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Abstract
Emerging trends in technological innovations, data analysis and practical applications have facilitated the measurement of 
cycling power output in the field, leading to improvements in training prescription, performance testing and race analysis. 
This review aimed to critically reflect on power profiling strategies in association with the power-duration relationship in 
cycling, to provide an updated view for applied researchers and practitioners. The authors elaborate on measuring power 
output followed by an outline of the methodological approaches to power profiling. Moreover, the deriving a power-duration 
relationship section presents existing concepts of power-duration models alongside exercise intensity domains. Combining 
laboratory and field testing discusses how traditional laboratory and field testing can be combined to inform and individual-
ize the power profiling approach. Deriving the parameters of power-duration modelling suggests how these measures can be 
obtained from laboratory and field testing, including criteria for ensuring a high ecological validity (e.g. rider specialization, 
race demands). It is recommended that field testing should always be conducted in accordance with pre-established guide-
lines from the existing literature (e.g. set number of prediction trials, inter-trial recovery, road gradient and data analysis). It 
is also recommended to avoid single effort prediction trials, such as functional threshold power. Power-duration parameter 
estimates can be derived from the 2 parameter linear or non-linear critical power model: P(t) = W′/t + CP (W′—work capacity 
above CP; t—time). Structured field testing should be included to obtain an accurate fingerprint of a cyclist’s power profile.
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Abbreviations
%V̇O2max	� Fractional utilization of the maximum oxygen 

uptake
2-P CP	� Two-parameter critical power model
3-P CP	� Three-parameter critical power model
APR	� Anaerobic power reserve
ATP	� Adenosine tri phosphate
BMX	� Bicycle motocross
CT	� Critical torque
CP	� Critical power
CPTTF	� Time to task failure at critical power
e	� Basis of the natural logarithm (e = 2.178)
EVA	� Exposure variation analysis
FPCA	� Functional principal component analysis
FTP	� Functional threshold power
GET	� Gas exchange threshold
GXT	� Laboratory incremental graded exercise test
k	� The rate of the exponential decline in power 

output
LT	� Lactate threshold
MAP	� Maximum aerobic power
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MLSS	� Maximum lactate steady state
MMP	� Maximal mean power output
OmPD	� Omni power duration model
P&T	� Peronnet and Thibault model
P(t)	� Power output
Pmax	� Peak power over 1 s
SEE	� Standard error of the estimate
TT	� Cycling time trial
TTF	� Time to task failure
V̇O2	� Oxygen uptake
V̇O2max	� Maximum oxygen uptake
W′	� Work capacity above critical power
WEP	� Work above end test power

Introduction

Since the invention of the first mobile power meter for 
cycling in the late 1980s training and racing with this tool 
has become standard practice in multiple cycling disciplines 
including road, track, mountain bike, cyclo-cross, bicycle 
motocross (BMX) and triathlon. Mechanical power output 
measured by strain gauges, most commonly mounted in the 
bike’s crank spindle, crank arm or pedal spindle and con-
nected to a head unit mounted in the handlebar allows power 
output data to be accurately recorded in field conditions in 
real time (Maier et al. 2017). This enables an in-depth analy-
sis of a cyclist’s mechanical power output during training 
and/or competition, and the assessment of an athlete’s endur-
ance capacity outside of a laboratory setting (Passfield et al. 
2017).

These aforementioned technological innovations have 
allowed applied scientific research to be undertaken in 
cycling, including real-time measurements of internal (e.g. 
heart rate) and external (e.g. power output) workloads (van 
Erp and de Koning 2019; Mujika 2017; Muriel et al. 2021; 
Padilla et al. 2000; Padilla et al. 2008). This in turn allows 
the demands of racing to be described (Ebert et al. 2005, 
2006; van Erp et al. 2021b; Menaspà et al. 2015; Menaspà 
et al. 2013; Vogt et al. 2007b), training/racing performance 
analysis to be conducted (Leo et al. 2021c; Lucia et al. 2001; 
Mujika and Padilla 2001; Pinot and Grappe 2011) and train-
ing prescription to be quantified (Leo et al. 2020; Sanders 
et al. 2020; Sanders and Heijboer 2019a).

Power profiling in cycling is most commonly defined as 
the assessment of field derived power outputs, i.e. values 
obtained during training and racing (Coggan 2003; Leo et al. 
2020). Power profiling can be used for the tracking of longi-
tudinal changes in performance and race analysis (Leo et al. 
2021b). There is a growing interest in the theoretical and 
practical implications of power profiling. However, to date, 
there is no consensus on what constitutes the best practice 
for power profiling, especially given that there are numerous 

methodological issues and approaches. Therefore, the aim 
of this narrative review is to present and discuss existing 
practices and methods, their implementation, interpreta-
tion, and practical applications, provide recommendations 
to unify power profiling approaches for both practice and 
research, and suggest future directions for research.

Measuring power output

Before analysing power output data, it is important to under-
stand how power output is measured during cycling and any 
associated methodological issues. In cycling, when a force 
is created by the muscles and applied perpendicular to the 
bicycle crank arm, one crank arm revolution creates two 
angular impulses (one per leg); this results in forward drive. 
Optimal force production, and as a result optimal forward 
drive, is a complex interplay of innervation, muscle recruit-
ment patterns, the contractile function of muscle as well 
as an elastic tendon–muscle interaction and metabolic pro-
cesses occurring in these tissues. The properties of force 
generation are often described using physics expressions 
such as mean torque or mean power output; the former 
describing the force and the latter the amount of work pro-
duced in a given time (Winter et al. 2016). Power output is 
often expressed as a steady-state value (e.g. 100 W), but this 
value is a product of many impulses over a given period of 
time or a given proportion of the pedal stroke. Some have 
argued that ‘mean power output’ is therefore a more accurate 
descriptor (Winter et al. 2016). Notwithstanding the validity 
of this argument, for the purposes of this review the authors 
will employ the customarily used term ‘power output’ 
throughout. However, it should be noted that power output 
does not include the energy used to accelerate the cyclist’s 
limbs nor forces applied in non-propulsive directions.

Mechanical (or external) power output can either be meas-
ured by strain gauges or calculated mathematically (Maier 
et al. 2017; Martin et al. 1998). Depending on the position of 
the strain gauge (e.g., pedal spindle, crank, bottom bracket), 
the recorded power output is expected to deviate slightly as 
some energy is lost via drivetrain inefficiencies (Coyle et al. 
1991; Maier et al. 2017; Martin et al. 1998). This highlights 
that power output values derived from different strain gauge 
positions may not be comparable. Likewise, different power 
meter brands and models have different levels of trueness 
and precision. Maier et al (2017) found that while on average 
commercially available power meters record at a trueness of 
− 0.9 ± 3.2% some units will deviate by more than 5%. The 
authors also reported that some power meter brands have 
significantly greater precision than others.

On average Maier et al. (2017) found that the small-
est worthwhile change for the accuracy of commercially 
available power meters was 1.1–2.8%. This implies that 
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any performance improvements of less than 1.1% cannot 
be accurately quantified by commercially available power 
meter devices. However, this value may differ from brand to 
brand and model to model. Validation studies have been con-
ducted for most commercially available power meters, but 
there is no agreed-upon gold standard to which power meters 
should be compared. Therefore, researchers and practitioners 
should take note of the comparative measure when assess-
ing the validity of any power output measuring device. We 
draw the reader’s attention to the aforementioned study by 
Maier and colleagues (2017) for a broader discussion of the 
methodological issues surrounding power meter validation. 
To ensure high data quality the authors strongly recommend 
accurate calibration according to the manufacturer’s recom-
mendations prior to the collection of any power meter data. 
Additionally, dynamic (Gardner et al. 2004), static (Wooles 
et al. 2005), and day-to-day calibration, known as ‘zero-
offsetting’ are all recommended before data derived from 
power meters are used for power profiling purposes.

Methodological approaches to power 
profiling

Numerous methodologies have been applied in the field 
of power profiling. The most basic of these is simply the 
reporting of average power output values for a given race or 
event (Ebert et al. 2005; Vogt et al. 2007a, b). While this is 
the starting point in understanding the demands of a given 
event, it fails to fully utilise the full potential of power pro-
filing. Another disadvantage is that unless data are derived 
from cyclists with differing performance levels within an 
event, this approach does not provide any information on the 
demands of peak performance, instead it merely describes 
the demands of participation.

A more advanced approach is to describe the power out-
put by time at a given intensity. This approach is normally 
described as ‘binning’. Binning is where each power output 
value is categorized into a bin; each bin represents a range 
of intensities (for example 100–200 W). The resulting cat-
egorization of each output value can then be expressed as 
either total cumulative time in each bin or as a percentage of 
total time. (Abbiss et al. 2010; Ebert et al. 2006; Leo et al. 
2021b; Metcalfe et al. 2017). Typically, but not always, the 
bins are defined by normalizing the power output to body 
mass (for example 4–5 W kg−1). However, the suitability of 
this approach can be questioned; for example, in some events 
aerodynamic drag is a far more important factor than body 
mass (Pringle et al. 2011). Besides scaling power output 
relative to the frontal area (Padilla et al. 1999), to the best 
of the authors’ knowledge no studies have been published 
where the bins represent ranges of power output values nor-
malised to aerodynamic drag (W CdA−1).

Binning has advantages in that it can describe the range 
of intensities that are required to compete or perform in a 
given event. Typically, cycling events are not completed 
at a fixed power output; instead, power output is stochas-
tic in nature, even in individual time trials (Gordon 2005). 
Whilst binning allows the total time at different intensities 
to be described, there are weaknesses with this approach. 
Firstly, the choice of the range of intensities for a given bin 
will influence the results. Often arbitrary bins are chosen, 
based on a given power output normalized to body mass, 
for example 5.9–7.9 W kg−1. If the range of intensities is 
too wide the granularity of the power output data cannot be 
captured. Another problem is that binning gives no insight 
into the length of individual efforts. The cumulative time 
in each power output bin may represent one long effort or 
multiple short efforts. Finally, if arbitrary bins are used then 
it may be that the range of intensities covered by a single 
bin includes power outputs that are both sustainable and 
unsustainable from a physiological point of view. A solu-
tion to this problem is to use physiological thresholds to 
define the bins (Abbiss et al. 2010; Passfield et al. 2013). 
For example, the submaximal physiological thresholds that 
define the exercise intensity domains could be determined 
during laboratory testing and used to define the bins. While 
this approach does give a greater insight into the physiology 
of a given event for individual athletes, problems occur when 
data from multiple athletes are amalgamated, as the bins, 
while representing consistent physiological responses, do 
not necessarily represent the same absolute or relative power 
output for all athletes.

As previously mentioned, one of the main problems with 
binning is that duration of individual efforts are not rep-
resented within the data. However, there is a small body 
of work that uses exposure variation analysis (EVA) to try 
and overcome this limitation (Abbiss et al. 2010; Passfield 
et al. 2013). This approach uses a two-bin system; one set of 
bins is used in the traditional manner to describe the inten-
sity. Bins can be associated with either arbitrary values or 
physiological thresholds. The second set of bins is used to 
describe the duration of individual efforts. Here arbitrary 
durations are used, for example 0–5 s, 5–10 s or > 1 min. 
The intensity bins are plotted on the x-axis, the duration of 
individual efforts is plotted on the z-axis and the percentage 
of total race time is plotted on the y-axis (see sample data 
in Fig. 1).

Whilst the exact power output of individual efforts is 
still not displayed, EVA is a very powerful tool to show the 
pacing strategy and stochastic nature of power output in a 
given event. This approach may be especially powerful to 
describe events where lots of short submaximal sprints are 
interspersed by periods of recovery, for example cyclo-cross 
or Olympic cross country mountain biking. EVA is an effec-
tive way to describe the duration of efforts and recovery 
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bouts. This information can be valuable for coaches and 
practitioners when prescribing interval training sessions to 
replicate the demands of an event.

A major limitation of the approaches discussed thus far is 
that they fail to describe power outputs for individual efforts. 
To do this the mean maximal power output (MMP) approach 
can be used (van Erp and Sanders 2020; Puchowicz et al. 
2020; Quod et al. 2010; Vogt et al. 2007b). MMP values 
represent the highest average power that was recorded for a 
given (arbitrary) duration, during an event. For example, the 
highest average power output recorded over a 5 min duration 
in a race would be the 5 min MMP. Such MMP data are very 
valuable because they make it possible to identify the power 
output and duration that a cyclist is required to produce to 
be competitive in an event. For example, MMP data analysis 
shows that a top male general classification contender in a 
grand tour is required to produce 5.8 W kg−1 for 20 min on 
key mountain climbs (van Erp et al. 2020a, b). For coaches 
and practitioners this is very valuable information.

There are however some fundamental issues with MMP 
data. Firstly, it is not known if the recorded MMP values 
were derived from a maximal effort. This contrasts with 
values derived from formal testing where the maximality 
of an effort can be verified. For example, in a traditional 
laboratory incremental graded exercise test (GXT) a given 
perception of effort and respiratory exchange ratio need to be 
obtained for the test to be considered maximal in nature and 
therefore a valid maximum oxygen uptake ( V̇O2max) value to 
be obtained (Jones et al. 2016). It is hypothesised that almost 
none of the MMP values derived from races are maximal 
in nature. If a rider were to produce a maximal effort at 
any point other than at the finish of a race, it may compro-
mise their ability to subsequently follow their competitors 
in bunch events or compromise their pacing strategy in indi-
vidual events (Leo et al. 2021b, c). Secondly, MMP data 

from a specific (arbitrary) duration could be the result of 
the bracketing of a subsection of a longer effort, or a shorter 
duration effort and a subsequent recovery (Leo et al. 2021a, 
b). For example, it is very unlikely that a 5-min MMP value 
derived from a race represents a maximal effort of exactly 
5 min in duration. As a result, there is a high probability of 
an inherent underestimation of maximal power output when 
using MMP values alone. MMP data are only indicative of 
what a cyclist did, not what the cyclist is capable of.

Another issue with MMP data in research is that there is 
no agreed-upon set of (arbitrary) durations that are being 
applied. This means that when trying to compare data from 
various studies coaches and practitioners cannot perform 
like for like comparisons. This situation has improved some-
what as research groups have started to incorporate a wider 
range of MMP durations from ~ 5 to ~ 1800s. This allows a 
power-duration curve to be developed using the MMP val-
ues, allowing for some comparisons between studies. A final 
issue with MMP analysis is that it may not actually define 
‘race winning efforts’. Recent work by Leo and colleagues 
(2021b) and van Erp and colleagues (2021a; b) showed that 
the power output that cyclists produce falls throughout an 
event; and that MMP values are not predictive of race per-
formance. Instead, it is the power output that riders produce 
at key moments in the race that is predictive of performance. 
For example, in the case of a sprinter in road cycling it is 
the power that they can produce in the final moments of the 
race that is important, but this is not necessarily the same 
as their 10 s MMP. This means that MMP analysis may 
be missing the very efforts that it is trying to identify. To 
better identify these race-winning efforts an approach has 
been taken in research whereby the event is broken down 
into segments and MMP values in each segment have been 
reported (van Erp et al. 2021a; Leo et al. 2021b; Sanders and 
van Erp 2021). To date, these segments have been defined 

Fig. 1   EVA—exposure varia-
tion analysis in the final hour of 
a race in six U23 cyclists (N = 6)
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via accumulated work, either absolute values or normal-
ized to body mass, for example MMP values after 2.500 kJ 
of work. However, this approach, which has thus far only 
been applied in road cycling has introduced some further 
limitations. Road cycling is a team sport in which riders 
perform individual tasks such as sheltering a team leader or 
collecting nutrition from a following car. It is not the goal of 
every rider to try and win the race. Therefore, the reported 
decrease in MMP values, as accumulated work increases, 
may partially be a product of the fact that some riders have 
simply finished their tasks and are therefore no longer pro-
ducing maximal efforts.

To alleviate the problem of arbitrary MMP durations not 
matching actual effort durations, some studies have selected 
specific sections of the event and identified power output 
exclusively in that section (Jobson et al. 2008; Leo et al. 
2021c; Padilla et al. 2008). For example, Leo and colleagues 
(2021a; b) looked at MMP values exclusively on classified 
climbs. This approach, while potentially beneficial in certain 
circumstances, does require researchers to identify the key 
moments in races for analysis. While this may be possible 
for some events, such as a road race stage that starts out flat 
and concludes with a mountain top finish, it is not always 
possible to accurately identify the key moment in a race. A 
possible solution to this is to seek the input of athletes when 
identifying the key periods in the race. Whilst an attrac-
tive proposition, to the best of the authors’ knowledge this 
approach has not been used in published research.

As mentioned before, the major issue with MMP analysis 
is the uncertainty surrounding whether an effort was maxi-
mal in nature, and whether the MMP duration is equal to the 
effort duration. To counter this problem, the authors recom-
mend using power output values derived from formal test-
ing to provide a comparative measure to MMP values. This 
approach has particular benefits for coaches and practition-
ers as comparisons between MMP data and formal testing 
data can be used to monitor changes in the power profile; 
and if a rider records a MMP value which exceeds the pre-
diction from formal testing a new formal performance test 
can be scheduled. This is particularly useful when analysing 
performance in timed events where the in-competition power 
output and event duration can be compared to the theoreti-
cal power-duration relationship. This example highlights 
the importance of developing a power-duration relationship 
rather than simply using standard duration performance 
tests, as the likelihood of the test and competition durations 
being identical is low. For methodological issues surround-
ing the development of theoretical power duration relation-
ships please see the section ‘Deriving a power-duration 
relationship’ below.

Unfortunately, this approach (i.e. comparing MMP 
against a pre-established theoretical power-duration relation-
ship derived from prior formal testing) was only undertaken 

by a few research groups (Leo et al. 2020; Leo et al. 2021b; 
Nimmerichter et al. 2020; Quod et al. 2010). However, all 
research has shown good to very good agreement between 
power output values from formal testing and MMP values. 
Of particular interest is work by Leo and colleagues (2020, 
2021a) that shows the formal testing values are only predic-
tive of race performance for a 6-month period before formal 
re-testing is required.

Methodological issues

Thus far we have discussed methodological approaches in 
power profiling, however, there are also methodological 
issues that are pertinent to all approaches. Recorded power 
output values can be highly influenced by the topography of 
the event (Padilla et al. 2000, 2008; Sanders and Heijboer 
2019a), differences between single day and multi-day stage 
racing (van Erp and de Koning 2019; van Erp and Sanders 
2020; Lucía et al. 2003) and race category (Sanders and 
van Erp 2021). In professional road cycling race category 
was found to influence power output: higher power outputs 
over shorter durations (< 2 min) were reported in lower-
ranked races, and higher power outputs over longer durations 
(> 10 min) were observed in races with higher difficulty. 
Another important consideration when performing power 
profiling are environmental factors. Altitude, temperature, 
and humidity can all influence the power output athletes can 
produce. Therefore, from a research perspective the authors 
recommend that the environment and race conditions should 
be reported whenever possible.

Recent research has also shown that power profiling anal-
ysis conducted exclusively on either training or racing data 
produces different results in the same participants (Leo et al. 
2020). This is an important factor and further highlights 
the need to provide adequate information on the context in 
which any power profiling data were collected.

Finally, in competition settings, alongside the aforemen-
tioned issues surrounding team roles there is an influence of 
other team-mates and competitors on power output due to 
drafting, which lowers the power output requirement for a 
given speed (Ouvrard et al. 2018, van Druenen and Blocken 
2021). Research has also suggested that competition may 
influence the pacing strategy adopted by cyclists (Bossi et al. 
2018).

Deriving a power‑duration relationship

When power output is plotted against time to task failure 
(TTF) a consistent power-duration relationship emerges 
(Burnley and Jones 2018). The first researchers to math-
ematically describe this relationship were Monod and 
Scherrer (1965) who analysed muscle fatigue during static 
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and dynamic work (knee extension exercise) and created a 
mathematical model describing the hyperbolic relationship 
between completed work and TTF. Due to the strong scien-
tific evidence over decades (Burnley and Jones 2018; Jones 
et al. 2010; Poole et al. 2016) the power-duration relation-
ship can be considered to represent an integrative approach 
to the limits of tolerable exercise in humans.

From a physiological perspective the power-duration 
relationship is comprised of four distinct exercise intensity 
domains; namely, moderate, heavy, severe, and extreme 
(Burnley and Jones 2007), which are characterised by dis-
tinct whole-body physiological responses (Jamnick et al. 
2020; Vanhatalo et al. 2016; Whipp 1996). While a complete 
physiological background on the systemic and mechanistic 
bases of the power-duration relationship would be beyond 
the scope of this narrative review, interested readers are 
referred to the following review articles: Burnley and Jones 
(2018), Jones et al. (2010), Poole et al. (2016), Poole et al. 
(2021), Vanhatalo et al. (2016).

Various models are available to coaches and practitioners 
to model the power-duration relationship for use in power 
profiling (Sreedhara et al. 2019). However, most models only 

cover a specific section of the power-duration relationship 
(see Fig. 2).

Modelling power output in the extreme exercise 
intensity domain

Previous research (Bundle et al. 2003; Bundle and Wey-
and 2012; Weyand et al. 2006) has demonstrated that the 
anaerobic power reserve (APR) is capable of predicting 
short duration (< 3 min) power outputs within the extreme 
exercise intensity domain, where V̇O2max may not be attained 
before task failure occurs. The APR approach was initially 
developed in laboratory settings where the maximum aero-
bic power (MAP) recorded during a GXT and the maximal 
power an athlete can produce over one pedal revolution or 
over one second (Pmax) are used as parameter inputs. How-
ever, Sanders et al. (2017, 2019b) developed a field testing 
method where 3 min MMP can be used as a surrogate for 
MAP. In this approach the time constant (k), which can be 
defined as the rate of the exponential decline in power out-
put (i.e. the reciprocal of the corresponding time constant: 
k = 1/τ), can be varied between values of 0.024–0.027 to best 

Fig. 2   An illustration of the spectrum of physiological responses 
across the power-duration relationship using arbitrary power output 
values. Pmax 1 s peak power, W′ work above critical power, CP criti-
cal power, LT lactate threshold, GET gas exchange threshold, APR 

anaerobic power reserve model, 2-P CP two-parameter critical power 
model, 3-P CP three-parameter critical power model, P&T Peronnet 
and Thibault Model, OmPD omni power duration model
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fit the MMP data. This allows for an individualisation of the 
power-duration relationship modelling, which may provide 
a better fit (Sanders and Heijboer 2019b) [see sample data 
in Fig. 3 and Table 1 (Eq. 1)].

Alongside the APR model, power output in the extreme 
exercise intensity domain can also be predicted using the 
three-parameter critical power (3-P CP) (Morton 1996), the 
Peronnet and Thibault model (P&T) (1989) and Puchow-
icz’s omni power duration model (OmPD) (Puchowicz et al. 
2020). It should be noted that in the P&T model, Pmax is pro-
vided as a parameter estimate, whereas in the APR model, 

3-P CP model and the OmPD model Pmax is required as an 
input parameter. These different modelling approaches con-
siderably influence power output predictions in the extreme 
exercise intensity domain (see Fig. 4).

Modelling power output in the severe exercise 
intensity domain

Multiple approaches based on the CP concept have been 
proposed to predict power outputs within the severe exercise 
intensity domain. Although all CP models are equivalent 
from a mathematical perspective (i.e. they can be derived 
mathematically from one another) they produce different sta-
tistical parameter estimates for CP and work above CP (W′) 
(Jones et al. 2010; Muniz-Pumares et al. 2019), and there-
fore slightly different predictions within the severe exercise 
intensity domain; particularly at the extremes of the domain. 
The 3-P CP model (Morton 1996) aimed to overcome these 
limitations for short duration power outputs toward the upper 
end of the severe and into the extreme exercise intensity 
domain by incorporating Pmax as a model parameter, but it 
still overestimates power outputs in the moderate exercise 
intensity domain (see Fig. 4).

Modelling power output below the critical power

The CP represents the theoretical asymptote of the power-
duration curve, suggesting that a given power output is infi-
nitely sustainable. However, this is clearly not the case for 
real-world performances where exercise at the CP is limited 
to 20–40 min (Poole et al. 2016). For this reason, previ-
ous research (Peronnet and Thibault 1989; Puchowicz et al. 
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Fig. 3   Sample data for the anaerobic power reserve model, black 
dots—record power output over 5, 10, 15, 30, 60, 90, 120 and 150 s 
durations; horizontal black dashed line:—anaerobic power reserve; 
green, blue and red dashed lines representing the power duration 
curve with the rate constant (k) of the exponential decline in power 
output (k = 0.024, k = 0.026, k = 0.027) according to Sanders and Hei-
jboer (2019b)

Table 1   Power-duration models corresponding to the respective exercise intensity domains

Equation 1: P(t) power output, P(3-min) 3 min field test, P(max) 1 s peak power, e base of the natural logarithm (2.718), k the rate constant of the 
exponential decline in power output, t time in seconds
Equation 2: t time in seconds, Wʹ work above critical power, P power output, CP critical power, P(max) 1 s peak power
Equation 3: P(t) power output, Wʹ work above critical power, CP critical power, t time in seconds
Equation 4: Pmap(t) power output at maximum aerobic power, MAPTTF time to task failure at maximum aerobic power, t time in seconds, A rep-
resents a fixed constant for the decline in power output over time, Ln natural logarithm to the base of e (2.718)
Equation 5: P(t) power output, Wʹ work above critical power, CP critical power, t time in seconds, CPTTF time to task failure at critical power, A 
represents a fixed constant for the decline in power output over time, Ln natural logarithm to the base of e (2.718)

Exercise intensity domains Model Equation

extreme Anaerobic power reserve P(t) = P(3−min) +
(

P(max) − P(3−min)

)

× e(−k×t)(1)
extreme and severe 3-parameter critical power model t =

W �

P−CP
+

W �

CP−Pmax

 (2)
Severe 2-parameter critical power model P(t) =

W �

t
+ CP (3)

extreme, severe and heavy Peronnet and Thibault model Pmap(t) = MAP − A × Ln
(

t

MAPTTF

)

; t > MAPTTF (4)
Omni power duration model P(t) =

W �

t
×

(

1 − e
−t×

Pmax−CP

W�

)

+ CP; t ≤ CPTTF

P(t) =
W �

t
×

(

1 − e
−t×

Pmax−CP

W�

)

+ CP − A × Ln
(

t

CPTTF

)

; t > CPTTF

(5)
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2020) has suggested an exponential decay term below the 
CP to predict power outputs in the heavy exercise intensity 
domain (see Fig. 2 and Eqs. 4 and 5). However, these decay 
terms are not necessarily routed in the underlying physiol-
ogy of fatigue in the heavy and moderate exercise intensity 
domains (see Black et al. (2017), Clark et al. (2019) and 
Amann (2011) for overviews of possible fatigue mecha-
nisms at these intensities). They do however represent the 
best models to date for estimating exercise tolerance below 
the CP (see equations in Table 1).

Choosing a modelling approach

The authors recommend that coaches and practitioners refer 
to the physiological demands of a given discipline or train-
ing modality to guide their choice. They should then select 
the model that best predicts the power-duration relationship 
across the range of intensities in which athletes will train and 
race. For example, the two-parameter CP model (Moritani 
et al. 1981; Whipp et al. 1982) overestimates both short- 
and long-duration power outputs outside the severe exer-
cise intensity domain (see Fig. 4), thus potentially limiting 
its utility. To give some practical examples; power outputs 
in the team sprint falls exclusively in the extreme exercise 
intensity domain, whereas power outputs in the individual 
pursuit falls within both the extreme and severe exercise 
intensity domains (Gardner et al. 2005). In road cycling a 
large proportion of the power output falls within the heavy 
and moderate exercise intensity domains (van Erp and de 

Koning 2019); however, power outputs in the extreme and 
severe exercise intensity domains are more important in 
predicting race performance (Menaspà et al. 2017). Longer 
duration (ultra) endurance events, for example, ironman dis-
tance triathlons (Laursen 2011) or the ‘Race Across Amer-
ica’ (Hulton et al. 2010) fall within the moderate exercise 
intensity domain, as do extensive training sessions in cycling 
or triathlon (van Erp et al. 2020b; Laursen 2011). A differ-
ent modelling approach may be required for each of these 
examples.

Interestingly some of the aforementioned models are able 
to predict exercise tolerance in multiple exercise intensity 
domains. Whilst there is a considerable body of evidence 
indicating that the physiological responses in each exercise 
intensity domain is unique (Burnley and Jones 2007), it 
should be noted that most research is derived from exer-
cise intensities that are not in close proximity to the thresh-
olds that define a given exercise intensity domain. Work 
by Pethick and colleagues (2020) looking at responses in 
proximity to the critical torque (CT) during isolated knee 
extension exercise, a proxy for CP, showed that above the 
CT participants displayed physiological responses consist-
ent with the severe exercise intensity domain. Likewise, 
slightly below the CT physiological responses associated 
with the heavy exercise intensity domain were recorded. 
Another pertinent example is that research has shown that 
although the V̇O2 slow component is a defining characteris-
tic of the heavy exercise intensity domain, a variant of the 
slow component, albeit smaller in magnitude, also occurs in 
the moderate exercise intensity domain (Davies and Thomp-
son 1986). Whilst a proportion of the change in V̇O2 uptake 
may be due to a shift in substrate utilisation, this change 
wouldn’t account for the entire increase in V̇O2, suggesting 
altered or additional muscle recruitment (Burnley and Jones 
2018). Together, these findings suggest that rather than each 
exercise intensity domain inducing distinct physiological 
responses, there is instead a spectrum of responses across the 
power-duration relationship (see Fig. 2). Indeed, this would 
explain why the power-duration curve is smooth in nature 
and doesn’t contain ‘turn-points’ as would be expected if 
the thresholds between exercise intensity domains were 
indeed ‘hard’ in nature. It may also explain why some of 
the aforementioned models are able to predict exercise toler-
ance across intensities in multiple exercise intensity domains 
(Fig. 2 and Table 1).

Combining laboratory and field testing

Both laboratory and field testing have been used in isola-
tion and in conjunction with each other to investigate physi-
ological and performance capacity in cycling (Gardner et al. 
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2007; Jobson et al. 2009; Jones and Vanhatalo 2017; Lucia 
et al. 2001; Paton and Hopkins 2001).

In cycling, the most commonly reported measures from 
laboratory testing include peak power output from sprint-
ing or graded incremental exercise tests, V̇O2max, % V̇O2max, 
MAP, fractional utilization of MAP, first and second lactate 
or ventilatory thresholds, maximum lactate steady state and 
cycling efficiency (Laurent et al. 2007; Lucia et al. 2000; 
Mujika and Padilla 2001). Although good agreement exists 
between some of these laboratory measures and cycling per-
formance, none of the aforementioned physiological vari-
ables can be used to create a power-duration relationship 
as recommended by the authors for the purposes of power 
profiling.

As demonstrated before, a critical component of the 
power-duration relationship is the border between the 
heavy and severe exercise intensity domains; power outputs 
at which a steady state can and cannot be achieved (Poole 
et al. 2016; Poole et al. 1988). The physiological bound-
ary between these domains has been most associated with 
endurance performance (Burnley and Jones 2007; Poole 
et al. 1988). For a long time, the maximum lactate steady 
state (MLSS) was considered as the gold standard for this 
boundary (Billat et al. 2003; Keir et al. 2015; Kilding and 
Jones 2005). However, recent work (Galán-Rioja et al. 2020; 
Jamnick et al. 2020; Jones et al. 2019; Nixon et al. 2021) has 
suggested that CP better estimates the maximal metabolic 
steady state, the highest power output where a steady state 
in the oxygen uptake ( V̇O2) response can still be observed, 
despite increasing blood lactate values (Bräuer and Smekal 
2020). There is still some debate as to which method (if any) 
is superior for differentiating between metabolic steady state 
and non-steady state exercise, and whether both MLSS and 
CP can actually be used interchangeably (Jones et al. 2019; 
Keir et al. 2015; Nixon et al. 2021; Poole et al. 1988).

In applied settings, it has been suggested that an alter-
native approach, namely the functional threshold power 
(FTP), can be used as a surrogate for the maximal meta-
bolic steady state: (Mackey and Horner 2021). FTP was 
first described as the cycling power output that can be sus-
tained for one hour in a “quasi physiological steady-state” 
(Bassett et al. 1999; Coggan 2003; Mackey and Horner 
2021). FTP is therefore a surrogate of the 60 min MMP. 
It has been proposed that FTP can also be predicted either 
by taking 95% of the power output in a 20-min maximal 
field test (Borszcz et al. 2018; Morgan et al. 2019; Valen-
zuela et al. 2018) or by taking 90% of the power output 
in a 8-min maximal field test (Sanders et al. 2020); the 
former being commonly used (Valenzuela et al. 2018). In 
contrast to CP and MLSS, where multiple determination 
trials are required, FTP can be predicted from a single trial 
and is, therefore, less time consuming. This time efficient 
approach may explain why the concept has been widely 

adopted in cycling (Mackey and Horner 2021). However, 
whilst CP and MLSS can be considered as estimates of the 
maximal metabolic steady state (Keir et al. 2015; Poole 
et al. 1988), this cannot be confirmed for FTP (Morgan 
et al. 2019). Whilst both MLSS and FTP are single-param-
eter estimates, the CP concept can be used to predict TTF 
for a range of power values within the severe exercise 
intensity domain and provides an estimate of the border 
between metabolic steady state and non-steady state exer-
cise. The same cannot be said for either MLSS or FTP, 
which can only predict a single point on the power-dura-
tion relationship, or a border between exercise intensity 
domains, but not TTF for a range of power output values.

Physiologically speaking, CP has been shown to represent 
the highest power output at which there is no progressive 
derangement in the muscle metabolite milieu (Burnley and 
Jones 2018); however, instead of a ‘hard’ border, the CP 
represents a phase transition between the heavy and severe 
exercise intensity domains (Pethick et al. 2020). Mitchell 
and colleagues (2018) also reported a strong relationship 
between CP and muscle capillary density, underpinning the 
aerobic component of CP. Similarly, Vanhatalo et al. (2016) 
demonstrated that CP was strongly associated with the per-
centage of highly oxidative type I muscle fibres. Above CP, 
in the severe exercise intensity domain a non-metabolic 
steady state occurs, characterized by a reduction in intra-
muscular creatine phosphate stores, continuously increasing 
concentrations of inorganic phosphate, hydrogen ions and 
blood lactate, which are all associated with a reduced con-
tractile function of the working muscle (Allen et al. 2008; 
Burnley and Jones 2007, 2018; Jones et al. 2010; Poole et al. 
2016, 1988).

Although a strong relationship exists between FTP and 
CP estimates (Denham et al. 2020; Karsten et al. 2020; Mor-
gan et al. 2019, Mackey and Horner 2021), and FTP and 
MLSS (Borszcz et al. 2019), the cited studies have demon-
strated that the limits of agreement between parameters are 
too large for them to be used interchangeably. This ques-
tions the relevance of FTP (Borszcz et al. 2018; Karsten 
et al. 2020; Morgan et al. 2019; Valenzuela et al. 2018). 
Furthermore, Borszcz and colleagues (2018) demonstrated 
that the 95% of 20 min power output overestimates 60 min 
power output, and recommended that 20 min power output 
alone should be used for training prescription and perfor-
mance monitoring, rather than trying to make estimates 
of 60 min power output (i.e. FTP). After all, both 20 and 
60 min power output are arbitrary in nature. However, whilst 
FTP might represent an arbitrary value, rather than a physi-
ological threshold, it may still have practical utility in terms 
of informing the training process (Valenzuela et al. 2018). 
However, to the best of the authors’ knowledge no studies 
exist that compare performance outcomes when prescribing 
training based on different concepts, i.e. FTP, CP and MLSS.
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That said, for the reasons outlined above the authors 
consider CP the most useful concept in terms of deriving a 
power-duration relationship, and therefore recommend the 
use of the CP concept in the field of power profiling.

Deriving the parameters of power‑duration 
modelling

There is currently no consensus on how best to derive the 
parameters that are needed to model the power-duration rela-
tionship; namely Pmax, CP and W′. Likewise, there is consid-
erable debate on which mathematical model should be used 
to derive CP and W′ (Maturana et al. 2018; Muniz-Pumares 
et al. 2019; Nimmerichter et al. 2020).

Traditionally, performing three to five prediction trials 
between 2 and 15 min of duration (Karsten et al. 2015; Mat-
urana et al. 2018; Muniz-Pumares et al. 2019) allows CP and 
W′ to be derived through weighted least square or geometric 
mean linear and nonlinear regression analysis (Vinetti et al. 
2017; Vinetti et al. 2020). Prediction trials shorter than 2 min 
do not ensure the attainment of V̇O2max (i.e. they fall outside 
the severe intensity domain) (Hill and Smith 1994; Maturana 
et al. 2018; Muniz-Pumares et al. 2019; Nimmerichter et al. 
2020), while prediction trials longer than 15 min are not 
recommended due to the influence of glycogen depletion and 
psychological factors (i.e. motivation) (Karsten et al. 2015; 
Maturana et al. 2018). To avoid any skewness during the 
mathematical modelling and reduce errors in the calculation 
of CP and W′ the shortest prediction trial should last between 
2 and 5 min and the longest prediction trial between 12 and 
15 min (Karsten et al. 2015; Maturana et al. 2018; Muniz-
Pumares et al. 2019). Inter-trial recovery between prediction 
trials should be set to a minimum of 30 min during a single 
visit or 24 h during multiple days (Karsten et al. 2017). The 
benefit of multiple days if that any fatigue induced by the 
initial prediction trial does not affect the subsequent one, but 
possible error due to day-to-day variation in power output 
is introduced.

Once the performance trials have been completed the 
respective power output and trial duration values can be 
used to derive CP and W′. Computing CP and W′ estimates 
from a nonlinear two- or three-parameter models requires 
access to statistical software to perform a weighted least 
square or geometric mean regression analysis (Vinetti 
et al. 2017, 2020). To simplify this process for coaches 
and practitioners there are two options available to lin-
earize the hyperbolic power-duration relationship (see 
Fig. 5). Practitioners can either use a) the linear work time 
CP model (see Eq. 3 and Fig. 5c or b) the linear power 
inverse of time CP model (see Eq. 3 and Fig. 5b), where 
CP and W′ can be derived as the slope and intercept of 
the linear relationship (Clarke and Skiba 2013; Sreedhara 

et al. 2019). All mathematical models from Fig. 5 provide 
a high accuracy for the model fit, but there is a possibility 
that the power-duration parameter estimates (CP and W′) 
diverge somewhat depending on which fitting method is 
used (Muniz-Pumares et al. 2019). As a result, Hill (1993) 
suggested that the best fit mathematical model could be 
more objectively selected, where the model producing the 
lowest standard error of the estimate (SEE) should be the 
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preferred way to derive CP (Hill 1993; Muniz-Pumares 
et al. 2019).

CP and W′ parameter estimates can also be derived using 
only two prediction trials (Parker Simpson and Kordi 2017). 
While this can be seen as a time-efficient testing protocol, 
the limitation of this approach is that the linear relation-
ship always results in a perfect fit (R2 = 1.0). In addition, no 
parameters for the goodness of fit (i.e., SEE) can be derived. 
Therefore, it is recommended to use at least three prediction 
trials to ensure a low standard error for CP (2–5%) and W′ 
(< 10%) (Black et al. 2016; Dekerle et al. 2015). Performing 
three prediction trials and using a two-parameter CP model 
to fit the data results in one degree of freedom. For instance, 
a standard error of 5 W for a cyclist with a CP of 385 W 
would then need to be multiplied by 12.7 to calculate the 
95% confidence limits (± 64 W) in both directions. Adding a 
fourth prediction trial would reduce the CP standard error to 
3 W and the 95% confidence limits (± 38 W) thus improving 
the CP predictive ability.

The 3-min all out test has also been proposed as a more 
time efficient way to derive CP and W′ (Vanhatalo et al. 
2007, 2008). The principal assumption in this test is that W′ 
or more accurately WEP (work above end test power) as it is 
known in this test, is fully depleted within the first 150 s and 
therefore during the last 30 s only CP (end test power) can 
be sustained. Despite showing good reliability and validity 
compared with traditional CP testing in some circumstances 
(Wright et al. 2017), other research in elite cyclists shows 
significantly higher CP estimates are derived from the 3-min 
all out test than traditional protocols (McClave et al. 2011) 
which can lead to overestimation of performance capacity 
in the severe exercise intensity domain (Nicolò et al. 2017). 
This finding brings into question whether the 3-min all out 
test can be used in the field of power profiling.

In some power-duration models (see Table 1) Pmax is 
an additional input parameter when modelling the power-
duration relationship. Extensive research (Douglas et al. 
2021; Driss and Vandewalle 2013; McCartney et al. 1983, 
1985) was conducted on the assessment and mechanisms of 
Pmax in cycling (Sargeant et al. 1981). Assessing Pmax in the 
laboratory or field settings requires a thoughtful reflection 
on testing protocols. Recent research used the highest 1 s 
power output within 4 s, 10 s and 15 s sprints to derive Pmax 
(Driss and Vandewalle 2013; Ferguson et al. 2021; Gardner 
et al. 2007; Sanders and Heijboer 2019b). If efforts longer 
than 10 s are used Pmax could be negatively influenced as the 
cyclist may apply a pacing strategy (Driss and Vandewalle 
2013; Gardner et al. 2007). Practitioners should also be 
aware of a “learning effect” during all-out sprint efforts, and 
it is therefore recommended that adequate familiarization is 
undertaken prior to formal testing of Pmax. Additional impor-
tant factors to consider when testing Pmax in a laboratory 
setting are; the torque factor setting (Forbes et al. 2014) and 

whether the expected Pmax is within the range of validity of 
the power measuring device. For example, a commercially 
available smart trainer is only valid up to 700 W, which is 
much lower than the expected Pmax for some populations 
(Zadow et al. 2016).

Ecological validity

Cadence, body position as well as topography, i.e. level 
ground or uphill conditions, have also been shown to influ-
ence model parameter estimates due to different biomechani-
cal recruitment patterns (Bertucci et al. 2005; Kordi et al. 
2019; Nimmerichter et al. 2012). Therefore, rider specializa-
tion (for example climber vs. time trial specialist) and race 
demands (uphill vs. flat, on-road vs. off-road, etc.) need to 
be considered in the selection of testing environments (Nim-
merichter et al. 2012). The testing conditions should mirror 
the conditions in which athletes are expected to perform. 
For example, it is recommended that time trial specialists 
perform prediction trials on a time trial bike on level ground, 
while climbing specialists conduct testing in uphill condi-
tions on a road bike.

Previous research has also investigated whether time 
trials or TTF trials should be favoured as prediction trials 
(Coakley and Passfield 2018; Karsten et al. 2018). Tradi-
tionally, TTF trials have been based on a fixed percentage 
(i.e. 80–105%) of the power output in a GXT. The main 
limitation with this approach being that inter-individual dif-
ferences could influence the trial duration (Jamnick et al. 
2020). In contrast, maximum effort time trialling requires a 
high level of pacing ability and may therefore only be suit-
able for use with experienced cyclists (Karsten et al. 2018). 
However, time trials are inherently easier to perform in field 
settings, as Simpson and Kordi (2017) have shown a particu-
larly time-effective protocol using time trials in elite athletes 
can produce valid CP and W´ estimates. However, in less 
trained participants higher power output values have been 
reported in TTF trials resulting in higher CP and W´ estima-
tions (Coakley and Passfield 2018).

As mentioned above, environmental factors should be 
considered whenever performing any formal testing. Testing 
conditions during formal testing should therefore aim to mir-
ror as closely as possible the competition settings to ensure 
environmental validity. To illustrate this point, CP has been 
shown to decline significantly as altitude increases, while 
W′ only decreased above 4.000 m of altitude (Townsend 
et al. 2017); heat and humidity have been shown to influ-
ence power outputs in formal testing (Racinais et al. 2015).

Previous research also investigated the influence of 
cadence on time trial performance and power-duration 
parameter estimates. While CP estimates were higher at 
cadences 60 vs. 100 revolutions per minute in recreation-
ally trained individuals (Barker et al. 2006; Carnevale and 
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Gaesser 1991), no statistically significant differences in 
physiological determinants (gross efficiency, energy turno-
ver) were reported at cadences between 80 vs. 100 revolu-
tions per minute in elite cyclists during cycling time trials 
(Foss and Hallén 2005). Although higher power outputs can 
be achieved at lower cadences, elite cyclists tend to prefer 
higher cadences around ~ 90 revolutions per minute despite 
reductions in cycling efficiency.

Agreement between modelled 
power‑duration relationship and MMP 
values

Good agreement between CP estimates derived from for-
mal testing and MMP values has been reported (Leo et al. 
2020, 2021a; b; Nimmerichter et al. 2020; Quod et al. 2010). 
While a good agreement between CP derived from formal 
testing and racing has been shown, the same cannot be 
confirmed for W′. Both Leo et al. (2020) and Karsten et al. 
(2015) reported low agreement between W´ derived from 
formal testing and MMP data. This low agreement may be 
due to cyclists not performing maximal efforts in race situ-
ations apart from very specific circumstances (i.e., during 
time trials or at the finish of races). If cyclists were to fully 
deplete W´ in any other circumstance (i.e. uphill mountain 
finish, lead out or tine trial), there is a chance that they may 
subsequently not be able to match the power requirement to 
follow the peloton. These scenarios have direct implications 
on the recorded MMP values thereafter, as they are not as 
high as the MMP values recorded earlier in the race (Leo 
et al. 2021b). Thus, these efforts are not being captured via 
basic MMP analysis per se.

Good agreement has been reported between power out-
puts predicted by the APR model and race-derived MMP 
data for short duration power outputs (< 2 min) in profes-
sional male cyclists (Sanders et al. 2017; Sanders and Heij-
boer 2019b). However, only limited research exists to verify 
if this approach could also be applied to other populations.

Future directions

Although many approaches concerning power profiling have 
been developed in the literature, it remains unclear which 
approach provides the greatest insight. Arguably, the most 
convenient way for practitioners to create a power profile 
would be to retrospectively use field derived MMP data 
from training and racing over pre-defined durations (Ebert 
et al. 2005; Menaspà et al. 2017; Sanders and van Erp 2021; 
Vogt et al. 2007b). Although this kind of data may provide 
valuable insights into racing demands in highly trained 
cyclists, little information can be retrieved in terms of the 

power-duration relationship due to the arbitrary selection of 
MMP values.

Deriving a comparative measure allows longitudinal 
analysis: for example, if a rider records a MMP value in 
racing which exceeds the prediction from formal testing, 
practitioners can use that information to monitor changes 
in the power profile. However, deriving W´ from racing or 
field testing has shown poor predictive ability (Karsten et al. 
2015; Leo et al. 2021a) questioning the practical utility of 
W′ for power profiling purposes. When creating a theoreti-
cal power-duration curve from formal testing, care should 
be taken that the appropriate models are used. For example, 
application of the CP concept outside the severe exercise 
intensity domain involves an overestimation in short MMP 
(< 2 min) ability and long duration MMP (> 40 min) sus-
tainability. For this reason, the APR model provides a use-
ful concept to predict the power-duration relationship in the 
extreme exercise intensity domain.

While the power-duration relationship in the severe exer-
cise intensity domain has been well investigated based on 
the CP concept (Jones et al. 2010; Poole et al. 2016), limited 
research exists on deriving the power-duration relationship 
in the moderate and heavy exercise intensity domains (Black 
et al. 2017). Hence Puchowicz et al. (2020) and Peronnet 
and Thibault (1989) proposed mathematical models with an 
aerobic decay term, but limited research exists to assess if 
these concepts have a high predictive ability for the power-
duration relationship in the moderate and heavy exercise 
intensity domains in relation to the muscle bioenergetic sys-
tem (Korzeniewski 2019; Korzeniewski and Rossiter 2020, 
2021; Vanhatalo et al. 2016).

Recent work (van Erp et al. 2021b; Leo et al. 2021b) has 
shown a reduction in MMP values as prior work increases. 
However, future research is needed to better understand the 
mechanisms which lead to alterations in the power-dura-
tion due to fatigue, especially the influence of the exercise 
intensity and if work in different exercise intensity domains 
induce the same degree of downward shift in the power-
duration curve. This is important as improved performance 
capacity, i.e. smaller alterations in the power-duration rela-
tionship, has been positively related to race success (van Erp 
et al. 2021b; Leo et al. 2021b).

In the era of big data science a novel approach intro-
duced by Puchowicz (2018) on the Golden Cheetah open 
data project (Liversedge 2020) could provide novel insights 
into power profiling. Functional principal component anal-
ysis (FPCA) enables an in-depth view of the components 
of variability in MMP data between cyclists via eigenfunc-
tions which classify riders on their phenotype (sprinter vs. 
climber) and performance level. Currently, however, the use 
of FPCA for the purposes of power profiling still requires 
adequate scientific validation before any potential findings 
can be applied by coaches and practitioners.
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Practical recommendations in applied 
settings

Based on the current literature and the authors’ experience 
conducting power profiling in applied settings, the fol-
lowing recommendations can be made as a starting point 
for coaches and practitioners: to derive the parameters 
to model a power-duration curve a formal test protocol 
should include one sprint effort (i.e. ~ 10–15 s) and at least 
three maximum efforts between 2 and 15 min (Karsten 
et al. 2015; Leo et al. 2021a; Muniz-Pumares et al. 2019; 
Sanders and Heijboer 2019b). These efforts can be com-
pleted in a single testing session, though it is recom-
mended to divide field testing into two sessions over two 
consecutive days. The order of efforts should preferably be 
randomized for scientific research or follow the cyclist’s or 
coach’s individual preference in applied settings. Inter-trial 
recovery between efforts should be set to a minimum of 
30 min of active recovery (< 2 rating of perceived exer-
tion) (Karsten et al. 2017). CP and W′ should be derived by 
the non-linear two-parameter CP model (Muniz-Pumares 
et al. 2019), while Pmax should be referred to the 1 s peak 
power during the ~ 10–15 s sprint effort (Sanders and Hei-
jboer 2019b). This protocol will allow coaches and practi-
tioners to derive valid Pmax, CP and W′ estimates. Coaches 
can then choose the best modelling approach based on the 
exercise intensity domain(s) that are important for race 
analysis and training prescription in a given discipline.

Power meters should be verified for accurate and reli-
able measurement and a zero-offset or re-calibration 
according to the manufacturer’s recommendations is 
recommended.

The authors do not recommend using single effort field 
tests (i.e. 8 min or 20 min TT) to derive the FTP estimate 
because it lacks physiological background and only rep-
resents a single point on the power-duration curve. Nor 
do they recommend the use of the 3- min all-out test as 
this may lead to an overestimation of the power-duration 
relationship in the severe exercise intensity domain.

To increase the ecological validity of power profiling 
we recommend a careful selection of the power-duration 
modelling approach, based on biomechanical and physi-
ological principles. Standardized laboratory and field test-
ing should be conducted in line with performance analysis 
from training and racing to increase the practical utility of 
performance prediction and training related consequences.

In addition, any formal testing should consider the envi-
ronmental and topographical conditions in which the power 
profile information is to be applied in. Therefore, the dura-
tion of the effort, gradient, inter-trial recovery, rider type 
specialization (climbers vs. flat specialist) and race demands 
(climb vs. time trial) should be replicated as best possible.

Collectively, power profiling provides an advanced 
opportunity for performance modelling based on power 
output data from training and racing in combination with 
traditional laboratory and field-testing methods to maximize 
cycling performance.
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