqα . This is the definition of conjugate group. As two

conjugate groups are isomorphic, it is enough to compute the site-symmetry group
for one point in each orbit.
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Wannier function transformation
properties

We will denote our Wannier functions on the unit cell by two indices: the orbital
(latin) and site (greek). In the case of spinful pz orbitals on 2b Wyckoff positions
(graphene), the Wannier functions will be denoted as Wiα, where i denotes spin up
or down, and α denotes the site of the orbit. Wannier functions transform around
each site as orbitals:

gWi1 = [ρ(g)]jiWj1 (C.1)

This follows from the Hamiltonian. If the Hamiltonian commutes with the symme-
try operations, then its eigenstates1 transform under representations of the symmetry
group. In a unit cell we have α positions in the orbit. The Wannier functions at those
points are given, in terms of the functions around one position:

Wiα(r) = gαWi1(r) = Wi1(g−1
α r) (C.2)

Let’s see under which representation these transform:

hWiα = gαgg
−1
α gαWi1 = gαgWi1 = gα[ρ(g)]jiWj1 = [ρ(g−1

α hgα)]jiWjα (C.3)

where h ∈ Gqα and g ∈ Gq1 .
Now, we can construct all Wannier functions on the full lattice by translating

these functions along the lattice. {E|tµ}Wiα(r) = Wiα(r − tµ), so we have a total
of n× nq ×N Wannier functions, where nq is the number of orbitals per position in
the orbit, n the multiplicity of the Wyckoff position and N the number of cells of

1Or a set of states that generate the same Hilbert space.
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our crystal. These functions form a basis for the representation of the space group
induced from the representation of the site-symmetry group. Let the representation
of the spatial group be ρG. Then, ρG ≡ ρ ↑ G. This procedure is called induction.
Let’s proceed to see how Wannier states transform under an element h = {R|t}:

hWiα(r− tµ) = h{E|tµ}Wiα(r)

= {E|Rtµ}hWiα(r)

= {E|Rtµ + tβα}gβgg−1
α Wiα(r)

= {E|Rtµ + tβα}gβgWi1(r)

= {E|Rtµ + tβα}gβ[ρ(g)]jiWj1(r)

= {E|Rtµ + tβα}[ρ(g)]jiWjβ(r)

= [ρ(g)]jiWjβ(r−Rtµ − tβα)

(C.4)

where in the third line we have used that the action of an element h on a Wyckoff
position qα is given by

hqα = {E|tβα}qβ, g−1
β {E| − tβα}hgαq1 = q1 ≡ gq1 = q1 (C.5)

where the vector tβα represents the possibility of an element to take some Wyckoff
away to another cell2. We see here that we can know how any Wannier in any position
in any cell transform just by knowing how they transform around one of the positions
of the orbit under an element g ≡ g−1

β {E| − tβα}hgα ∈ Gq1 . We can obtain from Eq.
(2.19) that:

tβα = hqα − qβ (C.6)

2It can be easily seen from here that there is only one value of β for which α makes sense. As an
example, let the element h take the Wyckoff position q1 to q3 in another cell, with a translation a
being an integer Bravais lattice vector. In this notation, we will have that t31 = a, while the rest
of tβ1 will not exist and, thus, the blocks of the full group representation that are not α = 1, β = 3
will be 0.
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Elementary Band Representation

In the main text we have worked out an example of elementary band representation.
We will give here some more general results about them. First, let’s state some facts.

We say that two band representations ρG and σG are equivalent if and only if
there exists a unitary matrix-valued function S(k, t, g) smooth in k and continuous
in t such that, for all g ∈ G

� S(k, t, g) defines a band representation according to Eq. (2.14) for all t ∈ [0, 1]

� S(k, 0, g) = ρkG(g)

� S(k, 1, g) = σk
G(g)

A necessary condition is that both ρkG(g) and σk
G(g) restrict to the same little

group representations at all points in the Brillouin zone. However, it is not sufficient:
it may happen that both representations satisfy this condition but S(k, t, g) is not a
band representation for all t. We need a sufficient condition for equivalence:

Given two sites q, q′ (not necessarily in the same Wyckoff position), and represen-
tations of their site-symmetry groups (ρ of Gq and ρ′ of Gq′), the band representations
ρ ↑ G and ρ′ ↑ G are equivalent if and only if there exists a site q0 and representation
σ of Gq0 such that ρ = σ ↑ Gq and ρ′ = σ ↑ Gq′ .

Now let’s discuss about the compositeness of a band representation, i.e., if it is
elementary or composite. We say that a band representation is composite if it can
obtained as a sum of other band representations. A band representation that is not
composite is called elementary.

All band representations admit a description in terms of localized Wannier func-
tions. They are induced from the representations of some site-symmetry group with
local orbitals. Notice that if we induce a band representation from a reducible repre-
sentation of the site-symmetry group:
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(ρ1 ⊕ ρ2) ↑ G = (ρ1 ↑ G)⊕ (ρ2 ↑ G) (D.1)

where we have used the distributive property of the direct sum. So, if we are inter-
ested in elementary band representations, we only need to take care of irreducible
representations of the site-symmetry group. Moreover, since (ρ ↑ H) ↑ G = ρ ↑ G,
we only need to consider maximal subgroups of the space group (hence our interest
on maximal Wyckoff positions).

We have determined that all elementary band representations can be induced from
irreducible representations of the maximal site-symmetry groups. But this condition
is not true in the opposite way; not all irreducible representation of the maximal site-
symmetry groups induce an elementary band representation. These last cases, when
what is induced is not an elementary band representation, are called exceptions. This
may seem annoying, but they have already been tabulated in Ref. [41] and made
accesible in the BCS [67–69].

Hence (with some exceptions), band representations induced from irreducible rep-
resentations of maximal site-symmetry groups give elementary band representations,
whose bands are connected in the first BZ (they have no gap).

Band representations describe systems in the atomic limit, as they can be de-
scribed by maximally localized Wannier orbitals. A trivial insulator is one whose
bands can be obtained from maximally localized Wannier orbitals, so it does not
have edge states.

Then, a set of bands that is not a band representation cannot be described in
terms of localized Wannier orbitals and is, thus, topological. We call this bands, that
are a solution to compatibility relations, a quasi band representation.

Let’s analyze the following example, alike the graphene case. Suppose we have a
Hamiltonian constructed from localized orbitals, whose EBR is ρG = ρ ↑ G, and that
the energy bands of this system can be divided into two disconnected sets of bands
over all k in the first BZ, separated by a spectral gap. This means that the action of
every element in the symmetry group on one of the states of one the bands does not
take it out of it. Formally, let Pi be the projector into the band i. Then:

[Pi, H] = 0, [Pi, g] = 0 (D.2)

for all g ∈ G. Now suppose that the bands of projector Pi transform under a band
representation ρiG. Then, the full ρG representation could be constructed as a direct
sum of the band representations of the different bands. We reached a contradiction:
starting with an elementary band representation, we got a composite band represen-
tation. So, all bands that transform according to an elementary band representation
must be connected along the first BZ, otherwise they are not a band representation
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and, thus, they are topological, in the sense that there is at least one subset of them
that is topological.
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Junfeng Qiao, Florian Thöle, Stepan S Tsirkin, Ma lgorzata Wierzbowska,
Nicola Marzari, David Vanderbilt, Ivo Souza, Arash A Mostofi, and Jonathan R
Yates. Wannier90 as a community code: new features and applications. Journal
of Physics: Condensed Matter, 32(16):165902, jan 2020.

[57] J. Zak. Band representations of space groups. Physical Review B, 26(6):3010–
3023, 1982.

[58] L. Michel and J. Zak. Connectivity of energy bands in crystals. Phys. Rev. B,
59:5998–6001, Mar 1999.

[59] Alexey A. Soluyanov and David Vanderbilt. Computing topological invariants
without inversion symmetry. Physical Review B - Condensed Matter and Ma-
terials Physics, 83(23), 2011.

[60] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David
Vanderbilt. Maximally localized wannier functions: Theory and applications.
Rev. Mod. Phys., 84:1419–1475, Oct 2012.

[61] C. L. Kane and E. J. Mele. Quantum Spin Hall Effect in Graphene. Physical
Review Letters, 95(22):226801, November 2005.

[62] Jennifer Cano, Barry Bradlyn, Zhijun Wang, L. Elcoro, M. G. Vergniory,
C. Felser, M. I. Aroyo, and B. Andrei Bernevig. Building blocks of topo-
logical quantum chemistry: Elementary band representations. Phys. Rev. B,
97:035139, Jan 2018.

[63] Barry Bradlyn, Jennifer Cano, Zhijun Wang, M. G. Vergniory, C. Felser, R. J.
Cava, and B. Andrei Bernevig. Beyond dirac and weyl fermions: Unconventional
quasiparticles in conventional crystals. Science, 353(6299), 2016.

[64] Luis Elcoro, Barry Bradlyn, Zhijun Wang, Maia G. Vergniory, Jennifer Cano,
Claudia Felser, B. Andrei Bernevig, Danel Orobengoa, Gemma de la Flor, and
Mois I. Aroyo. Double crystallographic groups and their representations on the
Bilbao Crystallographic Server. Journal of Applied Crystallography, 50(5):1457–
1477, Oct 2017.

[65] Luis Elcoro, Benjamin J. Wieder, Zhida Song, Yuanfeng Xu, Barry Bradlyn,
and B. Andrei Bernevig. Magnetic Topological Quantum Chemistry. arXiv
e-prints, page arXiv:2010.00598, October 2020.



Bibliography

[66] M.I. Aroyo, J.M. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor, and
A. Kirov. Crystallography online: Bilbao crystallographic server. Bulgarian
Chemical Communications, 43(2):183–197, 2011. cited By 145.

[67] J. Perez-Mato, D Orobengoa, Emre Tasci, Gemma De la Flor Martin, and
A Kirov. Crystallography online: Bilbao crystallographic server. Bulgarian
Chemical Communications, 43:183–197, 01 2011.

[68] M. Aroyo, J. Perez-Mato, C. Capillas, and et al. Computing topological invari-
ants without inversion symmetry. Zeitschrift für Kristallographie - Crystalline
Materials, 221(1), pp. 15-27, 2018.

[69] Mois I. Aroyo, Asen Kirov, Cesar Capillas, J. M. Perez-Mato, and Hans Won-
dratschek. Bilbao Crystallographic Server. II. Representations of crystallo-
graphic point groups and space groups. Acta Crystallographica Section A,
62(2):115–128, Mar 2006.

[70] Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry-based
indicators of band topology in the 230 space groups. Nature Communications,
8(1):50, Jun 2017.

[71] Eslam Khalaf, Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Sym-
metry indicators and anomalous surface states of topological crystalline insula-
tors. Phys. Rev. X, 8:031070, Sep 2018.

[72] Tiantian Zhang, Yi Jiang, Zhida Song, He Huang, Yuqing He, Zhong Fang,
Hongming Weng, and Chen Fang. Catalogue of topological electronic materials.
Nature, 566(7745):475–479, Feb 2019.

[73] Feng Tang, Hoi Chun Po, Ashvin Vishwanath, and Xiangang Wan. Compre-
hensive search for topological materials using symmetry indicators. Nature,
566(7745):486–489, Feb 2019.

[74] D. Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polariza-
tion, Orbital Magnetization and Topological Insulators. Cambridge University
Press, 2018.

[75] T. L. Hughes B. A. Bernevig and S. C. Zhang. Quantum spin hall effect and
topological phase transition in hgte quantum wells. Science, 314, 1937.

[76] B. A. Bernevig and T. L. Hughes. Topological Insulators and Topological Su-
perconductors. Princeton University Press, 2013.
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Nasser Alidoust, Daniel Multer, Songtian S. Zhang, Nana Shumiya, Xirui Wang,
Guang-Qiang Wang, Tay-Rong Chang, Claudia Felser, Su-Yang Xu, Shuang Jia,
Hsin Lin, and M. Zahid Hasan. Topological chiral crystals with helicoid-arc
quantum states. Nature, 567(7749):500–505, Mar 2019.

[108] Daichi Takane, Zhiwei Wang, Seigo Souma, Kosuke Nakayama, Takechika Naka-
mura, Hikaru Oinuma, Yuki Nakata, Hideaki Iwasawa, Cephise Cacho, Timur
Kim, Koji Horiba, Hiroshi Kumigashira, Takashi Takahashi, Yoichi Ando, and
Takafumi Sato. Observation of chiral fermions with a large topological charge
and associated fermi-arc surface states in cosi. Phys. Rev. Lett., 122:076402,
Feb 2019.

[109] Nitesh Kumar, Mengyu Yao, Jayita Nayak, Maia G. Vergniory, Jörn Bannies,
Zhijun Wang, Niels B. M. Schröter, Vladimir N. Strocov, Lukas Müchler, Wujun
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R Zierold, C Felser, and B Gotsmann. Thermal and electrical signatures of a
hydrodynamic electron fluid in tungsten diphosphide. Nature communications,
9(1):1–8, 2018.

[193] Jennifer Cano, Barry Bradlyn, and MG Vergniory. Multifold nodal points in
magnetic materials. APL Materials, 7(10):101125, 2019.

[194] Bendeguz Offertaler and Barry Bradlyn. Viscoelastic response of quantum hall
fluids in a tilted field. Physical Review B, 99(3):035427, 2019.

[195] Christian Copetti and Karl Landsteiner. Anomalous hall viscosity at the weyl-
semimetal–insulator transition. Physical Review B, 99(19):195146, 2019.

[196] Georgios Varnavides, Adam S Jermyn, Polina Anikeeva, Claudia Felser, and
Prineha Narang. Electron hydrodynamics in anisotropic materials. Nature
communications, 11(1):1–6, 2020.
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