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ABSTRACT 

Learning a new language is a challenging but highly rewarding experience. Learners need to acquire a 

massive vocabulary, and the rules to vary and combine this vocabulary to produce and understand 

sentences correctly. It is possible that learning new languages becomes easier once we already speak at 

least two. Based on this idea, in this thesis, I explore whether adults who already know two languages 

(bilinguals) are better at learning a foreign language than those who only know one (monolinguals). For 

this, I carried six behavioral experiments with three groups of young adult participants: Spanish 

monolinguals, Spanish-English bilinguals, and Spanish-Basque bilinguals. Together, these experiments 

targeted implicit and explicit foreign language learning using artificially constructed linguistic materials. 

Overall, the results from all experiments indicated that both bilingual groups outperformed their 

monolingual peers when implicitly and explicitly learning vocabulary but not in other aspects (e.g., sub-

lexical phonology/orthography, morphology). To explain how the differences in vocabulary learning 

between monolinguals and bilinguals could emerge, I developed a computational model of the 

orthographic lexicon. The model could learn written vocabulary based on orthographic patterns 

(orthotactics) within words of one or two languages. This model revealed that it is easier to recognize and 

produce novel words when the model is trained on bilingual input than when it is trained with monolingual 

input. The totality of results from this thesis led me to conclude that monolingual and bilingual individuals 

differ fundamentally—and possibly only—in vocabulary learning. Exposure to distinct orthotactics within 

words in two languages could make bilinguals more flexible when integrating the orthographic form of 

novel vocabulary than monolinguals.   
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Preface 

We have all been there, sitting in a classroom, trying to learn several new words in Japanese, French, 

English, or any other foreign language. Does いす(Japanese word for chair romanized as isu) mean chair 

or dog (written as いぬ and romanized as inu)? The feeling, at first, is that learning a foreign language 

seems like an insurmountable challenge. One needs to acquire a novel vocabulary of several thousand 

words and learn how to pronounce, write—sometimes in an entirely different script—, and combine them 

correctly to form sentences and communicate proficiently. Foreign language learning is, undoubtedly, a 

challenging but rewarding experience. Humans are unique in their ability to learn not one but multiple 

languages throughout our lifespans. Furthermore, it is possible that learning new languages becomes 

easier the more languages we already know.  

This observation, combined with several discussion sessions with my advisor, led me to the simple 

question that motivates this entire work: Are adults who already know two languages (bilinguals) better 

at learning a foreign language than those who only know one (monolinguals)? Intuitively, knowing two 

languages provides individuals with a more extensive pool of knowledge to exploit during foreign language 

learning than knowing a single language. For instance, coming back to the Japanese language, the 

romanized word for a part-time job is アルバイト (read as arubaito), which any German (monolingual or 

bilingual) speaker might recognize, as it stems from the word arbeit with similar meaning (part-time job). 

However, this is perhaps a trivial answer. What drove me to pursue this question extends beyond any 

specific similarities people could employ during foreign language learning. In other words, if all things as 

equal as possible, are bilinguals inherently better than monolinguals when learning a foreign language?  

As with any research question, there is a long trek from its conception to the methodologies that can 

address it. For example, what does it mean to “learn a foreign language”? Which set of experiments can 

better address foreign language learning? These are only two of the questions I faced while 

conceptualizing, designing, and carrying out the research. Learning a foreign language is a complex activity 

comprised of multiple interconnected levels (e.g., phonology, vocabulary, morphology) acquired through 

implicit and explicit processes. Consequently, to answer whether bilinguals and monolinguals differ, it is 

essential to pinpoint at which level of foreign language learning, if any, are they different (RQ1), what 

these differences are (RQ2), and how these differences could emerge from the bilingual experience (RQ3). 

These questions justify the title of this thesis, as I was effectively tracing the where, what, and how of 

potential bilingual language learning advantages.  
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Overview of the chapters 

This thesis is divided into five chapters. Chapter 1 introduces foreign language learning and its multiple 

domains, emphasizing the implicit and explicit learning mechanisms through which humans learn a foreign 

language. I then define bilingualism and review the extant literature investigating potential differences 

between monolingual and bilingual foreign language learning. Next, I offer some possible theoretical 

accounts rooted in experimental linguistic for some aspects of monolingual and bilingual foreign language 

learning. Finally, I outline the general methodology for the following chapters’ experimental work. 

Chapter 1 establishes the conceptual and theoretical framework upon which the rest of the thesis 

develops.  

Chapters 2 and 3 contain the main body of experimental work, addressing implicit and explicit foreign 

language learning with six behavioral experiments. Chapter 2 contains four implicit learning experiments 

targeting different levels of foreign language learning as a proxy: sub-lexical, morphological, word order 

(syntax), and vocabulary (lexical). Chapter 3 focuses on explicit language learning and presents two 

additional experiments addressing novel morphology and vocabulary learning. These experiments target 

my central research question from different angles. Together, these two chapters show “where” (RQ1) 

and “what” (RQ2) the differences between bilinguals and monolinguals are.  

Chapter 4 takes a distinct perspective from the previous two chapters to address the “how” question 

(RQ3). In this chapter, I first introduce the framework for modeling cognitive systems using computational 

approaches. Then, I briefly cover some of the most well-known models of bilingual word recognition and 

learning, emphasizing the gap in models of language learning. Finally, I present a computational model 

that simulates monolingual and bilingual vocabulary learning to explain some of the findings from Chapter 

3. The model proposes a novel view of vocabulary learning, whereby orthographic word forms are stored 

together using a distributed code that is dynamically modified by experience—and specifically by bilingual 

experience.  

The final chapter summarizes the contributions from the previous three chapters and draws the main 

conclusions of the thesis. I then discuss the findings by highlighting their relevance in the broader context 

of the existing literature. Finally, I present arguments for how this work could open up exciting pathways 

for addressing outstanding questions on the behavioral, cognitive, neural, and computational mechanisms 

of monolingual and bilingual foreign language learning.   
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Chapter 1: Introduction 

The human brain is remarkable in its ability to learn and generalize knowledge. There is ample evidence 

that different life experiences can serve as the basis for enhanced learning. To cite a few examples, taxi 

drivers are especially good at navigation and spatial learning tasks (Maguire et al., 2000), musicians are 

better at learning and discriminating lexical tone categories (T. C. Zhao & Kuhl, 2015), and action video 

games players have increased attentional control and meta-learning (learning to learn) skills (Green & 

Bavelier, 2012), compared to individuals without these life experiences. It is perhaps not a wild stretch to 

assume that linguistic experiences, such as experience with two languages (bilingual experience), could 

also foster language learning skills. This idea summarizes the primary goal of this thesis, which explores 

whether bilingual experience influences foreign language learning. The central research question is, are 

bilingual adults—those that know two languages—better than their monolingual peers when learning a 

foreign language?  

There are two issues with the main research question as currently postulated. First, languages have 

different levels (e.g., phonology, vocabulary, morphology). The bilingual experience could influence none, 

one, multiple, or all levels of foreign language learning. Hence, concluding that there is a bilingual 

experience effect in foreign language learning from comparing bilinguals and monolinguals in a single 

aspect (e.g., vocabulary) would be erroneous. Second, and perhaps more importantly, there should be a 

definition for the bilingual experience. That is to say, which linguistic experiences comprise bilingualism 

as compared to monolingualism? What characteristics define a bilingual individual? And how could these 

experiences influence foreign language learning?  

In what follows, I will address these issues in turn by reviewing the relevant theoretical and experimental 

work from multiple perspectives. In the initial section of the introduction, I will cover what it means to 

learn a foreign language. In this regard, the (psycho)linguistic literature offers valuable information 

regarding the different levels of a language and the mechanisms by which individuals acquire them. Next, 

I address the definition of bilingualism and bilingual experience, where most of the literature draws from 

psycholinguistics and experimental psychology. Then, I combine these two ideas and address cognitive 

psychology and experimental linguistics research on bilingual experience and foreign language learning. 

In all, this chapter provides the theoretical framework for the thesis’s experimental part and highlights 

the gaps in the literature regarding bilingual and monolingual foreign language learning.  
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1.1. What exactly is foreign language learning? 

One can think of a language as a mental rulebook. Within this book, there are multiple interconnected 

chapters. The information in each chapter is relevant to other sections of this book, and therefore one 

cannot read them in isolation. For instance, the first chapter could take the form of a dictionary, where a 

collection of words (in their written and spoken forms) pair with their concepts to form a language’s 

vocabulary. This dictionary would naturally depend on other book sections detailing how to correctly 

write, pronounce, and use these words in different contexts. Other chapters in this rulebook would also 

show how to modify the words, combine them into sentences, and convey information that cannot be 

transmitted using a single word. Using this analogy, learning a foreign language could be akin to acquiring 

and memorizing a new rulebook. Of course, there are multiple problems associated with this 

oversimplified analogy, and I will touch on them throughout this thesis. A critical first step is to determine 

the title and contents of each chapter in this rulebook analogy, provided that they are highly 

interconnected.  

Here, I present two—out of many—naming conventions to establish a common terminology for the rest 

of this thesis. These are also briefly summarized in Table 1. The first naming convention comes from the 

linguistic perspective. It contains six analytic levels (or chapters in our rulebook analogy): 

phonetics/phonology, morphology, syntax, semantics, and pragmatics (Hickey, 2005; Shopen, 2007). The 

levels range from more fine-grained to more coarse and abstract dimensions of language. According to 

this convention, one can describe a language as a combination of its sounds, including the set of all 

possible human sounds (phonetics) and a specific language’s sounds (phonology). The vocabulary and its 

variations (e.g., different endings) comprise the morphology level, while the syntax level encompasses 

multiple-word sentences. The semantic level describes meaning in the broad and abstract sense, 

distinguishing it from individual words (morphology) and sentences (syntax). Finally, pragmatics covers 

language use in specific situations and is the most abstract language level.  

The second naming convention for our rulebook comes from the psycholinguistic perspective, which 

draws from experimental psychology and linguistics. It originates from experiments investigating how 

humans recognize and produce individual words (e.g., Grainger & Ferrand, 1996; Rastle, 2015). As a result, 

this convention further subdivides the fine-grained linguistic levels into orthographic and phonological 

components. Specifically, there are three additional levels compared to the linguistic levels: sub-lexical 

phonology, sub-lexical orthography, and lexical levels. The sub-lexical levels target the elements that 

comprise words, such as individual sounds and letters and their combinations. The lexical level covers the 



P a g e  | 5 
 

orthography and phonology of words as units. Using this convention, the vocabulary of a language would 

entail the sub-lexical, lexical, and even the more abstract levels (González-Fernández & Schmitt, 2020).  

 

Table 1. Analytic levels of language. 

Linguistics Description Psycholinguistics Description 

Phonetics & Phonology All sounds in a language Sub-lexical phonology Sounds & combinations 

Morphology Words and endings 

Sub-lexical orthography Letters & combinations 

Lexical 
Orthography and 

phonology of words 

Morphology Word variations 

Syntax Clauses and sentences Syntax Clauses and sentences 

Semantics Meanings Semantic Meanings 

Pragmatics Language use Pragmatics Language use 

Note. Domains are ordered from more fine-grained (top) to more coarse aspects of language (bottom).  

 

Given this terminology, foreign language learning refers to how individuals acquire, at least partially, 

constructions (or elements) from one or more analytic levels in a new language. A foreign language differs 

from a native language because it is indigenous to an individual’s country (e.g., English in Spain). Typically, 

an individual’s fluency in a foreign language—their proficiency—is a measure of their ability to 

comprehend and produce distinct constructions correctly. There are four main fluency domains in foreign 

language learning: reading, listening, writing, and speaking. It is easy to see how these fluency domains 

involve all analytic levels and fundamentally depend on vocabulary knowledge. To put this idea into 

perspective, the Council of Europe (Council of Europe, 2001) estimates that proficient speakers of a 

foreign language should control around 10,000 base words (without considering morphological 

variations), including words not used in everyday conversations. Consequently, although not explicitly an 

analytic level, vocabulary knowledge is an essential aspect of foreign language learning, tapping into 

multiple levels.  

I will consider the analytic levels mentioned above as internal dimensions in the context of foreign 

language learning. Some constructions may be more or less challenging to learn, but their overall 
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acquisition difficulty is invariant for a specific language. In contrast, external dimensions influence how a 

particular individual learns a foreign language but lie outside the internal analytic levels. These dimensions 

can include aspects such as instruction method, individual motivation, age, and, more importantly for this 

thesis, prior linguistic experiences such as bilingualism, among many others. Referring back to the 

rulebook analogy, how fast parts of each chapter are acquired could differ from individual to individual 

based on these external dimensions.  

On a relevant side note, the literature conveniently refers to our rulebook analogy—or at least the part 

related to vocabulary—as the mental lexicon (Acha & Carreiras, 2014; Aitchison, 2012; Baxter et al., 2021). 

In other words, the mental lexicon is the brain’s storage for words, meanings, morphology, and other 

aspects (e.g., collocations, pragmatics). This concept will become more relevant in Chapter 4, where I 

discuss the bilingual mental lexicon’s theoretical and computational models. Before, however, I focus on 

the implicit and explicit mechanisms for language learning.  

1.1.1. What mechanisms sustain language learning? 

Logically, one cannot simply memorize all possible constructions in a new language. Instead, learning a 

foreign language requires acquiring a set of rules, abstracting and generalizing them to possibly infinite 

constructions. That is, there are many ways in which one can transmit the same meaning using different 

sentences. It does not make sense to memorize each possible sentence, but general rules to combine 

words and produce them correctly. This property, known as generativity (Corballis, 1992), is perhaps one 

of the defining characteristics of human languages.  

In this regard, there are two related mechanisms through which humans learn constructions in a language. 

The first mechanism is implicit learning. It is defined as the unconscious acquisition of knowledge about 

structure in the environment (Ellis, 2002, 2015). Through this mechanism, individuals are sensitive to and 

can passively learn from frequent and repetitive patterns. Implicit learning seems to be a ubiquitous and 

domain-general mechanism that applies to different sensory modalities (Kirkham et al., 2002). That is, 

individuals can implicitly learn from multiple input types, such as music (Ponsford et al., 1999), motor 

sequences (Masters et al., 2020), visual patterns (Kirkham et al., 2002), and, critically, written and spoken 

language (Romberg & Saffran, 2010), among others.  

A large body of research shows that both infants and adults can implicitly acquire information from 

structured linguistic material at all analytic levels (e.g., Ellis, 2002; Misyak & Christiansen, 2012; Romberg 

& Saffran, 2010; Saffran, 2003). The literature employs two interchangeable terms for this process, one is 
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implicit learning, and the other one is statistical learning (Christiansen, 2019; Perruchet & Pacton, 2006). 

The “statistical” part refers to the statistics individuals unconsciously track in the input to learn from it. 

Language learners can acquire different aspects of a foreign language through statistical learning. These 

include, among others, sub-lexical units (Maye et al., 2002; McMurray et al., 2009), morphological rules 

(Rebecca Frost & Monaghan, 2016; Peña et al., 2002), and vocabulary (Smith & Yu, 2008; Yu & Smith, 

2007). It is thought that a large portion of native and foreign language learning hinges on implicit learning 

(Cleeremans et al., 1998). However, learners cannot acquire the totality of a new language’s constructions 

simply through implicit/statistical learning.  

The second mechanism is explicit learning. This mechanism requires conscious processing from individuals 

to memorize and produce novel constructions in a foreign language and is usually related to explicit 

instruction (Ellis, 2015). In other words, there is an effort to allocate attentional and memory resources 

towards acquiring different constructions, including both rules and specific instances. Typically, explicit 

learning involves producing multiple erroneous constructions and correcting mistakes to internalize the 

rules of a foreign language (Varnosfadrani & Basturkmen, 2009). In this sense, some authors suggest that 

explicit learning requires attentional and hypothesis testing (trial-and-error) processes (Ellis, 2015; 

Perruchet & Pacton, 2006). In all, learners explicitly acquire constructions in a foreign language by 

deploying their attentional mechanisms and utilizing trial-and-error methods. The ample and rich 

literature on explicit learning covers different analytic levels (for reviews, see Ellis, 1993, 2015; 

Rosenshine, 1986), but an in-depth review is beyond the scope of this thesis, which concerns bilingual and 

monolingual foreign language learning.  

Now, what is the limit between implicit and explicit learning? First, it is essential to note that language 

learning is not purely implicit or explicit. Some aspects might be learned beyond the realm of 

consciousness, with individuals not realizing they have acquired specific structures. On the other hand, 

there might be a conscious effort from individuals to acquire some knowledge. Nevertheless, what is 

learned through explicit methods can serve as a baseline for subsequent implicit learning and vice-versa 

(Ellis, 2015). Second, learners can acquire content simultaneously through both implicit and explicit 

mechanisms. For instance, an individual might learn the words unbreakable and untouchable separately 

and through explicit mechanisms. However, they might implicitly discover meaning in the affixes un- and 

-able, subsequently understanding other words like undo, doable, undoable, and even unable. 

Importantly, these mechanisms have different relevance throughout life. Since the focus of this thesis is 
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on adult language learners, it is necessary to highlight some of the differences between children and adult 

foreign language learning.  

1.1.2. What is different for adults? 

It is well-documented that age is an external dimension that impacts learning ability, in general, and 

language learning, in particular (DeKeyser, 2000; Scovel, 2000). It has been suggested that infants and 

children can acquire a foreign language implicitly and by imitation, using mostly memory-based processes 

(Nikolov & Djigunović, 2006). In contrast, adult learners often struggle to learn a foreign language, mainly 

relying on explicit rule-based learning (Muñoz, 2008). These contrasting findings seem to suggest the 

presence of a critical period (i.e., Critical Period Hypothesis; Scovel, 2000), whereby children are more 

successful in acquiring constructions in a foreign language than adults.  

While the existence and exact age for this critical period is still a matter of debate, adults can still achieve 

high proficiency in a foreign language provided they have the opportunity, the willingness, and, most 

importantly, the time to learn (Chen & Hartshorne, 2021; Hartshorne et al., 2018). For instance, in an 

influential study, Harthorne et al. (2018) tested around 600,000 native and non-native English speakers 

using an online English sentence completion test. Their results indicated that performance in this test (i.e., 

English proficiency) was lower for non-native participants who reported starting to learn English after 17-

18 years. This critical age is not a coincidence and might not be related to neuronal decay as previously 

thought (Birdsong & Molis, 2001). It is around this time that individuals transition into university or the 

workforce. Hence, there is usually less time and willingness from individuals at this stage to learn a new 

language.  

Crucially, while infants can learn a foreign language and potentially develop native-like proficiency, older 

children and adults tend to filter the foreign language through their native language. This filter—better 

known as cross-linguistic transfer—can positively and negatively affect foreign language learning and is 

indirectly related to age (Alonso, 2016). For example, a Spanish speaker learning English might find the 

word vocabulary easier to learn than the word country, even if they both occur frequently. This is because 

the former has a translation equivalent with similar meaning and form (vocabulario). These types of 

words, known as cognates, can be an excellent aid for individuals to jumpstart their vocabulary during the 

early stages of foreign language learning and are examples of positive cross-linguistic transfer (Hayakawa 

et al., 2020; Marian et al., 2021). Conversely, English speakers might struggle while learning to read aloud 

in Spanish, as English is an opaque language with one-to-many grapheme-phoneme mappings (Rafat, 
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2016). The difficulties caused by the differences between the native and foreign languages are known as 

negative cross-linguistic transfer.  

Having defined foreign language learning, its multiple analytic levels, and the implicit and explicit learning 

mechanisms, I now focus on the definition and measurement of bilingual experiences.  

1.2. Defining and measuring bilingual experiences 

Bilingualism could be loosely defined as the ability to speak two languages, acquired simultaneously 

during childhood or by sequentially learning a foreign language later in life (Costa & Sebastián-Gallés, 

2014). This definition often appears in juxtaposition to monolingualism, which refers to individuals that 

only speak one language. Although the definitions may vary depending on the author and the context 

where the term is used, bilingual individuals must possess specific characteristics. These include 

proficiency in both languages, the ability to switch between them in distinct situations (code-switching), 

and some contact or identification with the culture of both languages, among others (Moschkovich, 2007). 

Bilingualism can refer to individuals that learn a foreign language or a second native language as their 

second language. For example, a Spanish-English bilingual from Madrid speaks a native and a foreign 

language, but a Spanish-Basque bilingual from the Basque Country speaks two native languages.  

There are differences in how bilingual individuals develop depending, among other factors, on their 

second language’s age of acquisition and proficiency (Marian & Hayakawa, 2021; Place & Hoff, 2011). 

Table 2 shows four possible configurations for bilingual individuals depending solely on their age of 

acquisition and proficiency. Balanced bilingualism occurs if there is similar proficiency in the first and 

second languages (L1 and L2). Most commonly, however, an individual will develop one language more 

than the other, leading to unbalanced bilingualism (Place & Hoff, 2011). These definitions often intermix 

with the amount of exposure to each language. For example, balanced bilinguals might experience the 

two languages in similar proportions, while unbalanced bilingualism might use their L1 or L2 more in 

specific contexts.  
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Table 2. Types of bilingualism according to the age of acquisition and proficiency in the L2. 

  L2 Proficiency/Exposure 

  Low High 

L2
 a

ge
 o

f a
cq

ui
sit

io
n 

Ea
rly

 (<
 6

) 

Simultaneous 
unbalanced bilingual 

Simultaneous balanced 
bilingual 

La
te

 (>
 1

0)
 

Sequential unbalanced 
bilingual 

Sequential balanced 
bilingual 

 

 

Similarly, the age of acquisition of the L2 plays a fundamental role in the consolidation of bilingualism, 

distinguishing between those who are simultaneous (early) and sequential (late) bilinguals (Carlson & 

Meltzoff, 2008). As I mentioned earlier, some findings suggest that the linguistic performance of late 

bilinguals is limited by the decline of neural plasticity due to the neuronal maturation that occurs after 

adolescence (Birdsong & Molis, 2001). Still, individuals can achieve high proficiency in a foreign language 

even if they learn it late in life (Chen & Hartshorne, 2021; Hartshorne et al., 2018; Nikolov & Djigunović, 

2006). However, the strategies for language acquisition in adulthood might differ due to how the two 

languages are acquired in infancy (DeKeyser, 2000). Because of this, there might be differences in the 

processing and control of the L2, with a shared system for both languages in early bilinguals and separate, 

L1-dependent systems for each spoken language in late bilinguals (Struys et al., 2015). I will further discuss 

whether there are one or two language systems in the bilingual mind in Chapter 4.  

The two factors mentioned above are not necessarily the only ones that can distinguish between different 

bilingual experiences. For example, bilinguals could differ in how they acquired the two languages, 

distinguishing between formal and informal instruction. Additionally, bilinguals can vary in their cultural 

identification, code-switching, and many other factors (Marian & Hayakawa, 2021). Regardless, it is 

essential to consider that these are not dichotomous categories, and individuals can vary continuously 

alongside any of these factors. For example, a bilingual individual might have learned their second 

language primarily through informal instruction at a relatively early age (e.g., 7) and show intermediate 

proficiency in the L2.  
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1.2.1. Subjective and objective measures of bilingual experience 

An equally important matter is how to measure bilingualism. According to the definitions offered above, 

to recruit bilingual participants for an experiment, one could simply ask whether they consider themselves 

bilingual. Although valid, this method would not necessarily yield information from other important 

factors such as language exposure, age of acquisition, or proficiency. Alternatively, besides their overall 

perceived bilingual experience, one could also ask specific questions about individual language 

proficiency, use, and other variables. The problem with this second approach is that measuring 

bilingualism using a comprehensive test would require additional time to capture all the nuanced aspects 

of the bilingual experience.  

As a result, many researchers have developed short self-report questionnaires to measure specific aspects 

of the bilingual experience (for an overview; see Marian & Hayakawa, 2021). For example, the Language 

Experience and Proficiency Questionnaire is a short self-report test that has been used extensively in 

bilingualism research (Kaushanskaya et al., 2020; Marian et al., 2007). This questionnaire asks questions 

about L1 and L2 proficiency, age of acquisition, exposure, cultural identification, and even perceived 

accent, among many others. Tests such as these rely primarily on individuals remembering and reporting 

their language history accurately and without bias. Notably, some of these variables (e.g., language 

exposure, cultural identification) cannot be measured without self-report, as there is no objective way to 

obtain them. Nevertheless, some authors argue that the self-reported proficiency scores in these tests 

correlate with other—more objective—measures of bilingual proficiency (Gollan et al., 2012). However, 

self-report questionnaires should not replace these objective measures, and instead serve as a quick pre-

screening of bilingual experiences before conducting more comprehensive tests.  

Other authors have employed objective proficiency measures of participants’ L1 and L2 (e.g., de Bruin et 

al., 2017; Gollan et al., 2012; Sheng et al., 2014). Usually, these objective tests include some receptive and 

productive vocabulary measures in individuals’ L1 and L2, providing more precise estimates of their 

proficiency. For instance, some tests include tasks where individuals need to name pictures with 

increasing difficulty, offering an efficient way of measuring L1 and L2 productive vocabulary (de Bruin et 

al., 2017; Gollan et al., 2012). Still, unless these measures are used as a pre-screening, discarding 

participants before they complete any experiment is very likely. Therefore, in the experimental part of 

this thesis, I use a combination of self-reported and objective measures to measure bilingualism.  

With these definitions as a basis, I now turn to the main idea of this thesis: how bilingualism could 

influence foreign language learning over monolingualism.  
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1.3. Bilingualism and foreign language learning 

The idea that knowing more languages facilitates subsequent language learning spans decades (Cenoz, 

2003; Festman, 2021; R. Nation & Mclaughlin, 1986). It is thought that the less predictable linguistic 

environment faced by multilinguals—a more general term for speakers of more than one language—

might induce them to more efficiently explore and acquire new linguistic information than monolinguals 

(Festman, 2021; Filippi et al., 2019). In this regard, the experimental work on this idea generally falls into 

studies that target general or specific aspects of foreign language learning.  

On the one hand, research focused on measuring the general proficiency (i.e., writing, reading, speaking, 

listening) highlights that bilinguals may use different strategies during foreign language learning than 

monolinguals (e.g., Cenoz, 2013; Tuncer, 2009). These findings hint towards an additive effect of bilingual 

experience on foreign language learning, whereby knowing more languages leads to an increased 

linguistic repertoire available during learning (Cenoz, 2003, 2013). These studies do not propose any 

additional mechanism by which bilingualism might foster language learning over monolingualism. Instead, 

they suggest that this additive effect relies primarily on cross-linguistic transfer from a more extensive 

knowledge pool in bilinguals.  

On the other hand, some researchers have examined the differences between monolinguals and bilinguals 

on specific analytic levels, the more predominant being vocabulary (e.g., Antoniou et al., 2015; 

Kaushanskaya & Marian, 2009b, 2009a). These studies suggest that bilingual experience improves 

vocabulary learning outcomes over monolingualism by either strengthening the phonological system, the 

lexical-semantic network, or inhibitory control mechanisms or making these more flexible to 

accommodate new information (Kaushanskaya & Marian, 2009b; Kaushanskaya & Rechtzigel, 2012; 

Yoshida et al., 2011). However, due to these typically ad hoc explanations, the mechanisms underlying 

the differences between monolingual and bilingual in foreign language learning remain largely 

understudied.  

To review and integrate all these findings into a common framework, Hirosh and Degani (2018) proposed 

two broad and complementary routes through which multilingualism could facilitate foreign language 

learning. Figure 1 illustrates these two routes. The first route involves a direct transfer of linguistic 

information from any (or all) available languages to the foreign language. Studies show that bilinguals can 

transfer information from known languages to a foreign language, provided that they are similar in 

structure (Festman, 2021; Rothman, 2015). This cross-linguistic transfer is the central tenet of linguistic 

theories like the Linguistic Proximity Model, which proposes incremental learning of languages with 
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positive and negative influences (Westergaard et al., 2017). In other words, bilinguals can use the 

knowledge in any of the languages they know during learning to find similarities to exploit (i.e., positive 

transfer), but these might also lead to negative transfer. I offer a brief overview of this and other linguistic 

theories of bilingual transfer in Section 1.4.  

 

Figure 1. Direct and indirect effects of multilingualism on foreign language learning. 

 

Note. Figure adapted from Hirosh & Degani (2018), p. 893. The bottom left depicts Spanish-English bilingual 
individuals. Ortho = orthographic; Phono = phonological.  

 

The second route through which multilingualism affects foreign language learning is indirect. Simply put, 

the multilingual experience might potentiate linguistic or non-linguistic cognitive abilities, improving 

foreign language learning outcomes in turn (Hirosh & Degani, 2018). The linguistic abilities include 

metalinguistic awareness, verbal working memory, and lexical-semantic network strength, among others. 

For example, a Spanish-English bilingual might possess enhanced metalinguistic awareness—the 

knowledge about language itself—due to how they learned their L2, compared to a Spanish monolingual. 
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This ability could allow them to acquire the constructions they are trying to learn in a foreign language 

faster (e.g., Rauch et al., 2012). With a few notable exceptions (i.e., verbal working memory), these 

linguistic abilities tend to be challenging to quantify as they are significantly language-specific (Bialystok 

et al., 2014; Serratrice et al., 2009). In other words, it would not be possible to measure metalinguistic 

awareness as a general ability without individuals already knowing a specific foreign language. As a result, 

studies have yet to explore (1) how to properly quantify these skills, (2) whether bilinguals and 

monolinguals differ in these skills, and (3) how these skills mediate foreign language learning.  

Compared to the linguistic abilities mentioned above, the non-linguistic cognitive abilities are perhaps 

even more controversial. Many studies suggest that bilinguals might possess enhanced cognitive abilities 

over monolinguals (for reviews, see Adesope et al., 2010; Kroll & Bialystok, 2013; Schroeder & Marian, 

2017). The typical narrative is that—due to their constant practice of inhibiting/selecting which language 

to use—bilinguals might show enhanced non-linguistic cognitive abilities over monolinguals, such as 

conflict monitoring, inhibitory or attentional control. These results have been under severe scrutiny 

recently due to theoretical and methodological issues (e.g., Blanco-Elorrieta & Pylkkänen, 2018; de Bruin 

et al., 2021; Dick et al., 2019). Thus, both the existence and relevance of these findings have been rendered 

moot. Moreover, as in the previous case, it would require substantial research to understand how 

bilingual experiences foster these non-linguistic cognitive abilities and how these abilities influence 

foreign language learning in turn.  

In sum, the literature has established the direct (i.e., cross-linguistic transfer) effects of bilingualism on 

foreign language learning. Intuitively, knowing more languages can provide a more extensive pool of 

knowledge from where to draw similarities during learning. Unfortunately, though, the indirect effects 

remain understudied at best or questionable at worst. Critically, out of the non-linguistic abilities listed in 

Figure 1, statistical/implicit learning seems like a prime candidate to investigate in this thesis for three 

reasons. First, as a cognitive mechanism, statistical learning seems to be an essential method for implicit 

foreign language learning (Romberg & Saffran, 2010). Second, as an experimental, statistical learning task 

can facilitate the measurement of bilingual and monolingual implicit language learning, and only a handful 

of studies have compared monolingual and bilingual statistical learning performance. Third, statistical 

learning tasks can capture different analytic levels of a language as a proxy by modifying the stimuli used 

in each task. Hence, Chapter 2 focuses primarily on statistical language learning tasks to measure bilingual 

and monolingual implicit/statistical foreign language learning ability. Before, however, it is vital to 

examine the evidence in favor of and against bilingual experience influencing foreign language learning.  



P a g e  | 15 
 

1.3.1. Empirical evidence 

This subsection reviews the extant research targeting bilingual and monolingual foreign language learning 

at different analytic levels. Since this is currently an active field of research, this review is far from 

exhaustive (for more comprehensive recent reviews, see Festman, 2021; Hirosh & Degani, 2018; 

Montanari, 2019). Instead, I primarily cover the main experimental work addressing differences, or lack 

thereof, between bilingual and monolingual adults at each analytic level. For the sake of brevity, I combine 

certain psycholinguistic aspects to target vocabulary (lexical-semantics) and grammar (morpho-syntax) as 

knowledge domains in a foreign language. Moreover, I primarily focus on experimental studies with 

bilinguals and monolinguals but avoid, wherever possible, those involving multilingual participants. The 

research involving multilingual individuals, although informative, has additional confounding factors, such 

as the interactions between multiple languages and a general lack of control measures (i.e., age of 

acquisition, proficiency, exposure, general intelligence) for these participants.  

1.3.1.1. Sub-lexical phonology: Phonology/Phonetics 

Learning sub-lexical phonology can refer to acquiring new words that differ in phonology at the syllable 

level, learning to discriminate or produce new phonemes, or incidentally (implicitly) learning to segment 

words with foreign phonology from continuous speech. Here, I will discuss studies covering these three 

types of tasks. Naturally, if an individual already knows how to pronounce or discriminate specific 

phonemes—due to their prior linguistic knowledge—, they should be better overall in these three tasks. 

Beyond these direct effects, I also present studies showing differences between bilinguals and 

monolinguals and arguing in favor of indirect effects.  

Antoniou et al. (2015) compared monolinguals (English) and bilinguals (Mandarin-English and Korean-

English) across two vocabulary learning experiments. That is, participants learned eight new names 

(words) for eight objects. The critical manipulations in these experiments were the phonological patterns 

that comprised the words, which were only one syllable long or monosyllabic. Pairs of syllables in the 

vocabulary differed in one phoneme, and were either English-like (voiced fricative; e.g., /ɸ/ vs. /β/), 

Mandarin-like (i.e., retroflex; e.g., /t/ vs. /ʈ/), or Korean-like (i.e., lenition; e.g., /θ/ vs. /θˈ/) minimal pairs. 

In the first experiment, Mandarin-English bilinguals outperformed monolinguals in learning both the 

English-like and Mandarin-like minimal pairs. In the second experiment, both Mandarin-English and 

Korean-English bilinguals outperformed the monolinguals in the Mandarin-like minimal pairs. However, 

only the Korean-English group could distinguish between the more challenging Korean-like minimal pairs. 

Their results indicated that general bilingual experience (in terms of enhanced phonological network) and 
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phonetic similarity (derived from experience with Korean) could influence learning new phonology over 

monolinguals.  

Other studies have shown minimal or no differences between monolingual and bilingual children and 

adults when learning to discriminate new phonemic contrasts (Polka et al., 2001; Sundara et al., 2006; 

Tremblay & Sabourin, 2012). These tasks typically involve determining whether a heard sound belongs to 

a phonemic category (e.g., Hindi’s retroflex t versus dental stop t). For instance, Tremblay & Sabourin 

(2012) tested the phonemic discrimination performance of English monolingual, English-French bilingual, 

and multilingual adults using pre-training and post-training tests. Before training, there were no 

differences between the groups. After training, only the multilinguals—but not the bilinguals—performed 

the discrimination task better than the monolinguals.  

Wang and Saffran (2014) compared monolinguals (English and Mandarin) and bilinguals (Mandarin-

English and English-Spanish) in a statistical learning task. The task combined syllables and tones to 

simulate the experience of learning a tonal language as a foreign language. The artificial language 

contained three trisyllabic words (i.e., words with three syllables) with varying tones. After familiarizing 

themselves with the artificial language, participants heard a series of word pairs (one target and one foil) 

and selected which one belonged to the artificial language they had previously heard. Their results 

indicated that both bilingual groups outperformed the monolingual groups, regardless of their experience 

with tonal languages. Again, the authors of this study pointed at bilingual experience conferring indirect 

advantages in terms of the phonological network (Wang & Saffran, 2014). In other words, experience with 

the different phonology of two languages might confer an advantage when segmenting words from the 

continuous speech in a foreign language.  

To summarize, the results seem to be mixed in terms of the influence of bilingualism on explicit and 

implicit sub-lexical phonology learning, with some authors pointing to both direct transfer and indirect 

(phonological network) effects and others no differences between the groups. One crucial factor in all of 

these experiments is that the number of participants tends to be very low, with 24 participants per group 

at most but less than 15 participants on average. As a result, it is still unclear whether bilingualism could 

influence sub-lexical phonology learning beyond the cross-linguistic transfer effects.  

1.3.1.2. Sub-lexical orthography: Literacy and Orthotactics 

Under the sub-lexical orthography level, I consider studies where individuals learned to read and write in 

a foreign script (literacy) or vocabulary learning tasks where the words have varying orthographic patterns 
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(orthotactics). Some of these studies target bilingual individuals who know two scripts, known as 

biliteracy. For example, a Spanish-Mandarin bilingual knows an alphabetic (Spanish) and a logographic 

(Mandarin) script.  

Most studies on monolingual and bilingual literacy skills involve infants, children, and adolescents learning 

new scripts. In brief, some suggest that bilingualism or biliteracy can facilitate spelling and decoding in a 

new script over monolingualism (Clyne et al., 2004; Kahn-Horwitz et al., 2011; Schwartz et al., 2014; 

Trapman et al., 2014), whereas others have shown comparable performance between the groups (Van 

Gelderen et al., 2003). Although these findings imply that bilinguals might possess a more flexible 

orthographic system than monolinguals, it is essential to consider that other critical socio-cultural factors 

might be involved (Montanari, 2019). For instance, immigrant and immersion bilinguals might be more 

willing to communicate and have lower anxiety when facing a foreign language than local monolinguals 

(Mady, 2014; Schwartz et al., 2014). Thus, socio-cultural factors might have a more considerable effect on 

ultimate learning achievement than bilingual experience in itself.  

The research on adult monolingual and bilingual literacy is surprisingly very scarce. Of note, 

Modirkhamene (2006) compared the English reading comprehension of adult bilingual (Turkish-Persian) 

and monolingual (Persian) speakers three times over two years of their classroom learning studies. Persian 

possesses a Perso-Arabic script, and the Turkish script contains 29 letters compared to the 26 in the 

English alphabet. They found that the bilingual participants outperformed their monolingual peers over 

time, suggesting that bilinguals could better acquire the decoding and comprehension skills to succeed in 

this test (Modirkhamene, 2006). Similarly, another study found that Turkish-Farsi bilinguals outperformed 

Farsi monolinguals in their English writing skills (Poorebrahim et al., 2020). Although other mechanisms 

might be involved, it is easy to see how Turkish knowledge might have directly benefited the outcomes in 

these studies because of its similar script to English.  

A growing literature suggests that orthotactics—that is, the pattern of combinations between characters 

in words—can facilitate vocabulary acquisition (Hayakawa et al., 2020; Marian et al., 2021). These studies 

consistently show that words similar in their orthotactics to other known words can be acquired more 

quickly than dissimilar words (Bartolotti & Marian, 2017; Hayakawa et al., 2020; Marecka et al., 2021). For 

instance, the non-word londa would be easier to acquire than the non-word bupto for a Spanish speaker, 

as the former is more similar to other existing words (e.g., lenta, linda, luna, lonja) than the latter. In this 

regard, while it has been shown that bilinguals can exploit the similarity to any of their known languages 

(Bartolotti & Marian, 2017), studies have yet to explore whether bilinguals and monolinguals differ in 
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learning these types of words. One study, however, has reported no differences between multilingual and 

monolingual participants using a similar vocabulary learning task (Hayakawa et al., 2020). Hence, in 

experiment 6 I compared the performance of monolingual and bilingual speakers while learning 

vocabulary with varying orthographic similarities to Spanish. This experiment targets both the sub-lexical 

orthography and the lexical-semantics levels.  

In sum, adult monolingual and bilingual sub-lexical orthography learning remains largely unexplored. 

Research with children and adolescents suggests that other socio-cultural factors provide better 

indicators of learning achievement than bilingual experience. Moreover, the few studies targeting 

monolingual and bilingual adults point more towards an effect of cross-linguistic transfer (i.e., experience 

with the target script) than bilingual experience. Whether the experience with one or multiple 

orthographic systems could facilitate acquiring a novel script remains an open question.  

1.3.1.3. Morpho-syntax: Grammar 

Morpho-syntax encompasses the variations of words (morphology) and the rules by which multiple words 

combine to form clauses and sentences (syntax). These aspects are collectively referred to as grammar. 

The research on monolingual and bilingual grammar learning is limited, partly because learning grammar 

requires prior knowledge of other fine-grained aspects at the sub-lexical, lexical, and even semantic levels 

(Hirosh & Degani, 2018; Montanari, 2019).  

Nation and McLaughlin (1986) tested the grammar learning performance of English monolinguals, 

bilinguals, and multilinguals (with varying languages) using artificially generated character strings that 

followed two underlying sets of grammatical rules. A subset in each group was told that the character 

strings followed specific rules, which they had to discover (explicit condition). Conversely, the remaining 

participants did not receive any instructions and passively visualized the strings (implicit condition). After 

seeing the strings, all participants performed a grammaticality judgment test where they had to indicate 

whether a series of character strings were correct or not. Their results revealed no differences between 

the groups in the explicit condition. Multilinguals—and not bilinguals—outperformed the other two 

groups in the implicit condition. The authors suggested that the multilingual advantage was related to 

increased grammatical sensitivity (R. Nation & Mclaughlin, 1986). A similar study used English grammar 

instead of artificial character strings, also indicating a multilingual advantage for grammar learning in 

adolescents (Klein, 1995). Regardless, there have been no reported differences between monolinguals 

and bilinguals in these tasks.  
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A more recent study compared an older population (older than 60) of English monolinguals and English-

Spanish bilinguals that explicitly or implicitly learned basic Latin grammar (Cox, 2017). They used four tasks 

to measure learning outcomes: written and auditory sentence interpretation, grammaticality judgment, 

and sentence production. Overall, their results showed that bilinguals outperformed monolinguals in both 

sentence interpretation tasks, irrespective of whether they received explicit or implicit instructions. 

However, there were no differences between the groups in the other two tasks. They attributed these 

results to bilinguals having an enhanced metalinguistic awareness than monolinguals. An alternative 

explanation is that knowledge of Spanish—a Latin-derived language—could have directly influenced the 

learning of Latin grammar.  

Finally, another study compared Mandarin-English bilinguals against English monolinguals in an artificial 

grammar learning task (Grey et al., 2018). After receiving some instruction in the novel language, the 

participants performed comprehension and production tasks and a grammaticality judgment task. They 

then performed the comprehension and production tasks for 20 blocks to practice extensively in the 

language. Their results showed that bilinguals and monolinguals did not differ in any of the tasks. This 

result was consistent when testing the participants at a low or a high proficiency level in the artificial 

language and comparing them through the comprehension and production learning blocks. In other 

words, at least at the behavioral level, there was no evidence of bilingual experience conferring 

advantages over monolingual experience.  

In all, these few studies point towards a benefit of multilingualism—but not necessarily bilingualism—on 

novel grammar learning. Substantial research is necessary to investigate other aspects of morpho-syntax 

and examine whether bilinguals and monolinguals genuinely differ. Therefore, in experiments 2, 3, and 5, 

I tested implicit and explicit learning of morpho-syntactic information.  

1.3.1.4. Lexical-semantics: Vocabulary 

In this subsection, I consider studies that target how individuals acquire the mapping between foreign 

words and their meanings, known as vocabulary learning. Vocabulary learning is the area that has received 

the most attention from the literature (Festman, 2021; Montanari, 2019). Admittedly, some of the studies 

I have reviewed thus far fall into the lexical-semantics level. However, their designs and purpose more 

appropriately addressed other analytic levels of language learning rather than vocabulary specifically.  

In two seminal studies, Kaushanskaya & Marian (2009a; 2009b) compared the performance of bilinguals 

(English-Spanish English-Mandarin) and English monolinguals when learning foreign words paired with 
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their English translations. The words were artificial and had unfamiliar phonology created for these 

experiments. Additionally, a subset of the participants only heard the new words and saw their English 

translation (unimodal condition). In contrast, others heard and saw the new words alongside their 

translation (bimodal condition). Their results indicated that the bilingual group outperformed the 

monolingual group when recognizing and recalling the words immediately after learning them in both 

conditions. After a delay, bilinguals were only better than monolinguals in the bimodal condition. To 

explain this advantage, the authors suggested that bilingual experience either provided a more flexible 

mapping between orthography and phonology or lead to increased phonological working memory 

(Kaushanskaya & Marian, 2009b, 2009a). An equally plausible interpretation offered by other studies is 

that bilinguals are better at reducing phonological interference of their known languages by recruiting 

inhibitory control mechanisms (Antoniou et al., 2015; Bartolotti et al., 2011; Yoshida et al., 2011).  

This bilingual advantage in vocabulary learning seems consistent irrespective of whether bilinguals 

learned their languages since birth, through formal instruction or later in life, or when matching bilinguals 

and monolinguals on their phonological awareness and verbal working memory (Kan & Sadagopan, 2014; 

Kaushanskaya, 2012; Nair et al., 2016; Van Hell & Mahn, 1997). Additionally, related studies have shown 

that the differences between monolinguals and bilinguals are more prominent when learning concrete as 

compared to abstract meanings for the words (Kaushanskaya & Rechtzigel, 2012). Consequently, it would 

seem that bilingual experience improves language learning outcomes by either strengthening the 

phonological network, the lexical-semantic network, or inhibitory control mechanisms (Hirosh & Degani, 

2018; Kaushanskaya & Rechtzigel, 2012; Yoshida et al., 2011). All of these comprise the indirect effects 

mentioned above.  

Although the evidence seems overwhelmingly in favor of a bilingual vocabulary learning advantage, other 

studies employing different designs have shown no differences between monolinguals and bilinguals. For 

instance, Bakker-Marshal et al. (2021) compared English monolinguals and Spanish-English bilinguals 

when learning two sets of Swahili-English word pairs over two days. Participants performed four recall 

tasks with increasing difficulty and a primed lexical decision task where the Swahili words were used as 

primes (Bakker-Marshall et al., 2021). The authors included this latter task to measure the lexical 

integration of the new words. Overall, their results suggested that the groups performed equally on all 

the recall tasks, and only the monolingual group showed the priming effect indicative of lexical 

integration. Admittedly, these results could be biased since participants in the bilingual group were 
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learning the words in their second language. Regardless, these results show that it might not always be 

the case that bilinguals outperform monolinguals.  

Other studies have focused on lexical-semantics learning using implicit tasks. For instance, Poepsel and 

Weiss (2016) compared English monolinguals, Chinese-English, and English-Spanish late bilinguals across 

two experiments using an implicit vocabulary learning task. During an initial familiarization phase, 

participants saw a series of novel objects on the screen and heard non-words as the names for these 

objects in no particular order. Thus, participants implicitly learned the name of each object by implicitly 

tracking the co-occurrence of a specific object and its name through multiple scenes. After the 

familiarization phase, they performed a test where they heard one name and decided which of two 

objects corresponded to that name. In the first experiment, each object only had one unique name and 

were thus unique one-to-one mappings. Their results here indicated no differences between the 

monolingual and bilingual groups in this experiment. In the second experiment, they introduced two 

objects with one name (two-to-one mappings) alongside the one-to-one mappings. This experiment 

revealed that both bilingual groups outperformed the monolingual group only in these two-to-one 

mappings. They concluded that this advantage might emerge either because of enhanced implicit learning 

in bilinguals or due to indirect effects such as inhibitory control or phonological working memory. 

Importantly, studies using a similar design have found no differences between monolinguals and bilinguals 

or minimal differences only in one-to-one mappings but not in multiple mappings (Benitez et al., 2016; 

Chan & Monaghan, 2019; Escudero et al., 2016). Experiment 4 of this thesis addresses these discrepancies 

and targets monolingual and bilingual implicit vocabulary learning.  

In essence, the literature suggests a somewhat robust bilingual advantage for vocabulary learning. There 

are multiple interrelated explanations for this effect, including enhanced verbal working memory, more 

flexible phonological and lexical-semantic systems, and improved cognitive control in bilinguals than 

monolinguals (Montanari, 2019). Additionally, direct transfer effects could explain why bilinguals are 

better at mapping words to their meanings, even when there are inconsistencies between their sub-lexical 

orthography and phonology (Hirosh & Degani, 2018). However, some recent evidence indicates no 

vocabulary learning differences between monolinguals and bilinguals. Considering these findings, 

experiments 4, 6 of this thesis targeted implicit and explicit learning at the lexical-semantic level.  

1.3.1.5. Pragmatics 

The final and more abstract analytic level is pragmatics, referring to language use and meaning in different 

contexts. There are virtually no studies concerning how bilinguals and monolinguals acquire this aspect. 
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A possibility is that this highly abstract level is hard to measure objectively and even harder to manipulate 

using experimental learning tasks. Additionally, as mentioned before, proficiency in the more fine-grained 

levels is a prerequisite for acquiring this abstract level (Ellis, 2015). Therefore, in the context of this thesis, 

I did not address the pragmatics learning differences between monolinguals and bilinguals. Future 

research could further develop measures for pragmatics knowledge and experimentally study how 

monolinguals and bilinguals vary in learning constructions at this level.  

1.3.1.6. Summary 

It seems like the evidence in favor of a bilingual advantage in foreign language learning vastly overpowers 

the evidence against this claim. This advantage seems to rely both on direct transfer and indirect 

enhancement of cognitive abilities (Hirosh & Degani, 2018). As I mentioned earlier, the literature on the 

indirect effects does not provide a reliable basis for these differences. Furthermore, it is essential to 

consider that the lack of negative evidence—that is, results against this bilingual foreign language learning 

advantage—might be due to publication bias, as has been the case in other areas of bilingual research like 

the bilingual cognitive advantage (de Bruin et al., 2015). Regardless, there is sufficient evidence to uphold 

that bilinguals should outperform monolinguals in all experiments in this thesis. This is my central 

hypothesis.  

Before outlining the experimental part of this thesis, the last topic that remains to cover is how the 

linguistic theoretical models explain the direct effects in foreign language learning in more detail.  
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1.4. Cross-linguistic transfer theories 

The linguistic perspective on adult language learning concurs that certain aspects of a known language 

can transfer to the second or third languages (Alonso, 2016; Cabrelli Amaro et al., 2012; VanPatten & 

Benati, 2015). A crucial concept in the context of foreign language learning is that of language typology, 

which refers to the structural features or parameters of a language at all analytic levels (VanPatten & 

Benati, 2015). All languages vary across these parameters, with languages oscillating according to how 

close or distant they are (i.e., their proximity). For instance, word order is a typological parameter that 

defines the positioning of subjects, objects, and verbs in sentences. Languages can be similar or dissimilar 

in their predominant word order—that is, which word order occurs the most in the sentences of a 

language. The most prevalent word orders are SOV (subject-object-verb; e.g., Basque, Japanese) and SVO 

(subject-verb-object; e.g., Spanish, English). Assuming that a foreign language has a similar predominant 

word order as the native language, learners would struggle less to learn and understand the order of 

words in that language than if the word order differed.  

A recurring idea in applied and theoretical linguistics is typological universals, which are parameters 

present in all languages. For example, all languages have some form of nouns and verbs, but not all 

languages have articles and determiners (e.g., Russian). Accordingly, a core tenet in linguistic theories of 

language learning is that these universal features—albeit abstract—are always transferable (VanPatten & 

Benati, 2015), but the transfer of other features will depend on the proximity between the native and 

foreign language (Foote, 2009; Rothman, 2015). Notably, the typological similarity need not be objective, 

as learners can perceive idiosyncratic and subjective similarities—these are collectively known as psycho-

typology (Hermas, 2014). In other words, the knowledge of nouns and verbs and their relation to one 

another automatically transfers to the foreign language. However, other specific aspects depend on the 

native and foreign languages’ perceived or objective similarity.  

The question for experimental and applied linguistics is how similar the languages need to be for positive 

or negative cross-linguistic transfer to occur. Naturally, there is only one source for transfer during second 

language acquisition: the native language (L1). In contrast, in acquiring a third language, the questions are 

whether transfer can occur from any or both languages and what factors modulate this transfer. 

Accordingly, several linguistic models have been put forward to account for these different factors 

(Cabrelli Amaro et al., 2012). Although empirically contrasting these models is beyond the scope of this 

work, here, I offer a brief overview with regards to my central hypothesis:  
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L1 Transfer Model. The L1 Transfer Model essentially posits that positive and negative cross-linguistic 

transfer of linguistic information occurs mainly from the first language (L1), at least during the initial stages 

of foreign language learning (Hermas, 2014). According to this model, transferring from the L1 incurs the 

least cognitive effort (i.e., is more efficient), thereby inducing learners to find perceived similarities to 

their L1 and not other known languages. Under this model, there should not be any differences between 

monolingual and bilingual foreign language learning so long as they share their L1.  

L2 Status Factor Model. Contrary to the previous model, the L2 Status Factor Model suggests that the 

second language (L2) can take a more decisive role in cross-linguistic transfer, provided that it has a higher 

degree of psycho-typological similarity (or status factor) to the foreign language (Bardel & Falk, 2012). The 

reasoning for this model is that the learner does not actively select which language to use for cross-

linguistic transfer. Hence, transfer effects can occur naturally from the L2 if the learner is sufficiently 

proficient and if the L2 and target foreign language have similar psycho-typology. In this case, bilinguals 

should outperform monolinguals only if they are sufficiently proficient in their L2 to find similarities and 

transfer knowledge.  

Cumulative Enhancement Model. This model assumes both that language learning is cumulative—that 

is, all known languages contribute to subsequent foreign language learning—and that a specific language 

can enhance learning (Flynn et al., 2004). In other words, the L1 is not exceptional, and either the L1 or 

the L2 can be used as sources for direct cross-linguistic transfer. The Cumulative Enhancement Model 

would predict not only that bilinguals would outperform monolinguals but that trilinguals would, in turn, 

be better than bilinguals at learning a foreign language. That is, the more languages one knows, the easier 

it becomes to learn more.  

Typological Primacy Model. The Typological Primacy Model extended the ideas from the previous model 

by suggesting that cross-linguistic transfer is selective (Rothman, 2011, 2015). In other words, it is not a 

question of either-or—as in the Cumulative Enhancement Model—but rather “when” do learners transfer 

from a specific language. In this model, the more psycho-typologically similar language has “primacy” 

during cross-linguistic transfer. Furthermore, the transfer can occur on a construction-by-construction 

basis. Therefore, learners can transfer from any known language so long as a specific construction is 

similar to any known language. The Typological Primacy Model would predict an additive effect of 

language knowledge on foreign language learning (i.e., the more, the merrier).  
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Linguistic Proximity Model. The last model I consider is the Linguistic Proximity Model (Westergaard et 

al., 2017). Compared to the prior models, this account further assumes that transfer could occur from all 

known languages simultaneously. For instance, there could be a positive transfer from the L1 and a 

negative influence from the L2 operating upon the same construction (Westergaard et al., 2017). That is, 

learners find similarities to any language to the foreign language. These similarities range from psycho-

typology to more abstract and structural similarities. Therefore, this model predicts a bilingual advantage 

as long as both languages do not produce opposite cross-linguistic effects on the target construction to 

learn.  

It is critical to note that this literature does not particularly address the differences between second and 

third language acquisition (i.e., monolingual versus bilingual foreign language learning). Instead, the 

predictions from these models fundamentally rely on whether bilinguals use their more extensive pool of 

knowledge to transfer linguistic information during learning. Although these models make no claims about 

the cognitive system, they provide valuable insights regarding the interplay of languages in the learner’s 

mind. First, according to these models—particularly the last two—the information from both languages 

is active and available for cross-linguistic transfer in bilinguals. Second, there does not seem to be separate 

systems for each language an individual acquires, and all languages cumulatively interact during 

subsequent learning. I will elaborate on these ideas further in Chapter 4. Third, the cross-linguistic transfer 

occurs from any or both languages on a construction-by-construction basis. Finally, the similarities do not 

need to be objective, as learners can transfer based on perceived and subjective similarities.  

With these theories and predictions, I now outline the purpose and general methodology of this thesis.  
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1.5. The current thesis 

1.5.1. Purpose of this thesis 

Throughout this first chapter, I have reviewed the experimental and theoretical literature underlying 

potential bilingual learning advantages at different foreign language analytic levels. Briefly, while the 

vocabulary level has been studied extensively, other analytic levels have received little to no attention 

from the literature. The findings are also mixed regarding whether differences between monolinguals and 

bilinguals genuinely exist. Moreover, there is no reliable consensus on how these differences might 

emerge. Some studies posit that the differences are fundamentally due to cross-linguistic transfer, while 

others propose indirect cognitive effects of bilingual experience.  

Accordingly, the central research question of this thesis remains unchanged: Are bilinguals better at 

learning a foreign language than monolinguals? I further divide this research question into three specific 

research questions distributed throughout the following chapters:  

 RQ1. At which analytic level, if any, do bilinguals and monolinguals differ? This represents the 

“where” question. Under this question, I explore multiple levels of foreign language learning 

through experiments in Chapters 2 and 3.  

 RQ2. What are the differences? This is the “what” question. In other words, are bilinguals always 

better, or just under some specific conditions? Most of the experiments in this work contain 

multiple conditions to address specific questions regarding these potential differences.  

 RQ3. How could these differences emerge from the bilingual experience? This is the “how” 

question. In this regard, Chapter 4 focuses on understanding some of the differences found 

throughout the experimental part of this thesis using cognitive computational modeling.  

I compared two bilingual groups (Spanish-English and Spanish-Basque) to each other and against a Spanish 

monolingual group in all the experiments. The general hypothesis was that the two bilingual groups would 

outperform monolinguals in all foreign language learning experiments. Nevertheless, to adequately 

address these research questions, this work needs to fulfill several requirements. First, how to ensure that 

participants are learning linguistic information that is sufficiently novel for them? Second, which 

experiments can capture foreign language learning at different analytic levels? Three, how to properly 

recruit comparable groups of monolingual and bilingual participants? Finally, how to address the general 

and specific questions with the appropriate statistical analyses? Below, I describe how I addressed these 

desiderata in turn.  
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1.5.1.1. A brief note on the use of artificial languages in language learning research 

In the experimental part of this thesis, I tested adult individuals’ capacity to learn constructions in a foreign 

language. Given that these individuals were either monolingual (i.e., they know only one language) or 

bilingual (i.e., they already know two languages), many possible interactions and transfer effects could 

occur due to their prior linguistic knowledge. Thus, I used artificial languages rather than natural languages 

to account for their potential prior knowledge of the target constructions to learn. In other words, instead 

of using any existing foreign language (e.g., Japanese, Swahili), participants in each experiment learned 

artificial and, therefore, unfamiliar constructions. The only exception in this thesis is Experiment 5, where 

the participants learned artificial suffixes using existing Spanish words as roots.  

Artificial languages provide a means to tap into various analytic levels of a foreign language while still 

maintaining sufficient experimental control. This premise has been the hallmark of psycholinguistic 

research for over a century (Weiss, 2020). Artificial languages have been used extensively to investigate 

language learning and processing at different analytic levels (e.g., Endress & Bonatti, 2016; Ettlinger et al., 

2016; Hayakawa et al., 2019; Kaushanskaya & Marian, 2009b, 2009a; Morgan-Short et al., 2014). 

Participants can learn artificial linguistic materials in a few hours or days, making artificial languages 

helpful in investigating language learning trajectories (Grey et al., 2018; Morgan-Short et al., 2014). For 

example, artificially constructed linguistic materials have been used in language learning research to 

investigate how different sub-lexical, lexical, and other more abstract aspects can influence vocabulary 

acquisition (for a review, see Hayakawa et al., 2019). Researchers can also carefully control aspects such 

as sub-lexical similarity and the influence of prior knowledge in artificial linguistic materials. Finally, 

studies have shown that artificial language learning performance tasks positively correlates with natural 

language learning performance (Ettlinger et al., 2016). Consequently, artificial languages offer an excellent 

resource to level the field between monolinguals and bilinguals and test their foreign language learning 

abilities while simultaneously reducing or controlling for the influence of their prior knowledge.  

1.5.2. Overview of experiments 

Table 3 shows an overview of the experiments targeting different analytic levels of a language. The details 

about the design, materials, and procedure are left to each experiment’s specific section. The main 

research question remains the same throughout all the experiments—i.e., are bilinguals better? There are 

different specific hypotheses and predictions within each experiment. Therefore, I briefly summarize the 

purpose, the specific hypotheses, and the predictions for each experiment.  
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Table 3. Overview of experiments by analytic level. 

Analytic Level Implicit Explicit 

Sub-lexical phonology Experiment 1 -- 

Morpho-syntax 
Experiment 2 

Experiment 5 
Experiment 3 

Sub-lexical orthography -- 
Experiment 6 & 7 

Lexical-semantics Experiment 4 
Note. The levels are grouped as in Section 1.3 and reorganized to facilitate comprehension.  

 

Chapter 2: Implicit foreign language learning. 

Chapter 2 targets implicit foreign language learning at four analytic levels using statistical learning 

experiments. I chose this paradigm because it allows experimentally testing multiple aspects of implicit 

learning using a similar design (Perruchet & Pacton, 2006; Romberg & Saffran, 2010). Experiment 1 

compared the ability of bilinguals and monolinguals to segment words from three artificial speech 

streams. The critical manipulation was the sub-lexical phonological patterns that comprised the words in 

each stream, ranging from simple to complex. Therefore, the specific question was whether the groups 

would differ in all conditions or just in the complex conditions. The bilingual experience exposes 

participants to distinct phonological patterns (Antoniou et al., 2015). Therefore, I expected that bilinguals 

should show an advantage over monolinguals in this task.  

Experiment 2 extends the findings from the previous experiment by testing participants’ ability to 

generalize the knowledge to novel words. Specifically, I designed the artificial speech streams to mimic 

affixal morphology (e.g., unbreakable, untouchable), and participants had to generalize this knowledge 

to new items (e.g., unfillable). Experience with two languages might foster participants’ ability to attend 

to language’s structure and rules rather than explicit instances (Cenoz, 2013). Hence, as in the previous 

experiment, the overall question was whether the groups would differ in generalizing this knowledge.  

Experiment 3 also targets the morpho-syntax analytic level. In this experiment, I tested participants’ ability 

to segment words from an ambiguous speech stream. The stream targeted a specific syntactic property 

of languages: their word order. In this regard, participants in the Spanish-Basque group have experience 

with both SVO and SOV word orders. Therefore, I expected participants in this group to be sensitive to 

both segmentation patterns in the artificial language. The general idea was to test whether experience 
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with two SVO languages—as is the case with Spanish-English bilinguals—would also confer advantages 

over experience with a single language. Hence, this experiment is vital to disentangle the overall effects 

of bilingual experience from the specific properties of known languages.  

Finally, in Experiment 4, I targeted the lexical-semantics level using a statistical word-referent learning 

task. In this task, participants had to discover the names (words) of non-existing objects (referents) 

implicitly. They saw the objects across different scenes and heard the name of each object in no particular 

order. The manipulation in this experiment was the mappings between words and objects. Some objects 

only had one name—i.e., they were exclusive mappings—, but other objects could have two distinct 

names, or two distinct objects could have the same name. For example, in English, the word bat can refer 

to an animal or an object, and therefore this word is a homonym. Conversely, the words money and cash 

can refer to the same meaning, an example of synonyms. Consequently, the specific question was whether 

bilinguals and monolinguals would differ in learning any or all of these words. Intuitively, the bilingual 

experience exposes participants to multiple types of word-referent mappings, so the natural prediction is 

that bilinguals would outperform monolinguals in learning these three types of mappings.  

Chapter 3: Explicit foreign language learning. 

In Chapter 3, I addressed explicit foreign language learning using two additional experiments. These 

experiments jointly addressed the gap in knowledge about sub-lexical orthography and morphology 

learning and the discrepant findings regarding monolingual and bilingual foreign vocabulary learning. In 

these two experiments, participants had to learn linguistic material by using rehearsal and trial-and-error 

methods. The procedure involved a familiarization block followed by some tests of their recently acquired 

knowledge.  

Experiment 5 compared monolinguals and bilinguals when learning new suffixes (e.g., breakable). For this 

experiment, it was a necessary prerequisite that participants already knew the words to which these 

suffixes would append. Therefore, instead of using artificial words and having participants learn them 

beforehand, I used existing Spanish word roots and artificially constructed novel suffixes (e.g., laboralsuti). 

Furthermore, since participants already knew the definitions for these words, it allowed me to focus only 

on how they learned the artificial suffixes’ orthographic form. As in Experiment 2, the specific questions 

were whether bilinguals would better remember the suffixes than monolinguals. Additionally, since 

Basque is a postpositional and agglutinative language—i.e., information is appended to the end of 

words—this experiment also disentangled between overall bilingual experience and experience with a 
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specific language. The predictions were that both bilingual groups would outperform monolinguals in an 

old versus new task where they saw different words with the new suffixes.  

Experiment 6 combines the sub-lexical orthography and the lexical-semantics level. In this experiment, 

participants were tasked with learning an artificial vocabulary. The critical manipulation was that each 

words’ sub-lexical orthography was either more similar or dissimilar to Spanish. Notably, all participants 

had Spanish as a common native language. Hence, the specific questions were (1) whether words more 

similar to Spanish would be learned better, and (2) whether orthographic similarity would interact with 

the bilingual status of participants. Beyond predicting that participants would learn similar words better 

than dissimilar words, I expected the bilingual experience effect to be independent of orthographic 

similarity. That is, I expected bilinguals to outperform monolinguals in learning both similar and dissimilar 

words.  

Chapter 4: Tracing the algorithm of bilingual foreign vocabulary learning. 

Chapters 2 and 3 jointly address “where” (RQ1) and “what” (RQ2) the differences between bilinguals and 

monolinguals are. In contrast, Chapter 4 focuses mainly on vocabulary learning and targets RQ3. In this 

chapter, I attempt to unify the direct and indirect accounts of bilingual and monolingual vocabulary 

learning. I first offer an overview of the cognitive computational modeling framework, reviewing some of 

the prior modeling work on the bilingual mental lexicon for word processing and learning. In short, the 

extant literature has mainly addressed (1) the processes involved in word processing using manually 

engineered computational models; or (2) how individuals acquire words in two languages using simple 

learning rules. Despite this, none of these models adequately accounts for the vocabulary learning 

differences between monolinguals and bilinguals.  

Therefore, in Experiment 7, I propose and develop a new computational model specifically focused on the 

sub-lexical orthographic lexicon. As in Experiment 6, I employ this model to examine how orthographic 

similarity and bilingual experience influence foreign vocabulary learning. First, I simulate the development 

of bilingual and monolingual adults’ orthographic lexicon. I then validate the model by replicating some 

well-established findings in the psycholinguistic and modeling literature. Finally, I contrast the model’s 

performance with human behavior using an adapted version of the vocabulary learning task from 

Experiment 6. This experiment unifies the seemingly disparate findings of orthographic similarity and 

bilingual experience under a common computational framework, whereby distributed orthographic 

representations reside in a unified lexicon and are modified by learning experiences.  
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1.5.3. General Methodology 

In this subsection, I describe the methodology that is common to all the experiments in this thesis. All 

experiments tested participants with similar linguistic profiles, namely bilinguals (Spanish-English and 

Spanish-Basque) and Spanish monolinguals. I start by offering a brief overview of the differences between 

the three languages under study (Spanish, Basque, English). Then I describe the measures employed to 

measure participants’ linguistic experiences. Finally, I briefly cover the statistical analytic approach I 

employed throughout this thesis. Since my predictions and hypotheses are clearly defined—i.e., I 

expected bilinguals to outperform monolinguals in all the language learning tasks—, I disregarded the 

exploratory analyses used in prior studies in favor of confirmatory approaches, as supported by more 

recent literature (Schad et al., 2020).  

1.5.3.1. Participants 

Two bilingual groups were included in this work to isolate the effects of bilingual experience rather than 

specific language combinations. Spanish-English and Spanish-Basque bilinguals were compared to each 

other and against a Spanish monolingual group. All participants were from Spain, with Spanish-Basque 

bilinguals belonging to a different region (Basque Country) than the Spanish and Spanish-English groups 

(Murcia). The Spanish-English bilinguals knew a native and a foreign language, while the Spanish-Basque 

knew two native languages since Basque is a native language in the Basque Country region. The 

monolinguals knew one native language (Spanish). Although they might have experienced other 

languages, I controlled so that their knowledge and exposure to languages other than Spanish was 

minimal. The Spanish-English group had a more similar socio-cultural profile to the Spanish monolingual 

group, as they were all university students from the same university in the same region of Spain. All 

participants reported normal or corrected-to-normal vision and no history of hearing or other neurological 

disorders. The entire experimental protocol was approved by the Ethics Committee of the Basque Center 

for Cognition, Brain and Language (BCBL) and carried out following the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) for experiments involving humans. Before their inclusion in each 

experiment, all subjects provided written informed consent. They received monetary compensation for 

their participation.  

Participants needed a similar profile to make the results across experiments comparable. Therefore, 

before participating in the experiments, they completed a language background questionnaire, a picture-

naming task, and a matrix reasoning task from the Kaufman Brief Intelligence Test (Kaufman & Kaufman, 

2014) to measure non-verbal IQ. The linguistic questionnaire included information about the age of 
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acquisition, total exposure to each language, self-rated proficiency scales for each known language, and 

demographic questions such as age and gender. This questionnaire is an abridged version of the LEAP-Q 

questionnaire (Marian et al., 2007). The picture naming task consisted of sixty-five images from the 

Basque, English, and Spanish Test (BEST) (de Bruin et al., 2017). Participants in the monolingual group 

named the images in Spanish and English, while the bilingual groups named them in both Spanish and 

their L2 (English or Basque). Additionally, participants in the bilingual groups completed the LexTALE test 

in Spanish and their respective L2 (Izura et al., 2014; Lemhöfer & Broersma, 2012). The combination of 

these tests provided information on receptive and productive L2 vocabulary in the bilingual groups.  

I calculated the sample size a priori for all experiments using G*Power version 3.1 (Faul et al., 2009). A 

mixed within-between F-test was chosen as the statistic, with Group (monolingual vs. Spanish-English vs. 

Spanish-Basque) as between factors. The number of within contrasts oscillated between two and four to 

account for the different conditions in each experiment. The effect size was chosen to be conservative 

(Cohen’s f of 0.20) in all experiments, and an expected power of 95% was selected. The alpha level was 

set to 0.05. On average, the estimated sample size to achieve this power level was 34 participants per 

group. Therefore, to err on the safe side, I collected data from around 40 participants per group in each 

experiment to account for any potential technical errors.  

A final detail to emphasize is the differences between Spanish, Basque, and English. Table 4 summarizes 

the main characteristics of each language at different analytic levels that are relevant for this thesis. 

Naturally, a complete linguistic description of each language is beyond the scope of this work. While prior 

studies have emphasized the characteristics that differentiate Spanish and English (e.g., transparent vs. 

opaque grapheme to phoneme (G2P) mappings), it is essential to briefly comment on the commonalities 

and differences between them and the Basque language. For instance, Spanish and Basque do not share 

any common root, but Basque possesses many Spanish loan words due to their geographic proximity 

within Spain. Some language-specific bigrams differentiate Basque from Spanish and English (e.g., "tx", 

"tz"). Spanish and Basque are phonologically similar, differing fundamentally on this aspect from English. 

The Basque language also possesses a predominantly subject-object-verb (SOV) word order, which 

involves a postpositional and agglutinative morphology—i.e., morphemes and determiners are appended 

to the end of word roots (e.g., eskolan – school the in). These properties differentiate Basque from 

Spanish, English, and many other Indo-European languages (Bengtson, 2011).  
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Table 4. Main differences between Spanish, Basque, and English. 

Analytic level Spanish Basque English 

Sub-lexical phonology 
Transparent G2P 

mapping 
Transparent G2P 

mapping 
Opaque G2P 

mapping 

Sub-lexical orthography 
Alphabetic 

orthography 
Alphabetic 

orthography 
Alphabetic 

orthography 

Morphology 
Prepositional & 

Inflectional 
Postpositional & 

Agglutinative 
Prepositional & 

Inflectional 
Syntax SVO word order SOV word order SVO word order 
Lexical-

Semantics/Pragmatics 
- - - 

Note. G2P = grapheme to phoneme mapping; SVO = subject-verb-object; SOV = subject-object-verb.  

1.5.3.2. Statistical analyses 

The primary dependent variable of interest was participants’ accuracy after learning the linguistic 

constructions in each experiment. I analyzed the accuracy in all experiments using generalized or linear 

mixed models (G/LMM). For the GLMMs, I assumed a binomial distribution and a logit link for the accuracy 

scores, with the group, any possible conditions, and their interaction as fixed effects of interest. This 

implies that the analysis modeled a function of the log-odds and not the aggregate percent correct. There 

are many limitations to using percentages instead of log-odds, the foremost being that percentages are 

sensitive to ceiling and floor effects, whereas log-odds are not (Hartshorne et al., 2018). In all experiments 

(except for Experiment 3), the group factor was reverse Helmert coded according to the central 

hypothesis. In other words, I first contrasted the two bilingual groups, expecting no differences between 

them. Then I contrasted both bilingual groups against the monolingual group. These factors were dummy-

coded for each different contrast. I further included participants´ de-meaned Age and Non-verbal IQ and 

reported gender as covariates in each experiment´s model. Any other specific additional contrasts or 

approaches are described within each experiment’s method section.  

Crucially, this is a different approach from prior studies that focus on omnibus exploratory analytical 

methods (e.g., ANOVAs). I decided to adopt a confirmatory approach to evaluate the effects of bilingual 

experience in all experiments more robustly through a priori planned contrasts. This approach makes the 

G/LMM analyses directly interpretable without the need for corrected post-hoc tests (Schad et al., 2020). 

The G/LMM models were fitted using the glmer and lmer functions from the “lme4” package in R (Bates 

et al., 2015). Following standard practice, I tried to fit the maximal random-effects structure and reduced 

it to achieve convergence by eliminating the correlations between random slopes or the random slopes 



P a g e  | 34 
 

themselves (Barr et al., 2013). Each model’s assumptions (e.g., variance inflation factor, collinearity, 

normality of residuals) were verified using the performance package for R (Lüdecke et al., 2021).  

Finally, I report both the frequentist and Bayesian versions of the tests where possible. I opted to report 

the results from the Bayesian framework because these provide robust tests of the differences between 

the groups while simultaneously testing for the null hypothesis (Kruschke, 2010; van Doorn et al., 2020). 

Exact p-values are reported up to the 0.001 level for frequentist tests. For Bayesian tests, I report the 

exact Bayes Factor (BF10) from 0.001 to 100. BF10 values below 1 indicate more support for the null 

hypothesis, and values above 1 support the alternative hypothesis. I used uninformative priors for all 

Bayesian analyses. Paired-samples, one-sample, independent-samples, and ANOVA frequentist and 

Bayesian tests were conducted in JASP, ensuring that the data met the corresponding assumptions (Love 

et al., 2019). To obtain an approximate BF10 from the G/LMM models, I contrasted nested models, 

including each fixed factor and interaction step-wise, against an intercept-only model with the same 

random-effects structure (Nakagawa et al., 2017; Wagenmakers, 2007). This approach is similar to the 

one implemented in other statistical software (e.g., JASP), except that the G/LMMs are not executed 

under a fully Bayesian framework. Instead, I calculated the BF10 using the Bayesian Information Criterion 

(BIC) of the intercept-only (m0) and each fixed-effect model (m1) with the following formula:  

𝐵𝐹ଵ଴ = exp (
𝐵𝐼𝐶(𝑚଴) − 𝐵𝐼𝐶(𝑚ଵ)

2
) 
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Chapter 2: Implicit foreign language learning 

Theoretical motivation 

The human brain is remarkably susceptible to structure in the environment. Both infants and adults can 

implicitly and quickly learn from patterns presented repetitively, a mechanism broadly known as statistical 

learning (Saffran, 2003). Statistical learning occurs irrespective of the input type (be it auditory, visual, or 

tactile), hinting towards a domain-general mechanism to implicitly track and learn from regularities in the 

environment (Kirkham et al., 2002). The field of language acquisition has taken a particular interest in 

statistical language learning (SL) as one of the primary mechanisms through which humans implicitly learn 

languages (Perruchet & Pacton, 2006; Romberg & Saffran, 2010). However, the extent to which prior 

linguistic experiences affect SL remains largely unexplored. In this chapter, I examined whether 

bilingualism influences performance in SL tasks. In particular, I compared monolingual and bilingual adults 

in four well-established SL tasks that targeted different analytic levels of foreign language learning as a 

proxy.  

The idea of SL stems from observing the natural world. For example, given sufficient exposure to the 

words in the phrase baby monkey, infants and adults learn that the syllables within the words (i.e., ba-by) 

predict each other more reliably than the syllables at the boundary between the words (i.e., by mo) 

(Erickson & Thiessen, 2015). As an experimental task, SL consists of exposing participants to a continuous 

stream of artificial linguistic input and testing them on plausible—those that follow the statistics of the 

input—versus implausible items from the stream (Siegelman, Bogaerts, Christiansen, et al., 2017). Ideally, 

the participants should implicitly discover the boundaries between words solely from the statistics of the 

artificial language and mentally represent them as separate units. By manipulating the syllables or words 

themselves or the transitions between elements in an SL task, researchers have examined how individuals 

implicitly learn different aspects of a novel language, including segmenting words from speech (Saffran, 

2003; Saffran et al., 1996), acquiring sub-lexical units (Maye et al., 2002; McMurray et al., 2009), 

discovering morphological rules (Rebecca Frost & Monaghan, 2016; Peña et al., 2002), and learning word-

referent pairs (Smith & Yu, 2008; Yu & Smith, 2007).  

Individual linguistic experiences seem to influence performance in SL tasks. For instance, studies have 

shown that the native language’s stress pattern can interfere with SL performance in 9-month-old, but 

not in younger infants with less exposure to the native language (Jusczyk et al., 1999; Thiessen & Saffran, 

2003). Adults also seem to struggle in SL tasks that contain syllables not plausible in their native language 
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(Finn & Hudson Kam, 2008). Furthermore, the SL performance of both infants and adults seems to be 

biased towards their native language’s word order (Onnis et al., 2016; Onnis & Thiessen, 2013). Overall, it 

seems that the specific properties of a known language (e.g., stress patterns, word order) may facilitate 

or interfere with SL performance. It makes sense that prior linguistic experiences predispose the learning 

of novel linguistic material, as evidenced by cross-linguistic transfer studies (Alonso, 2016).  

In bilingual adults—who consistently use two languages—their practice with conflicting statistics may 

influence their performance in SL tasks. To put this idea to the test, Wang and Saffran (2014) compared 

two monolingual (English and Mandarin) and two bilingual (Mandarin-English, and English-Spanish) 

groups in a challenging SL task that combined syllables and tones to emulate a foreign tonal language. 

They found that, while the monolingual groups could not perform above chance level in this task, both 

bilingual groups outperformed monolinguals. They concluded that this “bilingual advantage” was 

irrespective of experience with tonal languages and emerged from enhanced phonological working 

memory in bilinguals. Additional research has supported the idea of bilingual experience influencing 

implicit learning performance using other challenging SL tasks, such as learning a Morse Code language 

with interfering statistics (Bartolotti et al., 2011), simultaneous learning of two grammars (Onnis et al., 

2018), and learning multiple word-referent pairs (Poepsel & Weiss, 2016). By using challenging SL tasks, 

all of these studies fail to disentangle the effects of SL task difficulty from those stemming from bilingual 

experience. Thus, there is no consensus on whether bilingual experience improves SL performance or if 

bilingual individuals are simply better at managing conflicting information.  

Given that SL tasks can measure different aspects of foreign language learning, several questions arise 

from this overview. First, if bilingual experience facilitates SL in general, do bilinguals show an overall 

advantage regardless of the specific SL task? Second, do the effects emerge from a specific language 

combination or an overall bilingual advantage? Third, do these effects emerge at specific analytic levels 

of implicit foreign language learning? To address these questions, I compared monolingual and bilingual 

adults’ performance across four SL experiments. The experiments targeted four analytic levels of foreign 

language learning as a proxy—i.e., sub-lexical phonology, morphology, word order (syntax), and 

vocabulary (lexical-semantics)—using well-established tasks reported in the literature.  

Critically, two bilingual groups were included in this work to isolate the effects of bilingual experience 

rather than specific language combinations. Spanish-English and Spanish-Basque bilinguals were 

compared to each other and against a Spanish monolingual group. All participants were from Spain, with 

Spanish-Basque bilinguals belonging to a different region (Basque Country) than the Spanish and Spanish-
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English groups (Murcia). While prior studies have emphasized the characteristics that differentiate 

Spanish and English, it is essential to briefly comment on the commonalities and differences between the 

Spanish and Basque languages. Spanish and Basque do not share any common root, but Basque possesses 

many Spanish loan words due to their geographic proximity within Spain. Some language-specific bigrams 

differentiate Basque from Spanish (e.g., "tx", "tz"). However, the two languages are phonologically similar. 

The Basque language also possesses a predominantly subject-object-verb (SOV) word order, which 

involves a postpositional and agglutinative morphology—i.e., morphemes and determiners are appended 

to the end of word roots (e.g., eskolan – school the in). These properties differentiate Basque from 

Spanish, English, and many other Indo-European languages (Bengtson, 2011).  

Given that bilinguals experience different and potentially conflicting statistics in both known languages, 

the general hypothesis was that bilinguals should outperform their monolingual peers in the four tasks. 

However, within each experiment, there were specific questions and hypotheses. Experiment 1 compared 

the SL performance of monolinguals and bilinguals across three tasks. Each task contained different sub-

lexical phonotactics that modulated its difficulty. Here, I expected the task's difficulty to interact with 

bilingual status, with bilinguals possibly outperforming monolinguals in the more complex conditions. 

Experiment 2 further tested participants’ capacity to generalize from an SL stream. Experience with two 

languages—and especially with two distinct morphologies—could foster individuals’ ability to discover 

and generalize rules from continuous speech.  

Experiment 3 tested whether knowledge of different word orders could influence SL performance. In this 

case, I expected the Spanish-Basque group to perform differently from the other two groups due to their 

experience with different word orders in Spanish and Basque. I included this experiment to separate the 

overall effects of bilingual experience from the influence of specific properties of known languages. 

Finally, in Experiment 4, participants learned word-referent pairs. There were one-to-one (exclusive), two-

to-one (synonym), and one-to-two (homonym) word-referent mappings, and participants learned them 

through a cross-situational SL task (Smith & Yu, 2008; Yu & Smith, 2007). Prior studies have suggested a 

bilingual advantage in explicit one-to-one word-referent learning (Kaushanskaya & Marian, 2009b). 

However, the defining characteristic of bilingual experience is learning multiple word-referent mappings 

(e.g., puerta – door/ate). Therefore, I expected three possibilities. First, bilinguals could better learn the 

exclusive mappings than monolinguals, but not the more challenging multiple mappings. Second, 

bilinguals could be better on the multiple, but not the exclusive mappings. Finally, bilinguals could overall 

be better than monolinguals regardless of the mapping type.  
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2.1. Experiment 1: Word segmentation from continuous speech 

2.1.1. Rationale 

Experiment 1 tested the word segmentation performance of monolinguals and bilinguals adults in three 

SL streams that differed in their sub-lexical phonotactic patterns. Phonotactics is an aspect of sub-lexical 

phonology that defines the allowed combinations of phonemes in a given language. Studies have shown 

that violating the phonotactics of the native language can hinder the word learning performance of infants 

and adults (Estes et al., 2016; Finn & Hudson Kam, 2008). For instance, exposing English-speaking adults 

to an SL stream containing syllables that do not exist in English (e.g., /tfobu/) leads to lower performance 

than stimuli that only contain plausible English syllables (Finn & Hudson Kam, 2008). Thus, sub-lexical 

phonotactics—defined here as the plausibility of constituent syllables—provide an excellent way of 

adjusting the difficulty of SL tasks.  

Bilinguals can potentially experience distinct phonotactics in both languages, affecting their learning 

performance (Antoniou et al., 2015; Kaushanskaya & Marian, 2009b). Consequently, I expected both 

bilingual groups to show an advantage compared to monolinguals in this task. Additionally, a specific 

question for this experiment was whether task difficulty could modulate this advantage. Therefore, 

participants in this experiment listened to three SL streams. The first one was constructed using simple 

consonant-vowel syllables, whereas the other two contained more complex consonant clusters that were 

either legal or illegal.  

2.1.2. Methods 

Participants 

Forty Spanish monolinguals (Mage = 21.8, SD = 2.6; 37 females), forty Spanish-Basque bilinguals (Mage = 

21.2, SD = 1.9; 35 females), and thirty-seven Spanish-English bilinguals (Mage = 20.9, SD = 2.3; 33 females) 

participated in this experiment. Before participating in the study, they completed a language background 

questionnaire, a picture-naming task, and a matrix reasoning (see Subsection 1.5.3). Additionally, 

participants in the bilingual groups completed the LexTALE test in Spanish and their respective L2. I 

compared the three groups using several ANOVAs with Helmert contrasts. In other words, I contrasted 

the Spanish monolingual group against the two bilingual groups in the first level and both bilingual groups 

against each other in the second level. A complete table with demographic information and statistical 

comparisons can be found in Appendix A1. The results suggested that the three groups did not differ in 

their age (p = 0.204, BF10 = 0.303), non-verbal IQ (p = 0.619, BF10 = 0.303), self-reported Spanish proficiency 

(p = 0.419, BF10 = 0.166) and Spanish picture naming (p = 0.245, BF10 = 0.260). As expected, the monolingual 
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and bilingual groups differed in their exposure to Spanish, L2 age of acquisition, L2 exposure, L2 self-rated 

proficiency, and BEST picture naming in L2 (all p < 0.001). Crucially, the two bilingual groups did not differ 

in their L1 and L2 exposure, age of acquisition, self-rated proficiency, BEST picture naming, and LexTALE 

scores (all p > 0.05).  

Materials 

I constructed three auditory SL streams with eight trisyllabic words per stream. The syllables did not 

repeat within the streams, maintaining the transitional probabilities within the words at a constant value 

of 1. The eight words for each condition were randomly concatenated into continuous speech streams, 

with the constraint that there was no immediate word repetition and that each word appeared 80 times 

per stream.  

The first of these streams, the simple condition, was only composed of consonant-vowel (CV) syllables and 

represented a version of the original statistical learning experiment (Saffran et al., 1996). An example of 

a word in this stream would be /motufi/. In the second and third conditions—or complex conditions—, 

each word contained one consonant cluster (CCV) syllable, either at the beginning or at the end of a word. 

The difference between these conditions was the sub-lexical phonotactic patterns that defined the 

syllables. In the complex legal condition, the consonant cluster in the syllable (i.e., /fre/, /bla/, /fle/, /gli/, 

/gra/, /pre/, /pli/, /tre/) were plausible at the beginning or end of a word without interfering with its 

segmentation (e.g., /betafre/). However, in the complex illegal condition, participants would hear words 

with consonant clusters that generally mark the boundary between syllables (i.e., /rnu/, /gma/, /lgi/, 

/nfu/, /rbu/, /rfo/, /sfe/, /bso/) and were thus not plausible at the beginning or end of words (e.g., 

/tenobso/). These consonant clusters were selected because they provided interfering cues—i.e., syllable 

boundaries—when inserted in an uninterrupted speech.  

I synthesized the streams and each separate word using the MBROLA software (Dutoit et al., 1996), using 

the it3 voice, a constant pitch of 82.63Hz, and a duration of 200ms per syllable. No pauses were inserted 

between the words in any of the auditory streams. These constraints ensured minimal interference of 

segmentation cues due to varying pitch, amplitudes, or co-articulation of the syllables. Finally, following 

previous research, I introduced an amplitude ramp for the first and final 5 seconds of the stream (Onnis 

et al., 2016). It produced a fade-in and fade-out effect, giving the impression of an unbounded speech 

stream. The duration of each SL stream was around 7 minutes.  
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Procedure 

Participants completed a familiarization phase followed by a 2-alternatives forced-choice (2AFC) test. 

They were asked to wear headphones and sit in a quiet room for the entire experiment. During the 

familiarization task, they listened to the artificial SL streams. As in prior studies, they were instructed to 

pay close attention to the made-up languages because later, they would answer questions about them 

(Saffran et al., 1999; Wang & Saffran, 2014). Each condition’s order of presentation was counterbalanced 

for each participant. The 2AFC test immediately followed the familiarization phase in each condition. 

During this test, participants heard two words (one target and one foil) separated by 500 ms of silence 

and decided which word belonged to the previously heard language. The trials and the order of 

presentation of target and foil words were fully randomized. They responded using the keyboard (“f” and 

“j” keys) to indicate which word they thought was more similar to the previously heard language. The 

computer automatically recorded their accuracy during the experiment.  

I included two types of foils during the test phase, synthesized in the same manner as the original words. 

The first type was non-words, created by inverting the syllables of each word in the stream. The second 

type of foils was part-words. I created these foils by combining the ending of one word and the beginning 

of another, maintaining the correspondence between syllables. For instance, at test, a word in the simple 

condition (/bukoni/) would be paired both with a non-word (/nikobu/) and with a part-word (/konito/) in 

separate trials. The inclusion of two types of foils allowed us to double the number of trials per condition 

to sixteen. With three familiarization and three test phases, the entire experiment lasted around 30 

minutes. Participants were encouraged to take a small break between each condition. The tasks for this 

and the rest of the experiments were programmed in Psychopy (Peirce et al., 2019).  

Data analysis 

I analyzed participant’s accuracy in the three SL streams using a GLMM. I assumed a binomial distribution 

and a logit link for the accuracy scores, with the Condition, Group, and their interaction as fixed effects of 

interest, and the Age, Non-verbal IQ, and Gender nuisance covariates. The Condition factor was Helmert 

coded to contrast the simple against the complex conditions first and then contrast the two complex 

conditions against each other. Similarly, the Group factor was reverse Helmert coded according to the 

hypothesis of differences between bilinguals and monolinguals but not between the bilingual groups. The 

final model achieved convergence using the by-participant and by-item intercepts with by-participant 

uncorrelated slopes for the Condition factor.  
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2.1.3. Results 

I first tested whether the type of foil (i.e., non-words, part-words) influenced the SL tasks’ results. 

Wilcoxon paired-samples tests over the aggregated accuracy suggested no differences between the non-

word and part-word trials in the simple (p = 0.764, BF10 = 0.106), the complex legal (p = 0.567, BF10 = 

0.112), or the complex illegal (p = 0.992, BF10 = 0.104) conditions. Thus, I did not include a type of foil 

factor in the GLMM analysis. As a second step, I tested whether participants’ average accuracy score was 

above chance level (50%) in the three conditions using Wilcoxon one-sample tests—since these data were 

non-normal as suggested by a Shapiro-Wilk test (all p < 0.05). Participants in the Spanish monolingual 

group performed above chance level in the simple (Macc = 68.4, SD = 12.1, p < 0.001, BF10 > 100), complex 

legal (Macc = 58.3, SD = 14.4, p < 0.001, BF10 > 100), and complex illegal (Macc = 65.0, SD = 12.8, p < 0.001, 

BF10 > 100) conditions. Participants in the Spanish-English bilingual group also performed above chance 

level in the simple (Macc = 62.5, SD = 14.8, p < 0.001, BF10 > 100), complex legal (Macc = 65.5, SD = 11.4, p < 

0.001, BF10 > 100), and complex illegal (Macc = 60.1, SD = 13.8, p < 0.001, BF10 > 100) conditions. Similarly, 

participants in the Spanish-Basque bilingual group performed above chance level in the simple (Macc = 

67.3, SD = 17.7, p < 0.001, BF10 > 100), legal (Macc = 61.9, SD = 11.9, p < 0.001, BF10 > 100), and illegal (Macc 

= 60.6, SD = 13.1, p < 0.001, BF10 > 100) conditions. Figure 2 presents the accuracy results by group and 

condition. Notably, participants’ average performance on each task (around 60-70%) was in line with 

previous statistical learning studies reporting an average accuracy in the range of 55-70% (Erickson & 

Thiessen, 2015; Saffran, 2003).  
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Figure 2. Average accuracy by condition and group in Experiment 1. 

 

Note. Raincloud plots showing probability density. The center of the boxplot indicates the median, and the limits of 
the box define the interquartile range (IQR = middle 50% of the data) for each group. Dots reflect individual 
participant scores (slightly jittered to minimize overlap). SP-EN = Spanish-English bilinguals; SP-BQ = Spanish-Basque 
bilinguals; MONO = Spanish monolinguals. 

 

The GLMM analysis (shown in Table 5) indicated a significant difference between the simple and complex 

conditions (p = 0.001, BF10 = 2.816), but no significant differences between the two complex conditions (p 

= 0.508, BF10 = 0.017). Specifically, participants performed better in the simple than the complex 

conditions, without any differences in performance between the legal and illegal complex conditions. As 

expected, there were no differences between Spanish-Basque and Spanish-English bilingual groups (p = 

0.425, BF10 = 0.018). However, the monolingual and bilingual groups did not differ in their performance (p 

= 0.398, BF10 = 0.018). A significant two-way interaction indicated a difference between monolinguals and 

bilinguals in the complex conditions (p = 0.010, BF10 = 0.329). This interaction seemed to be driven by the 

monolingual group having a lower score in the complex legal compared to the complex illegal conditions 

and is not indicative of a bilingual experience effect since both bilingual groups had comparable 
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performance in the two complex conditions. Only participants´ non-verbal IQ seemed to contribute to 

their overall scores in Experiment 1 (p = 0.003, BF10 = 0.751) out of all covariates (all p > 0.05, BF10 < 0.1).  

 

Table 5. Accuracy GLMM results of Experiment 1. 

Fixed Effects Estimate SE z p BF10 
(Intercept) 0.570 0.070 8.148 0.000 - 
Simple-Complex 0.071 0.022 3.286 0.001 2.816 
Legal-Illegal -0.023 0.034 -0.663 0.507 0.017 
SPBQ-SPEN 0.032 0.043 0.739 0.460 0.018 
MONO-BIL 0.016 0.025 0.626 0.531 0.018 
Simple-Complex x ESEU-ESEN 0.038 0.027 1.415 0.157 0.022 
Simple-Complex x MONO-BIL 0.016 0.015 1.022 0.307 0.036 
Legal-Illegal x SPBQ-SPEN -0.012 0.042 -0.286 0.775 0.329 
Legal-Illegal x MONO-BIL -0.062 0.024 -2.564 0.010 0.014 

Covariates           
Age -0.008 0.016 -0.497 0.619 0.017 
Non-verbal IQ 0.013 0.005 2.968 0.003 0.751 
Gender -0.179 0.116 -1.539 0.124 0.027 
Random Effects Group Variance SD       
Item Intercept 0.056 0.237    
Participant Intercept 0.049 0.222    

 Simple-Complex 0.008 0.088    

 Legal-Illegal 0.002 0.043       
Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  
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2.1.4. Summary 

Experiment 1 revealed that more complex sub-lexical phonotactic patterns could modulate the word 

segmentation difficulty in SL tasks. All three groups, on average, performed the tasks above chance level 

but their performance was lower in the complex than the simple condition, with no differences between 

the two complex conditions. More importantly, the SL performance of monolingual and bilingual 

participants did not significantly differ in any of the conditions. A possible explanation for these findings 

is that I constructed the stimuli using syllables that naturally occur in Spanish, English, or Basque. Even if 

the complex illegal condition included syllables that could have interfered with the statistics in the speech 

stream, these syllables also appear within words in all three languages. Therefore, this task may not have 

been challenging enough to elucidate the differences shown in previous studies (Wang & Saffran, 2014). 

In other words, the bilingual experience might still come into play when the task is sufficiently 

challenging—i.e., by using tones or completely illegal phonotactic patterns—or produces interference 

with previously learned materials. Additionally, the groups might differ when generalizing the acquired 

knowledge from an SL stream rather than individual words. With this in mind, in Experiment 2, I tested 

monolinguals and bilinguals when extracting rules from an SL task designed as a proxy for morphological 

rule learning.   
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2.2. Experiment 2: Morphological rule learning and generalization 

2.2.1. Rationale 

In the previous experiment, learning the words largely depended on the transitional probabilities of 

adjacent syllables. Specifically, the patterns presented in these SL streams could not be generalized 

outside of their respective artificial speech streams. While language learning requires identifying and 

learning the patterns within and across different words, it also encompasses learning the morphological 

rules that bind them together. Learning these rules allows generalization to instances where the words 

vary due to their dependency on other constituents (Endress & Bonatti, 2016; Peña et al., 2002). The 

perfect example is affixal morphology, where structures append to the beginning (prefix) or ending (suffix) 

of a word to change its class or meaning (e.g., untouchable, unbreakable). These rules can span multiple 

elements, and in the SL literature, they are commonly known as non-adjacent dependencies (Misyak & 

Christiansen, 2007). Some authors posit similar SL mechanisms to those employed in word segmentation 

underly learning these non-adjacent dependencies (Rebecca Frost & Monaghan, 2016; Misyak & 

Christiansen, 2007). To my knowledge, no prior study has addressed whether bilingual experience can 

affect the implicit learning and generalization of non-adjacent dependencies.  

In Experiment 2, I explored the capacity of monolinguals and bilinguals to learn non-adjacent 

dependencies from an SL stream and generalize them to novel items. Having observed no differences 

arising from bilingual experience in the first experiment, the purpose behind this manipulation was to test 

whether the groups would differ in another aspect of language learning by using this task as a proxy for 

affixal morphology rule generalization. Since this task tested participants’ generalization ability and was 

more challenging than the previous two tasks, I adhered to the original hypothesis and expected to find 

differences between the groups.  

2.2.2. Methods 

Participants 

Forty Spanish monolinguals (Mage = 21.7, SD = 2.4; 35 females), forty Spanish-Basque bilinguals (Mage = 

21.8, SD = 2.2; 32 females), and forty Spanish-English bilinguals (Mage = 21.0, SD = 2.4; 36 females) 

participated in Experiment 2. Participants had a similar profile as those in Experiment 1. Appendix A2 

shows the demographic information and statistical contrasts between groups.  
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Materials 

I concatenated nine words with an AXC form, where A and C established a frame with constant syllables, 

and X was a filler syllable that could vary. Following previous work (Rebecca Frost & Monaghan, 2016), I 

used plosive syllables for the A_C frames (/ke/, /po/, /bi/, /ga/, /du/, /ti/) and continuants for the X fill 

syllables (/mu/, /fe/, /li/). The frame syllables were randomized to create five counterbalanced versions 

of the SL stream. There were three different frames combined with the three fill syllables, creating nine 

words for each version. I manually verified that none of the streams contained words or parts of words 

that existed in Spanish, English, or Basque. There were 100 repetitions of each word in every version of 

the stream. I synthetized the streams in the same manner as in Experiment 2, ensuring this time that there 

were no immediate repetitions of words with the same frame. The overall duration of the speech streams 

was about 12 minutes.  

Procedure 

The procedure was identical to the previous experiment except for the test trials. For the 2AFC test, I used 

three continuant syllables as generalization fills (/se/, /ya/, /ni/) and inserted them in the original frames 

to produce nine AYC generalization words. I tested participants on their ability to distinguish these words 

from three types of foils. The first two types were part-words created by concatenating the ending of the 

target word and the beginning of a different word from the stream. For example, a target word (/kenipo/) 

would be paired with a part-word starting at the fill syllable (/nipoti/) or ending with the fill syllable 

(/gakeni/). The last type of trials were non-words, created by inverting the word’s syllables (e.g., /ponike/). 

Due to the randomized nature of the different versions, a target word in one of the lists could potentially 

be a non-word foil in any other version. The inclusion of three types of tests increased the number of trials 

to 27, representing a substantial increase from the previous experiment.  

Data analysis 

The data analysis closely followed Subsection 1.5.3.2 and Experiment 1, the only difference being that 

there were no conditions.  

2.2.3. Results 

One participant from the Spanish-English group was eliminated before the analysis due to technical errors 

during the experiment. As a first step, I tested whether the list or the type of foil influenced average 

performance in the task. An ANOVA suggested similar performance regardless of the stream’s version (p 

= 0.069; BF10 = 0.535) and the type of foil (p = 0.527, BF10 = 0.052), and no interaction between the two (p 

= 0.217, BF10 = 0.009). Furthermore, Wilcoxon one-sample tests against chance-level indicated that 
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participants in the monolingual (Macc = 59.1, SD = 17.5, p = 0.011, BF10 > 100), Spanish-English (Macc = 57.3, 

SD = 13.4, p = 0.005, BF10 > 100), Spanish-Basque (Macc = 60.1, SD = 15.1, p < 0.001, BF10 > 100) groups 

performed above the 50% chance-level in the task. Figure 2 depicts the results by group. In this case, the 

GLMM revealed no differences between the two bilingual groups (Estimate = 0.066, SE = 0.077, z = 0.858, 

p = 0.391, BF10 = 0.025), or between the monolingual and bilingual groups (Estimate = 0.009, SE = 0.044, z 

= 0.216, p = 0.829, BF10 = 0.018). Additionally, none of the covariates reached significance (all p > 0.05, 

BF10 < 0.1).  

 

Figure 3. Average accuracy by Group in Experiment 2 

 
Note. Raincloud plots showing probability density. The center of the boxplot indicates the median, and the limits of 
the box define the interquartile range (IQR = middle 50% of the data) for each group. Dots reflect individual 
participant scores (slightly jittered to minimize overlap). SP-EN = Spanish-English bilinguals; SP-BQ = Spanish-Basque 
bilinguals; MONO = Spanish monolinguals.  
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2.2.4. Summary 

Overall, Experiment 2 extended the findings from the previous experiment by testing the generalization 

of non-adjacent dependencies learned during an SL task as a proxy for morphological rule learning. In line 

with previous studies, participants could generalize the frames extracted from the artificial language 

above chance-level, hinting towards similar implicit mechanisms for word and rule learning (Endress & 

Bonatti, 2016; Rebecca Frost & Monaghan, 2016). The focal point of Experiment 2 was to compare the 

performance of bilinguals and monolinguals in generalizing information from the SL task. The main 

challenge of this experiment was that participants needed to extract the non-adjacent frames from the 

stream—rather than specific words—and generalize this knowledge to novel items. Nevertheless, the 

results indicated similar performance between the three groups and thus no evidence of a bilingual 

advantage.  

Spanish and Basque possess a rich morphology at the verb and noun levels (García Mayo & Villarreal 

Olaizola, 2011). Although English has a less rich morphology than Spanish and Basque, participants in the 

Spanish-English group might have benefited from their native knowledge of Spanish. In other words, the 

three languages may not differ sufficiently in their affixal morphology, such as to affect the non-adjacent 

dependencies generalization measured by this SL task. Notably, I did not target any specific differences 

that long-term speakers of two languages might exploit for a learning advantage. For instance, due to the 

Basque language´s word order and postpositional morphology, Basque speakers are more exposed to 

variations at the end of words (i.e., suffixes or other inflections) rather than at the beginning. Hence, in 

Experiment 3, I presented participants with an ambiguous SL stream that could be segmented based on 

participants’ known language’s word order.  
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2.3. Experiment 3: Statistical segmentation and word order 

2.3.1. Rationale 

In Experiment 3, I compared monolingual and bilingual participants’ performance when exposed to an 

ambiguous artificial grammar that could be parsed based on their known languages’ word order. As 

mentioned in the introduction, Basque is a language with a predominant subject-object-verb (SOV) word 

order instead of the subject-verb-object (SVO) word order of Spanish and English. In SVO languages, 

function words tend to precede content words (e.g., in the school), but this pattern is consistently the 

opposite in SOV languages such as Basque (e.g., eskolan – school the in). Corpus studies have shown that 

function words (e.g., articles or similar inflections) are generally shorter and more frequent than content 

words (e.g., nouns), regardless of a language’s word order (Gervain, Nespor, et al., 2008). Therefore, 

speakers of an SVO language experience more frequent and shorter words (i.e., determiners) preceding 

longer and less frequent tokens (i.e., nouns), whereas speakers of an SOV language experience the 

opposite pattern. Furthermore, prior studies have demonstrated that infants and adults prefer their 

native language’s word order during SL (Gervain, Macagno, et al., 2008; Gervain, Nespor, et al., 2008; 

Onnis et al., 2016; Onnis & Thiessen, 2013). While the overall hypothesis concerns the bilingual advantage 

in foreign language learning tasks, in Experiment 3, I aimed to disentangle the overall effects of bilingual 

experience from those stemming from specific properties of known languages.  

2.3.2. Methods 

Participants 

Participants were forty Spanish monolinguals (Mage = 21.7, SD = 2.5; 37 females), forty Spanish-Basque 

bilinguals (Mage = 21.9, SD = 1.9; 32 females), and forty Spanish-English bilinguals (Mage = 21.0, SD = 2.4; 36 

females). They had a similar profile as those in Experiments 1 and 2. Appendix A3 shows tables with 

demographic information and statistical contrasts by groups.  

Materials 

I created an SL stream by concatenating two constant syllables with six variable disyllabic non-words (see 

Figure 4). Following previous work, the stream was instantiated as a Markov chain with AXBY form (Onnis 

& Thiessen, 2013; Perruchet & Desaulty, 2008). For the A and B slots, I used syllables with CV structure 

(i.e., /sa/ and /ki/), whereas for the X and Y slots, I used CVCV words (e.g., /dume/ and /fatu/). I diverged 

from previous studies in two ways. First, by introducing longer words in the X and Y slots, I more closely 

captured the relationship between frequency and length of function and content words. Second, while 
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prior studies have only measured preference after familiarization with these types of streams, I included 

both preference and test trials during the test phase.  

The SL stream for this experiment was generated by traversing the Markov chain depicted in Figure 4 for 

100 steps. The final stream had 480 presentations of each A and B tokens and around 160 presentations 

of the X and Y words. Critically, the stream could be parsed in two ways, either as AX/BY (e.g., /sadume/) 

or as XB/YA (e.g., /dumeki/). For convenience and interpretability, I call the AX/BY pattern High-Low and 

the XB/YA pattern Low-High based on the frequency of their constituent tokens (see the bottom part of 

Figure 2). Finally, I synthesized the stimuli as in Experiment 1, except for each syllable duration, which I 

increased to 250ms following prior work (Onnis & Thiessen, 2013). Hence, the duration of the synthesized 

stream was around 12 minutes.  

 

Figure 4. Material creation for Experiment 3 

 
 

Note. The upper part of the figure depicts the Markov chain used to generate the artificial SL stream used in 
Experiment 3. The arrows represent the possible state transitions for each token. The circle sizes symbolize the 
frequency of presentation within the artificial language. Below is the instantiation of this artificial grammar with 
selected syllables and non-words. The bottom part shows possible ways of segmenting the stream depending on 
High-Low and Low-High patterns.  

 

Procedure 

The procedure was identical to the one in Experiments 1 and 2, except for the test phase. In the 2AFC test, 

I created three types of trials. The first two were the segmentation trials. These trials tested how well 

participants could segment the High-Low and Low-High patterns from the SL stream. In these trials, the 
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participants heard words that followed the transitions of the stream against foils created by breaking the 

transitions in the stream. For example, a High-Low word /satode/ would be paired to its corresponding 

foil /tosade/, whereas a Low-High word /todeki/ would be paired with /tokide/. The third group of trials 

was the preference trials. In these trials, I directly contrasted High-Low and Low-High words to test 

whether participants preferred either of them. There were six trials per type to account for every possible 

combination generated by the Markov chain.  

Data analysis 

As in Experiments 1 and 2, I report both the frequentist and Bayesian versions of the analyses. In this case, 

however, I conducted two separate GLMMs for the segmentation and preference trials. Both models 

contained by-participant and by-item random intercepts. In addition, I -coded the Condition factor in the 

segmentation trials to compare the High-Low against the Low-High conditions (HL-LH). Furthermore, since 

I expected the Spanish-Basque bilinguals to perform differently due to their experience with an SOV 

language, I coded the group contrasts differently than in Experiments 1 and 2. On the first level, I 

contrasted the Spanish-Basque against the combined Spanish-English bilingual and Spanish monolingual 

groups (SOV-SVO). On the second level, I compared the Spanish-English against the Spanish monolingual 

group (SVO-SVO). I also used this group contrast for the preference trials’ GLMM. The idea behind this 

coding was that if the experience with an SOV language modulates performance in this task, only the first 

contrast level should reach significance. Moreover, assuming the bilingual experience confers an 

advantage for tracking both patterns irrespective of experience with an SOV language, the second contrast 

should also be significant and in favor of the Spanish-English group.  

2.3.3. Results 

Before the analyses, I eliminated one participant from the monolingual group with zero scores in both 

segmentation conditions. I first compared the groups’ overall performance in the segmentation trials 

against chance-level performance (50%). Non-parametric one-sample tests indicated that participants in 

the monolingual group performed above chance level in both the High-Low (Macc = 61.5, SD = 21.3, p = 

0.003, BF10 = 19.165) and Low-High conditions (Macc = 65.4, SD = 20.7, p < 0.001, BF10 > 100). The Spanish-

Basque bilingual group also performed above chance level on the High-Low (Macc = 60.4, SD = 23.5, p = 

0.011, BF10 = 5.056) and Low-High (Macc = 77.5, SD = 18.7, p < 0.001, BF10 > 100) conditions. Finally, the 

Spanish-English participants also were above chance in the High-Low (Macc = 63.5, SD = 17.5, p < 0.001, 

BF10 > 100) and Low-High (Macc = 63.1, SD = 21.9, p = 0.002, BF10 = 34.791) conditions. The averaged 

accuracy scores for all groups and conditions are presented in Figure 5A.   
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Figure 5. Average accuracy and preference scores in Experiment 3.  

 
Note. (A) Segmentation scores by Condition and Group. (B) Preference scores by group. The preference scores are 
centered at zero, with positive values suggesting a High-Low preference and negative values a Low-High preference. 
The center of the boxplot indicates the median, and the limits of the box define the interquartile range (IQR = middle 
50% of the data) for each group. Dots reflect individual participant scores (slightly jittered to minimize overlap). SP-
EN = Spanish-English bilinguals; SP-BQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals.  

 

The GLMM results of the segmentation task (shown in Table 6) indicated a significant difference between 

the High-Low and Low-High conditions (p = 0.038, BF10 = 0.147). In addition, the difference between 

Spanish-Basque bilinguals and speakers of SVO languages (SOV-SVO) was significant (p = 0.033, BF10 = 

0.203). However, the analysis revealed no difference between the Spanish monolinguals and Spanish-

English bilinguals (SVO-SVO) on these tasks (p = 0.968, BF10 = 0.023). Moreover, there was a significant 

interaction term where speakers of an SOV language (Spanish-Basque bilinguals) showed a higher score 

for the Low-High condition than speakers of SVO languages (p = 0.002, BF10 = 1.966). This effect is also 

evidenced in Figure 5A. None of the covariates reached significance (p > 0.05, BF10 < 0.1).  
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Table 6. Accuracy GLMM results of segmentation trials in Experiment 3.  

Fixed Effects Estimate SE z p BF10 
(Intercept) 0.657 0.086 7.626 < 0.001 - 
HL-LH -0.165 0.079 -2.079 0.038 0.147 
SOV-SVO 0.096 0.045 2.133 0.033 0.203 
SVO-SVO -0.003 0.075 -0.040 0.968 0.023 
HL-LH x SOV-SVO -0.129 0.042 -3.097 0.002 1.966 
HL-LH x SVO-SVO 0.047 0.069 0.680 0.497 0.033 

Covariates           
Age 0.007 0.027 0.268 0.789 0.056 
Non-verbal IQ -0.001 0.009 -0.155 0.877 0.054 
Gender -0.018 0.185 -0.096 0.923 0.058 
Random Effects Group Variance SD       
Item Intercept 0.036 0.189    
Participant Intercept 0.038 0.196       

Note. Significant terms are highlighted in bold. SE = standard error; SD = standard deviation; HL = High-Low; LH = 
Low-High, SOV = subject-object-verb; SVO = subject-verb-object. 

 

For the preference trials, I centered the scores around zero by subtracting 50% from the aggregated scores 

(see Figure 5B). Wilcoxon one-sample tests against zero indicated that the monolingual (Mpref = -0.115, SD 

= 0.239, p = 0.006, BF10 = 8.031) and Spanish-Basque (Mpref = -0.175, SD = 0.233, p < 0.001, BF10 > 100) 

groups had preference scores significantly lower than zero. This was not the case for the Spanish-English 

group (Mpref = -0.041, SD = 0.237, p = 0.313, BF10 = 0.292). The GLMM for the preference trials also 

indicated a significant effect of knowledge of an SOV language (Estimate = -0.149, SE = 0.069, z = -2.147, 

p =0.032, BF10 = 0.358). Finally, the difference between the two SVO speaking groups was not significant 

(Estimate = -0.167, SE = 0.120, z = -1.391, p = 0.164, BF10 = 0.095).  
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2.3.4. Summary 

Taken together, the results for Experiment 3 suggested that experience with an SOV language, rather than 

overall bilingual experience, influenced the tracking and learning of an ambiguous speech signal. Only the 

Spanish-Basque bilingual group segmented and preferred the Low-High patterns better than the other 

groups. These results align with research suggesting an effect of word order in segmentation of similar 

ambiguous streams (Gervain, Nespor, et al., 2008; Onnis & Thiessen, 2013). My results also extend these 

findings by suggesting that word order in a second language can influence segmentation in highly 

proficient Spanish-Basque bilinguals. Prior studies have also suggested that bilingual experience could 

influence simultaneous learning of similar—albeit interfering—artificial grammars (Onnis et al., 2018). My 

results do not seem to indicate an overall bilingual advantage and instead evidence that specific properties 

of the known languages (i.e., word order) influenced the task. Notably, I did not manipulate any conflict 

arising from learning two artificial grammars in this experiment. Hence, these results do not discard the 

possibility of bilingual experience influencing SL in contexts of interfering information (Bartolotti et al., 

2011; Onnis et al., 2018).  

A possibility for the lack of a general bilingual advantage in these three experiments is that bilingual 

experience might mainly influence learning at the lexical level (Kaushanskaya & Marian, 2009b; Poepsel 

& Weiss, 2016). In Experiment 4, I presented participants with an audio-visual SL task targeting word-

referent learning.   
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2.4. Experiment 4: Implicit word referent learning 

2.4.1. Rationale 

Studies have shown that, through SL mechanisms, infants and adults can learn mappings between words 

and visual referents (objects) across multiple scenarios, an ability known as cross-situational (CS)SL (Smith 

& Yu, 2008; Yu & Smith, 2007). The CSSL task differs from other SL tasks because participants learn the 

names for different visual referents by aggregating information through multiple contexts. In other words, 

they implicitly “discover” each object’s name by seeing it in conjunction with other distinct referents. This 

task was designed to mimic the crowded visual world where infants initially learn words and seems to 

target a crucial implicit mechanism for learning words in native and foreign languages (Benitez et al., 2016; 

Smith & Yu, 2008).  

Perhaps one of the defining characteristics of bilingual experience is learning to map one referent to two 

potentially different words (e.g., perro – dog/txakur), but this phenomenon is not unique to bilingualism 

and happens within languages. For instance, there are words with multiple referents or homonyms (e.g., 

bat as the animal or the object) and concepts with multiple names or synonyms (e.g., paper – sheet). 

Bilinguals have the added difficulty of learning these two types of mappings within two languages and 

across languages, potentially influencing their ability to learn them. Prior work has shown that bilinguals 

can outperform monolinguals in a CSSL task when learning homonyms (i.e., one word to two referents), 

but not when learning exclusive one-to-one mappings (Poepsel & Weiss, 2016). Other authors only report 

differences between bilinguals and monolinguals in the one-to-one mappings (Escudero et al., 2016). 

Finally, some have only found minimal differences between bilinguals and monolinguals learning one-to-

one and synonym (i.e., two words to one referent) mappings (Benitez et al., 2016).  

To address these discrepant findings and target a different analytic level, in Experiment 4, I compared 

monolinguals and bilinguals in a CSSL task that entailed learning one-to-one, two-to-one (synonyms), and 

one-to-two (homonyms) word-referent pairs. If bilingual experience facilitates overall word learning, 

participants in the bilingual groups should outperform those in the monolingual group in the one-to-one 

mappings. However, if bilingual experience only potentiates learning of multiple word-referent mappings, 

they should perform better than monolinguals in the more challenging multiple mapping conditions.  
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2.4.2. Methods 

Participants 

Forty Spanish monolinguals (Mage = 21.7, SD = 2.5; 37 females), forty Spanish-Basque bilinguals (Mage = 

21.9, SD = 1.9; 31 females), and thirty-seven Spanish-English bilinguals (Mage = 21.0, SD = 2.4; 32 females) 

participated in Experiment 4. Participants had a similar profile as those in previous experiments. Appendix 

A4 shows the demographic information and statistical contrasts between groups.  

Materials 

I created 30 words by randomly concatenating letters from a pool of consonants (t, l, k, m, n, b, s, p, g, d) 

and vowels (a, i, u, e, o) in an alternating manner. The words had either a CVCVCV (e.g., /ninugo/) or a 

VCVCV (e.g., /udili/) form and were synthesized using the Mac OS X system’s Text-to-Speech software 

with the Spanish female voice “Monica”. Since these words were presented in isolation, I did not enforce 

as much control (e.g., constant pitch, vowel duration) as in the previous three experiments, thus creating 

more natural-sounding stimuli. In addition, I eliminated words that existed or sounded like actual Spanish, 

English, or Basque words from an initial list. The final 30 words were paired with 30 color depictions of 

non-existing objects manually selected from the NOUN database (Horst & Hout, 2016) based on their 

color saliency and visual complexity scores.  

The critical manipulation in this task involved creating the different word-referent mappings. As shown in 

Figure 3, twelve words were randomly paired with twelve objects to form the exclusive (one-to-one) 

mappings. For the homonym (one-to-two) mappings, I randomly paired six words and twelve objects, 

producing words with two distinct referents. Conversely, for the synonym (two-to-one) mappings, twelve 

words were randomly paired with six objects, such that each of these objects had two different names. I 

manually verified that the words and objects in the multiple mapping conditions were not very similar to 

avoid artificially increasing the task’s difficulty.  
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Figure 6. Word-referent mappings in Experiment 4.  

 
Note. The leftmost panel depicts an example of the Exclusive one-to-one mappings, where one word was 
consistently presented with one visual referent. The middle panel illustrates an example of a Homonym one-to-two 
mapping, where one word was paired with two distinct visual referents. Finally, the rightmost panel shows an 
example of a Synonym two-to-one mapping, where two words referred to the same visual referent.  

 

Procedure 

Participants completed three blocks of alternating familiarization and test phases. As in previous 

experiments, they were asked to wear headphones and sit in a quiet room. In each familiarization phase, 

they saw thirty-two scenes comprised of three objects horizontally aligned and at the center of the screen 

over a white background. They also heard the three names for the depicted objects in each scene, starting 

after one second and with a one-second pause between them. Participants were instructed to pay 

attention to the different scenes because they would later perform a test based on them. The objects’ 

position and the order of the audios were fully randomized in each scene so that there was no particular 

match between words and referents. Following previous studies (Poepsel & Weiss, 2016), only one side 

of the multiple mappings was presented during the first half of the scenes. During the second half, the 

other side of the multiple mappings was shown, simulating a change of context. This manipulation allowed 

us to test the effects of primacy and recency on the multiple mappings. I created four counterbalanced 

lists by varying which side of the two multiple mapping conditions was presented during the first and 

second halves of the familiarization phase. Thus, the scenes’ order of presentation was pseudo-

randomized for each familiarization phase so that no word or referent, including two sides of the multiple 

mappings, would appear in contiguous scenes.  

Following each familiarization phase, participants completed a 2AFC test. In each trial, two horizontally 

aligned objects (one target and one foil) were presented, and the target object’s name was played. The 

trials’ order of presentation and the position of target and foil objects were fully randomized. Participants 

were instructed to select the object they thought corresponded to the heard name using the keyboard (f 
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and j keys). The one-to-one mappings were tested during the three test blocks. However, during the 

experiment’s first two blocks, only one side of the multiple mappings was presented, corresponding to 

the order of presentation during the familiarization phase (Poepsel & Weiss, 2016). The complete word-

referent list was used for the last block, controlling that the foil object did not correspond to the multiple 

mapping condition. Participants were encouraged to take small breaks between each block.  

Data analysis 

I modeled the exclusive and multiple (synonyms/homonyms) mappings data separately using GLMMs, 

similar to the previous two experiments. I treated the block as a continuous linear factor for the exclusive 

mappings and compared the reverse Helmert-coded groups and their interaction with the blocks as fixed 

effects. In this case, the GLMM was performed over the proportion correct data to avoid inflating the 

estimates for the linearized block (Mirman, 2017; J. D. Singer & Willett, 2009). As in the previous 

experiments, I contrasted the Spanish-Basque against the Spanish-English group first, and then both 

bilingual groups against the monolinguals. I included the group, block, and interactions as fixed effects 

and the by-participant intercept and uncorrelated block slope as random effects.  

For the more challenging multiple mappings, since participants were tested on different mapping sides 

during the first and second blocks, I only contrasted the groups on the final test at block three. I created 

a factor to account for the order of presentation in the CSSL task. During the familiarization phase, the 

mappings presented first represented the primacy mappings, and those presented later the recency 

mappings. The group contrasts were the same as for the exclusive mappings. I tested the order-of-

presentation factor and its interactions with the group as fixed effects. I included the by-participant and 

by-item intercepts and the by-participant slope for order-of-presentation as random effects in the final 

GLMMs.  

2.4.3. Results 

Before the analysis, I removed one participant from the monolingual group with chance-level 

performance in all three exclusive blocks. I first compared that there were no differences between the 

lists across the three blocks on the exclusive mappings, as the counterbalanced lists only targeted the 

multiple mappings. A series of ANOVAs revealed that there were no differences due to the list on the first 

(p =0.901, BF10 = 0.058), second (p = 0.586, BF10 = 0.096), or third blocks (p = 0.815, BF10 = 0.066). Next, I 

compared participant’s accuracy on the Exclusive mappings to chance level (50%) in the last block. 

Wilcoxon one-sample tests indicated that Spanish monolinguals (Macc = 83.1, SD = 14.6, p < 0.001, BF10 > 

100), Spanish-English bilinguals (Macc = 86.9, SD = 14.2, p < 0.001, BF10 > 100), and Spanish-Basque 
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bilinguals (Macc = 91.0, SD = 10.2, p < 0.001, BF10 > 100) performed significantly above chance level. Figure 

7A depicts the accuracy for each group across the three blocks. Accuracy was higher for this task than in 

the previous experiments.  

 

Figure 7. Average accuracy by group and block in Experiment 4.  

 
Note. (A) Accuracy by group and block in the one-to-one (Exclusive) mappings. (B) Accuracy by group, mapping type, 
and order of presentation for the multiple (Homonyms and Synonyms) mappings. Raincloud plots showing 
probability density. The center of the boxplot indicates the median, and the limits of the box define the interquartile 
range (IQR = middle 50% of the data) for each group. Dots reflect individual participant scores. SP-EN = Spanish-
English bilinguals; SP-BQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals.  
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Table 7 shows the results for the exclusive mappings’ GLMM. Unsurprisingly, the analysis revealed a 

significant effect of the block (p < 0.001, BF10 > 100), indicating that participant’s accuracy increased across 

the three blocks. The results also indicated no significant differences between the two bilingual groups (p 

= 0.061, BF10 = 0.114). However, there were significant differences between monolinguals and bilinguals, 

wherein both bilingual groups outperformed the monolingual group (p = 0.008, BF10 = 1.071). The 

interactions between block and group did not reach statistical significance (p = 0.075, BF10 = 0.055; p = 

0.147, BF10 = 0.073; respectively). None of the covariates significantly influenced the scores (all p > 0.05, 

BF10 < 0.1).  

 

Table 7. Accuracy GLMM results of exclusive condition in Experiment 4. 

Fixed Effects Estimate SE z p BF10 
(Intercept) 1.453 0.074 19.596 < 0.001 - 
Block 1.043 0.088 11.815 < 0.001 > 100 
SPBQ-SPEN 0.160 0.085 1.870 0.061 0.114 
MONO-BIL -0.126 0.047 -2.662 0.008 1.071 
Block x SPBQ-SPEN 0.183 0.103 1.778 0.075 0.055 
Block x MONO-BIL -0.081 0.056 -1.451 0.147 0.073 

Covariates           
Age -0.006 0.025 -0.255 0.799 0.056 
Non-verbal IQ < 0.001 0.009 0.016 0.987 0.054 
Gender -0.011 0.176 -0.061 0.951 0.058 

Random Effects Group Variance SD       
Participant Intercept 0.314 0.561    
  Linear 0.153 0.391       

Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  

 

In the homonym condition (Figure 7B, left), Wilcoxon one-sample tests indicated that participants in the 

monolingual (Macc = 82.3, SD = 14.6, p < 0.001, BF10 > 100), Spanish-Basque (Macc = 87.1, SD = 12.1, p < 

0.001, BF10 > 100), and Spanish-English (Macc = 80.6, SD = 17.9, p < 0.001, BF10 > 100) groups performed 

above the 50% chance level on average. The GLMM results for the homonym mappings indicated a 

significant effect of the order of presentation (Estimate = -0.364, SE = 0.113, z = -3.219, p = 0.001, BF10 = 

4.874), where performance in the recency mappings was on average better than in the primacy mappings. 

There were no differences between the two bilingual groups (Estimate = 0.275, SE = 0.143, z = 1.921, p = 

0.055, BF10 = 0.148), or between the monolingual and bilingual groups (Estimate = -0.042, SE = 0.081, z = 
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-0.521, p = 0.603, BF10 = 0.034). There were no significant interactions between the order of presentation 

and the group contrasts (all p > 0.05, BF10 < 0.1).  

In the synonym condition, (Figure 7B, right), Wilcoxon one-sample tests indicated that participants in the 

monolingual (Macc = 67.7, SD = 16.0, p < 0.001, BF10 > 100), Spanish-Basque (Macc = 73.5, SD = 14.2, p < 

0.001, BF10 > 100), and Spanish-English (Macc = 66.9, SD = 13.5, p < 0.001, BF10 > 100) groups performed 

above the 50% chance level on average. The GLMM for this condition revealed an effect of order of 

presentation in the same direction as for the homonym mappings (Estimate = -0.284, SE = 0.068, z = -

4.179, p < 0.001, BF10 > 100). However, in this case, the analysis revealed that the Spanish-Basque group 

performed slightly better than the Spanish-English group (Estimate = 0.173, SE = 0.087, z = 1.991, p = 

0.046, BF10 = 0.211), but there were difference between monolinguals and bilinguals (Estimate = -0.046, 

SE = 0.049, z = -0.924, p = 0.355, BF10 = 0.037). As in the homonym condition, there were no significant 

interactions between the order of presentation and the group contrasts (all p > 0.05, BF10 < 0.1). 

Additionally, a Wilcoxon paired-samples test confirmed that accuracy was overall higher in the homonym 

than the synonym mappings (p < 0.001, BF10 > 100).  
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2.4.4. Summary 

Overall, Experiment 4 indicated that participants could learn the exclusive and the two types of multiple 

mappings from the same audio-visual CSSL task. Contrary to the previous experiments, this design also 

allowed us to test participants’ learning at three stages, showing a progressive increase in their 

performance for the exclusive mappings. In this regard, both bilingual groups outperformed the 

monolingual group on the exclusive one-to-one mappings. Thus, the results align with prior findings 

suggesting bilingual experience effects for these types of mappings in CSSL and other explicit word 

learning tasks (Escudero et al., 2016; Kaushanskaya & Marian, 2009b). These findings should be 

interpreted in the context of the more challenging multiple mappings. The task itself was more demanding 

than the previous experiments—i.e., participants had to learn thirty novel items and words with different 

mappings in an implicit manner. Therefore, it is unclear whether the observed bilingual experience effect 

is constrained to the exclusive mappings or emerged due to the conflicting multiple mapping conditions.  

Despite a similar design, the results diverge from prior work reporting bilingual experience effects in the 

homonym but not in the exclusive mappings (Poepsel & Weiss, 2016). The homonym mappings were 

easier to acquire for the participants than the synonym mappings, and there were no differences between 

monolinguals and bilinguals on these multiple mapping conditions. A possible reason for these findings is 

that pure synonyms—especially those referring to concrete objects with the same meaning—are 

significantly rarer than homonyms in most natural languages (Hurford, 2003). Moreover, it is often 

necessary to introduce additional cues, such as speaker identity or spacing between presentations, to 

avoid direct competition from multiple mappings during learning (Benitez et al., 2016). Out of these two 

factors, I only spaced the multiple mappings’ presentations during the learning phase, leading to the 

observed difference between primacy and recency mappings extensively reported in associative learning 

research (Pineño & Miller, 2005).   
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Discussion 

The present chapter compared monolingual and bilingual implicit learning across four statistical language 

learning (SL) experiments. I opted to use four well-established SL tasks to approximate different aspects 

of foreign language learning as a proxy, including word segmentation from continuous speech with varying 

sub-lexical phonology (Experiment 1), morphological rule generalization (Experiment 2), syntactic 

segmentation based on word order (Experiment 3), and lexical-semantics learning (Experiment 4). The 

inclusion of two bilingual groups and different manipulations permitted disentangling the overall effects 

of bilingual experience from those stemming from task difficulty or specific language pairs. Additionally, 

the confirmatory analytical approach and sample size—of almost three times the size reported in the 

literature—facilitated the straightforward evaluation of my central hypothesis.  

Overall, Experiment 1 showed that, while manipulating the sub-lexical phonology of the SL stream 

affected participants’ performance—thus making the task more challenging—, there were no bilingual 

experience effects for word segmentation. In Experiment 2, participants generalized the learned non-

adjacent dependencies during the test phase, a slightly more difficult task than Experiment 1. However, 

again, I did not find any bilingual experience effects. In Experiment 3, only the knowledge of an SOV 

language—and not overall bilingual experience—produced an advantage when segmenting from an 

ambiguous SL stream. Lastly, in Experiment 4, I tested participants’ ability to learn exclusive and multiple 

word-referent pairs. The results revealed that bilingual participants outperformed their monolingual 

peers when learning the exclusive but not the multiple word-referent mappings. In all experiments, 

regardless of the manipulation, the average performance of all groups was significantly above chance and 

in the range reported in the literature (Erickson & Thiessen, 2015; Perruchet & Pacton, 2006; Saffran, 

2003), which points to the robustness of SL as an implicit foreign language learning mechanism.  

It is essential to distinguish SL as a cognitive mechanism, an experimental task, and a proxy for foreign 

language learning. As a cognitive mechanism, other individual differences could perhaps account for 

auditory SL performance better than the bilingual experience, such as spontaneous synchronization to 

speech (Assaneo et al., 2019). The bilingual experience could operate over these abilities and indirectly 

influence SL. Prior studies seem to support this idea, showing bilingual experience effects only when 

participants learn from interfering SL streams (Bartolotti et al., 2011; Onnis et al., 2018). Similarly, 

Experiments 1 through 3 of this chapter showed no overall bilingual advantage, but the differences in 

Experiment 4 could have emerged in the context of the more difficult multiple mapping conditions. 

Nevertheless, the purpose of this study was to isolate the effects of bilingual experience from other factors 
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(e.g., task difficulty, interference) previously shown in the literature (Bartolotti et al., 2011; Onnis et al., 

2018; Wang & Saffran, 2014). In doing so, I purposefully abstained from introducing additional variables 

that could more likely benefit from the bilingual experience. For instance, other studies have shown that 

bilingual experience could influence non-native phonetic learning and conflict resolution (Antoniou et al., 

2015; Donnelly et al., 2015). These abilities could indirectly affect SL as a cognitive ability, but whether 

they account for bilingual experience effects in SL tasks remains to be explored.  

Considering SL as an experimental task, participants are sensitive to specific and controlled manipulations 

of the probabilities between and within words that might target properties of their known languages. I 

tested this idea in Experiment 3, where only bilinguals with knowledge of an SOV language outperformed 

the other two groups. Similar interfering or facilitatory effects have been reported in the literature using 

sub-lexical phonotactics (Finn & Hudson Kam, 2008) or stress patterns (Thiessen & Saffran, 2003) in 

monolingual adults and infants. Consequently, any bilingual advantage may primarily rely on the 

properties of participants’ known languages and not the overall bilingual experience.  

In addition, bilingual experience effects might emerge progressively through learning, and one-shot 2AFC 

tests are not sensitive enough to capture them. Most SL studies base their results on a single 

familiarization and test phase, constraining their findings to what is learned upon first exposure to a 

foreign language (Romberg & Saffran, 2010). A common criticism with this approach is that performance, 

as measured by a one-shot 2AFC test, is highly variable and noisy, partly due to the low number of trials 

generated from these artificial streams (Siegelman & Frost, 2015). In other words, there usually are only 

a handful of target and foil words presented during the test phase, and using a single test introduces 

additional variability in participants’ scores. Artificially increasing the number of trials by repeating the 

target words multiple times only leads to participants learning during the test phase (Siegelman, Bogaerts, 

& Frost, 2017). Thus, while these experimental tasks could be adequate to measure learning at the group 

level, they might not be sensitive enough to detect individual differences (Siegelman & Frost, 2015). I 

partially addressed these limitations in Experiment 4 by adding three familiarization and test phases for 

the twelve exclusive mappings and found differences between monolinguals and bilinguals. Observing any 

effects in other SL tasks might be unlikely due to the variability in responses from one-shot 2AFC tests. 

Future research could further address these gaps by using continuous measures to focus on the process 

rather than the learning outcome.  

Lastly, considering SL as a proxy for foreign language learning, a possibility is that bilingual experience 

effects might arise mainly at the vocabulary level. Most of the literature supporting a bilingual advantage 
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primarily focuses on explicit vocabulary learning tasks, stressing that bilinguals might more easily establish 

links between new word forms (orthographic or phonological) and their meanings within the mental 

lexicon than monolinguals (e.g., Antoniou et al., 2015; Kaushanskaya & Marian, 2009b). In this regard, the 

present study showed no bilingual experience effects using SL tasks as proxies for word segmentation and 

morpho-syntactic levels. However, significant differences were observed at the lexical-semantics level. 

Notably, experimental work seldom targets other aspects of language (e.g., pragmatics, grammar at the 

sentence level). It would be interesting for future implicit learning studies to explore whether bilingual 

experience effects are constrained to the lexical-semantics level or extend to more higher-level aspects 

or broader contexts (i.e., sentence or paragraph structures) during foreign language.  

Chapter 2 Conclusion 

Are bilinguals better than monolinguals at implicit (statistical) language learning? My answer is that it 

depends. Statistical learning is a robust cognitive process supported by a plethora of experimental 

findings. At the same time, decisions about stimuli selection, experiment design, participant selection, 

data collection, and statistical analysis can significantly influence the outcome and interpretation of these 

experiments. This chapter explores only a handful of manipulations that could have potentially elicited a 

bilingual advantage, such as experience with different phonotactic patterns, the ability to generalize 

learned linguistic knowledge, knowledge of different word orders, and the capacity to learn exclusive and 

multiple word-referent pairs. The question of whether bilingualism can influence SL as a cognitive 

mechanism is perhaps ill-posed. Instead, to make progress in this field, I believe studies should focus on 

how linguistic and life experiences affect the strategies and filters through which individuals implicitly 

process and learn from linguistic and non-linguistic materials.  

Moreover, SL only accounts for a minimal part of what learning a foreign language entails. Adult 

individuals acquire a significant portion of a foreign language through explicit processes—and implicit 

learning might play a more prominent role after individuals have achieved a certain proficiency level in a 

new language (Ellis, 2015). Therefore, in Chapter 3, I explored bilingual and monolingual language learning 

using explicit tasks.  
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Chapter 3: Explicit foreign language learning 

Theoretical motivation 

One of the most challenging aspects of foreign language learning is acquiring the substantial vocabulary 

necessary to perform proficiently in that language (Baxter et al., 2021; Schmitt, 2019). Language learners 

require around 10,000 words to be considered proficient speakers of a foreign language (Council of 

Europe, 2001). This number refers only to the base vocabulary and does not consider morphological 

variations. The majority of words in a language involve affixal (i.e., suffix, prefix, or similar inflections) 

morphology (Merkx et al., 2011). For instance, considering the words break, breaks, and breakable as 

separate entries in a language’s vocabulary leads to the number of necessary words growing exponentially 

(Brysbaert et al., 2016a). Previous research has highlighted that bilingual experience can facilitate explicit 

vocabulary learning (e.g., Antoniou et al., 2015; Kaushanskaya, 2012; Kaushanskaya & Marian, 2009b, 

2009a). However, it is still unclear whether bilinguals are better at learning morphological variations of 

known words or if bilinguals are only better at learning dissimilar—foreign-sounding—words to their 

known languages. This chapter addresses these two issues in turn by comparing monolinguals and 

bilinguals when explicitly learning the form of novel suffixes for known Spanish words as a proxy for the 

morphology level (Experiment 5) and novel words with different degrees of orthographic similarity to 

Spanish to target the sub-lexical orthography and the lexical-semantics levels (Experiment 6).  

At a bare minimum, foreign vocabulary knowledge entails learning to recognize or produce the written or 

spoken forms of words when prompted (González-Fernández & Schmitt, 2020). The sub-lexical, lexical-

semantic, and morphological information (among others) about vocabulary are theorized to lie in the so-

called mental lexicon, the brain’s storage for known words (Acha & Carreiras, 2014; Aitchison, 2012; 

Dijkstra, 2012). There are two fundamental representations—or neural traces—within the mental lexicon. 

The first is word forms, referring to the written (orthographic) or spoken (phonological) word 

representations. The second is meaning representations, which is the knowledge or information arbitrarily 

mapped to one or many word forms (Aitchison, 2012). This relationship can go from meaning to form 

during production or from form to meaning during recognition (Baxter et al., 2021). Thus, learning foreign 

vocabulary essentially involves establishing new form or meaning representations in the mental lexicon 

or validating existing form and meaning relationships (Marecka et al., 2021; T. Singer et al., 2003; Yang et 

al., 2015). Notably, during the early stages of foreign language learning, learners require conscious effort 

and explicit content regarding the mappings between form and meaning of foreign words (Ellis, 2015).  
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Concerning multilinguals—who know more than one language—, the literature has converged into the 

idea that the multilingual mental lexicon is language-nonselective. In other words, there is an unified 

mental storage for the word forms and meanings in all languages (Baxter et al., 2021; de Groot, 1992; 

Dijkstra & van Heuven, 2002). When individuals (monolinguals or bilinguals) learn foreign vocabulary, the 

novel word forms or meanings integrate into the pool of already known words and start taking part in 

processes such as competition (Baxter et al., 2021; Gaskell & Dumay, 2003). Based on this idea, the 

reported differences between monolinguals and bilinguals in foreign vocabulary learning and the results 

from Experiment 4 could be due to two reasons. First, bilinguals might possess a more extensive pool of 

knowledge—i.e., word forms or meanings in two languages—, allowing them to find perceived (or 

objective) similarities between form or meaning in any language (Bartolotti & Marian, 2017). Second, due 

to their experience mapping multiple words and meanings, they might be more efficient in establishing 

form or meaning representations within their mental lexicon than monolinguals (Kaushanskaya & Marian, 

2009b). The former could be considered a direct effect, while the latter would be an indirect effect (Hirosh 

& Degani, 2018).  

The present chapter explores whether monolingual and bilingual individuals differ when explicitly learning 

vocabulary-related information. Are bilinguals better than monolinguals at learning variations of known 

words? Experiment 5 compared the participants’ performance when learning to recognize the 

orthographic form of novel suffixes appended to existing Spanish word stems (e.g., laboralsuti) without 

additional semantic information. Do bilinguals and monolinguals differ when learning similar- or only 

foreign-looking vocabulary? Experiment 6 tested participants’ ability to learn foreign vocabulary paired 

with black-and-white drawings of existing objects. The critical manipulation in Experiment 6 was the sub-

lexical orthographic similarity of this vocabulary to existing words in Spanish. Some words were more 

similar to Spanish, and other words were more foreign-looking when compared to Spanish orthography. 

Therefore, this experiment targeted both the sub-lexical orthography and the lexical-semantics levels.  
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3.1. Experiment 5: Morphological suffix learning 

3.1.1. Rationale 

Prefixes and suffixes (known together as affixes) occur in a combinatorial manner in a language (Rastle & 

Davis, 2008). For example, a specific suffix (e.g., -ness) can appear in conjunction with many word roots 

(e.g., kindness, fitness). In this regard, there are three dominant theories regarding the acquisition of 

affixal morphology (Merkx et al., 2011). First, according to the morpheme boundary detection view, 

learners implicitly track the sequential probabilities to detect boundaries and segment affixes. The 

extensive statistical learning literature backs this view (e.g., Misyak & Christiansen, 2007; Romberg & 

Saffran, 2010). In the context of bilingualism, the experience with tracking multiple sets of—often 

conflicting—statistics could provide an advantage for bilinguals over monolinguals when implicitly 

integrating this morphological information into the mental lexicon (Wang & Saffran, 2014). Indeed, 

Experiment 2 of this thesis showed that, despite the groups on average successfully generalizing the 

information from the statistical learning task, there were no differences between monolinguals and 

bilinguals.  

The second theory is morpheme chunking, referring to how individuals learn affixes due to their 

combinatorial nature (Rastle & Davis, 2008). In other words, because affixes appear in conjunction with 

different known words, learners can efficiently segment them based on their pre-existing knowledge. For 

instance, knowing the words kind and fit a priori can facilitate the acquisition of kindness and fitness, and 

more importantly, the acquisition of -ness as an affix that modifies the meaning of a word. Rastle and 

Davis (2008) suggested that, in this case, top-down influences of word form and meaning influence the 

bottom-up learning and lexicalization of affixes. This theory suggests that learners can acquire suffixal 

information regardless of the meaning of the unit as a whole—i.e., kindness does not mean the same as 

kind. Thus, this view places a greater emphasis on an affixes’ form rather than its meaning when 

accompanying a known word. Contextualizing this theory to the goal of this thesis, the experience with 

learning different affixal forms in two languages could potentially benefit bilinguals over monolinguals. 

However, no study has targeted bilingual and monolingual suffix learning.  

The third and final view is that affixal learning is semantically driven (Merkx et al., 2011). According to this 

view, the co-occurrence of affixes and the variation in meanings drive the acquisition of morphological 

information. To compare the morpheme chunking and semantically driven views, Merks et al. (2011) 

tested two groups of English monolinguals when learning novel suffixes for known words (e.g., sleepnept). 

One group of participants only saw the form of the novel affixes accompanying a series of known words 
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(form learning condition). The other group received a semantic description accompanying the novel words 

and suffixes (semantic learning condition). Their results suggested a comparable performance from both 

groups of learners when recognizing the novel suffixes, but successful lexicalization required a period of 

offline consolidation. Notably, while consolidation was further boosted in the semantic learning 

experiment, learning occurred regardless of the accompanying meaning.  

To my knowledge, no study to date has compared monolinguals and bilinguals when learning affixal 

information. In Experiment 5, I compared Spanish monolinguals, Spanish-Basque bilinguals, and Spanish-

English when learning novel suffixes for known Spanish words. Critically, the participants did not receive 

any semantic information accompanying these novel suffixes. Thus, I tested their learning of each suffix’s 

form rather than its meaning. Basque speakers know a postpositional and agglutinative language—i.e., 

determiners and other morphological inflections append to the end of words, although there are some 

prefixes. In contrast, Spanish or English are prepositional languages where both prefixes and suffixes are 

used in affixal morphology. Corpus studies suggest that suffixes are more common than prefixes, even in 

prepositional languages (Ramscar, 2013). However, it is unclear whether bilinguals would outperform 

monolinguals due to the specific properties of their known languages. Conversely, experience with two 

languages may allow bilinguals to more flexibly integrate the form of novel suffixes, as supported by 

artificial vocabulary learning studies (Bartolotti & Marian, 2017). Hence, I adhered to the original 

hypothesis and expected bilinguals to outperform monolinguals when learning the form of novel suffixes.  

3.1.2. Methods 

Participants 

Participants were forty Spanish monolinguals (Mage = 21.7, SD = 2.4; 35 females), forty Spanish-Basque 

bilinguals (Mage = 21.8, SD = 2.2; 32 females), and forty Spanish-English bilinguals (Mage = 21.0, SD = 2.4; 36 

females). These participants were the same as in Experiment 2 and thus had the same profile as in the 

other experiments. Appendix A2 shows the demographic information and statistical contrasts between 

groups.  

Materials 

I combined sixty-four exiting Spanish word stems with sixteen artificial suffixes. The Spanish words could 

all be suffixed without changing the root (e.g., total/total-idad, color/color-ido)—also known as 

independent stems. This step was necessary so the words could be randomly combined with the artificial 

suffixes without breaking the Spanish rules for morphological inflection. For example, the word comer (to 

eat) cannot be suffixed without changing it (e.g., comedor, comiendo) and therefore would not represent 
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a good candidate for this experiment. The words were 4 to 8 characters in length, were highly frequent 

(Zipf larger than 2.9), and were either nouns or adjectives. The information for each word was obtained 

from the EsPal database (Duchon et al., 2013).  

I generated the artificial suffixes by modifying the letters of existing suffixes in Spanish. The selected 

existing suffixes had CVCV (e.g., -dado), VCVC (e.g., -idad), CVC (e.g., -tud), or VCV (e.g, -ido) 

configurations, where C is a consonant and V is a vowel. I modified the consonants and vowels to produce 

inexistent, and thus, artificial suffixes. These artificial suffixes are presented in Table 8. There were four 

suffixes in each configuration divided into two counterbalance lists (A and B). The Spanish word stems 

were then randomly paired with the artificial suffixes in each list at a ratio of eight words per suffix. Finally, 

the words were synthesized using the Mac OS X system’s Text-to-Speech software with the Spanish female 

voice “Monica”. The final lists of words are presented in Appendix B1.  

 

Table 8. Artificial suffixes in Experiment 5. 

List CVCV VCVC CVC VCV 
A -boru, -suti -omed, -utet -bur, -pol -ibe, -une 
B -sotu, -bire -isos, -atut -pel, -ter -odi, -ule 

 

Additionally, I created three sets of foils to test participants’ recognition performance after learning. The 

first type was comprised of thirty-two additional Spanish stems with similar properties as the original 

stimuli, randomly paired with the learned artificial suffixes (novel–learned). The second set of foils 

contained thirty-two of the original stems but paired with the suffixes from the other list (learned–novel). 

These two types of foils were non-words compared to the original stems and suffixes. Finally, the last type 

of foils was sixty-four recombinant pairs, created by randomly pairing the original stems with distinct 

learned suffixes. Naturally, I expected the recombinant condition to be more challenging than the non-

word conditions.  

Procedure 

Participants were instructed to wear headphones and sit in a quiet room for the duration of this 

experiment. They performed a learning phase followed by an immediate recognition memory test and a 

delayed recognition test after one night of sleep (a minimum of 12 hours). Participants performed eight 

learning blocks during the learning phase. In each block, there were two presentations of each word (stem 

+ suffix). Each trial presented a word at the screen center followed by an audio recording after 250 
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milliseconds from stimulus onset. Participants had to type the word using the keyboard and press enter 

to continue with the next trial. I adopted this procedure to ensure that the participants acquired the novel 

suffixes by learning them in multiple modalities (visual and auditory) and producing them. In total, there 

were 16 (2x8) presentations of each stem and 128 (16x8) presentations of each suffix throughout the 

learning phase. After the learning phase, participants performed an immediate recognition memory test. 

The test was an old versus new task where participants had to decide whether a word presented on the 

screen was learned or not. There were 192 trials in this test, and participants were encouraged to take a 

break after every 64 trials. They responded using the keyboard (“f” or “j” keys), and the computer 

automatically computed their accuracy. Notably, they also performed the old versus new task on a second 

day after at least one night of sleep.  

Data Analysis 

To correct response biases in the recognition memory test, I calculated d-prime to measure participants’ 

sensitivity to the learned stems and suffixes against the three types of foils. The d-prime is a sensitivity 

metric extensively used in signal detection theory. It is computed as the differences between the Z-scores 

of hit and false alarm rates (Stanislaw & Todorov, 1999). This measure typically ranges from -1 to 2.5, with 

values significantly above 0 indicating above-chance discrimination of the stimuli. Following previous 

studies (Merkx et al., 2011), I obtained the d-prime scores for each participant with regards to each foil 

type, using the dprime function from the “psycho” package for R (Makowski, 2018). In other words, I 

calculated the false alarm rate for the novel-learned condition, trained-novel, and recombinant conditions 

separately. Then, I computed the d-prime of each condition against the hits in the original words (trained 

stems and suffixes). Thus, the d-prime for the novel-learned condition tested the participants’ recognition 

of the trained stems (Stem condition). The scores for the learned-novel condition tested their sensitivity 

to the trained suffixes (Suffix condition). Finally, the d-prime for the recombinant condition tested 

participants' whole-word recognition memory (Recombinant condition).  

I analyzed these scores using a linear mixed-effects model (LMM). The model included the main effects of 

day-of-testing (Day 1, Day 2), group (Spanish monolinguals, Spanish-Basque bilinguals, and Spanish-

English bilinguals), condition (Stem, Suffix, Recombinant), and their two-way interactions. The day-of-

testing factor was deviation coded as -1 and 1. The group factor was reverse Helmert coded to contrast 

the Spanish-Basque and Spanish-English groups on the first level and the bilinguals against the 

monolinguals on the second level. Finally, I also reverse Helmert coded the condition factor. In this case, 

I contrasted the Stem and Suffix conditions on the first level and both non-word conditions against the 
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recombinant condition on the second level. The final model included the by-participant random intercepts 

and the random slope of day-of-testing and uncorrelated slopes for the condition contrasts. Critically, 

since d-prime is calculated over the by-participant aggregate data, I did not include by-item random 

effects. The degrees of freedom were approximated in the LMM using the Satterthwaite method as 

implemented by the lmerTest package in R (Kuznetsova et al., 2017).  

3.1.3. Results 

Before the analysis, I eliminated four participants. One participant from the Spanish-English group did not 

perform the recognition test on the second day. Furthermore, I eliminated one participant from each 

group with lower than chance scores in three out of the four conditions. Therefore, thirty-eight Spanish-

English bilinguals, thirty-nine Spanish-Basque bilinguals, and thirty-nine Spanish monolinguals were 

included in the final analysis. As an initial step, I tested whether the list influenced participants’ d-prime 

scores on the immediate test after the learning phase. A series of Mann-Whitney U-tests indicated no 

differences between the lists on the Stem (p = 0.719, BF10 = 0.209), Suffix (p = 0.330, BF10 = 0.268), or 

Recombinant (p = 0.546, BF10 = 0.227) conditions. Additionally, Wilcoxon one-sample tests revealed that 

participants, overall, discriminated above chance-level in the Stem (Md = 2.611, SD = 0.702, p < 0.001, BF10 

> 100), Suffix (Md = 2.857, SD = 0.606, p < 0.001, BF10 > 100), and Recombinant (Md = 1.472, SD = 0.597, p 

< 0.001, BF10 > 100) conditions on Day 1. The pattern was similar for Day 2 (all p < 0.001, BF10 > 100). The 

d-prime scores of each group and day-of-test are shown in Figure 8.  
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Figure 8. Results of Experiment 5.  

 

Note. Raincloud plots showing the probability density of the d-prime scores by condition, group, and day-of-test. 
The center of the boxplot indicates the median, and the limits of the box define the interquartile range (IQR = middle 
50% of the data) for each group. Dots reflect individual participant scores. SP-EN = Spanish-English bilinguals; SP-BQ 
= Spanish-Basque bilinguals; MONO = Spanish monolinguals.  

 

Table 9 shows the LMM results of Experiment 5. The results indicated that, as expected, the discrimination 

performance declined on the second day-of-test (p < 0.001, BF10 > 100). There was a significant difference 

between Suffix and Stem discrimination (p < 0.001, BF10 > 100), and between the Recombinant and 

Nonword discrimination performance (p < 0.001, BF10 > 100). Participants were better at discriminating 

the words when the target contained a completely new suffix than in the other two conditions. However, 

they performed the worst when discriminating new combinations of the learned stems and suffixes. These 

two contrasts interacted with the day-of-test factor. In brief, the gap in performance between the Suffix 

and Stem conditions was larger on Day 2 (p < 0.001, BF10 = 8.004). Similarly, the difference between the 

combined Nonword conditions and the Recombinant condition was also larger on Day 2 (p < 0.001, BF10 = 

8.004). Furthermore, the analysis revealed no differences between the Spanish-Basque and Spanish-

English bilinguals (p = 0.367, BF10 = 0.007). There were no differences between the monolingual and 
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bilingual groups (p = 0.949, BF10 = 0.003). None of the other two-way interactions were significant (all p > 

0.05, BF10 < 0.1). Additionally, none of the covariates reached significance (all p > 0.05, BF10 < 0.1) 

 

Table 9. LMM results of Experiment 5. 

Fixed Effects Estimate SE df t p BF10 
(Intercept) 2.049 0.051 110.6 40.223 < 0.001 - 
Day -0.265 0.016 113.0 -16.278 < 0.001 > 100 
Stem-Suffix -0.195 0.025 113.0 -7.803 < 0.001 > 100 
Recombinant-Nonword -0.380 0.009 113.0 -40.606 < 0.001 > 100 
SPBQ-SPEN 0.058 0.059 110.1 0.980 0.329 0.007 
MONO-BIL 0.004 0.034 110.0 0.109 0.914 0.003 
Day x Stem-Suffix -0.072 0.012 230.0 -5.949 < 0.001 8.004 
Day x Recombinant-Nonword 0.040 0.007 230.0 5.690 < 0.001 9.209 
Day x SPBQ-SPEN -0.016 0.020 113.0 -0.806 0.422 < 0.001 
Day x MONO-BIL 0.007 0.012 113.0 0.648 0.519 < 0.001 
Stem-Suffix x SPBQ-SPEN -0.004 0.031 113.0 -0.141 0.888 0.004 
Stem-Suffix x MONO-BIL -0.021 0.018 113.0 -1.204 0.231 0.003 
Recombinant-Nonword x SPBQ-SPEN -0.019 0.011 113.0 -1.669 0.098 0.004 
Recombinant-Nonword x MONO-BIL -0.011 0.007 113.0 -1.731 0.086 0.003 

Covariates             
Age -0.022 0.020 110.0 -1.088 0.279 0.003 
Non-verbal IQ 0.009 0.006 110.0 1.354 0.179 0.002 
Gender -0.026 0.142 110.0 -0.183 0.855 0.013 
Random Effects Group Variance SD Correlation     

Participant (Intercept) 0.251 0.501     

 Day 0.019 0.139 -0.22    

 Stem-Suffix 0.055 0.236     

 Recombinant-Nonword 0.004 0.067     
  Residual 0.068 0.261         
Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  

 

As a final exploratory step, I computed the correlation between Experiment 2’s accuracy scores and the 

d-prime from Experiment 5 using Spearman rank correlations. Since I observed no differences between 

the groups in Experiments 2 and 5, I did not perform this analysis by each group. Instead, I computed a 

correlation score for each condition in Experiment 5, pooling the scores of the two days. The scatterplot 

and correlation results are shown in Figure 9. This analysis indicated no significant correlations between 

the Stem and Suffix conditions and the scores in Experiment 2 (all p > 0.05). However, the Recombinant 

condition d-prime scores and the statistical rule generalization scores from Experiment 2 showed a 
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significant positive correlation (ρ = 0.22, p = 0.019). Notably, the Recombinant condition was the most 

challenging condition to discriminate during the recognition test in Experiment 5, as these were stems 

and suffixes seen during the learning phase. These results suggest that participants who were better at 

generalizing the “morphological” frames in Experiment 2 also performed better in this condition but not 

in the Stem or Suffix conditions.  

 

Figure 9. Spearman correlations of Experiment 2 and Experiment 5 scores.  

 

Note. Shading indicates the 95% confidence interval. Each shape is an individual observation.  

 

3.1.4. Summary 

Experiment 5 showed that, while participants could learn to recognize the novel artificial suffixes, there 

were no differences between monolinguals and bilinguals in this artificial suffix recognition task. 

Additionally, in this experiment, I tested participants' ability to retain their knowledge over a short delay 

and one night of sleep. While performance decreased on the second day, the groups were comparable 

regardless of the test delay. The three languages under study (Spanish, English, and Basque) in this work 
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possess more suffixes than prefixes (Ramscar, 2013). Even in bilingual participants, there might not be 

sufficient differences to affect suffix learning in particular. Another possibility for this lack of differences 

is that, by using Spanish words as stems, this experiment might not have targeted foreign language 

learning but learning of novel linguistic information within a language. In this regard, the experiment’s 

instructions and content might have implicitly primed bilingual participants to operate in Spanish and 

disregard any contribution from their respective L2s.  

There is extensive research suggesting an essential role of sleep in consolidating knowledge, in general, 

and linguistic information, in particular (e.g., Batterink et al., 2017; Mirkovic & Gaskell, 2016; Stickgold, 

2005; Walker & Stickgold, 2004). While this experiment did not target consolidation as a process, the 

results showed that participants could retain the information after just a few exposures to the new 

suffixes—particularly their form—and over at least 12 hours. Naturally, the performance declined on the 

second day of testing, but participants could still successfully discriminate the learned stem and suffixes 

from the foil conditions above chance level. Previous studies have shown that consolidation and semantic 

information might primarily influence the lexicalization of novel morphological information rather than 

recognizing suffixes’ form (Merkx et al., 2011). It is unclear whether adding meaning to these novel 

suffixes—or testing their lexicalization—would have led to observed differences between the monolingual 

and bilingual groups.  

Given the scarce literature on monolingual and bilingual morphology learning (Hirosh & Degani, 2018), 

there is ample room for improvement at the theoretical, methodological, and practical (i.e., developing 

new instruction methods) levels. I can claim there were no differences between monolinguals and 

bilinguals in this suffix form recognition task, but this claim does not extend to the entirety of 

morphological learning. Future studies could investigate suffix learning using other methods to assess 

knowledge of the learned materials. In addition, constructing an entirely foreign artificial vocabulary 

might also help disentangle the effects of language mode—i.e., participants performing the entire task in 

a “Spanish” setting—from the influence of the bilingual experience. With this in mind, in Experiment 6, I 

tested monolingual and bilingual foreign vocabulary learning with varying orthographic similarity to 

Spanish to address the sub-lexical orthography and lexical-semantics level.  
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3.2. Experiment 6: Foreign language vocabulary learning 

3.2.1. Rationale 

Individuals often rely on words similar in form (orthographic or phonological) to the native language to 

jump-start their foreign vocabulary knowledge (Bartolotti & Marian, 2017; Hayakawa et al., 2020). For 

instance, an English speaker learning Spanish should find it easier to acquire the words “pera” (pear; a 

cognate) and “carta” (letter and not card; a false friend) over the word “perro” (dog; a non-cognate). 

Indeed, artificial vocabulary learning studies have shown that both cognates and false friends are acquired 

faster than non-cognate words (Marecka et al., 2021; Otwinowska et al., 2020). Even without complete 

form overlap, similarities in how groups of letters and sounds combine—sub-lexical orthotactic or 

phonotactic probabilities—within a word can lead to faster vocabulary acquisition (Meyer & Schmitt, 

2002; Storkel et al., 2006). Learners seem to easily integrate similar words into the mental lexicon 

regardless of their meaning, suggesting a reliance on the form representations within the mental lexicon 

(Ecke, 2015; Marecka et al., 2021; Ringbom, 2006). In other words, as long as a word is similar in at least 

its sub-lexical orthographic or phonological form to a known language, individuals should acquire them 

faster.  

Compared to monolinguals learning words in their second language, bilinguals could exploit knowledge 

from their two languages during third language vocabulary learning. Several studies have highlighted that 

bilinguals could transfer knowledge from any known language on a construction-by-construction basis 

(Jarvis & Pavlenko, 2007; Mihi, 2016; Rothman, 2015; Westergaard et al., 2017). Prior research also 

suggests that bilinguals can incorporate novel words similar in orthography to at least one of their 

languages faster than non-cognate words when learning foreign vocabulary (Bartolotti & Marian, 2017). 

Furthermore, as covered in Chapter 1, studies that have directly compared monolingual and bilingual 

vocabulary learning abilities have shown that bilinguals outperform their monolinguals peers when 

learning foreign-sounding unfamiliar words (e.g., Antoniou et al., 2015; Kaushanskaya & Marian, 2009b). 

Together, these findings suggest that experience with two languages could provide a vocabulary learning 

advantage over experience with a single language.  

Despite all these findings, several questions remain unanswered. Most studies measure recognition and 

recall of foreign-sounding—and hence entirely unfamiliar—vocabulary at the end-state of the learning 

process. However, it is essential to establish whether this advantage emerges from different learning 

trajectories in monolinguals and bilinguals or just during the test phase. In other words, do bilinguals differ 

from monolinguals in the process of learning or only in the outcome? Furthermore, studies that have 
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compared monolingual and bilingual learning have only employed foreign-sounding or looking words. 

Bilinguals may exploit the similarity to any known languages while maintaining flexibility to integrate these 

foreign-looking or sounding words. Do bilinguals only outperform monolinguals in learning foreign-

sounding/looking words or also in learning similar words?  

To my knowledge, no prior study has compared monolinguals and bilinguals when learning novel 

vocabulary with varying sub-lexical orthographic similarity to their common native language. To test the 

effects of sub-lexical orthographic similarity, I constructed a small (48 words) artificial written 

vocabulary—dubbed Flavian from the acronym for foreign language vocabulary (FLV)—as a benchmark 

for monolingual and bilingual foreign vocabulary learning performance. Half of the vocabulary consisted 

of orthographically similar words to Spanish (ES+ words), while the other half were orthographically 

dissimilar or non-cognate words (ES- words). Participants learned this vocabulary through an active and 

explicit vocabulary learning task that involved recognizing and producing Flavian words with feedback. 

The hypothesis in Experiment 6 was that the ES+ words, due to their more similar sub-lexical orthography 

to Spanish, would be learned better than the ES- words. Critically, I expected bilinguals to outperform 

monolinguals in learning both types of words (i.e., a general bilingual vocabulary learning advantage). 

Alternatively, these two variables could interact, and therefore bilinguals could be better only at the 

dissimilar but not the similar words.  

3.2.2. Methods 

Participants 

Forty Spanish monolinguals (Mage = 20.4, SD = 2.1; 36 females), forty Spanish-English bilinguals (Mage = 

21.0, SD = 2.5; 36 females), and forty Spanish-Basque bilinguals (Mage = 21.5, SD = 2.6; 29 females) 

participated in Experiment 6. Participants had a similar profile as in all the previous experiments. Appendix 

B2 shows the demographic information and statistical contrasts between groups.  

Materials 

I created an artificial vocabulary by randomly producing nonwords with CVC-CV structure—where each C 

is a consonant and each V a vowel, and the hyphen marks the syllabic boundary. I used all possible 

consonants for the initial and second consonants, excluding the letters h, k, q, v, w, x, y, z. The letters l 

and r were excluded from the third consonant pool to avoid fluid consonant clusters and thus maintain 

the syllabic boundary (e.g., fl, fr, cr, cl). Initially, I generated 1,000 nonwords, from which I removed those 

that already existed in Spanish, English, or Basque. For each nonword, I calculated the gram and bigram 

frequency sum in Spanish and English using CLEARPOND (Marian et al., 2012) and in Basque using E-HITZ 



P a g e  | 81 
 

(Perea et al., 2006). I also obtained each nonword’s orthographic Levenshtein distance (old20) to existing 

Spanish, English, and Basque words with the vwr package in R (Keuleers, 2013). Using these scores, I 

calculated a global composite sub-lexical orthographic similarity score by averaging the Z-scores for each 

variable; and then discarded nonwords with a composite score between -1 and 1. From the resulting list 

of 248 nonwords, I manually removed those nonwords that were very similar to each other and 

recalculated the sub-lexical orthographic similarity scores with respect to Spanish, reducing it to a pool of 

180 nonwords.  

These 180 nonwords were rated by ten native Spanish-speakers on a scale from 1—the nonword does not 

look at all like Spanish—to 4—the nonword is very similar to Spanish. I included categories for whether 

the nonword resembled an existing Spanish word (due to its very similar phonology or orthography) or 

any other known language. Twenty real Spanish words were also included to control for each rater’s 

attention during the task. I used the intra-class correlation coefficient to measure the agreement between 

raters of the nonwords (Koo & Li, 2016). There was a moderate agreement between the ten raters, using 

the two-way random effect model and the “average rater” unit (kappa = 0.74, F(199, 1791) = 6.9, p < 0.001). 

Thus, I included the Z-score of the average ratings per nonword into the composite score, using only the 

Spanish old20 and gram/bigram scores. Nonwords with scores between -0.5 and 0.5 were removed to 

create two dichotomous categories based on the sub-lexical orthographic patterns. Finally, I manually 

selected 24 nonwords orthographically similar to Spanish from this list, called ES+ words, and 24 nonwords 

that were orthographically dissimilar to Spanish or ES- words1. The final Flavian word list can be found in 

Appendix B3.  

Procedure 

Participants performed an active vocabulary learning task. At the beginning of the experiment, they were 

told they would learn vocabulary from a language named Flavian. This instruction was included based on 

prior experiments and to engage participants in the task (Bartolotti & Marian, 2017). Each Flavian word 

was paired with a black and white depiction of a real object selected from the MultiPic dataset (Duñabeitia 

et al., 2018). The images were selected based on their low visual complexity, the gender of the depicted 

object and had an H-index of 100 (the percentage of agreement across different participants). The 

 
1 The original list contained 28 ES+ and 28 ES- words, but was reduced after piloting the experiment. Pilot participants 
performed poorly in the task due to the large number of items. Using 48 items also diminished the total duration of 
the experiment.  
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depicted objects were all concrete nouns (e.g., button, chair, pear). There were four counterbalance lists 

to ensure that the effects were not due to any specific pairings of Flavian words and images. 

The vocabulary learning task involved recognizing and producing the Flavian words with feedback. I chose 

this procedure to maximize comparability with similar vocabulary learning studies (Bartolotti & Marian, 

2017; Hayakawa et al., 2020; Marecka et al., 2021). The participants first performed one block of 

familiarization with the Flavian words, where the pairings between the images and words were shown 

once for 2 seconds each. After the familiarization phase, they completed five blocks of alternating 

recognition and production tasks as a learning phase. The order of the trials in all these tasks was fully 

randomized.  

In the recognition task, participants visualized a Flavian word at the center of the screen with four possible 

images (one target and three foils) presented at each corner of the screen. Therefore, this was a 4-

alternative forced-choice (4AFC). I controlled that each image appeared once as a target and three times 

as a foil. Participants used the keyboard (”d”, “c”, “k”, and “m” keys) to select which image corresponded 

with the presented word without any time pressure. After submitting their responses, the correct image 

remained on the screen alongside the word for 2 seconds, and a feedback message (correct or incorrect) 

appeared on the screen. The computer automatically recorded their accuracy. There was a variable 

intertrial interval sampled from a uniform distribution between 0.5 and 1 second.  

In the production task, participants saw an image at the center of the screen, and they had to type the 

correct Flavian name of the depicted object using the keyboard. They could correct the typed word if 

needed and pressed enter to submit their final response. The computer automatically calculated the typed 

words’ accuracy by assigning a score of 0.2 for each letter in its correct position for a maximum score of 

1. Each additional letter past the maximum length of each Flavian word (5) received a 0.2 penalty, with a 

minimum score of 0. After submitting their responses, the correct Flavian name appeared below the typed 

word, alongside a feedback message (correct, partially correct, or incorrect) for 2 seconds, followed by a 

variable intertrial interval sampled from a uniform distribution between 0.5 and 1 second. After 3 seconds, 

if participants had not still submitted a response, a message appeared on the screen encouraging them to 

type the word as best as possible or just press enter to see the response.  

After the learning phase, participants performed a computerized version of the Operation Span task 

(Unsworth et al., 2005) as a distractor task. This task lasted about 25 minutes and measured participants’ 

working memory capacity. In this task, participants verified a series of simple mathematical equations 
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(e.g., ( 5 * 2 ) + 5 = 15 ?) and decided whether they were correct or incorrect using the keyboard (“f” and 

“j” keys). After submitting the response for each equation, they visualized a letter from the alphabet for 

2 seconds, which they were instructed to memorize. After a fixed number of equations, participants were 

instructed to type the letters presented during the equation verification task in the order in which they 

saw them. The task's difficulty increased gradually, starting with two equations and two letters trials as 

practice and increasing up to seven equations and letters. Each difficulty level was repeated three times 

with different letters.  

Finally, participants performed a test phase that consisted of two blocks of production and recognition 

trials: one after the short delay (D1) and another after one night of sleep (D2). In these blocks, participants 

did not receive any feedback for the typed or recognized words. However, to avoid participants rehearsing 

the Flavian words during the recognition task, they completed the production task first, followed by the 

recognition task. Other than this, the trials in each block were precisely the same as in the learning phase.  

Data analysis 

The learning phase’s recognition and production data were modeled separately using logistic and linear 

Growth Curve Analyses (GCA), respectively, in R (Mirman, 2017). GCA is a multi-level mixed model 

perfectly suited to capture the nested structure of time-course data while simultaneously quantifying 

group-level and individual-level patterns (Mirman, 2017; Mirman et al., 2008; J. D. Singer & Willett, 2009). 

I included second-order orthogonal polynomials to reflect linear and quadratic changes across the blocks, 

using the group (i.e., SP-EN vs. SP-BQ vs. MONO), condition (ES+ vs. ES-) factors, and their interactions as 

fixed effects on all time-terms. Participants’ age, non-verbal IQ, gender, and Operation Span scores were 

also introduced as covariates in the models. 

I contrast coded the condition and group factors according to my hypothesis of a facilitatory effect of 

orthographically similar words and overall bilingual advantage. The condition factor was deviation coded 

as -1 (ES-) and +1 (ES+). The group factor was reverse Helmert coded first to contrast the Spanish-English 

and Spanish-Basque groups (coded as -1 and 1), then contrasting the bilingual (BIL) groups against the 

MONO group (coded as -2 and 2, respectively). I included the main effects and interactions of the time, 

condition, and group factors into the fixed effects but excluded any three-way interactions with the time-

terms from the GCA models. The degrees of freedom for the linear GCA were approximated in the LMM 

using the Satterthwaite method as implemented by the lmerTest package in R (Kuznetsova et al., 2017). 

In contrast, the logistic GCA was estimated as an exact Z-test—since the mean and standard deviation are 

known in the logistic model. I performed similar G/LMM analyses for the test phase, using the recognition 
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and production data, respectively. However, in this case, the only additional factor was the test day 

instead of the learning block, coded as -1 (Day 1) or +1 (Day 2).  

3.2.3. Results 

As an initial step, I compared whether the list influenced participants’ performance during the learning 

and testing phases. For the learning phase, an ANOVA indicated no significant effect of the list in the last 

block of the recognition (p = 0.499, BF10 = 0.113) and production (p = 0.404, BF10 = 0.136) tasks. Similarly, 

there were no differences due to the list on the recognition test on Day 1 (p = 0.336, BF10 = 0.162) and Day 

2 (p = 0.366, BF10 = 0.131), or on the production test on Day 1 (p = 0.440, BF10 = 0.125) and Day 2 (p = 

0.435, BF10 = 0.127). Therefore, I did not include the list as a factor in the final analyses.  

I also calculated the score obtained by each participant in the Operation Span task as the sum of each fully 

correct letter recall, with a maximum score of 75 (Unsworth et al., 2005). I compared the three groups 

using an ANOVA with Helmert coding for the group factor. The results indicated no differences between 

the three groups (F(2, 117) = 2.527, p = 0.084, BF10 = 0.633). Participants in the monolingual group had an 

average score of 55.1 (SD = 15.3), while those in the Spanish-English scored 56.7 (SD = 15.9), and the 

Spanish-Basque on average scored 61.9 (SD = 10.7). The Helmert contrasts also indicated no differences 

between the monolingual and bilingual groups (p = 0.128) and no differences between the two bilingual 

groups (p = 0.103). Thus, overall, the groups had comparable working memory capacity as measured by 

this task.  

Learning phase. I performed the GCA analysis on the count of hits and misses using a binomial distribution 

and a logit link for the recognition task. The final model contained the by-participant random intercept 

and slopes for the Linear and Quadratic terms and a participant-by-condition random intercept. The 

results are shown in Table 10. The analysis revealed significant effects of the Linear (p < 0.001, BF10 > 100) 

and Quadratic (p < 0.001, BF10 > 100) terms, suggesting that individuals learned the words throughout the 

blocks in the recognition task. As expected, there was also a significant main effect of the condition (p < 

0.001, BF10 > 100), where the ES+ words overall were recognized better than the ES- words. Moreover, 

the difference between Spanish-Basque and Spanish-English bilinguals was not significant (p = 0.628, BF10 

= 0.088). Critically, bilinguals were better at recognizing the Flavian words than monolinguals throughout 

the learning phase (p = 0.030, BF10 = 0.254). Interestingly, there was a marginally significant interaction 

between the Condition and the monolingual versus bilingual contrast (p = 0.044, BF10 = 0.029). It seems 

that the differences between monolinguals and bilinguals were larger for the ES+ condition than the ES- 

condition. The remaining two-way interactions between the group, condition, time terms, or any 
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covariate reached significance (all p > 0.05, BF10 < 0.2). The learning trajectories for each group in the 

recognition task are depicted in Figure 10A. By the fifth block, participants in the Spanish monolingual 

group on average reached 82.5% (SD = 14.3) accuracy; those in the Spanish-English group averaged 86.9% 

(SD = 13.3), and finally, the Spanish-Basque bilinguals averaged 87.8% (SD = 10.7).  

 

Table 10. Logistic GCA of the recognition learning task. 

Fixed Effects Estimate SE z P BF10 
(Intercept) 1.203 0.079 15.317 < 0.001 - 
Linear 1.767 0.075 23.464 < 0.001 > 100 
Quadratic -0.201 0.041 -4.891 < 0.001 > 100 
Condition 0.094 0.015 6.286 < 0.001 > 100 
SPBQ-SPEN 0.045 0.093 0.485 0.628 0.088 
MONO-BIL -0.117 0.054 -2.168 0.030 0.254 
Linear x Condition 0.031 0.034 0.910 0.363 0.008 
Quadratic x Condition 0.008 0.033 0.232 0.816 0.007 
Linear x SPBQ-SPEN -0.024 0.090 -0.268 0.789 0.078 
Linear x MONO-BIL -0.059 0.051 -1.169 0.243 0.124 
Quadratic x SPBQ-SPEN 0.017 0.047 0.353 0.724 0.041 
Quadratic x MONO-BIL -0.020 0.026 -0.739 0.460 0.128 
Condition x SPBQ-SPEN 0.008 0.018 0.437 0.662 0.003 
Condition x MONO-BIL -0.020 0.010 -2.012 0.044 0.029 

Covariates           
Age -0.021 0.021 -1.009 0.313 0.029 
Non-verbal IQ -0.005 0.004 -1.203 0.229 0.031 
Gender 0.101 0.135 0.751 0.453 0.046 
OSPAN score 0.004 0.003 1.245 0.213 0.080 

Random Effects Group Variance SD Correlation   
Participant (Intercept) 0.642 0.801    

 Linear 0.460 0.678 0.85   
  Quadratic 0.038 0.194 -0.67 -0.40   

Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  

  



P a g e  | 86 
 

 

Figure 10. Recognition and production accuracy during the learning phase in Experiment 6. 

 
Note. Average observed accuracy (symbols, vertical lines indicate ± 95% confidence intervals) by group and condition 
for the recognition (A) and production (B) tasks. The solid lines depict the average GCA model predicted values. The 
conditions are plotted separately to avoid cluttering. The dashed line in indicates chance-level accuracy. SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals.  
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Table 11 shows the results for the linear GCA on the production task accuracy. In this case, the analysis 

was performed on the summed partial accuracy data by participant, block, and condition. The final model 

converged with by-participant random intercept and random slopes for the Linear and Quadratic terms, 

and participant-by-condition intercept, and Linear and Quadratic random slopes. As in the recognition 

task, the results showed significant effects of the Linear (p < 0.001, BF10 > 100) and (p < 0.001, BF10 > 100) 

time-terms. The accuracy in the ES+ condition was also significantly higher than in the ES- condition (p < 

0.001, BF10 > 100). There were no differences between the two bilingual groups (p = 0.398, BF10 = 0.025), 

but both bilingual groups outperformed the monolingual group (p = 0.005, BF10 = 10.122). Additionally, 

there were two significant two-way interactions. First, the Linear time-term by Condition interaction 

suggested that participants had a steeper learning slope for the ES+ than the ES- condition (p < 0.001, BF10 

> 100). Second, the Quadratic by Condition interaction suggested that the curvature through the learning 

blocks was different for the ES+ and the ES- conditions (p < 0.001, BF10 > 100). The rest of the interactions 

were not significant (all p > 0.05, BF10 < 0.5). Finally, out of the covariates, there was a significant effect of 

participants’ gender (p = 0.025, BF10 = 0.596) where it seemed that males performed better than females 

in this task. I refrain from discussing any gender differences in vocabulary learning, as these are outside 

the scope of this thesis. Participants' performance through the production learning blocks is depicted in 

Figure 10B. By the fifth block, participants in the Spanish monolingual group reached an average score of 

51.7% (SD = 17.0), participants in the Spanish-English group a score of 63.4% (SD = 17.2), and those in the 

Spanish-Basque bilingual group 61.0% (SD = 19.6). This implies that participants could correctly write 

around half of the words in the experiment.  
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Table 11. Linear GCA of the production learning task.  

Fixed Effects Estimate SE df t p BF10 
(Intercept) 9.627 0.342 124.1 28.183 < 0.001 - 
Linear 7.759 0.241 117.3 32.207 < 0.001 > 100 
Quadratic -1.357 0.128 117.3 -10.571 < 0.001 > 100 
Condition 1.329 0.091 116.4 14.619 < 0.001 > 100 
SPBQ-SPEN -0.343 0.405 117.0 -0.848 0.398 0.025 
MONO-BIL -0.679 0.235 118.7 -2.884 0.005 10.122 
Linear x Condition 0.550 0.112 118.9 4.913 < 0.001 > 100 
Quadratic x Condition -0.295 0.086 119.0 -3.439 0.001 > 100 
Linear x SPBQ-SPEN -0.166 0.295 117.5 -0.564 0.574 0.033 
Linear x MONO-BIL -0.246 0.170 117.1 -1.443 0.152 0.066 
Quadratic x SPBQ-SPEN -0.031 0.157 117.5 -0.200 0.842 0.011 
Quadratic x MONO-BIL -0.019 0.091 117.1 -0.209 0.835 0.159 
Condition x SPBQ-SPEN 0.164 0.099 116.3 1.650 0.102 0.001 
Condition x MONO-BIL -0.071 0.057 115.8 -1.232 0.220 0.486 

Covariates             
Age -0.134 0.103 113.4 -1.301 0.196 0.008 
Non-verbal IQ -0.017 0.020 112.8 -0.847 0.399 0.001 
Gender 1.505 0.662 112.6 2.275 0.025 0.596 
OSPAN score 0.021 0.017 112.6 1.243 0.216 0.007 

Random Effects Group Variance SD Correlation     
Participant by Condition (Intercept) 1.697 1.303     

 Linear 1.573 1.254 0.49    
 Quadratic 0.339 0.582 -0.90 -0.56   

Participant (Intercept) 11.690 3.419     
 Linear 5.450 2.335 0.54    

  Quadratic 1.089 1.044 -0.86 -0.66     
Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  

  



P a g e  | 89 
 

 

Figure 11. Recognition and production accuracy during the test phase in Experiment 6. 

 

Note. Raincloud plots showing the probability density of the accuracy scores by condition, group, and day-of-test. 
The center of the boxplot indicates the median, and the limits of the box define the interquartile range (IQR = middle 
50% of the data) for each group. Dots reflect individual participant scores. SP-EN = Spanish-English bilinguals; SP-BQ 
= Spanish-Basque bilinguals; MONO = Spanish monolinguals; D1 = Day 1; D2 = Day 2.  
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Test phase. A GLMM on the recognition test scores only revealed a significant effect of the condition (p = 

0.033, BF10 = 0.439). The rest of main effects and interactions were not significant (all p > 0.05, BF10 < 0.3). 

For brevity, I report the full table of results in Appendix B4. In all, the recognition test performance did 

not decrease from one day to the next, but the differences between monolinguals and bilinguals observed 

during the learning phase disappeared. The scores by condition, group, and day are presented in Figure 

11A. On average, participants in the monolingual group scored 85.1% (SD = 11.8) on Day 1, and 84.8% (SD 

= 12.7) on Day 2. Similarly, participants in the Spanish-English bilingual group scored 88.5% (SD = 11.8) 

and 88.5% (SD = 11.9) on days 1 and 2, respectively. Finally, the Spanish-Basque group averaged 88.8% 

(SD = 10.6) on Day 1 and 87.1% (SD = 11.5) on Day 2.  

An LMM of the production test scores (shown in Appendix B5) indicated that participants’ performance 

in the production task decreased on Day 2 (p < 0.001, BF10 > 100). Additionally, as in the recognition task, 

participants were better at the ES+ words than the ES- words on both days (p < 0.001, BF10 > 100). The 

results revealed no differences between the Spanish-Basque and Spanish-English bilinguals (p = 0.357, 

BF10 = 0.075), but both bilingual groups outperformed their monolingual peers (p = 0.002, BF10 = 3.033). 

There were no significant two-way interactions between the day, condition, or group contrasts (all p > 

0.05, BF10 < 0.2). The production scores by condition and day are depicted in Figure 11B. Participants in 

the Spanish monolingual group averaged 51.7% (SD = 17.7) and 47.6% (SD = 16.7) on days 1 and 2, 

respectively. Individuals in the Spanish-English bilingual group scored 64.1% (SD = 16.4) on Day 1 and 

61.6% (SD = 18.1). Finally, the Spanish-Basque bilingual group averaged 61.0% (SD = 20.3) on Day 1 and 

57.0% (SD = 21.6) on Day 2, respectively. Notably, these scores are based on participants’ partial accuracy, 

which means that, on average, they could partly produce around half of the words (i.e., 24 words) in the 

experiment 2.  

  

 
2 Indeed, considering responses with a score of 0.8 and above as correct and performing a GLMM analysis using 
absolute accuracy instead of partial accuracy led to similar results, with lower scores across the board and a global 
average of around 40% in the ES- condition and 50% in the ES+ condition.  
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3.2.4. Summary 

In Experiment 6, I tested the role of sub-lexical orthographic similarity and bilingual experience vocabulary 

learning. This experiment measured both the learning trajectory and the outcome after learning an 

artificial vocabulary (Flavian) with varying degrees of sub-lexical orthographic similarity to Spanish. 

Furthermore, I tested participants’ receptive and productive vocabulary using two distinct tasks. Overall, 

the results consistently showed an effect of sub-lexical orthographic similarity during the learning and 

testing phase. In other words, words that were more similar to Spanish (ES+ condition) were learned faster 

and remembered better during the test by all groups in the recognition and production tasks than less 

similar (ES- condition) words. These findings are consistent with the growing literature suggesting a role 

of orthographic and phonological similarity during foreign vocabulary learning (e.g., Bartolotti & Marian, 

2017; Hayakawa et al., 2020; Marecka et al., 2021). However, even though similarity aids vocabulary 

learning at early stages, it might hinder the acquisition of less similar vocabulary later on (Marian et al., 

2021). Therefore, it would be interesting to see how sub-lexical orthographic or phonological similarity 

affects vocabulary learning using different word lists and across longer time-spans.  

More importantly, the results revealed a difference between monolinguals and bilinguals, but no 

differences between the bilingual groups. Both bilingual groups outperformed their monolingual peers 

during the learning phase in their recognition and production accuracy. Bilinguals were also better at 

producing but not recognizing the words during the test phase. These two findings align with previous 

literature showing a bilingual vocabulary learning advantage (e.g., Antoniou et al., 2015; Kaushanskaya & 

Marian, 2009b, 2009a). The findings of this experiment extend the existing literature in two important 

ways:  

First, the results of this experiment show how the differences emerge throughout the time-course of 

learning, with bilinguals outperforming monolinguals during the learning blocks in both recognition and 

production tasks. Curiously, bilinguals outperformed monolinguals in the ES+ condition (but not the ES- 

condition) after just the familiarization phase, particularly in the production task. It is possible that, 

compared to monolinguals, bilinguals were more willing to produce the words after having just seen them 

once. Nevertheless, the group differences disappeared during the recognition but not the production 

tests. In other words, measuring only the outcome of learning would have led to a lack of differences at 

the receptive vocabulary level. Admittedly, the recognition task was less challenging than the production 

task. The number of items (48) and extensive practice with the recognition task might have nudged 

participants’ accuracy towards a ceiling, thus eliminating any differences between the groups. It would be 
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helpful to explore whether the strategies employed by monolingual and bilingual participants differ during 

these types of active learning experiments.  

Second, these differences were evident in both the ES- and ES+ conditions—with only a marginally 

significant interaction between condition and group in the recognition learning task—supporting the idea 

that the bilingual vocabulary learning advantage is present for similar and unfamiliar novel words. In other 

words, bilingual individuals seem to be better at learning vocabulary, not just with foreign-looking or 

sounding words. As suggested by prior studies, this bilingual advantage could be related to mechanisms 

such as enhanced orthographic or lexical-semantic networks, as well as enhanced working memory 

capacity in bilinguals (Hirosh & Degani, 2018; Kaushanskaya & Marian, 2009b). However, there were no 

differences between the groups on their verbal working memory as measured by the Operation Span task, 

nor did this variable significantly account for the results. Therefore, it is still unclear how experience with 

two languages can foster novel vocabulary acquisition, irrespective of the specific language pairs.  
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Discussion 

In this chapter, I compared monolingual and bilingual language learning performance across two explicit 

learning experiments. Experiment 5 tested participants’ ability to integrate the orthographic form of novel 

suffixes using existing Spanish words as stems to target the morphology level. This experiment indicated 

that participants could discriminate the learned stems and suffixes above chance and over two days. 

However, monolingual and bilingual participants’ performance did not differ in this task. Experiment 6 

addressed both the sub-lexical orthography and lexical-semantics level. In this experiment, participants 

learned words that varied in their sub-lexical orthographic similarity to the language they all had in 

common (Spanish). They learned the words’ meaning by seeing them in association with depictions of 

existing objects. In this case, the results of this experiment revealed that sub-lexical orthographic similarity 

and bilingual status facilitated the learning of this novel vocabulary, with no interaction between these 

factors. In brief, words that were more similar in their orthography to Spanish were acquired faster during 

the learning blocks and remembered better during the test. Moreover, bilinguals showed an overall 

advantage over monolinguals at recognizing and producing these words during learning, regardless of 

their sub-lexical orthographic similarity. However, bilinguals were only better at producing the words 

during the test phase.  

The results from Experiment 5 generally support the conclusions from its implicit learning counterpart: 

Experiment 2. That is, participants can learn to recognize and generalize morphological knowledge 

through implicit and explicit mechanisms, but there are no differences between bilinguals and 

monolinguals in their morphology learning—at least as measured by these tasks. In Experiments 2 and 5, 

I respectively tested the morpheme boundary detection and morpheme chunking theoretical views of 

affixal morphology learning (Merkx et al., 2011; Misyak & Christiansen, 2007; Rastle & Davis, 2008). The 

former argues that affixes are learned through statistical learning mechanisms, while the latter argues 

that affixes are integrated into the mental lexicon because of their combinatorial nature. While some 

studies argue that statistical language learning correlates with natural language comprehension (Misyak 

& Christiansen, 2012), whether this ability correlates specifically with explicit language learning is still a 

matter of debate (Ram Frost et al., 2015). Critically, an exploratory analysis revealed that participants’ 

scores in Experiment 2 and their Recombinant discrimination ability in Experiment 5 were positively 

correlated. It seems that participants who were better at statistical rule learning also discriminated 

between the target stems and suffixes and the recombinant items better. These results open exciting 
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questions about the nature and relation of implicit and explicit memory traces during learning, but these 

are beyond the scope of this work.  

Another interpretation of Experiments 5 and 6 is as paired-associates tasks. In Experiment 5, each suffix 

was paired with eight different words. Therefore, participants learned many-to-one word-to-suffix 

pairings. In this regard, the lack of differences between monolinguals and bilinguals corroborates the 

results from the multiple mapping conditions in Experiment 4. Conversely, in Experiment 6, each Flavian 

word was uniquely paired with a different object. The pooled results from experiments 4 and 6 indicate 

that bilingual participants are better at implicit and explicit learning of novel vocabulary at the lexical-

semantics level, provided there are one-to-one mappings during the learning session. These ideas lead to 

further questions regarding the role of non-exclusive mappings during the initial (and later) stages of 

implicit and explicit foreign vocabulary learning. However, they remain beyond the scope of this thesis.  

Experiment 6 also revealed that the effects of bilingual experience did not interact with sub-lexical 

orthographic similarity—except during the recognition learning tasks. The bilingual participants were 

generally better at learning the vocabulary, regardless of how similar or dissimilar the Flavian words were 

to Spanish. Furthermore, neither participants’ working memory capacity (as measured by the Operation 

Span task) nor non-verbal intelligence seemed to explain individual learning trajectories. Thus, these 

findings are consistent with studies suggesting a bilingual advantage even when participants are matched 

on certain variables such as phonological awareness or working memory (Kan & Sadagopan, 2014; 

Kaushanskaya, 2012; Nair et al., 2016; Van Hell & Mahn, 1997). Some authors have suggested that the 

differences between monolinguals and bilinguals are more significant for concrete than abstract referents 

(Kaushanskaya & Rechtzigel, 2012). Since both experiments 4 and 6 used visual depictions of concrete 

objects, whether concreteness further interacts with similarity and the bilingual status during learning 

remains to be seen. In addition, using translation pairs rather than visual depictions of objects—albeit 

more similar to the adult classroom learning environment—could prime participants to operate in their 

L1, which is a significant confound in experiments using translation pairs.  

Chapter 3 Conclusion 

The experiments I presented in Chapter 3 targeted different aspects of vocabulary learning in 

monolinguals and bilinguals. The results are consistent with Chapter 2, suggesting that bilinguals 

outperform their monolingual peers when learning vocabulary, but not in other aspects of foreign 

language learning. The experiments presented so far represent a handful of the manipulations and tasks 

to target the different analytic levels during initial exposure to a foreign language. Moreover, since these 
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experiments tested participants only immediately and one night after learning the materials, the results 

cannot be generalized to long-term foreign language learning. Future studies could explore how the 

differences observed in the initial stages extend through the course of becoming highly proficient in a 

foreign language.  

I can claim that, at least during the initial exposure to novel linguistic material, the bilingual participants 

in these experiments are consistently (and possibly only) better than monolinguals at learning vocabulary. 

Thus, Chapters 2 and 3 suggest that bilinguals outperform monolinguals in learning at the lexical-

semantics level (Axis A). Furthermore, these differences are primarily observed on the one-to-one 

mappings between word forms and their referents, and regardless of the novel words’ similarity to a 

known language (Axis B). Nevertheless, how could experience with two languages facilitate integrating 

novel word forms into the lexicon over experience with a single language? This is the central question of 

Chapter 4 (Axis C).  
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Chapter 4: Tracing the algorithm of bilingual vocabulary learning 

Theoretical motivation 

So far, I have examined and presented evidence favoring bilingual experience influencing foreign language 

vocabulary learning but not other analytic levels of foreign language learning. While the literature covered 

in Chapter 1 and the findings from Chapters 2 and 3 could generally fall into the direct and indirect effects 

framework (Hirosh & Degani, 2018), it is essential to establish the theoretical work explaining how these 

differences could emerge specifically at the vocabulary level. On the one hand, the theories of cross-

linguistic (direct) transfer suggest that bilinguals are better than monolinguals insofar as they can exploit 

similarities from their known languages (e.g., Cabrelli Amaro et al., 2012; Rothman, 2015; Westergaard et 

al., 2017). However, I have shown that bilinguals might outperform monolinguals regardless of word form 

similarity.  

On the other hand, there is scarce evidence in favor of bilingual experience affecting other non-linguistic 

cognitive abilities that could indirectly favor foreign language learning (e.g., Blanco-Elorrieta & Pylkkänen, 

2018; de Bruin et al., 2021; Dick et al., 2019). Indeed, these results might be due to indirect cognitive 

linguistic abilities (e.g., metalinguistic awareness, enhanced phono/ortho networks) as suggested by the 

direct and indirect effects framework (Hirosh & Degani, 2018). However, these abilities are either 

challenging to assess in artificial languages or near impossible to measure using behavioral tasks. 

Consequently, the theoretical framework presented thus far seems insufficient to explain the observed 

differences at the lexical-semantics level.  

In this chapter, I attempt to unify the findings from the previous sections revising some theoretical and 

computational models of word processing and learning in bilinguals. I start by briefly introducing some of 

the most prominent theoretical and computational models of the bilingual mental lexicon. These models 

help understand the nature and organization of word form and meaning representations in multiple 

languages. Nevertheless, I will argue that they do not provide a broad enough account of vocabulary 

learning to explain the differences between monolinguals and bilinguals. I then present a simulation study, 

proposing an emergentist account of foreign vocabulary learning in a second and a third language. This 

simulation study provides an initial approach towards understanding the role of orthographic regularities 

in monolingual and bilingual vocabulary learning. It is, naturally, an incomplete account of the entire 

mental lexicon, as it focuses primarily on sub-lexical orthography. I acknowledge that the literature, and 
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this work, are still far from a holistic account of human language learning—or learning in general—and its 

relation to cognitive and neural processes.  

4.1. Cognitive models of word processing and learning 

The field of cognitive science has focused on the mental processes underlying learning. A general view of 

the learning process comes from information-processing theory (Schunk, 2012). In simple words, learners 

first integrate the information in short-term memory, which is then passed to long-term memory using 

consolidation processes (Walker & Stickgold, 2004). Thus, the knowledge is codified, stored, and retrieved 

from these systems during learning, production, comprehension. The codification process involves 

creating a mental (or neural) representation that can be efficiently stored and retrieved. In this regard, 

the central questions in the cognitive science literature concern the nature of these representations and 

the mental processes underlying the codification, storage, and retrieval stages. The literature devoted to 

language learning and processing has employed computational models to address some of these 

questions (Ellis, 1998; Seidenberg, 2005). These models force researchers to think about the adequate 

manner to represent both the information and the rules through which individuals learn, recognize, and 

produce language (Carreiras et al., 2014).  

The majority of the language-related cognitive science literature has focused on the mental lexicon, which, 

as I mentioned before, is the brain’s storage for word forms (orthography and phonology), their meanings, 

and other aspects (Acha & Carreiras, 2014; Aitchison, 2012). These mental lexicon’s theoretical and 

computational models concur that word form representations are distinct from meaning representations 

(Baxter et al., 2021). However, some researchers suggest that these representations are localist, meaning 

that both forms and meanings have unique identifiers in the brain (Holman & Spivey, 2016). This would 

be akin to assigning a unique mental identification number (e.g., a number plate) to each possible word 

form and meaning. Conversely, other authors assume that the representations are distributed, and thus, 

word forms and meanings are compositions of many features (Holman & Spivey, 2016). In this case, one 

could think of a word’s form or meaning as having different dimensions (e.g., color, shape, concreteness), 

but these dimensions are usually not directly interpretable.  

Specifically, the second language processing literature concurs that meaning representations are common 

to the native and second languages, but there are two contrasting views regarding word form 

representations (de Groot, 1992; French & Jacquet, 2004). Proponents of the language-selective view 

argue that form representations are unique for each language or that additional mechanisms (e.g., 

bottom-up or top-down language tags) modulate which set of representations is more active for a specific 
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word (Jacquet & French, 2002; Kroll et al., 2010). Conversely, the language-nonselective view posits that 

word form representations are also common to the two languages (De Groot et al., 2000). As I mentioned 

in Chapter 3, this debate seems to have settled in recent years, with the language-nonselective view 

becoming the predominant view of the multilingual mental lexicon (Baxter et al., 2021). Therefore, most 

models assume that word form and meaning representations from all known languages are unified in the 

mental lexicon.  

For the sake of clarity, I will categorize these computational and theoretical models into two types: (1) 

those that address bilingual word processing using localist representations and (2) those that address 

word learning (and sometimes processing) in one or more languages using distributed representations. I 

briefly cover the main properties of each model with regards to the purpose of this thesis, avoiding an 

exhaustive review (for a more extensive overview, see Holman & Spivey, 2016). Both types of models 

provide valuable information as to how the differences between monolinguals and bilinguals might 

originate. Notably, while these models differ in their purpose and implementation, most of the models 

originate from what is known as the connectionist framework (Seidenberg, 2005). This framework 

employs artificially simulated connections between nodes in a network, a process loosely analogous to 

the functioning of neural networks in the brain.  

4.1.1. Localist models of bilingual word recognition 

The dominant models of bilingual word recognition stem from the Interactive Activation (IA) connectionist 

account (McClelland & Rumelhart, 1981). This model contains different representations of visual and 

acoustic features, letter and sound units, and lexical levels, with bottom-up (features to words), top-down 

(word to features), and lateral (within the same level) activation and inhibition during word recognition. 

It was developed to account for context effects in visual letter recognition. For example, individuals are 

faster at recognizing whether a letter is present in a string if it is a known word (i.e., the R in MARKET) 

rather than a non-word (i.e., the R in MKRAET). Therefore, the IA model was first to computationally 

demonstrate the influence of top-down effects—i.e., knowledge of a word influencing low-level letter 

recognition—by capturing these findings. This model opened the field for the exploration of language 

representation in the human mind, leading to several bilingual models based on these principles:  

Bilingual Interactive Activation (BIA) model. The BIA model is a direct extension of the IA model to the 

bilingual context. In essence, the BIA assumes a language-nonselective view of the bilingual mental lexicon 

at the initial stages of word recognition, with both word forms and meanings shared between the two 

languages (Grainger & Dijkstra, 1992). The model also uses a language node that modulates which 
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representations are active in this shared lexicon via top-down connections, emulating an L1 or L2 

“language context” (Van Heuven et al., 1998). This mechanism implements a sort of inhibitory control 

over which set of representations are active at any given time. While this model has been highly regarded 

for its ability to account for multiple phenomena in bilingual word recognition, the BIA model does not 

provide an account for how words are integrated into the mental lexicon. Regardless, this model was one 

of the first to operate using a shared and unified bilingual mental lexicon.  

Bilingual Interactive Activation Plus (BIA+) model. The BIA+ model is an extension and improvement of 

the BIA model (Dijkstra & van Heuven, 2002). The architecture for the BIA+ model is depicted in Figure 

12. According to this model, a visual word will non-selectively trigger the sub-lexical orthographic and 

phonological representations, subsequently activating the lexical representations. Contrary to its 

predecessor, the language nodes activate at a later stage and in a bottom-up manner. That is, the language 

nodes determine a word’s language after receiving the lexical representations. Another addition is a task 

subsystem, which represents the cognitive processes involved in the task at hand. For example, if the task 

is determining whether a word exists or not (i.e., lexical decision), the task subsystem handles the 

cognitive, decision, and motor processes necessary to perform this task (Dijkstra & van Heuven, 2002). 

This model has been criticized because of its lack of learning mechanisms, the use of localist instead of 

distributed representations, and the language-dependent word representations at the lexical level, which 

violate the language-nonselective presupposition (Jacquet & French, 2002). In particular, these properties 

do not allow this model to explain monolingual and bilingual learning of orthographically similar and 

dissimilar vocabulary. Regardless, this is arguably the most influential model in the bilingual word 

processing literature (Holman & Spivey, 2016).  
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Figure 12. The Bilingual Interactive Activation Plus (BIA+) model. 

 

Note. Adapted from Dijkstra & van Heuven (2002). Arrows indicate the direction of information flow.  

 

Bilingual Interactive Activation developmental (BIA-d) model. This model represents yet another 

extension to the BIA+ model, but it is more theoretical than an implemented model (Grainger et al., 2010). 

This extension draws from a theoretical account of bilingual word learning and processing, known as the 

Revised Hierarchical (RHM) model (Kroll et al., 2010). Briefly, both of these models propose that, during 

second language learning, individuals initially establish a link between form representations in the L2 their 

corresponding form in the L1, without a direct link to meaning representations. With increased exposure 

to the L2, the connection between L2 words and meaning strengthens, while the original link between L1 

and L2 word forms weakens. The difference between the BIA-d and the RHM models is that the RHM 

assumes that the representations are unique for each language (i.e., language-selective). Nevertheless, 

both models fail to explain learning effects such as orthographic similarity because the representations in 

these models are localists (Marecka et al., 2021; Otwinowska et al., 2020). Furthermore, it is hard to 

explain how monolingual and bilingual learners could differentially learn vocabulary in a foreign language 

using these models.  
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Multilink. A more recent development in the bilingual word processing literature is Multilink (Dijkstra et 

al., 2019b). Multilink is a computational model that can perform word recognition, spoken word 

production, and translation. It maintains the core ideas of the BIA+ model, with language-nonselective 

bottom-up activation and language nodes. Researchers can adjust some parameters in the model to 

address balanced and unbalanced bilingualism and even monolingualism. Additionally, it can be used to 

explain phenomena from more tasks than word recognition. Nevertheless, learning in these models 

remains largely unexplored.  

4.1.2. Distributed models of bilingual word learning 

A premise of the emergentist view of language is that learning depends fundamentally on input co-

occurrence—akin to statistical learning—and that the input determines both the units and the rules of a 

language (Christiansen & Chater, 2001; Ellis, 1998). In this regard, using basic learning rules and network 

architectures, the distributed models of word learning can explain how the organizational principles of 

the mental lexicon emerge from the input. There is an extensive tradition of using these distributed 

connectionist models in the cognitive science literature (e.g., Hawkins et al., 2019; Thomas & McClelland, 

2012; Touretzky & Hinton, 1988). However, here I focus on those models that could potentially account 

for monolingual and bilingual word learning:  

Bilingual Simple Recurrent Network model. The Bilingual Simple Recurrent Network was one of the first 

models to address bilingual language representation using a distributed approach (French, 1998). The 

architecture was a recurrent connectionist network that receives an input and a copy of the previous state 

(a vector of zeros at the beginning) and produced a prediction of the following input (see Figure 13A)—

also known as Simple Recurrent (Elman) Network (Elman, 1991). This model was trained using simple 

three-word sentences from two languages with no indication of the boundary between languages (e.g., 

boy lift toy femme touche ballon). Notably, this was the first to show that lexical representations clustered 

according to each language without the need for explicit language tags, using a completely language-

nonselective distributed lexicon. However, since the representations processed by the model were words, 

it did not address the learning of vocabulary but rather of sentence structure in two languages.  

Conceptual Feature Mapping model. The Conceptual Feature Mapping model (Figure 13B) is a theoretical 

distributed connectionist model of word learning (Lee et al., 1999). This theoretical model provides a 

verbal explanation for the facilitatory effects of word form similarity on foreign vocabulary learning. 

According to this model, the bilingual mental lexicon is unified and distributed at both the word form 

(conceptual) and meaning (lexical) levels. An intermediate localist “lemma” layer maps a word form to its 
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corresponding meaning in a specific language. Thus, learning a foreign word requires modifying the 

connections from the form level to the lemma level or from the lemma level to the meaning level, 

depending on whether the target word’s form or meaning overlaps with its native language counterpart. 

This model further proposes that some features might not be shared between the languages but does not 

propose a mechanism through which these could be learned. Nevertheless, due to a lack of 

implementation, this model cannot be empirically contrasted to explain the differences between 

monolinguals and bilinguals.  

 

Figure 13. The Bilingual Interactive Activation Plus (BIA+) model. 

 

Note. (A) Adapted from Elman (1991). (B) Adapted from Lee et al. (1999). L1 = first language; L2 = second language. 
(C) Adapted from Kohonen (1998). (D) Adapted from Baayen et al. (2019). 

 

Self-organizing maps. These are a collection of models rather than a single unified account of bilingual 

word learning. They were developed under the framework of self-organizing maps (Kohonen, 1998; T., 
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1982). In essence, self-organizing maps (SOM) are artificial neural networks that map a set of 

multidimensional inputs onto a two-dimensional topological map (Figure 13C) using weights learned 

through simple rules (e.g., Hebbian learning). The Self-Organizing Map of Bilingual Processing (SOMBIP) 

was one of the first models to show the differences in the organization of phonological word forms 

emerging from early versus late learning of the second language (Li & Farkas, 2002). More recent 

developments of this model, called Dev-LEX (Li et al., 2007; X. Zhao & Li, 2010, 2013), have further argued 

that distinct language-dependent form representations emerge from these models without any label. 

Also, these representations are structured depending on the onset of L2 learning (X. Zhao & Li, 2007). 

Simulations using these models require substantial manual labor to code the input correctly. Thus the 

models learn from highly distilled and typically very scarce input representations rather than natural 

language (Li & Grant, 2019). In all, while these models help visualize the structure of representations in 

the (multilingual) mental lexicon, they require substantial work to compare their output to actual human 

performance.  

Linear Discriminant Learning models. The final group of mental lexicon models belongs to a recent 

development in word and paradigm morphology (Harald Baayen et al., 2019). These models establish a 

fully connected two-layer structure between word form and meaning (for word recognition; Figure 13D) 

or meaning and form representations (for word production). Notably, these are implemented as separate 

networks. Moreover, these models require a set of pre-determined form representations (typically 3-

grams or 3-phones) and a corresponding set of meaning representations obtained from distributional 

semantic models such as word2vec (Church, 2017). The mappings of form to meaning (or vice-versa) can 

either be learned using simple learning rules (e.g., Rescorla-Wagner) or estimated using Linear 

Discriminant Learning, a form of multiple linear regression (Harald Baayen et al., 2019). Hence, these 

models can simulate both the learning trajectory and end-state of learning one or multiple languages. A 

recent study examined the learning trajectory of bilinguals and trilinguals using a small vocabulary (405 

words), showing how different factors such as order of acquisition and number of inter-lingual 

homophones can give rise to errors in comprehension and production (Chuang et al., 2021). However, 

these models are highly susceptible to out-of-vocabulary errors and require extensive engineering to 

make the results comparable with human behavior. Regardless, future developments could prove the 

usefulness of this model for language acquisition, processing, and production.  
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4.1.3. Summary 

Localist models suggest essential aspects regarding the organization of languages in the bilingual mind. 

First, languages are stored together and co-activated according to the language-nonselective view. 

Second, there is a distinction between the language subsystem and other cognitive (e.g., task, motor, 

decision) subsystems. Finally, these models reiterate the distinction between sub-lexical, lexical, and 

semantic analytic levels of a language from a computational perspective. Furthermore, these models are 

highly interpretable and can be directly compared to human behavior. However, they require extensive 

manual engineering of connections and activations, which complicates explaining their learning 

mechanisms (Holman & Spivey, 2016). Additionally, localist representations force researchers to find 

alternative ways to implement word form organization due to their similarity, a theorized organizing 

principle of the mental lexicon (Baxter et al., 2021).  

On the other hand, although the distributed approaches seem promising, several issues remain to be 

addressed. First, there is no account for how meaning is acquired at present, and the models that do 

implement semantic representations employ pre-trained semantic vectors or localist labels (Chuang et 

al., 2021; French & Jacquet, 2004; Laszlo & Plaut, 2012). The meaning representations pose an additional 

challenge in more than one language—for instance, is the meaning of two words precisely the same across 

languages? Third, while distributed models can learn representations using simple learning mechanisms, 

these models have yet to be compared to human behavior directly (Holman & Spivey, 2016). Fourth, all 

models mentioned above only present small-scale simulations using carefully selected subsets of words 

(Li & Grant, 2019), hindering their generalizability. Finally, no model provides a general account for how 

bilinguals and monolinguals might differ in their vocabulary learning performance or even how words 

might be differentially learned due to their sub-lexical orthographic similarity.  

To address the last point, I developed a recurrent neural network model of the orthographic lexicon. The 

model implements a language-nonselective view employed by many other models and learns distributed 

word form representations from the input in a self-supervised manner. Critically, this model addresses 

the effects of orthographic similarity and bilingual experience reported in Chapter 3. Although an 

argument could be made against the simplicity of my approach—namely, this is just a model of the 

orthographic lexicon without meaning—, there are benefits to starting with a small architecture. I validate 

this model using an adapted version of the lexical decision task, which has been the primary paradigm to 

investigate word recognition and processing (e.g., Grainger & Jacobs, 1996; Norris, 2013; Ziegler et al., 

2000). The model processes individual words as input in a character-by-character manner, allowing me to 
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reference the sub-lexical orthographic patterns of the input rather than the architecture itself. Third, I 

dissect the model’s internal representations to provide information about the organization of the 

multilingual orthographic lexicon in the absence of meaning. Finally, my model is ideally suited to explore 

the effects of sub-lexical orthographic similarity and bilingual experience on foreign vocabulary learning.  
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4.2. Experiment 7: Simulating bilingual and monolingual vocabulary learning3 

4.2.1. Rationale 

Intuitively, a word that looks or sounds more similar to the native language should be easier to learn, 

irrespective of its meaning. The knowledge of two languages—bilingualism—might provide an advantage 

in terms of sources from where to draw similarities. Recent research corroborates these ideas, 

highlighting word form (written or spoken) similarity (Hayakawa et al., 2020; Marecka et al., 2021; 

Otwinowska et al., 2020) and experience with two (or more) languages (Festman, 2021; Hirosh & Degani, 

2018; Montanari, 2019) as factors that facilitate foreign vocabulary learning. Experiment 6 of this thesis 

further indicated that bilinguals are better at learning similar and dissimilar written words than 

monolinguals.  

Due to the orthographic nature of Experiment 6, these findings provide a testable hypothesis regarding 

the role of bilingual input on the organization of word forms in the mental lexicon. Because bilinguals 

experience potentially distinct orthographic patterns (orthotactics) in two languages during learning and 

recognizing different words, the bilingual orthographic lexicon might more flexibly integrate similar and 

dissimilar novel word forms than a lexicon that operates in only one language. Moreover, if a word is more 

similar in its orthography to other instances in the lexicon, it should be acquired faster than dissimilar 

words. Still, despite numerous efforts to formalize bilingual memory and language processing with 

computational approaches (e.g., Dijkstra et al., 2019a; French & Jacquet, 2004; Li & Grant, 2019), the basis 

for these seemingly disparate learning effects remains largely unexplored.  

Here, I propose a computational model to account for the behavioral evidence in Experiment 6. The model 

addresses written word learning in a second and third language. It is instantiated as a recurrent neural 

network that can learn written vocabulary by implementing a unified, distributed, and dynamic view of 

the orthographic lexicon. In doing so, I address two theoretical questions. (a) Can a unified orthographic 

lexicon learn vocabulary with varying degrees of sub-lexical orthographic similarity? (b) Does exposure to 

the orthography of two versus one language benefit subsequent vocabulary learning?  

Recurrent neural network models can approximate the probabilities of natural languages (French & 

Jacquet, 2004; Mikolov et al., 2010). They have been used extensively in natural language processing 

literature, where they are known as language models (e.g., Mikolov et al., 2010; Sundermeyer et al., 2013; 

 
3 This work was carried out in collaboration with Prof. Marco Zorzi and Prof. Alberto Testolin at the Computational 
Cognitive Neuroscience Lab, University of Padova, Italy. The work was supported by an EMBO Short-Term Fellowship 
grant (Fellowship code 8742). I also thank Prof. James Magnuson for his valuable insight regarding this work. 
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Williams et al., 2015). Since recurrent models keep track of current and past information, they can form 

representations of the co-occurrence patterns in the input (Testolin et al., 2016). Taking sentences as an 

example, a word-level model contains representations of word co-occurrence. For instance, a word-level 

model could output a higher probability of “house” following “my” than “die” following “my”. Similarly, a 

character-level model contains information about certain letters following others within words in a 

language.  

To my knowledge, no study has compared the differences between monolingual and bilingual character-

level models in regards to the acquisition and organization of words in the mental lexicon. Crucially, 

several criteria need to be met for these models to be helpful. First, the monolingual and bilingual models 

should have an architecture simple enough so that the relation between input and output is at least 

partially interpretable. Second, the monolingual and bilingual models should only differ in their input but 

not in their architecture. Third, there should be an appropriate metric for assessing the performance of 

these models. Fourth, in comparing monolingual and bilingual models, their performance on this metric 

should be matched. Finally, it is essential to adapt the task used in Experiment 6 for the results to be 

comparable. Below, I explain how I addressed these desiderata.  

4.2.2. The CLOUD model 

I developed a character-level model—termed CLOUD for Constrained Learner of Orthography: Unified, 

Distributed, and Dynamic—with three constraints. First, following the language-nonselective view 

predominant in the literature (Baxter et al., 2021), the model stores the word form representations of one 

or two languages in a unified structure. This constraint forces the model to learn to recognize the language 

category on its own—assuming the two languages have highly different orthotactics. Second, to test for 

the effects of orthographic similarity during foreign language learning, the model contains distributed 

representations of letters and word forms implemented as numeric vectors. Studies have previously used 

distributed word-level representations to investigate the organization of words in the bilingual lexicon, 

showing separation between the languages without any language-specific nodes (French, 1998). 

However, these have not been explored at the character level. Third, the model adjusts the distributed 

representations dynamically during vocabulary learning. This constraint implies that learning new words 

changes the representations of existing words in the lexicon. The dynamic constraint is also backed by 

recent research suggesting that mere exposure to words in a different language changes orthographic 

processing and word learning in the native language, hinting towards a dynamic lexicon (Bice & Kroll, 

2015, 2019).  
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I structured the CLOUD model as a three-layer recurrent neural network that learned its representations 

by predicting the following character in multiple words—a mechanism loosely analogous to the predictive 

coding framework of the nervous system (Huang & Rao, 2011; Rao & Ballard, 1999). Figure 1 exemplifies 

the inner working of the CLOUD model using the word “model” as an example. In essence, at each time 

step, the model processes a letter as input and tries to predict the succeeding character (Figure 14A). The 

first layer, called the Embedding layer, transforms each letter into a distributed 16-dimensional numeric 

vector. While admittedly an over-reductionist approach, I chose to add this layer to exemplify how the 

printed letter becomes an internalized representation (Finkbeiner & Coltheart, 2009; Rapp & Caramazza, 

1997). After this, 128 Long Short-Term Memory (LSTM) hidden nodes store the distributed orthographic 

word form representations (Hochreiter & Schmidhuber, 1997). These recurrent nodes allow the model to 

develop sensitivity to long- and short-term orthographic dependencies within words. The criteria for 

selecting the number of dimensions in each layer are detailed in the Methods section and Appendix C1. 

Using the self-supervised procedure of predicting the next character in a word, the model can learn the 

orthotactic patterns underlying words in multiple languages. Lastly, the Output layer encodes the 

successor character’s probability distribution given a sequence of preceding characters (Figure 14B). The 

model then received an error backpropagation depending on whether the predicted character matches 

the expected character in a word (Rumelhart et al., 1995; Werbos, 1990). Hence, the CLOUD architecture 

can capture the orthographic dependencies in different words using fully distributed representations.  

The second reason I named the model CLOUD is its capacity to generate word clouds using the 

representations learned by the LSTM nodes (Figure 14C). To obtain the representation of a word in the 

CLOUD, I first average the LSTM outputs at each time step. Then, I project each word’s 128-dimensional 

vector onto a 2-dimensional space for visualization using the t-distributed stochastic neighbor embedding 

(t-SNE) (Van Der Maaten & Hinton, 2008). These word clouds help understand how words cluster 

according to their orthotactic patterns in different languages. One can also compare the representation 

of any word (or nonword) to other words in the dataset to identify similar words, further boosting CLOUD 

architecture’s interpretability. For instance, as expected, the word “model” should be closer to 

orthographically similar words in the dataset, including its Spanish translation equivalent, “modelo” 

(Figure 14D). Since the model learns from individual letters and not whole words, its distributed 

representations (and outputs) are not limited to specific words or languages, making the CLOUD 

architecture ideal for probing questions about monolingual and bilingual written vocabulary learning.  
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Figure 14. The CLOUD model architecture. 

 

Note. (A) Depiction of the CLOUD model architecture. The model processes each character sequentially, using the 
current character and an internal (context) state as inputs, and predicting the next character in the sequence in a 
recurrent and self-supervised manner. The model selects the next character from a pool of 27 characters, including 
26 letters of the alphabet plus a space token (here marked as #). After training, the model approximates the next 
character’s probability distribution given the previous sequence of characters. All connections are learnable 
parameters in the CLOUD architecture. (B) An example plot of the top five successor character’s probability 
distribution at every time-step of processing the word “model” as input. At time-step 4 (t4), after processing the 
sequence “#MOD”, the model predicts a 49% probability that the next character in the sequence is “E”. (C) A word 
cloud created using the LSTM hidden representations of the entire Spanish-English word dataset. The marginal 
distributions suggest a slight separation between the two languages. Hand-picked examples on the right suggest 
that some English words cluster based on patterns that do not exist in Spanish, such as words beginning with “w”, 
ending with “y”, or containing “k”. The examples on the left part are a cluster of Spanish and English words that 
begin with “p”, including perfect cognates (e.g., plural) and orthographic neighbors (e.g., plum, pluma). (D) The top 
15 most similar English and Spanish words to the word “model”. Pairwise similarity scores were calculated using 
cosine similarity, the dot product of the L2-normalized vector representations. The dimensions are jittered to 
minimize word overlap. The top words include those with similar orthography, beginning with “mo” (e.g., motel, 
modal, molde).  
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In developing this model, I aimed to answer three specific questions. (1) Can a unified model learn the 

orthotactic patterns of two languages without language-specific nodes? (2) Do the internal 

representations of the model contain information about the language of a word? Moreover, (3) Could this 

model emulate the effects of orthographic similarity and bilingual experience observed in Experiment 6?  

4.2.3. Methods 

Model architecture 

As depicted in Figure 14A, the CLOUD architecture contains three fully connected layers. At each time 

step, the model receives one character as a categorical index from 0 to 26 for a total of 27 characters. The 

characters include 26 letters in the alphabet, plus a space character that indicated the beginning or end 

of a word (here depicted as #). After receiving the input, the Embedding layer converts each character 

index to a 16-dimensional distributed vector using a lookup table. I chose this layer’s dimensions as the 

power of 2 closest but smaller than the alphabet size to obtain a distributed representation of each 

character. These distributed character representations can be individually interpreted. However, the 

organization of individual characters in monolingual and bilingual input is beyond the scope of this 

experiment, which concerns combinations of letters (i.e., sub-lexical orthotactics) rather than individual 

letters.  

The second layer contains 128 recurrent LSTM nodes. I selected the final number of nodes for the LSTM 

layer after exploring the model’s performance with varying nodes (see Appendix C1). The LSTM nodes 

capture long- and short-term dependencies in the input using two 128-dimensional distributed 

representations. These representations are respectively called cell state and hidden state. The cell and 

hidden states are combined with the Embedding layer’s output through a series of gating mechanisms at 

each time step. First, the forget gate combines the information from the current input and the previous 

hidden state to decide which information to remove from the cell state. Parallelly, the input gate decides 

which information to add to the cell state using the combined input and hidden state. The LSTM layer uses 

these two gates to produce the next cell state. Then, it combines this new cell state with the output gate 

to calculate what should be propagated to the next hidden state. This process can be summarized using 

the forward pass equations shown in Appendix C2.  

The Output layer implements a multinomial logistic regression. This layer uses the hidden state produced 

by the LSTM layer to output the logits for each possible character, implemented with the equation 

 𝑙𝑜𝑔𝑖𝑡𝑠௧  =  𝑊௢௟  ∙  ℎ௧ +  𝑏௢௟          ;      𝑊௢௟ ∈ ℝଶ଻ ௫  ଵଶ଼; 𝑏௢௟ ∈ ℝଶ଻  (1) 
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where logitst is a 27-dimensional vector of logits for each possible character output, Wol and bol are the 

output layer’s weight and bias parameters and ht is the 128-dimensional hidden output from the LSTM 

layer. The weight parameters are initialized following standard practice (Glorot & Bengio, 2010), sampling 

random from a uniform distribution ranging from -1/270.5 to 1/270.5, where 27 is the number of 

dimensions.  

The model learns by predicting each word’s next character and receiving a prediction error signal that 

updates the Embedding, LSTM, and Output layers’ weight and bias terms. This mechanism is called 

backpropagation (Rumelhart et al., 1995; Werbos, 1990). I computed the prediction error using the cross-

entropy loss function 

𝑙𝑜𝑠𝑠(𝑙𝑜𝑔𝑖𝑡𝑠, 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟௜௡ௗ௘௫) =  −logits௖௛௔௥௔௖௧௘௥೔೙೏೐ೣ
+ log ൭෍ exp(𝑙𝑜𝑔𝑖𝑡𝑠௜)

ଶ଻

௜ୀ଴

൱ (2) 

that takes the negative of the expected character’s logit and adds the logarithm of the sum of all logits’ 

exponent in the output vector.  

During learning, the backpropagation algorithm adjusted every learnable parameter in the model. This 

algorithm requires calculating the partial derivative of Eq. 2 with respect to each parameter to determine 

which direction to nudge them. I implemented the CLOUD architecture using PyTorch (Paszke et al., 2017), 

a Python-based framework that provides automatic differentiation capabilities and already contains 

optimized Embedding, LSTM, and Output layers described above. The final model had 78,812 learnable 

parameters 4, and the objective was to minimize the prediction error (loss function) by adjusting these 

parameters.  

Materials 

Pre-training datasets. I started with 44,853 Spanish words from the SPALEX dataset (Aguasvivas et al., 

2018), 61,851 English words from the English Crowdsourcing Project (L2 version) (Mandera et al., 2020), 

and 74,490 Basque words from the EHME dataset (Acha et al., 2014). I first reduced the number of words 

in each dataset by discarding words with a frequency lower than the median value and limiting the length 

between 3 and 10 characters. These filters reduced the Spanish words to 19,592, the English words to 

28,174, and the Basque words to 37,978. I replaced every letter with a tilde (e.g., é, ñ) with their 

 
4 There was an additional padding character in the vocabulary used internally for processing multiple words in 
batches. Therefore, in total there were 464 parameters in the Embedding layer, 74,752 parameters in the LSTM 
layer, and 3,612 parameters in the Output layer.  
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corresponding roman alphabet counterpart (e.g., e, n) and removed any duplicate words in each dataset. 

Recent evidence suggests that processing does not differ between the tilde and non-tilde versions of these 

letters in Spanish speakers (Perea et al., 2020). Moreover, this step reduced the final number of characters 

to 26 letters common to all languages under study.  

The next step involved matching the word length distributions in the datasets. I sampled the minimum 

number of words from each dataset at every possible word length to accomplish this. The final datasets 

contained 19,516 words each. I randomly selected 1,640 words for testing from each dataset, leaving 

17,876 words for training. The test words were used to calculate the models’ performance on unseen 

words. I constructed a Spanish-English dataset by combining the Spanish and English training and test 

words and a Spanish-Basque dataset by combining the Spanish and Basque words. Importantly, even 

though I randomly sampled the words to assign them to the train and test sets, the length was not 

significantly different between the languages in either of them (all p > 0.05).  

The monolingual CLOUD version performed the character prediction task mentioned above over the 

17,876 Spanish words. The Spanish-English bilingual version (used to construct Figure 14) learned from a 

subset of 60% of the Spanish words (10,725) and 40% (7,150) words selected at random from the Spanish-

English dataset. Finally, the Spanish-Basque bilingual version used the same proportion (60/40) from the 

Spanish-Basque dataset. I selected these percentages to reflect the reality of bilingual exposure within 

Spain and approximate participants’ total exposure in Experiment 6. Notably, the vocabulary size used in 

the present modeling work represents an almost ten-fold input size increase from previously reported 

models, containing around 1,700 words at most (Li & Grant, 2019). My choice of vocabulary aligns with a 

real-world scenario considering that the average young adult controls more than 25,000 words 

(Aguasvivas et al., 2020; Brysbaert et al., 2016b).  

Adapted Spanish Lexical Decision Task. It is essential to have a measure that adequately accounts for the 

model’s performance. Traditionally, the measure of choice has been the top k accuracy in predicting the 

successor character—i.e., is the correct letter in the model’s top k predictions?. However, language 

models typically do not score high on this measure, as a precise prediction of the successor character is 

unlikely. Suppose a character-level model only learned the words “care” and “cars” with equal proportion. 

In that case, the probability of predicting the letter “e” after seeing “car” is approximately equal to that 

of predicting “s”. Thus, the maximum theoretical top 1 accuracy for this simplified model would be 50%, 

while the top 2 accuracy would be close to 100% as there are only two possible choices. Extending this 

idea to scaled-up scenarios, it is rare to see character-level models perform above 35-40% using top k 



P a g e  | 114 
 

accuracy metrics. Indeed, performance above the 50% level could indicate severe overfitting to the 

training data, leading to poor performance on unobserved words.  

Prior research has suggested that using a 2AFC adaptation of the Lexical Decision Task (LDT) provides an 

adequate alternative to measure and compare character-level models’ performance (Le Godais et al., 

2017). In this adapted LDT, the character-level model calculates the probability of two words matched in 

length (one target and one foil) by multiplying its output probabilities at each time step (see Figure 14B 

for a visual depiction with one word). Ideally, the probability for existing words should be higher than that 

of non-words. This adapted LDT addresses the issue of multiplicative probabilities, whereby multiplying 

probabilities will yield smaller values for longer words. Setting a strict threshold for determining whether 

the seen item is a word or not requires non-trivial normalization of the probabilities (Lau et al., 2017). 

Notably, this adaptation has been previously used in the psycholinguistic literature with human 

participants (Baddeley et al., 1993), and thus represents a reliable metric of human and model 

performance. Therefore, I constructed an adapted Spanish LDT dataset for measuring and matching the 

CLOUD models’ performance.  

I selected a set of non-words from the SPALEX dataset (Aguasvivas et al., 2018). These non-words were 

already rated by human participants, yielding information about how well they could categorize them as 

non-words. This information was essential to selecting and matching the words and non-words. Initially, 

there were 56,861 non-words in the dataset. I selected those non-words rated by more than 30 

participants and with an average percent correct in the range from 72 to 95%. In other words, these non-

words were neither extremely easy nor extremely challenging to discriminate. I further restricted the non-

words length between 3 and 10 characters, replaced any tilde character, removed duplicates, and 

matched the length distributions to the Spanish words. The final list contained 19,516 non-words, paired 

by length to the existing Spanish dataset and separated into training and testing datasets. Notably, I did 

not enforce any control beyond these measures (e.g., using a similar orthographic structure). An initial 

analysis with 20 untrained CLOUD models indicated an average performance did not differ significantly 

from chance level (Macc = 49.7%, SD = 1.0, t(19) = 1.342, p = 0.196), confirming that the dataset was not 

inherently biased towards words or non-words.  

Flavian vocabulary. The Flavian vocabulary was the same as in Experiment 6. For more information about 

the construction of this vocabulary, see the Methods section in Experiment 6. Appendix B3 contains the 

vocabulary and additional metrics.  
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Procedure 

Model pre-training. Since the CLOUD architecture was the same for monolingual and bilingual models, it 

was essential to pre-train the models to approximate the orthographic lexicon of an adult individual. I call 

this step pre-training. It entailed exposing different versions of the CLOUD model to words from Spanish, 

English, or Basque. In other words, while the architecture was the same, the models only differed in their 

exposure to the orthography of different words. I trained three different CLOUD model versions: a Spanish 

monolingual, a Spanish-English bilingual, and a Spanish-Basque bilingual. The monolingual (MONO) 

version of the CLOUD model learned from 17,876 (100%) Spanish words. In contrast, the bilingual (SP-EN 

and SP-BQ) versions were trained on 60% (10,726) Spanish and 40% (7,150) L2 words, randomly selected 

from their respective pre-training datasets. There were ten runs with different random initializations 

within each version to add variability to the model’s output and statistically compare their results. 

Notably, the words were presented at random to these models, meaning that a bilingual model could see 

a word in Spanish followed by a word in the L2.  

During each pre-training epoch, the models performed the character prediction task mentioned above 

over their entire respective datasets. This process was repeated for all words in the monolingual or 

bilingual training sets, shuffled at each epoch’s start. I employed three techniques to improve 

computational performance during pre-training. The first technique was to allow the model to process 

batches of 82 words instead of processing words one by one. The second technique was to apply a 

baseline learning rate of 0.002, adapted during pre-training using the Adam optimizer (Kingma & Ba, 

2015). I did not explore how different learning rates affected the results presented in this study and 

instead chose a commonly used value in the deep learning literature (Le Godais et al., 2017; McMahan & 

Rao, 2019). Finally, I trained the model using the GPU capabilities, which allowed the parallelization of all 

vector and matrix operations.  

Adapted Spanish LDT. The models were trained to criterion using the adapted Spanish LDT. Empirical 

evidence from a Spanish lexical decision megastudy suggests that monolingual and bilingual participants 

do not differ in their LDT accuracy (Aguasvivas et al., 2020). Therefore, the different versions and runs of 

the CLOUD models needed to have comparable performance on this adapted Spanish LDT. Each CLOUD 

version and run performed an identical adapted Spanish LDT where they calculated the probability of a 

pair of items matched in length: one target and one foil. The most probable item was selected as the 

word, and an accuracy measure was calculated based on this response for all words in the LDT datasets. I 

used the adapted Spanish LDT training set to match each run and version of the CLOUD model by setting 
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an adaptive accuracy threshold that started at 65%—given that the models quickly reached this threshold 

after 1 or 2 training epochs. Upon reaching this threshold, a state of that model’s parameters was 

automatically saved, and the threshold increased by 5%. I used the states corresponding to the maximum 

threshold achieved by all models for all analyses and simulations. The pre-training LDT accuracy and loss 

over 100 epochs for the CLOUD versions are presented in Appendix C3.  

Adapted Flavian vocabulary learning task. After pre-training and matching the models’ LDT performance, 

the monolingual and bilingual CLOUD versions performed an adapted version of the Flavian vocabulary 

learning tasks. However, since the CLOUD models only learned to produce the successor character 

distribution when prompted by a context, the models performed adapted versions of the recognition and 

production tasks used in Experiment 6. For the recognition task, I randomly assigned a numeric label from 

0 to 47 to each Flavian word. I added a recognition module on top of the CLOUD architecture that 

predicted the Flavian word’s numeric label. This “read-out” module performed a multinomial logistic 

regression, taking Flavian words’ 128-dimensional hidden representation averaged over all time steps as 

input and predicting the probability of the correct label, written as 

𝑙𝑎𝑏𝑒𝑙 =  𝑊௟  ∙  ℎ௪ +  𝑏௟   ;   𝑊௟ ∈ ℝସ଼ ௫  ଵଶ଼;  𝑏௟ ∈ ℝସ଼  (3) 

where label is a 48-dimensional vector containing each label’s logits from a Flavian word’s hidden 

representation hw, Wl and bl are the weight and bias learnable parameters initialized as in Eq. 1. 

Importantly, this module is loosely analogous to the task subsystem employed by bilingual models such 

as the BIA+ (Dijkstra & van Heuven, 2002). In other words, it takes the orthographic representations of a 

word and executes an action, which in this case entails selecting its appropriate label.  

Since participants in Experiment 6 performed a 4AFC task, I adjusted the recognition scores by selecting 

the logits from the target label and three randomized labels and then calculating the softmax function—

i.e., the exponent of the logits divided by the exponents’ sum. I then extracted the model's probability of 

selecting the correct label for the seen Flavian word from this adjusted vector. This process is analogous 

to performing a transformation based on the Luce choice axiom (Jessie & Saari, 2016). The production 

task needed minimal adaptation, as the models could already produce the succeeding character from a 

prior context. Instead of computing the produced word’s accuracy as in Experiment 6, I calculated the 

model’s probability of producing this word by multiplying the probability obtained for each word’s 

characters during learning. I further boosted the probability by multiplying it by the length of each Flavian 
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word (5), thus shifting the probabilities upwards. All analyses and visualizations were performed on the 

logarithm of the probabilities.  

The models learned the Flavian words by backpropagating the loss during the recognition and production 

tasks using the same hyperparameters as in the pre-training task. Each model performed a familiarization 

task, followed by five alternating recognition and production learning blocks, as participants did in 

Experiment 6. However, since there is no information decay in the CLOUD model (i.e., the model does not 

forget over time), I did not attempt to replicate the test phase in Experiment 6.  

Data analysis 

The analysis plan was divided into three stages. The first step involved matching the different CLOUD 

models’ versions and runs based on their LDT accuracy. It was essential to verify that the different versions 

of the models performed comparably on this task. However, while the adaptive threshold was used to 

select and match the models’ performance on the training LDT dataset, I also computed each model’s 

performance on the unseen test LDT words. The accuracy scores were then analyzed using ANOVAs for 

each model version (SP-EN, SP-BQ, MONO) and set (train or test) separately. The version factor was coded 

using a Helmert contrast to compare the monolingual and bilingual versions first and then the two 

bilingual versions. Finally, I compared the achieved accuracy of all models to an empirical chance level 

obtained by averaging the scores of 20 untrained CLOUD models on the same LDT datasets.  

The second step was to evaluate the language organization within the different versions of the CLOUD 

models. I incrementally obtained the representations for every character in every word in the Spanish-

English and Spanish-Basque validation and test sets. Then, a series of logistic regression classifiers were 

employed to categorize the representations at each time step into one of two classes: Spanish (L1) or 

English/Basque (L2). The logistic regression classifiers used the L2 (ridge) regularization, with a 

regularization strength of 1. They were trained using the “lbfgs” solver as implemented by the scikit-learn 

Python module (Pedregosa et al., 2011), with 109 maximum iterations and a fixed seed for replicability 

(404). The classifiers were only trained on test set words—unseen during training by the models—to 

minimize computation time. Half of the test sets’ representations (820 words) were used to train the 

models. The other half (820 words) was used to calculate the probability of the logistic regression model 

selecting the correct language. This procedure was repeated at every possible character position, from 0 

(the space symbol) to 10 (the character before the space symbol). The resulting values indicate the 

probability of the logistic regression model of selecting the appropriate language of a word based on the 
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CLOUD representations at a specific character. Welch t-tests with Bonferroni corrections for multiple 

comparisons (0.05/11) were used to contrast the probability scores across versions.  

The last step was to simulate the results from the Flavian vocabulary learning experiment. The resulting 

data from the five learning blocks—measured in log(probabilities)—were modeled using linear growth 

curve analyses (GCA) for the recognition and production tasks, respectively. I included second-order 

orthogonal polynomials to reflect linear and quadratic changes across the blocks, using the version (i.e., 

MONO, SP-EN, SP-BQ) and condition (ES+ versus ES-) factors as fixed effects on all time-terms. The 

condition factor was deviation coded as -1 (ES-) and 1 (ES+). The version factor was reverse Helmert coded 

first to contrast the SP-EN and SP-BQ versions (coded as -1 and 1), then contrasting the bilingual (BIL) 

versions against the MONO version (coded as -2 and 2, respectively). I included the main effects and 

interactions of the time, condition, and version factors into the fixed effects but excluded any three-way 

interactions with the time-terms from the GCA models. The final GCA models only converged with the by-

run intercepts. Estimating the Bayes Factor for these models was not informative due to the small number 

of runs in each version.  

4.2.4. Results 

CLOUD Spanish LDT performance. An ANOVA comparing the LDT training dataset accuracy by version 

revealed no differences between the three versions (F(2, 27) = 1.716, p = 0.199, BF10 = 0.626). Similarly, the 

Helmert contrast indicated no differences between the monolingual and bilingual versions (p = 0.150) or 

between the two bilingual versions (p = 0.275). The average accuracy achieved by the monolingual version 

was 85.3% (SD = 0.2), the Spanish-Basque version averaged 85.3% (SD = 0.2), and the Spanish-English 

85.2% (SD = 0.2). I calculated the mean and standard deviation achieved by 20 randomly initialized but 

untrained CLOUD models on the same LDT training set as an empirical chance level. These randomly 

initialized models averaged 49.7% (SD = 1.0) on the training set. I then contrasted each version’s achieved 

accuracy against this empirical chance-level using a Wilcoxon test. The results indicated that all versions 

performed above the empirical chance level (all p < 0.001, BF10 > 100). Appendix C4 shows more details 

and word clouds for the monolingual and bilingual models after pre-training.  

An ANOVA comparing the LDT test dataset accuracy by version indicated no differences between the 

versions (F(2, 27) = 0.612, p = 0.550, BF10 = 0.315). Additionally, the Helmert contrasts between the 

monolingual and bilingual versions and both bilingual versions did not reach significance (p = 0.585, p 

0.347, respectively). The empirical chance-level performance for this task was 49.5% (1.5%). All versions 

performed significantly above this level (all p < 0.001, BF10 > 100). The monolingual versions averaged 
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77.3% (SD = 0.6), the Spanish-Basque 77.1% (SD = 0.7), and the Spanish-English versions 77.3% (SD = 0.6). 

These results were surprising, considering these words were unseen by the models during training. As a 

point of contrast, a prior study has also shown an accuracy score of around 85% for a more complex one-

layer LSTM character-level model trained on monolingual input (Le Godais et al., 2017). Also, monolingual 

and bilingual human participants scored around 70% on average in a standard LDT that used the same 

items as here (Aguasvivas et al., 2020).  

Language organization in the CLOUD. The two main features of the CLOUD architecture are its unified 

orthographic lexicon and its distributed word representations. As the second step, I evaluated whether 

the hidden representations of the pre-trained models contained sufficient information about the 

language category despite their unified structure. To test this idea, I obtained the hidden representations 

of every word in the test set while processing one character at a time. Half of the words served as input 

to a logistic regression model trained to decode each word’s language category from the hidden 

representations at every possible character position. I then tested the logistic regression model’s 

performance on the remaining half of the representations at each time step. I repeated this procedure to 

compare the MONO and SP-EN versions on the Spanish-English dataset and the MONO and SP-BQ versions 

on the Spanish-Basque dataset. Figure 15 depicts the logistic regression’s probability of selecting the 

correct language at every character position.  
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Figure 15. Probability of selecting the correct language at every character position. 

 

Note. Shading indicates significance at the Bonferroni corrected level. Time-step 0 is the space symbol’s 
representation, which is identical for all words in all the models. MONO = monolingual; SP-EN = Spanish-English 
bilingual; SP-BQ = Spanish-Basque bilingual; CI = confidence interval. 

 

Surprisingly, the logistic regression models performed significantly above chance level (0.5) after just the 

first character in all versions of the CLOUD model and datasets (p < 0.001, BF10 > 100). This does not imply 

that performance was good at this time step, as the probability of selecting the correct language was 

about 0.55. In the Spanish-English dataset, the logistic regression had a higher probability of correctly 

selecting the language category from the SP-EN versions than the MONO versions after the third character 

(pbonf < 0.001, BF10 > 100), and until the ninth character (pbonf < 0.001, BF10 > 100). Interestingly, decoding 

was better from the MONO version than the SP-EN version at the last time-step (pbonf < 0.001, BF10 > 100). 

At the tenth character, the MONO versions had an average probability of selecting the correct language 

of 0.895, whereas the SP-EN versions averaged 0.858.  

In the Spanish-Basque dataset, the decoding was more accurate from the SP-BQ version than the MONO 

version from the third (pbonf < 0.001, BF10 > 100) to the tenth character (pbonf < 0.001, BF10 > 100). At the 

tenth character, the MONO versions had an average probability of selecting the correct language of 0.896, 

whereas the SP-BQ versions averaged 0.940. Regardless of the differences between the bilingual and 

monolingual versions, these results suggest that, even in the MONO version, the internal representations 

of an unseen foreign word may be sufficiently different to distinguish whether it belongs to a known 

language or not—as opposed to identifying the exact language of the word.  
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Adapted Flavian vocabulary learning. Having matched the CLOUD models’ performance after pre-

training and evaluated the models’ ability to categorize the languages despite having a unified lexicon, I 

focus on this experiment’s central question. That is, how does exposure to words from two versus one 

language facilitate foreign vocabulary learning with varying degrees of orthographic similarity? Here is 

where the dynamic constraint becomes relevant. The pre-trained models learned the Flavian vocabulary, 

adjusting their weights to incorporate these novel words. The results for the recognition task are shown 

in Table 12. The GCA indicated a significant effect of the Linear and Quadratic time-terms (both p < 0.001). 

The condition factor was also significant (p < 0.001), but the effect was the opposite as in Experiment 6. 

In other words, words in the ES- condition had an overall higher score than those in the ES+ condition. As 

in Experiment 6, there were no differences between the bilingual versions (p = 0.938), but both bilingual 

versions outperformed the monolingual version (p < 0.001). The bilingual versions also had a significantly 

different Linear slope than the monolingual version (p = 0.036). Finally, there was a significant interaction 

between the Condition and the monolingual versus bilingual contrast (p = 0.007). Contrary to Experiment 

6, the difference between the monolingual and bilingual versions was more considerable for the ES- 

condition. There were no further two-way interactions (all p > 0.05). The CLOUD simulation results for the 

recognition task are depicted in Figure 16A.  
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Table 12. Linear GCA of the simulated recognition learning task. 
Fixed Effects Estimate SE df t p 

(Intercept) -24.175 0.073 27.0 -330.747 < 0.001 
Linear 11.522 0.104 259.0 110.333 < 0.001 
Quadratic -0.708 0.104 259.0 -6.777 < 0.001 
Condition -0.196 0.047 259.0 -4.197 < 0.001 
SPBQ-SPEN -0.007 0.090 27.0 -0.079 0.938 
MONO-BIL -0.357 0.052 27.0 -6.899 < 0.001 
Linear x Condition -0.014 0.104 259.0 -0.133 0.894 
Quadratic x Condition -0.076 0.104 259.0 -0.724 0.470 
Linear x SPBQ-SPEN -0.216 0.128 259.0 -1.685 0.093 
Linear x MONO-BIL -0.156 0.074 259.0 -2.109 0.036 
Quadratic x SPBQ-SPEN 0.150 0.128 259.0 1.175 0.241 
Quadratic x MONO-BIL -0.008 0.074 259.0 -0.105 0.916 
Condition x SPBQ-SPEN -0.103 0.057 259.0 -1.794 0.074 
Condition x MONO-BIL 0.090 0.033 259.0 2.728 0.007 

Random Effects Group Variance SD Correlation   
Run (Intercept) 0.095 0.308       

Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  

 

The production task results are shown in Table 13 and depicted in Figure 16B. In this case, the analysis 

indicated significant Linear and Quadratic time-terms (both p < 0.001). Contrary to the recognition task, 

the Condition effect was in the expected direction, with ES+ words having a higher probability than ES- 

words throughout the learning blocks (p < 0.001). There were no differences between the bilingual 

versions (p = 0.723), but both bilingual versions outperformed the monolingual version (p < 0.001). As in 

Experiment 6, there were Linear by Condition and Quadratic by Condition interactions (both p < 0.001), 

indicating that performance increased and reached an inflection point more rapidly in the ES+ condition 

than the ES- condition. Furthermore, there were Linear and Quadratic interactions with the bilingual 

versus monolingual contrast (p = 0.047, p < 0.001, respectively). These interactions suggested a faster 

acquisition rate and a faster inflection point for the bilingual than the monolingual CLOUD versions. The 

rest of the two-way interactions were not significant (all p > 0.05).  
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Figure 16. Experiment 6 simulation results. 

 
Note. Log-probabilities (symbols, vertical lines indicate ± 95% confidence intervals) by version and condition for the 
recognition (A) and production (B) simulation tasks. The solid lines depict the average GCA model predicted values. 
The conditions are plotted separately to avoid cluttering. SPEN = Spanish-English bilinguals; SPBQ = Spanish-Basque 
bilinguals; MONO = Spanish monolinguals.  
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Table 13. Linear GCA of the simulated production learning task.  

Fixed Effects Estimate SE df t p 
(Intercept) -110.461 0.251 27.0 -440.440 < 0.001 
Linear 52.149 0.468 259.0 111.398 < 0.001 
Quadratic -17.372 0.468 259.0 -37.110 < 0.001 
Condition 7.928 0.209 259.0 37.870 < 0.001 
SPBQ-SPEN -0.110 0.307 27.0 -0.358 0.723 
MONO-BIL -1.906 0.177 27.0 -10.750 < 0.001 
Linear x Condition -11.244 0.468 259.0 -24.019 < 0.001 
Quadratic x Condition 4.157 0.468 259.0 8.879 < 0.001 
Linear x SPBQ-SPEN -0.280 0.573 259.0 -0.488 0.626 
Linear x MONO-BIL -0.662 0.331 259.0 -1.999 0.047 
Quadratic x SPBQ-SPEN 0.072 0.573 259.0 0.125 0.901 
Quadratic x MONO-BIL 1.420 0.331 259.0 4.290 < 0.001 
Condition x SPBQ-SPEN 0.037 0.256 259.0 0.145 0.885 
Condition x MONO-BIL 0.165 0.148 259.0 1.113 0.267 

Random Effects Group Variance SD Correlation   
Run (Intercept) 0.572 0.756       

Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  

 

Correlation with Experiment 6 results. As a final exploratory step, I calculated the mean log probabilities 

achieved by all CLOUD versions on each word by learning block and condition, separately for the 

recognition and production tasks. I also computed the participants’ average scores per word using the 

same procedure. These values were subjected to a Pearson correlation to verify that the model produced 

similar results as those observed in the participants for the same words and learning blocks. The 

correlations were performed for the recognition and production tasks and each group separately. The 

results are depicted in Figure 17. The results indicated that the recognition and production scores were 

significantly and positively correlated (all p < 0.001), ranging from 0.77 to 0.86 in the recognition task and 

from 0.64 to 0.77 in the production task. These results were expected considering that performance 

increased during the learning phase for the participants and the models. Interestingly, overall, higher 

participant scores for a specific word at a learning block corresponded to higher scores for that word in 

the simulations.  
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Figure 17. By-item correlations between the simulation and participant scores. 

 

Note. Shading indicates the 95% confidence interval. Each shape is an individual observation. (top) Recognition task 
correlations. (bottom) Production task correlations. SP-EN = Spanish-English bilinguals; SP-BQ = Spanish-Basque 
bilinguals; MONO = Spanish monolinguals.  
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4.2.5. Summary 

In Experiment 7, I introduced a model (CLOUD) to account for the findings from Experiment 6. The CLOUD 

model is instantiated as a recurrent neural network with three constraints: unified, distributed, and 

dynamic orthographic lexicon. I have shown that this simple model can accomplish several feats. First, it 

can successfully perform an adapted Spanish Lexical Decision Task without explicit instruction on word 

meaning. The three versions of the CLOUD model (i.e., Spanish monolingual, Spanish-English bilingual, 

and Spanish-Basque bilingual) were matched and significantly above chance in their adapted LDT 

performance. Critically, this suggests that the model could perform the adapted LDT without ever 

accessing any meaning for the seen words and purely based on orthotactic patterns. Prior work has shown 

that non-human primates (baboons) can use orthotactics to successfully distinguish words from 

pseudowords in an LDT, with both trained and unseen items (Grainger et al., 2012; Rajalingham et al., 

2020).  

Second, it can learn distributed representations of the orthotactic patterns in words from different 

languages, and these representations contain information about a word’s language category. 

Neuroimaging studies have identified an area in the neocortex that gets activated with orthotactic 

information and has been called “Visual Word Form Area” (Dehaene et al., 2002). Its activation seems to 

be modulated by the orthotactics of natural languages, even more so than word frequency (Woolnough 

et al., 2021). While I do not claim that the CLOUD model is a one-to-one mapping to this area, the 

similarities are striking. Indeed, future work could employ the CLOUD architecture to replicate the 

activation patterns observed in this area and extend the findings to bilingual contexts.  

Third, the CLOUD model can (partially) replicate the results from Experiment 6, showing an advantage of 

bilingual exposure and differences arising from orthographic similarity. Curiously, the recognition results 

revealed an effect of orthographic similarity in the opposite direction as the behavioral experiment. If the 

ES+ words were also more similar to one another, the CLOUD model might have had a more challenging 

time disentangling their representations to predict the appropriate label. Regardless, the recognition and 

production simulation results corroborated that experience with the orthography of two languages 

facilitated learning orthographically similar and dissimilar words over experience with a single language. 

Critically, for learning to occur, the models had to adapt their existing representations learned during the 

pre-training (see Appendix C5). Future studies could elaborate on exactly how and when the mental 

lexicon reorganizes its representations.  
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Discussion 

The present experiment explored how orthographic similarity and bilingual experience influence foreign 

vocabulary learning through a computational approach. In the simulations presented above, I have shown 

a computational model of the orthographic lexicon for written vocabulary learning. The model could 

reproduce the bilingual advantage for vocabulary learning and orthographic similarity effects as evidenced 

in the behavioral results of Experiment 6. Here, I discuss how the CLOUD model’s unique constraints—

namely its unified, distributed, and dynamic nature—account for the behavioral data.  

All orthographic word forms are stored in a unified lexicon in the CLOUD model, regardless of the 

language. While I am not the first to propose the idea of an integrated mental lexicon (Baxter et al., 2021; 

French & Jacquet, 2004), the findings presented here suggest that this constraint is essential for 

understanding native and foreign vocabulary learning. A direct implication stemming from a unified 

lexicon is the ability to re-use information during vocabulary learning. For instance, it is unnecessary (and 

frankly inefficient) to construct completely different representations for the words “model” and 

“modelo”, as information from the former could help acquire the latter. It may seem like a trivial 

realization, but the most prominent computational models of the mental lexicon have largely overlooked 

vocabulary learning, opting to implement whole-word or language-specific tags (Dijkstra et al., 2019b; 

Dijkstra & van Heuven, 2002). Instead, words share their orthographic representations in the CLOUD 

architecture so long as they share their script.  

I presented evidence that a unified orthographic lexicon facilitates learning orthographically similar 

words. As shown in Experiment 6, participants’ performance was better for the orthographically similar 

words in the recognition and production tasks. The model could reproduce the orthographic similarity 

effects in the production task. However, there were some discrepancies in the recognition task. Aside 

from the different learning trajectories arising from the distinct nature of the behavioral and simulation 

tasks, perhaps the most relevant difference is the inverse effect of orthographic similarity in the 

recognition task. A possible explanation is that, while orthographically similar words are more 

straightforward to produce, their representations are more difficult to disentangle when assigning a label 

(see also Appendix C5). Previous research has suggested that, for language learners, similarity can also 

produce interference rather than facilitation in the absence of cues to direct attention to the differences 

between words (Baxter et al., 2021; P. Nation, 2000). These discrepant findings provide testable 

predictions regarding the interplay of attention and word form similarity during receptive vocabulary 

learning.  
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The second constraint that characterizes the CLOUD model is its use of distributed representations. 

Distributed representations allow the model to learn from the orthographic patterns composing words 

from different languages. Despite the unified lexicon, the results show that this bottom-up model can 

store information about the words’ language category in its distributed representations without requiring 

any top-down language tags. While theory suggests that top-down signals can modulate language 

activation in the bilingual mental lexicon (Dijkstra & van Heuven, 2002; Grainger et al., 2008; Van Heuven 

et al., 1998), word form representations are sufficient to distinguish the language category. In other 

words, individuals do not need to constantly know the language of every word they read, as it can 

potentially be inferred from the word itself if necessary.  

Prior modeling efforts have shown that distributed representations in the bilingual lexicon can cluster 

according to their respective language (French, 1998; Li & Farkas, 2002). This experiment extends these 

findings in several ways. First, I showed that language discrimination could occur at the sub-lexical 

orthographic level. Some specific orthographic patterns are unique to words in different languages (e.g., 

“th” in English; “tx” in Basque), and the model seems to capture those patterns within its distributed 

representations. These results are consistent with a growing literature investigating written language 

identification in bilingual contexts (e.g., Casaponsa et al., 2014, 2015). In brief, these studies suggest that 

bilinguals can identify the language of a word using the orthotactics of their known languages. Thus, like 

the CLOUD model, these studies indicate that sub-lexical orthographic information is enough for 

languages to organize in the mental lexicon (Casaponsa et al., 2014, 2015). Second, I show that language 

separation is not a unique feature of the bilingual lexicon but rather a by-product of distributed 

representations. Even in the monolingual version, the representations were enough to distinguish words 

that belong to a known language from words that do not—without ever learning words in other 

languages. Third, the results suggest that as the word’s length increases, so does its individuality within 

the mental lexicon, with longer words having more language-specific representations than shorter words. 

Finally, there was also a bilingual advantage for language classification. The bilingual versions were better 

than the monolingual counterpart in classifying the language from the distributed representations, 

particularly with shorter words.  

This experiment’s central finding is the bilingual advantage for foreign written vocabulary learning, 

evidenced in both the model and human performance, receptive and productive vocabulary tasks, and 

orthographically similar and dissimilar words. Studies have shown that bilinguals outperform 

monolinguals when learning dissimilar words (Kaushanskaya & Marian, 2009a, 2009b), but the results 
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seem to indicate that this is also the case for similar words. In the CLOUD model, experience with words 

from two languages shapes the distributed representations, making the orthographic lexicon more 

flexible to incorporate similar and dissimilar patterns. In other words, the representations become less 

tuned to specific orthographic patterns to encode the input’s variable statistics more efficiently. 

Interestingly, the effects were evident for both bilingual versions of the model, regardless of the language 

combination, pointing to bilingual exposure as the source for this advantage. Future studies could 

manipulate word form similarity to multiple languages to dissociate the specific effects of similarity to one 

language from the overall effects of bilingual experience.  

The final—and possibly the more controversial—constraint in the CLOUD model is the dynamic lexicon. 

Namely, learning new words modifies the existing representations of words in the lexicon (see Figure 16 

for an example). It is safe to assume that the human brain never turns off its learning mechanisms, as 

evidenced by implicit learning studies (Christiansen, 2019; Perruchet & Pacton, 2006). Thus, it would make 

sense that the language context and environmental demands continually modify the existent 

representations. However, this poses additional questions regarding the mental lexicon’s stability, 

particularly in adulthood—for example, do the representations for certain words ever stabilize? How 

much exposure is necessary to produce a change? Research suggests that, even in adult monolinguals, 

the foreign language learning experience can reshape their native language knowledge (Bice & Kroll, 

2015). Furthermore, adult monolinguals exposed to heterogeneous linguistic contexts show a vocabulary 

learning advantage over those from a more homogeneous linguistic context (Bice & Kroll, 2019). Together, 

these findings suggest that the mental lexicon is not static, and mere exposure to different words forms 

can affect language processing and foreign vocabulary learning. The extent to which the mental lexicon is 

dynamic remains to be studied.  

There are, of course, limitations when comparing such a simple model to the nuances of human behavior. 

In my simulations, I did not model differences arising from early versus late second language learning. 

Instead, I approximated an adult monolingual and bilingual lexicon using exposure to random words in 

one or more languages as a proxy. However, in practice, bilingualism involves many more factors than 

exposure, ranging from individual learning experiences to cultural and identity aspects. Additionally, most 

mental lexicon theories argue for the idea of word resting level activation—established due to the 

frequency of exposure to different words—and how this crucial factor intervenes in processes such as 

competition during word recognition (Baxter et al., 2021). In pre-training the CLOUD models, however, I 

assumed that all words were equally frequent. While the influence of second language age of acquisition 
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and word frequency could be easily put to the test by modifying the CLOUD model’s pre-training datasets 

(e.g., using complete texts rather than single words), these aspects remain beyond this study’s scope.  

One critical observation is that I explicitly avoided meaning representations, opting to identify the minimal 

structure that could account for written vocabulary learning. A limitation of this decision is that there is 

no distinction between cognates (e.g., “pera”-“pear”) and false friends (e.g., “carta”-“letter” and not 

“card”) in the CLOUD model. The nature of meaning representation has been consistently problematic to 

implement. Some authors reduce it to manually coded distributed representations, and others treat these 

as localist (single-valued) labels (French & Jacquet, 2004; Laszlo & Plaut, 2012). Recent advances in 

artificial intelligence suggest that meaning representations are also dynamic and highly context-

dependent, like the orthographic representations in the present work (Devlin et al., 2019). The meaning 

representations pose an additional challenge when dealing with multilingual data—for instance, is the 

meaning of two words precisely the same across languages? Is it even the same for two individuals? While 

it will be helpful for future work to explore the possibility of extending the model by adding meaning 

representations, my aim here was to report the efficacy of a minimal model for learning orthographic 

representations in multiple languages.  

Finally, I do not claim by any means that the learning mechanisms employed by artificial neural networks 

are humans-like or biologically plausible. Other models employing distinct learning mechanisms or 

architectures to produce unified, distributed, and dynamic representations could match or even surpass 

the CLOUD model’s capacity to explain the behavioral data. Still, this model provides a first large-scale 

attempt towards understanding the role of prior experience on foreign written vocabulary learning. 

Future work could employ more biologically plausible architectures to corroborate the ideas presented 

here, also including phonological and meaning representations.  

Chapter 4 Conclusion 

Foreign vocabulary learning is a multi-faceted and complicated process influenced by multiple variables. 

Amongst them, past research has highlighted similarity and bilingual experience as catalysts in foreign 

vocabulary learning. The present study is first in unifying these seemingly disparate findings under a 

common computational framework, whereby distributed representations of word forms are stored in a 

unified space and dynamically modified by learning experiences. To some extent, the model can simulate 

human behavior, corroborating the influence of orthographic similarity and showing a bilingual advantage 

for receptive and productive vocabulary. This conceptualization has implications about how consistent 

experience with specific words in different linguistic contexts can influence foreign vocabulary learning.  
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Chapter 5: General Discussion 

Language learning is a complex human activity comprised of multiple interconnected analytic levels (e.g., 

sub-lexical, lexical, morphological, semantics). Having experience with two languages could provide 

additional implicit or explicit knowledge to exploit during language learning at one or multiple analytic 

levels. This idea is backed by many experimental and theoretical studies, highlighting that experience with 

more languages facilitates subsequent language learning (for recent reviews, see Festman, 2021; Hirosh 

& Degani, 2018; Montanari, 2019). In this work, I was interested in whether monolingual and bilingual—

not multilingual—participants, matched in a series of variables, differed in learning contexts that are novel 

and as equal as possible for all of them. I sought to address a single question from multiple angles: Are 

adults who already know two languages (bilinguals) better at learning a foreign language than those who 

only know one (monolinguals)? I started by decomposing this question into three specific research 

questions regarding “where” (RQ1), “what” (RQ2), and “how” (RQ3) are bilinguals and monolinguals 

different in foreign language learning.  

I limited the research context by considering initial artificial language learning as a proxy for foreign 

language learning ability. Moreover, I recruited participants from Spain with three linguistic profiles: 

Spanish monolinguals, Spanish-English bilinguals, and Spanish-Basque bilinguals. The bilingual 

participants were highly proficient in both languages, had minimal exposure to a third language, and 

started learning their second language on average before the age of six, making them relatively early but 

not necessarily balanced bilinguals —as per the definitions in Chapter 1. Throughout the experimental 

part of this work, participants in each group were exposed to artificial linguistic materials over one 

learning session and at most two test phases separated by one day. Consequently, any resulting claims 

arising from this work are limited to the context of initial exposure and learning in an artificial language 

of individuals with the language profile described above.  

In what follows, I will briefly summarize the results from all experiments in this work. I will then present 

my arguments regarding the three specific research questions. Next, I will contextualize all these findings 

into the overall literature, highlighting their theoretical and practical implications, and strengths and 

limitations. I will outline some outstanding questions for future work regarding this research line. Finally, 

I will conclude this thesis by answering the overarching research question as originally posed.  
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5.1. Summary of findings 

Chapter 2 targeted implicit foreign language learning at the sub-lexical phonology, morphology, syntactic, 

and lexical-semantics level using four well-established statistical language learning experiments. In 

Experiment 1, I compared the ability of bilinguals and monolinguals to segment words from three auditory 

artificial speech streams that varied in their sub-lexical phonological patterns (i.e., phonotactics). The 

results suggested that, while the complexity of the phonotactic patterns hindered participants’ 

performance in the task, there were no differences between monolinguals and bilinguals in their overall 

performance.  

Experiment 2 extended the findings from the previous experiment by testing participants’ ability to 

generalize the knowledge acquired through statistical language learning to novel words. Specifically, I 

designed the artificial speech streams to mimic affixal morphology (e.g., unbreakable, untouchable), and 

participants had to generalize this knowledge to new items (e.g., unfillable). Again, the bilingual and 

monolingual participants did not differ in this task, and thus, there was no bilingual advantage.  

Experiment 3 targeted the syntax level. In this experiment, I tested participants’ ability to segment words 

from an ambiguous speech stream that could be segmented based on a syntactic property of their known 

languages: word order. The results indicated that Spanish-Basque bilinguals outperformed the other two 

groups in this task, better segmenting the words congruent with the predominant word order of Basque 

(SOV). Regardless, as in the previous two experiments, there was no overall bilingual advantage. This 

experiment was vital to disentangle the effects of bilingual experience from those stemming from specific 

language knowledge.  

Finally, in Experiment 4, I targeted the lexical-semantics level using a statistical word-referent learning 

task. In this audio-visual task, participants had to discover the names of non-existing visual referents 

implicitly through a series of scenes (Cross-Situational Statistical Learning). Some objects only had one 

name—i.e., they were exclusive mappings—, but other objects could have two distinct names (synonyms), 

or two distinct objects could have the same name (homonyms). In experiencing two languages, 

participants learn multiple types of word-referent mappings, so the natural prediction was that bilinguals 

would outperform monolinguals in learning these three types of mappings. However, the results indicated 

a bilingual advantage only for the one-to-one (exclusive) mappings and no differences between 

monolinguals and bilinguals on the multiple mappings.  
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Chapter 3 addressed explicit foreign language learning using two additional experiments that targeted 

morphology and lexical-semantics learning. Experiment 5 compared monolinguals and bilinguals when 

learning new suffixes for existing Spanish stems (e.g., laboralsuti). Since participants already knew the 

definitions for these stems, the experiment addressed only the group differences in learning the artificial 

suffixes’ orthographic form. The results revealed that, while participants could learn to discriminate the 

combined stem and suffixes from other types of foils, the groups did not differ in their performance. In 

other words, as in Experiment 2, there were no differences between bilinguals and monolinguals in 

learning morphological information. Moreover, an exploratory correlation analysis only indicated a weak 

correlation between Experiment 2’s scores and one of the conditions in Experiment 3.  

Experiment 6 combined the sub-lexical orthography and the lexical-semantics level. In this experiment, 

participants were tasked with learning an artificial written vocabulary named Flavian. The critical 

manipulation was that each words’ sub-lexical orthography was either more similar (ES+) or more 

dissimilar (ES-) to Spanish—which is the common language that all participants speak. There were three 

important results from this experiment. First, orthographic similarity facilitated learning the written words 

throughout the learning blocks, consistent with prior findings in the literature (Hayakawa et al., 2020; 

Marecka et al., 2021). Second, bilinguals were better than monolinguals at learning the novel written 

words, regardless of their similarity to Spanish. This finding extends prior experimental work suggesting a 

bilingual advantage using only dissimilar and auditory novel words (e.g., Antoniou et al., 2015; 

Kaushanskaya & Marian, 2009b). Third, the differences between bilinguals and monolinguals were more 

prominent for the ES+ words than the ES- words during the recognition learning phase, but the differences 

between the groups and the interaction disappeared at the test. Conversely, orthographic similarity and 

bilingual status did not interact during the learning or test phases for the production task, with bilinguals 

being better across the board in producing the Flavian words.  

Chapter 4 focuses on understanding how the findings from Experiment 6 could emerge from exposure to 

bilingual input. Despite several computational models addressing the monolingual and bilingual mental 

lexicon, none of these models adequately accounts for the results mentioned above. Therefore, in 

Experiment 7, I proposed and developed a new computational model specifically focused on the 

orthographic lexicon, named CLOUD. I employed this model to examine how orthographic similarity and 

bilingual experience could influence foreign vocabulary learning. Among other findings, the highlight of 

Experiment 7 is that the computational models could simulate—with some differences—the effects of 

orthographic similarity and bilingual status observed in Experiment 6. This experiment unifies the 
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seemingly disparate findings of orthographic similarity and bilingual experience under a common 

computational framework, whereby distributed orthographic representations reside in a unified lexicon 

and are modified by learning experiences.  

I can combine the findings from this thesis to answer the three specific research questions and the main 

question as outlined in Chapter 1.  

RQ1. At which analytic level, if any, do bilinguals and monolinguals differ? “Where” 

Overall, the findings from this thesis indicated that bilinguals and monolinguals did not differ in learning 

at the sub-lexical, morphology (implicitly or explicitly), and syntax levels. They did, however, differ in 

implicitly and explicitly learning word-referent pairs at the lexical-semantics level, wherein both bilingual 

groups outperformed monolinguals in learning novel vocabulary but did not differ from each other. 

Therefore, based on these results, my answer to RQ1 is that bilinguals and monolinguals mainly seem to 

differ at the vocabulary (lexical-semantics) level. I will henceforth refer to these differences as “bilingual 

vocabulary learning advantage.”  

Notably, throughout this work, I have shown more null than positive findings. A critical aphorism to 

consider here is that the absence of evidence is not evidence of the absence. In other words, the fact that 

my experimental designs, participants, and stimuli selection did not lead to observed differences between 

the groups is not proof that these do not exist. Indeed, different experiments and manipulations targeting 

other types of bilinguals or language combinations could—and have—shown there could be potential 

benefits arising from experience with more than one language (e.g., Antoniou et al., 2015; Poepsel & 

Weiss, 2016; Wang & Saffran, 2014). My experiments target a fraction of the multiverse of possible 

designs and manipulations, therefore, I cannot firmly conclude that there are absolutetly no differences 

between monolinguals and bilinguals on the analytic levels mentioned above. Nevertheless, as a 

counterargument, I believe it is highly likely that studies that do not find differences are also more 

susceptible to file-drawer effects and publication bias. There is evidence of these phenomena in the 

analogous literature regarding the so-called bilingual cognitive advantage (de Bruin et al., 2015, 2021). 

Open science practices such as replications and pre-registration could undoubtedly address these issues, 

providing a reliable answer to whether bilinguals and monolinguals indeed differ on aspects beyond 

vocabulary learning. Note, however, that Bayesian statistics showed more evidence for the null hypothesis 

when no differences were reported.  
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Compared to the rest of the experiments, Experiments 4 and 6 also included visual referents during 

learning. In Experiment 4, these were color depictions of non-existing objects, and in Experiment 6, black 

and white drawings of existing objects. The combined results of these experiments argue in favor of 

bilingual vocabulary learning advantage. Vocabulary learning studies have employed translation pairs 

(e.g., dog – perro) or depictions of existing objects in Experiments 4 and 6. The former approach is perhaps 

more similar to the classroom learning environment but restricts the language context in which the 

translation pairs appear (e.g., Spanish-Foreign Language). In this regard, while some studies have shown 

a bilingual vocabulary learning advantage using translation pairs (e.g., Kaushanskaya & Marian, 2009b, 

2009a), a study comparing English monolinguals to Spanish-English bilinguals found no differences 

between the groups when learning Swahili-English translation pairs (Bakker-Marshall et al., 2021), 

possibly due to the Spanish-English group performing the task in their second language.  

In contrast, using object depictions as referents during learning could allow individuals more robustly 

activate the meaning representations. The main challenge is that the vocabulary in these studies is limited 

to the objects that can potentially be depicted (i.e., concrete objects). Research suggests that the 

differences between monolinguals and bilinguals are more prominent for novel vocabulary associated 

with concrete, rather than abstract, referents (Kaushanskaya & Rechtzigel, 2012). It is possible that the 

observed differences between monolinguals and bilinguals primarily rely on participants’ ability to 

integrate these word-referent mappings into the mental lexicon rather than any other factor. Future 

studies could add these referents to the sub-lexical, morphological, and syntactic levels and test whether 

these give rise to differences between monolinguals and bilinguals.  

RQ2. What are the differences? “What” 

The findings are consistent in showing a bilingual vocabulary learning advantage in one-to-one mappings 

but not in multiple mappings. Experiment 4 tested both one-to-one and multiple mappings, revealing a 

bilingual advantage only for the former type. If I consider Experiment 5 as a paired-associates task, it is 

easy to see how the stems and novel suffixes represented one-to-many mappings—i.e., each stem was 

paired with eight different suffixes. Therefore, the lack of differences in this experiment corroborates the 

findings from the multiple mapping condition in Experiment 4. Conversely, Experiment 6 presented 

participants with one-to-one word-referent mappings in an explicit learning task that combined 

recognition and production. Again, the results indicated a bilingual vocabulary learning advantage, as 

evidenced in Experiment 4.  
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Experiment 6 also tested the influence of sub-lexical orthographic similarity during foreign vocabulary 

learning. Words that are more similar in orthographic form to others in a known language were recognized 

and produced better during learning and testing. The analyses suggested that the differences between 

monolinguals and bilinguals were more considerable for the more similar than dissimilar words in the 

recognition, but not the production learning tasks. Nevertheless, I observed a bilingual vocabulary 

learning advantage for both similar and dissimilar words. Experiments 4 and 6 were the only ones to test 

participants at multiple points throughout the learning phase, suggesting that the bilingual vocabulary 

learning advantage seemed to emerge throughout the course of learning. In Experiment 4, the differences 

between monolinguals and bilinguals in recognizing the words became more prominent as learning 

progressed. In contrast, Experiment 6 showed a bilingual vocabulary learning advantage for the 

recognition learning task, but this advantage disappeared during the testing phase, regardless of test 

delay. Still, bilinguals were better than monolinguals at producing the Flavian words throughout learning 

and testing.  

The answer to RQ2 is that bilinguals seem to be better than monolinguals at learning one-to-one word-

referent mappings regardless of the words’ orthographic similarity to a known language. Also, the 

bilingual vocabulary learning advantage is more evident for productive rather than receptive vocabulary, 

possibly due to productive vocabulary being typically harder than its receptive counterpart (De Groot & 

Keijzer, 2000; Loucky, 2006). Notably, this advantage seems to develop throughout learning but does not 

necessarily emerge during testing, which could be why I did not find any differences in Experiments 1-3 

and 5.  

RQ3. How could these differences emerge from the bilingual experience? “How” 

Rather than settle with ad hoc explanations (e.g., metalinguistic awareness, phonological working 

memory), I directly tested a hypothesis for how the bilingual vocabulary learning advantage might 

emerge. Concretely, I hypothesized that the observed facilitatory effects of orthographic similarity and 

bilingual experience were rooted in exposure to the orthographic patterns—orthotactics—of one versus 

two natural languages.  

These ideas led to Experiment 7, where I attempted to replicate the findings from Experiment 6 employing 

the CLOUD model. Critically, the model met several criteria to help understand how bilingual experience 

and orthographic similarity influence vocabulary learning. First, a single unified, distributed, and dynamic 

architecture learned orthotactics in a monolingual or bilingual setting. Second, the resulting monolingual 

and bilingual versions only differed in their input (i.e., monolingual or bilingual), but not in the number of 
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words that they learned. Third, like the rest of the experiments in this thesis, I verified that any effects 

were consistent for two bilingual contexts (Spanish-Basque, Spanish-English) and not a specific language 

combination. Fourth, consistent with prior findings (Aguasvivas et al., 2020), the monolingual and two 

bilingual versions of the model were comparable in performing an adapted Spanish lexical decision task. 

Lastly, the models performed an adapted version of Experiment 6’s learning phase, having the same 

exposure to the Flavian words as the participants. Consequently, I can argue that the results were 

primarily due to the model’s exposure to the orthotactics of one or two languages rather than the model’s 

architecture or performance differences.  

The simulations from Experiment 7 replicated the findings from Experiment 6. There was an effect of 

orthographic similarity and an effect of exposure to bilingual input. The orthographic similarity effect 

operated in the same direction as in Experiment 6 for the production but not the recognition task. In other 

words, the models' performance was worse for the ES+ words in the adapted recognition task than the 

ES- Flavian words, possibly due to their representations being more similar to one another. Nevertheless, 

both bilingual versions outperformed the monolingual counterparts, regardless of orthographic similarity, 

and the model’s outputs for the artificial vocabulary were highly correlated with participants’ scores. 

Hence, my response to RQ3 is that the bilingual vocabulary learning advantage might emerge from mere 

exposure to bilingual input. In other words, through active or passive exposure, bilinguals might develop 

sub-lexical representations that are more flexible to integrate novel vocabulary than monolinguals. It 

seems that experiencing words in two languages could act as a regularization, allowing the model to 

develop flexible representations to incorporate similar and dissimilar novel words. I will further discuss 

this idea in the following section.  

5.2. Theoretical implications 

The theoretical framework I employed to select and plan the experimental part of this thesis is that of 

direct and indirect effects (Hirosh & Degani, 2018). This framework proposes that experience with 

multiple languages can directly influence subsequent language learning due to the transfer of linguistic 

information from any known language towards the target language to learn. In essence, learners try to 

exploit similarities during foreign language learning to acquire constructions more rapidly. A large body 

of literature from experimental linguistics backs this idea (e.g., Rothman, 2015; Westergaard et al., 2017). 

Studies have also shown that learners can draw from perceived or objective similarities to kickstart their 

vocabulary knowledge (e.g., Bartolotti & Marian, 2017; Hayakawa et al., 2020). Besides the orthographic 

similarity effect from Experiment 6, these direct effects do not explain the bilingual vocabulary learning 
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advantage considering the artificial linguistic materials they had to learn in my experiments. In other 

words, there was minimal margin for cross-linguistic transfer in the experimental part of this thesis.  

Multilingual experiences might also indirectly enhance non-linguistic or linguistic cognitive abilities that, 

in turn, improve language learning success (Hirosh & Degani, 2018). In the experimental part of this work, 

I have addressed both types of abilities. In Chapter 2, I contrasted monolingual and bilingual participants 

across four statistical/implicit learning experiments—a non-linguistic ability according to the 

direct/indirect framework. Previous studies have suggested that bilingual experience might enhance this 

ability (e.g., Onnis et al., 2018; Poepsel & Weiss, 2016; Wang & Saffran, 2014). However, the overall 

pattern of results from Chapter 2 contradicts this idea. I found that specific linguistic knowledge (e.g., SOV 

word order) can modulate learning in these tasks in Experiment 3. 

Moreover, the results from Experiment 4 (in combination with Experiments 6 and 7) suggested that the 

differences between monolinguals and bilinguals emerge at the vocabulary level and are not due to an 

enhanced statistical/implicit learning ability in bilinguals. The current literature on statistical learning 

moves towards which individual differences can explain the outcome in these implicit tasks (e.g., Assaneo 

et al., 2019; Siegelman, Bogaerts, Christiansen, et al., 2017; Siegelman & Frost, 2015). Therefore, based 

on my results, I argue that bilingual experience may not be an individual difference that affects the 

statistical learning process but instead how learners filter the information in these tasks. In particular, 

studies should focus on the level of exposure to input in one or more languages as a source of variability 

in statistical learning experiments.  

In terms of the indirect linguistic abilities, the theoretical framework posits that multilingual experience 

might strengthen or enhance the orthographic, phonological, or lexical-semantic networks (Hirosh & 

Degani, 2018). The results from Experiment 6 could very well fit the idea of enhanced orthographic or 

lexical-semantic networks. However, I argue that these ad hoc explanations are not sufficient, in part 

because there is no theory explaining how this strengthening/enhancement occurs or how neural 

networks implement it. As an alternative, in Experiment 7, I demonstrated that a simple computational 

model that learns the orthotactics from words in one or two languages was enough to replicate the 

findings from Experiment 6. These findings, of course, do not imply that my model is correct but certainly 

highlight the role of sub-lexical orthotactics in monolingual and bilingual vocabulary learning.  

Therefore, my argument is that experience with two languages does not enhance or strengthens these 

networks but instead acts as a form of regularization. Regularization is a common concept in cognitive 
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and computational learning theories (e.g., Ferdinand et al., 2019; Girosi et al., 1995; Hudson Kam & 

Newport, 2005). In computational terms, regularization implies imposing sparsity or strength 

constraints—through penalty terms or data variability—on a model’s representations to reduce 

generalization errors (Goodfellow et al., 2016). In humans, this process typically refers to how learners 

adapt their production (or representations) to reduce the entropy in the information they process 

(Hudson Kam & Newport, 2005). Critically, I have demonstrated that this regularization process occurs 

even at the sub-lexical level when the information about orthographic patterns is unpredictable—as it 

comes from two distinct languages. In the context of my experiment, the orthotactic representations 

became less tuned to a specific language—due to the more variable and unpredictable statistics—and 

were generally more flexible to accommodate the novel artificial vocabulary.  

Since the differences between monolinguals and bilinguals were mainly at the vocabulary level, other 

points of contrast to my work are the theoretical and computational models of bilingual word processing 

and learning. On the one hand, localist models, like the Bilingual Interactive Activation (Dijkstra & van 

Heuven, 1998, 2002; Grainger et al., 2008) and the Revised Hierarchical Model (RHM) (Kroll et al., 2010), 

have been highly regarded for their ability to account for multiple phenomena in bilingual word 

recognition and language representation, such as inter-language competition, and language switching 

effects. These models focus primarily on word processing rather than word learning and provide only 

verbal accounts of foreign vocabulary acquisition. For example, the RHM proposes that, during second 

language learning, individuals initially establish a link between form representations in the second 

language (L2) and their corresponding form in the native language (L1), without a direct link to meaning 

representations. With increased exposure to the L2, the connection between L2 words and meaning 

strengthens, while the original link between L1 and L2 word forms weakens. It is unclear how these models 

could account for the facilitatory effect of orthographic similarity and bilingualism during foreign language 

learning, as the representations of word forms are localist in nature and unique for each language.  

On the other hand, three distributed models have suggested relevant ideas regarding bilingual mental 

lexicon development. The Bilingual Simple Recurrent Network—trained with simple sentences in English 

and French (e.g., man lift boy; garcon voit ballon)—was one of the first models to reveal that the lexical 

representations clustered according to each language without the need for explicit language tags (French, 

1998). Following these results, the Dev-Lex-II model simulated the developmental differences caused by 

early versus late second language learning, showing similar language separation for phonological word 

forms (Li & Farkas, 2002; X. Zhao & Li, 2010). Finally, the Conceptual Feature Mapping model (Lee et al., 
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1999) provides a verbal explanation for the facilitatory effects of word form similarity on foreign 

vocabulary learning. According to this model, learning a foreign word requires modifying the connections 

from the word form layer to an intermediate lemma layer or from this intermediate layer to the meaning 

representations, depending on whether the target word’s form or meaning overlaps with its native 

language counterpart. Still, it is hard to extend this idea to more than two languages, as these lemma 

nodes are localist, and it would be necessary to add a new node for every “new” language.  

Localist models are highly interpretable and can be compared to human behavior, but they require 

extensive manual engineering of connections and activations, which complicates explaining their learning 

mechanisms. Conversely, distributed models can learn representations using simple learning mechanisms, 

but these models have yet to be compared to human behavior directly (Holman & Spivey, 2016). 

Importantly, all of these models only present small-scale simulations using carefully selected subsets of 

words (Li & Grant, 2019), which hinders their generalizability. Finally, none of them have been extended 

beyond second language learning to explain the differences between monolingual and bilingual 

vocabulary learning.  

In this regard, the CLOUD model from Experiment 7 provides a first large-scale attempt to understand 

how the bilingual vocabulary learning advantage emerges. Although I developed this model to understand 

how the pattern of results from Experiment 6 emerged, the ideas contained in this work extend beyond 

the bilingual vocabulary learning advantage. First, the model contains a unified mental lexicon, where 

character and orthotactic representations lie in a common space for multiple languages—so long as they 

share scripts. Adding a unified phonological layer could establish the correspondence between different 

scripts (e.g., Russian “Г” and English “G” partially map to the same phoneme /ɡ/). Second, the model 

exploits the expressivity of distributed representations, making this architecture flexible to words within 

and outside its vocabulary and ideal for probing questions about native and foreign vocabulary learning. 

Finally, the idea of the lexicon being dynamic and continually modified by experiences poses novel 

challenges and exciting ideas to investigate learning and processing in the mental lexicon. Studies suggest 

that learning a foreign language inadvertently reshapes native language knowledge (Bice & Kroll, 2015; 

Borragan et al., 2020). A recent study has shown that even English monolinguals exposed to a less 

predictable orthographic context (e.g., living in California versus living in Pennsylvania) show a vocabulary 

learning advantage over monolinguals exposed to a more predictable context (Bice & Kroll, 2019).  

The CLOUD architecture implemented in this work is a simplified model of the orthographic lexicon. In 

this regard, it requires vertical and horizontal expansions to become a fully-fledged model of the 
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(multilingual) mental lexicon. For instance, the distributed letter representations could be computed 

based on the letters' visual features rather than using an Embedding layer. Similarly, how orthographic 

patterns interact with phonology and semantics is not captured by this model in its current version. It is 

also well-known that individuals process more than one character and sometimes entire phrases in one 

glance. Implementing this sort of window approach—e.g., using windowed attentional mechanisms 

(Vaswani et al., 2017)—combined with phonology and semantics into the CLOUD architecture could 

further boost its validity. A natural next step for the current CLOUD model is to examine how the model 

responds to the lexical properties of words (e.g., frequency, orthographic neighborhood, length) to 

validate it as a multilingual visual word recognition model.  

5.3. Practical implications 

Although my purpose was not to inform language educational practices, the results of this work offer 

some practical applications. Recent work has elaborated on how the organization of the multilingual 

mental lexicon facilitates vocabulary learning (for a review, see Baxter et al., 2021). Because of this, I will 

only briefly outline some of how this work could inform foreign language instruction:  

It is essential to consider the learner’s linguistic background. The particularities of known languages, and 

similarities and differences with the target foreign language, can implicitly or explicitly be exploited to 

maximize language learning achievement.  

Experience with two languages facilitates vocabulary learning. This statement does not mean to 

discourage monolingual learners. Instead, the essential aspect to consider is that learning a foreign 

language can facilitate further vocabulary acquisition. Surprisingly, even passive exposure to a non-native 

language seems to confer vocabulary learning advantages in monolinguals (Bice & Kroll, 2019).  

Objective and perceived similarity can facilitate and hinder language learning. For instance, as shown in 

Experiment 7, teaching lists of very similar words might hinder rather than facilitate their recognition. In 

this regard, and as suggested by other work (Baxter et al., 2021; Marian et al., 2021), it is vital to balance 

similar and dissimilar vocabulary instruction.  

Acquiring multiple mappings is harder than one-to-one mappings. To avert the difficulties of acquiring 

synonym and homonyms, it is perhaps best to space their presentation or present them in variable 

contexts to facilitate their learning (Benitez et al., 2016).  

Consistent practice yields the best results. The participants in my experiments could learn constructions 

with only a few repetitions, but it is unlikely they could retain them. In Experiments 4 and 6, participants 
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learned to recognize most of the words and produce over half of them within a 40 minutes session of 

repeated implicit exposure or explicit practice.  

5.4. Strengths and Limitations 

The fundamental strength of my approach to the research question and hypothesis in this work is that I 

probed it from multiple angles. Admittedly, all these experiments are only a pixel in the broader picture 

of language learning and learning in general. Furthermore, future endeavors could part from the basis of 

these experiments to further probe the idea of monolingual and bilingual language learning. Since the 

limitations of each experiment are highlighted within their respective chapters, here I offer some points 

that limit the generalizability of my work: 

Recognition versus lexicalization. I have mainly used recognition (and sometimes production) tasks to 

measure participants' learning outcomes throughout this work. These tasks have several methodological 

and theoretical limitations. For instance, performance in these tasks is bounded by the number of test 

items, and longer recognition tests do not address the issues present in these simple decision tasks. 

Moreover, these tasks do not address the lexicalization of the items presented. In other words, I cannot 

disentangle whether participants integrated the constructions in their lexicons or simply memorized 

them. The difference is that when an item is lexicalized, it begins competing for selection with other items 

within the lexicon (Baxter et al., 2021). Consequently, while I can certainly talk about differences in 

performance on these tasks, I cannot claim that participants truly learned the constructions.  

Initial versus long-term learning. My experiments only targeted the initial exposure to artificial 

constructions. It is certainly theoretically and practically important to understand whether bilinguals and 

monolinguals differ on initial exposure. However, my findings are temporally bounded to the 

experimental context, and I cannot argue anything about long-term language learning differences. 

Language learning is a life-long process wherein individuals consistently acquire and discover new 

constructions. In this regard, future studies could certainly target learning over multiple sessions or even 

controlled classroom environments.  

Artificial versus natural languages. The use of artificial linguistic materials in my experiments reduced the 

influence of nuisance factors such as prior experience with the stimuli or direct transfer effects. Compared 

to the nuances of natural languages, artificially constructed materials are limited in their scope and usage. 

It is possible that, despite telling participants they would be learning a new language, they were primed 

to employ memory processes rather than contextualize the artificial materials using the structure and 
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nuances of a natural language. This issue can be certainly addressed using a carefully constructed artificial 

language. However, even an unknown natural language could suffice to study the language learning 

process using more ecologically valid settings.  

Manipulating proficiency. A strength of my work is that I carefully controlled for participants’ linguistic 

profiles to make the results comparable across experiments. At the same time, this disallowed me from 

testing bilingualism as a continuum. In other words, it is possible that, since participants vary in their 

proficiency and experience with the language, there might be differences even within the bilingual groups. 

Operationalizing and measuring bilingual experiences as a unitary construct (i.e., a bilingual quotient) is 

an ongoing question (Marian & Hayakawa, 2021). Nevertheless, future studies could benefit from treating 

bilingualism as a continuum rather than a dichotomy.  

5.5. Outstanding questions 

There are many ways in which this work opens new interesting questions about foreign language learning, 

language experience, and even learning as a cognitive and neural mechanism: 

Foreign language learning. When exactly is a foreign language construction learned? What are the neural 

and computational bases of foreign language learning? What are the language learning strategies 

employed by participants with different linguistic profiles?  

Language experience. Do monolingual and bilingual learning trajejctories differ through becoming 

proficient in a foreign language? Do they differ in learning other types of materials? At which stage of 

second language learning do individuals become proficient enough to show a vocabulary learning 

advantage?  

Learning. What does it mean to “learn”? How does the brain incorporate novel knowledge into pre-

existent networks? Is there a domain-general learning mechanism, or is it domain-specific? How can the 

principles of efficient encoding and retrieval be implemented into computational models? What is the 

exact code employed by neuros to learn?  
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Conclusion 

Are adults who already know two languages (bilinguals) better at learning a foreign language than those 

who only know one (monolinguals)? If I consider foreign language learning as a whole, the answer to my 

central question is a resounding no. Instead, what I can conclude is that (1) bilinguals and monolinguals 

do not differ in general foreign language learning, but rather in specific analytic levels; (2) experience with 

specific properties of one or more languages (i.e., word order) can benefit foreign language learning; (3) 

similarities can be exploited to facilitate language learning; (4) bilinguals seem to be consistently be better 

at learning vocabulary, more so than other aspects of a foreign language; (5) this advantage could be 

rooted in how information is learned and organize within the monolingual and bilingual mental lexicon.  

My results primarily suggest that bilinguals might be better at learning vocabulary during the initial stages 

of foreign language learning. Critically, vocabulary is an essential aspect of a foreign language and a 

prerequisite for other more abstract and complex analytic levels. Likewise, general proficiency tests that 

measure writing, speaking, reading, and listening depend on vocabulary knowledge. Therefore, it would 

not be surprising if individuals that are quicker to acquire vocabulary can develop their proficiency faster 

in a foreign language. However, there is a significant leap from this thesis’ findings to overall achievement 

in a foreign language. Language learning requires substantial practice and exposure over extended 

periods. While I have shown that previous linguistic experiences can facilitate this process, learning 

achievement—in language or otherwise—ultimately depends on individual factors such as motivation, 

age, learning strategies, and time devoted to learning.  

Lastly, I believe it is essential to consider that monolinguals are a dying race. Knowing at least two 

languages is now the norm rather than the exception in the current globalized world. Comprehending 

how language learning and processing differ due to distinct language experiences can be theoretically and 

practically useful. Yet, it is more important to focus not on advantages or differences but on the 

outstanding capacity of the human brain to efficiently and flexibly accommodate and operate in multiple 

languages.  
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Resumen en Castellano 

Casi todos hemos estado en esta situación, sentados en un aula, tratando de aprender palabras en 

japonés, francés, inglés, o cualquier otro idioma. Los individuos tienen que aprender un vocabulario de 

varios miles de palabras, cómo pronunciarlas, escribirlas—a veces en un sistema totalmente distinto--, y 

combinarlas para formar oraciones y comunicarse de manera correcta. Aprender un nuevo idioma es, sin 

duda, una experiencia desafiante pero gratificante. Los seres humanos somos únicos en nuestra habilidad 

para aprender no sólo uno, sino múltiples idiomas a lo largod e nuestras vidas. Sin embargo, es posible 

que aprender nuevos idiomas se haga más fácil mientras más idiomas sabemos.  

Esta observación me llevó a la pregunta que motiva esta tesis: Son los adultos que ya hablan dos idiomas 

(bilingües) mejores al aprender un nuevo idioma que aquellos que sólo hablan uno (monolingües)? 

Intuitivamente, conocer dos idiomas provee a los individuos con un conocimiento más extenso que 

pueden utilizar a la hora de aprender un tercer idioma, en comparación con hablar un solo idioma. No 

obstante, esta tesis se enfoca en habilidades que van más allá del conocimiento o similitudes que los 

aprendices pueden utilizar a la hora de estudiar un nuevo idioma. En otras palabras, si todas las 

condiciones son lo más parecidas posible, son los bilingües inherentemente mejores que los monolingües 

para aprender un nuevo idioma?  

Como sucede con cualquier pregunta de investigación, existe un largo trecho desde la concepción hasta 

las metodologías que mejor acaparan dicha pregunta. Por esto, en el Capítulo 1 de esta tesis, abarco lo 

que significa aprender un nuevo idioma. En resumen, los idiomas tienen distintos niveles de análisis que 

van desde aspectos sub-léxicos (ortografía y fonología) hasta otros más abstractos como pragmática. 

Aprender un nuevo idioma involucre adquirir elementos de uno o varios niveles. Este aprendizaje puede 

ser implícito, si el individuo no está consciente de que está adquiriendo los elementos, o explícito, si existe 

un esfuerzo por parte del aprendiz en captar y memorizar el contenido. Entonces, para responder si son 

mejores los bilingües que los monolingües al aprender un nuevo idioma, debemos saber en qué nivel 

lingüistico son mejores (“dónde”), cuáles son las diferencias (“qué”), y cómo pueden surgir estas 

diferencias de la experiencia con dos idiomas (“cómo”).  

Asimismo, es necesario tomar en consideración lo que significa ser bilingüe. Las personas bilingües 

adquiren un segundo idioma en edades tempranas o tardías, consiguiendo un nivel de dominio de ambos 

idiomas que puede ser similar (balanceado), o distinto (desbalanceado). Para esta tesis, tomé en 

consideración a personas con un alto nivel en ambos idiomas, hablantes castellano-inglés, y castellano-
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vasco. Ambos grupos fueron comparados entre sí y contra un grupo de hablantes monolingües 

castellanoparlantes.  

En el Capítulo 1 también reviso la evidencia a favor de que los bilingües pueden aprender idiomas mejor 

que los monolingües. En síntesis, algunos estudios indican que los bilingües son mejores a la hora de 

aprender construcciones en distintos niveles. Sin embargo, el nivel más estudiado ha sido el léxico-

semántico (vocabulario). Por ello, en la parte experimental de esta tesis, desarrollé experimentos para 

comparar los tres grupos de participantes mencionados anteriormente utilizando materiales lingüísticos 

artificiales y experimentos de aprendizaje implícito (Capítulo 2) y explícito (Capítulo 3).  

El Capítulo 2 trabaja el aprendizaje implícito de idiomas a través de cuatro experimentos conocidos de 

aprendizaje estadístico. Estos experimentos estaban dirigidos al aprendizaje de elementos sub-léxicos 

fonológicos, morfológicos, sintácticos, y léxico-semánticos, respectivamente. En el Experimento 1, 

comparé la habilidad de bilingües y monolingües al segmentar palabras de diferentes streams de voz 

artificiales que variaban en función de los patrones sub-léxicos fonológicos (i.e., fonotáctica). Los 

resultados de este experimento indicaron que, a pesar de que una fonotáctica más compleja reduce el 

rendimiento en este tipo de tareas, no existen diferencias entre los monolingües y bilingües en su 

desdempeño en esta tarea.  

El Experimento 2 extiende los hallazgos del experimento previo al medir la habilidad de los participantes 

de generalizar el contenido aprendido a través del aprendizaje estadístico a palabras que no habían visto. 

Específicamente, diseñé el stream de voz artificial para simular la morfología de afijos (ej., irrompible, 

intocable), y los participantes tenían que generalizar el conocimiento a nuevos ítemes (ej., invencible). Al 

igual que en el Experimento 1, aunque los participantes desempeñaron por encima del nivel de azar, no 

evidencié ninguna diferencia entre los grupos, y por lo tanto no había una ventaja bilingüe.  

El Experimento 3 trabaja el nivle sintáctico. En este experimento, medía la capacidad de los participantes 

al segmentar palabras de un stream artificial ambiguo que podía ser segmentado basado una propiedad 

sintácticas de idiomas conocidos: el orden de las palabras. Los resultados indicaron que los hablantes de 

castellano-vasco desempeñaron esta tarea mejor que los otros dos grupos (castellano y castellano-inglés) 

en esta tarea. En otras palabras, ellos podían segmentar las palabras de una manera congruente con el 

orden de palabras predominante del vasco (sujeto-objeto-verbo). No obstante, como en los dos 

experimentos anteriores, no encontré diferencias entre bilingües y monolingües más allá de las que se 

explican por las propiedades de los idiomas que conocen. Este experimento fue vital para separar los 
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efectos de la experiencia bilingüe de aquellos que surgen debido a las propiedades de los idiomas 

conocidos.  

En el Experimento 4, trabajé el nivel léxico-semántico utilizando una tarea de aprendizaje estadístico en 

la que los participantes aprendieron los nombres de objetos desconocidos. Esta tarea es conocida como 

cross-situational statistical learning. La manipulación en este experimento fue la relación entre los 

nombres y objetos. Algunos objetos solo tenían un nombre, y por lo tanto eran exclusivos. Otros objetos 

podían tener dos nombres (sinónimos), y algunos nombres podrían referirse a dos objetos (homónimos). 

Al enfrentarse a dos idiomas, los individuos aprendern diferentes tipos de relaciones entre nombres y 

objetos, por lo que mi predicción era que los bilingües desempeñarían mejor que los monolingües en los 

tres tipos de relaciones. Sin embargo, los resultados indicaron que los bilingües sólo desempeñaron mejor 

que los monolingües en aprender las relaciones exclusivas entre nombres y objetos, y no había diferencias 

entre los grupos al aprender otros tipos de relaciones múltiples.  

El Capítulo 3 se enfoca en el aprendizaje explícito de nuevos idiomas y utiliza dos experimentos adicionales 

que trabajan el aprendizaje morfológico y léxico-semántico. El Experimento 5 comparaba a los 

monolingües y bilingües al aprender nuevos sufijos para raíces conocidas del castellano (ej., laboralsuti). 

Como los participantes ya conocían la definición de dichas raíces, el experimento se enfocaba 

fundamentalmente en el aprendizaje de la forma ortográfica de los sufijos. Los resultados indicaron que, 

pese a que los participantes aprendieron a discriminar los sufijos nuevos de otras palabras distractoras, 

los grupos no difirieron en su rendimiento en esta tarea. En otras palabras, así como en el Experimento 2, 

no hallé diferencias entre monolingües y bilingües al aprender información morfológica. Además, un 

análisis correlacional indicó correlaciones débiles entre los puntatjes de los participantes en los 

experimentos 2 y 5.  

El Experimento 6 combinaba la ortografía sub-léxica y el nivel léxico-semántico. En este experimento, los 

participantets tenína que aprender un vocabulario artificial llamado Flaviano a través de cinco bloques de 

reconocimiento y producción. La manipulación de este experimento consistió en que el vocabulario 

contenía palabras que eran ortográficamente más similares al castellano (ES+) o más disímiles del 

castellano (ES-)—siendo este idioma el común para todos los participantes. Este experimento sugirió tres 

resultados importantes. Primero, la similitude ortográfica facilitó el aprendizaje de vocabulario escrito a 

través de los distintos bloques de aprendizaje, consistente con otros hallazgos de la literatura. Segundo, 

los bilingües desempeñaron mejor que los monolingües al aprender el vocabulario, independientemente 

de su similitud con el castellano. Este hallazgo extiende el trabajo experimental previo sugiriendo que los 
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bilingües aprenden vocabulario similar y disímil mejor que los monolingües. Tercero, las diferencias entre 

monolingües y bilingües eran más pronunciadas para las palabras ES+ que las ES- durante los bloques de 

reconocimiento, pero las diferencias desaparecieron al probar su conocimiento luego de un tiempo. Por 

el contrario, la similitud ortográfica y la experiencia bilingüe no interactuaron durante la tarea de 

producción, siendo los bilingües mejores en ambos tipos de palabras.  

Finalmente, el Capítulo 4 se enfoca en comprender cómo las diferencias en el Experimento 6 surgen a 

base del input bilingüe. Pese a varios modelos computacionales enfocados en el léxico mental de 

monolingües y bilingües, ninguno de estos modelos puede explicar los resultados de este último 

experimento. Por esto, en el Experimento 7, propuse y desarrollé un modelo computacional enfocado en 

el léxico ortográfico, llamado CLOUD. Este modelo fue entrenado con input monolingüe o bilingüe 

(castellano-inglés o castellano-vasco). Utilicé este modelo para examinar cómo la similitud ortográfica y 

la experiencia con input bilingüe pueden influenciar el aprendizaje de vocabulario. Entre otros hallazgos, 

el Experimento 7 indicó que este modelo puede simular los efectos de similitud ortográfica y experiencia 

bilingüe observados en el Experimento 6. Este experimento unifica los hallazgos dispares de similitud 

ortográfica y experiencia bilingüe bajo un mismo marco computacional, en el que representaciones 

distribuídas de las palabras residen en un léxico unificado y son modificadas por las experiencias de 

aprendizaje.  

Los hallazgos de todos estos experimentos permiten responder a las tres preguntas especificadas al inicio 

(dónde, qué, y cómo). En primer lugar, los hallazgos de esta tesis indicaron que los monolingües y bilingües 

no difieren en aprender elementos de los niveles sub-léxico, morfológico (implícito o explícito), y 

sintáctico. Sin embargo, sí difieren en el aprendizaje implícito y explícito en el nivel léxico-semántico, 

donde ambos grupos de bilingües desempeñaron mejor que el grupo de monolingües al aprender 

vocabulario, pero no difirieron el entre ellos. Basado en estos resultados, mi respuesta a la pregunta de 

“dónde” es que los monolingües y bilingües parecen diferir primordialmente en el aprendizaje de 

vocabulario (nivel léxico-semántico).  

En segundo lugar, las manipulaciones experimentales de los Experimentos 4 y 6 dan respuesta a la 

pregunta de “qué”, sugiriendo que los bilingües son mejores al aprender relaciones exclusivas entre 

nuevas palabras y los objetos a los que se refieren. Además, esta ventaja de los bilingües al aprender 

vocabulario parece ser más evidente en tareas de producción que en tareas de reconocimiento y es 

independiente de la similitud de las palabras con idiomas conocidos. Esta ventaja también parece 
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desarrollarse a través del curso del aprendizaje, pero no se manifiesta necesariamente durante los tests 

realizados luego de un tiempo.  

Las simulaciones del Experimento 7 dan respuesta a la pregunta de “cómo”. En concreto, el modelo 

CLOUD es susceptible a la similitud ortográfica, y, al entrenarse con input bilingüe, desempeña mejor que 

la contraparte monolingüe, independientemente de la similitud ortográfica. En otras palabras, la ventaja 

de los bilingües al aprender vocabulario puede surgir como consecuencia de su exposición (pasiva o activa) 

a palabras en dos idiomas. Es possible que los bilingües desarrollen representaciones ortográficas de las 

palabras que son más flexibles para integrar nuevo vocabulario que las de los monolingües. Parece ser 

que la experiencia con palabras en dos idiomas actúa como una regularización. La regularización es un 

concepto relativamente común en teorías cognitivas y computacionales del aprendizaje. En términos 

computacionales, la regularización implica constreñir las representaciones a través de términos de 

penalidad o variabilidad en los datos para reducir los errores de generalización en el aprendizaje 

automático. En humanos, este proceso se refiere a cómo los aprendizes adaptan su producción (y 

representacions) para reducir la entropía en la información que procesan. En este sentido, mis resultados 

demuestran que este proceso puede ocurrir en niveles sub-léxicos cuando los patrones ortográficos son 

menos predecibles—al provenir de dos idiomas distintos.  

En fin, mi respuesta a la pregunta original de si los adultos que ya hablan dos idiomas (bilingües) son 

mejores al aprender un nuevo idioma que aquellos que sólo hablan uno (monolingües) es un rotundo no 

si considero el aprendizaje de idiomas como un todo. En cambio, lo que puedo concluir es que (1) los 

bilingües y monolingües no difieren en el aprendizaje de idiomas en general, sino en niveles específicos; 

(2) la experiencia con propiedades específicas de los idiomas (ej., orden de palaras) puede beneficiar el 

aprendizaje de idiomas; (3) las similitudes también pueden ser utilizadas para facilitar el aprendizaje de 

vocabulario; (4) los bilingües parecen ser consistentemente mejores al aprender vocabulario, más que en 

cualquier otro aspecto del aprendizaje de idiomas; (5) esta ventaja parece estar relacionada con cómo la 

información es aprendida y organiziada en el léxico mental de los bilingües en comparación con los 

monolingües.  
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Appendix A1. Linguistic profile and contrasts per group in Experiment 1. 1 

 
Spanish 

Monolinguals 
Spanish-Basque 

Bilinguals 
Spanish-English 

Bilinguals ANOVA Helmert contrasts p-value 

  M SD M SD M SD F(2, 114) p BF10 MONO-BIL SPBQ-SPEN 
Age 21.8 2.6 21.2 1.9 20.9 2.3 1.610 0.204 0.303 0.088 0.586 
Non-verbal IQ 101.5 8.3 100.7 8.6 99.8 6.6 0.481 0.619 0.120 0.406 0.592 

Age of Acquisition L1 a 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - 
Total Exposure L1 (%) 91.4 8.1 60.3 11.8 64.5 9.9 111.685 < 0.001 > 100 < 0.001 0.070 
Self-rated proficiency L1 (1-10) 9.8 0.4 9.8 0.2 9.9 0.3 0.876 0.419 0.166 0.411 0.294 
BEST L1 (0-65) 64.6 0.6 64.6 0.7 64.8 0.5 1.425 0.245 0.260 0.217 0.243 
Age of Acquisition L2 5.3 1.8 3.0 1.6 3.5 1.7 20.508 < 0.001 > 100 < 0.001 0.237 
Total Exposure L2 (%) 7.7 7.2 32.5 13.1 33.5 9.4 80.766 < 0.001 > 100 < 0.001 0.664 
Self-rated proficiency L2 (1-10) 4.3 1.8 8.6 0.7 8.1 0.8 149.854 < 0.001 > 100 < 0.001 0.074 
BEST L2 (0-65) 25.9 8.2 55.9 6.9 55.9 4.2 264.291 < 0.001 > 100 < 0.001 0.991 

LexTALE L1 (%) - - 92.9 5.6 93.8 6.3 - - - - 0.506b 

LexTALE L2 (%) - - 90.7 6.1 88.8 6.0 - - - - 0.176b 
Note. Significant contrast terms are highlighted in bold. SD = standard deviation; MONO = Spanish monolinguals; BIL = bilinguals; SPEN = Spanish-English 2 
bilinguals; SPBQ = Spanish-Basque bilinguals.  3 
a Statistic and p-value undefined due to zero variance.  4 
b Difference calculated using Welch t-tests.  5 
 6 
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Appendix A2. Linguistic profile and contrasts per group in Experiments 2 and 5. 7 

 
Spanish 

Monolinguals 
Spanish-Basque 

Bilinguals 
Spanish-English 

Bilinguals ANOVA Helmert contrasts p-value 

  M SD M SD M SD F(2, 117) p BF10 MONO-BIL SPBQ-SPEN 
Age 21.7 2.4 21.8 2.2 21.0 2.4 1.405 0.250 0.252 0.478 0.132 
Non-verbal IQ 99.8 6.6 101.1 8.8 100.1 6.6 0.320 0.727 0.103 0.578 0.567 

Age of Acquisition L1 a 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - 
Total Exposure L1 (%) 91.4 8.6 61.3 8.1 64.8 9.9 136.974 < 0.001 > 100 < 0.001 0.081 
Self-rated proficiency L1 (1-10) 9.9 0.3 9.8 0.4 9.9 0.3 1.084 0.342 0.194 0.925 0.144 
BEST L1 (0-65) 64.7 0.6 64.6 0.7 64.8 0.4 1.784 0.172 0.344 0.829 0.063 
Age of Acquisition L2 5.6 1.5 3.8 1.0 3.5 1.7 25.839 < 0.001 > 100 < 0.001 0.435 
Total Exposure L2 (%) 8.6 8.6 34.0 9.6 33.4 9.3 99.097 < 0.001 > 100 < 0.001 0.762 
Self-rated proficiency L2 (1-10) 4.2 1.7 8.5 1.0 8.1 0.8 146.243 < 0.001 > 100 < 0.001 0.145 
BEST L2 (0-65) 25.6 9.6 56.3 6.5 55.9 4.3 243.908 < 0.001 > 100 < 0.001 0.802 

LexTALE L1 (%) - - 93.4 5.6 93.3 6.8 - - - - 0.986b 

LexTALE L2 (%) - - 87.1 7.9 88.9 6.0 - - - - 0.262b 
Note. Significant contrast terms are highlighted in bold. SD = standard deviation; MONO = Spanish monolinguals; BIL = bilinguals; SPEN = Spanish-English 8 
bilinguals; SPBQ = Spanish-Basque bilinguals.  9 
a Statistic and p-value undefined due to zero variance.  10 
b Difference calculated using Welch t-tests.  11 
 12 

 13 
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Appendix A3. Linguistic profile and contrasts per group in Experiment 3. 14 

 
Spanish 

Monolinguals 
Spanish-Basque 

Bilinguals 
Spanish-English 

Bilinguals ANOVA Helmert contrasts p-value 

  M SD M SD M SD F(2, 117) p BF10 MONO-BIL SPBQ-SPEN 
Age 21.7 2.5 21.9 1.9 21.0 2.4 1.772 0.175 0.341 0.696 0.068 
Non-verbal IQ 102.2 8.0 101.5 6.2 100.1 6.6 0.916 0.403 0.169 0.312 0.372 

Age of Acquisition L1 a 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - 
Total Exposure L1 (%) 91.9 6.3 62.5 10.8 64.8 9.9 126.895 < 0.001 > 100 < 0.001 0.276 
Self-rated proficiency L1 (1-10) 9.9 0.3 9.8 0.3 9.9 0.3 1.012 0.367 0.182 0.817 0.163 
BEST L1 (0-65) 64.6 6.0 64.7 0.5 64.8 0.4 2.026 0.136 0.420 0.074 0.374 
Age of Acquisition L2 5.5 2.0 2.9 1.0 3.5 1.7 27.259 < 0.001 > 100 < 0.001 0.079 
Total Exposure L2 (%) 7.5 5.8 30.5 9.3 33.4 9.3 116.518 < 0.001 > 100 < 0.001 0.125 
Self-rated proficiency L2 (1-10) 3.9 1.6 8.5 0.9 8.1 0.8 257.160 < 0.001 > 100 < 0.001 0.069 
BEST L2 (0-65) 26.9 9.2 56.2 7.3 55.9 4.3 217.372 < 0.001 > 100 < 0.001 0.817 

LexTALE L1 (%) - - 91.1 7.6 93.3 6.8 - - - - 0.170b 

LexTALE L2 (%) - - 88.7 9.0 88.9 6.0 - - - - 0.919b 
Note. Significant contrast terms are highlighted in bold. SD = standard deviation; MONO = Spanish monolinguals; BIL = bilinguals; SPEN = Spanish-English 15 
bilinguals; SPBQ = Spanish-Basque bilinguals.  16 
a Statistic and p-value undefined due to zero variance.  17 
b Difference calculated using Welch t-tests.  18 
 19 

 20 
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Appendix A4. Linguistic profile and contrasts per group in Experiment 4. 21 

 
Spanish 

Monolinguals 
Spanish-Basque 

Bilinguals 
Spanish-English 

Bilinguals ANOVA Helmert contrasts p-value 

  M SD M SD M SD F(2, 114) p BF10 MONO-BIL SPBQ-SPEN 
Age 21.7 2.5 21.9 1.9 21.0 2.4 1.712 0.185 0.328 0.696 0.072 
Non-verbal IQ 102.2 8.0 101.5 6.2 100.6 6.5 0.477 0.622 0.120 0.313 0.583 

Age of Acquisition L1 a 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - 
Total Exposure L1 (%) 90.7 7.5 62.5 10.8 65.0 9.4 111.191 < 0.001 > 100 < 0.001 0.242 
Self-rated proficiency L1 (1-10) 9.9 0.3 9.8 0.3 9.9 0.2 1.54 0.219 0.286 0.962 0.082 
BEST L1 (0-65) 64.7 0.5 64.7 0.5 64.8 0.4 1.618 0.203 0.304 0.145 0.284 
Age of Acquisition L2 5.5 2.0 2.9 1.0 3.6 1.7 26.798 < 0.001 > 100 < 0.001 0.067 
Total Exposure L2 (%) 8.9 7.2 30.5 9.3 33.1 8.9 95.487 < 0.001 > 100 < 0.001 0.183 
Self-rated proficiency L2 (1-10) 3.9 1.6 8.5 0.9 8.1 0.9 180.184 < 0.001 > 100 < 0.001 0.082 
BEST L2 (0-65) 26.9 9.2 56.2 7.3 55.7 4.3 210.094 < 0.001 > 100 < 0.001 0.766 

LexTALE L1 (%) - - 91.1 7.6 93.9 5.9 - - - - 0.077b 

LexTALE L2 (%) - - 88.7 8.9 88.9 6.1 - - - - 0.900b 
Note. Significant contrast terms are highlighted in bold. SD = standard deviation; MONO = Spanish monolinguals; BIL = bilinguals; SPEN = Spanish-English 22 
bilinguals; SPBQ = Spanish-Basque bilinguals.  23 
a Statistic and p-value undefined due to zero variance.  24 
b Difference calculated using Welch t-tests.  25 
 26 

 27 
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Appendix B1. Learning stimuli in Experiment 5. 

List A List B 
actualune generalutet actualbire generalodi 
alcoholibe genialpol alcoholisos genialule 

anormalboru horrorpol anormalodi horrorodi 
anteriorune hospitalbur anteriorbire hospitalatut 
anualutet hostilsuti anualbire hostilatut 

autoromed humorsuti autorsotu humorodi 
bestialomed idealsuti bestialter idealbire 

brutalbur infantilibe brutalpel infantilsotu 
canalomed jovialbur canalbire jovialsotu 
capilaribe laborboru capilarule laborpel 
capitalune legalutet capitalisos legalatut 
casualibe liberalbur casualsotu liberalsotu 
centralpol literalsuti centralpel literalule 

civilbur manualsuti civilter manualodi 
colorpol materialsuti colorbire materialule 

cordialpol mayorutet cordialisos mayorodi 
corporalsuti mensualpol corporalisos mensualter 

criminalomed mentalboru criminalule mentalpel 
cristalomed militarune cristalter militarpel 
dualomed mineralutet dualisos mineralpel 

ejemplarboru moralibe ejemplarsotu moralter 
escolarpol mortalibe escolarsotu mortalter 

especialune motorbur especialodi motorbire 
eventualboru musicalsuti eventualatut musicalodi 
exteriorune mutualutet exteriorisos mutualbire 
familiaribe nacionalbur familiarisos nacionalatut 
fatalomed natalboru fatalsotu natalatut 

federalboru naturalbur federalatut naturalule 
finalune neutralboru finalule neutralule 
florutet normalpol florter normalisos 

formalune oficialibe formalpel oficialter 
futbolomed originalutet futbolatut originalpel 
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Appendix B2. Linguistic profile and contrasts per group in Experiment 6. 1 

 Spanish 
Monolinguals 

Spanish-Basque 
Bilinguals 

Spanish-English 
Bilinguals 

ANOVA   Helmert contrasts p-value 

 M SD M SD M SD F(2, 117) p BF10 MONO-BIL SPBQ-SPEN 

Age 20.4 2.1 21.5 2.6 21.0 2.5 2.242 0.111 0.501 0.064 0.326 
Non-verbal IQ 102.9 5.2 103.2 5.7 102.9 4.2 0.036 0.965 0.082 0.909 0.809 
Age of Acquisition L1 a 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - 

Total Exposure L1 (%) 91.2 8.1 60.9 10.1 64.8 9.9 123.029 < 0.001 > 100 < 0.001 0.068 
Self-rated proficiency L1 (1-10) 9.8 0.5 9.8 0.2 9.9 0.3 2.425 0.093 0.368 0.059 0.273 
BEST L1 (0-65) 64.7 0.6 64.5 0.9 64.8 0.5 1.892 0.155 0.376 0.714 0.059 
Age of Acquisition L2 5.3 1.6 3.0 1.8 3.5 1.7 19.809 < 0.001 > 100 < 0.001 0.196 
Total Exposure L2 (%) 8.4 7.9 34.4 11.1 33.4 9.3 94.713 < 0.001 > 100 < 0.001 0.641 
Self-rated proficiency L2 (1-10) 4.3 1.8 8.4 1.2 8.1 0.8 121.22 < 0.001 > 100 < 0.001 0.227 
BEST L2 (0-65) 23.1 13.7 56.2 7.4 55.9 4.3 166.745 < 0.001 > 100 < 0.001 0.867 
LexTALE L1 (%) - - 92.3 5.1 93.3 6.8 - - - - 0.442b 

LexTALE L2 (%) - - 89.7 5.5 88.8 5.9 - - - - 0.510b 

Note. Significant contrast terms are highlighted in bold. SD = standard deviation; MONO = Spanish monolinguals; BIL = bilinguals; SPEN = Spanish-English 2 
bilinguals; SPBQ = Spanish-Basque bilinguals.  3 
a Statistic and p-value undefined due to zero variance.  4 
b Difference calculated using Welch t-tests.  5 
 6 
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Appendix B3. Flavian vocabulary in Experiment 6. 

Word Syllables Condition Composite_SP Composite_BQ Composite_EN Final Composite 
rerta rer-ta ES+ 1.330 0.923 1.131 1.762 

perto per-to ES+ 0.705 0.789 0.551 1.661 

ronta ron-ta ES+ 1.304 0.178 0.824 1.658 

lesta les-ta ES+ 1.227 1.178 0.774 1.547 

terta ter-ta ES+ 1.074 0.948 0.429 1.523 

ranta ran-ta ES+ 0.868 0.408 0.825 1.430 

sasta sas-ta ES+ 1.118 0.958 0.736 1.391 

respa res-pa ES+ 0.966 -0.112 0.446 1.326 

relta rel-ta ES+ 1.053 0.182 0.978 1.248 

donte don-te ES+ 0.815 0.769 1.273 1.248 

larta lar-ta ES+ 1.036 1.392 0.887 1.247 

lenda len-da ES+ 0.671 0.692 0.445 1.197 

derdo der-do ES+ 0.831 0.594 0.488 1.185 

sonto son-to ES+ 1.017 0.244 0.787 1.166 

londa lon-da ES+ 1.042 0.453 0.620 1.016 

malga mal-ga ES+ 0.834 0.363 0.376 0.991 

denra den-ra ES+ 0.622 0.346 0.485 0.962 

tunta tun-ta ES+ 0.648 0.351 0.316 0.961 

fosta fos-ta ES+ 0.545 0.684 0.460 0.945 

penra pen-ra ES+ 0.425 0.122 0.181 0.945 

pusta pus-ta ES+ 0.708 0.750 0.492 0.934 

talta tal-ta ES+ 0.639 0.478 0.219 0.920 

tista tis-ta ES+ 0.667 0.629 0.740 0.875 

polta pol-ta ES+ 0.504 0.363 0.313 0.812 

mimbo mim-bo ES- -0.367 -0.899 -0.287 -0.357 

bulmo bul-mo ES- -0.432 -0.276 -0.341 -0.518 

nulpa nul-pa ES- -0.393 -0.890 -1.162 -0.565 

rimpo rim-po ES- -0.466 -1.148 -0.099 -0.651 

mulmo mul-mo ES- -0.529 -0.636 -1.250 -0.655 

rulgo rul-go ES- -0.512 -1.324 -1.335 -0.712 

mupto mup-to ES- -0.565 -0.451 -0.898 -0.748 

dagmo dag-mo ES- -0.698 -0.462 -0.592 -0.837 

sulbe sul-be ES- -1.093 -1.008 -0.171 -0.892 

gurfo gur-fo ES- -0.663 -0.017 -0.627 -0.923 

susbe sus-be ES- -1.188 -0.672 -0.391 -0.950 

rirbo rir-bo ES- -0.647 -0.403 -1.540 -0.991 

sutno sut-no ES- -0.477 0.068 -0.678 -1.020 

ripso rip-so ES- -0.634 -1.270 -0.334 -1.029 

gunfo gun-fo ES- -0.659 -1.056 -0.492 -1.070 

bipto bip-to ES- -0.695 -0.139 -0.913 -1.163 

sumne sum-ne ES- -1.399 -0.749 0.061 -1.181 

rutno rut-no ES- -0.692 -0.576 -0.384 -1.213 



P a g e  | 188 
 

bompu bom-pu ES- -1.322 -1.282 -0.380 -1.214 

dutno dut-no ES- -0.744 -0.074 -0.778 -1.219 

fimbe fim-be ES- -1.136 -1.465 -0.208 -1.228 

dumle dum-le ES- -1.164 -0.784 -0.121 -1.261 

gulbe gul-be ES- -1.624 -1.112 -0.438 -1.390 

tadmi tad-mi ES- -1.736 -1.130 -1.030 -1.584 

Note. SP = Spanish; BQ = Basque; EN = English. 
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Appendix B4. Recognition test GLMM results from Experiment 6.  

Fixed Effects Estimate SE z p BF10 
(Intercept) 2.296 0.109 21.007 < 0.001 - 
Day -0.022 0.043 -0.516 0.606 0.048 
Condition 0.063 0.029 2.144 0.032 0.439 
SPBQ-SPEN -0.027 0.126 -0.215 0.830 0.046 
MONO-BIL -0.142 0.073 -1.950 0.051 0.301 
Day x Condition 0.003 0.029 0.113 0.910 0.001 
Day x SPBQ-SPEN -0.048 0.047 -1.025 0.306 0.003 
Day x MONO-BIL 0.012 0.026 0.466 0.641 0.015 
Condition x SPBQ-SPEN 0.043 0.037 1.158 0.247 0.004 
Condition x MONO-BIL -0.003 0.020 -0.151 0.880 0.014 

Covariates           
Age -0.108 0.044 -2.440 0.015 0.712 
Non-verbal IQ 0.006 0.009 0.650 0.516 0.263 
Gender 0.106 0.290 0.365 0.715 0.047 
OSPAN score 0.012 0.007 1.703 0.089 0.954 

Random Effects Group Variance SD Correlation     
Participant (Intercept) 0.999 0.999    

  Day 0.047 0.218 0.09     
Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  
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Appendix B5. Production test LMM results from Experiment 6.  

Fixed Effects Estimate SE df t p BF10 
(Intercept) 13.552 0.434 111.2 31.205 < 2e-16 - 
Day -0.428 0.057 115.0 -7.514 0.000 > 100 
Condition 1.486 0.116 115.0 12.782 < 2e-16 > 100 
SPBQ-SPEN -0.594 0.502 111.0 -1.183 0.239 0.075 
MONO-BIL -0.968 0.293 111.1 -3.303 0.001 3.033 
Day x Condition 0.019 0.046 117.0 0.424 0.672 0.008 
Day x SPBQ-SPEN -0.089 0.070 115.0 -1.271 0.206 0.003 
Day x MONO-BIL -0.037 0.040 115.0 -0.910 0.365 0.048 
Condition x SPBQ-SPEN 0.201 0.143 115.0 1.403 0.163 0.005 
Condition x MONO-BIL 0.124 0.082 115.0 1.513 0.133 0.158 

Covariates             
Age -0.366 0.176 111.0 -2.080 0.040 0.050 
Non-verbal IQ -0.031 0.035 111.0 -0.904 0.368 0.004 
Gender 1.225 1.154 111.0 1.062 0.291 0.216 
OSPAN score 0.043 0.029 111.0 1.474 0.143 0.016 

Random Effects Group Variance SD Correlation     
Participant by Condition (Intercept) 2.690 1.640     

Participant (Intercept) 16.978 4.121     
  Day 0.134 0.366 0.15       

Note. Significant fixed effects terms are highlighted in bold. SE = standard error; SD = standard deviation; SPEN = 
Spanish-English bilinguals; SPBQ = Spanish-Basque bilinguals; MONO = Spanish monolinguals; BIL = bilinguals.  
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Appendix C1. Selecting the number of LSTM nodes.  

 

Note. I calculated the successor character probability at each time-step for the Spanish train and test (validation + test) 
words. The probability was approximated in three ways: (1) I computed different n-gram models (2g to 5g) by counting 
the occurrence of n-grams within the train words and normalizing them using different Laplace constants ranging from 
0 to 1 in increments of 0.2 (Jurafsky & Martin, 2014). (2) I trained monolingual CLOUD models on the train words 
with different numbers of LSTM nodes (C32 to C512) for 50 epochs and five runs each. (3) I calculated the empirical 
probabilities separately for the train and test words using a tree-based (Trie) analysis (Stoianov, 1998; Testolin et al., 
2016). The plots show the results of comparing each model’s (2g to C512) predicted successor character probability 
at each time-step with the Trie analysis’s empirical probability. I compared the probability vectors using the cosine 
similarity (top) and the Kullback-Leibler (KL) Divergence (bottom). The KL Divergence measures how one 
probability distribution differs from another by adding the probability of each possible value multiplied by the 
differences between the two probabilities’ logarithmic values. The plots show how much the different models can 
approximate the empirical probability of the Spanish words. For the cosine similarity, higher values are better, while 
for the KL Divergence, lower values are better. The plots suggest that values between 64 and 128 LSTM nodes are 
sufficient to outperform the n-gram models while still avoiding overfitting—i.e., minimizing the difference of 
performance on the seen train words and the unseen test words. For instance, the C512 model performs outstandingly 
in the train words, with cosine similarity close to 1 and KL Divergence close to 0. However, the values change 
significantly for the test words, a clear sign of overfitting to the training data. In contrast, the C128 model could 
outperform the 5-gram model on all train and test words metrics. Thus, I selected 128 nodes as the hyperparameter 
for the distributed word representations.  
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Appendix C2. LSTM forward equations. 

 

The LSTM nodes operate using the following forward equations 

𝑓௧  =  𝜎൫𝑊௙  ∙  [𝑥௧ , ℎ௧ିଵ] + 𝑏௙൯  ;    𝑊௙ ∈ ℝଵଶ଼ ௫ ଵ଺଴ ;  𝑏௙ ∈ ℝଵଶ଼  (1) 

𝑖௧  =  𝜎(𝑊௜  ∙  [𝑥௧ , ℎ௧ିଵ] +  𝑏௜)    ;     𝑊௜ ∈ ℝଵଶ଼ ௫ ଵ଺଴ ;  𝑏௜ ∈ ℝଵଶ଼  (2) 

𝐶௧ = 𝑓௧ ° 𝐶௧ିଵ +  𝑖௧° tanh(𝑊௖  ∙  [𝑥௧ , ℎ௧ିଵ] + 𝑏௖)  ;  𝑊௖ ∈ ℝଵଶ଼ ௫ ଵ଺଴ ; 𝑏௖ ∈ ℝଵଶ଼  (3) 

𝑜௧  =  𝜎(𝑊௢  ∙  [𝑥௧ , ℎ௧ିଵ] +  𝑏௢)   ;  𝑊௢ ∈ ℝଵଶ଼ ௫ ଵ଺଴ ;  𝑏௢ ∈ ℝଵଶ଼  (4) 

ℎ௧  =  𝑜௧  ° tanh(𝐶௧)        ;     𝑜௧ ∈ ℝଵଶ଼ ;  𝐶௧ ∈ ℝଵଶ଼ (5) 

where 𝑓௧ 𝑖௧, 𝑜௧ are the forget, input, and output gates at time t, σ(⋅) is the sigmoid activation function, 
tanh(⋅) is the hyperbolic tangent activation function, [] indicates vector or matrix concatenation, ∙ is the 
dot product, ° is the element-wise multiplication, Ct is the cell state, and ht is the hidden state and output 
of the LSTM layer at time t. All W are learnable weight matrices, and all b are learnable bias vectors. 
Following common deep learning practice (Glorot & Bengio, 2010), these parameters are initialized from 
a uniform distribution defined using the square root of the inverse number of nodes, ranging from -
(1/128)0.5 to (1/128)0.5. At time-step zero, the cell and hidden states are initialized as zero vectors.  
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Appendix C3. Average pre-training LDT accuracy and loss of each CLOUD model version. 

 

Note. I trained ten runs for each CLOUD version for 100 epochs on their respective training sets. I stored a state of 
each model’s parameters for the simulations by setting an adaptive accuracy threshold on the Spanish LDT training 
set (left). The average accuracy at every epoch is plotted on top, and the average loss at the bottom. The maximum 
accuracy value achieved by all model runs was 85% (red horizontal line). Matching the models implied that they did 
not train for the entire 100 epochs (as indicated by the vertical color lines). Naturally, the MONO version that only 
trained on the Spanish words reached the maximum threshold before the bilingual versions. Regardless, the MONO 
version still achieved a slightly lower loss at that epoch than the bilingual versions in later epochs. The average 
accuracy and loss for the LDT test set are presented on the right. Notably, the models’ loss started to increase after 
epoch 25, a clear sign of overfitting. Similarly, the accuracy on the test set started to decrease slightly after epoch 30. 
Thus, the selected models are not only comparable in their performance but also minimize overfitting.  
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Appendix C4. Word clouds and average word similarity for the CLOUD model’s versions.  

 

Note. The figures were created using the Spanish-English (left) and Spanish-Basque (right) test set words. (top) I 
computed the representation of each word as the average of the LSTM output at each time step. Each 128-dimensional 
representation was projected onto a 2-dimensional space using the t-SNE algorithm (Van Der Maaten & Hinton, 2008). 
I repeated this procedure for each CLOUD version’s first run (SP-EN, SP-BQ, and MONO). The same MONO version 
was used in both the Spanish-English and Spanish-Basque word clouds. As evidenced in the sample word clouds, the 
bilingual CLOUD versions showed a higher separation for the languages than the MONO version, which clustered 
most of the representations. (bottom). I calculated the cosine similarity of each word to other words within the same 
language and across languages. In matrix form, the cosine similarity is defined as the dot product between two L2-
normalized matrices. This formulation yields a symmetric matrix where each cell corresponds to the pair-wise 
similarities between words, with ones over the main diagonal—similar to a correlation matrix. I only computed the 
average of each matrix’s lower triangle to avoid inflating the results by including the similarity of each word to itself 
(always 1). Higher values indicate more similarity between the word representations. The MONO version showed 
more similarity than the bilingual versions for all representations, within and across languages, as it only learned from 
the Spanish orthographic patterns. The differences observed in the SP-EN and the SP-BQ version can be explained by 
the three languages’ different roots. Spanish and English share a large portion of their vocabulary due to their Latin 
and Greek roots, but since English also possesses words from other sources (e.g., Germanic roots), the English word 
representations are more spread. This makes the similarity within English words slightly lower than across English 
and Spanish. Conversely, Spanish and Basque do not share origins. Instead, due to geographical proximity, Basque 
utilizes many Spanish loan words. These loan words are generally adapted to the Basque orthography—for instance, 
by replacing the “v” with a “b” in vela/bela (a sail). These replacements, combined with Basque-specific orthographic 
patterns (e.g., “ts”, “tx”, “tz”) push the representations of Basque words closer together and distances them more from 
Spanish. ES = Spanish, EN = English, EU = Basque.  

  



P a g e  | 196 
 

Appendix C5. Word similarity and word clouds before and after learning the Flavian vocabulary. 

 

Note. (A) Average cosine similarity of Flavian word representations to themselves (ES+ and ES-) and to the Spanish 
words (ES+ v L1, ES- v L1) for each CLOUD model’s version and run. Before training (left), the similarity scores are 
lower for the bilingual than the monolingual versions. After training (right), the ES+ and ES- words show a slight 
increase in their similarity to each other, and an overall increase in their similarity to Spanish. (B) Word cloud from 
the Spanish-English validation and test sets. The word clouds were constructed as in Figure 1. Due to the CLOUD 
model’s dynamic constraint, all representations are modified while learning the Flavian words. (C) Word cloud of the 
Flavian words within the Spanish-English word cloud as shown in (B).  
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