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Abstract
Main conclusion Plastoglobules are ubiquitous under non-stress conditions and their morphology, closely related to 
their composition, changes differently depending on the specific stress that the plant undergoes.

Abstract Plastoglobules are lipoprotein structures attached to thylakoid membranes, which participate in chloroplast metabo-
lism and stress responses. Their structure contains a coating lipid monolayer and a hydrophobic core that differ in composi-
tion. Their function in chloroplasts has been studied focussing on their composition. However, we currently lack a compre-
hensive study that quantitatively evaluates the occurrence and morphology of plastoglobules. Following a literature search 
strategy, we quantified the main morphological attributes of plastoglobules from photosynthetic chloroplasts of more than 
1000 TEM images published over the last 53 years, covering more than 100 taxa and 15 stress types. The analysis shows that 
plastoglobules under non-stress conditions are spherical, with an average diameter of 100–200 nm and cover less than 3% of 
the chloroplast cross-section area. This percentage rises under almost every type of stress, particularly in senescence. Inter-
estingly, an apparent trade-off between increasing either the number or the diameter of plastoglobules governs this response. 
Our results show that plastoglobules are ubiquitous in chloroplasts of higher plants under non-stress conditions. Besides, 
provided the specific molecular composition of the core and coat of plastoglobules, we conclude that specific stress-related 
variation in plastoglobules attributes may allow inferring precise responses of the chloroplast metabolism.
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Abbreviations
FBN  Fibrillin
nED  Normalised electrodensity
NPG  Number of PGs per chloroplast cross-section
PG  Plastoglobule
PCA  Principal component analysis

TEM  Transmission electron microscopy
ØPG  Diameter of individual PG
%Coat  Percentage of chloroplast cross-section area 

occupied by the total coat area
%Core  Percentage of chloroplast cross-section area 

occupied by the total core area
%PG  Percentage of chloroplast cross-section area 

occupied by the total PG area

Introduction

Since the first description of chloroplasts by Hugo von Mohl 
in 1837, the characterisation of the complex structure of 
these organelles has run in parallel with the advancements in 
microscopy (Staehelin 2003). In this endeavour, the defini-
tive milestone was the development of the electron micros-
copy in the 50s, a technique that allowed enough spatial 
accuracy to observe chloroplast ultrastructure at 1 Å resolu-
tion (for reviews on chloroplast ultrastructure, see: Staehelin 
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2003; Kirchhoff 2019). One of the structural features typi-
cally observed in these organelles are the plastoglobules 
(PGs). PGs are spherical lipoprotein particles found in plas-
tids, which are attached to thylakoid membrane zones of 
high curvature in chloroplasts (Austin II et al. 2006). Under 
TEM, PGs usually appear darker than the surrounding 
stroma because of their highly osmiophilic character. Until 
recently, they were considered as simple passive storage 
organelles (Lichtenthaler and Peveling 1967; Steinmüller 
and Tevini 1985; Kessler et al. 1999) and its presence was 
barely reported or quantified in ultrastructural studies. How-
ever, the characterisation of its proteome in 2006 revealed 
an unexpectedly active metabolic role (Vidi et al. 2006; 
Ytterberg et al. 2006). Since then, the physiological roles of 
PGs have been the subject of several reviews (Bréhélin and 
Kessler 2008; Eugeni Piller et al. 2012; Nacir and Bréhélin 
2013; Rottet et al. 2015; van Wijk and Kessler 2017; Wójto-
wicz and Gieczewska 2020; Michel et al. 2021).

The existence of PGs is a well-preserved trait across the 
evolution of photosynthetic eukaryotes (Lohscheider and 
Río Bártulos 2016). Thus, PGs have been spotted in all the 
branches of the evolutionary tree of oxygenic photosynthetic 
organisms, including, among others, chlorophytes (Holz-
inger et al. 2011a; Procházková et al. 2021), phaeophytes 
(Holzinger et al. 2011b), rhodophytes (Schmidt et al. 2012), 
cryptophytes (Laza-Martínez et al. 2012), diatoms (Bala-
murugan et al. 2017) and all groups of land plants. Even 
cyanobacteria present a type of lipid droplets in the cyto-
plasm that are comparable to eukaryotic PGs (van de Meene 
et al. 2006). However, for the sake of simplicity, in the pre-
sent study the term PGs will be used only to refer to those 
lipid bodies located in photosynthetically active eukaryotic 
chloroplasts, thereby excluding chromoplasts and cytosolic 
lipid droplets.

Plastoglobules are comprised of a surrounding lipid mon-
olayer coat and a hydrophobic core (Fig. 1). The PG metabo-
lome includes different types of lipids (Tevini and Steinmül-
ler 1985) that can be grouped in two main categories: (i) 
neutral lipids, which are stored in the hydrophobic core of 
the PG (Lundquist et al. 2013; Rodríguez-Concepción et al. 
2018) and (ii) amphipathic lipids, located in the surrounding 
lipid coat (Zbierzak et al. 2010; Rodríguez-Concepción et al. 
2018). Some of these metabolites result from the degrada-
tion or remodelling of thylakoids and photosynthetic appa-
ratus, while others are actively synthesised in the PGs (van 
Wijk and Kessler 2017). Among them, prenyl lipids [includ-
ing plastoquinone-9 (PQ-9), tocopherol, plastochromanol-8 
(PC-8) and phylloquinone] represent a large fraction in PGs 
(Steinmüller and Tevini 1985). These molecules have pro-
tective roles under stress conditions (Hussain et al. 2013; 
Havaux 2020), and some of them participate in the electron 
transport chain, as is the case of phylloquinone (Biggins 
et al. 1990) and plastoquinone-9 (Van Eerden et al. 2017). 

This pool of prenyl quinones could help maintaining the 
redox balance of the chloroplast through their mobilisation 
and exchange with the ones in the thylakoids as a rapid way 
of preventing photo-oxidative damage, as it has been already 
proposed for PQ-9 (Szymańska and Kruk 2010; Zbierzak 
et al. 2010).

The PG proteome is composed of approximately 30 core 
proteins and some others that are recruited under specific 
conditions (van Wijk and Kessler 2017). They are localised 
in the periphery of PGs, probably attached to the monolayer 
by hydrophobic domains (Ytterberg et al. 2006). Among 
them, some major functional groups can be identified (Lun-
dquist et al. 2012; Nacir and Bréhélin 2013): structural 
proteins, kinases, transporters and enzymes involved in the 
breakdown of carotenoids, chlorophyll and lipids, and in the 
biosynthesis of jasmonate, carotenoids and prenylquinones. 
Overall, PG metabolome and proteome can be integrated in 
four major physiological modules (Lundquist et al. 2012; 
Michel et  al. 2021): chlorophyll degradation, thylakoid 
remodelling, biosynthesis of prenylquinones and carotenoid 
metabolism. Within their proteome some of the identified 
proteins are: tocopherol cyclase (VTE1), involved in the bio-
synthesis of tocopherol and plastochromanol-8 (Porfirova 
et al. 2002; Vidi et al. 2006); NAD(P)H dehydrogenase C1 
(NDC1) that reduces the plastoquinone pool in PGs (Eugeni 
Piller et al. 2011); carotenoid cleavage dioxygenase (CCD4) 
implicated in carotenoid catabolism (Huang et al. 2009); 

Fig. 1  Structure and composition of a model plastoglobule. The 
external and amphipathic coating monolayer of lipids contains several 
proteins with relevant roles in chloroplast metabolism, as well as dif-
ferent components of thylakoid membranes. The hydrophobic internal 
core contains mostly neutral lipids, including some storage molecules 
such as triacylglycerol. ABC1K, activity of BC1 complex kinase; 
CCD4, carotenoid cleavage dioxygenase 4; FIB4, fibrillin 4; NDC1, 
NADP(H) dehydrogenase C1; PES, phytol ester synthase; VTE1, 
tocopherol cyclase
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and phytol ester synthase 1 (PES1) and 2 (PES2), which 
participate in the formation of phytyl ester derived from 
chlorophyll and of fatty acids derived from galactolipids 
(Lippold et al. 2012). In addition, it must be included the 
fibrillin family proteins (FBN), some of the most abundant 
proteins found in PGs that are considered to have a variety of 
biological functions, for instance structural proteins, associ-
ated with transport of metabolites or involved in response to 
stress (Singh and McNellis 2011). This turns PGs into key-
stones of chloroplast metabolic architecture, participating in 
several fundamental processes related to plant development 
and to environmental responses.

Several studies have described that the quantity and size 
of PGs increase in response to many types of environmental 
stresses (reviewed in Venzhik et al. 2019). This is for exam-
ple the case of temperature changes (Zhang et al. 2010), 
leaf senescence (Hörtensteiner 2006), salinity (Naidoo et al. 
2011), metal toxicity (El-Banna et al. 2019), pathogens 
(Raman et al. 2006), high light (Lichtenthaler et al. 1981) 
or desiccation (Pressel and Duckett 2010; Fernández-Marín 
et al. 2013). Such active involvement of PGs on the meta-
bolic response to stress relies on their diverse functional and 
metabolic roles, and so, several systemic responses to stress 
are somehow connected with the PG metabolic network. 
For example, the readjustment of light harvesting capacity, 
a widespread response to almost all types of environmental 
stress, is also connected to the PGs by their involvement 
in the biosynthesis of carotenoids (Rodríguez-Concepción 
et al. 2018), as well as in their catabolism or storage, particu-
larly during senescence and severe stress periods (Lippold 
et al. 2012; Espinoza-Corral et al. 2021).

As mentioned in the above paragraphs, a causal relation-
ship between environmental stress and PGs can be discerned 
by observational and functional approaches. Besides, PGs 
have also been found in chloroplasts from non-stressed 
plants where they perform essential metabolic activities 
(Bréhélin and Kessler 2008; Lundquist et al. 2013; Rottet 
et al. 2015). Despite these scattered evidences found in the 
literature, we currently lack a comprehensive study that 
quantitatively evaluates the occurrence of PGs and their 
attributes in chloroplasts of non-stressed plants, as well as 
the magnitude and trend of changes of these attributes under 
stress conditions. In this context, through the present litera-
ture survey, we aim to provide, from a morpho-functional 
perspective, a quantitative response to two basic questions: 
(1) What the PG average number and ultrastructural attrib-
utes in non-stressed chloroplasts are, and (2) whether and 
how (size and direction) these ultrastructural properties may 
change in response to different stress types. For that purpose, 
after a literature survey, we have quantitatively re-analysed 
more than 1000 TEM images published during the period 
1967–2019, covering a wide range of environmental stresses 
and phylogenetic groups.

Materials and methods

Data search and selection criteria

We conducted a systematic publication search in the data-
base Web of Science for studies measuring the effects of 
physical or biological stresses on the number and size of 
plastoglobules until the year 2019. The search terms used 
were: “plastoglob* AND (leaves OR leaf) AND article 
[Document Type] AND science/technology [Research 
Domains]”. 445 publications that met these criteria were 
individually pre-evaluated as potential candidates for 
review. Based on the information included in the abstract, 
only research articles in which the measurements were 
conducted on chloroplasts of photosynthetic tissues were 
included, excluding those focussing on other types of plas-
tids, such as fruit and floral tissues. With these restrictions, 
291 articles were finally used for data analysis. The search 
criteria employed in this study has probably overlooked 
many articles where PGs were analysed but not considered 
in the title or the abstract, as well as articles where the data 
were not presented as TEM images.

Data extraction and processing

In the articles evaluated for the present study, two sources 
of data were employed: (i) measured values were obtained 
after the analysis of TEM images, and (ii) reported val-
ues were collected on tables or graphs. The first source 
was used for the quantitative analyses while the second 
was used exclusively for data validation. For some arti-
cles, more than one dataset was obtained, depending on 
the number of species or stress type/intensity levels stud-
ied. The following criteria were used for excluding TEM 
images from processing and analyses: (i) less than 80% of 
the chloroplast surface was visible, and (ii) the image con-
trast and resolution was not enough to delimitate PGs from 
the background. In turn, whenever a single image showed 
several chloroplasts, a maximum of four representative of 
the sample were selected for the analysis. This prevented 
an overrepresentation of single biological replicates. All 
images from the articles were analysed with ImageJ 1.5 
software (Wayne Rasband, National Institutes of Health, 
Bethesda, MD, USA). To calculate sizes/areas, we meas-
ured the number of pixels and transformed them into μm, 
based on the original scales provided by the authors in the 
figures. Moreover, the mean grey value obtained by the 
software was used for electron density estimation.

From the TEM images present in the selected arti-
cles (examples of different PGs found during the study 
are shown in Supplementary Fig. S1), we measured the 
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following parameters: chloroplast cross-section area (CA), 
PGs total area, number of PGs per chloroplast cross-sec-
tion (NPG), the area occupied by starch granules, level 
of aggrupation of the PGs, PGs mean grey value and 
vacuole mean grey value (as background reference). The 
analysis of the level of aggrupation was estimated count-
ing the number groups of PGs per chloroplast, consider-
ing a group those where more than two PGs were close 
enough to be connected with each other. The raw data 
were further processed to obtain the area and diameter of 
individual PGs (ØPG), the percentage of chloroplast area 
(calculated as: Chloroplast cross-section area − Starch 
granules area) occupied by PGs total area (%PG) and the 
normalised electrodensity (nED), calculated as: (refer-
ence mean grey value − PGs grey mean value)/reference 
mean grey value × 100. Furthermore, assuming the thick-
ness of the lipid coat to be 3 nm, the relative areas of the 
coat and the core were calculated. From these areas, we 
obtained the percentage of the chloroplast area (obtained 
as in %PG) occupied by the total area of each part (from 
now on referred to as %Core for the core and %Coat for 
the coat), as well as the ratio between them, obtained as: 
%Core/%Coat. For those photographs in which the scale 
was not reported, only the %PG and the nED were cal-
culated. Finally, the obtained data were re-checked to 
remove any unusual or erroneous values generated by 
image analysis. For this, a box-plot diagram was gener-
ated and all the outliers in each category were individually 

reconsidered. A datum was considered as an outlier when 
its value was more than 1.5 times the interquartile range 
(IQR) above the third quartile or below the first quartile 
(Tukey’s method).

Aside from image analyses, from each publication, the 
following information was collected: analysed species, 
type of tissue, applied stress and growth conditions (tem-
perature, photosynthetic photon flux density (PPFD) and 
photoperiod). All the data obtained in the study can be 
found in the supplementary material.

The extracted data were categorised as “non-stress” or 
“stress” conditions following the criteria of the original 
authors. Within each article, different stress treatments 
were considered individually and hereafter referred to 
as cases. In the articles where a non-stress was not indi-
cated by the authors, all the conditions were considered 
as stress. Based on the details provided in the article, we 
classified all stresses in 16 types (all of them are enumer-
ated in Fig. 2 and the most common explained in Supple-
mentary Table S1). In the present study, we have grouped 
all the treatments considered as “stress factors”. Among 
them, senescence was also considered a stress even though 
sensu stricto it is not an experimental condition because 
it strongly affects plant function. Further processing of 
the data consisted of two separate analyses: (i) a charac-
terisation of PGs attributes under non-stress conditions, 
for which, we analysed non-stress data only, and (ii) an 
assessment of the changes in PGs attributes undergone 

Fig. 2  Summary of taxons and 
stresses covered in this quantita-
tive review. a Distribution of the 
analysed articles according to 
the taxonomic group. b Distri-
bution of the analysed articles 
according to the stress type, 
as described by the authors. In 
panel a, the values in parenthe-
ses indicate the number of spe-
cies of the quantitative review 
that corresponds to each group
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under stress conditions, for which, the effect size (ES) was 
measured as follows:

where X is the mean of the values obtained from all the 
chloroplast analysed for a determined stress ( X

Stress
) or non-

stress condition ( X
Control

 ). When only stress conditions were 
reported in an article, the lower stress intensity value was 
identified and considered as the non-stress for applying this 
equation.

Statistical analyses

The difference in the response between non-stress and stress 
conditions was analysed using Kruskal–Wallis test. Normal-
ity was checked with Shapiro tests. Homogeneity of vari-
ances was checked with Levene’s test. When the homogene-
ity of variances was not fulfilled, data were analysed using 
generalised least squares (gls) and general linear hypothesis 
(glht) as a post hoc. The relationship between data presented 
in tables and data obtained from figures was analysed using 
a linear regression. The correlation of the data was meas-
ured by Kendall correlation coefficient, and the slopes of 
the lineal regression and the hypothetical 1:1 relation were 
compared using the least-square method. All the analyses 
were performed with the statistical programming environ-
ment R 4.0.3 (R Core Team 2018), using the car (v3.0–10; 
Fox and Weisberg 2019), the multcomp (Hothorn et al. 2008) 
and the lsmeans (v2.30–0; Lenth 2016) packages. Principal 
component analysis (PCA) was performed using the factoex-
tra package (v1.0.7; Kassambara and Mundt 2020).

Results

Overall picture of the data and method validation

Present literature survey has analysed a total of 1094 TEM 
images from 255 articles published between 1967 and 2019. 
These images correspond to 153 species, representing angi-
osperms the majority of observations (88.31%), followed 
by gymnosperms (7.79%) (Fig. 2a). The taxonomic diver-
sity among angiosperms was reasonably well represented. 
Among them the groups more frequently depicted were 
monocots, core eudicots, eurosids I and II and euasterids I, 
with the highest number of records corresponding to model 
and crop species, such as Arabidopsis thaliana, Nicotiana 
tabacum, Hordeum vulgare or Oryza sativa. In the case of 
gymnosperms, the recurrence of species in the articles was 
higher (among 26 studies, only 12 species were represented). 
Based on our criteria of classification, more than 20 stress 

(1)ES = ln

(

X
Stress

X
Control

)

,

types were identified (Fig. 2b), being the stresses categorised 
as “toxicity” treatments the most frequently reported (30%). 
Notably, more than half of the considered stress types were 
present in less than ten articles (Fig. 2b).

The validity of our calculations was tested in those arti-
cles that reported simultaneously quantitative values (i.e. 
Tables) and TEM images (Supplementary Fig. S2). For this 
purpose, we only considered the cases where both values 
were present in the article for the same species and treat-
ment level. The statistical analysis performed showed that 
the linear correlation between reported and calculated values 
was for all parameters positive and significant, with slopes 
of the regression line ranging between 0.69 and 1.30 (aver-
age 0.94 ± 0.11, n = 5). However, the slope of the regression 
differed significantly from the expected 1:1 relation slope 
(P < 0.05) for the chloroplast area, diameter of PG and 
percentage of PG. Overall, the linear model was not a 1:1 
relation for any of the parameters analysed, but on average 
was very close to it, thereby validating our approach of data 
analysis.

Attributes of PGs under non‑stress conditions

The frequency histograms of the most relevant parameters 
for the characterisation of non-stress PGs are shown in 
Fig. 3. All the calculated parameters were non-normally dis-
tributed with a skew towards higher values than the median, 
except for colour intensity (Fig. 3d). All the parameters, 
excluding nED, had around 7–12% of outliers (based on the 
Tukey method). These outliers caused the mean to diverge 
to higher values than the median. For example, the average 
NPG was around 12 and the median was around 7 (Fig. 3a). 
In this case, some outliers presented more than 100 PGs per 
chloroplast section, diverting the mean almost to double the 
value of the median.

Under standard non-stress conditions, 75% of the ana-
lysed chloroplasts contained between 1 and 14 PGs (Fig. 3a), 
being 2 PGs the most frequent value. Virtually, all chloro-
plasts contained PGs; being absent in just in a few cases 
(4.5%) (Fig. 3a). In 75% of the analysed images, the %PG 
was lower than 3.4% of chloroplast area, except for the 
outliers in which this parameter can be higher than 10% 
(Fig. 3b). The mean of ØPG was around 200 nm for most 
cases (Fig. 3c), whereas the median was 121 nm. Although 
less frequently, some larger PGs, with more than 1000 nm 
diameter (2%) were found (mainly in Vitis vinifera, Fagus 
sylvatica, Quercus suber, Chromolaena odorata and Kost-
eletzkya virginica), while the minimum ØPG was 20 nm 
(mainly in Nicotiana tabacum, Citrus sinensis, Hedyotis 
verticillata and Leptochloa chinensis) (Fig. 3c). Regarding 
the nED, all PGs were more osmiophilic than the vacuole 
used as reference (Fig. 3d). Indeed, 85% of the cases were 
above the 50% value of our scale. Finally, the %Core was 
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always higher than the %Coat (Fig. 3e–g). In half of the 
cases studied, the core/coat ratio was around 6–14-fold, 
being the median 9.4-fold. What is more, no cases were 
reported where the ratio was smaller than one, and only in 
5% of the values the ratio was smaller than 3.5-fold.

After this, we analysed the relationships between all 
the evaluated parameters. Based on our criteria, the most 
relevant relationships are presented in Fig. 4 and the rest 
of relations are shown in Supplementary Fig. S3. PGs of 
non-stress and stress conditions showed the same tenden-
cies in all parameters. Large chloroplasts (higher than 10 µm 
of diameter) did not show neither a higher number of PGs 
nor the presence of larger PGs (Fig. 4a, b). Conversely, the 
presence of high number of PGs or of large PGs was only 
found on small chloroplasts (smaller than 2 µm of diameter). 
Likewise, the relationship between ØPG and NPG showed 

that large PGs were only present in a small amount, whereas 
when present in high number, PGs were always small sized 
(Fig. 4c). Accordingly, the relative proportion of core and 
coat followed also this characteristic tendency. The %Coat 
was proportionally higher only when PGs were small-sized 
(Fig. 4d), whereas the %Core increased in the cases where 
NPG was lower (Fig. 4e). Finally, the few cases where nED 
was low corresponded to small values of NPG (Fig. 4f).

Responses to stress

The general patterns of response to stress were analysed 
employing the effect size (ES) of each factor. When all the 
stress factors were considered together, a general tendency 
of increase was observed for all the PG attributes (Fig. 5a), 
being particularly remarkable in the case of %PG and the 

Fig. 3  Frequency distribution of the main attributes of PGs under 
non-stress conditions. a Number of PGs per chloroplast cross-section 
(NPG). b Percentage of the chloroplast cross-section area occupied 
by PG (%PG). c Diameter of PG (ØPG). d Normalised electrodensity 
of PG (nED). Higher value on the scale indicates more osmiophilic-
ity of the PG. e Percentage of the chloroplast area occupied by total 
core area (%Core). f Percentage of the chloroplast area occupied by 

total coat area (%Coat). g Ratio between the %Core and %Coat. The 
values indicated on the X-axis correspond to the interval where 95% 
of the total data are located. Boxplots display the distribution of the 
whole dataset per attribute, the central line represents the median, the 
cross represents the mean and the whiskers represent the minimum 
and maximum values of non-atypical data



Planta          (2022) 255:62  

1 3

Page 7 of 14    62 

Fig. 4  Main relationships between the parameters analysed in the 
study. a Diameter of PG (ØPG) compared to chloroplast cross-section 
area (CA). b Number of plastoglobule per chloroplast cross-section 
(NPG) compared to CA. c ØPG compared to NPG. d ØPG compared 
to the percentage CA occupied by total coat area (%Coat). e NPG 

compared to the percentage CA occupied by total core area (%Core). 
f NPG compared to normalised electrodensity (nED). The circles rep-
resent the values of stress conditions and the squares the values of 
non-stress conditions

Fig. 5  PGs response to stress conditions. a Effect size of stress 
on the seven parameters of the PGs selected. All stress types stud-
ied were considered together. Data were calculated as: ln(XStress/
XControl). Each bar and whiskers represent the mean ± SE (n indicated 
within brackets for each parameter). b Effect of selected stresses on 
the %PG. Green colour indicates increment of the parameter values 
under stress, and red colour indicates decrease of the parameter val-
ues under stress. Each value was considered non-stress or stress based 
on the criteria of each article’s authors. Notice that the difference on 

the number of cases among parameters is due to the availability of 
a size scale in the pictures and to the quality of the images. Statisti-
cally significant differences are indicated by the asterisks (P < 0.05). 
nED, normalised electrodensity; NPG, number of PGs per chloroplast 
cross-section; Ratio, %Core/%Coat ratio; ØPG, diameter of individual 
PG; %Coat, percentage of chloroplast cross-section area occupied by 
the total coat area; %Core, percentage of chloroplast cross-section 
area occupied by the total core area; %PG, percentage of chloroplast 
cross-section area occupied by the total PG area
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NPG. Interestingly, the increase of %Coat was higher than 
that of %Core. The only parameter that was not significantly 
affected by stress was nED. We selected %PGs, the param-
eter with the strongest responsiveness, to visualise the dis-
tribution of the values that result in this increase (Fig. 5b). 
Overall, %PG increased in most cases irrespective of the 
stress type (Fig. 5b). However, it should be noted that there 
were examples of %PG decrease for all factors considered. 
For example, in toxicity, 28% of the cases experienced to 
some extent a decrease on the %PG, or in deficiency, these 
cases were the 23%.

For those stressors reported in more than ten studies, 
we evaluated the effects in all parameters in more detail by 
separating the results per stress type (Fig. 6). Except for 
temperature and light intensity, all the other stress types 
induced a positive response of the parameters. Among the 
rest, senescence presented the strongest effect in most of 
the parameters, followed by drought, pathogens and ozone. 
On the other hand, the %PG was the only parameter that 

experienced a statistically significant rise on almost all 
stressors (Fig. 6c). The increase in the %Coat (Fig. 6e) 
was statistically significant for senescence and pathogens, 
whereas in the case of %Core (Fig. 6f), it was for toxic-
ity, senescence, pathogens and drought. In contrast, nED 
was notably unaffected by any stressor (Fig. 6d), with the 
exception of nutrient deficiency that caused an increase 
in osmiophilicity. Moreover, the extent of response in the 
seven parameters differed among stressors. For example, 
the responsivity of NPG to toxicity and pathogens was 
higher than that of ØPG for the same stressors (Fig. 6a, 
b), whereas the opposite pattern was observed in response 
to drought stress.

We also evaluated whether or not plant taxonomic 
group determined the response to stress. For this pur-
pose, we compared the response of the seven parame-
ters to toxicity on monocots vs. dicots (Supplementary 
Fig. S4). This stress was selected as example because it 
included the largest dataset among all factors considered 

Fig. 6  Effect sizes of the main PG parameters under specific stress. a 
Number of PGs per chloroplast cross-section (NPG). b Diameter of 
PG (ØPG). c Percentage of the chloroplast cross-section area occu-
pied by PG (%PG). d Normalised electrodensity (nED). e Percentage 
of the chloroplast area occupied by total coat area (%Coat). f Percent-
age of the chloroplast area occupied by total core area (%Core). g 
Ratio between %Core and %Coat. Data were calculated as: ln(XStress/

XControl). Each value was considered non-stress or stress based on the 
criteria of each article’s authors. Notice that the difference on the 
number of cases among parameters is due to the availability of a size 
scale in the pictures and to the quality of the image. Bars and whisk-
ers represent the mean ± SE (n specified within brackets for each 
stress). Asterisks indicate statistically significant differences between 
non-stress and stress values (P < 0.05)
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in this study. The results showed no significant differ-
ences (either in direction or magnitude) between mono- 
and dicots.

Finally, to better visualise this responsiveness, the 
effect of each stress on PGs was displayed by a PCA 
based on the effect size of each attribute (Fig. 7). The 
analysis showed that PC1 explained most of the data 
variability (73.8%), while PC2 explained 17.9% and PC3 
7.8%. The first component separated senescence from 
the rest of stress types, being mostly positively related to 
PGs morphological changes (except for nED), while tem-
perature also differed from the rest, correlating negatively 
with PC1. Nutrient-deficiency was separated from the 
other stresses by the second axis (PC2), which is directly 
related to nED (Fig. 7a). Finally, in the PC3 axis, stressors 
were separated based on NPG or ØPG, being “pathogens” 
the stressor more closely linked to NPG, and drought the 
one more related to ØPG (Fig. 7b).

Discussion

During the 50s, and in concomitance with the first chloro-
plast TEM image analyses, Hodge et al. (1955) described 
what they denominated “small dense spherical bodies”. 
These structures are nowadays known as plastoglobules. 
For more than 50 years, their physiological role remained 
hidden, and it was only during the last decade, when their 
functions were highlighted after the characterisation of 
their proteome (Vidi et al. 2006; Ytterberg et al. 2006; 
Lundquist et al. 2012). By the novel approach used in 
the present study, namely the quantitative re-evaluation 
of published TEM images, we present in numbers the 
morphological plasticity of PGs in functional chloro-
plasts. Nevertheless, we are aware that even though the 
image selection and analyses were performed in a sys-
tematic way, bias can be originated from an inaccuracy 
in the analysis of the images, the image selection crite-
ria of the authors of each article (selecting eye-catching 
images rather than representative ones) or the lack of 
studies regarding certain plant divisions or stress types. 
Furthermore, the quantitative values obtained correspond 
to the two-dimensional (2D) projection of an originally 
three-dimensional structure created by randomly gener-
ated cuts. Despite it, the present study (i) uncovers some 
of the common attributes of these subcompartments under 
non-stress conditions, (ii) determines some of their main 
morphological changes in response to stress (including in 
which direction) and (iii) identifies some underexplored 
aspects of PGs that should be addressed still further, i.e. 
their attributes within Cryptogamic taxa, their changes in 
electron density, or the potential relationship between their 
size and function.

PGs in non‑stressed chloroplasts: characterisation

The picture of the most frequent type of PG from a non-
stressed chloroplast depicts a spherical structure, with a 
diameter of around 100–200 nm, representing less than 
3% of the chloroplast area (Fig. 3). In agreement with the 
values reported in several reviews (Lichtenthaler 2007; 
Nacir and Bréhélin 2013; van Wijk and Kessler 2017), 
the PGs diameter was in the range 50–200 nm for 65% 
of the cases. However, our analysis provides examples of 
larger diameters, probably linked to species-specific traits. 
This is the case of species such as Fagus with ØPG up to 
900–1500 nm (Steinmüller and Tevini 1985; Mikkelsen 
and HeideJorgensen 1996) or Chromolaena odorata, only 
reported once, with ØPG up to 1400 nm in non-stress con-
ditions (Raman et al. 2006). Furthermore, nED was uni-
formly high in PGs under non-stress conditions (Fig. 3d). 

Fig. 7  Biplot of the principal component analysis (PCA) of PGs 
attributes and stress types. a PCA biplot displaying the effect of PC1 
and PC2. b PCA biplot displaying the effect of PC1 and PC3. The 
percentages refer to the amount of data variability explained by each 
component. Blue arrows point in the direction of PGs attributes maxi-
mum variation. nED, normalised electrodensity; NPG, number of 
PGs per chloroplast cross-section; Ratio, %Core/%Coat ratio; ØPG, 
diameter of individual PG; %Coat, percentage of chloroplast cross-
section area occupied by the total coat area; %Core, percentage of 
chloroplast cross-section area occupied by the total core area; %PG, 
percentage of chloroplast cross-section area occupied by the total PG 
area
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Considering that osmiophilicity is directly related with 
the composition of PGs due to the interactions of osmium 
tetroxide with the double bonds of plastoquinone, carot-
enoids and triacylglycerides, as well as the reducing power 
of tocopherols and plastoquinone (Singh et al. 2010), elec-
trodensity of PGs is very likely related with an specific 
chemical composition involving these molecules.

The relationships of the attributes indicated that two dif-
ferent “populations” of PGs could be present in the chloro-
plasts (Fig. 4, Supplementary Fig. S3): one composed of a 
high number of small/medium-sized PGs (< 300 nm), and 
a second one formed by a reduced number of large-sized 
PGs (> 300 nm). A third intermediate “population” could 
also be considered, characterised by several medium-sized 
PGs. The increase of either attribute (number or diameter) is 
directly related to the increase of the coating lipid monolayer 
or the central core, respectively. The composition of each 
part is different, with the proteins and amphipathic lipids 
only present in the coat and with neutral lipids in the core. 
Such differences in the lipid/protein ratio may result in dif-
ferent densities of PGs (Bailey and Whyborn 1963; Kessler 
et al. 1999; Vidi et al. 2006), as suggested by Kessler et al. 
(1999). Therefore, based on the fact that a higher propor-
tion of coat (result of a higher number of PGs) may favour 
the accumulation of proteins, we hypothesise that these PGs 
of different densities could correspond to the “populations” 
explained above. However, none of the mentioned studies 
analysed separately which PGs morphology corresponded 
to each density.

While there is a huge amount of references supporting the 
positive response of PGs size and number to environmental 
stresses, their presence in chloroplasts from non-stressed 
plants has received much less attention. Our study supports 
that their presence is likely constitutive, with only a few 
cases (4.5%) where PGs were not observed (Fig. 3). In the 
instances where no PG was found, it cannot be excluded 
that other cross-sections of the chloroplast would present 
at least one PG. Moreover, the minimum diameter reported 
in our analysis was of 20 nm. In accordance with a core/
coat ratio always superior to one, this may indicate that 
a minimal diameter is required to form a stable spherical 
structure from the curvatures of the thylakoid grana (Austin 
II et al. 2006). Likewise, there was not a linear relationship 
between the NPG, ØPG or %PG and the chloroplast cross-
section area (Fig. 4, Supplementary Fig. S3). This indicates 
the absence of requirement for a minimum PG proportion 
for the correct functioning of a chloroplast. Alternatively, 
it could be hypothesised that the quantity of PGs is likely 
related to the thylakoid amount, rather than to the whole 
chloroplast cross-section area, because of their structural 
connection that enables a dynamic bidirectional interaction 
(Austin II et al. 2006; Eugeni Piller et al. 2012). The resolu-
tion of the analysed images hampered the determination of 

the thylakoid membrane area, and therefore, this hypothesis 
could not be proved in this study.

PGs in response to stress: implications 
in morphology and composition

Chloroplasts have an enormous capacity to cope with 
and adapt to changing environmental conditions. These 
responses involve both biochemical and ultrastructural 
modifications (Kirchhoff 2014). Among the latter, changes 
in PGs are the most noticeable. In our analysis, these were 
reflected by %PG, the most responsive parameter (Figs. 5, 
6). The increase in %PG can be caused by a higher number 
and/or diameter of PGs, thereby altering the core/coat ratio. 
Consequently, these alterations in PGs morphology might be 
directly reflecting changes in their composition, as suggested 
by Lundquist et al. (2013). Thus, an increase in the diameter 
would denote an increase of neutral lipids likely resulting 
from thylakoid remodelling, while a rise on the number of 
PGs would imply more space for accumulation of proteins 
and prenyl lipids (Fig. 8). For example, the expansion of the 
diameter from 50 to 100 nm would cause a higher increase 
in %Core (4.6-fold) than the %Coat (2.1-fold), raising up the 
core/coat ratio 2.2-fold. Whereas the increase in the number 
of PGs from 10 to 20 would maintain the ratio constant at 
3.4, implying a similar accumulation of the components of 
both parts.

Therefore, we hypothesise that the specific alterations 
of their morphology would also be cause and consequence 
of a change in the abundance of the different components. 
This relationship between morphology and composition is 
supported by previous studies with mutants overexpressing 
certain genes involved in PG metabolism and organisation. 
For example, overexpression of VTE1 in Arabidopsis gen-
erated the accumulation of PC-8, along with an increase in 
the number of small PGs (Zbierzak et al. 2010). In tobacco, 
the overexpression of FBN1 also derived in an increase of 
the number of PGs (Rey et al. 2000). By contrast, drought 
stress caused the opposite effect, leading to an increase in 
their diameter both in the WT and in the overexpressing-
FBN1 mutant (Rey et al. 2000). Changes in metabolites were 
not evaluated in this work, but it can be presumed that the 
increase in the core would trigger the accumulation of neu-
tral lipids, as has been observed in senescence (Kaup et al. 
2002). This process probably relates to the remodelling/
dismantling of the components of thylakoids in response 
to drought (Da Silva et al. 1974). In addition, Arabidopsis 
plants exposed to high light stress shifted differently in PGs 
morphology for WT and abc1k1/abc1k3 mutant (Lundquist 
et al. 2013). In the WT the PGs became larger, whereas 
in the mutant, the number of PGs increased. Subsequent 
metabolite analysis for the exact same light stress in WT 
Arabidopsis reported a remobilisation of carotenoids to PGs 
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(Espinoza-Corral et al. 2021), which could be related to the 
increase in the diameter reported in Lundquist et al. (2013).

In addition to general stress response, the specific 
response of PGs attributes to each stressor was also analysed 
(Figs. 6, 7). The results revealed that the response level of 
PGs from senescing chloroplasts, the so-called gerontoplasts 
(Keskitalo et al. 2005), differed considerably from the PGs 
of plants affected by the other types of stresses, probably due 
to the organised pattern of modifications that leaves undergo 
during senescence. Among the rest, we observed that the 
level and type of change in the attributes varied depend-
ing on the stressor. Three main response types, that directly 
related attribute changes with specific stressors, were evi-
denced by the PCA (Fig. 7): the increase of NPG with patho-
gens, the increase of ØPG with drought and the alterations 
in nED with nutrient deficiency. Therefore, the increase 
on number or diameter (and thus the change in the core/
coat ratio) may be tightly related to the specific stress that 
the plant undergoes (Fig. 8). This also suggests that stress-
specific responses of PGs morphology lead to a particular 
alteration on their composition. Thus, changes in particular 
components have been observed in response to a specific 
stress as is the case of high light stress, that induces little but 
specific alterations in proteins and prenyl lipids (Espinoza-
Corral et al. 2021). In addition, changes in specific FBNs can 
be observed upon different stressors (Singh and McNellis 
2011), and relate to specific metabolic pathways, depending 
as well on plant tissue type (Michel et al. 2021).

In the particular case of temperature, cold and hot treat-
ments were considered together, but no specific trend was 

observed in any of the parameters if considered apart. Indeed 
high variability in the responses was obtained both within 
cold and within hot treatments (data not shown). In addition, 
the amount of values under the stress “temperature” was 
very low (n = 10). Since membranes change their composi-
tion to maintain the optimal fluidity for the correct function 
of the proteins within it (Martinière et al. 2011) and based 
on the dynamic connection of PGs and the bilayer (Austin II 
et al. 2006), we presume that the change in the composition 
of the bilayer could also affect the PGs. This is not supported 
by the obtained results, suggesting that the regulation of 
fluidity of the membrane may not be directly connected to 
the PGs. Nevertheless, more data are needed before a solid 
conclusion can be drawn.

Electrodensity is one of the least considered attributes in 
PGs in the literature. We have found only some examples 
where the differences in electrodensity were reported in the 
text (Steinmüller and Tevini 1985; Tevini and Steinmüller 
1985; Lundquist et al. 2013), but none in quantitative values. 
This may be related to the fact that it is the attribute with the 
lowest responsiveness to stress (Figs. 5, 6). However, while 
the other attributes did not change remarkably, the vari-
ance on electrodensity was notable in response to nutrient 
deficiencies. This is probably induced by the alterations of 
metabolism caused by the deficiency of essential elements, 
and therefore changes in metabolites, as has been reported 
for the case of nitrogen (Gaude et al. 2007), phosphate (Pfaff 
et al. 2020) or magnesium (Yang et al. 2019). However, the 
results obtained from this parameter have to be considered 
with caution because the obtained data could be affected by 

Fig. 8  Model of plastoglobules 
stress-dependent morphologi-
cal changes. When the plant is 
subjected to different stressors, 
the triggered response increases 
the diameter (“Population 1”) 
or the number (“Population 2”) 
of PGs. This causes a different 
modification of the core/coat 
ratio, and therefore, an altera-
tion on the proportions of their 
composition. The number in 
parenthesis indicates the incre-
ment of the volume
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the technical processing of the samples during the acquisi-
tion of the image, as it highly depends on the procedure of 
fixation, staining and contrast parameters employed.

Finally, PGs tend to generate from the thylakoid curva-
tures or from other PGs, forming grape-like clusters (Austin 
II et al. 2006; Zbierzak et al. 2010). The presence of PGs 
connected to each other was considerably high. In 62% of the 
analysed chloroplasts at least one pair of PGs were attached 
to each other (data not shown). The number of clusters did 
not discern significantly between non-stress and stress con-
ditions (a mean value of 1.5 and 1.55 clusters respectively). 
By contrast, grape-like clusters with more than 10 PGs were 
mainly found in stress conditions (approximately 460 clus-
ters in non-stress over 1070 clusters in stress conditions). 
The generation of these clusters can be interesting mainly 
in the cases where the number of PGs increases strongly, 
because interconnected network of PGs could be beneficial 
to cope with the stress. It was also remarkable that some of 
these clusters were organised in a line fitted between thy-
lakoid membranes, showing a specific organisation within 
the chloroplast.

Overall, the novel approach of the present quantitative 
review confirms that PGs are ubiquitous subcompartments 
in chloroplasts under non-stress and stress conditions and 
that PGs might be used as an indicator of stress response, 
as has been proposed by other authors (Polesi et al. 2019; 
Khan et al. 2021). The study of their composition, mainly 
the characterisation of its proteome, has been a major break-
through in the advancement of our understanding on how 
these subcompartments interact with the whole chloroplast. 
As their number, size and osmiophilicity are somehow 
related to their composition and to the development of spe-
cific responses to stressors (Fig. 8), a more in depth study 
of their morphology could provide specific information on 
the stress type and strength. It could also contribute to set a 
baseline towards understanding understudied aspects such 
as the synthesis and disappearance of PGs over time (during 
daytime or under stress), or possible functional specialisa-
tion between PGs in the same chloroplast. Thus, advances 
regarding PG morphology will eventually help to fulfil our 
current understanding on how chloroplast perform and accli-
mate to environmental conditions.
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