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Abstract

Cerebrovascular reactivity (CVR) is a physiological response of the cereb-
ral vessels to vasodilatory or vasoconstrictive stimuli. CVR estimations can
be obtained by evoking a vasodilatory response during functional Magnetic
Resonance Imaging (fMRI) with simultaneous recording of the pressure of
expired COq fluctuations during a breath-hold (BH) task. Another approach
for assessing CVR consists in measuring the fluctuations of the BOLD sig-
nal during Resting State (RS). Interestingly, RS fluctuations have also been
studied in relation with task Induced Activations (tIA), thus leading to hy-
pothesise a relationship between CVR and tIA. Hence, the aim of this work
is to understand if BH-induced CVR mapping holds a relationship with RS
fluctuations and tIA.

With that goal in mind, a ten subjects, ten sessions multi-echo fMRI
dataset with concurrent physiological fluctuations recording was collected for
this thesis. Each session was composed by four RS, a Simon, a Motor, a
Pinel functional localiser, and a BH task. The resulting estimated CVR, RS
fluctuations and tIA maps showed high sensitivity and generally excellent
reproducibility.

To benefit from this dense mapping dataset, various methods have also
been investigated with the goal of improving BH-induced CVR estimation.
On the one hand, there is a regional specific temporal offset between re-
corded COq pressure and local BOLD response, due to both measurement
and physiological delays, that presents local variations. Moreover, during BH
movement and breathing-related artefacts caused by the task can substan-
tially hinder CVR estimates due to their high temporal collinearity with
noise. Hence, a framework based on a lagged-GLM approach for taking into
account the haemodynamic lag of CVR and simultaneously remove the effect
of collinear motion, as well as the performance of multiple denoising ana-
lysis strategies applied on ME-fMRI BOLD data, are discussed in this work.
The chosen approach provided robust, lag-optimised maps of haemodynamic
delay and higher CVR amplitudes than non-optimised CVR estimations, with
consistent regional variation across subjects, and improved contrast-to-noise
ratio compared to methods where motion regression was ignored or performed
sequentially.

On the other hand, a conservative independent component analysis de-
noising model applied on the optimally-combined ME-fMRI signal offered the
largest reduction of motion-related effects while yielding reliable CVR amp-
litude and lag estimates, although a conventional regression model applied
on the optimally-combined data resulted in similar estimates.

To insert CVR estimation in a broader physiological context, this thesis
also investigates the effect of blood pressure on CVR mapping by taking
advantage of the multiple precise measurements collected in each subject. It
was found that Mean Arterial (MAP) and Pulse Pressure (PP) had spatially
independent significant regional impacts on CVR estimation, as did the sex
of the subject.

Finally, the impact of CVR on RS fluctuations and tTA was assessed using
a set of Linear Mixed Effect models to take into account the impact of multiple
sessions. Although focalised regions of significant relationship between CVR,
RS fluctuations and tIA were found, a general failure to generalise previous
results was assessed, indicating that these relationship, if existing, exhibit a
more complex and variable nature than previously described.






Resumen

La reactividad cerebrovascular (Cerebrovascular Reactivity, CVR) es una
respuesta fisiologica de los vasos sanguineos cerebrales a estimulos vasodilati-
vos o vasoconstrictores debido a un cambio en el pH de su contenido. Tal cambio
es normalmente inducido por aumentos y disminuciones de ciertos gases, prin-
cipalmente COqy (Liu, De Vis & Lu, 2018). En los dltimos anos, la resonancia
magnética funcional (functional Magnetic Resonance Imaging, fMRI) basada
en el contraste dependiente del nivel de oxigenacion sanguinea (Blood Oxy-
gen Level Dependent, BOLD) ha demostrado su eficacia para evaluar la CVR
de forma no invasiva y robusta, permitiendo una estimaciéon de CVR con alta
resolucién espacial.

Las mediciones de CVR se pueden obtener registrando las fluctuaciones de
la presion de COq al final de la espiracion (conocido como Pressure of end-tidal
CO4y 6 PrrCOs) durante una tarea con un desafio respiratorio, por ejemplo
con apneas voluntarias (Breath-Hold, BH). El paradigma recomendado de BH
consiste en varios bloques consecutivos, cada uno de ellos incluyendo al inicio
varios ciclos de respiracion guiada (inspiracion y espiracién) con una perio-
dicidad determinada y terminando en espiracién, seguida por 15-20 segundos
de apnea terminados por una exhalacion, y un periodo final de recuperaciéon
con respiracién natural (Ratnatunga & Adiseshiah, 1990). Con este paradig-
ma, la variabilidad de la linea de base COs se minimiza y la forma de respuesta
PrrCOg es simple y cerca a su limite (Pinto, Bright, Bulte & Figueiredo, 2021).
Los paradigmas de BH se pueden implementar con éxito en estudios con ni-
Nnos pequenos, personas mayores y otros grupos de sujetos menos cooperativos
(Handwerker, Gazzaley, Inglis & D’Esposito, 2007; Kannurpatti, Motes, Ryp-
ma & Biswal, 2010; Raut, Nair, Sattin & Prabhakaran, 2016; Riecker y col.,
2003; Thomas, Logan, Donner & Shroff, 2013; Thomason, Burrows, Gabrieli &
Glover, 2005), y ofrecen mediciones robustas de CVR incluso cuando los sujetos
no son capaces de realizar la apnea, es decir mantener la respiracién, durante el
tiempo indicado (Bright & Murphy, 2013a). Ademas, estas medidas producen
resultados fiables a corto y largo plazo (Peng, Yang, Chen & Shih, 2019), tanto
en términos de fiabilidad espacial, es decir comparando la variabilidad de las
medidas de CVR a nivel de voxel en varias sesiones, como de fiabilidad general
en el valor medio de CVR entre sesiones a nivel de sujetos individuales (Lipp,
Murphy, Caseras & Wise, 2015; Magon y col., 2009)).

También se ha demostrado que la estimaciéon de CVR a través de las fluc-
tuaciones de PrrCO9 es similar a la medicién de las fluctuaciones de la sefial
durante un estado de reposo (Resting State, RS) en sujetos sanos (De Vis,
Bhogal, Hendrikse, Petersen & Siero, 2018). Esta similitud se ha observado en
meétricas como la amplitud de las fluctuaciones en estado de reposo (RSFA)
definida como la desviacion estandar de una banda de frecuencia especifica de
la sefial BOLD (Kannurpatti & Biswal, 2008; Kannurpatti, Motes, Biswal &
Rypma, 2014; Wang y col., 2019), o la amplitud (6 potencia) de las fluctua-
ciones de baja frecuencia (ALFF), y su fracciéon con la potencia del espectro
completo (fALFF) (De Vis y col., 2018; Golestani, Wei & Chen, 2016). Cu-
riosamente, tales medidas también se han utilizado previamente para reportar
una posible relacion entre las fluctuaciones intrinsecas del cerebro en RS con la
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actividad hemodinamica inducida por la actividad neuronal durante la reliza-
cion de una tarea (task Induced Activity, tTA), por ejemplo en paradigmas de
memoria de trabajo (Zou y col., 2013) y paradigmas de funcion ejecutiva como
la tarea de Flanker (Mennes y col., 2011). Por otra parte, las fluctuaciones de
RS se han utilizado para reescalar y normalizar la amplitud de tIA a nivel de
estudios de grupo con el fin de tener en cuenta las diferencias a nivel vascular
entre diferentes sujetos (Kazan y col., 2016). Estos hallazgos, asi como el im-
pacto que las senales fisioldgicas pueden tener sobre la conectividad funcional
y las fluctuaciones de RS, podrian indicar que las fluctuaciones fisiolégicas y la
CVR constituyen la base, 0 modelan de alguna manera, la relacion entre RS y
tIA, indicando que al menos parte de lo que se ha atribuido a las fluctuaciones
intrinsecas del cerebro podria explicarse realmente por factores fisiologicos y
vasculares estables, como la CVR.

Esta tesis estd dedicada a explorar dicho impacto y generalizar resultados
presentados recientemente en la literatura, en particular el trabajo de Golestani
y col. (2016), Mennes y col. (2011), aprovechando nuevos disefios experimenta-
les que enfatizan el hecho de realizar miltiples mediciones en el mismo sujeto
(conocido como Dense Mapping, DM), y utilizando secuencias avanzadas de
fMRI que permiten reducir el nivel de ruido de la sefial y mejorar la sensibili-
dad al contraste BOLD, como Multi-Echo (ME) fMRI.

Capitulo 2: Experimento y datos EuskallBUR

Con el fin de estudiar las relaciones entre la CVR, las fluctuaciones de RS y
la tIA, para esta tesis se disefio un experimento de DM, denominado Euskall-
BUR, en el cual se recopil6 un conjunto de datos de neuroimagen, fisiolégicos y
variables de conducta y estado en 10 sujetos que participaron en 10 sesiones de
MRI. Cada sesi6n estuvo compuesta por 4 registros de fMRI mientras los par-
ticipantes realizaban la tarea de funcion ejecutiva de Simon (Simon & Rudell,
1967), una tarea motora (Buckner, Krienen, Castellanos, Diaz & Yeo, 2011) y
un localizador de diferentes abilidades cognitivas (lectura, procesamiento ma-
tematico) y sensoriales (audicion, visual, motor) (Pinel y col., 2007) que fueron
intercaladas entre 4 adquisiciones de fMRI en RS, y finalmente una tarea de
BH. Durante las adquisiciones funcionales se registraron senales fisiologicas de
pulso cardiaco, esfuerzo de respiracion y COsz. Asi mismo, cada sesién incluyo
la adquisicion de imagenes anatémicas ponderadas en T1 (MP2RAGE) y T2
(Turbo Spin Echo). Ademas, antes de empezar cada sesion de MRI se recogie-
ron datos del estado de salud y conducta (presion sanguinea, horas de suefo,
hidrataciéon, consumo de alcohol y cafeina, etc, ver Appendix A).

Los experimentos DM presentan muchas ventajas en comparacién con la
adquisicion de datos tradicional basada en grupos. Entre otras, se simplifican
los tiempos de reclutamiento y acceso al escaner (Gordon y col., 2017), resuel-
ven el problema de los grupos experimentales de tamafio insuficiente (Naselaris,
Allen & Kay, 2021; Poldrack, 2021), permiten una mejor estimacion de la es-
tabilidad de la activacién neuronal y la conectividad, dindmica, e interacciones
funcionales (Gordon y col., 2018; Gratton y col., 2018; Laumann y col., 2015;
Lynch y col., 2020), y como esta estabilidad se relaciona con el comporta-
miento (Seitzman y col., 2019). Ademas, este diseno de experimentos pueden
abrir la posibilidad de estudiar variaciones en fluctuaciones cerebrales a lo largo
del tiempo (Shine, Koyejo & Poldrack, 2016), por ejemplo debido a la recon-
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figuracion funcional (Salehi, Karbasi, Barron, Scheinost & Constable, 2020),
plasticidad cerebral (Newbold & Dosenbach, 2021; Newbold y col., 2020), sor-
presa y novedad (Betzel, Satterthwaite, Gold & Bassett, 2017), o el efecto del
sistema endocrino durante el ciclo menstrual (Arélin y col., 2015; Barth y col.,
2016; Pritschet y col., 2020; Pritschet, Taylor, Santander & Jacobs, 2021).

Ademas, los datos de fMRI en EuskalIBUR se obtuvieron usando secuencias
multi-eco (ME) BOLD que muestrean la seial fMRI ponderada en el parametro
T3 en maltiples tiempos de eco (TE) sucesivos. Esta técnica permite mejorar el
contraste BOLD, por ejemplo mediante el uso de una combinacién ponderada
de los multiples volumenes de eco (Poser, Versluis, Hoogduin & Norris, 2006;
Posse y col., 1999). La combinacion 6ptima de multiples volimenes de eco
también puede mejorar la sensibilidad, la especificidad, la repetibilidad y la
confiabilidad del mapeo CVR (Cohen y col., 2021; Cohen & Wang, 2019).

Tras el preprocesamiento de los datos funcionales y anatémicos, basado en
AFNI, FSL, y ANTSs, se calcularon metricas de evaluaciéon de las fluctuacio-
nes de RS utilizando las adquisiciones de RS, y la tIA fue estimada en las
adquisiciones en tarea utilizando modelos de regresion lineal (General Linear
Models, GLM). Una vez calculados los mapas a nivel de sujeto y sesion, el ana-
lisis estadistico a nivel de grupo se realizdé mediante el calculo del coeficiente
de correlacion intraclase (ICC) para cada contraste de tarea y las métricas de
fluctuacion RS. También se calculé un analisis de grupo basados en modelos
mixtos de varianza en el sujeto y a nivel de grupo para todos los contrastes de
tareas.

Las mapas de CVR, de fluctuaciones de RS, y de tIA mostraron alta sen-
sibilidad para todas las tareas y las runs, a nivel del sujeto como del grupo, y
en la mayoria de los casos, una reproducibilidad excelente.

Capitulo 3: Estimacion de CVR con optimizacion temporal

En el modelado y estimacién de la CVR usando fMRI hay que tener en cuen-
ta que existe un retardo temporal que varfa entre regiones del cerebro entre la
PrrCO2 y la respuesta local de la senal BOLD. Este retardo se debe tanto a un
retardo en la medida debido a la transmisién y registro de los gases, como a un
retardo fisilégico asociado a la respuesta vasodilatadora de CVR y la propaga-
cién de gases en el sistema respiratorio. Si no se tiene en cuenta este retardo en
el modelo y su variabilidad no se considera de forma adecuada, la estimacién de
CVR a nivel de voxel podria ser imprecisa (por ejemplo, ver (Blockley, Harkin
& Bulte, 2017; Donahue y col., 2016; Sousa, Vilela & Figueiredo, 2014)). Por
otra parte, durante la tarea de BH, el movimiento y los artefactos relacionados
a la respiracién causados por la tarea pueden deteriorar las estimaciones de
CVR sustancialmente (Bright, Bulte, Jezzard & Duyn, 2009), debido a la alta
colinearidad temporal con el efecto de interés, es decir la respuesta de CVR
(Lindquist, Geuter, Wager & Caffo, 2019). Por este motivo, en este capitulo
se estudia el modelo mas apropiado basado en un enfoque de lagged-GLM que
tenga en cuenta el retardo hemodinamico de la CVR y considere al mismo
tiempo los efectos de artefactos y senales de ruido colinea.

Este modelo se evalué primero en un pequeno subconjunto de los datos
FuskallBUR comparandolo frente a una estimacién de CVR sin considerar el
retardo hemodinamico, asi como frente a modelos en los que la regresion de los
artefactos de movimiento y senales de baja frecuencia se realiza anteriormente
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al modelo de regresiéon de CVR. Es decir, el modelo de regresion de la senal
de fMRI se realiza secuencialmente y no de forma simultanea como seria méas
apropiado desde un punto de vista analitico y estadistico. Los resultados ob-
tenidos demuestran que unmodelo de regresién simultdneo y optimizado para
el retraso obtiene mapas de CVR con una amplitud mas alta que las estima-
ciones de CVR no optimizadas. Estos mapas mostraron también una variacién
regional consistente en todos los sujetos, y un ratio de contraste y ruido mejor
que en los mapas obtenidos con los otros modelos, demostrando la relevancia
de los modelos lagged-GLM en la estimacién de CVR.

Capitulo 4: Mejora de la estimacion de CVR con secuencias ME-
fMRI

Para abordar el problema de eliminar el efecto del movimiento y otros arte-
factos de forma efectiva, y al mismo tiempo conservar la mayor parte de la
respuesta de CVR, se evalud el rendimiento de varias estrategias de prepro-
cesado y andlisis que consideran las caracteristicas de los datos de ME-fMRI
BOLD. En particular, como la senal relacionada con el efecto BOLD se puede
expresar en funcién del TE, mientras que las variaciones del senal relacionados
con el ruido en la magnetizacién son independientes del TE, se puede apro-
vechar de la informacién disponible en los ecos multiples con el proposito de
mejorar la limpieza de la senal de fMRI. Por ejemplo, es posible clasificar el
resultado de un anélisis multivariado de componentes independientes (Indepen-
dent Component Analysis, ICA) en fuentes de senial BOLD o ruido y artefactos
(ME-ICA, Kundu y col., 2013; Kundu, Inati, Evans, Luh & Bandettini, 2012;
Kundu y col., 2017). ME-ICA permite mejorar el mapeo de la activaciéon in-
ducida por tareas (Amemiya, Yamashita, Takao & Abe, 2019; DuPre, Luh &
Spreng, 2016; Evans, Kundu, Horovitz & Bandettini, 2015; Gonzalez-Castillo
y col., 2016; Lombardo y col., 2016), y la reduccion de ruido y artefactos en da-
tos de fMRI en estado de reposo (Dipasquale y col., 2017; Lynch y col., 2020),
logrando una representacion de la conectividad funcional més eficiente y fiable
en sujetos individuales (Lynch y col., 2020) y en regiones cerebrales donde las
adquisiciones tradicionales con un solo eco ofrecen una relacién senal-ruido re-
ducida, como en el cerebro basal (Markello, Spreng, Luh, Anderson & De Rosa,
2018).

Sin embargo, cémo usar la informacion de clasificacién de las componentes
de la sefial de fMRI proporcionada por ME-ICA para mejorar la limpieza de
los datos de CVR no es trivial y requiere una investigacion detallada para de-
terminar cudl es el equilibrio correcto entre una eliminacién adecuada de los
artefactos (movimiento, respiracion, susceptibilidad) y la preservacion de la se-
nal de CVR de interés. Realizar este estudio es fundamental teniendo en cuenta
especialmente la colinearidad entre los regresores del modelo que caracteriza las
tareas de BH. Por lo tanto, este capitulo estudia multiples modelos de analisis
lagged-GLM: desde modelos de regresion convencionales en los que la matriz de
diseno incluye la respuesta BOLD de interés, resultante de la convolucion de la
sefial PErCOg3 con la respuesta hemodindmica, y covariables de no interés defi-
nidos a partir de los parametros de movimiento y sefiales de baja frecuencia que
se aplica en los datos de eco tinico u combinados de forma 6ptima (OC), hasta
modelos més complejos que ademés incluyen regresores obtenidos de ME-ICA
con diferentes grados de ortogonalizaciéon para preservar el efecto de interés, es
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decir la CVR. En este caso, se evaluaron tres tipos de andlisis: 1) un modelo
lagged-GLM agresivo en el que las senales temporales de los componentes de
ICA clasificados como ruido se anadieron directamente como regresores de no
interés en la matriz de disefio; 2) un modelo lagged-GLM moderado, en el que
las senales de ICA de ruido fueron previamente ortogonalizadas con respecto al
regresor de interés de CVR, y 3) un modelo lagged-GLM conservador, en el que
las senales de ICA de ruido también fueron ortogonalizadas tanto con respecto
a la sefial de CVR como con los otros componentes de ICA clasificados como
sefial BOLD y por tanto hipotéticamente asociada con la actividad neuronal o
de CVR.

La evaluacién y comparacion de estos modelos de anélisis se realizé en fun-
cion de su capacidad para hacer que los cambios de intensidad de la senial BOLD
sean independientes del movimiento, asi como su fiabilidad y reproducibilidad
de los mapas de CVR y retardo hemodindmico en términos del coeficiente de
correlacion intraclase (ICC) a nivel de voxel. Los resultados revelaron que un
modelo de analisis de componentes independiente conservador aplicado en la
senal de ME-fMRI combinada de manera éptima ofrece la mayor reduccién de
los efectos relacionados con el movimiento en la sefal, y contemporaneamente
produce estimaciones mas reproducibles de amplitud CVR y lag. Asi mismo,
se observd que un modelo de regresién convencional aplicado en los datos com-
binados de manera 6ptima ofrece estimaciones de CVR y retardo similares sin
la necesidad de realizar el preprocesado y clasificacion de ME-ICA.

Capitulo 5: CVR y presion arterial

Para enfocar la relevancia de la CVR dentro de un contexto mas amplio de
la fisiologia del cerebro y del cuerpo humano, en esta tesis se ha estudiado el
efecto de otros factores fisiolégicos y de las caracteristicas individuales de los
sujetos sobre el mapeo de CVR.

Previos estudios han mostrado que cambios en la presién arterial podrian
producir cambios en el nivel basal de COs, y viceversa, y ambas alteraciones
podrian influir en la resistencia cerebrovascular Aaslid, Lindegaard, Sorteberg
y Nornes (1989). Sin embargo, estudios recientes no han podido replicar tales
observaciones (Thrall y col., 2021). Es probable que como cambios en la pre-
sion arterial y en el nivel de CO2 dan origen a mecanismos de vasodilatacion,
independientemente que estén relacionados con la autoregulacién cerebral o la
CVR (Carr, Caldwell & Ainslie, 2021), la presion arterial podria actuar co-
mo un factor de ruido en la estimacion de CVR (Hetzel, Braune, Guschlbauer
& Dohms, 1999; Pericot Nierga, Molina Cateriano, Alvarez Sabin & Codina
Puiggrés, 2000; Regan, Fisher & Duffin, 2014). Ademas, se ha observado que
cambios en la presion arterial media (Mean Arterial Pressure, MAP) durante
la hipercapnia no estan correlacionados con incrementos en el nivel de COq
al final de la espiracion (grCO2) (Smielewski, Kirkpatrick, Minhas, Pickard
& Czosnyka, 1995). También se ha demonstrado que un estado anormal de la
presion arterial puede alterar la respuesta cerebral a las variaciones del nivel de
COg en la sangre. Por ejemplo, Artru y Colley (1984) demostro la ausencia de
CVR durante la hipocapnia en casos de un hipotensién inducida en perros. Una
reactividad anormal a los cambios en CO3 también se ha reportado en pacientes
con hipertension (Dumville, Panerai, Lennard, Naylor & Evans, 1998; Ficzere
y col., 1997; Leoni y col., 2011; Li y col., 2021; Settakis, P4ll y col., 2003), con
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vinculos a un empeoramiento en las funciones ejecutivas (Hajjar, Marmerelis,
Shin & Chui, 2014). En resumen, la influencia de la presion arterial como un
factor en la estimacién de CVR todavia necesita mas estudios.

Las caracteristicas de DM del experimento EuskallBUR y los datos recogi-
dos permiten arrojar nuevos evidencias sobre la posible relacién la presién y la
CVR. En este estudio se estimo la presion arterial promedio (MAP) y la presion
de pulso (PP) a partir de las mediciones de presion arterial y el pulso cardiaco
realizadas en cada sujeto antes de cada sesiéon de MRI. Luego, se plante6 un
modelo lineal de efectos mixtos (Linear Mixed Effects, LME) para estimar la
relacion entre las medidas de CVR y el retardo hemodindmico con la MAP, PP,
o pulso cardiaco, asi como posibles interacciones de estas variables con el sexo
del sujeto. Este analisis se realizé tanto a nivel de voxel como considerando en
el valor medio de CVR y retardo en la materia gris (Grey Matter, GM).

Teniendo en cuenta los valores medios de GM, solo se encontré un efecto leve
y negativo del pulso cardiaco sobre el retardo, lo que indica que un aumento en
el pulso cardiaco produce retardos mas cortos de CVR. Los anélisis a nivel de
voxel demostraron que MAP y PP presenta una relacion significativa con CVR
en multiples regiones cerebrales, tanto a nivel cortical como subcortical, al igual
que el sexo del sujeto. No se observé ninguna interaccién entre estas variables.
Curiosamente, el impacto del MAP y PP sobre la amplitud de CVR muestran
distribuciones espaciales independientes, lo que indica que ambas mediciones
presentan informacién importante y distinta que se debe tener en cuenta en la
evaluciéon de la CVR.

Capitulo 6: CVR, RS, y tIA

Finalmente, el impacto de la CVR en las fluctuaciones de RS y TTA se evalu6
utilizando un conjunto de modelos LME para tener en cuenta el impacto de
miltiples sesiones, tanto a nivel de valor medio en la GM como voxelwise. El
enfoque particular de este estudio fue replicar y generalizar los resultados de
Mennes y col. (2011), que vincul6 las fluctuaciones de RS a tTA, y de Golestani
y col. (2016), que vincul las fluctuaciones de RS, y ALFF en particular, a
la CVR. En estos estudios no se considera la varianza intra-sujeto pues sélo
se obtuvieron una tunica medida de CVR, tIA or RS en cada sujeto, mientras
que el experimento EuskallBUR permite tener en cuenta ambas terminos de
varianza intra-sujeto y entre-sujeto.

En el caso del estudio presentado Golestani y col. (2016) se calcularon los
valores medios de ALFF, RSFA y fALFF considerando la GM, y se utilizé un
modelo LME para estimar la relacién entre estas métricas de RS y CVR. El
mismo modelo de LME también se implementé a nivel de voxel. En el caso del
estudio de Mennes y col. (2011), se implmenté un modelo LME similar para
evaluar la relacion entre las fluctuaciones de tIA y las medidas de RS, y entre
tIA y CVR, a nivel de voxel.

Si bien se encontraron regiones focalizadas de relaciéon significativa entre
CVR, fluctuaciones de RS y tIA, en general los resultados obtenidos demuestran
la falta de generalizacidon de los resultados anteriores, indica que esta relacion,
si existe, tiene una naturaleza mucho mas compleja y variable de lo descrito
anteriormente.
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Brief history of Magnetic Resonance Imaging

In recent years, Magnetic Resonance Imaging (MRI) has become a cornerstone of neuros-
cience research and clinical practice. MRI is based on the principles of Nuclear Magnetic
Resonance (NMR), a phenomenon described for the first time between the end of the
1930s and the beginning of the 1940s (Bloch, 1946; Gorter & Broer, 1942; Purcell, Torrey
& Pound, 1945; Rabi, 1937). NMR consists in an electromagnetic signal that nuclei in a
strong magnetic field emits when a weaker, oscillating magnetic field perturbs them with
a specific frequency, the so called Larmor frequency. The Larmor frequency is the angular
frequency with which the spin of the nuclei precesses around the strong magnetic field. It
depends on the strength of such field and on the magnetic properties of the nuclei itself, and
as such it is intrinsic to the nuclei. When the weaker magnetic field matches the Larmor
frequency, the nuclei resonate, and emit energy in the form of an electromagnetic signal
that can be recorded by a receiving coil in the nearby space.

In the late 1970s Damadian (1971), Lauterbur (1973), and Mansfield and Grannell
(1973) independently demonstrated how to use NMR to image (living) objects. While
Lauterbur introduced the mathematical principles to obtain a 2D back-projection of recor-
ded NMR signal (Lauterbur, 1973), Mansfield showed how to use a linear field gradient to
localise different "slices" of material (i.e. slice selection) and also introduced the principles
of the Echo Planar Imaging (EPI) sequence (Mansfield & Granmnell, 1973). At the same
time, Damadian demonstrated that pathological tissues in the human body produced a
different signal from healthy tissue (Damadian, 1971) and built a scanner to image the
human body. Shortly after, Clow and Young produced the first brain image (cf. McRobbie,
Moore, Graves & Prince, 2017).
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‘ Oxyhaemoglobin . Deoxyhaemoglobin

Figure 1.1: Schema of BOLD effect. During neuronal activity, HbO increases and perturbs
the magnetic field.

Functional Magnetic Resonance Imaging and Blood Oxygen Level De-
pendent signal: task Induced Activity and Resting State

It took about fifteen years more for the birth of functional MRI (fMRI). In 1990 and 1992
Ogawa and colleagues showed that haemoglobin bonded with oxygen (oxyhaemoglobin,
HbO) had a different signal compared to unbounded haemoglobin (deoxyhaemoglobin) due
to their magnetic properties (diamagnetic and paramagnetic, respectively), and that this
difference could be used as an intrinsic, non-invasive contrast mechanism to image brain
function (see Figure 1.1). This contrast mechanism was termed as the Blood Oxygen Level
Dependent (BOLD) effect, and used to map cerebral responses to watching a flickering
chequerboard (Ogawa & Lee, 1990; Ogawa et al., 1992). Together with the images of
Belliveau et al. (1991), these were the first task-induced activity (tIA) fMRI experiments,
and the first confirmations that blood could be used to indicate a correlation between
behaviour (or cognition) and brain activity after the theorisations of Mosso (1883). Three
years later, Biswal, Yetkin, Haughton and Hyde (1995) showed that patterns similar to the
ones observed in tIA-fMRI studies could be seen in the brain at rest: correlated fluctuation
in the BOLD signal were found in auditory, visual, and somatomotor areas in subjects
laying down in the scanner, in a “Resting State” (RS). Still today, tIA- and RS-fMRI are
the most adopted designs and frameworks to investigate brain properties with BOLD fMRI.

It is important to note that the BOLD signal is not a direct observation of neural events
associated to behaviour, sensory stimuli, and other cognitive tasks. In fact, the BOLD signal
measures changes in haemoglobin that are the physiological response to neural activity,
i.e. the neuro-vascular coupling (Hillman, 2014), rather than measuring the microcurrents
generated by action potentials or their related chemical shifts (e.g. sodium/potassium or
calcium). The reason behind this interpretation is mainly related to the action of astrocytes
and perycites and their impact on the blood vessels (Hillman, 2014; Parri & Crunelli, 2003).
In practice, when there is a synaptic event, the astrocyte around the synapses sense such
activity and stimulate the walls of the microvessels for them to vasodilate (Zonta et al.,
2003). In this way, there is a local surge of HbO meant to support the sustained metabolic
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Figure 1.2: The canonical HRF. The function starts with an almost undetectable negative
trough, the initial undershoot, corresponding to a moment of oxygen consumption. At
around 5-6 seconds, it switches polarity and reach a strong positive peak, modelling the
vasodilation and subsequent surge in HbO. After about 10-15 seconds, it switches again
polarity for a prolonged period of time (the post-stimulus undershoot, about 10 seconds)
before returning to homoeostasis.

activity of active neurons. If the activity ceases, the level of HbO slowly decreases, reaching
a lack of local HbO, otherwise it stabilises for the duration of the continuous activity before
such decrease. This process is known as the haemodynamic response, and although it varies
within the brain and with aging (Arichi et al., 2012; Poppe, Willers Moore & Arichi, 2021),
it is canonically modelled mathematically as a double-gamma function (Haemodynamic
Response Function, HRF, see Figure 1.2).

The HRF plays an important role in detecting activations in tIA-fMRI. Indeed, the
design of the tasks is typically convolved with the HRF, and the result is used as a regressor
in a General Linear Model (GLM) in order to fit it with the recorded BOLD signal (Friston,
Holmes et al.,; 1995; Monti, 2011; Poline & Brett, 2012). As for the task design itself, there
exist different types of experimental paradigms. Ogawa’s original experiment was based on
a block design (Ogawa et al., 1992), normally consisting in stimuli of an extended period
of time (e.g. 10-15 seconds) alternated with periods of rest. Block designs elicit strong,
easily identifiable responses with high signal to contrast ratio, thus more appropriate for
localization purposes and detection of the BOLD response. In addition, they are less prone
to multicollinearity of different task stimuli (Sacco, 2012, p. 141). However, block designs
are not suited for some types of experiments (e.g. involving higher cognitive functions
or rapid transition between cognitive processes) (McRobbie et al., 2017, pp. 320-321),
and they can become collinear to motion (Birn, Bandettini, Cox & Shaker, 1999) and
spurious fluctuations. Alternatively, an event-related design involves short, transient stimuli
interspersed in variable periods of rest. Event related designs elicit responses that are
less easy to detect and they are statistically less efficient (Sacco, 2012, p. 142). However,
event-related designs are more appropriate to characterize the temporal pattern of the
hemodynamic response, might be less affected by motion (Birn et al., 1999), and different
stimuli can be randomised in order to reduce multicollinearity (Sacco, 2012, p. 142).

RS-fMRI data is commonly used to assess functional connectivity by measuring signal
correlations from different areas. This can be achieved by simply correlating the mean signal
of regions of interest (ROI), using the signal of a ROI as a predictor for the rest of the
brain (seed correlation, see Biswal et al., 1995), observing the correlation of neighbouring
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areas (Zang, Jiang, Lu, He & Tian, 2004) or decomposing the signal and its different
sources with data-driven methods (Beckmann & Smith, 2004; Liu, Chang & Duyn, 2013;
Liu & Duyn, 2013; Liu, Zhang, Chang & Duyn, 2018; Mckeown et al., 1998; Tagliazucchi,
Balenzuela, Fraiman & Chialvo, 2011). For instance, with spatial Independent Component
Analysis (ICA) it is possible to model various functional networks, i.e. different patterns
of spontaneous connectivity, that are spatially similar to tIA (Buckner, Andrews-Hanna &
Schacter, 2008; Fox et al., 2005) Alternatively, various types of clustering can be applied
on a subset of temporal volumes, which selection is based on the extreme fluctuations of a
ROI signal. This technique, called Co-Activation Pattern analysis, shows similar patterns
to seed correlation analysis (Liu et al., 2013; Liu & Duyn, 2013; Liu, Zhang et al., 2018).

Otherwise, RS-fMRI can be also used to assess different properties of the signal at rest
by observing the spectral characteristics of its fluctuations. Two broadly adopted measures
for this scope are the (fractional) Amplitude of Low Frequency Fluctuations (f/ALFF, Zang
et al., 2007; Zou et al., 2008) and the Resting State Physiological Fluctuation Amplitude
(RSFA, Kannurpatti & Biswal, 2008). ALFF was initially proposed as the power of the low
frequency band of the signal (0.01-0.08 Hz) (Zang et al., 2007), and successively formulated
for fALLF as the ratio between the power of the low frequency band and that of the entire
range in order to be less susceptible to physiological factors (Zou et al., 2008). Instead,
RSFA has been proposed as the standard deviation of the signal in the same low frequency
band.

Finally, a similar concept to GLM analysis can be applied to RS-fMRI. In this case,
rather than convolving a hypothesized timecourse of neuronal activity based on the ex-
perimental design with the HRF and fit the result to the BOLD signal, the latter is de-
convolved with the HRF, in order to recover the activity signal underlying the RS fluctu-
ations (Caballero-Gaudes, Karahanoglu, Lazeyras & Van De Ville, 2012; Caballero-Gaudes,
Moia, Panwar, Bandettini & Gonzalez-Castillo, 2019; Caballero-Gaudes et al., 2011; Kara-
hanoglu, Caballero-Gaudes, Lazeyras & Van De Ville, 2013).

"Noise" in fMRI
Motion and other sources of artefacts

In addition to neuronal-related activity, the BOLD signal presents multiple sources of noise
related to hardware-related artefacts and drifts, head motion, confounding physiological
fluctuations (Bianciardi et al., 2009; Jorge, Figueiredo, van der Zwaag & Marques, 2013)
as well as image distortions related to data acquisition that should be accounted for and
corrected during fMRI data preprocessing. For instance, the images could present geometric
distortions in the phase direction of the acquisition that can be removed by means of
mapping field distorsions, either using field maps or using two images acquired in opposite
phase-encoding directions, and then with a non-linear transformation of the fMRI volumes
(e.g. TOPUP, Andersson, Skare & Ashburner, 2003; Glasser et al., 2018). Also, fMRI
images are typically acquired slice by slice and the difference in their time of acquisition
can be compensated via slice timimg correction (Parker & Razlighi, 2019), although this
step can also introduce confounding effects in the data due to signal interpolation (Parker &
Razlighi, 2019). More generally, realigning all fMRI volume to a reference image can deal
with part of the artefacts introduced by head motion (Friston, Ashburner et al., 1995).
However, this step does not remove the effect of motion completely (Caballero-Gaudes &
Reynolds, 2017).

The most straight-forward way to deal with signal artefacts is to model them as re-
gressors of non-interest along with the task regressors (in tIA-fMRI) or to project them
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out of the fMRI data if there is no task paradigm (RS-fMRI). For instance, motion-related
effects can be expressed as a set of the relative translations and rotation obtained during
realignment, considering their first derivative and their squared transformation for up to
24 regressors for a better denoising (Friston, Holmes et al., 1995). Similarly, very low fre-
quency trends due to scanner inestabilities can be modelled as a set of basis functions (e.g.
Legendre polynomials, discrete cosine functions).

Furthermore, large deviations in the fMRI signal (e.g. spikes) caused by motion jerks
and scanner noise can be removed through scrubbing or censoring (Power, Barnes, Snyder,
Schlaggar & Petersen, 2012). This process consists in identifying those fMRI volumes char-
acterised by abrupt changes in the BOLD signal and removing or interpolating them. The
identification can be performed by using summary metrics of motion, like Framewise Dis-
placement (Power et al., 2012), or by observing transient changes in the signal (DVARS,
Power et al., 2012; Smyser et al., 2010). However, it is important to notice that, if cor-
rectly accounted for, scrubbing could reduce the degrees of freedom in statistical analysis
(Mascali et al., 2021), leading to biases in second-level analysis between subjects that
move too much and others, or introduce discontinuity in the signal itself, limiting the
use of particular analyses dependent on signal continuity (e.g. ICA, see Caballero-Gaudes
& Reynolds, 2017), and biasing the estimation of functional connectivity (Mascali et al.,
2021). Moreover, interpolating the signal could introduce spurious changes in the signal.

Another common approach to remove not only motion, but also other sources of noise,
is based on data decomposition techniques. For instance, ICA can be leveraged to model,
identify and remove motion artefacts as well as other sources of noise (Behzadi, Restom,
Liau & Liu, 2007; Griffanti et al., 2014; Muschelli et al., 2014; Pruim, Mennes, Buitelaar &
Beckmann, 2015; Pruim, Mennes, Rooij et al., 2015; Salimi-Khorshidi et al., 2014). Ideally,
the best candidate to identify noisy timeseries would be temporal ICA, i.e. a decomposition
in which the independence is forced in the temporal domain (Glasser et al., 2018; Smith
et al., 2012). However, such approach is not feasible in a normal fMRI context since it
would require the samples in time to be much higher than the samples in space (Smith
et al., 2012). Hence, spatial ICA is the most common application for fMRI decomposition,
although this might lead to detect spurious components that contain both true BOLD sig-
nal and noise (Caballero-Gaudes & Reynolds, 2017). Alternatively, several fMRI sessions
could be concatenated to apply temporal ICA, although this approach would lead to the
impossibility of removing session-specific noise. The challenging factor in adopting ICA for
denoising is the classification of the independent components. Although manual classifica-
tion is still the approach with the best outcome (Griffanti et al., 2017), it is time consuming,
it requires trained researchers, and the result is dependent on the observer. For this reason,
different approaches for automatic classification of ICA components have been proposed
in time, from full classifiers (FIX, Salimi-Khorshidi et al., 2014) to approaches specifically
targeting motion artefacts (ICA-AROMA, Pruim, Mennes, Buitelaar & Beckmann, 2015;
Pruim, Mennes, Rooij et al., 2015).

Alternatively, decomposing the signal of white matter (WM) and cerebrospinal fluid
(CSF) into principal components and considering the first few (a technique called ana-
tomical CompCor, see Behzadi et al., 2007) can help retrieving proxies of motion-related
artefacts and physiological fluctuations (Behzadi et al., 2007; Muschelli et al., 2014). In
fact, it has been shown that CompCor can be more effective in denoising motion artefacts
than ICA based techniques and censoring (Mascali et al., 2021).

Noise in fMRI can also be reduced by using Multi-Echo (ME) acquisitions that sample
the data at multiple successive echo times (TE). A weighted combination of the multiple
echoes based on each voxel’s Ty value (Posse et al., 1999) or temporal signal-to-noise
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ratio (Poser et al., 2006) can smear out random noise and enhance the sensitivity to the
BOLD contrast. In fact, compared with single-echo data, this optimal combination can
improve the mapping of neuronal activity at 3 Tesla (Fernandez, Leuchs, Simann, Czisch
& Spoormaker, 2017) and 7T (Puckett et al., 2018), with results comparable to other
preprocessing techniques requiring extra data such as RETROICOR (Atwi et al., 2018).
Optimal combination of multiple echo volumes can also improve sensitivity, specificity,
repeatability and reliability of fMRI mapping (Cohen et al., 2021; Cohen & Wang, 2019).

Furthermore, assuming a monoexponential decay, the voxelwise fMRI signal S acquired
at a given echo time T'FE can be expressed in signal percentage change as:

S;S =Ap—TE - AR} +n, (1.1)
where Ap represents non-BOLD related changes in the net magnetisation, AR5 represents
BOLD-related susceptibility changes (and is the inverse of ATy), and n denotes random
noise (Kundu et al., 2013; Kundu et al., 2012). As the BOLD-related signal can be expressed
as a function of the TE, whereas noise-related non-BOLD changes in the net magnetization
are independent of TE, the information available in multiple echoes can be leveraged for
the purpose of denoising. For example, in a dual-echo acquisition where the first TE is
sufficiently short, the first echo signal mainly captures changes in Ap rather than in AR3.
It is then possible to remove artefactual effects, through voxelwise regression, from the
second echo signal acquired at a longer TE with appropriate BOLD contrast (Bright &
Murphy, 2013b).

Collecting more echoes opens up the possibility to leverage ICA and automatically
classifying independent components into BOLD-related (i.e. describing ARj fluctuations
with a linear TE-dependency) or noise (i.e. independent of TE, related to non-BOLD fluc-
tuations in the net magnetization Ap), an approach known as ME independent component
analysis (ME-ICA, Kundu et al., 2013; Kundu et al., 2012; Kundu et al., 2017). Compared
to single-echo data denoising, ME-ICA can improve the mapping of task-induced activation
(DuPre et al., 2016; Gonzalez-Castillo et al., 2016; Lombardo et al., 2016), for example in
challenging paradigms with slow-varying stimuli (Evans et al., 2015) or language mapping
and laterality (Amemiya et al., 2019). It also outperforms single-echo ICA-based denoising
of resting-state fMRI data (Dipasquale et al., 2017; Lynch et al., 2020), and provide more
efficient and reliable functional connectivity mapping in individual subjects (Lynch et al.,
2020) and in brain regions where traditional single-echo acquisitions offer reduced signal-
to-noise ratio, such as the basal forebrain (Markello et al., 2018). Finally, ME-ICA also
enhances the deconvolution of neuronal-related signal changes (Caballero-Gaudes et al.,
2019).

Physiological noise

When BOLD fMRI is used as an intrinsic contrast and the interest is in the neural correl-
ates, the neurovascular coupling should possibly be uncoupled. To this purpose, physiolo-
gical signals become noise, and it is necessary to model them so that their associated
variance in the fMRI signal is accounted for and minimized during preprocessing or data
analyses (Caballero-Gaudes & Reynolds, 2017; Liu, 2016). The principal frequencies char-
acterising physiological signals like cardiac pulse and respiration are in a different band
compared to those of the neural-related BOLD signal: namely, the primary component of
cardiac related fluctuations are around 1 Hz, while the respiratory related ones are around
0.3 Hz. Thus, if the temporal sampling is high enough, a simple band-pass filter could easily
remove their confounding effects (Biswal et al., 1995; Chuang & Chen, 2001; Lowe, Mock &
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Sorenson, 1998). The downside is that this approach will remove the BOLD-related signal
frequencies in the same range as well, and it will not remove the impact of physiological
frequencies in the same range as the BOLD signal (Caballero-Gaudes & Reynolds, 2017).
This is especially true if the temporal sampling is low and the physiological signal is aliased
in the BOLD-related frequency range. Moreover, physiological signal, and respiration in
particular, has an impact on other sources of noise, like magnetic field perturbation (Raj,
Anderson & Gore, 2001), and motion (Fair et al., 2020; Pais-Roldan, Biswal, Scheffler
& Yu, 2018; Power, Lynch et al., 2019) that should be taken into account and removed
(Gratton et al., 2020).

An easy way to remove such perturbations is to remove the average brain signal (also
called global signal), since it is often considered as a proxy of the combined impact of dif-
ferent sources of noise, especially related to movement or physiological in nature. However,
its removal is controversial, since it can heavily alter the interpretation of BOLD fMRI
(Power, Plitt, Laumann & Martin, 2017). For this reason, Power et al. (2018) proposed to
decompose fMRI data in low and high rank components, and to consider the first few low
rank components timeseries as noise. This technique, called GODEC, showed improved
denoising of IMRI data after ME-ICA (Power et al., 2018; Zhou & Tao, 2011).

As a slightly more advanced alternative, the average signal in the white matter (WM)
and cerebrospinal fluid (CSF) can be used as a proxy of physiological noise, since no
neural-related signal is present in these tissues, that are conversely dominated by cardiac
pulsatility and respiration (Anderson et al., 2011; Jo, Saad, Simmons, Milbury & Cox,
2010), although more recently Attarpour, Ward and Chen (2021) showed that the average
CSF does not represent cardiac fluctuations properly. However, decomposing the signal
of these two tissues into principal component with CompCor can retrieve more accurate
physiological proxies (Behzadi et al., 2007). Similarly, ICA based decomposition can be spe-
cifically set up to retrieve physiological-related signals, both in space (CORSICA, Perlbarg
et al., 2007) and in time (PESTICA, Beall & Lowe, 2007).

An alternative to data-driven approaches consists in acquiring physiological signals such
as cardiac pulse and respiration effort during the imaging session, opening up the possibility
to adopt more model-based approaches to deal with physiological noise. For instance, it is
possible to estimate the frequencies of the amplitude envelope of cardiac and respiratory
signals, and then selectively filter them from fMRI data (Biswal, DeYoe & Hyde, 1996).
Alternatively, it is possible to use the measured cardiac and respiratory signals to model
their periodic fluctuation. Cardiac and respiratory phases can be estimated from signal
recordings, then their Fourier expansion can be removed from the data in a slice-dependent
manner at the beginning of the preprocessing (RETROICOR, Glover, Li & Ress, 2000).
However, RETROICOR does not remove completely the effect of physiological signal from
the data, especially regional low frequency effects that vary between brain regions (Birn,
Diamond, Smith & Bandettini, 2006; Chang, Cunningham & Glover, 2009; Shmueli et al.,
2007).

Noticeably, variations in the heart rate (HR, Shmueli et al., 2007) and the respiration
volume per time (RVT, Birn et al., 2006) have been applied successfully to denoise BOLD
signal from physiological fluctuations after RETROICOR, especially when convolved with a
modelled response function, cardiac (Chang et al., 2009) or respiratory (Birn, Smith, Jones
& Bandettini, 2008). Various alternatives to RVT to improve breathing-related denoising
have been proposed, either to simplify their calculation, that is normally based on the
peak detection in the respiratory signal, or to improve the detection of particular changes
in the respiratory signal. For instance, Chang and Glover (2009) proposed to simply use
the standard deviation of the respiratory signal, avoiding the peak detection. Power et al.
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(2018) suggested to compute the standard deviation of the respiratory envelope in small
windows to be more susceptible to breathing changes. More recently, Harrison et al. (2021)
showed that applying an Hilbert transform to compute RVT improves the characterisations
of breathing rhythms and the detection of deep breaths. Although the regions impacted
by slow variations in cardiac rate and breathing patterns frequently overlap (Chang et al.,
2009; Kassinopoulos & Mitsis, 2019), HR and RVT regressor can be used together for
better performance (Chang et al., 2009).

Another physiological confound related to RVT consists in spontaneous COy fluctu-
ations, called poikilocapnia. These fluctuations, that have been corroborated with Trans-
cranial Doppler ultrasound (TCD), are related to low frequency fluctuations in the BOLD
signal, and if not accounted for they can induce a bias in the signal estimation in up to
a fifth of the cortex (Wise, Ide, Poulin & Tracey, 2004). The pattern of biases induced
by poikilocapnia has been found comparable to that of RVT (Chang & Glover, 2009),
although accounting for the latter is not sufficient to explain all the variability induced
by the former (Golestani, Chang, Kwinta, Khatamian & Jean Chen, 2015). However, the
fact that BOLD signal is susceptible to CO9 fluctuations can be conversely seen as an
advantage, and used to image cerebral physiology.

Cerebrovascular Reactivity Mapping

The fact that BOLD signal is substantially a physiological measurement, susceptible to
changes in blood vessels, opens up the possibility of using it to image vascular mechan-
isms. One of such mechanisms is the ability to react to vasoactive stimuli, the so called
Cerebrovascular Reactivity (CVR). In practice, when there is a decompensation of certain
elements in the blood stream, such as COs, the pH changes. This will activate chemical
receptors in the walls of the vessels that will in turn relax or constrict the vascular smooth
muscles. Such change will adapt the internal calibre of the vessel, changing cerebral blood
flow to maintain the homoeostasis of Oz. For instance, a high level of CO», called hyper-
capnia, will results in a decrease in pH due to the dissociation of CO9 and H5O into protons
and ions of bicarbonate (H" and HCOj"), becoming a vasodilatory stimulus. The vascular
muscles will relax as a response, increasing cerebral blood flow to provide sufficient Oo to
the surrounding tissues (Liu, De Vis & Lu, 2018) (see Figure 1.3). This increase in HbO
results in a global increase in the BOLD signal as well.

This mechanism can be leveraged to measure CVR in experimental and clinical set-
tings. In fact, the potential of BOLD-fMRI based CVR estimation as a diagnostic measure
has been ascertained in different diseases, spanning from vascular diseases (e.g. Hartkamp,
Bokkers, van Osch, de Borst & Hendrikse, 2017; Markus & Cullinane, 2001; Webster et al.,
1995; Ziyeh et al., 2005), to stroke and aphasia (e.g. Krainik, Hund-Georgiadis, Zysset &
Von Cramon, 2005; Van Oers et al., 2018), brain tumours (e.g. Fierstra et al., 2018; Zaca,
Jovicich, Nadar, Voyvodic & Pillai, 2014), neurodegenerative diseases (e.g. Camargo et al.,
2015; Glodzik, Randall, Rusinek & de Leon, 2013; Marshall et al., 2014), hypertension
(e.g. Tadecola & Davisson, 2008; Leoni et al., 2011; Tchistiakova, Anderson, Greenwood &
Macintosh, 2014), lifestyle habits (e.g. Friedman et al., 2008; Gonzales et al., 2014), sleep
apnoea (e.g. Buterbaugh et al., 2015; Prilipko, Huynh, Thomason, Kushida & Guillemin-
ault, 2014), and traumatic brain injury or concussions (e.g. Churchill, Hutchison, Graham
& Schweizer, 2020; Markus & Cullinane, 2001).

One way to estimate CVR during BOLD-fMRI is by injection of acetazolamide, a
chemical compound that decreases the pH in the vessels and elicits a vasodilatory response
using in a similar way to hypercapnia (Settakis, Molnar et al., 2003; Vorstrup, Brun &
Lassen, 1986). Acetazolamide injection can be easily performed, even with non-cooperating



1.4 CVR mapping %

Figure 1.3: Representation of CVR responses. When the levels of CO» in the bloodstream
increase, and the COg and H2O dissociate into protons and ions of bicarbonate (H' and
HCO37), the vessels dilate to provide more oxygen to the surrounding tissues. Note that
the representation is a simplification of the content of the blood stream and the state of
water and gas molecules (that are both free and bound to haemoglobin).

subjects, and it is a safe procedure (Fierstra et al., 2013). However, the high inter-subject
response variability that reduces measurement reproducibility, its side effects, albeit mild,
and overall its invasiveness limit its widespread use as a vasodilatory stimulus, particularly
in experiments with healthy subjects (Fierstra et al., 2013).

Another option is to ask subjects to undergo a gas challenge, i.e. breathing air with a
higher concentration of CO2 than normal room environment at regular intervals, during
which the subject is induced into temporary hypercapnia. The gas flow of the inspired
air can be controlled manually by an operator or mechanically by a computerised system,
while the pressure of gasses in the expired air can be recorded using a capnograph monitor,
obtaining a measurement of the pressure of the (expired) end-tidal COy (PprCOs, Liu,
De Vis & Lu, 2018). PgpCO2 is a close approximation of the pressure of the alveolar
CO42 (McSwain et al., 2010; Peebles et al., 2007; Sullivan, Kissoon & Goodwin, 2005), the
real vasoactive stimulus, and despite being lower than the latter, it is also a non-invasive
measurement, making it more suitable to estimate CVR in clinical and research settings.
Hence, by comparing the increase in PrrCOs to the changes in the BOLD signal, it is
possible to obtain a quantitative, non-invasive, whole-brain measurement of CVR that is
comparable to acetazolamide induced CVR (Gooskens et al., 2003; Markus & Harrison,
1992; Ringelstein, Van Eyck & Mertens, 1992).

While gas challenges are considered the non-invasive golden standard for CVR assess-
ment, the need of specific materials and settings makes it more difficult to be broadly
adapted (Pinto et al., 2021). Moreover, some subjects might present lower tolerance to the
apparatus (e.g. face masks) or to the challenge itself, potentially experiencing anxiety or
dizziness and thus biasing the CVR measurement (Urback, MacIntosh & Goldstein, 2017).
A close alternative to gas challenges are respiratory challenges such as cued deep breathing
(CDB) and Breath-Holding (BH). These challenges consist in inducing the subject into
paced breathing patterns, causing changes in the percentage of COs present in the blood.

A BH paradigm mainly consists in a period of apnoea concluded by either an inspiration
or an exhalation followed by a period of normal breathing (Ratnatunga & Adiseshiah,
1990). It is possible to add one or more cycles of paced breathing before the apnoea as
well. Due to the broad adoption of BH, different paradigms have been proposed, mainly
varying for the length of the apnoea, the presence of paced breathing before the apnoea and
the apnoea being followed by an exhalation or an inhalation. However, the recommended
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paradigm for compliant subjects seems to consist of a paced breathing, followed by 15-20
seconds of apnoea ended by an exhalation, and a final period of self-paced recovery. With
this paradigm, the variability of baseline CO; is minimised and the PgrCQOsy response
shape is simple and close to reach its limit (Pinto et al., 2021). BH paradigms can be
successfully implemented in studies that include young children, elderly people and other
groups of less cooperative subjects (Handwerker et al., 2007; Kannurpatti et al., 2010; Raut
et al., 2016; Riecker et al., 2003; Thomas et al., 2013; Thomason et al., 2005), and they
offer robust CVR measurements even when subjects are not able to hold their breath for as
long as instructed (Bright & Murphy, 2013a). Moreover, they provide reliable results in the
short and long term (Peng et al., 2019), both in terms of spatial reliability (i.e. comparing
variability of voxels across multiple sessions in one subject) and general reliability (i.e.
average CVR value across sessions and within subjects) (Lipp et al., 2015; Magon et al.,
2009)), in a comparable way to gas challenges (Dengel et al., 2017; Evanoff et al., 2020;
Leung, Kim & Kassner, 2016).

Conversely, CDB paradigms consists in successive cued deep breaths (typically two),
lasting approximately 4 seconds each, followed by a few seconds of normal breathing. This
is a very easy task for subjects that causes a mild and transient state of hypocapnia, a
drop in COq, that despite being the opposite mechanism to BH, produces similarly reliable
and comparable CVR estimations to BH (Bright et al., 2009; Sousa et al., 2014; Stickland
et al., 2021).

Independently from the paradigm, it has been repeatedly shown that BH-induced CVR
estimates are similar to COg based CVR estimates (Biswal, Kannurpatti & Rypma, 2007;
Bright et al., 2009; Kannurpatti & Biswal, 2008; Kastrup, Kriiger, Neumann-Haefelin &
Moseley, 2001; Tancredi & Hoge, 2013). Since they require a less complex (if any) set-up
than gas challenges, and cause less discomfort in subjects, respiratory challenges can be
easily implemented in research and clinical routines, offering a valid alternative to COq
challenges (Bright et al., 2009; Urback et al., 2017).

An even less invasive alternative to gas challenges consists in measuring poikilocapnia
during a RS scan. If the PpprCOs is recorded, and there is sufficient variability in the signal,
it can be used to obtain a map of CVR (Chang & Glover, 2009; Wise et al., 2004) in a
similar manner to respiratory challenges, although the latter family of techniques results
in more reliable CVR estimations (Lipp et al., 2015). If it is not possible to record the
Pr1CO29, a qualitative CVR estimation can still be attempted, using the average signal of
specific frequency bands (Liu, Li et al., 2017) or of specific tissues (e.g. the cerebrospinal
fluid, see Jahanian et al., 2017). The advantage of this latter approach, besides its easy
implementation, consists in the fact that while the sampling rate of PgrCOs is de facto
limited by the breathing rate, corresponding to the amplitude envelope of the CO4 signal,
the average BOLD signal will always be susceptible to faster fluctuations up to the sampling
rate of the BOLD signal itself (Liu, Li et al., 2017). However, it is important to notice that
while the two techniques produce estimations that are significantly correlated, the average
signal is still characterised by neural component that cannot be estimated and treated as
noise, and not using PrrCO2 will not allow a quantitative estimation of CVR. Moreover, it
will not allow a precise estimation of the haemodynamic lag of CVR, although prepending
few minutes of respiratory challenges to a RS scan can introduce enough variability to
improve such estimation (Stickland et al., 2021).

The estimation of CVR through PrprCO4 fluctuations has been found to be similar
to both RSFA (Kannurpatti & Biswal, 2008; Kannurpatti et al., 2014; Wang et al., 2019)
and f/ALFF (De Vis et al., 2018; Golestani et al., 2016), at least in healthy subjects (De
Vis et al., 2018). Interestingly, RS fluctuations have also been previously used to assess
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intrinsic brain fluctuations that matched tIA, for instance matching working memory (Zou
et al., 2013) and executive functions (Flanker task, see Mennes et al., 2011). Moreover, RS
fluctuations have been used to rescale the amplitude of tIA in order to account for vascular
effects (Kazan et al., 2016). These findings, as well as the impact that physiological signals
can have on functional connectivity and RS fluctuations, might indicate that physiological
fluctuations and CVR could actually constitute the basis or otherwise model the relation-
ship between RS and tIA, indicating that at least part of what has been attributed to
intrinsic brain patterns could actually be explained by stable physiological and vascular
factors, such as CVR.

Introduction to the chapters and aim of the studies

For this reason, the aim of this work is not only to improve CVR estimation, but also to
understand how cerebrovascular reactivity can impact the relationship between RS and
tIA. In the following chapter, I will introduce the dataset built to investigate such impact.
Following the model of dense mapping datasets, this dataset, named FuskallBUR, features
ten subjects undergoing ten sessions of BOLD-fMRI recordings, while performing a motor
task, a Simon task, a Pinel functional localiser task, and a BH challenge, or being in a state
of rest. Besides explaining the acquisition per sé and the methods of estimation of CVR
maps, RS fluctuations, and task responses, the reliability of all tTA contrasts and RS will
be tested, and the group-level responses for each task, besides the BH, will be estimated.

Since CVR does not happen simultaneously across the brain, taking into account local
variation in the delay of the response can be a great advantage for CVR estimation.
Chapter 3 will feature a technique to estimate voxelwise quantitative maps of BH-induced
CVR by taking into account its haemodynamic lag, and will show how this technique out-
performs CVR maps that are not optimised for spatial variability of the response delay.
I will also show how simultaneously estimating both CVR and the impact of motion can
improve CVR imaging compared to a sequential approach where the impact of motion
(and other nuisances) is removed from the BOLD signal beforehand.

Then, to further explore methods for CVR mapping denoising, I will take into account
the impact of ME-fMRI and ICA denoising on CVR in Chapter 4. The optimal combination
of ME-fMRI signal will be compared to traditional approaches (namely, SE-fMRI) in terms
of motion removal and reliability. Various denoising techniques based on ME-ICA denoising
will also be considered to find what is the best balance between aggressivity in removing
the noise and conservativity in maintaining the signal of interest.

In order to understand which individual effects can introduce spatial biases in CVR
mapping, the impact of blood pressure will be studied in Chapter 5, in particular the effect
of mean arterial pressure and pulse pressure over CVR and its lag. A Linear Mixed Effect
model will be used to study the relationship between mean arterial pressure, pulse pressure,
and cardiac pulse. Since previous literature reports an effect of sex, this variable will be
taken into account in the model, as well as its interaction with the other variables. This
relationship will be studied at the average grey matter level, as well as at the voxelwise
level, in order to understand if different cerebral regions respond to changes of pressure
and pulse in different ways.

Finally, Chapter 6 will be dedicated to study the impact of CVR on RS fluctuations and
various tIA maps. First, the relationship between CVR and each metric of RS fluctuations
(RSFA, ALFF, and fALFF) will be analysed both at the average grey matter level, as well
as voxelwise. Then, the tTA associated to the motor task and the Simon task will be taken
into account, in order to compare a higher cognitive level task and a simpler task.
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In 2012, Poldrack and colleagues, inspired by the Quantified Self movement and by the
fruitful application of a similar approach in other fields of science (such as genomics, see
Chen, Mias et al., 2012), started acquiring data from one individual (himself) twice a week
for over a year and a half (Poldrack et al., 2015). Not too much time after, Gordon et al.
(2017) created the Midnight Scan Club, a dataset of ten individuals undergoing twelve
sessions of MRI composed by 30 minutes of RS and a motor, an incidental memory, a
spatial coherence discrimination, and a semantic discrimination tasks. Around the same
time Braga and Buckner (2017) started a similar collection of more than 30 sessions of RS,
N-back working memory, and visuomotor tasks on two individuals. Challenging the com-
mon approach to MRI data acquisition by having few subjects undergo many scan hours,
these datasets started a paradigm shift in cognitive neuroscience. In fact, this approach,
called precision functional mapping or dense mapping (DM), started shifting the object
of cognitive neuroscience’s explanatory focus, from any brain to any one brain (Naselaris
et al., 2021) in great detail.

DM presents many advantages compared to traditional group-based data acquisition.
On the one hand, it makes subject recruitment easier and more adaptable to particular
scanner access times (Gordon et al., 2017). On the other hand, it solves the problem of
undersized experimental groups since the total amount of hours of data is higher than
the common number of hours in a single session study (Naselaris et al., 2021; Poldrack,
2021). Moreover, DM can be seen as an extension of repeated measures (or test-retest)
acquisitions, allowing improved estimation of the stability of neural activation and func-
tional connectivity (Laumann et al., 2015; Lynch et al., 2020), functional network dynamics
(Gratton et al., 2018) and interactions (Gordon et al., 2018), and how this stability is re-
lated to behaviour (Seitzman et al., 2019). It also serves as a perfect use-case to validate the
reliability of analysis methods and pipelines (Fedorenko, 2021), for instance the estimation
of cardiac signal from fMRI data (Aslan, Hocke, Schwarz & Frederick, 2019), and machine
learning techniques (Hinrich et al., 2017; Huang et al., 2019). Conversely, it can open the
possibility of studying variations in brain patterns over time (Shine et al., 2016), for in-
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stance due to functional reconfiguration (Salehi et al., 2020), brain plasticity (Newbold &
Dosenbach, 2021; Newbold et al., 2020), surprise and novelty (Betzel et al., 2017), or the
effect of the endocrine system during the menstrual cycle (Arélin et al., 2015; Barth et al.,
2016; Pritschet et al., 2020; Pritschet et al., 2021). In the past, DM also helped establish
the impact of food and caffeine intake on functional connectivity (Poldrack et al., 2015),
and on vasculature-related effects in RS (Yang et al., 2019).

Most of all, DM is the perfect data acquisition to explore individual idiosyncrasies, al-
beit the study of individual traits has been successfully carried out at the group level. For
example, using the Human Connectome Project (Glasser et al., 2016), Finn et al. (2015)
demonstrated that functional connectivity has individual characteristics that are independ-
ent from the type of task that the subject is carrying out, and can be discerned from other
subjects See also, Finn et al. (2017). Using the same dataset, Bolton et al. (2020) showed
that some subjects demonstrate idiosyncratic motion behaviour linked to behavioural and
cognitive characteristics of the individual. Despite these individual-specific observations
obtained from large populations datasets, DM specifically allows to understand whether
the knowledge gathered from group analyses truly stands at the individual level, or if the
latter can provide further insights into the brain structure and function (Fedorenko, 2021).
For instance, Braga and colleagues showed how the default mode network (DMN), fre-
quently reported in group analysis, is actually separated into two distinct, adjacent but
not overlapping networks (Braga & Buckner, 2017), confirming this discovery with multiple
data analyses (Braga, Van Dijk, Polimeni, Eldaief & Buckner, 2019), tracing a link with
cognitive constructs (such as the theory of mind DiNicola, Braga & Buckner, 2020), and
proposing interspecies similarities (Braga et al., 2019; Buckner & DiNicola, 2019). DMN
sub-networks have been confirmed independently, finding up to 9 sub-networks interact-
ing differently with other networks (Gordon et al., 2020). The sub-network organisation
expands to other networks, such as the motor one, that was found to be multiple nested
networks that match with the motor functional organisation from other species (Du &
Buckner, 2021). Furthermore, DM allowed to improve the distinction of network variants
(Gilmore, Nelson & McDermott, 2021) and the location of networks and functionality in
areas characterised by high intersubject variability, such as the cerebellum (Marek et al.,
2018; Xue et al., 2021) and the frontal lobe (Marek & Dosenbach, 2018; Smith, Perez,
Porter, Dworetsky & Gratton, 2021), leading to new evolutionary models (DiNicola &
Buckner, 2021).

DM can be used for clinical experimentation as well, especially in cohort of patients
that are under continuous observation. Although longitudinal studies are well known in the
clinical practice, DM can improve the observations on pathological variability over time
(Lynch, Elbau & Liston, 2021; Poldrack, 2021), and allows personalised treatment and the
development of personalised medicine (Chen, Mias et al., 2012; Chen & Snyder, 2012).
The demonstration that advanced data acquisition techniques, such as ME-fMRI, can be
used to lower the amount of necessary time to obtain reliable DM datasets (Lynch et al.,
2020) further increases DM benefits to study psychiatric and neurological investigation
and clinical applications (Gratton et al., 2020; Hampel et al., 2018; Padberg et al., 2017).
Furthermore, combining DM with ME-fMRI not only ensures higher sensitivity, specificity,
repeatability and reliability of fMRI mapping (Cohen et al., 2021; Cohen & Wang, 2019)
enables to increase adopt denoising strategies such as ME-ICA (Kundu et al., 2013; Kundu
et al., 2012; Kundu et al., 2017) that improve the mapping of task-induced activation
(Amemiya et al., 2019; DuPre et al., 2016; Evans et al., 2015; Gonzalez-Castillo et al.,
2016; Lombardo et al., 2016) and improves signal-to-noise ratio compared to single-echo
acquisitions (Markello et al., 2018).



2.1
2.1.1

2.1 Methods 15

For these reason, we decided to collect a ME-fMRI based DM dataset to study the
questions opened in the previous chapter. Each session includes a BH task and various RS
runs to address the impact of CVR and RS fluctuations on tIA, including physiological
recordings to quantitatively assess CVR. In order to generalise previous studies on the
impact of RS fluctuations on tIA (e.g. Mennes et al., 2011; Zou et al., 2013), two different
types of task with different experimental designs and involving different cognitive domains
were implemented: a lower cognitive level, sensory, block designed motor task (Buckner
et al., 2011) and a higher cognitive level, event related with random IST designed Simon
task (Simon & Rudell, 1967). The different cognitive level and the different design of the
task should help ruling out eventual confounding factors related to the design of the task
or the cognitive domain and effort involved in each task.

Note that a third type of task was collected for this dataset: an event related with fixed
IST designed Pinel functional localiser task (Pinel et al., 2007), eliciting various cognitive
domains. However, the purposes of its collection and use are not in the scopes of this thesis.
Hence, its results will be presented in this chapter, but not in further studies.

This chapter will introduce the dataset adopted in all further chapters, focusing on
discussing the reliability of the three cognitive tasks and the four RS sessions, and analysing
the group results of the contrasts of interest for each task. The reliability of the CVR and
lag maps will be discussed in Chapter 4.

Methods

Participants

Ten healthy subjects with no record of psychiatric or neurological disorders (5F, age range
24-40 years at the start of the study) underwent ten MRI sessions in a 3T Siemens Pris-
makit scanner with a 64-channel head coil. Each session took place one week apart, on
the same day of the week and at the same time of the day to minimise effects related to
circadian rhythms (see e.g. Shannon et al., 2013).

All participants had to meet several further requirements, i.e. being non-smokers and
refrain from smoking for the whole duration of the experiment, and not suffering from
respiratory or cardiac health issues. They were also instructed to refrain from consuming
caffeinated drinks for two hours before the session. Informed consent was obtained before
each session, and the study was approved by the local ethics committee.

Biometrics

Before the MRI session, subjects were instructed to lay in a supine position on a cot and
relax. After approximately 5 minutes, blood pulse and pressure were measured once on
the right arm and once on the left arm, using an OMRON M7 Intelli IT blood pressure
monitor. Then, all subjects filled in a questionnaire on sleep and exercise habits, motivation,
hydration, and consumption of alcohol, coffee, and liquids, adapted from Gorgolewski et al.
(2015).

The original questionnaire (in Spanish) can be found as Appendix A

MRI data

Task instructions were explained before the first session, and then briefly reminded if
required before each run took place in every subsequent session. All stimuli and in-task
instructions were provided textually throughout the tasks through a mirror screen located
in the head coil. All tasks were padded with a 15 seconds resting period to account for
physiological signal alignment and/or shift during preprocessing.
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Figure 2.1: Typical MRI session

All MRI sessions consisted of four resting state (RS) runs, a motor task (Buckner et
al., 2011), a Simon task (Simon & Rudell, 1967), a Pinel functional localiser task (Pinel
et al., 2007), a breath-hold (BH) challenge (Bright & Murphy, 2013a), as well as two
anatomical images, a T2-weighted Turbo Spin Echo (Hennig, Nauerth & Friedburg, 1986)
and a T1-weighted MP2RAGE (Marques et al., 2009) image (see Figure 2.1). Each MRI
session began with the acquisition of the T2-weighted Turbo Spin Fcho image, while the
subjects fixated a cross on the screen or rested with their eyes closed. Next, all fMRI runs
took place, always starting with a RS run and followed by the four tasks, which were
interleaved by the three other runs of RS. Note that while the BH task always took place
last, the order of the other three tasks is counterbalanced between sessions. Finally, the
T1-weighted MP2RAGE image was acquired at the end of the session.

Resting State

During each RS run subjects were instructed to fixate a white cross in the middle of a
black screen, maintaining the eyes open and staying as still as possible. Each RS run lasted
10 minutes (400 scans).

Motor task

The Motor task was adapted from Buckner et al. (2011). The task consisted in five repe-
titions of a trial module, including six blocks of 15 seconds each. Fach block started with
three seconds in which the type of movement to perform was shown as an image, followed
by 12 seconds of the movement itself. The six blocks consisted in: (1)moving the tongue in
the mouth; (2) touching each finger with the thumb in rapid succession in the right hand;
and (3) left hand; (4)moving the toes of the left foot, and (5) right foot, or (6) fixating a
star (“sham” condition). Their order was randomly set at each repetition and session (see
Figure 2.2). The total duration of the run was 8.5 minutes (340 scans).

Simon task

The Simon task was adapted from Simon and Rudell (1967) (cfr. Hommel, 2011) and from
the Flanker task in Mennes, Kelly, Colcombe, Xavier Castellanos and Milham (2013). It
consisted of an event related design of 96 stimuli (average IST = 5s, min IST = 3s, max ISI =
9s, total duration = 8.5 minutes/340 scans). Each stimulus could be either a green or a red
square appearing on the left or on the right of the screen. Subjects were instructed to press
a button with the right hand when the red square was presented, and with the left hand
when the green square was presented, as fast and exactly as they could (see Figure 2.2).
48 stimuli were congruent (red appearing on the right or green appearing on the left) and
48 were incongruent (red appearing on the left or green appearing on the right). Each
response was recorded, taking into account if the response was correct or incorrect.

Pinel functional localiser task

A Pinel functional localiser task was adapted from Pinel et al. (2007) consisting of a rapid
event related task with 30 auditory stimuli and 30 visual stimuli (ISI = 3s, min stimulus
duration = 1.5s, max stimulus duration = 2.5s, total duration = 8.5 minutes/340 scans).
Each group of stimuli was composed of 10 short sentences, 10 subtractions, and 10 motor
instructions (press a button three times either with the left or the right hand). In addition,
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Figure 2.2: Left: stimuli of the Simon task. Right: stimuli of the motor task
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Figure 2.3: Stimuli of the Pinel task (adapted from Pinel et al. (2007))

there were 20 stimuli consisting of flashing chequerboards, oriented either vertically or
horizontally (see Figure 2.3).

Breath-Hold task

The BH task followed the paradigm described by Bright and Murphy (2013a). It consisted
of eight repetitions of a BH trial composed of four paced breathing cycles of 6 seconds
each, an apnoea (BH) period of 20 seconds, an exhalation of 3 seconds, and 11 seconds of
“recovery” (unpaced) breathing, for a total trial duration of 58 seconds (Figure 2.4). The
total duration of the BH task was 8.5 minutes (340 scans).

Subjects were instructed prior to scanning about the importance of the exhalations
preceding and following the apnoea (Pinto et al., 2021). Without these exhalations provid-
ing CO2 measurements, the change in systemic COq levels achieved by each BH cannot
be robustly estimated and the CVR (%BOLD/mmHg CO; change) cannot be estimated
quantitatively.
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Figure 2.4: Schematic of Breath-Hold trial. Apnoea was preceded and followed by exhala-
tions.

MRI data parameters

All functional MRI data was acquired with a T2*-weighted ME-fMRI data with the simul-
taneous multislice (a.k.a. multiband, MB) gradient-echo planar imaging sequence provided
by the Center for Magnetic Resonance Research (CMRR, Minnesota) (Moeller et al., 2010;
Setsompop et al., 2012). While the number of scans for each run was adapted according
to the duration of each task, the rest of sequence parameters were identical: TR = 1.5
s, TEs = 10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, MB acceleration factor = 4,
GRAPPA = 2 with Gradient-echo reference scan, 52 slices with interleaved acquisition,
Partial-Fourier = 6/8, FoV = 211x211 mm?, voxel size = 2.4x2.4x3 mm?®, Phase Encoding
= AP, bandwidth—=2470 Hz/px, LeakBlock kernel reconstruction (Cauley, Polimeni, Bhat,
Wald & Setsompop, 2014) and SENSE coil combination (Sotiropoulos et al., 2013). Single-
band reference (SBRef) images were also acquired for each TE. In addition, a pair of Spin
Echo echo planar images (EPI) with opposite phase-encoding (AP or PA) directions and
identical volume layout (TR = 2920 ms, TE = 28.6 ms, flip angle = 70°) were collected
before each functional run in order to be able to estimate field distortions, as suggested in
the Human Connectome Project protocol (Glasser et al., 2016).

The T1-weighted MP2RAGE image had the following parameters: TR = 5 s, TE =
2.98 ms, TI1 = 700 ms, TI2 = 2.5 s, flip angle 1 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176
slices, FoV read = 256 mm, voxel size = 1x1x1 mm?2, TA = 662 s. The T2-weighted Turbo
Spin Echo image had the following parameters: TR = 3.39 s, TE = 389 ms, GRAPPA =
2, 176 slices, FoV read = 256 mm, voxel size — 1x1x1 mm?®, TA = 300 s.

All DICOM files of the MRI data were transformed into nifti files with dem2nii (L,
Morgan, Ashburner, Smith & Rorden, 2016) and formatted into Brain Imaging Data Struc-
ture (BIDS, Gorgolewski et al., 2016) with heudiconv (Halchenko et al., 2019).

Physiological parameters

During the fMRI acquisition runs exhaled COy and O3 levels were monitored and recorded
using a nasal cannula (Intersurgical) connected to an ADInstruments ML206 gas analyser
unit and transferred to a BIOPAC MP150 physiological monitoring system where scan trig-
gers were simultaneously recorded, as well as cardiac pulse data using a photoplethysmo-
gram (PPG, TSD200 transducer with an PPG100C-MRI amplifier), and respiration effort
data (using either a TSD221-MRI or TSD110-MRI with a DA100C module, or a TSD201
transducer with an RSP100C amplifier). All signals were sampled at 10 kHz. The physiolo-
gical recordings started before and lasted longer than the ME-fMRI data recording to
enable the physiological regressors to be shifted, if necessary.

The files exported from the AcgKnowledge software were transformed and formatted
into BIDS with phys2bids (phys2bids developers et al., 2019).
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Data preprocessing

All MRI data were preprocessed with custom scripts based mainly in FSL (Jenkinson,
Beckmann, Behrens, Woolrich & Smith, 2012), AFNI (Cox, 1996), and ANTs (Tustison
et al., 2014). In brief, the T2-weighted image was skull-stripped and co-registered to the
MP2RAGE image along with the brain mask. The latter was applied to the MP2RAGE im-
age, that was then segmented into grey matter (GM), white matter (WM) and cerebrospinal
fluid tissues using Atropos (Avants, Tustison, Wu, Cook & Gee, 2011). The MP2RAGE
image was normalised to an asymmetric version of the MNI152 6th generation template at
1 mm resolution (Grabner et al., 2006), while the T2-weighted volume was co-registered to
the skull-stripped SBRef of the first echo. The first 10 volumes of the functional data were
discarded to allow the signal to achieve a steady state magnetisation. Image realignment to
the SBRef was computed using the first echo with MCFLIRT (Jenkinson & Smith, 2001),
and the estimated rigid-body spatial transformation was applied to all other echoes. A
brain mask from the SBRef volume was obtained and applied to all echoes. The differ-
ent echo timeseries were optimally combined (OC) voxelwise by weighting each timeseries
contribution by its T3 value (Posse et al., 1999) and a ME-based Independent Component
Analysis (ICA) was run with tedana (DuPre et al., 2019). A distortion field correction was
then performed on the OC volume with Topup (Andersson et al., 2003), using the pair
of spin-echo EPI images with reversed phase encoding acquired before the ME-EPI ac-
quisition (Glasser et al., 2016). All fMRI timeseries were smoothed with a gaussian kernel
of bmm at FWHM, except for the BH task data. Finally, the {MRI voxel timeseries were
transformed in signal percentage change (SPC).

Data analysis of Motor, Simon and Pinel functional localiser tasks

In order to analyse the functional data of the Motor, Simon and Pinel functional localiser
tasks, a general linear model (GLM) was defined using 3dDeconvolve where the design
matrix consisted of all task stimuli, the six demeaned realignments parameters and their
first derivatives, Legendre polynomials up to the fourth order, and the timeseries of the
independent components labelled as noise by ME-ICA (i.e. rejected ICs), after orthogon-
alisation with respect to the timeseries of the ICs labelled as signal (i.e. good ICs). The
GLM was then applied on each voxel timeseries and solved using the Restricted Maximum
Likelihood (ReML) estimation method considering an autoregressive moving average with
order 1 (i.e. ARMA(1,1)) model of the residuals to find the optimal set of weights for each
regressor in the design matrix.

Two different types of GLM analysis were performed: either considering each session
independently (i.e. session-specific), and all sessions of the same subject together after tem-
poral concatenation (i.e. subject-specific). The corresponding statistical parametric maps
of the contrasts of interest (described below) were thresholded at p <0.05 after correction
for multiple comparisons with the False Discovery Rate (FDR) procedure implemented in
AFNI (Benjamini, Krieger & Yekutieli, 2006).

Motor task
The following contrasts were modelled:

e tongue vs sham
e right finger vs sham
e left finger vs sham

e right toes vs sham
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e left toes vs sham

Simon task
The following contrasts were modelled, considering only the correct responses:

e all congruent stimuli

e all incongruent stimuli

e congruent vs incongruent stimuli
e congruent and incongruent stimuli

In addition, the incorrect responses were modelled separately from the right ones as re-
gressors of non-interest.

Pinel functional localiser task
The following contrasts were modelled:

e visual stimuli

e auditory stimuli

e motor stimuli

e sentences stimuli

e calculus stimuli

e motor vs sentences stimuli

e calculus vs sentences stimuli

e vertical vs horizontal chequerboards

e calculus vs non-calculus, auditory stimuli
e calculus vs non-calculus, visual stimuli
e auditory stimuli vs visual stimuli

e visual stimuli vs chequerboards

e right motor vs left motor

2.1.8 Resting State data analysis

The RS volumes were denoised by orthogonalising them with respect to the six demeaned
motion parameters, their first derivative, Legendre polynomials up to the fourth order,
and the timeseries of the rejected ICs (after orthogonalisation w.r.t. the timeseries of the
good ICs) using 3dTproject. Then, ALFF (Zang et al., 2007, the the power of a specific
frequency band, see), fALFF (Zou et al., 2008, the ALFF divided by the power of the
full spectrum, see), and RSFA (Kannurpatti & Biswal, 2008, the standard deviation of a
specific frequency band of the BOLD signal, see) were computed using 3dRSFC on each
run of RS independently in the 0.01-0.1 Hz frequency band:
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RSFA=o,, (2.1)
arrr—2 [ Sua(f) df (2.2)
0.01
fALFF = 0in Sea(f) 4 (2.3)
S Sua(f) df

where t, is the voxel timeseries, fqe 1S the maximum frequency of the data, and S, is
the power spectral density of the band taken into account.

Breath-Hold task, CO, trace processing and CVR estimation

The CO» timecourse was processed using custom scripts in Python 3.6.7. Briefly, the CO»
timecourse was downsampled to 40 Hz to reduce computational costs, then the end-tidal
peaks were individuated automatically and manually. The amplitude envelope was obtained
by linearly interpolating between the end-tidal peaks, then it was demeaned and convolved
with a two gamma-variate SPM canonical HRF to obtain the PrrCOgzhrf trace. In order
to account for measurement delay, the PprCOshrf trace was shifted to maximise the
cross-correlation with the average fMRI timecourse of an eroded version of the GM mask
(bulk shift, see Yezhuvath, Lewis-Amezcua, Varghese, Xiao & Lu, 2009). A lagged general
linear model (GLM) approach was adopted for CVR estimation in order to model temporal
offsets between the PgrCOshrf recording and the CVR response across voxels that occur
due to measurement and physiological delays (Donahue et al., 2016; Geranmayeh, Wise,
Leech & Murphy, 2015; Murphy, Harris & Wise, 2011; Sousa et al., 2014; Tong, Bergethon
& Frederick, 2011). Sixty shifted versions of the PprCOghrf trace were created, ranging
between 9 seconds from the bulk shift, with a shift increment of 0.3 s (fine shift). This
temporal range was based on previous literature, which rarely reports haemodynamic lags
over +8 s in healthy individuals (Bright et al., 2009; Donahue et al., 2016; Sousa et al.,
2014).

For each shift, a lagged GLM was defined with a design matrix comprised of the shifted
PeTCOshrf timecourse as the regressor of interest, the demeaned motion parameters and
their first derivative, and the Legendre polynomials up to the fourth order. The rationale
and adequacy of this simultaneous lagged GLM model for CVR estimation is described in
Chapter 3. The corresponding lagged GLM was fitted via orthogonal least squares using
AFNI. Then, the beta coefficient (i.e. weight) of the best fine-shifted PrrCOohrf trace were
selected for each voxel, corresponding to the lagged GLM model with maximum coefficient
of determination (R?). Finally, the beta coefficients expressed in BOLD signal percentage
change over Volts (BOLDgpc/V) were rescaled to be expressed in BOLD percentage over
millimetres of mercury (%BOLD/mmHg) as indicated by the gas analyser manufacturer!,
using the formula:

CO2mmH g) = (Patm — Poap)mmHg] - 10 - CO2[V]/100[V], (2.4)

where CO3[V] is the original COy timeseries, Py, is the atmospheric pressure in the
laboratory at the moment of acquisition, and P, is the water vapour pressure associated
with expired air. The values of Py, = 759 and Py, = 47 were used for all sessions.

In this way, a lag-optimised CVR map and a t-value map were obtained, together
with the associated lag map representing the voxelwise delay from the bulk shift, for each

"https://www.adinstruments.com /support /knowledge-base/it-possible-measure-expired-gasses-partial-
pressure-mmhg-rather-percentage



2.1.10

22 Chapter 2. Data acquisition: EuskallBUR dataset

analysis pipeline. The CVR and lag maps were thresholded at p <0.05 adjusted with
the Sidak correction (Bright, Tench & Murphy, 2017, Sidak, 1967) to account for sixty
comparisons computed in the lagged GLM approach (one per regressor), and the voxels
that were not statistically significant were excluded. The maps were further thresholded
on the basis of the lag: those voxels in which the optimal lag was at or adjacent to the
boundary (i.e. +8.7s) were considered not truly optimised and not physiologically plausible
in healthy subjects and therefore masked in all maps.

Group data analysis

One-sample test

In order to assess the statistical significance of the activation maps at the group level, all
subject-specific maps of regression coefficients, or general linear contrasts among them,
and associated t-statistics computed considering all sessions of the same subject were nor-
malised to the MNT152 template (Grabner et al., 2006, 2.5 mm isotropic voxel resolution),
with a nearest neighbour interpolation using ANTs. Then, a one-sample mixed effect meta-
analysis using 3dMEMA (Chen, Saad, Nath, Beauchamp & Cox, 2012), that models both
within- and across- subjects variability, was computed for each contrast of interest. All
results were then thresholded at p <0.05 corrected for FDR (Benjamini et al., 2006) and
found all clusters with a minimum size of 20 voxels (276.48 mm?), considering a neigh-
bourhood of 26 voxels. The same 3dMEMA model was also applied at the subject level,
modelling only the within-subject variability, in order to compare such results with the
group results.

Session reliability

In order to test the reliability of the results, all of the session-specific contrast, all of the
resting state metrics, CVR, and lag maps, as well as the associated t-statistics maps (if
any) were normalised to the MNI152 template (Grabner et al., 2006, 2.5mm isotropic voxel
resolution), and they were used to compute the intraclass correlation coefficient (ICC). ICC
was computed voxelwise using a regularized multilevel mixed effect model in 3dICC (AFNI)
in order to take into account the voxelwise standard error of the estimate of the contrast,
CVR, and lag maps for each session and run in the ICC estimation (Chen et al., 2018).
ICC assesses the reliability of a metric by comparing the intersubject, intrasubject, and
total variability of that metric, which is equivalent to:

ICC(2,1) ~ py = M Ssup; = M5y
1) = p2 = %(Mssess — MSy) + MSsup; + (kK —1)MS,

(2.5)

where M Sgypj, M Ssess, and M.S,, are the mean squares of the effects of subjects, sessions,
and residuals respectively, k is the number of sessions and n the number of subjects (Chen
et al., 2018; Mcgraw & Wong, 1996; Shrout & Fleiss, 1979). ICC(2,1) was chosen since
both subjects and sessions were considered random effects. High ICC scores indicate high
reliability, where the intrasubject variability is lower than the intersubject variability, and
following the classification given by Cicchetti (2001), an ICC score above 0.75 is considered
excellent, between 0.75 and 0.6 good, between 0.6 and 0.4 fair, and below 0.4 poor.

Since 3dICC uses the t-statistic map associated with the estimation of the beta coef-
ficients and the CVR, beta maps were not thresholded, while CVR and lag maps used in
this computation were only thresholded on the basis of the lag, and not on the basis of the
t-statistic. Note that fALFF does not have an associated t-statistic map, so no error was
taken into account.
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Figure 2.5: PerCOsqhrf trace for all subjects and all sessions. Rejected sessions are plotted
in red. Rejection was based on having less than three proper PrrCOshrf increases after
breathholds or having more PrrCOshrf decreases than increases after breathholds. Note
that the first session of subject 10 was lost due to a software malfunction during acquisition.

Results

As it can be observed in Figure Figure 2.5, out of the ten subjects, subjects 005 (male),
006 (female) and 010 (male) did not perform the BH task correctly in one or more ses-
sions. Therefore, these three subjects were excluded from further analyses for the sake of
consistency across the different studies described in this thesis, with the exception of one
session of subject 10, that was included in the analysis of Chapter 3

All CVR and lag maps, and related reliability maps, are discussed in more detail in
Chapter 4.

Motor task

Figure 2.6 shows the results of the one-sample MEMA test for all motor task contrasts,
while Tables B.1, B.3, B.5, B.7, and B.9 in Appendix B report all positive activation clusters
and Tables B.2, B.4, B.6, B.8, and B.10 in Appendix B report all negative activation
clusters, and Figure 2.8 shows the ICC reliability score of the BOLD activations.

The contrasts related to the tongue movement and to both finger tappings report pos-
itive activations in areas correspondent to the expected location in the motor homunculus
projection on the cortex, as well as a strong reliability in the same areas. Moreover, they
feature reliable subcortical and cerebellar activations that are bilateral (in the case of the
tongue) or ipsilateral to the side of the movement. The negative clusters in the orbitofrontal
cortex and on the edges of the brain in the contrast of tongue vs sham might be related
to susceptibility and head movement artefacts induced by the task.

In both toes movements, there seems to be a small, yet reliable, activation in the
cerebellum, ipsilateral to the movement. Despite high reliability values in the areas of the
motor cortex associated to toe movements, that also extends to the medial portion of the
cortex, there seems to be no group activation in the MEMA maps in those areas.

For comparison, Figure 2.7 shows the results of the MEMA test at the subject level,
for a representative subject. Similar activations to the group can be seen, although the
expected activations related to the toes movement in the medial motor cortex appear.
However, when compared to the other subjects (see Figures B.1 to B.6 in Appendix B), it
can be seen how the areas that show high reliability and no significant activation in the
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Figure 2.6: Results of the one-sample MEMA test at the group level for all contrasts of
the motor task (p <0.05, FDR corrected).

group MEMA present high spatial variability between subjects.

Simon task

Figure 2.9 plots the results of the one-sample MEMA test for all Simon task contrasts,
while Tables B.11, B.13, and B.15 in Appendix B report all positive activation clusters and
Tables B.12, B.14, B.16, and B.17 in Appendix B report all negative activation clusters,
and Figure 2.11 shows the ICC reliability score of the activations.

Both congruent and incongruent reactions elicited a widespread and reliable activation
across the whole GM and the cerebellum, including, but not limited to, occipital, parietal,
temporal, and central lobes and the central core, interesting as well juxtapositional lobule
(premotor cortex) and medial frontal cortex. Most of the GM, with the exception of the
temporal poles and the orbitofrontal cortex, showed at least fair reliability, with peaks of
excellent reliability in the angular gyrus, central pole, and juxtapositional lobule bilaterally,
and left superior lateral occipital cortex.

For comparison, Figure 2.10 shows the results of the MEMA test at the subject level,
for a representative subject. Similar results to the group level can be seen. Although minor
differences between congruent and incongruent reactions can be noticed, the limited amount
of difference might explain the lack of significant activations in the congruent vs incongruent
contrast. The results of the other subjects are available in Appendix B (see Figures B.7
to B.12).

Pinel functional localiser task

Figure 2.12 depicts the results of the one-sample MEMA test for all Simon task contrasts,
while Tables B.18, B.20, B.22, B.24, B.26, B.28, B.30, B.32, B.34, B.36, B.38, and B.40 in
Appendix B report all positive activation clusters and Tables B.19, B.21, B.23, B.25, B.27,
B.29, B.31, B.33, B.35, B.37, B.39, and B.41 in Appendix B report all negative activation
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Figure 2.7: Results of the MEMA test at the subject level, for a representative subject
(subject 007), for all contrasts of the motor task (p <0.05, FDR corrected).

af

Tongue vs Sham

&5 @5

o7 e

Right finger vs Sham

Left finger vs Sham

T

Right toes vs Sham

&% 8

Left toes vs Sham

Figure 2.8: ICC(2,1) of all contrasts of the motor task. Maps are thresholded at 0.4, since
values lower than that are considered poor reliability (Cicchetti, 2001).
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Figure 2.9: Results of the one-sample MEMA test at the group level for all contrasts of
the Simon task (p <0.05, FDR corrected).
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Figure 2.10: Results of the MEMA test at the subject level, for a representative subject
(subject 007), for all contrasts of the Simon task (p <0.05, FDR corrected).
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Figure 2.11: ICC(2,1) of all contrasts of the simon task. Maps are thresholded at 0.4, since
values lower than that are considered poor reliability (Cicchetti, 2001).

clusters, and Figure 2.14 shows the ICC reliability score of the activations.

Visual stimuli presented a reliable bilateral co-activation of the lateral occipital lobe,
as well as the motor cortex and the juxtapositional lobule (premotor cortex). They also
presented good reliability in the lateral parietal cortex, and unreliable activations of sub-
cortical areas such as the putamen and the pallidum, as well as in the frontal operculum
(bilaterally). Auditory stimuli presented reliable activations in the Heschl’s gyrus, as well
as in the plani polare and temporale. Interestingly, areas typically associated to language
(i.e. left Broca’s and Wernicke’s areas) showed a reliable, although non significant, activ-
ation. Motor stimuli elicited a reliable response in the motor cortices (bilaterally) and in
the juxtapositional lobule. While both lateral parietal cortices presented a fairly reliable
response, significant response, albeit unreliable, was also found in the cerebellum, in the
subcortical areas, as well as in the visual and auditory areas. When modelled together,
all sentence stimuli and all calculus stimuli (both visual and auditory) presented reliable
activations mainly in the Heschl’s gyrus and in the plani polare and temporale. Similarly to
auditory responses, the left frontal opercoli and the posterior part of the superior temporal
gyrus presented reliable activations. The main difference between sentences and calculus
responses is that the activation induced by the latter was also present in subcortical areas
and superior cerebellum, and that the reliability of calculus responses was more bilateral
than that of sentences. Their contrast presented generally higher reliability and revealed
positive activations in most subcortical areas and superior cerebellum, as well as in the
superior lateral parietal cortex, in the juxtapositional lobule, and in the medial occipital
cortex bilaterally, and negative activations across the planum temporale and frontal pole
bilaterally and in the left temporal pole.

Comparing vertical vs horizontal chequerboards did not provide significant results at
the group level, although a good to excellent reliability was found in the visual cortex
(occipital pole). Comparing motor vs sentence stimuli provided positive activations not
only in the areas activated by the motor task, with the exception of good part of the
temporal gyrus, but also bilaterally across all of the central core, as well as in the medial
occipital cortex and in the superior part of the cerebellum, in the cingulate gyrus, in the
precuneous, and in the supramarginal gyrus. Conversely, negative activations were not
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found in areas activated by the sentence stimuli, but mainly in the planum polare, in the
amygdalae and hippocampi, and in the subcallosal cortex. Most of the GM showed fair
reliability, with peaks of excellent reliability mainly in the precentral and postcentral gyri,
and in the left temporal pole, frontal opercoli and superior parietal gyri.

Considering the contrast between auditory and visual stimuli, positive activations were
found within the plani temporale and polare, the Heschl’s gyrus bilaterally, and the intra-
calcarine sulcus bilaterally, and negative activations were found within the lateral occipital
cortex and the lateral superior cerebellum (VI), as well as in the anterior cingulate gyrus,
in line with the activations found considering each stimulus type on its own. Moreover,
all activations related to the two types of stimuli were found having good to excellent
reliability. In the contrast between visual stimuli and chequerboards, positive activity was
found in the superior cerebellum, across the central core, in the frontal opercoli, and in
the lateral precentral and postcentral gyri as well as in the juxtapositional lobule, while
negative activations were found mainly in the lingual gyri and in the frontomedial cortex,
as well as in the medial part of the frontal pole. Most of GM was found to be fairly reliable,
with excellent reliability found in the occipital, parietal, and central lobes.

The comparison between calculus and non-calculus stimuli, for auditory presentations,
revealed negative activations in the Heschl’s gyrus and in the planum temporale, as well
as in the anterior part of the cerebellum (V) bilaterally. Visual presentations featured the
same areas of negative activations, with a stronger amplitude, as well as more negative
activations in the postcentral gyrus and in the anterior cingulate gyrus bilaterally, and
in the left superior lateral occipital cortex. Parietal, central, and posterior frontal lobes
presented fair reliability with peaks of excellent reliability in the supramarginal gyrus.

Finally, in the contrast between right and left motor stimuli, while most of the brain
presented negative activations, with a peak in the right motor cortex and left anterior
superior cerebellum (I-IV), positive activations were found in the left motor cortex and in
the right anterior superior cerebellum (I-IV). These peaks of activations presented good to
excellent reliability as well.

For comparison, Figure 2.13 shows the results of the MEMA test at the subject level,
for a representative subject. Similar results to the group level can be seen. Although small
activations in the visual cortex can be seen in the contrast of vertical vs horizontal chequer-
boards, the comparison of this subject with all others (see Figures B.13 to B.18 in Ap-
pendix B) reveals high inter-subject variability, that could explain the lack of results in
the MEMA test at the grup level.

Resting state

Figures 2.15 to 2.17 shows the reliability of the fALFF, ALFF, and RSFA maps respectively
for each resting state run. The RSFA and ALFF ICC maps show generally good reliability
across most of the brain, with few exceptions in the ventral portion of the brain and in
the deep white matter. Some areas of the GM show excellent reliability, in particular the
subcallosal cortex and the frontal pole, as well as the middle frontal gyri, the angular gyri,
the precuneous, and the brain edges. While areas of excellent reliability seem to remain
stable across runs, there appears to be a reduction of reliability in the other areas from the
first to the last run, to the point that in the last run areas such as the pallidum and other
subcortical structures have poor reliability. The fALFF maps show general good reliability
across all brain, and particularly in the GM, although a very high reliability occurs in the
subcallosal cortex, frontal pole, and brain edges. Noticeably, these latter areas present a
neat separation, in terms of reliability, with the rest of the brain.
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Figure 2.12: Results of the one-sample MEMA test for all contrasts of the pinel task (p
<0.05, FDR corrected).
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Figure 2.13: Results of the MEMA test at the subject level, for a representative subject
(subject 007), for all contrasts of the Pinel task (p <0.05, FDR corrected).
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Figure 2.14: ICC(2,1) of all contrasts of the Pinel task. Maps are thresholded at 0.4, since
values lower than that are considered poor reliability (Cicchetti, 2001).
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fALFF, RS run 1

Figure 2.15: ICC(2,1) of all fALFF maps. Maps are thresholded at 0.4, since values lower
than that are considered poor reliability (Cicchetti, 2001).

ALFF, RSrun 1l

Figure 2.16: ICC(2,1) of all ALFF maps. Maps are thresholded at 0.4, since values lower
than that are considered poor reliability (Cicchetti, 2001).
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RSFA, RS run 1

Figure 2.17: ICC(2,1) of all RSFA maps. Maps are thresholded at 0.4, since values lower
than that are considered poor reliability (Cicchetti, 2001).

Discussion

This chapter described a dense mapping to study the effect of CVR on resting state and
different types of tTA across different types of experimental designs and cognitive domains:
a lower level, sensory, block designed motor task (Buckner et al., 2011), a higher level,
event related with random IST designed Simon task (Simon & Rudell, 1967), and a mixed,
event related with fixed IST designed Pinel functional localiser task (Pinel et al., 2007).

The motor task presented five different movement trials, i.e. tongue movement, lateral
fingertapping, and lateral toe movement. The contrast of each trial was computed against
a sham condition, similar to time of rest, consisting in fixating a star in the screen in
order to reduce the effect of the visual cue of the motor action. For the tongue movement
and finger tapping trials, reliable group activations were found in the expected areas of
the homunculus projection on the primary motor cortex (Buckner et al., 2011), as well
supplementary motor areas and subcortical areas (see e.g. Caballero-Gaudes et al., 2019).
Nevertheless, no group activation was found in the medial motor cortex for the toe move-
ments at the selected significance threshold (p <0.05, FDR corrected). Conversely, these
maps did exhibit robust group activation in subcortical areas associated to the toe move-
ments, mainly the ipsilateral putamen and pallidum. Despite this, the medial motor cortex
presented high reliability associated to the toe movement trials, suggesting highly subject-
specific activations. The smaller size of the toes and foot motor cortices, compared to the
rest of the homunculus, might lead to increased spatial variability across subjects. This
observation is supported by the lack of agreement between subjects, that indicates highly
subject-specific localization of the activations related to toe movement.

Interestingly, reliable and well localised group activations were found in the cerebellum
for all types of movements, coherently with previous reports (e.g. Buckner et al., 2011),
demonstrating the advantages of collecting a DM dataset along with a ME acquisition
(Gonzalez-Castillo et al., 2016; Lynch et al., 2020): the higher amount of data and increased
BOLD sensitivity enhances the power and reliability of the contrasts, giving the possibility
of mapping the cerebellum in individual subjects (Marek & Dosenbach, 2018).

The same increase in sensitivity can be noticed for the Simon task. The corresponding
group and ICC reliability maps depict not only the areas traditionally associated with
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the task (Peterson et al., 2002), but also other areas involved in processing the task. For
instance, occipital regions normally activated by visual stimuli (e.g. Pinel et al., 2007) are
involved in seeing the task stimulus. Motor, premotor and cerebellar regions, normally
activated by motor tasks (e.g. Buckner et al., 2011; Caballero-Gaudes et al., 2019; Pinel
et al., 2007) , are involved in pressing the buttons, and premotor regions and parietal
activations could be also related to spatial location and direction processing (Peterson et
al., 2002) that characterise this task (Ivanoff & Peters, 2000). Finally, cingulate activity
might be related to the continuous practice that the subjects underwent during the ten
sessions, as it has been previously found both in the Simon task (Peterson et al., 2002)
and in other tasks (Tracy et al., 2001).

All these regions present highly reliable group activations, and this widespread response
is likely associated to an increase in sensitivity, due to both the high number of trials (960
trials, of which half congruent and half incongruent) and the use of ME acquisition with
optimal combination of the echoes (Gonzalez-Castillo et al., 2016; Lynch et al., 2020). This
could also explain the almost complete overlap of the incongruent and congruent responses,
that resulted in no significant activation in the congruent versus incongruent contrast.

As for the functional localiser task (Pinel et al., 2007), almost all contrasts showed
very high sensitivity at the group level in areas pertinent to the type of stimulus under
observation (Pinel et al., 2007), as well as high reliability in both areas characterised by
significant activations and not. The only exception was the contrast between vertical and
horizontal flickering chequerboards, that showed no reliability and no significant activation
at the group level, probably indicating the total overlap between the activations induced by
horizontal and vertical chequerboards, possibly related, once again, to the high sensitivity
of the dataset collection. However, most contrasts showed activations pertinent to other
types of stimuli, indicating that the temporal sparsity of the trials was not sufficient to
properly distinguish different types of stimuli from each others.

Finally, RSFA and ALFF maps presented fair to excellent reliability, but a decrease in
reliability from the first to the last run. While further observations and tests are required
to explain the observed decrease, a possible explanation might be the time spent in the
scanner, and the fatigue or boredom of the subjects as the session progresses. fALFF maps
presented generally good reliability, more stable across runs. They also showed excellent
reliability in the subcallosal cortex, the frontal pole and brain edges. However, this high
reliability might be artefactual and indicate a failure in recovering sufficient information
on the signal of these areas, at least for some subjects.

Conclusion

This chapter describes the dense mapping (DM) dataset that will be used throughout
this thesis. The group activation and reliability (in terms of ICC) maps of the relevant
contrasts of a Motor, a Simon, and a Pinel functional localiser task were computed. Overall,
leveraging ME-fMRI in a DM dataset resulted in highly increased sensitivity. RSFA, ALFF,
and fALFF of the four runs of RS and their reliability maps were also computed. Almost
all contrasts in the three tasks showed high reliability, as did RSFA, ALFF, and fALFF of
the four runs. The contrasts in the Simon task, as well as the contrast inducing activation
in large areas of the motor cortex in the motor task and most of the contrasts in the
Pinel functional localiser, showed high sensitivity in the group analysis. The contrasts
inducing activation in smaller areas of the motor cortex, as well as the contrast between
differently oriented chequerboards in the Pinel functional localiser, showed small to no
group activations, indicating heterogeneous, albeit stable, activations between subjects.



3. Voxelwise optimisation of haemo-
dynamic lags to improve regional

Cerebrovascular Reactivity estimatesin
breath-hold fMRI

Breath-hold induced CVR experiments require minimal additional equipment and are less
prone to compliance issues compared to experiments involving gas inhalation, making
them an attractive approach for clinical and research settings. However, subjects tend to
take deep recovery breaths after the breath-hold, which can lead to severe task-correlated
head motion (Bright et al., 2009) and respiratory-related susceptibility artefacts that can
considerably corrupt the fMRI signal (see figure Figure 3.1).

In addition, in BH-induced CVR experiments with BOLD fMRI one must also con-
sider the temporal offset between any recorded respiration trace (PgpCOqy or respiratory
effort alike) and the local BOLD response. This offset results from the interplay of dif-
ferent factors: an inherent delay between the air exhalation inside the scanner and the
sampling of COg (and Og) in the gas analyser (measurement delay), systemic changes in
blood gases that travel with blood to arrive at local brain regions (vascular transit delay),
and local arterioles responding to blood gas levels differently (vasodilatory dynamics) (see
figure Figure 3.2). Correcting for this temporal offset can improve the estimation of CVR
amplitude.

The challenge of accounting for temporal offsets in CVR studies has been previously
addressed in multiple ways in the literature. For instance, simple averaging of breath-hold
data was used to map CVR time-to-peak in healthy subjects (Bright et al., 2009), revealing
consistent regional variability in CVR lags. In CO» inhalation studies, various approaches
have been proposed to estimate the response lag. As an example, Duffin et al. (2015)
implemented a Transfer Function Analysis with a Welch algorithm to measure the phase
of the BOLD response considering the frequency of 0.01 Hz. Liu, Welch et al. (2017) used
an iterative linear regression to first match a reference signal (i.e. the average signal of
a ROI, e.g. cerebellum) to each voxel in the brain, and then to match the PrpCOs2 to
the reference signal, obtaining multi-parametric haemodynamic information including the
bolus arrival time. This method provided similar information compared to regressing the
BOLD response with a group of sines and cosines used to model a sinusoidal CO9 paradigm
(Blockley et al., 2017).



36 Chapter 3. CVR estimation and denoising

BOLD 5|r;'nd.l '

VAN AN A S AW WA WA

AL

“26.  50. 76, 100. 125. 150. 175, =200. 225. 250. 276. 300. 825

Figure 3.1: The average BOLD signal in the grey matter shows high collinearity not only
with the PppCOghrf signal, but also with head motion (expressed here as Framewise
Displacement)

Another alternative consists in Rapidtide, an algorithm that uses a recursive cross-
correlation method to ascertain lags between fMRI data and a reference timeseries (Fre-
derick, Salo & Drucker, 2020). Briefly, at each cycle this algorithm computes a voxelwise
cross-correlation with a reference, such as the average timeseries of a ROl or a regressor
of interest, and creates a shifted reference for each voxel according to the estimated lag.
Then, it updates the reference timeseries by considering the first eigenvector of a principal
component analysis or the weighted average of the obtained shifted regressors, repeating
this cycle until a defined convergence or for a set number of times. In gas inhalation studies
where PrrCO2 acted as the reference, this algorithm successfully mapped CVR latency in
control and clinical populations, highlighting that haemodynamic lag is a sensitive measure
of regional pathology (Donahue et al., 2016). Rapidtide can also estimate systemic vascular
processes by using the global fMRI signal in resting state data as the reference, and extract
similar haemodynamic lag maps (Tong & Frederick, 2014). Nevertheless, the global fMRI
signal might include severe motion-related confounds and irrelevant physiological processes
that can degrade the quality of the CVR and lag estimates, particularly in BH-induced
CVR experiments.

In order to correct for the impact of motion on CVR and lag estimations, Sousa et
al. (2014) proposed to use a lagged GLM approach that integrated motion parameters
as nuisance regressors. The lagged GLM was preceded by the orthogonalization of the
reference PgrCOg signal to the motion parameters, and the lags were selected based on
the highest Z score associated to the PgrCO2 regressor. Although this approach showed
reproducible measures of BOLD CVR, modifying the PrrCOs signal can potentially limit
quantitative CVR estimation due to the aggressive removal of nuisance regressors (see
Chapter 4 for further details).

This chapter proposes a framework similarly based on a lagged GLM analysis that
estimates the haemodynamic lag in breath-hold BOLD fMRI data while preserving semi-
quantitative measures of CVR amplitude. In order to properly take the impact of collinear
motion into account, each GLM is defined including nuisance polynomial terms and motion
parameters, as well as a shifted variant of the PerCOqhrf regressor without prior ortho-
gonalization, and the optimal temporal shift is identified by maximising the fit of the full
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Figure 3.2: An illustration of the recorded COs offset problem. While a person breathes,
the air has to traverse the extent of the cannula to be sampled, introducing a measurement
delay. This time lapse has to be summed to the time that is necessary for the the gas
particles to move from the brain to the lungs (bulk shift). Moreover, each different area
of the brain shows a different delay that should be taken into account for a precise CVR
estimation.
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model within physiological constraints. While motion regression prior to CVR estimation
is a typical preprocessing step, having sequential steps for denoising and lag estimation, as
done in cross-correlation approaches, might lead to biased estimates or the reintroduction
of motion effects if the latter is not performed adequately (i.e. the variance removed during
the initial denoising step is not removed from the regressors of interest used in the analysis
as well Lindquist et al., 2019). Due to the unknown temporal offset between instantaneous
local motion-related fMRI artefacts and delayed responses to PprCOqhrf fluctuations, a
simultaneous fit can address potential collinearities between regressors more accurately
(Lindquist et al., 2019). This lag optimisation procedure is referred to as simultaneous mo-
tion fitting (SimMot). The proposed approach is compared with other lag-optimisation
strategies incorporating motion correction, and is evaluated in terms of regional variability
in haemodynamic lag across subjects, the contrast within lag maps, and how accounting
for lag impacts regional CVR estimates.

3.1 Methods

This study employs the BH task fMRI data, the COq traces, and the anatomical images
from one session of eight subjects of the dataset described in the previous Chapter 2. The
MRI and physiological data was analysed as described in Section 2.1.9, considering a range
of £9 seconds around the bulk shift with a step of 0.3 seconds for lag estimation.

3.1.1 Comparison of different Lag Optimization models

The lag-optimised (SimMot) model was compared with other three approaches. One ap-
proach did not consider a voxelwise lag optimisation, while the other two varied based on
the way the motor regressors were treated in the analysis. In total, the four considered
models were:

1. An non-optimised GLM model where only one PrprCOshrf regressor was considered
for all voxels, to study the impact of voxelwise lag optimisation. The regressor was
shifted considering the bulk shift (Non Opt):

Y = PETOOQh'I"fbulk +n (31)

2. The lag-optimised GLM where the design matrix included the motion parameters
and their temporal derivatives (denoted as Mot), Legendre polynomials of up to the
fourth order (denoted as Poly), together with a voxelwise shifted PrrCOqhrf trace
(SimMot,):

Y = PETCOQhTfUz + Mot 4+ Poly +n (3.2)

3. A lag-optimised GLM with no previous motion regression to assess the modelling of
motion-related effects NoMot:

Y = PprCOshrf,, +n (3.3)

4. A lag-optimised GLM that included only shifted Py prCOghrf regressors in the GLM
but regressed out motion parameters and Legendre Polynomials beforehand (i.e. a
sequential approach, SeqMot):

[Y L (Mot, Poly)] = PerCOxhrf,, (3.4)
In the models above, Y represents the voxel timeseries, PerCOzhr f ;.. and PerCOghr f .

represents the non-optimised and lag-optimised PprCOshrf trace, and n denotes the ran-
dom noise.
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Group maps and summary statistics

In order to obtain group-level results and summary statistics, the CVR, t-statistics, and lag
maps were warped to the MNI152 template (Grabner et al., 2006, 2.5 mm isotropic voxel
resolution) using nearest neighbour interpolation, and averaged across subjects. Note that
group average CVR maps do not include voxels from subjects where the lag was deemed
implausible, or where the CVR fit was not deemed significant. Then, the NonOpt CVR
maps were thresholded at t>1.65 (p<<0.05, 313 DoF), while the lag-optimised CVR maps
(SimMot, NoMot, and SeqMot) were thresholded at t >3.164 (p <0.05, 313 DoF) after
adjustment with Sidék correction (Sidék, 1967) for the testing at multiple lags.

To assess the differences in CVR and lag estimates at the regional level, four regions of
interest (ROIs) were defined by segmenting the MNT template into GM and WM (eroded
with a 4 mm Gauss kernel to avoid partial volume effects), and considering a mask of
the putamen (Harvard-Oxford Subcortical structural atlas) and a mask of cerebellar GM
(Cerebellar MNI atlas), both subtracted from the GM mask to avoid overlaps between
ROIs. Putamen and cerebellum ROIs were chosen due to their previously reported earlier
and later haemodynamic lags, respectively (Bright et al., 2009). For each ROI, the average
CVR value of each subject was extracted from the lag-optimised CVR maps and NonOpt
CVR maps, and paired t-tests were computed to assess statistical differences between
models. For each lag-optimised model, to asses how different the lag in each ROI was from
that of the GM, the Contrast to Noise Ratio (CNR) between the average lag of the GM
and each other ROI was computed as:

|Lagror, — Lagror,|
2 2
L 2L 93
ni + no

where, for the i*" ROI, Lagro 1, 1s the average lag, 01-2 is the variance, and n; is the number
of voxels. Finally, the three CNR were compared between models using a t-test.

CONR = (3.5)

Results

Figure 3.4 shows CVR and lag maps of the NonOpt and SimMot models for an example
subject and group averages, while the histograms for the ROI voxels are depicted in Fig-
ure 3.3 and the corresponding average CVr values are reported in the first two columns of
Table 3.1. The results indicate that WM voxels exhibit a later lag (i.e. delayed CVR re-
sponse) compared to GM voxels, whereas the putamen and cerebellum demonstrate much
earlier and later responses, respectively, in agreement with previous literature (e.g. Bright et
al., 2009). Moreover, average CVR significantly increases after lag optimisation (p<0.0001).
Thus, fine correction for lag variability improves local CVR estimates that would otherwise
be underestimated.

Figure 3.5 and Tables 3.1 and 3.2 compares lag and optimised CVR maps across the
SimMot, SeqMot and NoMot methods, with accompanying CNR estimates in Table 3.3.
Average CVR values are significantly lower in SimMot compared to both SeqMot and
NoMot for GM and cerebellum and compared to NoMot for putamen. The average CVR
value for the putamen was found significantly lower in SeqMot compared to NoMot as well
(see Table 3.1). Average Lag values were found to be significantly lower for GM, putamen,
and WM in SimMot compared to both SeqMot and NoMot. They were also found higher
for cerebellum in SimMot compared to both SeqMot and NoMot, although not significantly
(see Table 3.2). There was no significant difference between average lag values in SeqMot
and NoMot (p>0.1). Lag CNR increases using the SimMot method, however only the
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CVR (%BOLD/mmHg)

ROI

Non Opt SimMot SeqMot NoMot
WM 0.09 + 0.02* 0.16 + 0.03  0.16 + 0.03 0.16 + 0.03
GM 0.24 + 0.06 * 0.38 +0.09 0.44 + 0.10 ** 0.44 + 0.10 ¥

Putamen 0.18 + 0.05 * 0.28 + 0.07 0.30 + 0.07 oo 0.30 + 0.06 ©
Cerebellum  0.19 4+ 0.04 * 0.31 + 0.07 0.36 + 0.10 ** 0.36 + 0.09 §

Table 3.1: Average CVR values of all considered ROI from each pipeline. Reported val-
ues are mean =+ standard deviation across subjects. Note that the comparison between
Non Opt and the SeqMot and NoMot approaches was not performed. * SimMot - Non
Opt: significant t-test, DoF=7, p<0.0001, two-tailed. ** SimMot-SeqMot: significant t-
test, DoF=7, p<0.05, two-tailed. f SimMot-NoMot: significant t-test, DoF=7, p<0.01,
two-tailed. ¢ SimMot-NoMot: significant t-test, DoF=7, p<0.1, two-tailed. oo SeqMot-
NoMot: significant t-test, DoF=7, p<0.1, two-tailed.

ROI Lag (sec)

SimMot SeqMot NoMot
WM 0.48 + 0.82 0.55 + 1.19 0.62 + 1.12
GM -1.30 + 0.56 -1.00 + 0.60 ** -1.05 + 0.64 *

Putamen -2.88 + 1.11  -249 + 1.11* -2.51 + 1.09 *
Cerebellum  1.53 + 0.72 1.37 + 0.80 1.34 +0.73

Table 3.2: Average lag values of all considered ROI from each lag optimisation pipeline.
Reported values are mean 4 standard deviation across subjects. No significant difference
was found between SeqMot and NoMot (DoF=7, p>0.1, two-tailed). * SimMot-SeqMot or
SimMot-NoMot: significant t-test, DoF=7, p<0.1, two-tailed. ** SimMot-SeqMot: signific-
ant t-test, DoF=7, p<0.05, two-tailed.

contrast between cortical and cerebellar GM reaches significance, showing an average 18.8%
increase.

Discussion

This study demonstrates that haemodynamic lag can be successfully mapped with BOLD
fMRI in BH-induced CVR experiments. The proposed approach simultaneously fits for CO2
CVR effects, low frequency trends and head motion to reduce the bias of task-correlated
motion artefacts in the lag estimation. After lag optimisation, increases in CVR are ob-
served in all ROIs, demonstrating that this is an important step to ensure accurate regional
CVR values (see Figures 3.3 and 3.4).

Furthermore, the lag maps obtained with the SimMot model are spatially consistent
with previous findings using alternative approaches and hypercapnic stimuli (e.g. Blockley,
Driver, Francis, Fisher & Gowland, 2011; Bright et al., 2009). Although the different lag
optimisation methods (SimMot, SeqMot and NoMot) show subtle variations, lag CNR
was found always higher using the proposed simultaneous fitting approach. This was most
notably observed in the cerebellum, a region that is particularly prone to motion artefacts.

While there were significant differences in CVR between the SimMot approach and all
other methods, the only significant difference between NoMot and SeqMot was found in
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Figure 3.3: (A) Distribution of group mean lag values in each ROI. WM response is later
than GM. Relative to the rest of the GM, the response in the Putamen happens earlier and
the response in the cerebellar GM happens much later. (B) Distribution of group mean CVR
values with (light colours, SimMot) and without (dark colours, Non Opt) incorporating
the optimal lag. Note the general increase in CVR values in SimMot
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Figure 3.4: Maps of haemodynamic lag (clipped at £8.4 s) and CVR, before and after
optimisation of the temporal shift with the proposed approach (SimMot), for a represent-
ative subject and group average. Note the increased contrast between WM and GM after
optimal shift, indicating an underestimation of CVR in most brain regions.
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Figure 3.5: Group average maps of haemodynamic lag (second row) and CVR (third row)
after optimal shift for simultaneous motion regression (SimMot), sequential motion regres-
sion (SeqMot) and no motion regression (NoMot). The maps of the first row depict the
number of subjects contributing to each voxelwise estimate of lag and CVR after boundary
conditions are considered, showing more subjects consistently at the boundary condition
at the edges of the brain and WM. SimMot results in improved regional contrast in the
lag maps as quantified in Table 3.3.
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ROI1-ROI 2 CNR
SimMot SeqMot NoMot
GM-WM 0.52 +0.21  0.46 + 0.26 0.49 + 0.25

GM-Putamen 047 +0.22 044 + 0.21 0.44 + 0.21
GM-Cerebellum 0.82 - 0.15 0.69 +-0.17* 0.69 + 0.16 *

Table 3.3: Lag CNR compared between different lag optimised methods. Reported values
are mean =+ standard deviation across subjects. * SimMot-SeqMot or SimMot-NoMot:
significant t-test, DoF=7, p<0.05, two-tailed.

the Putamen (see Table 3.1). Furthermore, no difference in lag estimation was found in the
latter two models, while there was a significant difference between them and the SimMot
approach in the GM and Putamen, as well as a significantly higher CNR between GM and
cerebellum. These results, taken all together, could indicate that the SimMot model takes
into account motion-related effects better than the others, and may suggest that the higher
CVR amplitude estimated in the NoMot and SeqMot approaches is an artificial increase
due to unresolved collinearities with task-related motion effects. However, future studies
are necessary to compare the CVR and lag estimates obtained with the three different
approaches to those obtained with a gas challenge experiment.

The comparison between lag optimised and non-optimised CVR maps clearly illus-
trates that accurate measurement of CVR in a subcortical region using transient PrprCOs
manipulations must account for the vasodilatory lag being different from cortical GM.
This is particularly relevant for clinical applications: for instance, one quarter of all first
ischaemic infarcts are subcortical, and measuring CVR in these regions may be particularly
important (Hartkamp et al., 2017). In line with the literature, the optimal lag was searched
within a range of £9 seconds relative to the bulk shift. This range should be adjusted in
clinical or healthy ageing studies to adequately characterise expected pathological transits
(Donahue et al., 2016; Stickland et al., 2021), although the maximum shift should not be
longer than half a breath-hold period, as this may lead to spurious negative correlations
between PgrCOshrf and fMRI. While the application of this method showed interesting
results in a single-case study of a subject with Moyamoya disease (Stickland et al., 2021),
further evaluating the feasibility and utility of this method in clinical populations will be
an interesting venue for future work. Moreover, the latency of these effects might facilitate
the discrimination of neurovascular versus purely vascular signals in fMRI data (Bright &
Murphy, 2013a; Stickland et al., 2021)

In this study, the negative CVR values were not taken into account in order to simplify
the ROI average CVR estimations and comparisons. This choice could have led to miss
possible significant differences in areas characterised by negative CVR values, such as the
WM, and further studies should take this difference into account.

Conclusion

This chapter introduced a lagged-GLM approach that accounts for the impact of confound-
ing factors, such as motion, while simultaneously estimating CVR amplitude and lag. This
approach performed significantly better than a lack of lag optimisation, and showed less
residual impact of motion than methods that did not correct for motion or that corrected
for it in a sequential manner. In the next chapter, this method will be further expanded to
also consider other source of noise than motion using denoising techniques based on ICA,
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and the right rapport between aggressive denoising and conservative signal preservation.




4.1CA-based Denoising Strategiesin

Breath-Hold Induced Cerebrovascular Re-
activity Mapping with Multi Echo BOLD fM

A valid approach to estimate Cerebrovascular reactivity (CVR) is the employment of
breath-hold (BH) tasks during a BOLD fMRI session (Bright et al., 2009; Kastrup, Li,
Takahashi, Glover & Moseley, 1998; Pinto et al., 2021). However, head motion is a partic-
ularly problematic source of noise in BH based experiments and respiration tasks for three
main reasons. First, the experimental design is similar to that of block designs, that are less
robust to motion artefacts (Johnstone et al., 2006) than event-related designs (Birn et al.,
1999; Birn, Cox & Bandettini, 2004). Second, the amount of motion associated with paced
breathing, deep breaths, or “recovery” breaths following a BH task can be very prominent
and concur with the pattern of the task, similarly to overt speech production experiments
(Barch et al., 1999; Soltysik & Hyde, 2006; Xu et al., 2014). Third, respiration can perturb
the B0 field due to the change of air in the lungs (Raj et al., 2001) and introduce aliasing
artefacts or pseudo-movement effects in the signal (Gratton et al., 2020; Pais-Roldéan et al.,
2018; Power, Lynch et al., 2019).

A first approach to correct for motion effects was discussed in the previous chapter.
This chapter will expand this discussion by introducing other approaches to denoising, i.e.
ME-fMRI and ICA decomposition, and expanding possible denoising to other sources, not
only motion.

It has been shown that ME acquisitions, and in particular the optimal combination
(OC) of multiple echo volumes can improve BH-induced CVR mapping sensitivity, spe-
cificity, repeatability and reliability (Cohen et al., 2021; Cohen & Wang, 2019). Further-
more, ME-ICA can improve the mapping of task-induced activation reducing sources of
noise (Amemiya et al., 2019; DuPre et al., 2016; Evans et al., 2015; Gonzalez-Castillo
et al., 2016; Lombardo et al., 2016), outperforming single-echo ICA-based denoising of
resting-state fMRI data (Dipasquale et al., 2017; Lynch et al., 2020).

However, up to now, the operation of ME-ICA has not been evaluated thoroughly in
experimental paradigms with unavoidable task-correlated artefacts. Under such scenarios,
how to obtain the right trade-off between removing as much noise as possible while sav-
ing the signal of interest remains as an open question (Bright & Murphy, 2015; Griffanti
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et al., 2014). This chapter investigates the efficiency of different regression models to re-
move artefacts that are highly correlated with the effect of interest, i.e. the CVR response,
while also keeping the latter. In particular, the models under investigation include tra-
ditional nuisance regression approaches, applied to single- or multi-echo data, as well as
three different ME-ICA denoising approaches ranging from an aggressive to a conservative
denoising formulation. These modelling strategies is evaluated in terms of the correlation
of the cleaned signal with measures of motion, and the physiological interpretability and
inter-session reliability of the CVR amplitude and lag.

Materials and methods

Dataset

This study employs the BH task fMRI data, the CO4 traces, and the anatomical images
from ten sessions of seven subjects of the dataset described in Chapter 2. The MRI and
physiological data was analysed as described in Section 2.1.9, considering a range of £+9
seconds around the bulk shift with a step of 0.3 seconds for lag estimation.

MRI data preprocessing

The BH task was preprocessed as described in Section 2.1.9. Moreover, we performed
ME-ICA decomposition on the OC volume with tedana (DuPre et al., 2019) using the
minimum description length criterion for estimation of the number of components (Li,
Adali & Calhoun, 2007; Rissanen, 1978), before correcting for field distortions. Note that
each run was treated independently from the others.

Since the automatic classification based on tedana did not classify the components
correctly (see Figures 4.2 and 4.3 and the Results section), the independent components
(ICs) were then manually classified by SM and CCG into two categories (rejected or ac-
cepted components) based on temporal, spatial, spectral and TE-dependence features of
each component (Griffanti et al., 2017). The manual classifications are also available in the
data repository.

For comparison, the dataset acquired at the second echo time (T'Ey = 28.6 ms) was
used as a surrogate for standard single-echo (SE) acquisitions. This volume followed the
same preprocessing steps as the OC volume, except for the optimal combination and the
ICA decomposition.

CO, trace processing and CVR estimation

The COs signal was preprocessed and analysed as described in Section 2.1.9 to obtain the
PrrCO2hrf timecourse for each run. Chapter 3 demonstrated the appropriateness of lag
optimization and simultaneous nuisance modelling for CVR estimation. Hence, the BH
fMRI data was analysed using the same lagged-GLM approach where the design matrix
comprises a time-shifted version of the PrrCOqhrf timecourse as the regressor of interest
and different combinations of nuisance regressors (see below) in order to examine their
efficiency in modelling artefactual signals of the voxel timeseries that might degrade CVR
estimates. This led us to evaluate five different modelling strategies, varying the input data
as well as which nuisance regressors were included in the design matrix or how they were

derived from ME-ICA:

1. A lagged-GLM model on the SE data where the design matrix includes the motion
parameters and their temporal derivatives (denoted as Mot), Legendre polynomials
of up to the fourth order (denoted as Poly), together with the shifted PrprCOghrf
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trace (SE-MPR):

Ysg = PerCOshrf + Mot + Poly +n (4.1)

2. The same model applied on the OC data (OC-MPR). Note that this model is the
same as presented in Chapter 3 as SimMot:

Yoo = PerCOshrf + Mot + Poly +n (4.2)

3. An aggressive model applied on the OC data in which the design matrix also includes
the timecourses of the ME-ICA rejected components (denoted as 1C,.; ), orthogonal-
ised with respect to the motion parameters, their temporal derivatives, and Legendre
polynomials of up to the fourth order. This orthogonalisation step (denoted as A | B,
where A is orthogonalised with respect to B) was performed to maintain a low Vari-
ance Inflation Factor in this model, and thus not bias the CVR estimation, without
altering the relative variance explained by the original nuisance regressors and the
regressor of interest (Mumford, Poline & Poldrack, 2015) (ME-AGG):

Yoo = PerCOshrf + Mot + Poly + [I(Jrej 1 (Mot, Poly)] +n (4.3)

4. A moderate model applied on the OC data in which the timecourses of the ME-ICA
rejected components are also orthogonalised with respect to the PrrCOghrf trace,
i.e. the regressor of interest describing the CVR response (ME-MOD):

Yoo = PerCOshr f + Mot + Poly + [ICrej 1 (PETCOQhTf, Mot, Poly)] +n (4.4)

5. A conservative model applied on the OC data in which the timeseries of the ME-ICA
rejected components are orthogonalised with respect to the PrrCOsqhrf trace and
the ME-ICA accepted components denoted as [Cy.. (ME-CON):

Yoo = PerCOshr f + Mot + Poly + [Iij 1 (PETCOQhTf, 1C4ce, Mot, Poly)] +n
(4.5)

In the models above, Ygr and Ypo are the SE and OC voxel timeseries respectively,
and n denotes the random noise.

The corresponding lagged-GLM was fitted via orthogonal least squares using AFNI for
each modelling strategy and each of the sixty shifted PgrCOshrf traces. We then further
processed the CVR and lag maps as described in Section 2.1.9, i.e. clipping the maps based
on the voxel lag value and thresholding them for statistical significance.

Evaluation of motion removal across denoising strategies

To assess the efficiency of each modelling strategy to capture motion-related effects, the
4-D volumes representing the modelled noise variance for each type of lagged-GLM analysis
was reconstructed by multiplying the estimated coefficient maps of the nuisance regressors
by their corresponding timeseries using 3dSynthesize in AFNI. Then, the obtained 4D
volumes were subtracted from the OC or the SE data to obtain five different denoised
datasets. Afterwards, the root of the spatial mean square of the first derivative of the
signal (a.k.a. DVARS) (Smyser et al., 2010) was calculated on each denoised dataset as:

DV ARS; = /{[I;(z) — I;_1(2)]?), (4.6)
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where I;(z) is the image intensity of voxel z and at time ¢ and (---) indicates the spa-
tial average over the whole brain. In addition, Framewise Displacement (FD) timeseries
(Power et al., 2012) were also computed for each run using the corresponding realignment
parameters estimated during preprocessing using the fsl motion outliers tool as:

FD; = |Ady| + |Ady| + |Ad,| + |Aa] + [AB] + |A~| (4.7)

where ¢ denotes the time, d, , dy , d, are the translational displacements along the three
axes, « , 3, 7y are the rotational displacements of pitch, yaw, and roll, and Ad, = dy¢—1 —
dy+ (and similarly for the other parameters). DVARS was also computed on the SE volume
before preprocessing (SE-PRE) to serve as a reference, as its relationship with FD should
be at its maximum prior to the effects of motion being removed.

Next, a Linear Mixed Effects (LME) model analysis was carried out with the DVARS
and FD timecourses in order to test the moderating effect of each analysis on the relation-
ship between DVARS and FD, using the lme4 and lmer packages (Bates, Méchler, Bolker
& Walker, 2015; Kuznetsova, Brockhoff & Christensen, 2017) in R (R Core Team, 2020),
accounting for the random effect of subject and session and computing the statistical signi-
ficance (i.e. p value) with Satterthwaite’s method (Satterthwaite, 1946). The corresponding
equation of the LME model in R notation is as follows:

DV ARS ~ FD s model + (1|subject) + (1|session) (4.8)

The same model was used to assess pairwise differences in motion removal between denois-
ing strategies. The results were thresholded at p < 0.05 corrected with the Sidak correction
(Sidék, 1967).

In addition, the average timeseries within GM was extracted for each dataset (i.e.
SE-MPR, OC-MPR, ME-AGG, ME-MOD, ME-CON), as well as from SE-PRE, in order
to visualise the CVR responses to a BH trial. These timeseries were then transformed to
BOLD percentage signal change. In a similar manner, the responses to individual BH trials
from each session were extracted using the timing of the third paced breathing cycle as a
reference onset, and averaged for each subject. The DVARS and FD timeseries underwent
the same process, except that the FD timeseries were not expressed in percentage changes.

Finally, the amount of BH trials necessary to converge to a robust estimate of the BH
response was also examined for each denoising approach by computing the Manhattan
distance from a pool of a gradually increasing number of trials to the average BOLD
response over all BH trials (i.e., 80 trials in total across the ten sessions that was considered
as the true CVR response) for each analysis model and subject.

Comparison of CVR and lag estimation and reliability across denoising strategies

The percentage of statistically significant voxels in the thresholded CVR maps, as well as
the average CVR and lag values across significant voxels in GM and WM were calculated
for each denoising strategy for all subjects and sessions.

In order to evaluate and compare the results of the different denoising strategies at the
group level, the thresholded CVR map, the lag map and t-statistical map of each session
were normalised to the MNI152 template (Grabner et al., 2006, 2.5 mm isotropic voxel
resolution) with a nearest neighbour interpolation. A LME model was computed voxelwise
using 3dLMEr (Chen, Saad, Britton, Pine & Cox, 2013) considering the effect of subjects
and sessions as random effects. The LME model was formulated as the following R equation
notation:

X ~ model + (1|subject) + (1|session), (4.9)
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Figure 4.1: (A) Bulk shift of the alignment of the PETCO2 trace with the average GM
timeseries of the Optimally Combined (OC) vs Second Echo (SE). (B) Bulk shift difference
of the alignment of the PETCO2 trace with the average GM timeseries of the Optimally
Combined (OC) vs Second Echo (SE). (C) Bulk shift difference distribution.

where X represents either the CVR or the lag value of each voxel. The same model was
used to perform pairwise comparisons between the different strategies.

In addition, the intraclass correlation coefficient (ICC) was computed voxelwise using
a regularised multilevel mixed effect model in 3dICC (AFNI) in order to take into account
the standard error of CVR and lag for each session in the ICC estimation (Chen et al.,
2018). Note that, since 3dICC uses the t-statistic map associated with the estimation of
the CVR, CVR and lag maps used in this computation were only clipped on the basis of
the lag, and not thresholded on the basis of the t-statistic.

Results

As reported in Chapter 2, three subjects were excluded due poor performance of the BH
task in part of the sessions, mainly due to inadequate execution of the exhalations preced-
ing and following the apnoea which prevented accurate determination of the PrrCO2hrf
traces. These traces are shown in red in Figure 2.5 that plots the PpprCOshrf trace for all
subjects and sessions. Hence, only the seven subjects that had all ten session were used for
subsequent analyses (4F, age 25-40y).

Figure 4.1 depicts the correlation and difference between the bulk shift optimisation
for OC and SE data. As it can be seen in panel Figure 4.1A, the two bulk shifts are highly
correlated with negligible differences compared with the bulk shift (r=1, p<0.001). The
average bulk shift difference across all subjects and sessions was 0.08 4+ 0.17, and their
difference was not statistically significant (repeated measures paired t-test, n=7, t = 1.22,
p>0.1). Besides, these differences are negligible with respect to the TR of the acquisition
(1.5 s) and shift step used for the lag optimisation (0.3 s). Hence, this observation confirms
that any reported difference on the results obtained with the SE and OC volumes cannot
be due to differences in the bulk shift estimated with both volumes.

Figure 4.2 shows four representative 1Cs that were misclassified by the automatic al-
gorithm in tedana. Figure 4.2A shows a component that follows the global BOLD oscilla-
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Figure 4.2: Four representative ICs that were misclassified by the automatic classification
algorithm in tedana. Each panel is composed by three parts representing a characteristic
of the IC: on the top, its timeseries; in the middle, its spatial distribution, on the bottom,
its power spectra. A red timeseries indicates automatic rejection as “noise”, while a green
timeseries indicates automatic acceptance as “good signal”.
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tions related to the BH task, its characterising frequency is that of the task, and it seems
to be spread globally in the GM. The automatic misclassification as “noise” was probably
related to the global increase proton density, that reflects in a higher Ap. Figure 4.2B shows
a component of which timeseries is the opposite of the task. Due to the proximity of the
activation with the central core, suggesting a possible activation of subcortical areas, and
the collinearity with the task, we decided to conservatively classify it as a physiologically
plausible source and to classify it as a “good” component. Figure 4.2C shows a component
that seems to have the same cyclic pattern of the BH task, but due to its multiple main
frequencies that are higher than that of the task, and its global WM localisation, it was
classified as “noise”. Figure 4.2D shows a component that despite having the right charac-
terising frequency is a “noise” component, due to the noise in the timeseries and its spatial
pattern. It is probably related to changes in field due to motion. These misclassification
suggested the necessity of a manual classification of the components.

Conversely, Figure 4.3 shows four representative ICs that were correctly classified by
tedana. Figure 4.3A shows a component with a stripe spatial pattern. This component is
most probably associated to the multi-band induced artefacts, frequently removed auto-
matically by tedana (Olafsson, Kundu, Wong, Bandettini & Liu, 2015). Figure 4.3B shows
a component with a very irregular spatial pattern, and a timeseries (and main frequen-
cies) that is synchronous to the paced breathings before each BH. Although the timeseries
might indicate a relationship with the task, the spatial pattern suggests a source of arte-
factual nature, most probably related to changes in the field induced by the respiration.
Figure 4.3C shows a component traditionally classified as Default Mode Network. Hence,
this component is most probably neural in nature. Although the aim of this study relies
in CVR, thus making neural events a source of “noise”, we chose to keep this component
due to the difficulty in disentangling neural and vascular events. Figure 4.3D shows a com-
ponent that appears to be similarly distributed in space to the previous one, but the main
frequency indicates a BH-related response, hence a proper CVR component.

Evaluation of motion removal across denoising strategies

Figure 4.4A illustrates the relationship between FD and DVARS in the raw data (SE-
PRE) and after removing the reconstructed noise of each analysis model from the SE or
OC volume for a representative subject, each point represents a timepoint and each line
represents the linear regression between both timeseries in one session. The corresponding
figures for the remaining subjects are available in Appendix C (Figures C.1 to C.3). Fig-
ure 4.4B shows the same plot considering all the subjects and sessions. The modulating
effect of the denoising approaches on the relation between DVARS and FD was tested
with a LME model that was found to be significant (F(6,161181)=34597, p<0.001). To
further investigate the significant differences between analysis strategies, Table 4.1 reports
the results of the same LME model considering pairwise combinations of all of the de-
noising approaches. From both Figure 4.4 and Table 4.1, it can be seen that the optimal
combination (OC-MPR) of ME data reduces DVARS compared to single-echo (SE-MPR).
Although a similar relationship is observed between DVARS and FD in both approaches,
OC-MPR significantly reduces the impact of FD compared to SE-MPR (5=715.10, Clgs
[710.17, 720.04], p<0.001). This relationship is even more mitigated in the moderate (ME-
MOD) (5—145.40, Clgs [141.92, 148.88], p<<0.001) and conservative (ME-CON) (8—146.69,
Clgs [143.05, 150.33], p<0.001) denoising approaches, which show similar modulatory ef-
fects on it. Note that this similarity is common, but not the same for all the subjects. For
instance, ME-MOD showed larger reduction of motion related effects than ME-CON for
two subjects (subject 003 and 007, Figures C.1 and C.2 respectively), while the oppos-
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ite pattern was clearly observed in two other subjects (subject 004 and 009, Figures C.2
and C.3 respectively), and there was no apparent difference in the remaining subjects.
However, considering all subjects and all sessions together, the difference between these
the ME-MOD and ME-CON approaches is statistically not significant ( 5=1.29, Clgs [-0.70,
3.27], p>0.5). Compared to OC-MPR, both ME-MOD and ME-CON reduce the impact
of FD on DVARS (8=130.84, Clys [127.89, 133.79], p<0.001 and 5=132.13, Clg5 [128.99,
135.27], p<0.001 respectively) The aggressive strategy (ME-AGG) is the most successful
in reducing motion-related effects described by FD on DVARS of all approaches.

Figure 4.5A plots the average percentage DVARS (left column) and average GM per-
centage BOLD response (central column) of all the BH trials across all of the sessions of
a representative subject. The FD trace features a clear peak right after the end of the
apnoea (highlighted in grey), likely associated with large head movement artefacts caused
by the recovery breaths following the apnoea period. The percentage DVARS curves of
the SE-PRE, SE-MPR and OC-MPR denoised timeseries reflect this peak in FD, which is
absent in the ME-ICA based denoising timeseries, indicating a strong influence of move-
ment on the signal intensity changes. All DVARS curves present a peak at a later time
(between timepoints 25 and 30) that, as DVARS is akin to the first derivative of the BOLD
signal changes, may agree with the return to the baseline seen in the BOLD response. The
percentage BOLD signal change curves feature a delayed peak compared to the FD trace,
reflecting a delayed CVR response compared to instantaneous head movements associated
with respiration. However, they also feature a modulation in the BOLD signal change in
correspondence with the peak in the FD trace, with the exception of ME-MOD and ME-
AGG. The flattened DVARS and BOLD responses seen for ME-AGG indicate that the
inclusion of the ME-ICA rejected components substantially removes part of the true CVR
response, compared with the OC-MPR time courses. The average percentage DVARS and
percentage BOLD response of the other subjects can be found in Appendix C (Figures C.4
to C.6).

Figure 4.5B plots the Manhattan distance between the average of N trials and the
average of all 80 BH trials as N increases from 1 to 80. ME-AGG tends to be more similar to
the total average compared to all the other timeseries. For most of the subjects, SE-MPR,
OC-MPR and ME-MOD have a similar behaviour and need more trials than SE-PRE,
ME-CON and ME-AGG to converge to the total average. Note that the convergence to the
analysis-specific ‘ground truth’ BH response is not monotonic and fluctuates across trials of
the same session and across sessions, indicating that the convergence does not depend only
on the number of BH trials, but also on their quality and possible physiological variability
in the CVR response across trials and sessions.
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Figure 4.4: (A) Relation between the DVARS of the denoised data following different ana-
lysis pipelines and FD for a representative subject (subject 002). Each point represents
a timepoint, each line represents the linear regression between both timeseries in a ses-
sion. In general, OC-MPR shows lower DVARS than SE-MPR, but similar modulation of
the DVARS-FD relationship. All the ICA denoising solutions performs better in reducing
motion-related effects described by FD on DVARS. Between the ICA solutions, ME-AGG
performs the best in reducing this relationship, while ME-MOD and ME-CON seem to be
equivalent. (B) DVARS vs. FD for all the subjects. Each transparent line represents a ses-
sion, the solid line represents the estimation across subjects and sessions. Similar patterns to
the representative subject are shown. SE-PRE: raw data; SE-MPR: single-echo; OC-MPR:
optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative.
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Cerebrovascular reactivity and lag maps

Figure 4.6 shows CVR (top) and lag (bottom) maps for all analysis strategies and all
sessions of a representative subject (subject 002). The CVR and lag maps of other subjects
are available in Appendix C (Figures C.7 to C.12). The CVR maps were masked to exclude
the voxels that were not statistically significant or whose lag is at the boundary of the
explored range and might not have been truly optimised or physiologically plausible. Across
all subjects, SE-MPR features more spatial variation and speckled noise in CVR and lag
estimates of voxels within the same brain region compared to ME approaches like OC-
MPR or ME-CON. In general, the ME-AGG and ME-MOD approaches do not yield CVR
maps with as much clear distinction between brain tissues or delineation of the cortical
folding and subcortical structures (e.g. see putamen and caudate nucleus) as obtained
with the OC-MPR and ME-CON models. Among the ICA-based approaches, the adoption
of an aggressive (ME-AGG) or moderate (ME-MOD) modelling strategy results in lag
maps without anatomically defined patterns, as well as a higher rate of voxels with a lag
estimation that is not within physiologically plausible range, and in CVR maps with lower
responses and fewer significant voxels. ME-AGG also produces CVR maps with a higher
percentage of negative values than any other analysis model, and a reduced CVR response
in voxels near the posterior part of the superior sagittal and transverse sinuses.

Figure 4.7 shows the distribution of the average values of CVR, lag, and the percentage
of significant voxels for all subjects and sessions, and across all denoising strategies after
thresholding. Considering the summaries within GM, although SE-MPR shows higher aver-
age CVR compared to the other approaches, it also features lower percentage of significant
voxels compared to OC-MPR, ME-MOD and ME-CON. ME-AGG shows the lowest CVR
value of all strategies, the most variable average of lag values, as well as the lowest percent-
age of significant voxels. ME-MOD features a lower percentage of significant voxels than
SE-MPR, OC-MPR, and ME-CON. The same considerations can be extended to the WM.
Table 4.2 reports the subject average CVR, lag, and the percentage of significant voxels
across all denoising strategies after thresholding for GM only. For all models, the average
CVR in the GM in the group and in each subjects are comparable or higher than the
reported BH-induced CVR (in %BOLD/mmHg) in previous literature (Bright, Donahue,
Duyn, Jezzard & Bulte, 2011; Bright & Murphy, 2013a; Lipp et al., 2015; Pinto, Jorge,
Sousa, Vilela & Figueiredo, 2016). Table 4.3 reports the same values for WM.

Comparison of CVR and lag estimation and reliability across denoising strategies

Figure 4.8 shows the results of comparing the CVR and lag maps across all of the denoising
strategies. The top row shows the thresholded x score of the contrast between SE-MPR and
all other denoising strategies, while the other maps depict the pairwise comparison between
all of the denoising strategies. Among the most interesting comparisons, all of the strategies
based on ME have lower CVR and an anticipated response in areas vascularised by big
vessels (indicated by an arrow in the figure), where the blood transit time is usually faster
compared to the rest of the brain. This could indicate that the response shown in SE-MPR
could be overestimated due to the misestimation of its lag. Compared to SE-MPR, ME-
MOD shows lower CVR and a delayed response in subcortical areas, while OC-MPR, and
ME-CON show higher CVR and an anticipated response in the insula, frontal, and parietal
areas. OC-MPR shows no statistically significant differences with ME-CON, but a general
higher CVR and an anticipated response compared to ME-MOD and ME-AGG, with the
exception of the cerebellum, where it shows a delayed response. This difference could be
related to the different local impact of motion artefacts, especially on the cerebellum.
Between the three approaches based on ME-ICA, ME-AGG features generally lower CVR
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SE-MPR OC-MPR ME-CON ME-MOD ME-AGG
B =512.65% B =527.21*% B =659.34* [ =658.05*%, B =715.10%,
Clgs [506.88, Clgs [521.74, Clos [654.27, Clgs [653.09, Clgs [710.17,

518.42] 532.68] 664.41] 663.01] 720.04

B —=715.10%, [ —146.69*%, B —145.40%, [ —202.45%,
Clgs [710.17, Clgs [143.05, Clgs [141.92, Clgs [199.02,
720.04] 150.33] 148.88] 205.88]

B =132.13%, [ =130.84*% 3 =187.90%,
Clos [128.99, Clgs [127.89, Clgs [185.01,
135.27] 133.79) 190.78]
B =1.29, B =55.77T*,
Clos [-0.70,  Clgs [53.91,
3.27] 57.63]
B =57.05%,
Clys [55.59,
58.52]

SE-PRE

SE-MPR

OC-MPR

ME-CON

ME-MOD

Table 4.1: Comparisons of motion dependence in image intensity and general noise between
different denoising approaches. * significant for p<0.001, all p values are computed with
Satterthwaite’s method, and they are the equivalent of the p value after Sidak correction
for multiple comparisons. SE-PRE: raw data, SE-MPR: single-echo, OC-MPR: optimally
combined, ME-AGG: aggressive, ME-MOD: moderate, ME-CON: conservative.
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Figure 4.6: Top: Thresholded CVR map obtained with the different lagged-GLM ana-
lysis for all the sessions of a representative subject (subject 002). Note the low CVR
response in ME-AGG, depicting numerous voxels with a negative values, as well as the
increased amount of masked voxels in SE-MPR, ME-AGG and ME-MOD. Bottom: Un-
thresholded lag map obtained with the different lagged-GLM analysis, for all the sessions
of the same subject. These lag maps represent the delay between the best shifted version
of the PETCO2hrf trace and the bulk shift (i.e. the best match between average grey
matter signal and PETCO2hrf trace). The scale from -5 to +5 represents earlier to later
haemodynamic responses. Note the lack of anatomically informative patterns in ME-MOD
and ME-AGG. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggress-
ive; ME-MOD: moderate; ME-CON: conservative.
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Subject Average value SE-MPR OC-MPR ME-AGG ME-MOD ME-CON
CVR [%BOLD/mmHg]  0.54 0.5 0.37 0.43 0.49
001 Lag [s] 0.54 10.49 0.4 0.11 0.4
% significant voxels 9.79 10.44 3.33 8.1 10.75
CVR [%BOLD/mmHg]| 0.38 0.35 0.24 0.3 0.35
002 Lag [S] -0.38 -0.43 0.58 0 -0.42
% significant voxels 10.67 11.65 3.29 8.61 11.92
CVR [%BOLD/mmHg] 0.4 0.34 0.18 0.31 0.33
003 Lag [s] -0.4 -0.28 -0.73 -0.74 -0.26
% significant voxels 7.42 8.04 3.62 6.55 8.28
CVR [%BOLD/mmHg]  0.44 0.38 0.08 0.32 0.37
004 Lag [s] -1 -1.12 -0.57 -0.87 -1.1
% significant voxels 8.46 9.27 2.87 6.57 9.56
CVR [%BOLD/mmHg]  0.33 0.29 0.17 0.28 0.29
007 Lag [S] -0.7 -0.61 0.95 -0.1 -0.53
% significant voxels 7.98 9.19 2.6 6.31 9.44
CVR [%BOLD/mmHg|  0.34 0.14 -0.03 0.26 0.14
008 Lag [3] -0.98 “1.19 0.28 0.6 118
% significant voxels 6.34 6.89 1.5 4.9 7.19
CVR [%BOLD/mmHg] 0.44 0.38 -0.18 0.31 0.37
009 Lag [s] -1.75 -1.75 0.91 -0.11 -1.69
% significant voxels 7.52 9.16 2.25 6.42 9.55
CVR [%BOLD/mmHg]  0.41 0.34 0.12 0.32 0.33
Total Lag [s] -0.82 -0.84 0.18 -0.36 -0.80
% significant voxels 8.31 9.23 2.78 6.78 9.53

Table 4.2: Subject average CVR, lag, and percentage of statistical voxels in the grey matter
across strategies. The last three lines are the group average. SE-PRE: raw data, SE-MPR:
single-echo, OC-MPR: optimally combined, ME-AGG: aggressive, ME-MOD: moderate,
ME-CON: conservative. The same table for the WM voxels is available in Table 4.3.
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Subject Average value SE-MPR, OC-MPR ME-AGG ME-MOD ME-CON
CVR [%BOLD/mmHg|  0.26 0.25 0.1 0.22 0.24
001 Lag [] -0.74 -0.6 -0.31 -0.39 -0.5
% significant voxels 4.41 5.26 0.95 3.83 5.39
CVR [%BOLD/mmHg] 0.17 0.17 0.07 0.15 0.17
002 Lag [s] 0.13 0.3 0.19 0.07 0.28
% significant voxels 5.76 7.08 1.04 4.79 7.18
CVR [%BOLD/mmHg]  0.19 0.17 0.11 0.16 0.17
003 Lag [s] -0.23 0.01 -0.8 -0.5 0.04
% significant voxels 4.75 6.01 1.71 4.45 6.17
CVR [%BOLD/mmHg]  0.21 0.2 0.07 0.17 0.2
004 Lag [s] 1.31 1.3 -0.98 -0.98 1.25
% significant voxels 3.79 4.77 0.92 3.24 4.89
CVR [%BOLD/mmHg|  0.16 0.14 0.08 0.13 0.14
007 Lag [s] -1.03 -0.83 0.28 -0.5 -0.75
% significant voxels 3.65 4.9 0.94 3.08 5
CVR [%BOLD/mmHg|  0.18 0.17 0.03 0.14 0.16
008 Lag [s] -1.1 -1.14 -0.36 -0.52 -1.08
% significant voxels 4.43 5.5 0.79 3.71 5.69
CVR [%BOLD /mmHg] 0.2 0.19 -0.02 0.16 0.18
009 Lag [s] -2.16 -2.1 0.64 -0.56 -2.07
% significant voxels 2.48 3.53 0.59 2.38 3.64
CVR [%BOLD /mmHg] 0.2 0.18 0.06 0.16 0.18
Total Lag [s] -0.92 -0.81 -0.19 -0.48 -0.76
% significant voxels 4.18 5.29 0.99 3.64 5.42

Table 4.3: Subject average CVR, lag, and percentage of statistical voxels in the white
matter across strategies. SE-PRE: raw data; SE-MPR: single-echo; OC-MPR: optimally
combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative.
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Figure 4.7: Average values of CVR, lag, and percentage of significant voxels, for voxels in the
grey and white matter tissues separately, for all denoising strategies. The dots correspond
to a singular session of a singular subject considered an outlier in the distribution. Note
that all maps were thresholded before plotting. SE-MPR: single-echo; OC-MPR: optimally
combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative.

compared to the other two, and a generally anticipated response compared to ME-MOD
and a delayed response to ME-CON.

In order to assess the reliability of each model, voxelwise ICC(2,1) maps were also
computed for both CVR and haemodynamic lag. Figure 4.9 depicts the ICC(2,1) maps for
all analysis strategies for both CVR and lag maps, as well as their distributions. High ICC
scores indicate that the intra-subject variability is lower than the inter-subject variability,
hence the estimations of CVR or haemodynamic lag can be considered consistent across
sessions. Conversely, low ICC scores indicate that the inter-subject variability is low com-
pared to the intra-subject variability, hence the estimations of CVR and haemodynamic
lag cannot be considered consistent across sessions. Following the classification given by
(Cicchetti, 2001), an ICC score lower than 0.4 is considered poor, lower than 0.6 fair, lower
than 0.75 good, and equal or higher than 0.75 excellent.

In terms of whole brain CVR reliability, the ME-CON demonstrated excellent reliability
(spatial average across the whole brain of 0.86 £ 0.16) as well as the highest ICC values
among all methods tested, closely followed by the OC-MPR (excellent, 0.85 + 0.16), SE-
MPR (excellent, 0.81 + 0.19), and ME-MOD (excellent, 0.79 £ 0.19), while ME-AGG
had a fair reliability (0.46 £+ 0.22). If only voxels in GM are considered, the ICC of all
approaches increases slightly (0.88 + 0.14, 0.87 + 0.15, 0.85 + 0.17, 0.82 £+ 0.17, and
0.49 + 0.22 for ME-CON, OC-MPR, SE-MPR, ME-MOD, and ME-AGG respectively).
Despite the average fair reliability observed for ME-AGG, it can be observed that this
approach exhibits a considerable number of voxels with poor reliability (ICC below 0.4).
These voxels are mostly located in white matter, which also exhibit lower ICC values in
the other analyses. In terms of whole-brain lag reliability, OC-MPR performed the best
(good reliability, 0.67 £ 0.21), closely followed by ME-CON (good reliability, 0.66 + 0.21).
SE-MPR, ME-MOD, and ME-AGG demonstrated fair lag reliability (0.6 £ 0.22 and 0.42
+ 0.19, 0.41 £ 0.20, respectively). Considering only GM voxels, the reliability of all the
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Figure 4.8: Top row: Thresholded x value of the LME model used for the comparison
of CVR (left) and lag (right) maps across all denoising strategies. Other rows: Pairwise
comparison between denoising strategies. Arrows indicate areas vascularised by big vessels.
SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD:
moderate; ME-CON: conservative.
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approaches increases minimally (0.68 + 0.21, 0.67 + 0.21, 0.61 £ 0.21, 0.43 &+ 0.19, 0.42
+ 0.20, for OC-MPR, ME-CON, SE-MPR, ME-MOD, and ME-AGG respectively). The
reliability of CVR lag estimates was lower than that of CVR amplitude estimates, even
though certain cortical regions, such as the visual and motor cortices, also show excellent
ICC values for the OC-MPR and ME-CON denoising approaches. Interestingly, it can be
observed that ME-MOD offers excellent ICC values for the CVR response amplitude in
grey matter voxels, whereas they are poor for the lag estimates. Note that the reliability of
OC-MPR CVR maps is generally higher, at least in the GM, than the reliability of RSFA,
ALFF, or fALFF (see Figures 2.15 to 2.17 respectively)

Discussion

This study compared five different analysis strategies based on a lagged-GLM model (Moia
et al., 2020) to simultaneously remove motion-related effects and non-BOLD artefacts in
the BOLD fMRI signal while estimating CVR and haemodynamic lag in order to identify
the best modelling approach for BH paradigms in which prominent task-correlated arte-
facts coexist with the effect of interest. The lagged-GLM model adopted in this study is
similar to other models for CVR estimation that take into account local variations in the
haemodynamic lag (Donahue et al., 2016; Geranmayeh et al.; 2015; Murphy et al., 2011;
Sousa et al., 2014; Tong et al., 2011). The main difference with such models is that, in this
lagged-GLM approach, after a first bulk shift that matches the average GM response with
the PErCOghrf regressor, the denoising and the voxelwise optimised response estimation
take place simultaneously. This ensures that the interaction between regressors is properly
taken into account and that the degrees of freedom of the model are properly accounted
for in statistical inference.

Among all possible modelling strategies, the five presented here were included in our
analysis for different reasons. The optimal combination of ME-fMRI data, with subsequent
motion and Legendre polynomial regression (MPR), was expected to remove more noise
and improve reliability of the CVR estimation due to its increased BOLD sensitivity com-
pared to MPR on single-echo data, which is the standard approach for BH CVR estimation
(Cohen & Wang, 2019). While optimal combination of ME volumes alone can partially re-
duce the random noise present in the data, it still cannot remove artefactual signals, such
as motion-related effects, as illustrated in Figure 4.4 in which SE-MPR and OC-MPR ex-
hibit the same dependence of signal changes (DVARS) with motion (FD). For this reason,
we further adopted three different ME-ICA based approaches, ranging from a conservative
to an aggressive motion removal. ICA-based approaches are known to outperform tradi-
tional nuisance regression, such as MPR, in typical denoising fMRI data, possibly because
they can identify and separate artefactual sources in the data in a data-driven and non-
linear manner (Griffanti et al., 2014; Pruim, Mennes, Buitelaar & Beckmann, 2015; Pruim,
Mennes, Rooij et al., 2015; Salimi-Khorshidi et al., 2014). In the current study, ICA was
not applied to single-echo data because it has already been demonstrated that ICA-based
denoising applied to OC data outperforms ICA denoising applied to single-echo data (Di-
pasquale et al., 2017) and the ICs estimated from OC data might not have matched the
ICs obtained from single-echo data, making such comparison less straight forward than the
one based on MPR.

Furthermore, spatial ICA decomposition was applied rather than temporal ICA de-
composition because the latter requires many more observations than normally available.
Having many sessions for each subject, temporal ICA could have been leveraged in this
study which could be more appropriate than spatial ICA to estimate a proper decomposi-
tion of timeseries sources (Smith et al., 2012), improving the modelling of temporal noise
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Figure 4.9: ICC(2,1) maps of CVR (left) and haemodynamic lag (right) for each analysis
pipeline. The maps are thresholded at 0.4 since scores lower than it indicate poor reliability.
A high ICC score indicates that the inter-subject variability is higher than the intra-session
variability, while a low ICC score suggest that the variability across sessions is the same
as the one across subjects. Following the classification given by Cicchetti (2001), an ICC
score lower than 0.4 is considered poor, lower than 0.6 fair, lower than 0.75 good, and
equal or higher than 0.75 excellent. The bottom rows depict the whole brain distribution
of ICC scores across voxels. Note how OC-MPR and ME-CON have generally higher ICC
scores than the other approaches, and are very similar to each other, while ME-AGG
has the lowest ICC scores for both CVR and lag maps. SE-MPR: single-echo; OC-MPR:
optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative.
The distribution of ICC scores across grey matter voxels only is available in Figure 4.10

Figure 4.10: Grey matter distribution of ICC scores across voxels for all the pipelines.
SE-PRE: raw data; SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: ag-
gressive; ME-MOD: moderate; ME-CON: conservative.
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(Glasser et al., 2018) and potentially leading to better disentanglement of noise from CVR
effects. However, spatial ICA was chosen in order to maintain the independence of each ses-
sion, both to simulate a more common denoising approach to fMRI data, and to be able to
capture session-specific noise contributions that could have been missed otherwise. Further
studies could compare temporal and spatial ICA denoising for CVR mapping when many
temporal samples have been collected in the same session, for instance reducing the TR
by acquiring fewer echoes. Here, instead of conventional multi-echo protocols with three
or four echoes, five echoes were acquired to facilitate and improve the classification of the
ICs based on their TE-dependence (Kundu et al., 2013).

The choice of comparing different levels of orthogonalisation of only the ICA-based
nuisarnce regressors compared to regressors of interest might seem in contrast with previous
literature suggesting that orthogonalisation of collinear confounding factors could lead to
misinterpreted results (Mumford et al., 2015). Our results clearly demonstrated that using
the original (e.g., non orthogonalised) rejected ICs as nuisance regressors in the analysis
(ME-AGG) removes the CVR effect of interest (see Figures 4.6, 4.7, 4.9, and 4.10). To
decide which regressors should be orthogonalised, and with respect to what, we considered
the different origin of the nuisance regressors. While Legendre polynomials and motion
parameters can be considered adequate models of noise sources in the data, intrinsic data-
driven regressors may well contain variance related to the effect of interest, especially as
spatial ICA was adopted and because of the high collinearity between the PrrCOshrf,
motion, physiological adaptations to vascular dilation (e.g. cerebrospinal fluid flows), or
changes in the magnetisation related to breathing (Raj et al., 2001). In these scenarios, it
becomes more important to understand how to properly implement ICA denoising in order
to preserve the effect of interest. For these reasons, three different ICA-based approaches
were selected, from an aggressive strategy to a conservative approach, to assess if they
preserved the BOLD effects related to the CVR response happening at different lags.

As hypothesised, all of the ME-based solutions outperformed the SE-MPR model in
their ability to account for the effect of motion, summarized in terms of FD, on the fMRI
signal intensity changes, described in terms of DVARS (see Figure 4.4). Furthermore, all of
the ICA-based strategies outperformed traditional MPR, and within ICA-based strategies,
the aggressive one (ME-AGG) showed the best performance to remove these motion-related
effects in the signal. However, observing the average DVARS and BOLD response time-
courses (Figure 4.5) and the CVR and lag maps (Figure 4.6) it becomes evident how
aggressive and moderate approaches result in poor estimates of CVR responses, even com-
pared to the SE-MPR approach. Similarly, these two approaches result in the estimated
haemodynamic lag hitting the boundaries of a physiologically plausible lag range in healthy
adults. The substantial reduction in the CVR estimates in the aggressive approach (Fig-
ures 4.5 and 4.6) occurs because the effect of interest can also be explained as a linear
combination of the timecourses of rejected ICs related to motion, vascular effects or large
susceptibility changes due to chest expansions and contractions while performing the BH
task (Caballero-Gaudes & Reynolds, 2017; Griffanti et al., 2017). As for the moderate ap-
proach, the lower estimates of CVR could be because orthogonalising data-driven nuisance
regressors with respect to the PrrCOsqhrf trace per sé is not sufficient to save all the
variance associated to real CVR. The PrrCO» trace can only be estimated during exhal-
ations, hence it is unable to capture local dynamic signal changes that are captured by
ICs timeseries. Furthermore, CVR has a sigmoidal non-linear relation with the PepCOshrf
trace (Bhogal et al., 2014), and the local BH-induced BOLD response has a complex shape,
in terms of response amplitude and temporal delays, due to multiple physiological factors
(Magon et al., 2009) that must be accounted for in order to improve its estimation and
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characterization. These results illustrate that these local complexities might be adequately
captured by the accepted ICs timecourses. Hence, not removing this CVR-related variance
from the rejected ICs prior to their inclusion as nuisance regressors in the model is det-
rimental as it is observed with the ME-MOD and ME-AGG approaches. In other words,
only a conservative approach (ME-CON) that preserves the BOLD variance associated
with local CVR responses performs well, while also reducing motion-related effects more
than conventional MPR models.

To further explore the benefit of different modelling strategies, the intraclass coefficient
coefficient ICC(2,1) was used to assess the reliability of the resulting CVR and haemody-
namic lag maps over the course of two and a half months (ten sessions). This was the first
time that CVR reliability was tested over the course of ten sessions in individual subjects,
and the first time that intersession haemodynamic lag reliability was tested. The ME-CON
and OC-MPR strategies featured the greatest reliability for CVR and lag estimation, while
the ME-AGG and ME-MOD approaches produced lower reliability values than even the
simple SE-MPR model.

The lag maps are computed as the temporal offset related to the bulk shift, which is
obtained by aligning the average GM BOLD response with the PrrCOshrf trace. If the
bulk shift computation is misestimated this would create a systematic bias in the estim-
ated lag maps, potentially reducing the apparent intersession reliability. While the CVR
reliability should not be affected by this issue, due to the use of a lagged-GLM approach
that can overcome bulk shift misestimation (see session 4 of subject 007 in Figure C.10),
the true lag map reliability might be higher than reported here.

Regarding CVR reliability, the whole-brain average reliability of SE-MPR, was com-
parable to long-term reliability (days or weeks apart) found in previous studies of CVR
induced by BH (Peng et al., 2019), by paced deep breathing (Sousa et al., 2014), or by
gas challenges (Leung et al., 2016), and higher than that reported in other studies on BH
induced CVR estimated with a non-lagged optimized P pCOghrf trace (Lipp et al., 2015)
or with Fourier modelling (Pinto et al., 2016), and by gas challenges (Dengel et al., 2017;
Evanoff et al., 2020). Consequently, the reliability of CVR estimates obtained with the
optimal combination dataset and conservative ME-ICA modelling approaches were found
higher than those previously reported in the literature. However, all strategies produced a
reliability that was lower than the short-term (within-session) reliability reported in BH
induced CVR (Peng et al., 2019), resting state based CVR (Liu, Li et al., 2017), and gas
challenge induced CVR (Leung et al., 2016), although lower intersession reliability in gas
challenges has also been reported (Dengel et al., 2017; Evanoff et al., 2020). Note that the
reliability observed in this study seems to be globally higher and spatially less variable
than that reported in previous studies (Lipp et al., 2015; Sousa et al., 2014). However,
discrepancies in the reliability measurements might be related to the different methods
used to compute the CVR maps and the ICC score itself.

Using ICC to test reliability has the drawback that higher scores might be related to
the presence of residual task-correlated motion effects that artificially stabilise the CVR
estimation and reduce intrasubject variability compared to intersubject variability. In fact,
recent studies have shown that individuals have particular movement patterns during fMRI
sessions that may be a stable characteristic of a person (Bolton et al., 2020) related to
stable physical characteristics, such as body mass index (Ekhtiari, Kuplicki, wen Yeh &
Paulus, 2019) and could even be a heritable characteristic (Couvy-Duchesne et al., 2014;
Hodgson et al., 2017). If subjects have similar motion patterns across the 10 repeated
sessions, fMRI responses might appear more similar than they truly are, and the ICC
might be inflated by such effects. Moreover, higher spatial reliability does not necessarily
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mean higher accuracy: a denoising strategy might be systematically misestimating CVR
or haemodynamic lag. The fact that both optimal combination with traditional nuisance
regression and the conservative ME-ICA denoising approaches resulted in similar CVR and
lag spatial patterns and exhibited higher reliability than the single-echo model, while at
the same time reduced the apparent effect of motion on the data variance, suggests that
such drawbacks are mitigated in our data. However, further studies could compare different
BH analysis strategies with a CVR estimation based on an independent computerised gas
delivery protocol.

Another possibility would be to assess CVR in resting state fMRI, either measuring
resting fluctuations in exhaled COq levels (Golestani et al., 2016; Lipp et al., 2015), or by
using a band of the power spectrum of the global signal as a regressor of interest (Liu, Li
et al., 2017; Liu et al., 2020). Such method might be more robust to motion collinearity, as
the amount of movement in each breath is less pronounced and not consistently time-locked
to the paradigm cues. At the same time, the lower amplitude of intrinsic CO9 fluctuations
relative to BH COy change might also make this approach more susceptible to general
motion effects and other sources of variance (e.g. neural or artefactual) unrelated to COs.
Moreover, previous work has shown that the optimal temporal shift between BOLD and
PrTCOg is hard to reliably identify in resting state data alone, in contrast to BH datasets
where the temporal shift can be reliably identified (Bright et al., 2017; Stickland et al.,
2021). Current resting state fMRI methods for CVR mapping may therefore be inappropri-
ate to use with the lagged-GLM approach that was applied here. Either way, the analyses
presented in this study can be easily implemented in other CVR assessment pipelines to
mitigate the dependence of the response on motion. Beyond BH-based CVR studies, sim-
ilar conclusions might be applicable to other experimental paradigms that present high
collinearity between the expected task induced activity and artefactual sources, such as
in overt speech production with long trial durations (Birn et al., 1999; Birn et al., 2004;
Gracco, Tremblay & Pike, 2005), that aim to use (ME-)ICA-based nuisance regressors as
part of the model.

Note that MPR and ICA denoising are not the only viable options to reduce motion
effects on fMRI and BH-induced CVR in particular, and advanced setups can be used to
reduce motion during the acquisition itself. For instance, subject specific moulded head
casts can be used to reduce head motion (Power, Silver et al., 2019). Mounting an MRI
compatible camera or tracker in the scanner enables prospective motion correction tech-
niques (Faraji-Dana, Tam, Chen & Graham, 2016; Maziero, Rondinoni, Marins, Stenger
& Ernst, 2020; Parkes, Fulcher, Yiicel & Fornito, 2018; Schulz et al., 2014; Zaitsev, Akin,
LeVan & Knowles, 2017) or concurrent field monitoring enables the dynamic correction
of field distortions dynamically (Vannesjo et al., 2015; Wilm et al., 2015) in order to ef-
fectively reduce effects of motion and magnetic field susceptibility changes. However, such
advanced setups are available in typical MRI laboratories.

A limitation of the present study is that the results are influenced by the manual ICA
classification. Despite being based on the automatic classification made by tedana, a manual
approach was adopted because often multiple ICs clearly exhibiting CVR-related timeseries
and spatial maps were misclassified as noise. This manual classification was made with a
cautious approach: if an IC seemed to be temporally and spatially related to the CVR
response, it was accepted. Manual classification is still considered the gold standard for the
classification of ICA components when performed by experts, despite the introduction of
automatic classification algorithms (Griffanti et al., 2017), calling for further improvements
in the automatic classification of (ME-)ICA components for BH tasks.

Another limitation is the lack of a CO9 automated delivery protocol. The choice not to
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include one was driven by the necessity to reduce the discomfort of the participants during
the imaging sessions, and because experiments with gas challenges require dedicated setups
that are not typically available. Nevertheless, future studies should compare denoised CVR
maps to a CVR estimation based on independent computerised gas delivery protocols. This
would also help estimating the accuracy of the denoised results on top of the reliability
analysis featured in the present study.

Moreover, despite the fact that a BH task can be a valid alternative to gas delivery
protocols for CVR estimation and its easy implementation, not all the subjects in this
study could perform the task during all of the sessions. In total, 86% of the sessions were
completed successfully by the subjects, although three subjects had to be excluded due to
poor performance or non-compliance to the task in a subset of the sessions (four in two
subjects and six in the third, see Figure 2.5).

Finally, it is worth noticing that the adoption of ME imaging requires an increase in
TR or a decrease in the spatial resolution. A way to cope for this issue is the adoption of
simultaneous multi-slice (a.k.a. multiband) acquisition, and despite the fact that this choice
might introduce additional slice-leaking artefacts, a ME-ICA based denoising approach can
successfully deal with their removal (Olafsson et al., 2015).

Furthermore, This study adopted one of the echo volumes as an approximation of a
single-echo acquisition. Further studies could evaluate if this solution improves the estim-
ation of CVR compared to SE imaging with higher spatial or temporal resolution.

Conclusion

Breath Holding (BH) is a non-invasive, robust way to estimate cerebrovascular reactivity
(CVR). However, due to the task-correlated movement introduced by the BH task, atten-
tion has to be paid when choosing an appropriate modelling strategy to remove movement-
related effects while preserving the effect of interest (PgpCOshrf). We compared different
multi-echo (ME) independent component analysis (ICA) based denoising strategies to the
standard data acquisition and analysis procedure, i.e. single-echo motion parameters regres-
sion. We found that a conservative [CA-based approach, but not an aggressive or moderate
ICA approach, best removes motion-related effects while obtaining reliable CVR and lag
responses, although a simple optimal combination of ME data with motion parameters
regression provides similar CVR and lag estimations, and both ME-based approaches offer
improvements in reliability compared with single-echo data acquisition.



5. Cerebrovascular Reactivity and blood
pressure

Changes in blood acidity induced by changes in COs or acetazolamide injection are not the
only triggers for CVR. Due to its nature as homeostatic process, like cerebral autoregula-
tion and cerebral blood flow CVR can also be triggered during systemic changes in blood
pressure (Fierstra et al., 2013; Panerai, 1998). Techniques such as thigh cuffs release (see
Aaslid et al., 1989; Mahony, Panerai, Deverson, Hayes & Evans, 2000) or lower body negat-
ive pressure (LBNP, see Tan, 2012; Thrall et al., 2021) have been successfully implemented
to measure cerebral autoregulation and blood flow with Transcranial Doppler ultrasound
(TCD). Using the thigh cuffs release approach, Aaslid et al. (1989) showed that changes in
blood pressure and CO3y might modulate each other’s effect on cerebrovascular resistance,
although such findings were not replicated with LBNP (Thrall et al., 2021). However, it
is plausible that since vasodilatory mechanisms are equally initiated by pressure and CO»
variations, independently of whether they are related to cerebral autoregulation or CVR
(Carr et al., 2021), changes in blood pressure may act as confounding factors when measur-
ing CVR (Hetzel et al., 1999; Pericot Nierga et al., 2000; Regan et al., 2014), since changes
in Mean Arterial Pressure (MAP) during hypercapnia might not be correlated with the
increase in COg (Smielewski et al., 1995).

This is more evident in pathology, since abnormal blood pressure states can alter the
response to COg variations. Artru and Colley (1984) demonstrated the lack of CVR to
hypocapnia during induced hypotension in dogs, and the absence of autoregulation was
equally found in hypertensive dogs (Harper, 1965). Although vasoreactivity to acetazol-
amide was found to be higher during hypertension in humans (Ficzere et al., 1997), there
have been multiple reports of reduced reactivity to changes in COs, both in hypertensive
rats (Leoni et al., 2011; Li et al., 2021) and in hypertensive humans (Dumville et al., 1998;
Settakis, Pall et al., 2003), for which such reduced reactivity was associated with worse
executive functions (Hajjar et al., 2014).

Moreover, it has been shown that blood pressure influences BOLD fMRI measurements,
since BOLD is sensitive to changes in MAP (Whittaker, Driver, Venzi, Bright & Murphy,
2019). Hence, the role of pressure as a confounding factor in CVR measurement might
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be even more important when the latter is estimated with BOLD-fMRI. However, to our
knowledge, the impact of pressure on local CVR estimations in individuals has not been
studied yet. As a consequence, the aim of this study is to investigate the relationship
between CVR responses and lag with blood pressure measurements.

Material and Methods

Dataset

This study uses the BOLD fMRI data corresponding to the BH task and the corresponding
COs traces from all the sessions, as well as the anatomical T1-weighted and T2-weighted
images from the first session, of the dataset described in chapter Chapter 2. In addition, it
also uses part of the biometrics collected in each participant before each MRI session, in
particular the pulse, the systolic and diastolic pressure.

Data analysis

BH data were preprocessed and analysed with the OC-MPR model described in Sec-
tion 2.1.9 so as to obtain the CVR and lag maps for all subjects and sessions. The CVR
and lag maps were then normalised to the MNT152 template (Grabner et al., 2006, 2.5 mm
isotropic voxel resolution), spatially smoothed with a Gaussian kernel with 5 mm FWHM
within a dilated GM mask (dilation of 1 voxel, considering only face neighbours), and all
volumes were masked with the same mask.

The two measurements (once per arm) of systolic and diastolic pressure and cardiac
pulse were averaged to provide one value per session. Then, Pulse Pressure (PP) and MAP
were computed, as:

PP=SP—-DP

(5.1)
MAP = DP +1/3PP

The impact of MAP, PP, and cardiac pulse on the CVR and lag maps was evaluated with
a Linear Mixed Effect (LME) model using 3dLMEr (Chen et al., 2013). Since the literature
reports differences in CVR between males and females (see Barnes & Charkoudian, 2020;
Carr et al., 2021), and difference of the impact of cardiac pulse on CVR between males
and females (Sabra et al., 2020), the interactions between the sex of each participant and
the other variables were added to the model. Finally, the random effects of session and
subject and the interactions of subject with all other variables were modelled. In sum, the
resulting model in R notation is given by:

CVR ~ sex - (MAP + PP + pulse) + (1|ses) + (M AP + PP + pulse)|subj)  (5.2)

This model was evaluated voxelwise and on the average value of CVR or lag across
all the voxels within the dilated GM mask used for smoothing. To assess the statistical
significance, the voxelwise results were thresholded at p <0.05 after controlling for false
discovery rate (Benjamini et al., 2006). In addition, clusters with a minimum size of 20
voxels (312.5 mm?®) with a neighbourhood of 26 voxels are reported.

Results
Average GM analysis

Considering the average GM value, the only significant effect was the mild and negative
effect of cardiac pulse on lag (8 = —0.0369, z = —1.986, see Table 5.1), indicating a
relationship between higher cardiac pulse and an average earlier CVR onset in the GM.
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CVR (B) Lag (B)

MAP 0.154 0.049
PP 0.336 0.023
Pulse 0.077 -0.037¢
Sex -10.630 -0.903
MAP * Sex -0.178 0.079
PP * Sex -0.804 0.031

Pulse * Sex -0.135 -0.002
MAP * M 0.065 0.089

PP *M -0.066 0.039
Pulse * M 0.009 -0.038
MAP * F 0.242 0.010
PP *F 0.738 0.008
Pulse * F 0.144 -0.036

Table 5.1: Results of the LME model considering the average GM. ¢ significant relationship,
p<0.05.

Voxelwise analysis

The first three rows of Figure 5.2 depict the maps of voxelwise effects of MAP (top), PP
(second), and sex (third) on CVR in our healthy cohort. As it can be observed in the top
panel, multiple GM regions spreading across the entire cortex as well as the cerebellum
exhibit a significant positive effect of MAP in CVR, that involves bilaterally the cerebel-
lum, the medial occipital cortex, the parietal opercular cortex, the temporooccipital part
of the middle temporal gyrus, the superior temporal gyrus, the posterior insular cortex,
the cingulate gyrus, the postcentral gyrus, and the precuneous cortex (see Table D.1 in
Appendix D). The maps shown in the second panel illustrate that the positive effects of
PP on CVR exhibit a reduced extent than the effects of MAP, mainly involving clusters
in regions of the left insula, the right auditory cortex, the middle temporal gyrus, and
the medial superior frontal gyrus (see Table D.2 in Appendix D). No clusters of negative
impact of MAP or PP on CVR were found significant with sufficient size. The bottom row
of Figure 5.2 shows the impact of MAP (red), PP (green), and the overlap between the
two (yellow). Interestingly, the overlap between the two is very limited, involving mainly
only a small portion of the cerebellum (VI, bilateral), the right cingulate gyrus and tem-
porooccipital part of the middle temporal gyrus, and the left posterior insular cortex and
superior lateral occipital cortex. This fact indicates spatial independency between the im-
pact of MAP and PP on CVR, and suggests the importance of considering both PP and
MAP when assessing the effects of blood pressure on CVR.

The bottom panel of Figure 5.2 depicts the map of effects of sex on CVR, where
positive effects indicate higher CVR in males versus females, and negative effects indicate
the reverse. At the group level, females largely showed a higher CVR response compared
to males across most of the GM, with the exception of the medial orbitofrontal gyrus.
Table D.3 in Appendix D reports the extent and location of each cluster with a positive
effect (i.e. males showed higher CVR than females), while Table D.4 in Appendix D reports
the clusters of negative effects (i.e. males showed lower CVR than females).

A stricter statistical threshold was adopted to identify better the cluster of negative
effects of sex over CVR. Hence, Table D.5 in Appendix D reports the cluster of negat-
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Figure 5.1: Top three rows: Local impact of MAP, PP, and sex on CVR. All results are
FDR corrected and thresholded at p <0.05. Bottom row: Overlap of significant voxels (p
<0.05) of the MAP and PP impact on CVR. Very few voxels (271) show overlapping effects,
indicating that the impacts of MAP and PP are almost spatially independent.
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ive effects for p <0.005, after FDR correction, revealing clusters across the cerebellum,
the inferior and lateral occipital lobe, the medial parietal lobe, the postcentral gyrus, the
cingulate and paracingulate gyri, the middle frontal gyrus, the insula, and the putamen
bilaterally, across the temporooccipital part of the middle temporal gyrus and the super-
ior temporal gyrus in the right hemisphere, and across the superior parietal lobule, the
middle temporal gyrus, the central opercular cortex, the Juxtapositional Lobule Cortex,
the superior frontal gyrus, and the amigdala in the left hemisphere.

Sex, impact on CVR
, » 4 b ‘

XY XXX

Figure 5.2: Local impact of sex on CVR, thresholded at p <0.005 (FDR corrected).

No significant effects were found for cardiac pulse or the interactions of the variables.
Notably, no significant effects on the lag were found for any variable (MAP, PP, cardiac
pulse, or sex), nor for their interactions.

Discussion

This study demonstrates that two blood pressure measurements, namely MAP and PP, as
measured immediately prior to the MRI session, show a significant relationship with BOLD
fMRI-based CVR during B, and this relationship varies across brain regions. This is in
line with previous findings that reported an interaction between blood pressure and CVR,
although the polarity of the interaction observed in our data is opposite to that reported
by Dumville et al. (1998), Regan et al. (2014), who show a negative effect of MAP on CVR,
estimated with TCD, between subjects.

Furthermore, a widespread effect of sex on CVR was found, with generally higher CVR
in females compared to males. These results are in line with previous evidence observed
with TCD-derived CVR measurements, where CVR was found to be higher in females
compared to males (Kastrup, Dichgans, Niemeier & Schabet, 1998; Kastrup, Thomas,
Hartmann & Schabet, 1997; Tallon, Barker, Nowak-Fliick, Ainslie & McManus, 2020),
although care must be taken when comparing CVR measurements derived from TCD and
BOLD-fMRI (Burley et al., 2021). However, our results are in contrast with previous reports
that measure CVR with BOLD fMRI, which report higher GM CVR in males (Kassner,
Winter, Poublanc, Mikulis & Crawley, 2010) or no difference at all (Chen, Yang et al.,
2021; Jiménez Caballero & Segura Martin, 2006), albeit these comparisons were conducted
on the average GM CVR only.

A possible reason for this difference might be related to the phase of the menstrual
cycle in which our female participants were during the MRI sessions. Whereas Kassner
et al. (2010) did not take into account the phase of the menstrual cycle of their female
participants, our data were collected each week over a two and a half months period of
time, and therefore might result in a more homogeneous sample of different menstrual
cycle phases (cfr. Carr et al., 2021). In that sense, our study was not able to control
for the different stages in the menstrual cycle due to the lack of sufficient observations
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in the final cohort of female subjects. Given the importance of the role of the endocrine
system observed in BOLD fMRI based studies (Arélin et al., 2015; Barth et al., 2016;
Pritschet et al.; 2020; Pritschet et al., 2021), this might explain the contrasting reports
of the difference in CVR between males and females emerging in the literature, especially
considering previous observations of the changes in CVR during different phases of the
menstrual cycle (Krejza, Rudzinski, Arkuszewski, Onuoha & Melhem, 2013). All in all,
further in-depth studies on the difference in CVR across the menstrual cycle and on the
role that hormones play in this context are needed.

Furthermore, high spatial independence was found between the relationship of PP and
that of MAP. While MAP has been vastly used as an estimation of blood pressure and
compared to CVR and BOLD fMRI, PP has been overlooked in this context. Instead, our
observations indicate that not taking into account PP could lead to missing important
local effects of blood pressure.

Our data did not show any relationship of cardiac pulse and CVR, nor an interaction
between sex and PP or MAP. These observations contrast with previous evidence of a
relationship between cardiovascular pulse and CVR, as measured by magnetic resonance
encephalography (Raitamaa et al., 2018), and of the modulatory effect of the sex of a
subject on this relationship (Sabra et al., 2020), that might be mainly driven by the effect
of oestrogen on the tone and reactivity of the blood vessels (Barnes & Charkoudian, 2020;
Tallon et al., 2020). Multiple methodological factors might have played a role on this
difference, since Sabra et al. (2020) used arterial spin labelling with a gas challenge instead
of BH-induced BOLD fMRI. Moreover, given the evidence of changes in CVR related to
age (Burley et al., 2021), and the complex relationship between CVR, sex and age of the
participants (Barnes, 2017), the different age of the two cohorts (elderly participants vs
adults) might have been another important cause. Future studies should investigate the
effect of age on the relationship of pulse and pressure and CVR.

Despite the fact that our cohort is composed by healthy volunteers, our results might
provide further insight into the impact of hypertension on BH-induced CVR assessed with
BOLD fMRI. Previous studies employing TCD (Dumville et al., 1998; Hajjar et al., 2014;
Settakis, Pall et al., 2003), or using animal models (rat) (Leoni et al., 2011; Li et al.,
2021), reported impaired CVR caused by systemic hypertension. In apparent contrast,
our results were characterised by local positive relationships between MAP and PP and
CVR. Together with the studies of Li et al. (2021) and Settakis, P4ll et al. (2003), which
showed complex, almost biphasic effects that different stages of hypertension have on CVR,
our findings might suggest an “exhaustion” scenario: temporary increased blood pressure
in otherwise healthy conditions increases CVR, but if the high blood pressure becomes
systemic, it might compromise the vasodilatory properties of the vessels, resulting in lower
regulatory capacities and impaired CVR. Moreover, the different effects of PP and MAP
on CVR also suggest that different types of hypertension, such as isolated hypertension,
should be taken into account and studied separately from primary hypertension.

Finally, a limitation of the current study is that pressure measurements were taken only
before the MRI session. Future work could examine how dynamic changes of blood pressure
(e.g. via cuffless continuous measurements), simultaneously recorded to expired-air COq
concentrations, could influence the dynamics of CVR, either measured with BOLD fMRI,
ASL MRI, or alternative techniques such as TCD (Artru & Colley, 1984; Dumville et al.,
1998; Hetzel et al., 1999) and functional near infrared spectroscopy (Smielewski et al.,
1995).
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Conclusion

This study demonstrates that higher MAP and PP, as measured before the MRI session,
are associated with distinct regional increases in CVR. This evidence suggests that not
measuring MAP and PP might produce biases in studies comparing CVR between cohorts
or across timepoints, and that both MAP and PP should be measured and modeled.
Moreover, these results, in conjunction with previous studies, suggest a possible distinction
between the effect of temporary and chronic elevations in blood pressure. Finally, the results
showed that females presents higher CVR compared to males, with mixed agreement with
the existing literature, calling for further studies on sex difference of CVR.







6. Impact of Cerebrovascular reactivity on
Resting State and task Induced Activity

In the last 20 years the relationship between RS fluctuations or functional connectivity and
behaviour gathered considerable attention among cognitive neuroscientists. Several studies
gave evidence of a link between the intrinsic, spontaneous brain fluctuations observed in
resting state (RS) fMRI data and functional connectivity with various traits of cognitions
(See van den Heuvel & Hulshoff Pol, 2010, for a complete review), followed by various
attempts of linking them with behavioural outcomes and scores in domains such as language
development and production (e.g. Gilbert et al., 2021; Qi, Schaadt & Friederici, 2021; Xiao,
Friederici, Margulies & Brauer, 2016). Beside finding links between the amplitude and the
strength of RS fluctuations and functional connectivity, a few studies tried to understand
the relationship between RS fluctuations and task Induced Activity (tIA), which will be
the focus of this chapter.

For instance, Mennes et al. (2011) showed that the fALFF scores estimated during RS
was related to estimated responses of a Flanker task, linking RS fluctuations to executive
function outcomes. Similarly, Zou et al. (2013) reported direct links between tIA of a
working memory task and the fALFF of a preceding RS scan. Moreover, RS functional
connectivity has been similarly linked to task based functional connectivity (Finn et al.,
2017; Finn et al., 2015), proportionally to behavioural outcome (Sala-Llonch et al., 2012), in
a reliable manner (Gratton et al., 2018), especially when considering its latent counterpart
(McCormick, Arnemann, Ito, Hanson & Cole, 2021). However, previous results reported a
close relationship between tIA and RS that was competitive (He, 2013; Ito et al., 2020), i.e.
that tTA reduced signal variability in RS, and that increased stimulus response resulted in
lower fluctuations at a later time, and that this competitiveness was not limited to fMRI
imaging, but extended to neural activations in animal models (Ito et al., 2020).

Similarly, RS fluctuations have also been used to rescale the amplitude of tIA in order
to account for vascular effects (Kazan et al., 2016), providing similar results to corrections
induced by using BH data (Murphy et al., 2011). Furthermore, they have been proposed
as an alternative to CVR mapping with RS-fMRI and no physiological measurement (De
Vis et al., 2018; Golestani et al., 2016; Kannurpatti & Biswal, 2008; Kannurpatti et al.,



6.1
6.1.1

6.1.2

78 Chapter 6. Impact of CVR on RS and tlA

2014; Wang et al., 2019), although the relationship between RS fluctuations and CVR was
not always found optimal (Golestani et al., 2016; Lipp et al., 2015). These findings, as
well as the impact that physiological signals and vascular sources can have on functional
connectivity and RS fluctuations (Bright, Whittaker, Driver & Murphy, 2020; Chen et al.,
2020), might indicate that these factors could actually explain a considerable variability
the relationship between RS, tIA and behaviour.

The study presented in this chapter investigates the relationship between BH-induced
CVR and different metrics of RS fluctuations (RSFA, ALFF, and fALFF) that have been
proposed as counterparts to CVR, as well as tIA observed in a simple Motor task and an
event-related, high-level cognitive task (Simon). In that sense, it also aims to generalise
the results of Mennes et al. (2011) and those of Golestani et al. (2016), and observe if CVR
has direct causation on tIA.

Material and Methods

Dataset

In this study the motor, Simon, and BH task, the first RS run of each session, the CO»
traces, and the T1-weighted and T2-weighted anatomical images from the first session of
the dataset described in Chapter 2 were used.

Data analysis

All functional volumes were preprocessed and analysed as described in Chapter 2. For the
motor task, the maps of the contrasts between the five motor conditions and the sham
condition were averaged to obtain one map representing all motor activations. For the
Simon task, three contrasts were considered: all the congruent responses, all the incongruent
responses, and all the responses together. As noted in Chapter 2, only the correct responses
were taken into account for these contrasts, whereas the wrong responses were modelled in
the design matrix with regressors of non-interest. Note that the Pinel functional localiser
task shown in Chapter 2 was not used in this analysis, as its collection served other purposes
outside of the scope of this study.

RSFA, ALFF, and fALFF were estimated from the first RS run with 3dRSFC, in the
0.01-0.1 Hz band, as explained in Chapter 2 (see Equation (2.1)).

Finally, all maps were normalised to the MNI152 template (Grabner et al., 2006, 2.5 mm
isotropic voxel resolution) with a nearest neighbours interpolation. Since the BH task fMRI
volumes were not smoothed before the GLM computation in order not to bias the adopted
lagged-GLm estimation method, the normalised CVR maps were smoothed within the
same dilated GM mask used in Chapter 5 (1 voxel dilation), with a 5mm FWHM gaussian
filter.

The average CVR, ALFF, RSFA, and fALFF GM value was extracted for each subject
and session using the same dilated GM mask, and the obtained values were used to create
three scatterplots comparing CVR and each of the three RS fluctuations measures.

Then, in order to understand the role that CVR plays in the relationship between
intrinsic RS fluctuations and tTA (Mennes et al., 2011; Zou et al., 2013), the following
three LME models were modelled using 3dLMEr (Chen et al., 2013) to obtain a voxelwise
map of the impact of each independent variable on each dependent one:

1. A LME model to estimate the impact of CVR on RSFA, ALFF, and fALFF:

RSFL ~ 1+ cur + (cur|ses) + (cur|subj), (6.1)
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RSFA ALFF fALFF

B = 22.438, B = 4480.721, 8 = 0.029,
Clos [17.486, 27.390] Clos [3620.913, 5340.529] Clgs [0.018, 0.0401]

CVR

Table 6.1: Impact of CVR on RS fluctuations considering an average GM value. No impact
was found significant.

where RSF L denotes either the RSFA, ALFF, or fALFF map. This model was also
adopted to estimate the impact of CVR on RSFA, ALFF, and fALFF considering
the average value of the aforementioned dilated GM mask.

2. A LME model to estimate the impact of RSFA, ALFF, and fALFF on tIA:
tIA~1+ RSFL+ (RSFL|ses) + (RSFL|subj), (6.2)

where tIA is either the averaged contrast map of the motor task, or one of the
contrast maps of the Simon task.

3. A LME model to estimate the impact of CVR on tIA:

tIA ~ 1+ cor + (cvr|ses) + (cur|subj), (6.3)

Since no significant results were observed using a threshold of p < 0.05 after controlling
for multiple comparisons with the FDR procedure (Benjamini et al., 2006), the results at
an uncorrected threshold of p < 0.01 are reported. In addition, only clusters of at least 20
voxels (312.5 mm?®) with a neighbourhood of 26 voxels were considered.

Results

Relationship between CVR and RS fluctuations

Figure 6.1 shows the CVR, RSFA, ALFF, and fALFF maps of a representative session of a
representative subject. Note that although the different metrics adopt different scales and
ranges, and their amplitude was not rescaled or normalised, the adopted display ranges
are the same relatively to each metric amplitude distribution. RSFA and ALFF maps
are equivalent, and seem to be similar to the CVR map, in particular for the peaks of
amplitude. The fALFF amplitude distribution appears much more skewed toward higher
values, but with a similar spatial distribution compared to the other three.

Table 6.1 and Figure 6.2 show the relationship between CVR and ALFF (6.2A, 6.2D),
RSFA (6.2B, 6.2E), and fALFF (6.2C, 6.2F). The top lines shows the the relationship
between CVR and RS fluctuations for each subject independently, and the bottom line
considering all sessions and subjects together. While there seems to be a good relationship
between CVR and RS fluctuations when all subjects and sessions are pooled together,
considering each subject independently shows a much higher inter-subject and inter-session
variability.

Figure 6.3 depicts the results of the model in Equation (6.1) for RSFA, ALFF, and
fALFF, while Tables E.1 to E.3 in Appendix E report the clusters of positive impact of
CVR on the RS fluctuations. Note that no cluster of negative impact of sufficient size was
found. Figure 6.4 shows the overlap between the different maps. While there is a large
agreement between the areas of impact of CVR over ALFF and RSFA, fewer voxels show
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Figure 6.1: CVR, RSFA, ALFF, and fALFF maps of a representative session of a rep-
resentative subject. Note that the display range is different for each map, but the upper
limit is consistently the 99*" percentile of each amplitude distribution, considering positive,
non-zero voxels only.
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Figure 6.2: Scatterplots of the relationships between the average GM value of CVR and
RSFA, ALFF, and fALFF. The top line reports the relationship of each subject independ-
ently, the bottom line of all subjects and all sessions together. In the top line, the grey line
represents the LME model coefficient.
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Figure 6.3: Local effect of CVR on RS fluctuations (p < 0.01 uncorrected).
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Figure 6.4: Overlap of the positive values of the maps shown in Figure 6.3.

an overlap between areas related to ALFF, fALFF, and RSFA, and even less between
ALFF or RSFA and fALFF.

The largest positive impact of CVR on ALFF was found in the cerebellum, in the left
crus (I) and in the vermis (VI). Positive impact was also found in the right middle temporal
gyrus, temporal pole, and planum temporale, in the right superior frontal gyrus, in the left
superior frontomedial and frontal operculum cortices, in the left supramarginal gyrus, and
bilaterally in the posterior and anterior cingulate gyrus. The positive impact on RSFA was
almost completely overlapping to that of ALFF, except for the anterior cingulate gyrus
and the frontal operculum cortex, while the impact on fALFF was localised at the edges of
the cerebellum, in the left anterior supramarginal gyrus, and in the superior frontomedial
gyrus (bilaterally).

Relationship between RS fluctuations, CVR, and the motor task

Figure 6.5 shows the results of the model in Equations (6.2) and (6.3) for the motor
task contrast, while Table E.4 reports the clusters of positive impact of CVR, Table E.5
in Appendix E reports the clusters of negative impact of CVR, Tables E.6 and E.8 in
Appendix E reports the clusters of positive impact of RS fluctuations, and Tables E.7, E.9,
and E.10 in Appendix E reports the clusters of negative impact of RS fluctuations. No
statistically significant positive impact of fALFF was found.

The impact of ALFF and RSFA on the motor vs sham contrast was characterised by a
negative impact mainly across the caudal half of the brain, from the left lateral occipital
cortex to the left cingulate gyrus, extending bilaterally to the precentral and postcentral
gyri, the juxtapositional lobule cortex (supplementary motor cortex) and the posterior
insular cortices. The negative impact of fALFF was localised similarly to the impact of
ALFF and RSFA, with the exception of the superior precentral and postcentral gyri and
the bilateral occipital and insular cortices, and the addition of the precuneous, bilaterally.
A positive impact of ALFF and RSFA was found around the anterior horn of the right
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Figure 6.5: Local effect of RS fluctuations and CVR on the motor task (p < 0.01 uncor-
rected).

lateral ventricle.

The impact of CVR was mainly positive in the left anterior inferior cerebellum (VIIIa),
left inferior frontal gyrus, left posterior supramarginal gyrus and superior parietal lobule,
in the left inferior temporal gyrus, in the right parietal operculum cortex, in the right pos-
terior inferior cerebellum (VI and VIIb), and bilaterally in the superior and inferior lateral
occipital cortex. Negative impact of CVR was found bilaterally in the middle temporal
gyrus and in the right paracingulate gyrus.

Relationship between RS fluctuations, CVR, and the Simon task

Figures 6.6 to 6.8 shows the results of the model in Equations (6.2) and (6.3) for all con-
sidered contrasts of the Simon task, while Tables E.11, E.15, and E.17 in Appendix E report
the clusters of positive impact of CVR, Tables E.12, E.13, E.18, and E.19 in Appendix E
report the clusters of positive impact of ALFF and RSFA, and Tables E.14 and E.16 in
Appendix E report the clusters of negative impact of fALFF. Note that no cluster of neg-
ative impact of CVR, ALFF or RSFA of sufficient size, or any cluster of positive impact
of fALFF, was found.

For the congruent responses condition, a positive impact of ALFF and RSFA was found
in the right superior parietal lobule and cerebellum (crus IT), in the left superior lateral
occipital cortex, and bilaterally in the juxtapositional lobule cortex (supplementary motor
cortex). Positive RSFA impact was found in the left superior parietal lobule as well. The
negative impact of fALFF was localised in the anterior cingulate gyri (bilaterally). The
impact of CVR on the same condition was positive and located in the left superior and
middle frontal gyrus, in the left superior lateral occipital cortex, in the left cerebellum (VI),
in the right putamen, in the right occipital fusiform gyrus, in the right cerebellum (crus
I), and bilaterally in the precuneous cortex. As for the incongruent responses condition,
the impact of CVR was found positive in the right precentral and postcentral gyri, and in
the left middle frontal and angular gyri. We also found a negative impact of fALFF in the
cerebellum (vermis VIIIa), but no effect of ALFF or RSFA. Considering both congruent
and incongruent responses together showed similar patterns of positive impact of ALFF
and RSFA when considering only the congruent responses, and of positive impact of CVR
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Figure 6.6: Local effect of RS fluctuations and CVR on all congruent responses contrast
(p < 0.01 uncorrected).

when considering only the incongruent responses.

Discussion

This study evaluated the relationship between BH-induced CVR, RS fluctuations as meas-
ured in terms of RSFA, ALFF and fALFF, as well as between these metrics and task
induced activations (tIA), considering two different types of task: a block design, low cog-
nitive level, motor task and an event related, high cognitive level, Simon task. Leveraging
the 70 sessions of the dataset presented in Chapter 2, and using a voxelwise LME model to
take into account repeated measures for each subject, the results revealed that the impact
of CVR on RS fluctuations and on tIA, as well as of RS fluctuations on tIA, is localised
on particular areas that do not overlap with those activated by the task (see Chapter 2).
Albeit not completely, a large concordance between all results regarding ALFF or RSFA
was observed for all LME analyses, independently of whether they were treated as depend-
ent or independent variables in the model. This could be explained by the maps plotted
in Figure 6.1, that show a complete overlap between RSFA and ALFF maps, but not with
fALFF, in a representative subject.

Considering the relationship between RS fluctuations and CVR, few areas of impact
of CVR on RSFA and ALFF were observed (see Figure 6.3, mainly in the cerebellum and
in small portions of the temporal and frontal lobes. This observation seems to contradict
previous results shown in the literature, as well as the maps plotted in Figure 6.1. For
instance, Golestani et al. (2016) reported higher group spatial agreement between RSFA
(and ALFF) and CVR across the whole GM. Independently, Lipp et al. (2015) showed
even higher group agreement between RSFA and BH-induced CVR.

A possible reason for the observed differences could be the voxelwise analysis used in
the current study versus the averaged-GM analysis examined in previous studies. Beyond
this, our dense mapping dataset enables us to formulate another possible cause, that is the
high between-subject variability observed in these relationships in previous studies (see
Golestani et al., 2016). Since the current dataset includes 7 subjects, each with 10 sessions,
and the estimated maps have high repeatability over time (see Chapter 2), it is possible
that our observations only fall within a small range of the true link between CVR and RS
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Figure 6.7: Local effect of RS fluctuations and CVR on all incongruent responses contrast
(p < 0.01 uncorrected).
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Figure 6.8: Local effect of RS fluctuations and CVR on all congruent and incongruent
responses contrast (p < 0.01 uncorrected).
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fluctuations, thereby biasing toward a weaker relationship between CVR and RSFA (or
ALFF).

For these reasons, we plotted the relationship between average GM value of CVR
and ALFF, RSFA and fALFF(see Figure 6.2). The latter figure revealed that considering
all subjects and sessions together seem to inflate the relationship between CVR and RS
fluctuations. However, considering each subject independently from the others revealed not
only a high between-subject variability, but also an interacting effect of different within-
subject (across sessions) variability, that could confirm a generally low reproducibility, or
sample specificity, of previous results reported in the literature.

Considering the relationship between fALFF and tIA, our results did not replicate and
generalize the findings described by Mennes et al. (2011), that reported greater spatial
relationships between fALFF and task, especially in motor areas. A possible reason might
be related to the different tasks considered: although the Flanker and the Simon tasks
activate very similar neural correlates and trigger the same cognitive domains, they are
not completely overlapping (see Kawai, Kubo-Kawai, Kubo, Terazawa & Masataka, 2012;
Keye, Wilhelm, Oberauer & van Ravenzwaaij, 2009; Wager et al., 2005, for commonalities
and differences). This fact might have plaid a role in the failed generalisation.

Another difference between the two setups consists in the distance between the RS run
and the task run: while in Mennes et al. (2011) the RS took place right before or after
the Flanker task, our analyses considered the initial RS run of each session in order not
to induce any bias due to subsequent tasks performed during the MRI session. Therefore,
both RS and each of task runs, which the tIA map was estimated from, might be spaced
by the other tasks and additional RS runs, due to the counterbalancing of the tasks in the
the dataset design. This could indicate that the relationship between RS fluctuations and
tIA is a transient phenomenon with limited duration, or interfered by other tasks. Future
analyses will address this point and differentiate the RS run, considering their relative
position with respect to the tasks.

The observed discrepancy might also be due to the small subject sample size. If the
between-subject variance of the effects under study is not negligible, this dense mapping
dataset might have failed to sample it, calling for a larger group of subjects with acceptable
CO2 recordings and task performance. However, Chen, Pine et al. (2021) demonstrated
that increasing the number of sessions should be comparable to a bigger sample size,
suggesting that these effects should be evident even with this small sample size. Performing
a power analysis in terms of the number of subjects and thresholds while planning the
experiment could be beneficial. Such power analysis was not carried out due to the difficulty
of determining proper values for the multiple effect sizes and sources of variability (within-
and between-subject) for the different tasks and this type of data analysis and the absence
of sufficient examples and/or information in previous studies. Our choice for the number of
sessions and subjects was based instead on the size of previous DM datasets (10 subjects
and 10 sessions, see Gordon et al., 2017), although we discarded three subject due to bad
compliance with the BH task (see results in Chapter 2. Consequently, we conjecture that
while the sample size of this dataset is normally enough, it might not be sufficient to study
more complex relationships between physiological, vascular metrics, RS and tIA under
observation in this chapter. Indeed, while it is generally expected that observations at the
group level are replicable at the subject level, the different type of dataset might reveal
patterns of relationships that do not hold when an individual is highly sampled.

Using CVR estimates obtained from COs; recording during the RS runs nearby the
tasks (Golestani et al., 2016) could be an alternative approach to using BH-induced CVR
estimates. The main reason behind the current choice is that estimating the vascular lag
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is more challenging without the presence of a CVR inducing task (Stickland et al., 2021)
because it is more difficult to individuate true peaks in the COs signal during normal
breathing and the fMRI signal during spontaneous fluctuations exhibits lower variability
(i.e. contrast-to-noise ratio). However, Lipp et al. (2015) showed that the RSFA computed
during a BH task is more similar to a BH-induced CVR estimation, and that similarly the
CO4 fluctuation regression in RS is more similar to RSFA patterns. Consequently, future
analysis will consider all CO5 signals and fluctuation measurements.

Conclusion

This study investigated the relationship between CVR, RS fluctuations, and task Induced
Activation, considering a motor task and a Simon task. Although results were not signific-
ant after FDR correction (p <0.05), at p <0.01 uncorrected we found an impact of CVR
on RS fluctuations and tIA, and an impact of RS fluctuations on tIA. The impact of CVR
on RSFA and ALFF is widely overlapping, and partially overlapping with the impact on
fALFF as well. Considering tIA, the impact of RS fluctuations and CVR is localised in
specific areas of the GM, albeit not those involved in the task. However, further studies
are necessary to properly characterise the relationship between CVR, RS fluctuations, and
tIA, both short and long term.



7. Conclusions and future work

The recognition of BOLD based fMRI as a fundamentally metabolic and physiological
measurement is still ignored by the largest part of the neuroimaging community. Be it
for simplicity or convenience, it is far more easy to skip a step in the interpretation of
the BOLD signal and its fluctuations and observe only its meaning as neural mechanism,
related to neuronal activity. However, the potential of fMRI as a non-invasive imaging
tool to investigate cerebral physiology is indisputable, and deserves further methodological
improvement and deeper understanding of its nature. Equally, more knowledge is required
to understand the impact of physiological factors on the interpretation of BOLD signal
and the neural mechanics underlying it.

Consequently, a rich fMRI dataset was collected to pursue this thesis comprising a
variety of cognitive and sensory tasks (motor task, Simon task and the Pinel functional
localizer task), four RS, and a BH task to estimate CVR and its lag, along with anatomical
MR images and physiological recordings (PrrCOg, respiratory belt, and cardiac pulse).
Following the design of DM datasets (e.g. Braga & Buckner, 2017; Gordon et al., 2017;
Poldrack et al., 2015), the subject sample size is small (n = 10), but the session sample
size is higher (n = 10) than traditional datasets, thus being associated to bigger datasets
in terms of statistical power (Chen, Pine et al., 2021).

Chapter 2 described the dataset acquisition, computed group activation maps, and
checked the reliability of the tIA maps, as well as of the fALFF of the RS runs. fALFF
maps reliability was good, and tIA contrasts reliability was excellent in the areas involved
in the processing of the different tasks. Leveraging ME-fMRI for a DM dataset showed
to increase the sensitivity of various tasks and contrasts, as shown by previous studies
(Gonzalez-Castillo et al., 2016; Lynch et al., 2020), especially for the Simon and the Pinel
functional localiser task. However, our results at the group level, that considered an uncon-
ventional mixed-effects analysis (i.e. modelling both within- and across- subjects variabil-
ity), demonstrated that some contrasts, for instance toe movements or the contrast between
vertical and horizontal visual chequerboards, might not be detectable at the group level,
having high spatial subject specificity. This specificity, together with inter-subject spatial
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variability, might be the cause of the lack of detection of these contrasts at the group level.
Indeed, one of the main reasons to collect a DM dataset is to focus on subject specific
spatial patterns of brain activations (cfr. Fedorenko, 2021). Nevertheless, another cause of
lack of results at the group level could be the method used to normalise the results to a
common space, as previous studies showed that surface-based spatial registrations might
be more appropriate for group analyses (Coalson, Van Essen & Glasser, 2018). Hence,
we plan to further explore this possibility by comparing different types of registrations in
future studies.

The collection of BH tasks in this dataset was driven by the idea that while some
studies traced a link between RS fluctuations and tIA (Kazan et al., 2016; Mennes et al.,
2011; Zou et al., 2013, e.g.), other traced a link between CVR and RS fluctuations (De Vis
et al., 2018; Golestani et al., 2016; Kannurpatti & Biswal, 2008; Kannurpatti et al., 2014;
Wang et al., 2019), introducing the possibility that CVR can be a modulating factor of tTA.
However, in order to correctly assess any relationship between CVR, RS and tTA, we first
aimed to investigate new methods to improve CVR modelling and characterization (see
Chapters 3 and 4), especially leveraging ME-fMRI data, due to its capability of improving
not only tIA and RS imaging, but also CVR mapping (Cohen et al., 2021; Cohen & Wang,
2019).

To begin with, due to the unknown time that gasses need to transit from the brain
to the lungs and then be sampled, it is necessary to take into account the delay in the
response. It is also important to take into account that different areas of the brain do not
have an immediate and synchronous response, hence the estimation of the delay needs to be
local. Moreover, respiratory challenges, such as a BH task, are characterised by considerable
motion, collinear to the COs fluctuations of interest.

Chapter 3 described an approach that accounts for local variability in CVR lag and
simultaneous modelling of nuisance regressors. This approach performed better than not
optimising for the response delay and reduced confounding effects resulting from not ap-
plying nuisance regression (e.g. motion) or applying it sequentially to CVR estimation (see
Lindquist et al., 2019). Moreover, in contrast with sequential approaches, simultaneous
regression enables to maintain quantitative information in the CVR estimate in terms of
%BOLD / mmHg.

Although the method described in Chapter 3 was tested using only one session of
eight subjects, the rich DM dataset collected for this thesis could serve as a benchmark
to evaluate methods for BH-induced CVR estimation in future studies. In particular, we
plan to compare the proposed approach with previous methods that also consider regional
variability in vascular lags (e.g. Donahue et al., 2016; Frederick et al., 2020; Geranmayeh
et al., 2015; Murphy et al., 2011; Sousa et al., 2014; Tong et al., 2011) in terms of the
accuracy and reliability of CVR and lag estimates.

The topic of CVR modelling and denoising was elaborated further in Chapter 4 by tak-
ing into account the use of ME-BOLD acquisition and ICA-based denoising. A ME acquis-
ition along with tailored ME-based denoising (e.g. ME-ICA) had been proven successful in
removing motion artefacts and other sources of noise, such as acquisition artefacts or mag-
netic field artefacts induced by respiration, in multiple task and resting state experiments.
Nevertheless, these potential advantages had not been evaluated before for BH-induced
CVR estimation. Thus, this study examined their efficacy in improving CVR estimation
comprehensively, in terms of motion removal, estimation accuracy and reliability.

Our results revealed that a conservative ICA-based approach in which the noisy IC
components are orthogonalised with respect to the PgrCOghrf signal and the good IC
components removes motion-related effects while obtaining reliable CVR and lag responses.
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Notably, our analyses also demonstrated that simple optimal combination of ME data with
modelling of motion and low frequency polynomial regressors provides similar CVR and
lag estimations, and shows a clear improvement over using SE data with the same model.

In future work, we intend to assess the generalization of these observations with other
type of tasks (e.g. speech production tasks, block-design motor tasks, slow and rapid event-
related designs) and RS analysis, aiming to help researchers make a more informed decision
on the benefits of ME-ICA. Indeed, it is important to weight the possible improvement
in data denoising introduced by ME-ICA and the additional work required for its correct
operation (e.g. manual classification) compared with simple optimal combination.

Moreover, it is important to highlight that our study did not compare ME based ap-
proaches with optimised SE sequences (i.e. with faster TR). Future studies could evaluate
if the higher temporal resolution achievable in SE acquisitions is more beneficial to CVR
than ME acquisitions.

Having obtained reliable CVR estimations, we progressed in studying their relation
with with variations in blood pressure metrics, such as mean arterial pressure (MAP) and
pulse pressure (PP), and other individual characteristics in Chapter 5. This assessment
was performed by means of a linear mixed effects (LME) model to assess the impact that
subject-specific, repeated measures of blood pressure and pulse have on CVR and its lag.

Our results demonstrated that both MAP and PP can have regional effects on CVR
and the spatial distribution of their impact is highly divergent. This spatial divergence is
particularly interesting, and deserves further attention, especially to understand its origin
and its implication in pathologies that affect blood pressure. Furthermore, in our dataset,
we only collected a single static assessment of vital signals at the beginning of each MR
session. Future studies could consider how dynamic fluctuations of blood pressure, pulse,
and other endogenous physiological fluctuations, might impact the estimation of CVR,
and, to a further extent, tIA and RS fluctuations.

Our results also showed a difference between males and females, where females showed
higher CVR than males. However, these results should be interpreted with caution, not
only due to the few individuals in each sex group considered in the current study, but
also because although a difference in CVR between males and females has been reported
previously (see Barnes & Charkoudian, 2020; Carr et al., 2021), such difference in CVR
between sexes is still under debate. More observations are required to understand if such
difference between males and females is consistent, and what role the menstrual cycle might
play in it, especially considering the effect that hormones have on blood vessels and their
function.

Finally, Chapter 6 addressed the question of how CVR impacts RS fluctuations and
tIA, with the intention of generalising the results shown by Golestani et al. (2016) and
Mennes et al. (2011), respectively. Our analyses demonstrated that the impact of CVR on
RS fluctuations, and the impact of CVR and RS fluctuations and tIA is highly spatially
confined. Moreover, the impact of CVR on RSFA and ALFF is highly overlapping, and
partially overlapping with that of fALFF as well. Despite having few localisations, the
impact of RS fluctuations or CVR on tIA does not involve areas normally related to
the tasks taken into exam. Furthermore, no result was significant after applying FDR
correction, so further studies are needed to properly address this question and understand
if the lack of significant results is due to previous studies not being generalisable, or due
to a lack of necessary power. Although we did not manage to generalise previous results
reported in the literature (e.g. Golestani et al., 2016; Mennes et al., 2011), this lack of
generalisation leaves open questions. For instance, the implication of the temporal delay
between different task, rest, and BH is a topic that requires further exploration. Indeed,
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attention should be paid to the time and order between tasks, RS, and CVR estimation, in
order to assess if the relationship between the three has a transient nature, and if that is the
case, the amount of its duration. Equally, how COs fluctuations during the performance
of the tasks and RS, respectively, might impact the observed relationship between tIA
and RS fluctuations could also be considered. Finally, in this study we did not take into
account the relationship between RS fluctuations and pure behavioural performance, as
other studies have investigated before (e.g. Mennes et al., 2011; Sala-Llonch et al., 2012).
Further studies will take into account this comparison as well.

Overall, these series of studies demonstrated how to obtain reliable, optimised CVR
estimations that take into account the haemodynamic lag of the process, and they helped
inserting BOLD fMRI based CVR mapping in a broader context. At the individual level,
they explored how other physiological characteristics such as blood pressure can impact
CVR measurement. This is not new information if other methods to estimate CVR are
taken into account (e.g. TCD), but their role in fMRI is still unknown and deserves further
exploration. In the context of BOLD fMRI methodology, these studies started addressing
the effect that endogenous CO2 fluctuations can have on tIA and RS fluctuations. More
studies are required to scope the full extent of such effects at the group level, in order not
only to improve the estimation and characterization of the BOLD response to different
cognitive events, but also to understand how these effects might be affected by pathologies
that alter normal physiology.

With these efforts, the neuroimaging community could once again appreciate the physiolo-
gical aspects of the BOLD signal, and how physiological processes might influence the
investigation of neuronal activity, cognition and behaviour with BOLD fMRI.
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A. Questionnaire on sleep, hydration, phys-
ical activity, and caffeine and alcohol in-

fake habits




Cuestionario

Por favor, conteste a las siguientes preguntas
*Campo obbligatorio

1. Numero de participante *

2. Fecha*
Esempio: 7 gennaio 20719

3. Tension sistodlica brazo derecho *

4. Tension diastolica brazo derecho *

5. Pulso brazo derecho *

6. Tension sistolica brazo izquierdo *

7. Tension diastolica brazo izquierdo *

8. Pulso brazo izquierdo *

9. De media, jcuantas horas duermes cada noche?

10. De media, jcuantas horas has dormido por dia en esta semana? *



11.

12.

13.

14.

15.

16.

17.

18.

¢Cuantas horas has dormido esta noche? *

En una escala de 1a 9, jcuan cansado te sientes en este momento? *

Contrassegna solo un ovale.

Extremamente cansado Perfectamente reposado

:£CoOmo has dormido esta noche? *

Contrassegna solo un ovale.

He dormido muy mal He dormido muy bien

En una escala de 1a 9, ;cuan motivado te sientes en este momento? *

Contrassegna solo un ovale.

Poco motivado Muy motivado

De media, jcuantas horas de ejercicio haces en una semana?

¢Que tipo de ejercicio haces?

¢Cuantas horas de ejercicio has hecho esta semana en total? *

;Cuanto tiempo ha pasado desde el ultimo periodo de ejercicio? *



19.

20.

21.

22.

23.

24,

25.

En una escala de 1a 9, jcuan hidratado te sientes en este momento? *

Contrassegna solo un ovale.

Completamente deshidratado Perfectamente hidratado

De media, jcuantos litros de agua (y otros liquidos sin alcohol o cafeina)
bebes cada dia?

De media, jcuantos litros de agua (y otros liquidos sin alcohol o cafeina) has
bebido por dia esta semana? *

En comparacion con otros dias, ;has bebido mas o menos liquidos hoy?
(5=igual) *

Contrassegna solo un ovale.

Muchos menos Muchos maés

En media, jcuantos cafés (y otras bebidas con cafeina) bebes cada dia?

En media, ;cuantos cafés (y otras bebidas con cafeina) has bebido por dia
esta semana? *

En comparacion con otros dias, ;jhas bebido mas o menos cafés (y otras
bebidas con cafeina) hoy? (5=igual) *

Contrassegna solo un ovale.

Muchos mas Muchos menos



26. De media, ;cuantas unidades de bebidas alcohdlicas bebes cada semana en
total?

Unidades

Una pinta = 1 ud;

Una cafia = 0.5 ud;

Un vaso de sidra = 0.5 ud;

Un vaso de vino = 1 ud;

Otras bebidas alcohdlicas = 1 ud.

27. ¢Cuantas unidades de bebidas alcohdlicas has bebido esta semana en total? *

28. En comparacion con otras semanas, ;has bebido mas o menos unidades de
bebidas alcoholicas en total? (5=igual) *

Contrassegna solo un ovale.

Muchas menos Muchas mdés

29. Sieres mujer, jestas en el periodo de menstruacion?

Contrassegna solo un ovale.

) Si
( JNo

30. Sieres mujer, jcuando comenzo tu ultimo periodo de menstruacion?

Esempio: 7 gennaio 20719

31. ¢Estas tomando medicinas? ;Cuales?

Questi contenuti non sono creati né avallati da Google.




Google Moduli




B. Tables of activation for the three tasks in
Chapter?2

B.1 Figures
B.1.1 Motor task
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Figure B.1: Results of the one-sample MEMA test at the subject level, for subject 001, for
all contrasts of the motor task (p <0.05, FDR corrected).
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Figure B.2: Results of the one-sample MEMA test at the subject level, for subject 002, for
all contrasts of the motor task (p <0.05, FDR corrected).
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Figure B.3: Results of the one-sample MEMA test at the subject level, for subject 003, for
all contrasts of the motor task (p <0.05, FDR corrected).
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Figure B.4: Results of the one-sample MEMA test at the subject level, for subject 004, for
all contrasts of the motor task (p <0.05, FDR corrected).
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Figure B.5: Results of the one-sample MEMA test at the subject level, for subject 008, for
all contrasts of the motor task (p <0.05, FDR corrected).
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All congruents

Figure B.6: Results of the one-sample MEMA test at the subject level, for subject 009, for
all contrasts of the motor task (p <0.05, FDR corrected).
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B.1.2 Simon task
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Figure B.7: Results of the one-sample MEMA test at the subject level, for subject 001, for
all contrasts of the Simon task (p <0.05, FDR corrected).
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Figure B.8: Results of the one-sample MEMA test at the subject level, for subject 002, for
all contrasts of the Simon task (p <0.05, FDR corrected).
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Figure B.9: Results of the one-sample MEMA test at the subject level, for subject 003, for
all contrasts of the Simon task (p <0.05, FDR corrected).
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Figure B.10: Results of the one-sample MEMA test at the subject level, for subject 004,
for all contrasts of the Simon task (p <0.05, FDR corrected).



B.1 Figures 127

All congruents

s 41

All incongruents

e &

-

Congruents vs Incongruents

Figure B.11: Results of the one-sample MEMA test at the subject level, for subject 008,
for all contrasts of the Simon task (p <0.05, FDR corrected).
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Figure B.12: Results of the one-sample MEMA test at the subject level, for subject 009,
for all contrasts of the Simon task (p <0.05, FDR corrected).
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B.1.3 Pinel functional localiser task
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Figure B.13: Results of the one-sample MEMA test at the subject level, for subject 001,
for all contrasts of the Pinel task (p <0.05, FDR corrected).
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Figure B.14: Results of the one-sample MEMA test at the subject level, for subject 002,
for all contrasts of the Pinel task (p <0.05, FDR corrected).




B.1 Figures 131

Visual stimuli

2000000060 ¢

Auditory stimuli

200800006060

Motor stimuli

20000006060

Sentence stimuli

26060800060

Calculus stimuli

200000060

Vertical vs horizontal chequerboards

ﬁﬂ%&@&@&ﬂu

Calculus vs Sentences .,timull

Motor vs Sentences stimuli

%

Auditory vs Visual stimuli

%@@

Visual stimuli vs Chequerboarda

& 2%

Calculus vs Non-calculus, auditory stimuli

2005800000

Calculus vs Non-calculus, visual stimuli

206085008000

Motor stimuli, right vs left

2000080060

Figure B.15: Results of the one-sample MEMA test at the subject level, for subject 003,
for all contrasts of the Pinel task (p <0.05, FDR corrected).
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Figure B.16: Results of the one-sample MEMA test at the subject level, for subject 004,
for all contrasts of the Pinel task (p <0.05, FDR corrected).
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Figure B.17: Results of the one-sample MEMA test at the subject level, for subject 008,
for all contrasts of the Pinel task (p <0.05, FDR corrected).
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Figure B.18: Results of the one-sample MEMA test at the subject level, for subject 009,
for all contrasts of the Pinel task (p <0.05, FDR corrected).
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B.2 Tables
B.2.1 Motor task

Size Maxima Center of Gravity
(voxels)  yajue () X(mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)
969 0.00691 30 -6 -2 25.5 -8.62 3.29
909 0.0548 32.5 -18.5 73 40 =27 55.6
734 0.00836 -42.5 -1 3 -28 -5.05 2.7
570 0.0149 -20 -53.5 -19.5 -17.2 -54.2 -19.3
221 0.00916 -9b -28.5 18 -54.8 -30.7 22.7
205 0.00753 25 -58.5 -19.5 27.3 -55.6 214
195 0.0105 ) -6 55.5 1.39 -3.73 48
111 0.0049 20 -66 -59.5 23.7 -58.7 -53
96 0.00889 -17.5 -568.5 -59.5 -18 -55.6 -51.7
48 0.000816 -25 24 28 -20.3 224 23.9
22 0.006 -40 -38.5 53 -38.4 -35 53.5
21 0.00763 2.5 -28.5 75.5 2.89 -27.6 73.7
21 0.0057 7.5 -18.5 45.5 8.78 -21 45.1
21 0.00437 60 9 20.5 58.4 6.81 16.9

Table B.1: Clusters of positive contrast between left fingertapping and sham trials of the

motor task
Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
50 -0.00318 32.5 -16 -37 244 -10.6 -38
23 -0.000974 37.5 -63.5 -42 35.6 -64.1 -394

Table B.2: Clusters of negative contrast between left fingertapping and sham trials of the
motor task
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Size Maxima Center of Gravity

(voxels)  Viluwe (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
1203 0.00814 -42.5 -1 5.5 -25.4 -9.09 2.59
853 00138 175 535  -17 176 -55.3  -24.9
568 0.0524 375 -235  70.5 36 317 623
266 0.00317 275 35 0.5 252 294 178
183 0.00947  -55  -285 18 509 312 197
103 0.00404 45 15 5.5 448 2.94 6

80 000551  -27.5 -85 195 252  -56.4  -20.7
77 000475 55 31 255 576  -326  26.9
55 0.00449  -T.5 35 43 127 176 39.1
37 000431 25 76 95 628 808  -12.2
20 0.00855 35 135 705 208 <111 68.1
20 000588 275 535 595 31 573 -59.6

Table B.3: Clusters of positive contrast between right fingertapping and sham trials of the
motor task

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
46 -0.00162 -5 -51 -A7 -5.96 -50 -44.6
44 -0.00136 37.5 -66 -44.5 31.5 -65.9 -43.6
36 -0.00098 22.5 -73.5 =27 20.6 -73.7 -314
31 -0.00379 -10 -1 -32 -11.3 -2.29 -33.5
24 -0.00311 -37.5 -26 -29.5 -44.9 -19.8 -32.6

Table B.4: Clusters of negative contrast between right fingertapping and sham trials of the
motor task

Size Maxima Center of Gravity

(voxels)  \Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
185 0.00798 325 21 15.5 26 126 7.29
119 0.0217 5 335 78 527 355  TL5
83 0.0109  -125  -36  -245  -145  -365  -25.5
81 000333  -25 15 3 254 805 3.4
79 000913 55 31 255 506 -29.2 232
5% 000832 7.5 8.5 43 161 659 472
47 000637 45 15 5.5 444 207 595
35 000023  -42.5 B 3 438 0.00924 4.3

Table B.5: Clusters of positive contrast between left toe movement and sham trials of the
motor task
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Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
20 -0.00326 30 -63.5 45.5 25.7 -64.9 44.7

Table B.6: Clusters of negative contrast between left toe movement and sham trials of the
motor task

Size Maxima Center of Gravity

(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
141 0.0227  -125  -385 805 858  -365 723
80 000715  -325 235 155 202 205  8.93
47 0.0106  -55  -28.5 18 513 <321 195
43 0.0102 125 36 22 14.6 35 -23.7
41 0.01 425 1 3 424 =062 511
40 000558 45 15 5.5 43.9 2.8 4.25
35 000735 55 31 255 537 299 251
27 0.0084  -2.5 8.5 53 441 =624 461
27 0.00294  -20 8.5 45 214 838 -2.68

Table B.7: Clusters of positive contrast between right toe movement and sham trials of the
motor task

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
35 -0.00216 40 4 28 36.1 4.09 35

Table B.8: Clusters of negative contrast between right toe movement and sham trials of
the motor task

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
13673 0.061 -60 9 33 -2.27 -7.82 -1.51
51 0.00828 0 -33.5 73 -5.66 -34.3 4.7
46 0.012 0 31.5 -29.5 -0.96 29.7 -26.5
31 0.0121 22.5 -28.5 -34.5 21.7 -30.3 -34.2
26 0.00261 -5 -33.5 10.5 -1.69 -35.4 13.3

Table B.9: Clusters of positive contrast between tongue movement and sham trials of the
motor task
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Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
1611 -0.0212 7.5 -06 -64.5 1.39 -72.6 -42.6
1437 -0.0183 -2.5 4 -22 0.0833 15.3 -9.77
655 -0.0219 12.5 69 18 6.32 66.7 4.78
323 -0.0113 15 -104 10.5 32.7 -90.8 0.0305
291 -0.0116 -25 -96 23 -35.3 -90.3 -1.11
76 -0.00317 25 -61 50.5 25.7 -61.7 44.1
72 -0.0136 225 -96 23 21 -92.9 25.6
37 -0.0123 -12.5 46.5 -24.5 -17.3 39.9 -21.7
37 -0.0066 65 -41 -19.5 64.2 -44.7 -14.8
35 -0.0156 42.5 59 -4.5 43.2 52.6 -10.7
34 -0.00723 70 -38.5 5.5 66.7 -36.2 0.474
30 -0.0124 -37.5 59 -7 -38.2 52.2 -13.1
20 -0.0086 -7.5 -104 13 -10.3 -103 9.15

Table B.10: Clusters of negative contrast between tongue movement and sham trials of the
motor task
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B.2.2 Simon task

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) 7Z (mm)
82128 0.224 -47.5 -81 -17 0.543 -36.3 16.9
29 0.137 -15 41.5 53 -12.1 44.7 50.4

Table B.11: Clusters of positive correlates of all congruent trials of the Simon task

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
67 -0.0123 7.5 -8.5 23 -0.297 -6.64 22,5
61 -0.0484 -42.5 -73.5 48 -47.9 -70.4 41.3
57 -0.0103 0 26.5 -2 -0.859 26.9 -3.1
48 -0.0308 -52.5 39 -9.5 -52.5 30.9 -2.14
29 -0.351 12.5 1.5 -34.5 12.4 1.34 -33.3
23 -0.0907 -52.5 -46 -42 -52.7 -49.6 -39.2
21 -0.00632 -25 -51 10.5 -26.7 -52.1 7.24
21 -0.175 o0 -43.5 -44.5 48.9 -44.5 -45.8
20 -0.011 65 -6 =27 65.3 -6.84 -23.8
20 -0.0189 -62.5 -18.5 -32 -59.1 -8.78 -34.4

Table B.12: Clusters of negative correlates of all congruent trials of the Simon task

Size Maxima Center of Gravity
(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
87430 0220  -475 -8l 47 0695 -34.7 16

Table B.13: Clusters of positive correlates of all incongruent trials of the Simon task

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
108 -0.0141 0 31.5 -2 -0.761 30.4 -4.17
74 -0.0124 -2.5 -1 20.5 -0.947 -6.01 22.2
60 -0.0564 -42.5 -73.5 48 -47.2 -71.4 41
43 -0.0108 95 4 -37 61.9 -0.441 -26.2
28 -0.0225 -52.5 39 -9.5 -51.5 35.1 -6.24
23 -0.0985 -5 -96 30.5 -0.251 -88.4 37.1
21 -0.173 50 -43.5 -44.5 49.3 -44.6 -45.4
20 -0.0284 0 61.5 35.5 3.28 64 30.3

Table B.14: Clusters of negative correlates of all incongruent trials of the Simon task
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Size Maxima Center of Gravity
(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
86543  0.453 475 -8l 17 0611 353 164

Table B.15: Clusters of positive correlates of all (correct) trials of the Simon task

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
72 -0.0239 0 29 -4.5 -0.738 28.3 -3.49
69 -0.0242 -2.5 -1 20.5 -0.713 -6.24 22.3
65 -0.105 -42.5 -73.5 48 -48.6 -69.6 414
50 -0.0242 55 4 -37 61.9 -2.05 -274
44 -0.0636 -57.5 26.5 0.5 -54.2 23.8 19
33 -0.0547 -52.5 39 -9.5 -51.4 35.1 -7.66
27 -0.0389 52.5 -61 48 50.2 -59.1 49.5
26 -0.044 -32.5 36.5 48 -23.5 34.2 53.9
26 -0.566 12.5 1.5 -34.5 124 1.46 -33.4
24 -0.034 -57.5 -8.5 -39.5 -58.6 -9.09 -354
23 -0.203 -52.5 -46 -42 -53 -49.3 -38.6
21 -0.35 50 -43.5 -44.5 49.1 -44.5 -45.6
20 -0.0429 -2.5 69 20.5 2.11 65.9 26
20 -0.0211 5} 14 -24.5 2.11 13.3 -20.6

Table B.16: Clusters of negative correlates of all (correct) trials of the Simon task

Size Minima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
51 -0.0301 225 -85 47 187 625 -424
47 00348 225 665 12 278 626 13
31 00279 225 41 445 298 611 451
25 -0.0325  -42.5 54 10.5 40 581 378
21 00276  -32.5 64 9.5 30 61.7 12

Table B.17: Clusters of negative contrast between congruent and incongruent trials of the
Simon task

B.2.3 Pinel functional localiser task
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Size Maxima Center of Gravity

(voxels)  \ulue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
11446  0.115  -67.5  -16 05  -324 219  4.02
550 0.0207 0 B 63 345 -0.0249 541
379 0.0203 2.5 39 32 0451 487 215
75 0.0089  -30 415 33 31,1 37 29.9
68 0.0149 325 6 495 357 281 -46
48 0.00768 325 46 43 375 442 398
37 0.0334 40 285 705 401 286 682
32 0.0147 0 585 605 -0.383  -61.6 604
30 0.00406 5 36 245  3.36 35 -26.6
28 0.0116 -40 -11 -44.5 -40.7 -9.57 -42
26 0.0428  -15 615 305  -7.76 611 347
26 0.0345 60 -85  -22 577 577 208
24 0.0069  -40 285 295  -445 257  -20.6
23 0.0527 525 1 53 499 336 56.3
23 000641 375 365 305 338 373 33

Table B.18: Clusters of positive correlates of all auditory trials of the Pinel task

Size Minima Center of Gravity
(voxels)  yaue () X (mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)
572 -0.0161 27.5 -93.5 23 40.1 -69.8 0.644
356 -0.0174 -42.5 -88.5 -9.5 -42.6 -78 -1.6
329 -0.00581 5 46.5 8 2.41 38.7 6.72
65 -0.0145 47.5 -66 50.5 48.2 -64.1 42.7
53 -0.0215 30 66.5 -9.5 19.1 67.3 -8.64
44 -0.0072 -7.5 -61 255 -7.27 -54.2 24
41 -0.00603 225 34 45.5 21.1 30.2 41.1
41 -0.0288 -35 -88.5 -27 -37.7 -80.8 -344
35 -0.0164 -52.5 -63.5 45.5 -42.8 -69.4 40.7
33 -0.0194 -22.5 -76 58 -23.4 -80.2 50.4
32 -0.00931 -15 29 58 -12.5 32.5 54.6
31 -0.0077 47.5 -66 -49.5 49.1 -67.7 -41.3
30 -0.00732 -22.5 29 43 -20.7 26.6 44.3
28 -0.0165 -02.5 -06 -44.5 -48.8 -62.2 -41.9
25 -0.004 -30 -41 -4.5 -29.6 -43.5 -3.57
22 -0.00994 27.5 -81 48 29 -79.7 46.1
21 -0.00312 27.5 -36 -2 255 -38.2 0.483

Table B.19: Clusters of negative correlates of all auditory trials of the Pinel task
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Size Maxima Center of Gravity
(voxels)  yaue () X(mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)
2596 0.0281 -67.5 -16 0.5 -43.1 -27.3 2.82
1408 0.0138 55 -16 8 49.8 -9.38 5.08
1061 0.011 60 -51 -24.5 27.7 -67.3 -23.9
222 0.00921 -20 34 -24.5 -0.558 49.1 -21.5
103 0.00774 30 -63.5 45.5 30.1 -61.2 39.4
72 0.00988 50 -1 45.5 45.6 1.36 35.1
o8 0.0105 -25 -63.5 35.5 -29 -52.6 38.6
36 0.01 2.5 9 48 0.41 9.34 44.5
29 0.00552 32.5 -6 -49.5 31.1 0.15 -46.8
26 0.0298 42.5 6.5 60.5 50.1 1.45 53.5
26 0.00384 0 6.5 25.5 2.98 0.852 25.8
25 0.012 -15 11.5 70.5 -21.7 8.18 69.6
24 0.0017 -15 19 28 -16.1 20.4 27
22 0.00689 -27.5 -76 28 -24.7 -80.1 28.9
20 0.0119 0 -6 63 -3.1 -5.57 61.5

Table B.20: Clusters of positive correlates of all calculus trials of the Pinel task

Size Minima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
297 -0.00345 0 44 205 284 414 681
61 -0.0138 50 -63.5 48 47 634 454
55 -0.00455 7.5 -435 33 0822 443  3L.1
34 -0.00583 125 315 605 113 263  57.1
27 -0.00503  -37.5  -835  -32 318 836  -38
22 -0.00854 10 69 95 842 694  -7.66
21 -0.00339 20 34 455 197 321 423
20  -0.00888  -17.5 -85 42 134 529 <385

Table B.21: Clusters of negative correlates of all calculus trials of the Pinel task

Size Maxima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
18874  0.0128  -42.5 4 23 518 269 174
132 0.00388 35 64 95 264 529  -11.9
67 0.00364 475 49 155 383 562 134
55 0.00426 25 4 53 254 0415 49
28 000284 75 96 255 118 -9LT 275

Table B.22: Clusters of positive contrast between calculus and sentences trials of the Pinel

task
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Size Minima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
2611 -0.0098  -35 315 105 -424 0659  -14.7
2204 -0.00595  -12.5  36.5 58 0.285 38 13.6
1227 -0.00572 575 315 5.5 50.6 102 75
136 -0.00267 25 335 -195 265 350 -16
54 -0.00327 20 11 37 289  -10.6  -30.7
53 -0.00359 75 -485 305 7 516 26.2
19 000245 -0 535 55  -133 521  8.16
44 -0.00309  -67.5  -46 3 643 418 32
43 -0.00533 45 61 555 475 -638 441
30  -0.00344  67.5 31 38 64 327 336
26 -0.0016 475  -185  -295 409 792  -33.8
23 -0.00169 15 485 8 15.8 47 8.11
22 -0.00435  -47.5 735 405 -464 686  43.1
21 -0.00124 575 26 255 573 256 235
21 -0.0032 175 69 8 12 69.6 15
20  -0.00199 275 6.5 22 252 936  -204

Table B.23: Clusters of negative contrast between calculus and sentences trials of the Pinel
task

Size Maxima Center of Gravity
(voxels)  yaue () X(mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)
32329 0.0908 -32.5 1.5 68 -3.67 -27.5 13.3
776 0.0208 2.5 39 -32 2.91 48.8 -18.5
99 0.019 5 1.5 -29.5 314 -3 -43
28 0.00964 -40 -11 -44.5 -41.9 -9.31 -42.1
25 0.0515 -15 61.5 30.5 -8.17 61.6 33.8
23 0.0263 -2.5 -33.5 75.5 -1.49 -334 4.7

Table B.24: Clusters of positive correlates of all motor trials of the Pinel task
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Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
230 -0.0146 -50 16.5 -32 -41.7 7.2 -33.2
220 -0.00654 0 34 -2 -0.174 30 0.646
112 -0.00483 -12.5 -13.5 25.5 -5.82 -17.6 22.8

111 -0.00507 -27.5 -41 -7 -27.2 -46 2

94 -0.0122 20 14 -29.5 27.9 13.4 -36
90 -0.00797 -5 -58.5 23 -5.73 -55.8 21.4
&3 -0.00952 -15 34 55.5 -13.1 32.9 49.8
81 -0.0069 -20 -16 -19.5 -21.6 -16.3 -19
73 -0.00352 30 -41 -4.5 26.2 -41.9 6.95
67 -0.0457 -15 -106 -4.5 -9.31 -101 14.7
65 -0.00594 20 29 45.5 20.2 28.8 43.2
63 -0.0221 -5 69 -14.5 -6.63 64.9 -5.02
58 -0.0262 -52.5 -73.5 33 -51 -71.8 31.3
49 -0.0191 57.5 -63.5 33 50.6 -68.6 35.5
46 -0.00485 17.5 -11 -22 23.1 -14.6 -18.6
41 -0.00791 50 -71 -37 48.7 -68.8 -40.1
40 -0.00769 -47.5 -71 -37 -40.2 -77.2 -37.2
37 -0.0159 2.5 69 -9.5 8.98 69.3 -5.56
28 -0.0154 -10 -3.5 -39.5 -13 -4.5 -37
27 -0.00983 67.5 -3.5 18 62.8 -5.96 22.4
26 -0.0305 -37.5 -88.5 30.5 -33.9 -83 38.6
25 -0.0272 -92.5 -06 -44.5 -49.4 -63.1 -42.5
24 -0.00749 -2.5 56.5 23 -3.11 95.3 24.7
22 -0.0239 -42.5 o4 -12 -43.3 093.3 -6.48
20 -0.0258 0 4 -29.5 -0.309 3.53 -26.7

Table B.25: Clusters of negative correlates of all motor trials of the Pinel task

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) 7Z (mm)
50139 0.0457 32.5 9 65.5 -0.254 -24.6 21.8
37 0.00554 52.5 -6 -42 50.8 -6.42 -40.6

Table B.26: Clusters of positive contrasts between motor and sentences trials of the Pinel
task
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Size Minima Center of Gravity
(voxels)  yajue () X(mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)

6588 -0.0222 -55 31.5 10.5 -15.7 2.45 -15.1
293 -0.00992 -20 34 55.5 -9.61 44.7 41.5
70 -0.0185 -52.5 -73.5 25.5 -46.6 -73.5 33.7
67 -0.00615 45 -76 38 41.5 -80.6 22.5
29 -0.0248 -2.5 -96 28 0.208 -88.1 38.1
58 -0.00859 5 49 50.5 8.82 49.8 44.6
38 -0.00453 17.5 -91 -37 15 -87.1 -39.8
34 -0.00816 -47.5 -38.5 3 -47.1 -39.1 2.92
33 -0.00874 -7.5 -33.5 -54.5 -7.46 -37.9 -59.5
32 -0.0062 30 -86 38 28.2 -84.5 39.3
20 -0.00549 67.5 -8.5 28 66.4 -7.38 24.2
20 -0.00429 -35 -93.5 13 -35 -91.5 8.96
20 -0.00781 57.5 29 0.5 56.4 30.4 2.56

Table B.27: Clusters of negative contrasts between motor and sentences trials of the Pinel

task
Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

1474 0.0317 -67.5 -16 0.5 -52.7 -16.5 2.11
771 0.0152 57.5 16.5 -9.5 56.6 -12.8 2.93
500 0.00914 -35 -96 -2 -30.5 -74.8 -14.5
245 0.00689 45 -66 -19.5 32.9 -67.2 -18.8
193 0.00854 -12.5 59 -22 -0.447 50 -23.3
102 0.00678 37.5 -93.5 0.5 33.5 -86.6 -4.89
65 0.00663 -32.5 -11 -44.5 -35.2 -8.27 -42.3
65 0.00556 32,5 -6 -49.5 35.1 -3.83 -45.4
57 0.00869 57.5 26.5 -2 54.2 30.1 -1.03
32 0.00216 -7.5 -71 -39.5 -8.17 -69.8 -36.5
26 0.00619 -37.5 1.5 33 -38.1 -0.91 31.7
24 0.0123 -50 -1 48 -46.2 -7.66 46.1

Table B.28: Clusters of positive correlates of all sentences trials of the Pinel task
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Size Minima Center of Gravity

(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
244 -0.00596  -2.5 735 33 137 691 34.9
68 -0.0053  52.5 61 43 503 -33.6 424
35 -0.00418 5 -38.5 23 612  -375  26.6
32 00029 75 44 155 843 393 119
25 0003 275 165 95 =282 159  -10.3
25 00049  -37.5  -835  -32 331 832  -387
22 -0.00306  -22.5 49 255 207 50.8 22
20  -0.00576  -32.5 365 455  -354 371 417

Table B.29: Clusters of negative correlates of all sentences trials of the Pinel task

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
17978 0.104 -50 1.5 53 -7.88 -40.9 4.61
018 0.0204 2.5 39 -32 0.0427 48.6 -20.2
456 0.0212 25 -61 50.5 31.9 -57.5 41.1
433 0.0237 67.5 -43.5 10.5 56.7 -38.9 19.5
129 0.0202 0 -63.5 60.5 0.00562 -62.2 60
73 0.00879 35 39 40.5 34.5 37.3 33
39 0.00775 -40 -8.5 -47 -39.8 -10.6 -40.6
35 0.00492 12.5 -23.5 38 13.8 -23.2 41.7
33 0.017 20 -8.5 -44.5 28.1 -1.47 -46.4
33 0.0264 -37.5 -41 -54.5 -43.5 -48.3 -52.1
24 0.0197 -25 -76 33 -25.6 -77.3 29.7
21 0.0264 40 -51 65.5 41.6 -54.2 62
21 0.0383 -15 61.5 30.5 -6.39 61.9 33.8

Table B.30: Clusters of positive correlates of all visual trials of the Pinel task
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Size Minima Center of Gravity
(voxels)  yajue () X(mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)
150 -0.00972 47.5 -11 8 45.2 -11.7 4.58
110 -0.0107 -42.5 -13.5 0.5 -41.7 -16 1.89
88 -0.0058 -27.5 -58.5 3 -26.8 -49.1 3.11
84 -0.00767 0 -56 30.5 -1.44 -63.2 28
80 -0.031 -15 -106 -4.5 -9.04 -101 14.5
7 -0.00515 2.5 31.5 0.5 0.0134 31.5 2.72
71 -0.02 -42.5 -73.5 -47 -38.9 -79.1 -36.2
68 -0.00537 20 26.5 45.5 19.9 28.5 43.9
56 -0.00664 60 -16 5.5 62.9 -16.2 5.57
44 -0.00387 27.5 -48.5 3 25 -44.3 8.31
42 -0.0206 -42.5 54 -12 -43.7 50.8 -6.64
42 -0.014 -50 16.5 -34.5 -49.1 8.31 -30.3
39 -0.0208 47.5 -68.5 48 47.7 -64.9 46.5
33 -0.00954 20 14 -29.5 22.7 11.4 -34
28 -0.0139 10 69 -9.5 9.62 68.9 -8.8
25 -0.0107 -7.5 -78.5 -4.5 -6.55 -77.4 -4.42
25 -0.00449 -25 9 -29.5 -29.1 7.7 -31.7
24 -0.00611 47.5 -71 -39.5 48.6 -69.1 -40.1
23 -0.0166 -17.5 -8.5 -42 -12.2 -3.63 -37.9

Table B.31: Clusters of negative correlates of all visual trials of the Pinel task

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
31 0.00561 50 -51 -12 52 -49.8 -13.6
28 0.0036 52.5 16.5 -29.5 43.2 17.2 -37
27 0.0134 -37.5 1.5 30.5 -42 3.16 27.2
27 0.0087 -22.5 -68.5 33 -25.3 -74.4 28.1
26 0.00241 35 -58.5 -37 37 -58.7 -41.8
23 0.00921 -37.5 26.5 20.5 -40.8 25.3 21.8

Table B.32: Clusters of positive contrasts between auditory calculus and non-calculus trials
of the Pinel task
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Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
1022 -0.0113 -67.5 -18.5 5.5 -47.5 -19.3 7.14
850 -0.00856 55 -16 8 51.8 -15.4 5.65
218 -0.00584 25 -563.5 -19.5 19.3 -51.6 -18.8
201 -0.00816 -32.5 -26 53 -38.1 -30.5 59.3
113 -0.0076 -2.5 -13.5 48 -1.76 -6.17 45
72 -0.00406 22,5 -53.5 -59.5 22.5 -53.3 -51.9
68 -0.00531 -22.5 -53.5 -19.5 -24.4 -50.2 -23
61 -0.00539 35 -26 53 41.9 -25.8 53.3
37 -0.00511 0 31.5 48 0.939 30.6 47.4
30 -0.00513 40 -3.5 13 40.8 -1.34 12.4
27 -0.00281 10 -28.5 43 10.5 -24.3 39.1
26 -0.00438 30 -23.5 68 27.8 -16.9 69.3
26 -0.00573 52.5 -46 35.5 52.1 -47.7 36.4
23 -0.0034 12.5 -21 3 134 -22.2 0.734
22 -0.00512 -7.5 -26 45.5 -11.7 -28.9 39.3
22 -0.00359 -10 -21 3 -12.2 -24.6 1.68
22 -0.00289 2.5 44 -29.5 2.55 42.6 -27.8

Table B.33: Clusters of negative contrasts between auditory calculus and non-calculus trials
of the Pinel task

Size Maxima Center of Gravity

(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
2365  0.116 67.5 11 105 543  -157  3.71
2334 0.014 5 735 7 0178  -75.3  T7.69
1955 0108  -675  -16 05 =521 211 49
05 000532 375 35 495 349 342 453
71 000674  -125  -285 7 10 306 -9.81
37 000377 45 -85 295  -406  -80.2  -31.4
33 000505 125 -285 7 132 267 -3.53
33 000260 -225 165  -345  -214 994  -36.9
33 000607  -7.5 56 -645  -133 308 -38.8
27 000471  -37.5 29 2 401 266 -2.74

Table B.34: Clusters of positive contrasts between auditory and visual trials of the Pinel
task
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Size Minima Center of Gravity
(voxels)  Viluwe (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
18974  -0.0593 40  -685  -17  -286  -60.1  -0.25
389 -0.0532 325 9 655 334 103  57.9
45 -0.00595 15 715 0.5 186 687 113
41 -0.00445  -T5 335 595 -3.79  -382  -60.2
29 -0.00133 -5 51 18 923 308 196
28 -0.00146  -25 11 8 254 907 857
26 -0.00171 125 51 18 122 489 166
23 -0.0159 225 14 68 196 236  63.3
23 -0.00407  -45 44 195 468 349 -17.1
21 -0.00223 27.5 -23.5 63 27.1 -26.9 60.2
20  -0.00577  -15 69 45 -17.2 653 117

Table B.35: Clusters of negative contrasts between auditory and visual trials of the Pinel

task

Size Maxima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
1021 0.0205  -35 21 705  -369 264 585
436 0.00633 15 51 17 151 516 -18.7
234 0.00354 45  -185 18 422 221 138
194 000263 125  -585 47 14.8 58 -46.8
8 000348 -5 135 48 586 -20.8 46
61 0.00254 -15 -23.5 0.5 -14.5 -23 2.92
50 000291 225 565  -195 217 552  -16.1
42 000137 45 54 12 44 5001 -127
39 000292 425 35 7 434 <0843  -9.76
39 000211 225 6.5 47 202 364 417
30 000173  -425 285 295  -494 29 272
23 000221  -17.5 135  -37 199  -10.7  -36.7
21 0.00164 25 26.5 -24.5 20.5 28.4 -23.9

Table B.36: Clusters of positive contrasts between right and left motor trials of the Pinel

task
Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
40715 -0.024 32.5 -23.5 73 9.44 -33 24.7

Table B.37: Clusters of negative contrasts between right and left motor trials of the Pinel

task
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Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
136 0.0151 -42.5 4 23 -41.6 2.58 27
130 0.00341 27.5 -63.5 -29.5 29.4 -64.7 -38.6
106 0.0097 -25 -63.5 35.5 -25.2 -68.5 32.8
94 0.00904 -55 -48.5 -34.5 -51.4 -52.3 -16.4
92 0.0107 -50 39 15.5 -44.3 29.4 18.8
57 0.00174 27.5 -38.5 13 27.9 -37.5 5.53
45 0.00429 50 -51 -12 50.7 -49.2 -13
41 0.0055 30 -66 45.5 26.3 -63.4 43.6
37 0.00315 27.5 -46 40.5 29.9 -48 37.6
28 0.0124 -17.5 -83.5 50.5 -22.9 -78.9 52
24 0.00382 25 -78.5 -52 27.7 -74.7 -54.4
22 0.00415 -20 11.5 58 -15.7 9.7 54

Table B.38: Clusters of positive contrasts between visual calculus and non-calculus trials
of the Pinel task

Size Minima Center of Gravity

(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
5321 -0.0217 -62.5 1.5 0.5 3.9 -11.2 9.42
9575  -0.0108  -25 985  -1T 255 624  -165
994 -0.0202 35 35 655 321 229 627
818 -0.0128 0 35 48 0298 -107 424
776 0024 275 21 755 -306  -30.6  63.6
652 -0.00543 225 535 595 779 354 -50.7
303 -0.00849 7.5 34 60.5 6.7 344 443
166 -0.00903 45 265 455 401 256  45.6
143 -0.00494 25 51 505 584 495 408
85 -0.00657 65 535 105 611 -49.4 844
74 000693 575 535 455 457 632 43.1
54 -0.00529 50 11 42 433 39 443
45 000257 275 56.5 05 269 553  -1.21
39 -0.00193 325  -835  -295 301  -832  -31.1
38 -0.00377  -12.5 59 22 74 5.3 224
36 -0.0156  -15 615 305  -184 594 193
30 -0.00459 225 665  -9.5 166 613  -16.8
27 -0.00396  -55 66 13 538 622 119
26 -0.0024 0 34 10.5 -3.19 32.7 11.8
22 -0.00275 5 285 -52 6.19 32 458
21 -0.00197 65  -135  -27 613  -104  -30
21 -0.00318 60 135 345 629 <176 -28.3
20  -0.0019  -7.5 51.5 2 771 454 -5.79

Table B.39: Clusters of negative contrasts between visual calculus and non-calculus trials
of the Pinel task



B.2 Tables 151

Size Maxima Center of Gravity
(voxels)  yaue () X(mm) Y (mm) Z(mm) X (mm) Y (mm) Z (mm)
33048 0.116 -50 1.5 53 -6.03 -25.6 20.4
93 0.00406 25 54 -7 25.3 474 -114
69 0.00552 -37.5 -11 -44.5 -38.7 -6.82 -44.4
54 0.00626 42.5 4 -47 39.4 -5.29 -44.3
21 0.00264 -20 64 -14.5 -19.2 99.3 -15.4

Table B.40: Clusters of positive contrasts between visual stimuli and chequerboards trials
of the Pinel task

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
4608 -0.0261 47.5 54 -7 -3.13 38.9 7.45
3832 -0.0413 15 -104 10.5 3.49 -81.7 2.94
127 -0.0109 50 -43.5 -44.5 46.6 -61.3 -41.5
88 -0.014 -45 -71 45.5 -46.9 -67.4 40.8
78 -0.00967 42.5 -68.5 53 49.5 -66.6 38
58 -0.00224 50 -31 -27 59.6 -20.8 -25.4
34 -0.00213 27.5 -88.5 -37 26.7 -86.2 -38.4
30 -0.00713 -52.5 -73.5 23 -51.2 -71 25.2
29 -0.0152 20 -83.5 48 15.6 -83 43.3
22 -0.00405 -47.5 -68.5 -42 -49 -67.1 -38.8

Table B.41: Clusters of negative contrasts between visual stimuli and chequerboards trials
of the Pinel task
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Figure C.1: Relation between the DVARS of the denoised data following different analysis
pipelines and FD for subjects 001 and 003. Refer to Figure 4.4 for further explanation.
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DVARS vs FD, subject 004
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Figure C.2: Relation between the DVARS of the denoised data following different analysis
pipelines and FD for subjects 004 and 007. Refer to Figure 4.4 for further explanation.
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DVARS vs FD, subject 008
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Figure C.3: Relation between the DVARS of the denoised data following different analysis
pipelines and FD for subjects 008 and 009. Refer to Figure 4.4 for further explanation.
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BreathHold response, subject 001

Figure C.4: Average GM %DVARS and %BOLD response of all BH trials across ten sessions
for subjects 001 and 003. Refer to Figure 4.5 for further explanation.
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BreathHald respense, subject 004
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Figure C.5: Average GM %DVARS and %BOLD response of all BH trials across ten sessions
for subjects 004 and 007. Refer to Figure 4.5 for further explanation.



159

BreathHald response, subject 008

Figure C.6: Average GM %DVARS and %BOLD response of all BH trials across ten sessions
for subjects 008 and 009. Refer to Figure 4.5 for further explanation.
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Ses 03 Ses04 Ses05 Ses 07 Ses 08

ME-MOD ME-AGG OC-MPR SE-MPR

ME-CON

CVR [%BOLD/mmHg]
-0.6 IS N

Ses 03 Ses04 Ses05 Ses 06 Ses 07 Ses 08
ot . - ;

ME-MOD ME-AGG OC-MPR SE-MPR

ME-CON

Figure C.7: Top: thresholded CVR map obtained with the different lagged-GLM analysis
for all the sessions of subject 001. Bottom: unthresholded lag map obtained with the
different lagged-GLM analysis, for all the sessions of the same subject. Refer to Figure 4.6
for further explanation.
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Figure C.8: Top: thresholded CVR map obtained with the different lagged-GLM analysis
for all the sessions of subject 003. Bottom: unthresholded lag map obtained with the
different lagged-GLM analysis, for all the sessions of the same subject. Refer to Figure 4.6
for further explanation.
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Figure C.9: Top: thresholded CVR map obtained with the different lagged-GLM analysis
for all the sessions of subject 004. Bottom: unthresholded lag map obtained with the
different lagged-GLM analysis, for all the sessions of the same subject. Refer to Figure 4.6
for further explanation.
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Figure C.10: Top: thresholded CVR map obtained with the different lagged-GLM analysis
for all the sessions of subject 007. Bottom: unthresholded lag map obtained with the
different lagged-GLM analysis, for all the sessions of the same subject. Refer to Figure 4.6
for further explanation.
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Figure C.11: Top: thresholded CVR map obtained with the different lagged-GLM analysis
for all the sessions of subject 008. Bottom: unthresholded lag map obtained with the
different lagged-GLM analysis, for all the sessions of the same subject. Refer to Figure 4.6
for further explanation.
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Figure C.12: Top: thresholded CVR map obtained with the different lagged-GLM analysis
for all the sessions of subject 009. Bottom: unthresholded lag map obtained with the
different lagged-GLM analysis, for all the sessions of the same subject. Refer to Figure 4.6
for further explanation.
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Size Maxima Center of Gravity

(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
2824 0.102 -52.5 -56 -29.5 -2.73 -61.7 -11.7
1062 0.0958 50 11.5 7 508  -144 481
1062 0.113 -2.5 -23.5 73 -42.7 -19.9 25.6
636 0.075 0 B 43 0.563 00131  36.4
300 0.0379  -525  -56 5.5 45 -636 112
109 0.0772 55 66 95 496 597 -2.59
96 0.0767 25 185 13 6.78  -187 894
93 0.0485 20 -33.5 78 18 328 69.8
67 0106  -125  -76 505 <157 732 487
65 0.0623 5 435 58 8.58 -39 49.8
59 0.0447 40 16 53 356 227 533
49 0.0513 -10 -11 -14.5 -3.66 3.29 -11.4
48 0.0401 525  -68.5 2 514 702 -3.18
47 0.0325 225 -6 655 203 753 62.9
47 0.0203 525 485  -17  -52.1 34 -102
42 0.0279 -2.5 44 -7 0.414 42.3 -5.87
40 0.0651 0 24 53 -0.363 248  50.7
40 0.061  -275 -6 555 286 574  50.4
40 0.0833 40 29 405 379 303 371
39 0.0336  42.5 44 3 422 416 295
37 0.0444 27.5 61.5 -2 27.4 55.7 -6.61
31 0.0267 375 71 10.5 43 702 128
28 0.048 45 15 53 405  -245 517
27 0.0415 55 335 505 514 315 505
27 0.0279  -12.5  -46 33 976 -48.9 37
27 0.0335 225 365 28 25.1 36 29.2
27 0.0504 275 86 5.5 284 868 6.2
26 0.036 50 385 38 495 -60.1 34
26 0.0571 50 34 105  -503 333 827
25 0.0311 -42.5 -6 -47 -40.2 -4.19 -46.7
21 0.0358  -15 8.5 68 113 <102 65.1
21 0.0376  42.5 4 33 407 398 317
20 0.019 65 135 22 63.7 47 237

Table D.1: Identified clusters of positive relationship of MAP and CVR.
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Size Maxima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
109 0.023 475 9 33 412 163 279
92 0.0242 375 -11 7 33 793 -6.65
71 0.0198  -2.5 29 505 557 253 401
63 0.0207 30 6.5 58 25.7 13 50.8
63 0.0261 5 6.5 35.5 6.1 1.9 411
62 0.0293 40 29 17 13 339 11
57 0.0232 60 46 5.5 591 427 174
55 0.0176  -25 115 58 237 107 526
43 0.0404  -25 71 505 213 685 457
37 0.0307 20 66 -14.5 15 677 -184
36 0.0222 325 9 17 37.7 55  -5.37
36 0.0225 35 36 27 325 -394 -25.9
35 0.0129 5 16 38 831  -145 377
34 0.0204  -47.5 19 8 489 183 6.69
33 0.0185 20 56 205 187 544 203
26 0.0168 225 6.5 45 205 103 -6.46
25 0.0199  -25 51.5 8 237 502 6.59
24 0.0113  -7.5 15 505 <957 0503 487
22 0.0152 5 26.5 20.5 5.8 27.8 18.1
22 0.0165  -10 485 47 12 513 476
20 0.0133 525 15 8 492 425 113

Table D.2: Identified clusters of positive relationship of PP and CVR.

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
25 1.83 -2.5 69 -2 -4.6 66.7 -7.6

Table D.3: Identified clusters of positive relationship of sex and CVR (i.e. males showed
higher CVR than females).
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Size Minima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
25763  -9.99 25 81 43 0267 351 104
67 -1.45 17.5 -18.5 73 14.2 -11.4 66.5
43 12 45 14 42 40 156  -37.6
39 -0.725 50 1 395 463 0339 -36.5
35 211 475 71 o145 412 739 -126
32 -0.603 12.5 44 -2 12.6 46.1 0.461
31 0.535 25 365  -145 233 371  -1L6
30 0332 -52.5 15 27 531 0767 -21.7
29 118 35 8.5 43 36 744 456
22 -0.544 45 1 38 436 -3.09 375
21 0.563 5 54 3 737 513 -2.65

Table D.4: Identified clusters of negative relationship of sex and CVR (females showed
higher CVR than males).
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Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
6645 -12.9 -22.5 -38.5 -49.5 -6.24 -51 -8.7
423 -11.6 40 -31 15.5 50.1 -41.3 12.3
292 -9.13 37.5 -8.5 20.5 31.3 4.13 2.98
254 -7.08 10 6.5 33 1.51 7.94 34.1
142 -7.55 52.5 -1 -9.5 54.5 -10.6 -11.2
113 -7.05 -7.5 44 25.5 -2.04 48.8 21.1
106 -8.69 -7.5 -41 73 -5.18 -36.2 65.1
77 -6.48 -10 16.5 48 -7.99 14.6 59
66 -5.71 -32.5 -53.5 48 -29.8 -95.8 47.5
65 -7.07 45 -18.5 35.5 50.5 -18.4 36.5
46 -6.34 27.5 -73.5 38 26.4 -72.4 38.7
43 -5.6 32.5 1.5 53 36.8 1.08 52.5
43 -6.83 -35 9 8 -39.7 8.1 6.72
43 -7.49 -7.5 -1 -9.5 -10.5 -8.82 -13.5
40 -7.89 -25 -93.5 10.5 -24.4 -90.7 11.2
40 -5.02 -22.5 -1 8 -25.1 3.59 2.55
38 -4.63 50 16.5 28 49.3 17 31.5
29 -6.98 -27.5 26.5 48 -26.4 21.9 42.3
28 -5.07 -40 -21 58 -39.2 -25.3 54.7
27 -4.99 -62.5 -46 28 -57.9 -48.4 31.2
27 -4.72 -37.5 -3.5 -12 -33.6 -6.85 -8.41
26 -7.96 -7.5 -3.5 53 -8.58 -5.51 50
26 -6.68 -65 -16 -19.5 -64.2 -15.9 -20.3
25 -6.35 -32.5 36.5 30.5 -30.5 33.8 31.3
24 -5.35 22.5 34 38 20.9 35.8 36.4
24 -7.46 15 -93.5 20.5 16 -90.3 22.3
24 -5.94 -55 -11 13 -54.8 -9.43 13.6
23 -8.79 -50 -28.5 35.5 -47.5 -28.7 36.5
23 -4.84 42.5 54 20.5 42.2 45.2 22
21 -4.98 -30 46.5 18 -28.5 45 23.1
20 -6.29 -52.5 -68.5 -9.5 -53.1 -65.3 -6.54

Table D.5: Identified clusters of negative impact of sex on CVR (females showed higher
CVR than males), for FDR corrected results at p <0.005.
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Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
171 3.59 -25 -71 -34.5 -35.5 -64.1 -34.8
144 6.33 32.5 -88.5 -24.5 8.54 -76.8 -23.2
65 3.7 52.5 -36 -14.5 53.4 -30.9 -114
44 3.92 10 -46 23 7.46 -44.3 30.6
37 5.56 62.5 -18.5 5.5 62.6 -18.7 6.61
37 4.24 -7.5 49 -7 -7.14 00.6 -10.2
34 3.44 17.5 31.5 53 22 30.8 45
34 7.34 15 4 -37 25.2 6.99 -39.7
31 4.17 -42.5 19 3 -41 17.1 3.31
30 3.78 7.5 39 0.5 -0.636 39.5 0.386
27 3.76 -67.5 -36 35.5 -56.4 -38.9 41.4
25 3.97 -37.5 -43.5 30.5 -38.4 -43.2 31.1
21 3.75 22.5 -1 65.5 25.3 -1.19 62.6
21 4 47.5 14 0.5 49.1 10.9 -0.357

Table E.1: Identified clusters of positive impact of CVR on ALFF.
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Size Maxima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
169 3.75 45 385 47 352 634  -35.7
80 3.41 75 185 22 258 764  -23.6
38 3.69 55 335 -145 568 319  -134
36 3.55 5 41 305 735  -438 285
35 5.35 625  -185 55 629  -192 733
34 3.7 22.5 -83.5 -24.5 27.3 -81.3 -22.8
29 3.89 55 -435 43 564 <385 40.9
28 3.76 32.5 4 37 306 7.8 40
27 4.24 75 49 7 823 507 -10.6
25 4.19 5 615 95 561 579  -14.1
21 3.58 27.5 -1 60.5 25.2 -1.32 63.1
21 3.13 275 265 43 232 312 432
20 3.55 40 435 33 386  -428 327

Table E.2: 1dentified clusters of positive impact of CVR on RSFA.

Size Maxima Center of Gravity

(voxels)  \ulue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
63 6 5 14 705 306 229 618
35 4.9 275 885 27 259 882  -24.9
34 3.92 50 46 =295 45 507 -20.6
23 4.43 47.5 -71 -19.5 50.2 -62.5 -23
20 4.12 475 26 255  -483 254 271

Table E.3: Identified clusters of positive impact of CVR on fALFF.

E.2 Relationship between RS fluctuations, CVR, and the motor task
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Size Maxima Center of Gravity

(voxels)  Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
82 5.15 25 385 58 174 628 59.8
36 3.77 325 435 -4T 246 -448  -46.4
35 3.6 40 485 105 475 =215 142
34 10.2 475 835 3 426 708 447
32 45 25 66 57 289 675  -54.5
31 3.77 425 185 7 452 2749 -10.6
30 3.84 475 115 255 -402 9.4 25.9
29 4.02 30 -58.5 48 332 592 50.9
26 4.32 20 585 505 159 649 544
25 4.67 15 76 -19.5 14 73 2226
23 4.49 45 41 505 436 -43 46
20 3.99 20 51 455 =214 555 418
20 5.25 60 61 47 553 383 -15
20 3.9 55 51 195 537 558 -16.2

Table E.4: Identified clusters of positive impact of CVR on the motor vs sham contrast.

Size Minima Center of Gravity
(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
81 446 5 49 205 434 521 21
29 -3.85 50 =235 <145 =519 232 -145
23 3.45 475 385 45 495 326 -6.42

Table E.5: Identified clusters of negative impact of CVR on the motor vs sham contrast.

Size Maxima Center of Gravity
(voxels)  \Vilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
26 4.62 2.5 14 13 1.83 132 138

Table E.6: Identified clusters of positive impact of ALFF on the motor vs sham contrast.
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Size Minima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
476 567 -17.5 635 405 164 52 27.4
204 485 375 -135  60.5 31 288 586
174 471 125 235 43 692 137 43
157 -9.45 40 885 -17 26 879 -12
152 5.02 375 31 23 376 -247 163
110 -6.09 275  -335 8 174 522 -0.202
07 405 12.5 86 18 6.75 822 147
88 4.4 25 -76 -2 22 -74.9 -3.27
7 508 525 -1l 3 504 111 -0.0374
63 6.13 60 85  -145 583  -8.68  -1438
55 424 45 835 13 102 -89.9 892
55 443 45 16 2 479 135 111
49 463 475 335 2 543 -30.7  -4.8
40 413 5 26 45 3.06 28 3.9
31 401 25 835 3 283 846 2.9
29 -3.91 30 285 18 342 26 15.6
26 -3.84 -37.5 -21 -2 -34.9 -24.4 0.478
25 488 375 56 23 404 553 263
24 -3.89 15 385 505 113 -41.8 493
24 385 -325 29 8 349 327 875
23 13.89 5 11 7 558 -11.8  -6.19
23 -5.19 -22.5 -18.5 -32 -25 -14.9 -29.2
22 341 125 -58.5 63 196 548 594

Table E.7: Identified clusters of negative impact of ALFF on the motor vs sham contrast.

Size Maxima Center of Gravity
(voxels)  Viluwe (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
26 5.22 5 6.5 20.5 2.15 12.7 14.3

Table E.8: Identified clusters of positive impact of RSFA on the motor vs sham contrast.
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Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
221 -5.37 -15 -68.5 18 -13.6 -69.6 18.9
211 -4.98 45 -16 -2 40.6 -22 10.7
197 -5.32 37.5 -33.5 70.5 30.9 -28.8 58.6
182 -12.5 -60 6.5 -7 -94.5 -10.9 -4.51
149 -4.51 -12.5 -23.5 43 -7.57 -13.6 43.6
141 -10.8 -35 -93.5 -14.5 -27.9 -87.5 -9.56
107 -5.16 -12.5 -43.5 63 -18 -37.9 62.4
88 -4.4 25 -76 -2 22.6 -75 -3.51
78 -5.36 30 -53.5 5.5 21.7 -53.5 2.16
69 -4 12.5 -86 18 10.5 -86.6 16.6
64 -4.06 -7.5 -93.5 5.5 -8.9 -90.3 9.73
61 -5.23 -12.5 -41 -2 -14 -44 -6.28
48 -4.4 -07.5 26.5 10.5 -42.2 30.7 10.8
41 -4.06 -12.5 14 38 -8.73 14.1 33.2
38 -4.56 5 -26 -4.5 1.6 -28.3 -4.05
38 -4.51 57.5 -31 -4.5 55 -30.9 -4.51
33 -5.65 -10 -43.5 50.5 -9.07 -46.7 49.5
32 -4.39 37.5 -56 23 424 -57.8 25.7
32 -4.6 -27.5 -28.5 -17 -25.9 -26 -19.2
30 -3.35 -47.5 -21 -17 -02.4 -23.6 -12.5
29 -3.87 -37.5 -21 -2 -35 -24 -0.0648
28 -7.95 -27.5 -21 -32 -25 -15.5 -29.2
23 -4.35 27.5 -36 -19.5 27.3 -35.1 -21.3
22 -5.03 -15 -81 53 -16 -76.3 52
21 -13.6 -22.5 16.5 68 -26.6 15.9 62.7
21 -3.58 -12.5 -26 13 -9.74 -20.4 12.8
21 -3.78 -2.5 -11 -4.5 -4.86 -12.3 -6.11
20 -4.19 20 -71 18 18 -65.7 16.6

Table E.9: Identified clusters of negative impact of RSFA on the motor vs sham contrast.
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Size Minima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
149 449 75 635 155  -6.03  -68.6 31
134 -4.77 -12.5 -16 38 -9.62 -5.74 41.4
72 1359 15 86 205 106 835  16.7
55 462 375 21 18 37.9 25 18.4
53 457 15 385 45 884 466  -6.59
40 -5.15 -25 -41 -19.5 -27.8 -41.5 -19.4
39 13.94 225  -43.5 3 216 498  -2.44
38 411 525 11 05  -498  -11.8 113
37 45 25 36 58 226  -368 582
34 373 5 96 55 831  -928 828
31 -3.68 5 -6 43 6.84  -82 443
28 13.95 30 68.5 2 278 712 -345
20 -4.46 12.5 -41 53 13.4 -41 53.1

Table E.10: Identified clusters of negative impact of fALFF on the motor vs sham contrast.
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E.3 Relationship between RS fluctuations, CVR, and the Simon task

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
57 4.73 -17.5 34 o8 -17.9 23.4 51.2
45 5.58 -40 6.5 43 -38 3.33 46.2
43 3.66 40 -71 -22 36.8 -66 -22.5
40 5.16 -2.5 -63.5 35.5 -0.806 -66 32.1
34 3.85 -32.5 -68.5 40.5 -30.9 -65.9 37.6
27 4.25 -45 -43.5 -24.5 -40.1 -45.6 -24.6
22 3.54 30 4 -2 32.1 4.53 -4.72
20 4.58 -3 11.5 60.5 -8.11 11.1 08.5

Table E.11: Identified clusters of positive impact of CVR on all congruent responses con-

trast.
Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
54 4.02 5 1.5 53 1.16 -2.39 55.7
44 3.88 35 -43.5 40.5 30.2 -46.4 39.4
39 4.2 -27.5 -73.5 20.5 -26.6 -76.4 22.7
33 6.02 40 -73.5 -52 37.6 -68.3 -47.1

Table E.12: Identified clusters of positive impact of ALFF on all congruent responses

contrast.

Size Maxima Center of Gravity

(voxels)  \ilue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
57 4.01 2.5 1 55.5 2.3 257 56.7
34 3.73 32.5 46 38 308  -46.7  38.6
30 4.74 30 46 33 327 466 349
27 5.28 40 735 -52 374 681  -4T
23 3.93 275 <735 205 269 762 228

Table E.13: Identified clusters of positive impact of RSFA on all congruent responses con-
trast.

Size Minima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
26 -3.85 -2.5 44 13 -2.24 44 .4 13.8

Table E.14: Identified clusters of negative impact of fALFF on all congruent responses
contrast.
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Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
28 4.1 42.5 -13.5 30.5 44.4 -10.1 32.4
27 3.95 -40 6.5 43 -40.3 5.11 45.6
25 4.43 -42.5 -56 33 -41.3 -58.3 38.6
20 4.28 -37.5 -51 20.5 -41.4 -50.9 21.6
Table E.15: Identified clusters of positive impact of CVR on all incongruent responses
contrast.
Size Minima Center of Gravity
(voxels)  \ilwe (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
27 -3.84 12.5 -61 -49.5 9.41 -65.2 -43.1

Table E.16: Identified clusters of negative impact of fALFF on all incongruent responses

contrast.

Size Maxima, Center of Gravity

(voxels)  \ulue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
65 4.88 37.5 51 205  -407 553 313
39 5.44 40 6.5 43 403 438 457
26 471 25 66 355 0995 677 30.9
24 3.81 45 735 22 434 708 =205
23 3.14 25 215 48 286 198 46.6
20 3.53 275 61 43 284 -63 48.8
20 3.76 425 135 305 459  -102 332

Table E.17: Identified clusters of positive impact of CVR on all congruent and incongruent
responses contrast.

Size Maxima Center of Gravity
(voxels) Value () X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)
33 3.57 27.5 -46 38 28.5 -47 41.5
27 4.18 ) -1 55.5 2.29 -1.37 54.8
25 4.32 42.5 -68.5 -47 38.5 -67.7 -46.4
24 4.29 -25 -73.5 20.5 -26.4 -76.1 22.9

Table E.18: Identified clusters of positive impact of ALFF on all congruent and incongruent
responses contrast.

Size Maxima Center of Gravity
(voxels)  \ulue (8) X (mm) Y (mm) Z (mm) X (mm) Y (mm) % (mm)
25 4.59 30 46 33 325 -46.9 35

Table E.19: Identified clusters of positive impact of RSFA on all congruent and incongruent
responses contrast.
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