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Abstract

In this paper we study solution methods for solving the dual problem corresponding

to the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent

the two stage stochastic mixed 0-1 problem by a splitting variable representation of the

deterministic equivalent model, where 0-1 and continuous variables appear at any stage.

Lagrangean Decomposition is proposed for satisfying both the integrality constraints for

the 0-1 variables and the non-anticipativity constraints. We compare the performance

of four iterative algorithms based on dual Lagrangean Decomposition schemes, as the

Subgradient method, the Volume algorithm, the Progressive Hedging algorithm and the

Dynamic Constrained Cutting Plane scheme. We test the conditions and properties of

convergence for medium and large-scale dimension stochastic problems. Computational

results are reported.

Keywords: Two-stage stochastic integer programming, Lagrangean decomposition,

Subgradient method, Volume algorithm, Progressive Hedging algorithm and Dynamic

Constrained Cutting plane scheme.

1 Introduction

We consider a general situation for two-stage stochastic mixed 0-1 problems, where the
stochasticity in the parameters can appear anywhere in the model. The uncertainty is mod-
eled via a �nite set of scenarios ω = 1, ..., |Ω|, each with an associated probability of occur-
rence wω, ω ∈ Ω. Researchers have studied the properties and some solution approaches

1This research has been partially supported by the projects ECO2008-00777 ECON from the Ministry of

Education and Science, Grupo de Investigación IT-347-10 from the Basque Government, grant FPU ECO-

2006 from the Ministry of Education and Science, grants RM URJC-CM-2008-CET-3703 and RIESGOS CM

from Comunidad de Madrid, and PLANIN MTM2009-14087-C04-01 from Ministry of Science and Innovation,

Spain.
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for such problems in the last decade, see [24, 33] for surveys on some mayor results in the
area. The simplest form of two-stage stochastic integer programs contains �rst stage pure
0-1 variables and second stage continuous variables, see in [26] a branch-and-cut procedure
based on Benders decomposition. A Branch-and-Fix Coordination BFC methodology is pro-
vided in [1, 2] for solving such a model in production planning applications, but the approach
does not allow continuous �rst stage variables or 0-1 second stage variables. A generalization
of the L-shaped method to deal with stochastic programs having 0-1 mixed-integer recourse
variables and either pure continuous or pure �rst stage 0-1 variables is presented in [6]. A
decomposition algorithms based on branch-and-cut generation for solving two-stage stochas-
tic programs having �rst stage pure 0-1 variables and 0-1 mixed-integer recourse variables
is proposed in [28, 35]. A similar branch-and-cut decomposition with a modi�ed Benders
decomposition method is developed in [34]. A branch-and-bound algorithm for problems hav-
ing mixed-integer variables in both stages is designed in [7, 20]. However the approach of
both papers focuses more on using Lagrangean relaxation to obtain good bounds, and less on
branching and variable �xing. See also [38]. An algorithm for two-stage stochastic programs
with mixed integers in both stages, and the continuous ones are in [0, 1] is proposed in [37],
but they only provide a limited computational experience. An interesting algorithm for solv-
ing a speci�c stochastic problem with uncertainty in the right hand side (rhs) by utilizing
preprocessing, Lagrangean relaxation for obtaining lower bounds of the optimal solution and
an ad-hoc heuristic is presented in [8] for obtaining good solutions in a multiperiod batch
plant scheduling problem; the dimensions of the instances are very big. A hybrid algorithm
for solving two-stage stochastic integer programs, where integer and continuous variables ap-
pear at in any stage is proposed in [39]. Two-stage stochastic integer programming arising
in chemical bath scheduling are considered. Based on stage-decomposition, an evolucionary
algorithm performs the search on the �rst-stage variables while the decoupled second-stage
scenario problems are solved by a mixed integer linear optimization solver. We propose in
[11, 13] a Branch and Fix Coordination based algorithm for obtaining the optimal solution of
a general two-stage stochastic mixed 0-1 integer problem. Recently, a general algorithm for
two-stage problems is described in [36].

In this paper we study solution methods for solving the dual problem corresponding to
the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent the
two-stage stochastic mixed 0-1 problem by a splitting variable representation of the Deter-
ministic Equivalent Model, DEM , where 0-1 and continuous variables appear at any stage.
Lagrangean Decomposition is proposed for satisfying both the integrality constraints for the
0-1 variables and the non-anticipativity constraints. We compare the performance of four so-
lution methods based on dual Lagrangean Decomposition schemes, as the Subgradient method
[18], the Volume algorithm [3], the Progressive Hedging algorithm [31] and the Dynamic Con-
strained Cutting Plane scheme [22]. See also [14]. At each iteration of these procedures a
parametric mixed 0-1 problem is solved, and the parameters, i.e., the Lagrangean multipliers
are updated by using the di�erent methodologies. The performance of all these algorithms
is very sensitive to the choice of given parameters as the step length, or the initial multiplier
vector. We test the conditions and properties of convergence for medium and large-scale
dimension stochastic problems. See in [23] a di�erent approach for Lagrangeans updating.

A successful result may open the possibility for tightening the lower bounds of the solution
at the candidate Twin Node Families in the exact Branch and Fix Coordination scheme [2]
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for both two-stage and multistage types of problems, see [9, 12].

The remainder of the paper is organized as follows: Section 2 presents the two-stage
stochastic mixed 0-1 problem, as well as the quadratic model that results from dualizing the
nonanticipativity constraints. Section 3 summarizes the theoretical results on Lagrangean
Decomposition. Section 4 presents the four methods mentioned above for updating the La-
grange multipliers. Section 5 reports the results of the computational experiment. Section 6
concludes.

2 Two-stage stochastic mixed 0-1 problem

Let us consider the two-stage stochastic mixed 0-1 problem, (MIP ), in compact representa-
tion:

(MIP ) : zMIP = min cT1 δ + cT2 x+ Eψ[(qωT1 γω + qωT2 yω)]
s.t.

b1 ≤ A
(
δ
x

)
≤ b2

hω1 ≤ Tω
(
δ
x

)
+Wω

(
γω

yω

)
≤ hω2 , ∀ω ∈ Ω

x, yω ≥ 0, ∀ω ∈ Ω
δ, γω ∈ {0, 1}, ∀ω ∈ Ω,

(1)

where c1 and c2 are known vectors of the objective function coe�cients for the δ and x vector
of variables in the �rst stage, respectively, b1 and b2 are the left and right hand side vectors
for the �rst stage constraints, respectively, and A is the known matrix of coe�cients for the
�rst stage constraints. For each scenario ω, wω is the likelihood attributed to the scenario,
and hω1 and hω2 are the left and right hand side vectors for the second stage constraints,
respectively, and qω1 and qω2 are the objective function coe�cients for the γ and y vector of
variables, respectively, while Tω and Wω are the technology matrices under scenario ω, for
ω ∈ Ω, where Ω is the set of scenarios to consider. Piecing together the stochastic components
of the problem, we have a vector ψω = (qω1 , q

ω
2 , h

ω
1 , h

ω
2 , T

ω,Wω). Finally, Eψ represents the
mathematical expectation with respect to ψ over the set of scenarios Ω.

Problem (1) is equivalent to the so-called Deterministic Equivalent Model that in the
splitting variable representation is as follows,

(MIP ) : zMIP = min
∑
ω∈Ωw

ω[cT1 δ
ω + cT2 x

ω + qωT1 γω + qωT2 yω]
s.t.

b1 ≤ A
(
δω

xω

)
≤ b2, ∀ω ∈ Ω

hω1 ≤ Tω
(
δω

xω

)
+Wω

(
γω

yω

)
≤ hω2 , ∀ω ∈ Ω

xω ≥ 0, δω ∈ {0, 1}, ∀ω ∈ Ω
yω ≥ 0, γω ∈ {0, 1}, ∀ω ∈ Ω
xω − xω+1 = 0, ∀ω = 1, ..., |Ω| − 1
δω − δω+1 = 0, ∀ω = 1, ..., |Ω| − 1.

(2)
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Observe that the relaxation of the nonanticipativity constraints

δω − δω+1 = 0, ∀ω = 1, ..., |Ω| − 1
xω − xω+1 = 0, ∀ω = 1, ..., |Ω| − 1,

from problem (2) results in |Ω| independent mixed 0-1 models. In order to avoid the use of
non-signed vectors of Lagrangean multipliers in the dualization of equality constraints, we
propose to express the nonanticipativity constraints in the following form

δω − δω+1 ≤ 0, ∀ω = 1, ..., |Ω| − 1, δ|Ω| ≤ δ1 (3)

xω − xω+1 ≤ 0, ∀ω = 1, ..., |Ω| − 1, x|Ω| ≤ x1. (4)

We compare the elapsed time to obtain the optimal solution by the plain use of the
optimization engine COIN-OR, for solving the (MIP ) model and its linear relaxation over the
compact representation (1) and splitting variable representation (2). This analysis represents
a �rst step in the comparison of schemes based on dual Lagrangean problems, where several
types of vectors of Lagrangean multipliers can be used.

3 Lagrangean decomposition

The Lagrangean Decomposition of the (MIP ) problem (1) for a given nonnegative vector of
weights µ = (µδ, µx), is the mixed 0-1 minimization problem (5) in the vector of variables
(δ, x, γ, y), where the optimal solution value is given by zLD(µ). Let us denote this model as
(MIPLD(µ)).

(MIPLD(µ)) : zLD(µ) = min
∑
ω∈Ω

wω[cT1 δ
ω + cT2 x

ω + qωT1 γω + qωT2 yω]

+
|Ω|−1∑
ω=1

µωδ (δω − δω+1) + µ
|Ω|
δ (δ|Ω| − δ1)+

+
|Ω|−1∑
ω=1

µωx (xω − xω+1) + µ
|Ω|
x (x|Ω| − x1)

s.t.

b1 ≤ A
(
δω

xω

)
≤ b2, ∀ω ∈ Ω

hω1 ≤ Tω
(
δω

xω

)
+Wω

(
γω

yω

)
≤ hω2 , ∀ω ∈ Ω

xω ≥ 0, δω ∈ {0, 1}, ∀ω ∈ Ω
yω ≥ 0, γω ∈ {0, 1}, ∀ω ∈ Ω.

(5)

Lagrangean Decomposition of (MIP ) de�ned in (5), relative to the complicating non-
anticipativity constraints for δ and x variables, (3)-(4), and non negative Lagrangean multi-
pliers, µδ and µx, as vector of variables is a nonlinear minimization model with 0-1 variables.
But also, it can be considered as a µ parametric mixed 0-1 problem.

Obviously, (MIPLD(µ)) is a relaxation of (MIP ), since (i) the feasible set of (MIPLD(µ))
contains the feasible set of (MIP ), and (ii) for any (δ, x, γ, y) feasible solution for (MIP ) and
any µ ≥ 0, it results that zLD(µ) ≤ zMIP . It follows that the optimal value zLD(µ), which
depends on µ is a lower bound on the optimal value of (MIP ), zMIP .
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De�nition 1 The problem of �nding the tightest Lagrangean lower bound on zMIP is

(MIPLD) : zLD = max
µ≥0

zLD(µ).

It is called Lagrangean dual of (MIP ) relative to the (complicating) nonanticipativity con-

straints (3)-(4).

It can be shown [17] that the Lagrangean Decomposition gives equal or stronger bounds of
the solution value of the original problem than the Lagrangean relaxation of the constraints
related to any of the scenarios to be decomposed. Then, let us concentrate our e�orts in the
study of Lagrangean Decomposition.

So, by LP duality, zLD can be calculated from linear and mixed 0-1 programs. (MIPLD) is
a linear problem in the dual space of the lagrangean multipliers, whereas (MIPLD(µ)) is a µ-
parametric mixed 0-1 problem in the vector of variables (δ, x, γ, y). Let (δ(µ), x(µ), γ(µ), y(µ))
denote an optimal solution of (MIPLD(µ)) for some µ, i.e a Lagrangean solution. The fol-
lowing proposition shows when this solution is the optimal solution of (MIP ).

Proposition 1 1. If (δ(µ), x(µ), γ(µ), y(µ)) is an optimal solution of (MIPLD(µ)) for

some µ ≥ 0, then zLD(µ) ≤ zMIP .

2. If in addition (δ(µ), x(µ), γ(µ), y(µ)) is feasible for (MIP ), then (δ(µ), x(µ), γ(µ), y(µ))
is an optimal solution of (MIP ) and zMIP = zLD(µ).

Proof:

1. Notice that, for some µ ≥ 0

zLD(µ) = min
∑
ω∈Ω

wω[cT1 δ
ω + cT2 x

ω + qωT1 γω + qωT2 yω]

+
|Ω|−1∑
ω=1

µωδ (δω − δω+1) + µ
|Ω|
δ (δ|Ω| − δ1) +

+
|Ω|−1∑
ω=1

µωx (xω − xω+1) + µ|Ω|x (x|Ω| − x1) ≤

≤ min
∑
ω∈Ω

wω[cT1 δ
ω + cT2 x

ω + qωT1 γω + qωT2 yω] = zMIP .

2. If (δ(µ), x(µ), γ(µ), y(µ)) is feasible for (MIP ), all the nonanticipativity constraints are
satis�ed and, then, complementary slackness holds automatically, i.e. µωδ (δω−δω+1) = 0
and µωx (xω−xω+1) = 0, ∀ω, thus (δ(µ), x(µ), γ(µ), y(µ)) is an optimal solution of (MIP ),
with zMIP = zLD(µ).

Notice �rst that this is always a su�cient condition for optimality and, in case that the
constraints that are dualized are equality constraints, it is also necessary. I.e., it is not possible
for a feasible solution to be optimal for (MIP ) if it does not satisfy complementary slackness.

The following result, from [15], gives a geometric interpretation of the Lagrangean dual
problem in the primal space, see also [16, 17],
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Proposition 2 The Lagrangean dual (MIPLD) is equivalent to the primal relaxation

zLD = min
∑
ω∈Ωw

ω[cT1 δ
ω + cT2 x

ω + qωT1 γω + qωT2 yω]
s.t.

δω − δω+1 ≤ 0, ∀ω = 1, ..., |Ω| − 1, δ|Ω| ≤ δ1

xω − xω+1 ≤ 0, ∀ω = 1, ..., |Ω| − 1, x|Ω| ≤ x1

δω, xω, γω, yω ∈ conv { b1 ≤ A
(
δω

xω

)
≤ b2, ∀ω ∈ Ω

hω1 ≤ Tω
(
δω

xω

)
+Wω

(
γω

yω

)
≤ hω2 , ∀ω ∈ Ω

xω ≥ 0, δω ∈ {0, 1}, ∀ω ∈ Ω
yω ≥ 0, γω ∈ {0, 1}, ∀ω ∈ Ω

}

where conv{S} denotes the convex hull of the set S.

We will see that the Lagrangean Decomposition bound zLD is at least as good as the LP
relaxation bound, zLP , never worst.

Corollary 1 If conv(S) = S, where S is the set

b1 ≤ A
(
δω

xω

)
≤ b2, ∀ω ∈ Ω

hω1 ≤ Tω
(
δω

xω

)
+Wω

(
γω

yω

)
≤ hω2 , ∀ω ∈ Ω

xω ≥ 0, δω ∈ {0, 1}, ∀ω ∈ Ω
yω ≥ 0, γω ∈ {0, 1}, ∀ω ∈ Ω

(6)

then zLP = zLD.

In that case, the Lagrangean Decomposition bound is equal to the LP bound and zLP =
zLD ≤ zMIP . (It is said that the LD problem has the integrality property).

Corollary 2 If conv(S) ⊂ S, where the set S is de�ned in (6), then zLP ≤ zLD ≤ zMIP , and

it may happen that the Lagrangean relaxation be strictly better than the LP bound.

The interpretation of these two corollaries is that, unless (MIPLD) does have the inte-
grality property, it can yield an equal or stronger bound than the LP relaxation. If it has the
integrality property then zLP = zLD ≤ zMIP . In the other case, zLP ≤ zLD ≤ zMIP .

4 Obtaining Lagrangean duals

Our �rst proposal to test consists of solving (MIP ) problem and its linear relaxation by the
plain use of the optimization engine COIN-OR, see [21, 29], over the compact representation
(1) and the splitting variable representation (2).
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Our second proposal makes use of the expression of the Lagrangean dual zLD as a maxi-
mization of the optimal solution values zLD(µ) in µ. Then, before that, and for a given value
of µ, we must solve the mixed 0− 1 problem (5) in (δ(µ), x(µ), γ(µ), y(µ)) and obtaining the
optimal solution value, zLD(µ).

In this case we will compare several iterative methods for updating the value of the La-
grange multipliers and building the sequence {µ0, µ1, ..., µk, ....}.

At each iteration k and given the current multiplier vector µk, the aim is to obtain the
value zLD(µk). Then, and by updating the Lagrangean multipliers µ in a �nite number of
iterations, the purpose is to obtain µ∗ and zLD(µ∗), where

µ∗ = argmaxµ{zLD(µ)}. (7)

4.0.1 Solving µ-parametric Lagrangean duals

As it has been shown above, the µ-parametric (MIPLD(µ)) problem (5) must be solved, where
the parametric vector (µ) = (µδ, µx) is given. Then, the second part of the objective function
in (MIPLD(µ)) can be decomposed in the following form:

|Ω|−1∑
ω=1

µωδ (δω − δω+1) + µ
|Ω|
δ (δ|Ω| − δ1) +

|Ω|−1∑
ω=1

µωx (xω − xω+1) + µ
|Ω|
x (x|Ω| − x1) =

= µ1
δ(δ

1 − δ2) + µ2
δ(δ

2 − δ3) + · · ·+ µ
|Ω|−1
δ (δ|Ω|−1 − δ|Ω|) + µ

|Ω|
δ (δ|Ω| − δ1)+

+ µ1
x(x1 − x2) + µ2

x(x2 − x3) + · · ·+ µ
|Ω|−1
x (x|Ω|−1 − x|Ω|) + µ

|Ω|
x (x|Ω| − x1) =

= (µ1
δ − µ

|Ω|
δ )δ1 + (µ2

δ − µ1
δ)δ

2 + · · ·+ (µ|Ω|−1
δ − µ|Ω|−2

δ )δ|Ω|−1 + (µ|Ω|δ − µ
|Ω|−1
δ )δ|Ω|+

+ (µ1
x − µ

|Ω|
x )x1 + (µ2

x − µ1
x)x2 + · · ·+ (µ|Ω|−1

x − µ|Ω|−2
x )x|Ω|−1 + (µ|Ω|x − µ|Ω|−1

x )x|Ω|.

(8)

So, the corresponding optimal value in problem (MIPLD(µ)) (5) can be decomposed as the
sum of the optimal solutions of smaller subproblems (10)-(11), one for each scenario such that
the optimal objective function value of (MIPLD(µ)) (5) can be calculated as:

zLD(µ) =
|Ω|∑
ω=1

zLD(µω), (9)

where zLD(µω) for ω = 2, ..., |Ω|, is the optimal solution of the following problem:

zLD(µω) = min[wωcT1 + (µωδ − µ
ω−1
δ )]δω + [wωcT2 + (µωx − µω−1

x )]xω + wωqωT1 γω + wωqωT2 yω

b1 ≤ A
(
δω

xω

)
≤ b2

hω1 ≤ Tω
(
δω

xω

)
+Wω

(
γω

yω

)
≤ hω2

xω ≥ 0, δω ∈ {0, 1}
yω ≥ 0, γω ∈ {0, 1}

(10)

7



and if ω = 1, the corresponding optimization problem is given by:

zLD(µ1) = min[w1cT1 + (µ1
δ − µ

|Ω|
δ )]δ1 + [w1cT2 + (µ1

x − µ
|Ω|
x )]x1 + w1q1T

1 γ1 + w1q2T
2 y1

b1 ≤ A
(
δ1

x1

)
≤ b2

h1
1 ≤ T 1

(
δ1

x1

)
+W 1

(
γ1

y1

)
≤ h1

2

x1 ≥ 0, δ1 ∈ {0, 1}
y1 ≥ 0, γ1 ∈ {0, 1}.

(11)

4.1 Subgradient method

A number of methods have been proposed to solve the Lagrangean duals. They are either
ad-hoc or general purpose, usually aiming at solving a generic nonsmooth convex optimization
problem. One of the most popular approaches is the Subgradient method.

4.1.1 Scheme

The Subgradient method was proposed in [18] and then validated in [19]. See also [4] and
[14], among many others. It is an iterative method in which at iteration k, given the current
multiplier vector µk, a step is taken along a subgradient of zLD(µk). Let (δ(k), x(k), γ(k), y(k))
be an optimal solution of (MIPLD(µk)). Then

sk =



(δ(k)1 − δ(k)2)
...

(δ(k)|Ω|−1 − δ(k)|Ω|)
(δ(k)|Ω| − δ(k)1)
(x(k)1 − x(k)2)

...

(x(k)|Ω|−1 − x(k)|Ω|)
(x(k)|Ω| − x(k)1)


(12)

is a subgradient of zLD(µ) at µk. If µ∗ is an (unknown) optimal solution of (MIPLD), the
step µk+1 − µk is a nonnegative multiple of sk, and then:

µk+1 − µk = βk · sk

The most commonly used expression for the step length βk is as follows:

βk =
(zLD(µ∗)− zLD(µk))

||sk||2

where

||sk||2 =
|Ω|−1∑
ω=1

(δ(k)ω − δ(k)ω+1)2 + (δ(k)|Ω| − δ(k)1)2

+
|Ω|−1∑
ω=1

(x(k)ω − x(k)ω+1)2 + (x(k)|Ω| − x(k)1)2

8



so that

µk+1 = µk +
(zLD(µ∗)− zLD(µk))

||sk||2
· sk

This formula unfortunately uses the unknown optimal value of (MIPLD), zLD(µ∗). An
upper bound of this value, zLD, can be used (e.g., the value of the current feasible solution of
the original problem (MIP)(1)), and if the objective function value does not improve in a given
number iterations, thus one can try to reduce the di�erence (zLD − zLD(µk)), for example,
by introducing from the start a positive factor α0 ∈ (0, 2), in the Subgradient formula:

µk+1 = µk + αk ·
(zLD − zLD(µk))

||sk||2
· sk

and reducing the scalar αk when there is no improvement for too long, see Section 4.5. See
in [30] that zLD(µ) −→ zLD if βk −→ 0 and

∑∞
k=0 αk −→ ∞. In practice, µ0 = 0 is very

frequent, although sometimes better results can be obtained by considering that µ0 is given
by the duals of nonanticipativity constraints in the LP relaxation of the original problem (1),
i.e. the simplex multipliers, see Section 5. Usually αk is decreased after a certain number of
iterations without an improvement. There are proofs of convergence for di�erent choices of
the step length, see [30] but, as we know, these properties have not been tested for large-scale
dimension problems.

4.1.2 Procedure

Let zLD be an upper bound of the optimal solution value of (MIP ) (1), and zLD(µk) the
optimal solution value of (MIPLD(µk)) (5), computed at iteration k as the sum given in
(9). Let αk be a real parameter, see Section 4.5 and µ0 the initial multiplier vector. The
implementation of the Subgradient method is as follows:

Step 0: We start with a vector µ0, and solve |Ω| problems (10)-(11) to obtain (δ(0), x(0), γ(0), y(0))
and zLD(µ0) as the sum given in (9). Set k := 0.

Step 1: Compute sk =



(δ(k)1 − δ(k)2)
...

(δ(k)|Ω|−1 − δ(k)|Ω|)
(δ(k)|Ω| − δ(k)1)
(x(k)1 − x(k)2)

...

(x(k)|Ω|−1 − x(k)|Ω|)
(x(k)|Ω| − x(k)1)


, check the stopping criterion (19) and if it

is not satis�ed, set µk+1 := µk + αk ·
(zLD − zLD(µk))

||sk||2
· sk

Solve the |Ω| problems (10)-(11) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1)) and
zLD(µk+1) be the optimal solution and optimal solution value of (5) that have been
obtained, respectively.

Set k := k + 1 and go to Step 1.

9



Although there are many cases in the literature in which this procedure has been very
e�cient, also there exist problems in which the Subgradient algorithm presents an oscillatory
behavior for updating the Lagrange multipliers. Based in our computational experience, we
have observe that the procedure is very sensitive to the choice of given parameters related to
the step length, such that the parameter αk or the initial multiplier vector µ

0.

4.2 The Volume algorithm

We present a version of the Volume algorithm given in [3]. This procedure only updates
the multipliers when an improvement in the incumbent solution of the Lagrangean problem,
zLD(µ), is produced. Additionally, the feasible solution is replaced by a convex combination
of solutions obtained in previous iterations.

Remind that problem (MIPLD(µ)) (5) is decomposed as a sum of |Ω| lower dimensional
problems (10)-(11), one for each scenario. And the corresponding optimal solution value is
obtained as the sum given in (9).

4.2.1 Procedure

Let zLD be an upper bound of the optimal solution, and αk and fk two real parameters related
to the step length, where α0 ∈ (0, 2) and fk ∈ (0, 1), see Section 4.5. Let µ0 be the initial
multiplier vector.

Step 0: We start with a multiplier vector µ0, and solve the |Ω| problems (10)-(11) to obtain
(δ(0), x(0), γ(0), y(0)) and zLD(µ0) as the sum given in (9). Set:

(δ, x, γ, y) = (δ(0), x(0), γ(0), y(0)),
µ = µ0,

z(µ) = zLD(µ) =
|Ω|∑
ω=1

zLD(µω),

and k := 1.

Step 1: Compute sk =



(δ1 − δ2)
...

(δ|Ω|−1 − δ|Ω|)
(δ|Ω| − δ1)
(x1 − x2)

...

(x|Ω|−1 − x|Ω|)
(x|Ω| − x1)


, check the stopping criterion (19) and if it not

satis�ed, set

µk := µ+ αk ·
(zLD − z(µ))
||sk||2

· sk.
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Solve the |Ω| problems (10)-(11) with µk, and let (δ(k), x(k), γ(k), y(k)) and zLD(µk) be the
optimal solution and optimal solution value of (5) that have been obtained, respectively.
Then, (δ, x, γ, y) is updated as

(δ, x, γ, y) := fk · (δ(k), x(k), γ(k), y(k)) + (1− fk) · (δ, x, γ, y).

Step 2: If zLD(µk) > z(µ) update µ and z(µ) as

µ := µk, z(µ) := zLD(µk).

Set k := k + 1 and go to Step 1.

4.3 Progressive Hedging algorithm

The basic features of the Progressive Hedging Algorithm, see [31, 38], for updating the La-
grange multipliers of the nonanticipativity constraints are as follows: let (δ(k), x(k),γ(k), y(k))
be an optimal solution of problem (MIPLD(µk)) (5), at iteration k. A non necessarily new
feasible solution can be de�ned as: δ̂ =

∑
ω∈Ωw

ωδ(k)ω and x̂ =
∑
ω∈Ωw

ωx(k)ω. These expres-
sions represent an estimation as the mean over the set of scenarios of the optimal solutions
δ(k), x(k) of model(5), obtained at iteration k.

The updating of the Lagrange multipliers is as follows,

µk+1 = µk + βk · ŝk, (13)

where

ŝk =



(δ(k)1 − δ̂(k))
(δ(k)2 − δ̂(k))

...

(δ(k)|Ω| − δ̂(k))
(x(k)1 − x̂(k))
(x(k)2 − x̂(k))

...

(x(k)|Ω| − x̂(k))


(14)

and δ̂(k) and x̂(k) are the approximated (estimated) values of the δ and x variables, respectively,
for each scenario at iteration k.

4.3.1 Procedure

Let zLD be an upper bound of the optimal solution, and αk a real parameter related to the
step length, see Section 4.5. Let µ0 be the initial multiplier vector.

Step 0: Start with a given Lagrange multipliers vector, say, µ0 and solve the |Ω| problems
(10)-(11) to obtain (δ(0), x(0), γ(0), y(0)) and zLD(µ0) as the sum given in (9). Set k := 0.
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Step 1: Compute ŝk =



(δ(k)1 − δ̂(k))
(δ(k)2 − δ̂(k))

...

(δ(k)|Ω| − δ̂(k))
(x(k)1 − x̂(k))
(x(k)2 − x̂(k))

...

(x(k)|Ω| − x̂(k))


, check the stopping criterion (19) and if it not

satis�ed, set

µk+1 := µk + αk ·
(zLD − zLD(µk))

||ŝk||2
· ŝk, (15)

Solve the |Ω| problems (10)-(11) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1)) and
zLD(µk+1) be the optimal solution that have been obtained. Compute the estimations
of δ̂k+1 and δ̂k+1, given by

δ̂(k+1) =
∑
ω∈Ω

wωδ(k+1)ω

x̂(k+1) =
∑
ω∈Ω

wωx(k+1)ω

respectively.

Set k := k + 1 and goto step 1.

4.4 Dynamic Constrained Cutting Plane method

The Dynamic Constrained Cutting Plane method is closely related to the use of trust-region
algorithms for the solution of the dual problem, see [14, 22].

Let zLD(µi) denote the objective function value of the model MIPLD(µ) (5) attained at
iteration i, for the given value µi. A truncation of the Taylor series expansion of the function
zLD(µ) around the point µi can be expressed as

zLD(µi) = zLD(µi) +
∑
ω∈Ω

(µω − µi,ω)si, (16)

where µi,ω denotes the Lagrangean element of µ vector at iteration i under scenario ω, and
si is the subgradient of zLD(µ) at µi.

The updated value, say, µk of the Lagrange multipliers at iteration k can be obtained as
the µ solution of the model,

zLD(µk) = max
µ∈Ck(µ)

z

z ≤ zLD(µi), ∀i ∈ I,

i.e.

zLD(µk) = max
µ∈Ck(µ)

z (17)

z ≤ zLD(µi) +
∑
ω∈Ω

(µω − µi,ω)si, ∀i ∈ I,

12



where zLD(µi) is the optimal objective function value of model (5) at iteration i, and si is the
subgradient of zLD(µ) at µi, for i = 0, ..., |I|. I is the set of cutting planes to use, such that
|I| = min{k, n̂}, where k denote the current iteration and n̂ denotes the maximum number of
cutting planes, i.e. the maximum number of constraints in (17). Ck(µ) denotes the feasible
region of the Lagrange multipliers at iteration k. This set is de�ned by a lower bound and an
upper bound, in the following sense

Ck(µ) = {µ, µk ≤ µ ≤ µk}.

So, it is dynamically adjusted at each iteration. Let µkj be the jth component of the
multiplier vector obtained as optimal solution of (17) at iteration k. Given the problem
structure, it is noted that either µkj = µkj or µ

k
j = µk

j
.

Then, at each iteration the new feasible set Ck+1(µ) is de�ned around the optimal multi-
plier µk obtained at iteration k as the optimal solution of the problem (17). The updating is
as follows:

µk+1
j

= µkj − αk · βk · |skj |, and µk+1
j = µkj + αk · βk · |skj |,

and the step length βk and the parameter αk are computed as in the Subgradient method.

Notice that the number of constraints of model (17) grows with the number of iterations.
To avoid the excessive growth, instead of considering all the cuts, only some of them are
used. Let di ≥ 0, for i ∈ I denote the di�erence between the ith hyperplane evaluated at
the current multiplier vector, zLD(µi) +

∑
ω∈Ω

(µk,ω−µi,ω)si, and the current objective function

value zLD(µk), such that

di = zLD(µi) +
∑
ω∈Ω

(µk,ω − µi,ω)si − zLD(µk), ∀i ∈ I (18)

It should be noted that the residual di is always positive, since the cutting plane recon-
struction of the dual function overestimates the actual dual function. Then, the most distant
hyperplanes are deleted from set I. Let k be the current iteration, such that if k ≤ n̂ then all
the cutting planes are considered in model (17), i.e. |I| = k + 1. If k > n̂, the most distant
hyperplane, ι = argmaxi∈Idi, is deleted from I, so the cutting plane related to iteration ι is
not considering in model (17).

Although this algorithm is typically stopped when the multiplier vector di�erence between
two consecutive iterations is below a pre-speci�ed threshold, a small di�erence between an
upper bound and a lower bound of the dual optimum is also an appropriate stopping criterion,
see Subsection 4.5.

4.4.1 Procedure

Let zLD be an upper bound of the optimal solution value of (MIP ) (1), and zLD(µk) the
optimal solution value of (MIPLD(µk)) (5), computed at iteration k as the sum given in
(9). Let αk be a real parameter and µ0 the initial multiplier vector. Let also n̂ be a natural
parameter.
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Step 0: We start with a vector µ0, and solve the |Ω| problems (10)-(11) to obtain
(δ(0), x(0), γ(0), y(0)) and zLD(µ0) as the sum given in (9). Set k := 0.

Step 1: Compute sk =



(δ(k)1 − δ(k)2)
...

(δ(k)|Ω|−1 − δ(k)|Ω|)
(δ(k)|Ω| − δ(k)1)
(x(k)1 − x(k)2)

...

(x(k)|Ω|−1 − x(k)|Ω|)
(x(k)|Ω| − x(k)1)


, check the stopping criterion (19) and if it

is satis�ed, stop.

Step 2: De�ne the feasible region of the Lagrangean multipliers Ck+1(µ),

µk+1
j

= µkj − αk · βk · |skj |, and µk+1
j = µkj + αk · βk · |skj |

where

βk =
(zLD − zLD(µk))

||sk||2

and αk is de�ned in Section 4.5.

Solve model (17) for calculating the new vector µk+1.

If k > n̂, compute di as

di = zLD(µi) +
∑
ω∈Ω

(µk,ω − µi,ω)si − zLD(µk), ∀i ∈ I

and compute ι = argmaxi∈Idi. The cut ι is deleted from I.

Step 3: Solve the |Ω| problems (10)-(11) with µk+1, and let (δ(k+1), x(k+1), γ(k+1), y(k+1))
and zLD(µk+1) be the optimal solution and optimal solution value of (5) that have been
obtained, respectively.

Set k := k + 1 and go to Step 1.

4.5 Choice of the parameters αk and fk, and the stopping criterion

The performance of all the procedures reported in Section 5 is very sensitive to the choice
of the given parameters αk and fk, see some implementation details in [3]. Following the
notation given in that paper, we consider three types of iterations for setting the value of αk.
Each time that we do not �nd an improvement, zLD(µk) ≤ zLD(µk−1), we call this iteration
red. In other case, zLD(µk) > zLD(µk−1), we compute dk as follows:

1. In the Subgradient and Dynamic Constrained Cutting Plane algorithms, this value is
de�ned as dk = (sk)t · sk−1, where sk is the subgradient vector calculated in (12).
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2. In Volume algorithm, this value is de�ned as dk = (sk)t · sk, where sk is the subgradient
vector calculated in the Step 1 of the corresponding procedure.

3. In Progressive Hedging algorithm, this value is de�ned as dk = (sk)t · ŝk, where ŝk is
the subgradient vector calculated in the Step 1 of the corresponding procedure.

In all the methods, if dk < 0 it means that a longer step in the direction of sk would
have given a smaller value for zLD(µk). In this case, we call this iteration yellow. If dk ≥ 0
we call this iteration green. At each green iteration we multiply αk by 1.1. After each
sequence of #red consecutive red iterations we multiply αk by 0.66. The best value for #red
in our computational experimentation has been 1. When #red larger than 1, sometimes the
procedure does not converge. We have tested all the cases for di�erent values of α0 ∈ (0, 2),
and �nally we have chosen α0 = 0.1.

Moreover, the parameter fk in the Volume algorithm is set to a �xed value for a number
of iterations and it is decreased afterwards. Let sk and sk be de�ned as in (12) and in the
Step 1 of the Volume procedure, and let fmax be an upper bound of fk. Then, we can
compute fopt as the value that minimizes ||f · sk + (1 − f) · s||. It is easy to verify that

this value is fopt =
∑2|Ω|
i=1 s

k
i (s

k
i − ski )∑2|Ω|

i=1 (ski − ski )(ski − ski )
. If fopt < 0, set fk = 1

10 · fmax. Otherwise, set

fk = min{fmax, fopt}. In our computational experimentation we have used fmax = 0.1 and
we have decreased its value near the end.

The stopping criterion common to the four procedures is as follows:

|
∑
ω∈Ωw

ω[cT1 δ
(k)ω + cT2 x

(k)ω + qωT1 γ(k)ω + qωT2 y(k)ω]− zLD(µk)|
|zLD(µk)|

< εz

and (19)∑|Ω|
i=1 |siδ|
|Ω| · nδ

< εδ and

∑|Ω|
i=1 |six|
|Ω| · nx

< εx

where |Ω| · nδ and |Ω| · nx are the number of nonanticipativity constraints for the δ and x
vector of variables, respectively. s1δ and s1x denote the deviations for the corresponding δ
and x rows of vector s, say s, or ŝ, respectively, and εz, εδ and εx are given tolerances. In
particular, we have considered, εz = 0.008, εδ = 0.01 and εx = 0.1. Another stopping criterion
that we have considered is that if the incumbent solution, zLD(µk), does not improve (given
a tolerance ε = 0.0001) after a sequence of ten consecutive iterations, stop.

Finally, in the Dynamic Constrained Cutting Plane procedure, the maximum number of
cutting planes has been �xed to n̂ = 5, for all the instances.

5 Computational experience

We report the results of the computational experience obtained while optimizing the two-stage
stochastic mixed 0-1 model (1) over some randomly generated instances. Our algorithmic ap-
proach has been implemented in a C++ experimental code, which uses the optimization engine
COIN-OR, see [21, 29], to solve the linear and mixed 0-1 related models. The computations
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were carried out on a Workstation Sun FIRE v245, under Solaris System 1.0, having cpu
speed of 1.5GHz and 4Gb of RAM.

The �rst part of the testbed has small-medium sized instances, while the second has
larger, harder instances, signi�cantly bigger instances than those normally reported in the
literature, e.g., [37]. The structure of the DEM considered is inspired in model (38) of [37].
The vectors of the objective function coe�cients, c1, c2, (qω1 ), (qω2 ) from model (1) for the test
cases, were generated using uniform distributions over [−2.5, −1.5], [−2.5+k1, −1.5+k1], with
k1 ∈ {0, 1}, [−30, −10] and [−30, −10], respectively. The left hand side vector b1 was �xed to
0 and (hω1 ) = −(hω2 ). The rhs vectors b2 and (hω2 ) were generated using uniform distributions
over [a∗ |Ω|, |Ω| ∗ [a+k(nδ +nx)]] and [a, a+k(nδ +nx+nγ +ny)], respectively, where a = 1
and k = 1. nδ, and nx are the number of 0-1 and continuous �rst stage variables, respectively,
and nγ , and ny are the corresponding number of 0-1 and continuous second stage variables.
The matrix of coe�cients for the �rst stage constraints, A, and the technology matrices for
the second stage constraints, Tω and Wω, were generated using uniform distributions over
[0, 2 ∗ |Ω|], [0, 0.3] and [0, k2], with k2 ∈ {8, 4.5, 2.8} respectively.

Tables 1 shows the dimensions of the instances in the compact and in splitting variable
representations. The headings are as follows: m, number of constraints; nδ, number 0-1 �rst
stage variables; nx, number of continuous �rst stage variables; nγ , number 0-1 second stage
variables; ny, number of continuous second stage variables; nel, number of nonzero coe�cients
in the constraint matrix; and dens, constraint matrix density %. We have considered |Ω| = 32,
64 and 128 scenarios. Notice that the number of second stage variables is the same in both
representations.

Table 1. Model dimensions

Compact representation Splitting variable representation

Case m nδ nx nγ ny nel dens m nδ nx nel dens |Ω|
P1 136 4 4 128 128 2112 5.88 640 128 128 4608 1.41 32

P2 148 10 10 128 128 3984 9.75 1408 320 320 17664 1.40 32

P3 202 10 10 640 288 9608 5.02 1152 320 320 17088 0.95 32

P4 394 50 50 640 640 47080 8.66 7424 3200 3200 122880 0.22 64

P5 394 50 50 1280 640 50920 6.40 7424 3200 3200 126720 0.21 64

P6 520 4 4 512 512 8256 1.54 2560 512 512 18432 0.35 128

P7 516 3 7 768 512 10280 1.54 2304 384 896 17920 0.30 128

P8 532 10 10 512 512 14736 2.65 5632 1280 1280 70656 0.35 128

P9 1290 10 10 1280 1280 51400 1.54 5120 1280 1280 81920 0.31 128

P10 532 75 50 512 512 70596 11.55 19072 9600 6400 420096 0.13 128

P11 778 60 70 6400 1280 147220 2.42 18688 7680 8960 345600 0.08 128

P12 712 100 100 512 512 146496 16.81 51712 12800 12800 5277696 0.38 128

P13 778 120 160 6400 1280 263920 4.26 37888 15360 20480 691200 0.04 128

For completeness, Table 2 shows the results obtained by plain used of the optimization
engine COIN-OR, for solving the (MIP ) model and its linear relaxation in the compact and
in splitting variable representations. The headings are as follows: zLP , solution value of the
LP relaxation of the original problem (1); zMIP , solution value of the original problem (1);

GAP , optimality gap de�ned as |zMIP−zLP |
|zLP | %; T cLP and T sLP , elapsed time (s.) for obtaining

the LP solution in the compact and splitting variable representations, respectively; T cMIP

and T sMIP , total elapsed time (s.) to obtain the optimal solution to the original problem by
plain use of the optimization engine in COIN − OR in the compact and splitting variable
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representations, respectively. And �nally, zLD denotes the initial upper bound considered at
each instance for the four procedures that have been experimented with.

Table 2. Linear and integer solution

Case zLP zMIP GAP T cLP T sLP T cMIP T sMIP zLD
P1 -81.1408 -80.4820 0.81 0.06 0.11 27.14 365.29 -73.03
P2 -100.4230 -99.8996 0.52 0.11 0.27 95.36 8158.55 -90.38
P3 -548.0340 -547.8620 0.03 0.03 0.05 2.15 5.87 -274.02
P4 -409.4240 -409.3940 0.01 0.11 0.41 0.45 2.85 -204.71
P5 -779.3410 -779.3050 0.00 0.11 0.33 2.03 9.66 -389.67

P6 -1.2568 -0.8032 36.09 0.34 0.60 3.95 23.17 -0.13
P7 -218.9400 -218.9260 0.01 0.07 0.09 0.14 0.35 -109.47
P8 -8.2157 -1.6361 80.09 0.38 0.59 1.64 18.81 -0.82
P9 -418.3500 -418.2420 0.03 0.14 0.23 41.75 156.77 -209.17
P10 -1.6943 -0.9180 45.82 1.89 2.70 5.90 64.99 -0.17
P11 -1391.1200 -1391.0900 0.00 0.34 1.06 207.71 1145.41 -695.56
P12 -16.8730 -3.4486 79.56 4.05 16.96 4.05 1271.34 -1.69
P13 -1762.0300 -1762.0300 0.00 0.58 1.88 4.36 16.25 -881.01

Notice that the GAP is specially small in some of the cases, for example P4, P5, P7,
P11, and P13 whereas it is larger in other cases, as for example P6, P8, P10 or P12. In the
cases in which the GAP is larger we have considered the upper bound, zLD as a 10% of the
LP solution value, to ensure that the upper bound of the (MIP ) model be higher than the
optimal solution value. In particular, Table 3 shows the values of the upper bound.

Table 3. Initial upper bound

Case P1 P2 P3 P4 P5

zLD 0.9 · zLP 0.9 · zLP 0.5 · zLP 0.5 · zLP 0.5 · zLP
Case P6 P7 P8 P9 P10 P11 P12 P13

zLD 0.1 · zLP 0.5 · zLP 0.1 · zLP 0.5 · zLP 0.1 · zLP 0.5 · zLP 0.1 · zLP 0.5 · zLP

As it can be seen in Table 2, the splitting variables representation requires much more
elapsed time that the compact representation for solving the original integer model and its LP
relaxation. So, more computational e�ort is needed to obtain the upper bound, zLD, and the
Lagrangean initial multipliers, µ0, when this vector is considered as the simplex multipliers
of the nonanticipativity constraints.

Tables 4 and 5 show the main results of our computational experimentation. In these
tables we can observe and compare the e�ciency of the four procedures for each choice of
the initial values of the Lagrangeans. Based on this choice, we obtain the Lagrangean bound
with each procedure, and present the elapsed time (in seconds) and the number of iterations
to obtain the corresponding bound.

The headings are as follows: zSUB optimal Lagrangean bound calculated by the Sub-
gradient method, TS elapsed time (in seconds) and iteS number of iterations to compute
zSUB, respectively; zV OL optimal Lagrangean bound calculated by the Volume algorithm, TV
elapsed time (in seconds) and iteV number of iterations to compute zV OL, respectively; zPH
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optimal Lagrangean bound calculated by the Progressive Hedging algorithm, TP elapsed time
(in seconds) and iteT number of iterations to compute zPH , respectively; and �nally, zDC−CP
optimal Lagrangean bound calculated by the Dynamic Constrained Cutting Plane algorithm,
TD elapsed time (in seconds) and iteD number of iterations to compute zDC−CP , respectively.

Table 4. Lagrangean bounds (µ0 = 0)

Case zSUB TS iteS zV OL TV iteV zPH TP iteP zDC−CP TD iteD
P1 -80.5198 48.56 69 -80.4905 72.30 103 -80.4854 114.58 161 -81.3907 82.14 178

P2 -99.9302 45.22 52 -99.9273 29.67 36 -99.9066 57.58 67 -101.6100 160.39 240

P3 -547.8920 5.81 26 -547.8620 3.91 17 -547.9540 31.36 150 -547.8870 8.19 36

P4 -409.4180 42.68 35 -409.4200 38.68 33 -409.4130 363.31 209 -411.0390 273.05 175

P5 -779.3330 28.55 49 -779.3050 7.88 13 -779.3250 137.85 238 -779.3130 27.64 45

P6 -0.8417 11.45 7 -0.8073 58.56 41 -0.8187 11.33 7 -1.1278 119.18 94

P7 -218.9260 0.42 0 -218.9260 0.43 0 -218.9260 0.43 0 -218.9260 0.42 0

P8 -1.6897 42.33 22 -1.6461 309.55 160 -1.8123 15.91 8 -4.2338 289.70 187

P9 -418.3090 19.53 27 -418.2670 9.64 13 -418.2820 232.20 336 -418.5160 133.02 183

P10 -0.9180 2.42 0 -0.9180 2.41 0 -0.9180 2.33 0 -0.9180 2.34 0

P11 -1391.1000 63.78 40 -1391.11 36.09 23 -1391.1200 637.87 407 -1391.2400 283.71 168

P12 -3.5950 17714.70 166 -4.5455 1012.00 17 -4.0849 1464.03 22 -16.6972 23197.70 500

P13 -1762.0300 2.20 0 -1762.0300 2.22 0 -1762.0300 2.23 0 -1762.0300 2.21 0

Table 5. Lagrangean bounds (µ0 =simplex multipliers)

Case zSUB TS iteS zV OL TV iteV zPH TP iteP zDC−CP TD iteD
P1 -80.5082 43.94 62 -80.6996 15.59 31 -80.4863 101.28 146 -81.6599 113.94 228

P2 -99.9118 27.15 31 -100.0130 23.79 31 -99.9069 62.37 76 -101.3810 214.59 339

P3 -547.8870 6.73 31 -547.8840 1.74 7 -547.9040 32.88 156 -547.9350 7.65 34

P4 -409.4190 45.65 34 -409.4240 5.24 4 -409.4200 257.64 165 -411.5400 437.57 245

P5 -779.3320 0.54 0 -779.3320 0.54 0 -779.3320 0.53 0 -779.3320 0.53 0

P6 -0.8128 5.91 3 -0.8803 36.74 25 -0.8129 5.86 3 -0.8166 204.70 159

P7 -218.9260 0.41 0 -218.9260 0.43 0 -218.9260 0.42 0 -218.9260 0.41 0

P8 -1.8086 19.49 10 -1.6451 325.07 173 -1.9588 10.49 5 -4.5399 245.84 170

P9 -418.3780 63.43 90 -418.2640 3.43 4 -418.2960 230.17 337 -418.2420 53.32 74

P10 -0.9180 2.30 0 -0.9180 2.31 0 -0.9180 2.31 0 -0.9180 2.31 0

P11 -1391.1900 132.13 83 -1391.1200 62.98 42 -1391.1100 707.31 454 -1391.3900 325.79 198

P12 -4.1695 22220.80 195 -4.6556 880.07 15 -4.0140 25096.10 215 -13.8782 15877.20 327

P13 -1762.0300 2.13 0 -1762.0300 2.15 0 -1762.0300 2.19 0 -1762.0300 2.18 0

Although the elapsed time needed to solve the Lagrangean Decomposition problems with
any of the four methods is always higher than the elapsed time needed to obtain the LP
bound, the Lagrangean Decomposition bounds are better in general, except for the bounds
obtained by the Dynamic Constrained Cutting Plane method in cases P1, P2, P4 and P11.

Moreover, the Lagrangean Decomposition bounds coincide with the optimal solution value
to the (MIP ) problem in some of the cases. In particular, in cases P7, P10 and P13 the
optimal solution value is achieved with the four methods in both types of initial vectors of the
Lagrangean multipliers. Notice also, that in these cases, the four methods stop after solving
the �rst Lagrangean dual at iteration zero, since the stopping criterion is satis�ed. In cases P3,
P5, P7 and P10 and P13 the Lagrangean Decomposition bound obtained with the Volume
algorithm taking the zero as initial vector values of Lagrangean multipliers, coincides with the
optimal solution value of the (MIP ) problem. And, �nally, in case P9 the Lagrangean De-
composition bound obtained with the Dynamic Constrained Cutting Plane method coincides

18



with the (MIP ) solution value while taking the simplex multipliers as initial vector values of
Lagrangean multipliers.

Comparing the performance of the four methods we can say that Dynamic Constrained
Cutting Plane method is the less robust. It works specially well in the case P9, obtaining the
optimal solution to the (MIP ) problem but in general, it needs more iterations than the other
three methods, specially the Volume and Subgradient algorithms, to reach a worse Lagrangean
Decomposition bound. Notice also, that it provides a worse Lagrangean Decomposition bound
than the LP solution value for the cases P1, P2, P4 and P11. In all of these cases, the
procedure is stopped after a sequence of ten consecutive iterations without improving the
incumbent objective function value.

If we compare the performance of the Progressive Hedging algorithm against the Subgra-
dient method and the Volume algorithm, we observe that the �rst one needs more iterations
to obtain a similar Lagrangean Decomposition bound value, in most of the cases.

We can also observe in Tables 4 and 5 that the goodness of the Lagrangean Decomposition
bounds are very similar. However, it can not be concluded that using the simplex multipliers as
initial Lagrangean multipliers improves the Lagrangean Decomposition solution value. We can
consider some speci�c cases, for example Subgradient method in cases P5 and P9, where the
conclusions are not very de�nitive. On one hand, the Subgradient method in case P9 obtains
a better Lagrangean Decomposition solution considering the initial Lagrangean multipliers
equal to zero, needing also less number of iterations. On the other hand, the same algorithm
in case P5, provides a better Lagrangean Decomposition bound with the intial Lagrangean
multiplier vector equal to the simplex multipliers, also with zero iterations.

Comparing both tables, the total elapsed time to compute the Lagrangean Decomposition
solution for the four procedures in many of the cases is higher in Table 5, i.e. when the initial
vector of Lagrangean multipliers is taken as the simplex multipliers. However, in general the
number of iterations is higher in Table 4, specially for the Subgradient and Volume algorithms.

Finally, with respect to the speed of convergence we have observed that the performance of
the four methods is totally dependent on the initial upper bound, zLD, on the initial step size
parameter, α0, and on the parameter which determines the increase or decrease of this step
size, along the iterations, i.e., the sequence of iterations without improvement, #red. When
we have used an upper bound zLD or an initial parameter value of α0 too small, the step size
along the iterations has become too short, and then, more iterations are needed to obtain
a small improvement, in anyway. Two possible consequences can appear in this situation.
The �rst one is that the algorithm could reach the maximum number of iterations, without
providing a good bound. And the second one, the corresponding method stops, since there is
not a considerable improvement in a given number of iterations, what means that the second
stopping criterion is satis�ed. So, it is necesary to update the step size parameter along the
iterations in an optimal way and give an appropriate value to the upper bound and to the
initial step size parameter, to ensure the convergence and the good performance of this type
of iterative methods.

If the parameter #red is too high, some of the the algorithms can present a divergent be-
haviour. They go well at the beginning, the Lagarangean Decomposition approach is improv-
ing during some steps until it reach to a point where they start to diverge. This behaviour has
been observed specially in the Progressing Hedging algorithm and the Dynamic Constrained
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Cutting Plane procedure. To avoid it, the parameter #red has been considered equal to one
in all the procedures.

The choice of these parameters related to the convergence of the procedures is independent
of the initial Lagrangean multipliers vector that is considered, either in order to obtain a good
Lagrangean Decomposition solution or in order to compare the goodness of the bounds that
it provides.

6 Conclusions

Four iterative procedures for solving the µ-parametric dual problems corresponding to the
Lagrangean Decomposition of the two stage stochastic mixed 0-1 models have been studied.
The models have been introduced by using the splitting variable representation of the deter-
ministic equivalent model, where 0 − 1 and continuous variables appear at any stage. The
Lagrangean Decomposition has been proposed to satisfy both the integrality constraints for
the 0-1 variables and the non-anticipativity constraints. We have compared the performance
of four iterative procedure schemes based on dual Lagrangean problems, as the Subgradient
method, the Volume algorithm, the Progressive Hedging algorithm and the Dynamic Con-
strained Cutting Plane method, in terms of the goodness of the Lagrangean Decomposition
solution, the number of iterations and the total elapsed time to obtain them. At each iteration
of the procedures a µ-parametric mixed 0-1 problem is solved, and the vector of parameters,
µ, i.e., the Lagrangean multipliers are updated by using the di�erent methodologies. The
performance of all these algorithms has turned out to be very sensitive to the choice of given
parameters as the upper bound, the initial step size parameter and the parameter which de-
termines the increase or decrease of this step size along the iterations. We have tested the
conditions and properties of convergence for a set of medium and large-scale dimension prob-
lems. Based on the testbed that we have used in our experimentation, the Volume algorithm
and the traditional Subgradient method are the procedures of choice. As a future work, we
are planning to use these procedures for tightening the lower bound of the submodels for
actives Twin Node Families in the Branch-and-Fix phase of the algorithmic procedure for
solving multistage stochastic mixed 0-1 problems by using our Branch-and-Fix coordination
approach, see [9, 12].
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