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Resumen: 

Se ha propuesto al procesamiento predictivo como un mecanismo cognitivo fundamental que 

explica cómo el cerebro interactúa con el entorno externo a través de las modalidades 

sensoriales. La idea principal subyacente a las teorías sobre el procesamiento predictivo es que 

el cerebro humano desarrolla un modelo generativo (es decir, una representación interna) del 

entorno que le rodea, el cual se utiliza constantemente para generar inferencias top-down sobre 

la causa externa de la energía que impacta en nuestros sentidos. Este modelo interno se 

actualiza constantemente mediante la comparación entre la información predicha y la actual. 

Este proceso se basa en la interacción bidireccional entre las regiones de procesamiento de bajo 

nivel y alto nivel que tienden a segregarse jerárquicamente en la corteza humana (como la 

corteza visual). Las regiones de orden superior desarrollan predicciones sobre la información 

externa, mientras que las regiones de orden inferior aportan información sobre la información 

externa. La comparación entre estas dos fuentes de información (top-down de las regiones de 

orden superior y bottom-up de las regiones de orden inferior) se utiliza para determinar la 

identidad de las estimulaciones externas. La diferencia entre la información actual y la 

predicción se denomina error de predicción, una señal que se utiliza para actualizar el modelo 

generativo interno del entorno que nos rodea.  

En las últimas dos décadas, gran parte de la investigación se ha centrado en entender cómo el 

cerebro humano genera expectación sobre las respuestas sensoriales entrantes y cómo gestiona 

la información inesperada o impredecible. En la literatura sobre procesamiento predictivo se 

evidencia que el cerebro humano suprime las respuestas neurales a estímulos 

predecibles/esperados (denominado como efecto de supresión de expectativa), y aumenta las 
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respuestas neurales para los estímulos impredecibles/no esperados. Gran parte de la 

investigación se ha centrado en cómo el cerebro humano procesa los estímulos sensoriales para 

entender el contexto/identidad («¿qué es?») de la información. Esta podría ser tanto predecible 

como impredecible, dependiendo de la información previa sobre el estímulo. Cabe destacar 

que, en situaciones reales, los objetos del entorno que nos rodea son «temporalmente 

dinámicos». Mientras que ciertos estímulos son temporalmente regulares y, por tanto, 

predecibles, otros podrían ser altamente impredecibles en el tiempo. Esta propiedad se define 

como predictibilidad temporal (es decir, «¿cuándo está ocurriendo?»). El cerebro procesa la 

información externa sobre el contenido, «qué», y el momento justo o timing, «cuándo», de los 

estímulos del entorno para entender el mundo a su alrededor. En esta tesis he empleado la 

técnica de magnetoencefalografía (MEG) para entender cómo las propiedades predecibles qué 

y cuándo de un estímulo afectan a la supresión de la expectativa en las modalidades sensoriales 

(es decir, visual y auditiva). La MEG nos permite registrar la actividad del cerebro humano 

con una alta resolución temporal y una buena resolución espacial, lo que la convierte en la 

modalidad ideal para investigar la actividad cerebral, que es espaciotemporal por naturaleza.  

 

Se han utilizado diversos diseños experimentales, como el potencial de disparidad, los 

paradigmas de coincidencia y desajuste o los paradigmas de supresión de repetición y 

expectativa, para entender la percepción visual y auditiva. Algunas de las limitaciones de estos 

experimentos fueron que: a) utilizaban información contextual reducida con una señal o cue y 

un objetivo o target, b) el procesamiento de los estímulos predichos/esperados se vio afectado 

por la tarea de los participantes, mezclando así la predicción y la atención y c) los estímulos 

predecibles (o predicciones) se compararon con los estímulos impredecibles/violaciones 

(errores de predicción), pero estas condiciones se han asociado con procesos neurocognitivos 

muy diferentes.  
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Teniendo en cuenta estas limitaciones, diseñé un paradigma experimental que presenta una 

serie de señales (cues) que podrían tanto predecir las propiedades/características del objetivo 

(target) o no. Asimismo, introduje una manipulación temporal en el experimento, que podía 

predecir o no el momento justo del estímulo entrante (es decir, momento predecible o 

predictable timing) o no (momento aleatorio/fluctuante o random/jittered timing). Para 

resolver la controvertida relación entre la atención (inducida por la tarea del experimento) y las 

expectativas, se mantuvo una relación ortogonal entre la tarea del participante y la característica 

de predictibilidad; por ejemplo, los participantes reportan una característica del estímulo y la 

predicción se relaciona con otra característica. Además, la comparación se diseñó entre 

predicciones vs. no predicciones, de forma que no había violación.  

 

En general, he observado que las áreas visual y auditiva procesan las señales sensoriales de 

distinta forma. El área visual es más sensible al aspecto qué de las señales sensoriales que el 

cuándo. El área visual muestra sensibilidad a la incertidumbre temporal (cuándo) solo cuando 

el contenido (qué) es predecible. Si no existe predictibilidad en cuanto al contenido, la 

incertidumbre temporal no ejerce ninguna influencia. El área auditiva, por otro lado, es igual 

de sensible a los aspectos qué y cuándo del procesamiento sensorial. En contraste con el área 

visual, el área auditiva muestra sensibilidad a la incertidumbre temporal incluso en ausencia de 

la predictibilidad del qué.  

Más allá de la interacción entre cuándo y qué, observé que el área auditiva muestra, en general, 

un efecto de supresión de expectativa más robusto al estímulo predecible inminente, en 

comparación con el área visual. Por otra parte, la tarea (ortogonal a la manipulación de 

predictibilidad) eliminó por completo los efectos de predictibilidad en el área visual, al 

contrario que en el caso del área auditiva.  
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Esta tesis contiene seis capítulos principales. El primer capítulo es una introducción al marco 

del procesamiento predictivo, donde se abordan las nociones de incertidumbre temporal y 

supresión de la expectativa. Asimismo, este capítulo incluye los objetivos e hipótesis de la 

presente tesis, así como un resumen básico sobre la neuroanatomía de los sistemas visual y 

auditivo para situar mejor al lector con respecto al tema.  

  

El segundo capítulo es una introducción general a los métodos que he utilizado para esta tesis. 

En este capítulo he incluido detalles sobre la modalidad de magnetoencefalografía (MEG), su 

instrumentación y las diversas técnicas de preprocesamiento de datos y análisis empleados en 

esta tesis. Este capítulo se centra más en los aspectos teóricos y explica tanto los principios 

generales como las matemáticas subyacentes a todas las técnicas.  

 

El tercer capítulo contiene los detalles sobre el primer experimento centrado en la supresión de 

la expectativa en el área visual. Incluye una descripción detallada del diseño experimental, 

detalles sobre los métodos empleados para el análisis de datos, resultados y debate. En este 

capítulo he incluido evidencias que respaldan que el área visual es más sensible a las 

expectativas basadas en el contenido (qué). Además, la información en las respuestas neurales 

específicas del estímulo (rastreado vía modelos de descodificación) aumenta en la medida que 

se construyen las expectativas sobre el estímulo.  

 

El cuarto capítulo contiene los detalles sobre el segundo experimento, basado en la supresión 

de la expectativa en el área auditiva. Este capítulo sigue la misma estructura que el capítulo 

anterior, proporcionando detalles sobre el diseño experimental, los métodos empleados para el 

análisis de datos, resultados y debate. Aquí he explicado que el área auditiva es igual de 
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sensible tanto a las expectativas basadas en el contenido (qué) como a las temporales (cuándo). 

Asimismo, aporto pruebas que respaldan que la supresión de la expectativa deriva en una mejor 

percepción, pero no aumenta la información en las respuestas neurales específicas del estímulo.  

 

El quinto capítulo consiste en un debate general sobre nuestros resultados, limitaciones que 

abren vías futuras para este trabajo. En este capítulo he explicado cómo mis resultados 

contribuyen a la literatura existente sobre el procesamiento predictivo y sugiero incluir el 

«timing» como un factor esencial a la hora de investigar el modelo de procesamiento predictivo 

en el cerebro humano. También concluyo que las modalidades sensoriales gestionan de distinta 

forma las expectativas contextuales y la predictibilidad temporal. Esto sugiere que, a la hora 

de investigar el procesamiento predictivo en el cerebro humano, deberían considerarse las 

diferencias específicas de cada modalidad, ya que el mecanismo predictivo en funcionamiento 

en un área no debe generalizarse necesariamente también a otras áreas.   

 

En el último capítulo indico los artículos científicos en publicaciones de prestigio, conferencias 

y charlas relacionadas con el presente trabajo.  
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Abstract: 
 

Predictive processing has been proposed as a fundamental cognitive mechanism that accounts  

for how the brain interacts with the external environment through sensory modalities. The core 

idea behind the predictive processing theories is that the human brain develops a generative 

model (i.e., an internal representation) of the surrounding environment that is used to 

constantly generate top-down inferences about the external cause of the energy impacting 

our senses. This internal model is constantly updated through the comparison between 

predicted and actual inputs. This process is based on the bidirectional interaction between 

low-level and high-level processing regions that tend to be hierarchically segregated in the 

human cortex (such as the visual cortex). Higher order regions develop predictions about the 

external input, while lower order regions bring information about the external input. The 

comparison between these two sources of information (top-down from higher order regions 

and bottom-up from lower- order regions) is used to determine the identity of the external 

stimulations. The difference between both the actual input and the prediction is termed as 

prediction error, a signals that is used to update the internal generative model of the 

environment around us  

 

 In the last two decades, a lot of research focus has been to understand how the human brain 

generates expectation about the incoming sensory responses and how it deals with surprise or 

unpredictable input. It is evident in predictive processing literature that the human brain 

suppresses the neural responses to predictable/expected stimuli (termed as expectation 

suppression effect), and enhances the neural responses for unpredictable/unexpected stimuli. 
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A lot of research has focused on investigating how the human brain processes the sensory 

stimuli to understand the context/identity (“what is it?”) of the input. This could be either 

predictable or unpredictable depending upon the prior information about the stimuli. 

Importantly, in real life situations objects in the surrounding environment are “temporally 

dynamic”. While certain stimuli are temporally regular and hence predictable, others could be 

highly unpredictable in time. We define this property as temporal predictability (i.e., “when is 

it happening?”). The brain processes the external information about the content “what” and 

timing “when” of environmental stimuli to understand the world around it. In this thesis, I used 

Magnetoencephalography (MEG) to understand how what and when predictable properties of 

a stimulus affect the expectation suppression across sensory modalities (i.e., visual and 

auditory). MEG allows us to record the human brain activity with a high temporal resolution 

and a good spatial resolution, making it an ideal modality to investigate human brain activity 

which is spatio-temporal in nature.   

 

Several experimental designs such as mismatch negativity, match-mismatch paradigms, 

repetition and expectation suppression paradigms have been used to understand the visual and 

auditory perception. Few of the shortcomings of these experiments were a) they used reduced 

contextual information with one cue and one target b) the processing of the predicted/expected 

stimuli were affected by the task in which participants were involved, thus mixing prediction 

and attention c) predictable stimuli (or predictions) were compared to the 

unpredictable/violation stimuli (prediction errors), but these conditions have been associated 

with largely different neurocognitive processes.  

 

Considering these shortcomings, I designed an experimental paradigm which presents a series 

of cues that could either predict the properties/features of the target or not. A temporal 
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manipulation was also introduced in the experiment, which could either predict the timing of 

incoming stimulus (i.e., predictable timing) or not (random/jittered timing). To deal with much 

debated relationship between attention (induced by task involved in the experiment) and 

expectations, an orthogonal relationship was maintained between the participant’s task and the 

predictable feature, i.e., the participants report one feature of stimuli and the prediction is 

related to another feature. Also, the comparison was designed between predictions vs no 

predictions, such that no violation was involved.  

 

Overall, I observed that visual and auditory domains process the sensory signals differently. 

Visual domain is more sensitive to the what aspect of the sensory signals than when.  The visual 

domain shows sensitivity to temporal uncertainty (when) only when the content (what) is 

predictable. If there is no predictability in terms of content, temporal uncertainty does not exert 

any influence. The auditory domain, on the other hand, is equally sensitive to what and when 

aspects of sensory processing. In contrast to visual domain, auditory domain shows sensitivity 

to temporal uncertainty even in absence of the predictability of what. 

Beyond the interaction between when and what, I observed that the auditory domain shows an 

overall stronger expectation suppression effect to the upcoming predictable stimulus compared 

to the visual domain.  On a separate note, the task (orthogonal to the predictability 

manipulation) completely washed out the predictability effects in the visual domain, while it 

did not in the auditory domain.  

 

This thesis mainly comprises six chapters. The  first chapter provides an introduction to the 

predictive processing framework, addressing the notions of temporal uncertainty and 

expectation suppression. This chapter includes the goals and hypothesis proposed in this thesis. 
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Basic overview of neuroanatomy of visual and auditory systems has also been included to 

better situate  the readers on the topic.  

 

The second chapter is a general introduction to the methods I have used in this thesis. In this 

chapter I have provided details about the magnetoencephalography (MEG) imaging modality, 

its instrumentation and different data preprocessing and analysis techniques used in this thesis. 

This chapter is more theoretical and explains the general principles and mathematics behind all 

the techniques.  

 

The third chapter contains the details about the first experiment focused on expectation 

suppression in the visual domain. This includes detailed description of the experimental design, 

details about the methods used for data analysis, results and discussion. In this chapter, I have 

provided evidence in support that the visual domain is more sensitive to the content-based 

expectations (what). Also, the information in stimulus-specific neural responses (traced via 

decoding models) increases as the expectations about the stimulus are built.  

 

The fourth chapter contains the details about the second experiment focused on expectation 

suppression in the auditory domain. This follows the same structure of the previous chapter 

providing details about experimental design, methods used for data analysis, results and 

discussion. In this chapter, I have reported that auditory domain is equally sensitive to both 

content-based (what) as well as temporal (when) expectations.  I also provide evidence that 

expectation suppression leads to a better perception, but does not increase the information in 

stimulus-specific neural responses.  
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The fifth chapter consists of a general discussion about our findings, limitations that provide  

future direction to this work. In this chapter, I have explained how my results contribute to the 

existing literature on predictive processing and suggest to include ‘timing’ as an essential factor 

while investigating predictive processing model in human brain. I also conclude that the 

sensory modalities deal differently with the contextual expectations and temporal 

predictability. This suggests that while investigating predictive processing in the human brain, 

the modality specific differences should be considered, since the predictive mechanism at work 

in one domain should not necessarily be generalised to other domains as well.  

 

In the last chapter I report the scientific publications in prestigious journals and conferences 

along with the invited talks for this work.  

 

   



18 
 

CONTENTS: 
  

1. Introduction 

1.1 Predictive Processing, Temporal Uncertainty . . . . . . . . . . . . . . . . . . . . 20 

 and Expectation Suppression  

1.2 Neuroanatomy of visual and auditory system . . . . . . . . . . . . . . . . . . . . 33 

2. Methods 

2.1 Magnetoencephalography (MEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

2.2 MEG Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

2.3 MEG Data acquisition and preprocessing . . . . . . . . . . . . . . . . . . . . . . . 47 

3. Expectation suppression in Visual domain  

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

4. Expectation suppression in auditory domain  

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

4.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 

5 General Discussion  

6 Appendix  

6.1 Publications from the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 

6.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

 

 



19 
 

 
Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



20 
 

1.1 Predictive Processing, Temporal Uncertainty and 

Expectation Suppression  
 

शरीरिेन्द्रय्सत्त्वात्मं्सयोगो धािर जीिवतम् । 

िनत्यगश्र्चानुबन्धश्र्च पयार्यौरायुरुच्यत े 

● The Body combined with sense organs, mind, and soul, becomes life.  

The Sanskrit sloka mentioned above is taken from Charak Samhita, chapter 1 sloka 42, which 

is believed to have arisen around 400-200 BC. This underscores the importance of 'sense 

organs' and 'mind' in life. Since then, research on sensory systems and the brain/mind has been 

a key attraction. In 335 BC, the Greek philosopher Aristotle thought the brain was simply a 

radiator that kept the all-important heart from overheating. Around 170 BC, Roman physician 

Galen suggested that four fluid-filled cavities (ventricles) of the brain were the seat of bodily 

functions, complex thought, and determined personality. This was one of the foremost 

suggestions that the brain was where our personality, memory, and thinking reside. There were 

several hints about the brain which kept on coming into the picture for centuries. Still, the first 

detailed map of the nervous system was created in the 16th century by Belgian anatomist 

Andreas Vesalius. He argued against the ventricles as the site of brain functions. This is one of 

the research outputs we mostly accept in modern neuroscience. In 1791, Italian Luigi Galvani 

showed that electricity applied to nerves could make muscles contract. This was the first 

suggestion that electrical impulses were important in the nervous system. In the 1860-70s, 

physicians Paul Broca and Carl Wernicke showed that the brain had dedicated parts to process 

different components of speech. By that time, microscopes were already developed, and 

researchers started looking deeper into the brain by taking advantage of new staining methods. 
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Spanish neuroanatomist Santiago Ramón y Cajal and Italian scientist Camillo Golgi were 

awarded the Nobel Prize in 1906 for identifying that nerve cells (neurons) are the building 

blocks of the brain and showing there are many different types of such nerve cells in the brain. 

Meanwhile, brain waves were first described in humans by Hans Berger at the end of the 1920s. 

Their dependence on behavioral state (e.g., wakefulness, sleep), sensory and cognitive 

processing has since been further explored by a large body of research. Charles Sherrington 

and Edgar Adrian won the Nobel Prize in 1932 for proposing the concept of synapses (junctions 

between neurons). Alan Hodgkin, Andrew Huxley, and John Eccles won a Nobel Prize in 1963 

by showing how neurons communicate via electrical and chemical signaling. Since 1963, 

neuroscience research exploded with the rapid advancement of technology and collaborations 

between several domains like physics, genetics, medicine, engineering, etc. All these factors 

lead to several advances in the field of neuroscience. The last few decades are also called 

"decades of the brain." Many collaborative initiatives between different labs have emerged and 

led to facing multiple uncertainties about brain functioning. The quest to understand the human 

brain has evolved, and several new theories of brain functioning have been proposed in the last 

few years. It is out of the focus of this thesis to explain all the theories about brain processing. 

I will focus on one theory that has attracted wide acceptance in the neuroscience community, 

i.e., Predictive Processing. 

Predictive Processing 

Predictive processing has been proposed as a fundamental cognitive mechanism that accounts 

for how the brain interacts with the external environment through the different sensory 

modalities (Clark, 2013; Friston, 2005; Mumford, 1992). Predictive processing was initially 

proposed as Linear Predictive Coding (LPC) (Makhoul, 1975), which was developed for signal 

processing in communications technology; by that time, this was not intended to be 
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implemented as a model of brain function. From an engineering perspective, LPC assumes that 

reconstruction of a signal is informative and is worth preserving, while the residual error 

generated from the prediction and actual signal is uninformative and can be discarded. The 

complementary explanation of this concept can be: the predictable component of a signal can 

be removed to reduce the signal amplitude and allow efficient transmission. This predictive 

coding model was employed to illustrate the retina’s function (Srinivasan et al., 1982). 

Srinivasan and colleagues proposed that the predicted local intensity value can be calculated 

from intensity values measured at nearby locations and those measured at preceding times. 

Later, Rao and Ballard (1999) proposed a predictive coding model applied to cortical 

functioning, which assumed  that there is a hierarchy in cortical processing (similar to 

(Mumford, 1992)) and hypothesized that cortical feedback connections act to suppress the 

information which is predicted by higher-order brain areas (Rao and Ballard, 1999). This was 

one of the most influential models that inspired many researchers to pursue further studies on 

predictive coding. However, Rao and Ballard's algorithm required neurons to perform both 

positive and negative firing rates, which is biologically not possible, so this emerged as one of 

the shortcomings of this algorithm. Although the algorithm was re-implemented with non-

negative firing rates (Ballard and Jehee, 2012), still the model was considered quite complex 

in explaining cell biology. Another variant of Predictive coding (i.e., the PC/BC-DIM, which 

reformulated the Rao and Ballard model using Biased computation theories of cortical 

function), was implemented using the Divisive Input Modulation (DIM) method (Spratling et 

al., 2009): this theory computes the residual error by division rather than subtraction. 

Nevertheless, also for this case how cortical cells implement the division process remains 

unclear. To address these issues, Friston proposed the principle of Free Energy Minimization 

(Friston, 2005), which was similar to Rao and Ballard's algorithm in terms of hierarchy, but 

unlike any previous theory, the variable in the free energy principle did not represent the 
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absolute values of signal, but they represent the statistics of these signals. The free energy 

model reconstructs the probability distribution from which the samples are believed to come, 

and it estimates a posterior probability density. A particular, simplified version of the free 

energy minimization scheme has been identified  as "Predictive Coding" (Friston, 2009). The 

core idea behind all the predictive coding theories (Spratling, 2017) is that the brain develops 

a generative model (i.e., an internal representation) of the surrounding environment that is used 

to constantly generate top-down inferences about the external cause of the energy impacting 

our senses. The model is updated continuously through the comparison between predicted and 

actual inputs. This process is based on the bidirectional interaction between low-level and high-

level processing brain regions that tend to be hierarchically organized in the human cortex 

(such as the visual cortex). Higher-order brain regions develop predictions about the external 

input, while lower-order brain regions bring information about the external input. The 

comparison between two sources of information (top-down from higher-order brain regions 

and bottom-up from lower-order brain regions) is used to determine the identity of the external 

stimulations. The difference between the actual input and the prediction is called prediction 

error, a signal used to update the internal generative model of the environment around us 

(Keller and Mrsic-Flogel, 2018). Two main concepts deserve attention in this domain, the 

concept of "prediction," as a source of internal expectation about the external stimuli, and the 

concept of "prediction error" that reflects the discrepancy between the expectation and the 

actual stimulus (Friston, 2005; Rao and Ballard, 1999). Prediction errors are valuable sources 

of information since they update the internal generative model, and consequently, they support 

learning.  

Predictive models contrast with more classical feedforward models, which propose only a 

bottom-up flow of information causing perceptual experience. In a non-predictive account, 

sensory features are extracted through a series of spatiotemporal filters along the ascending 
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cortical hierarchy (DiCarlo et al., 2012; Hubel and Wiesel, 1968; Riesenhuber and Poggio, 

1999). Recently, however, predictive models have received a lot of attention. In the last two 

decades, predictive processing has been involved in many neurocognitive domains, such as 

visual (Arnal and Giraud, 2012; Stefanics et al., 2014) and auditory perception (Heilbron and 

Chait, 2018), language (Gina R. Kuperberg and Jaeger, 2017; Hakonen et al., 2017) and music 

(Koelsch et al., 2019), both in humans as well as in animals (Richter et al., 2017). 

 

Figure 1: A schematic illustration of Predictive Processing framework. The external sensory input reaching the 

human brain is predicted before it appears (in pre-stimulus time period from top-down regions) and then compared 

to the actual input. The difference between actual input and prediction (called prediction error) is used to update the 

internal generative model which again generates prediction about the world around it. 

 

Experimental approaches to Predictive Processing 

Predictive Processing models became initially popular in the research domain of visual 

perception (Kimura et al., 2009; Mumford and Lee, 2003; Rao and Ballard, 1999; Stefanics et 

al., 2011). However, more recently research on auditory processing became a popular bed for 
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testing these models (Auksztulewicz and Friston, 2016; Dürschmid et al., 2016; Garrido et al., 

2009; Näätänen et al., 2007; Pakarinen et al., 2007; Recasens et al., 2015; Ulanovsky et al., 

2003). Several experimental paradigms have been developed in recent years to unfold how the 

brain processes the sensory input (both visual and auditory) and the role of top-down 

predictions. These paradigms were based on ground-breaking research questions about sensory 

processing. For example: How does brain react when something appears suddenly, surprisingly 

or unexpectedly? To address this type of questions researchers mainly focused on the so-called 

odd-ball paradigm (Costa-Faidella et al., 2011; Egner et al., 2010; Garrido et al., 2009; Grill-

Spector et al., 2006; Kimura et al., 2009; Kok et al., 2012a). However other experimental 

paradigms have been used. Overall, I grouped those experimental paradigms in the following 

categories: 

1. Surprise-based paradigms (e.g., odd-ball experiments): Sensory input coming from the 

external environment may be predictable or unpredictable in nature. Surprise based 

paradigms are used to investigate the effect of an unexpected/unpredictable stimulus 

while the brain was predicting/expecting something else (Egner et al., 2010; Garrido et 

al., 2009; Kimura et al., 2009; Stefanics et al., 2014). There is an abundance of literature 

showing a classical mismatch negativity effect emerging in the odd-ball experiments. 

In the predictive processing framework, these paradigms mainly focus on the prediction 

error 
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Figure 2A: Classical oddball paradigm with sequence of a commonly-appearing standard stimulus is 

interspersed with a rarely-appearing deviant. In equiprobable conditions, the same stimuli are interspersed 

with a large number of different images, which each appear with same probability. Figure taken from 

(Feuerriegel et al., 2021) 

2. Repetition and roving paradigms: These paradigms mainly focus on brain responses to 

expectation generated by repeating the stimuli and altering this expectation by changing 

the stimuli (Grill-Spector et al., 2006; Recasens et al., 2015; Utzerath et al., 2017). In 

roving paradigms (Costa-Faidella et al., 2011; Stefanics et al., 2018), a deviant tone 

(odd-ball/ unexpected stimuli) appears in a sequence of standard tones (tones) and then 

the deviant tones become standard.  

 

Figure 2B: Roving Paradigm in which probability of stimuli depends on the length of repetitive standard 

stimuli. Figure taken from (Kirihara et al., 2020) 

 

3. Probabilistic cueing based experiments: An expectation about a stimuli can also be 

generated by manipulating the probability of occurrence in a block (Han et al., 2019; 

Kok et al., 2012b). For example, a diamond cue in the figure may be followed by a lion 

in 75 % of trials in a block (making it an expected stimulus), whereas a horse might 

appear in 25 % of trials (making it an unexpected stimulus). This can also be 

counterbalanced through another cue where two stimuli will appear with equal 

probability (50 % probability each).  
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Figure 2C: In probabilistic cueing paradigm, a cue stimulus provides information that a specific stimulus 

is more likely to appear (diamond cue), or two or more stimuli are equally likely to appear (circle cue). 

Figure taken from (Feuerriegel et al., 2021).  

 

4. Motion-based paradigms: These paradigms (Blom et al., 2020) involve motion of a 

specific item in a predictable fashion (for example, position changing linearly or 

randomly). The expectation can be generated either for a specific spatial location 

(position) or for a time point when the stimulus is expected.   

 Figure 2D: In motion-based 

paradigms, the appearance 

of a stimulus at a particular 

location is either expected 

based on the immediate 

history of apparent motion 

(in linear motion sequences) or 

is preceded by a randomly- 

generated sequence of 

stimulus locations (in 

random sequences). Figure 

taken from (Feuerriegel et al., 2021).  

All these match/mismatch paradigms either compare the expectation effect with the violation 

of that expectation (i.e., prediction vs. prediction errors) or compare the violation of an 

expectation with a neutral condition (i.e., prediction error vs. no prediction errors). In the 

present study we deviate from this trend, by designing an experimental paradigm that focuses 

on the prediction vs. no prediction contrast, in which no violation of expectations is involved. 

In our opinion, the violation of an expectation involves cognitive processes behind the pure 
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neurocognitive mechanisms involved in perception, such as changes in attention, arousal, or 

learning mechanisms.  

Importantly, prediction effects are often confounded with attention-dependent cognitive 

changes triggered by an experimental task, in which participants could be made explicitly 

aware of the predictability manipulation. The neurocognitive mechanisms involved in attention 

and prediction are highly overlapping but potentially dissociable using neuroimaging methods 

(Summerfield and Egner, 2009). Both prediction and attention are top-down processes that 

affect human perception. However, while predictive processing has been proposed as an 

intrinsic mode of  brain functioning that explains neural activity in general (Friston, 2005), 

attention is viewed as a more controlled mechanism, where neural resources are consciously 

invested to focus/unfocus on a stimulus. Prediction and attention are related and not always 

clearly distinguishable (All and James, 2015; Kok et al., 2012b). Neurophysiological evidence 

indicates that neural activity is enhanced for an attended stimulus compared to an unattended 

one. If attention and prediction would trigger similar neural responses, then we should observe 

an increase in neural activity for predicted compared to unpredicted stimuli. However, this is 

not the case since predicted stimuli suppress neural activity compared to the unpredicted ones, 

a phenomenon termed as Expectation Suppression. Summerfield & Egner (2009) underscore 

the importance of investigating attention and prediction in an orthogonal fashion in order to 

isolate the role played by prediction on perceptual processing. As indicated by these 

researchers, the proper experimental paradigm should dissociate these two cognitive 

components: participants should pay attention to the processing of one sensory feature of a 

stimulus, while the prediction/expectation manipulation should rely orthogonally on another 

feature.  
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The role of Time in Predictive Processing 

In the predictive framework, the input stimuli received by the lower order brain areas (i.e., 

primary sensory cortices) from the external sensory periphery (like the eyes or the ears) are 

decomposed into several features. For example, a visual stimulus may have features like edges, 

orientations, color, shape, and other properties, and an auditory input might have features like 

pitch, volume, frequency, etc. These features (that constitute the identity of a stimulation) are 

the building bricks of the overall percept and determine its identity (often called "what" 

features). Importantly, in real-life situations, objects in the surrounding environment are 

"temporally dynamic." While playing tennis, you may see a ball coming toward you on the 

tennis court: but even after having all the "what" information features (like color, shape), for 

making a successful shot, it is important to estimate "when" the ball will approach you and 

impact your tennis racket. While certain stimuli are temporally regular and hence predictable, 

others could be highly unpredictable in time. We will define this property as temporal 

predictability.  

From the perspective of visual perception (as compared to auditory perception, see below), 

temporal predictability (when information) has raised relatively low interest compared to the 

study of stimulus content predictability (what information). The role of timing for predictive 

processing in the visual domain has been mainly studied for the perception of moving objects. 

The visual system employs a certain amount of time to process the incoming sensory 

information, a delay defined as "neural transmission delay" (Blom et al., 2020; Maunsell and 

Gibson, 1992). When considering the perception of moving objects, this delay could cause 

potential problems for the visual system that should anticipate some information to provide 

valuable cues for the cognitive system to plan action. Predictive processing models explain 

how our brain deals with this delay through a compensatory mechanism that requires the 
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generation of predictions about the incoming stimuli. Studies from both animals and humans 

have shown that predictable visual stimuli are represented with shorter latencies in the visual 

cortex compared to unpredictable stimuli (Hogendoorn and Burkitt, 2018; Jancke et al., 2004; 

Subramaniyan et al., 2018). Moreover, studies have shown that stimulus-specific information 

induces sensory templates from prior expectations in both visual and auditory domains which 

can be decoded from neural signals even in pre-stimulus time intervals (Demarchi et al., 2019; 

Kok, P., Failing, M. F., & de Lange, 2014; Kok et al., 2017).  

These studies thus underscore that these what and when features are strongly interwoven and 

shape the human perception. Thus, understanding the interaction of what and when in human 

perception is crucial for understanding human cognition. Studies on visual perception have 

paid relatively less attention to temporal (when) than to content (what) predictability (Demarchi 

et al., 2019; Kok et al., 2017; Nobre et al., 2007). The effect of temporal jittering has been 

explored intensively in visual attention studies that focused on the estimation of the spatial 

location of a stimulus (Coull and Nobre, 1998). Coull and Nobre (1998) used PET and fMRI 

to manipulate the cued attention to spatial locations based on their temporal intervals in 

factorial design. An hemispheric asymmetric effect was reported in the parietal cortex, with 

the right parietal cortex activations related to spatial attention whereas the left parietal cortex 

activations mainly linked to temporal attention.  

Temporal expectations in literature are reported to have interaction with other cognitive 

processes like spatial attention or stimulus features. While only temporal expectations are 

modulated (in lack of expectation about the content), no effects on neural responses were 

reported (Correa and Nobre, 2008; Doherty et al., 2005; Rohenkohl et al., 2012; Rohenkohl 

and Nobre, 2011). 
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Aims of the present thesis 

This thesis aims to answer some of the critical research questions which still lack experimental 

evidence. Firstly, we aim to investigate "how expectation suppression is affected by temporal 

uncertainty?" Expectation suppression is defined as a reduction in a specific measure of neural 

activity (i.e., EEG/MEG signal amplitudes, Local field potential (LFP) or bandlimited LFP 

amplitudes, single-cell or multicell unit firing rates or even fMRI BOLD signals) following the 

presentation of a stimuli that is expected/predicted compared to a neutral condition (i.e., when 

the stimuli is presented but its neither expected nor surprising) (Arnal and Giraud, 2012; Egner 

et al., 2010). The term “expectation suppression” derives from the repetition suppression effect 

which describes the reduction in neural activity for repeated stimuli (Desimone, 1996). 

Importantly, the notion of suppression has been used in different predictive coding frameworks 

(Egner et al., 2010; Summerfield and De Lange, 2014) to imply that activity in stimulus 

selective neurons is reduced when the perceptual expectations of an observer is fulfilled 

(Feuerriegel et al., 2021). Expectations can be related to stimulus location, stimulus content 

and stimulus timing (Auksztulewicz et al., 2018). It is worth noting that different sensory 

modalities (i.e., visual and auditory) are classically assumed to be similarly sensitive to 

expectation suppression. Since this cannot be taken for granted, here we ask: Do both 

modalities present similar suppression effects? Or do they show different neural patterns? And 

how are the neural patterns affected by temporal uncertainty?  

 

Secondly, "how do the visual and the auditory modality show differential sensitivity to task-

relevant and task-irrelevant stimulus features?" Do these modalities process the attended and 

the predicted features of a stimulus in a similar or different way. This question will provide 

critical information about how the processing of a specific sensory property is inherently 

interwoven with the processing of a separate feature and how this changes across modalities. 
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Thirdly, "does any of these modality show prestimulus activation when a stimulus is 

predictable?" In other words, will we find evidence of the neural correlates of prediction (as 

opposed to prediction error)? This issue has been largely investigated in the neurocognitive 

literature without providing any conclusive evidence about the reliability of pre-stimulus 

prediction neural correlates.  

 

In the present work I used magnetoencephalography (MEG), which has excellent temporal 

resolution and good spatial resolution to measure the brain correlates of both what and when 

aspects of stimulus processing. I designed two experiments, one focused on visual perception 

(chapter 3) and another on auditory perception (chapter 4). In the visual experiment, the 

participants were presented with a series of Gabor patches (no match - mismatch) having two 

experimentally manipulated features (orientation angle and cycles per degree: cpd). Based on 

the first four Gabors, the orientation angle of the target could be predictable or not, whereas 

the participants were asked to evaluate the other feature (i.e., cpd), which was intermediate 

during the first four Gabor patches and was higher or lower at the target (orthogonal 

relationship between prediction feature and task-related feature). In the auditory experiment, 

four tones with two experimentally manipulated features (pitch and tone length) were 

presented. These four tones could either predict or not the pitch of the target, whereas the 

participants were asked to report the length of the target, which was either longer or shorter 

compared to the previous tones (orthogonal relationship between pitch and length of tone).  

In this thesis, I present results by measuring  evoked responses (ERF) both at the sensor as well 

as the source space. This is followed by machine learning-based multivariate pattern analysis 

techniques like time-resolved decoding (Carlson et al., 2019; Cichy et al., 2014).  
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1.2  Neuroanatomy of Visual and Auditory system 

Neuroanatomy of Visual System 

Vision depends on the light reflected from the objects passing through the cornea and the lens. 

The light combines to produce a clear image of the objects around us on a sheet of 

photoreceptors called "retina." Similar to a camera, which projects a flipped image, i.e., objects 

above the center are projected to the lower part, and objects below the center are projected to 

the upper part, images on the retina are also reversed. The retina transmits information via the 

optic nerve in the form of electrical signals to different parts of the brain (including the occipital 

cortex), which process the image and allow us to see the visual objects around us. 

 

Figure 3:  Visual system showing the beginning of vision process through cornea and lens, to retina and then to LGN 

via optic nerve.  Figure taken from BrainFacts.org 
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Thus, the visual system processing begins by comparing the amount of light impacting on a 

small part of the retina with the amount of surrounding light. Visual information from the retina 

is then transmitted through the lateral geniculate nucleus (LGN) of the thalamus to the primary 

visual cortex (often called V1) located in the backside of the human brain (occipital lobe).  

Although the visual processing mechanisms are not still completely understood, it has been 

argued that visual processing takes place in two cortical pathways called the dorsal pathway 

and ventral pathway. The dorsal pathway, which stretches from the occipital lobe to the parietal 

lobe, also shares some of the areas with the ventral pathway. The dorsal pathway has been 

mainly reported to play a role in visually guided behavior; it is very sensitive to high temporal 

frequencies, motion,  maintains low consciousness level, and process information faster 

compared to the other pathway. The dorsal pathway mainly deals with objects' locations and 

motions, so it's often called the "where" stream. The ventral pathway, which is associated with 

object recognition and form representation, is also called the "what" stream. This pathway is 

connected to the medial temporal lobe (related to memory storage), the limbic system (related 

to emotions), and eventually with the dorsal pathway (related to object locations). Neurons in 

LGN project to V1 sublayers 4Cβ, 4A, 3B, and 2/3a. From there, the information goes to V2 

and V4 to the areas of the inferior temporal lobe (i.e., PIT: posterior inferotemporal, CIT: 

central inferotemporal, and AIT: anterior inferotemporal). Moving along the mainstream from 

V1 to AIT, receptive fields increase their latency, size, and the complexity of their tuning. All 

these brain areas follow a processing hierarchy. 
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Figure 4: Dorsal and Ventral visual pathway.  Image taken from (https://www.perkins.org/higher-order-visual-

pathways-and-the-cvi-brain/). 

 

 

Neuroanatomy of Auditory system: 

The human ear is grouped into three parts: the outer ear, the middle ear, and the inner ear. The 

outer ear is the external portion of the ear, consisting of the pinna and the ear canal. This part 

gathers sound waves and guides them to the middle ear. The middle ear has three tiny bones 

(malleus, incus, and stapes), called the ossicles. These three bones form a connection from the 

eardrum to the inner ear. As sound waves hit the eardrum, the eardrum moves back and forth, 

causing the ossicles to move. As a result, the sound wave is converted to a mechanical vibration 

transferred to the cochlea. The cochlea is part of the inner ear with a watery fluid (called 

perilymph), which moves in response to the vibration. As the fluid moves, thousands of hair 

cells located on the basilar membrane in the cochlea sense the vibration and convert that 

movement to electrical signals communicated via neurotransmitters to thousands of nerve cells. 
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Figure 5: Different parts of Ear and cochlear tonotopy. Figure taken from 

https://es.yamaha.com/es/products/contents/proaudio/docs/audio_quality/04_audio_quality.html) 

 

The hair cells are tuned to specific frequencies based on their location in the cochlea. In this 

way, lower frequencies cause movement in the base of the cochlea, and higher frequencies 

work at the apex. This characteristic is known as cochlear tonotopy. The cochlea is capable of 

interpreting sound in terms of frequencies (between 20 Hz and 20.000 Hz) and intensity 

(between 0 decibels (dB) sound pressure level (SPL) and 120 dB SPL). Nerve impulses 

generated in the inner ear travel along the cochlear nerve (acoustic nerve) and enter the 

brainstem at the lateral aspect of the lower pons. Auditory fibers from more basal areas of the 

cochlea reach dorsomedial parts, and neurons from more apical parts project to the ventrolateral 

parts of the medial geniculate nucleus in the human brain.  

The human auditory cortex represents around 8% of the surface of the cortex. The auditory 

cortex (figure 6) is located along the superior temporal gyrus (STG). Human auditory cortex is 

hierarchically organized with a core or primary auditory cortex, surrounded by non-primary 

belt and parabelt regions.  
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Figure 6: The Auditory cortex, reflecting Primary auditory cortex (Peach color adjacent to green color), Angular 

gyrus (orange), Supramarginal gyrus (yellow), Broca area (sky blue) and Wernicke area (green). Image taken from  

https://mriquestions.com/language.html  

 

The primary auditory cortex lies in STG and extends into the lateral sulcus and the transverse 

temporal gyri (also called Heschl's gyri). Primary auditory cortex passes the auditory 

information to Wernicke area, where the auditory information is passed to two cortical 

pathways: ventral and dorsal (similar to visual domain). The ventral cortical pathway (shown 

by red dotted line in figure 6) carries semantic information, which is important for determining 

the meaning of language and travels from the rostral pole of the temporal lobe to the 

occipitotemporal cortex. The dorsal cortical pathway (shown by blue dotted line in figure 6) 

carries phonological information about sounds from the superior temporal cortex to the inferior 

frontal cortex, which aids the individual in understanding segments of speech, learning 

vocabulary, and understanding articulation of words. 
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Chapter 2: Methods  
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2.1 Magnetoencephalography 

This section will mainly describe the neuroimaging modality (i.e., Magnetoencephalography, 

MEG) used in the present thesis. I will explain the MEG instrumentation, data preprocessing 

methods (maxfilter, artifact rejection & ICA), and data analysis methods (evoked analysis, 

source reconstruction, and MVPA) used in this thesis. 

Brain waves were first described in humans by Hans Berger (Berger, 1929) at the end of the 

1920s, and their dependence on the behavioral state (e.g., wakefulness, sleep) and sensory and 

cognitive processing has since been elucidated by a large body of research.  

Many neuroimaging methods have been developed, and many of them are currently used in 

different cognitive and clinical neuroscience applications. These methods can be classified into 

broader categories including invasive methods such as Electrocorticography (ECoG), Low 

Field Potentials (LFPs), Single Cell recording, Positron Emission Tomography, stereo 

Electroencephalography (sEEG). All these invasive methods provide direct recording of brain 

activity but require a lot of surgical expertise, animal care, maintenance, risk of mortality, and 

recovery time after surgery. Some methods like PET even need a radiotracer that has harmful 

effects on the body in a few cases.  

The opposite category of such methods is defined non-invasive and include scalp 

Electroencephalography (EEG), which records the electrical activity of the brain; 

Magnetoencephalography (MEG), which measures the magnetic field generated from neuronal 

communication in the brain; Magnetic resonance Imaging (both functional and structural) 

whose functional component measures the change in oxygenated and deoxygenated blood 

(called BOLD response); Computer tomography Scanning (CT-SCAN) which measures the 

anatomy in the brain using x-rays and generates a tomographic image.  
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All these methods can be further classified in terms of their resolution, either spatial resolution 

or temporal resolution. Spatial resolution is the capability of any imaging modality in 

discriminating between brain activity between two brain areas. The lower the spatial resolution 

of a modality, the better that modality can differentiate between activity from close regions. 

For example, if a modality has a spatial resolution of 5 mm, that means it can differentiate the 

brain activity generated from brain areas that are at least 5 mm apart. Similarly, temporal 

resolution is the capability of a modality to discriminate between brain activity generated at 

two different time points. For example, if there is any modality with a temporal resolution of 5 

milliseconds, that means that such modality can differentiate the brain activity that emerged at 

least five milliseconds apart. PET and MRI are considered to have an excellent spatial 

resolution (~ 1 mm), but they have a very low temporal resolution as the oxygenated blood 

takes few seconds to reach brain areas that are active during a task. However, EEG is 

considered to have an excellent temporal resolution (~ 1 millisecond) but has a poor spatial 

resolution (~2 centimeters or more). Of all these neuroimaging modalities, MEG provides the 

best compromise over the other methods as it is non-invasive, has an excellent temporal (~ 1 

millisecond) and good spatial resolution (~ 5 mm). Moreover, MEG provides a direct estimate 

of the measured neural activity. On the contrary, other methods like fMRI and PET provide an 

indirect estimate of neural activity derived from neurovascular coupling. 

 

In short, Magnetoencephalography is a non-invasive brain imaging technique for investigating 

human brain activity. It allows the measurement of ongoing brain activity on a millisecond-by-

millisecond basis, and it unveils where brain activity is produced. MEG signals were first 

measured in 1968 by Dr. David Cohen at the University of Illinois. He used a copper induction 

coil as the detector in a magnetically shielded room, which reduced the magnetic background 

noise. However, the measured signal was still very noisy. Dr. Cohen later moved to 
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Massachusetts Institute of Technology, Massachusetts, USA, and built a better magnetic 

shielded room and measured the new superconducting quantum interference devices (SQUIDs) 

developed by James E Zimmerman. Using SQUIDs in a shielded room proved fruitful and is 

currently being used by most MEG manufacturers. 

 

 

Figure 7: The figure shows the first MEG measurement in a shielded room by Dr. Cohen (left) and the modern MEG 

machines (center and right). 

 

What do we measure with MEG:  

The MEG and EEG are mainly used for measuring the temporal dynamics of brain activity. 

They are unrivaled in terms of the precision of their temporal resolution, i.e., milliseconds or 

lower. But what makes EEG and MEG so different? One instrument (EEG) can be purchased 

for a few thousand euros, whereas a MEG machine costs millions of euros. MEG machines 

yield very high maintenance costs since they require helium refills to cool down the sensor 

superconducting materials once in a while. The helium gas adds to the cost of MEG, and the 

natural concern is if this higher cost of equipment and maintenance is justified. Does MEG 

provide substantial brain-related evidence compared to EEG? The answer to such questions is 

"YES." EEG measures the change in electrical potential related to activity in the human brain, 
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which travels to the scalp. Source localization of this activity is mainly limited by the distortive 

effects of the intervening structures, such as dura, skull, and the different tissue types in the 

human brain, which severely hamper efforts to localize the signal source precisely. On the other 

side, MEG measures the magnetic field changes induced by intracellular current flow. The 

direction of this field obeys the 'right-hand rule' in Ampère's law applications. These magnetic 

fields that pass through the dura, skull, and scalp are relatively unaltered. This technique thus 

offers a non-invasive method to 'listen' to brain activity during rest and task conditions. This - 

from the subject's perspective - feels safe, painless, and quick to set up. This technique does 

not require any gel or impedance checking method as used in EEG, despite measuring at several 

hundred channels at a time. MEG data combined with mathematical modeling and advanced 

signal processing methods enable localization of sources while recording at several kilohertz 

sampling frequencies. 

 

The magnetic field measured by MEG is relatively tiny (femtotesla unit) in strength. To get an 

idea of the order of magnitude of this signal, below I report a comparison showing different 

magnetic field strengths available around us. An MRI machine has a magnetic field of 1 Tesla 

(nowadays, this goes up to 3T, 7T for humans, and 9.4T for animals). If we reduce this by 1000 

magnitude, we have one millitesla (10 -3), which is the strength of a refrigerator magnet. If we 

further reduce this by a magnitude of 1000, we have one microtesla (10 -6), which is the strength 

of a microwave oven at 1 foot. Reducing this magnitude by another 1,000,000, we have one 

picotesla, the magnetic field of human brain activity: it ranges from picotesla (10 -12) to 

femtotesla (10 -15), depending upon different parameters of the source activity.  

Measuring such a small magnetic field requires highly sophisticated instrumentation, which I 

will explain in the following subsection. 
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2.2 MEG Instrumentation 

The MEG system used in the present thesis has the following components: First, a gantry that 

carries the sensor (SQUIDS); second, a magnetically shielded room (Faraday cage); third, an 

operator console. I will explain these in detail.  

 

1. MEG Sensors 

Superconducting Quantum Interference Device (SQUIDs) are extremely sensitive to magnetic 

field changes at very low temperatures, to be measured and converted into digital signals 

(‘quantization’). The first SQUIDs used for brain application were read via inductive coupling 

to an external circuit operating at radio frequencies. These single-junction SQUIDs are called 

rf-SQUIDs. Later, the two-junction dc-SQUID became popular when the semiconductor 

industry grew up and outperformed the rf-SQUID in many aspects, since it had a lower noise 

level, simpler electronics, and minimal crosstalk between channels. All these factors are 

essential for the success of the contemporary MEG systems. 

 

 

Figure 8: A) Magnetometer flux coil B) Planar Gradiometer coil C) Axial Gradiometer coil D) MEG dewar sketch 

design.  
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All modern MEG systems are equipped with dc-SQUIDs. SQUIDs are made relatively small 

to optimize their sensitivity, usually less than 1 mm in diameter. 

Due to this small surface area, SQUIDs sensors have poor coupling to the magnetic field. In 

MEG applications, SQUIDs cannot be used in their native form. Flux transformers are used to 

enhance the coupling that “squeeze” more magnetic flux into the SQUID loop by collecting it 

from a much larger area. This allows measuring different components of the magnetic field 

without altering the SQUID geometry. Flux transformers are also made of superconducting 

material and comprise a pick-up coil close to the brain. Based on the pick-up coils, the sensors 

are classified into different types. One such type is a “magnetometer” (Figure 8 A). 

Magnetometers measure the magnetic field component along the direction perpendicular to the 

surface of the pick-up coil. These are very sensitive to nearby sources (neural currents in the 

brain) as well as susceptible to faraway sources. An additional compensation coil may be added 

to reduce sensitivity to distant sources, which measures the interfering signal primarily. This 

type of configuration is called a “gradiometer” (Figure 8 B, 8C). 

Gradiometers are less sensitive (almost blind) to distant sources. The gradiometers can be 

classified as “axial gradiometers” (Figure 8B) or “planar gradiometers” (Figure 8C) based upon 

the arrangement of two coils of a gradiometer. The peak signal from an axial gradiometer 

comes from the sources around the rim of the sensor, whereas planar gradiometers signal peaks 

from the sources right beneath them. All these sensors and helium reservoirs are kept together 

and constitute the “Dewar.” Figure 8 D shows an outline of a dewar. The MEG facility 

available at BCBL consists of 102 pairs of triplet sensors. Each sensor comprises one 

magnetometer and two planar gradiometers. 
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2. Magnetically Shielded room 

The brain signal we aim to measure has a tiny magnetic field. These tiny magnetic fields can 

be contaminated by environmental magnetic fields (considered noise) such as power 

interference generated from electronic devices, personal computers (PC), and moving metallic 

carts. SQUIDs are very sensitive to such ambient noise. To reduce this noise, brain signals are 

measured inside a magnetically shielded room which suppresses most of the ambient noise 

present around the room. Below is an image of a magnetically shielded room installed at BCBL. 

 

 

Figure 9: Magnetically shielded room and MEG facility installed at BCBL 
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3. Operator Console 

This area is designated for all the hardware related to data acquisition. This mainly comprises 

MEG data acquisition computers, stimulus presentation computers and synchronization 

hardware. This area also includes a participant preparation section where the participant is 

briefed about the experiment, the head of the participant is digitized, and participants can 

change their clothes, etc. 

 

 

Figure 10: MEG operator console setup at BCBL  

 

2.3 MEG data acquisition and processing  

Participants for this thesis were selected from the web Participa database 

(https://www.bcbl.eu/participa/) maintained by the BCBL lab staff. This database consists of 

more than 3000 participants' data stored with their relative details (such as handedness, 

linguistic profile, education, etc). Participants having any metallic implant in their body, such 

as dental implants, cochlear implants, dental braces, metallic rods in bones, pacemaker, 

permanent nose pins, permanent earrings, etc., are excluded from participating in the MEG 
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experiments. Selected participants were free from any neurological disorder and had normal or 

corrected to normal vision through MEG compatible eyeglasses. The participants were also 

given clean cotton clothes to wear to avoid any trapped metallic components from the 

environment. For the data acquired in the post-COVID situation, the participants were also 

provided with MEG compatible masks and non-metallic hand sanitizer. The MEG area was 

sanitized and ventilated properly between successive participants.  

After changing the clothes, the participants were asked to sit on a head-digitization chair. Five 

head positioning coils (HPI) were fixed around the head to detect any head movement during 

the experiment. The data from these HPI coils is used to correct the head motion of the 

participant using maxfilter 2.1 (proprietary software from MEGIN, Finland) offline. Three 

fiducial points (Nasion, right, and left auricular points) were also digitized along with ~ 300 

points on the participant's head. All these digitization steps were performed to have an estimate 

of participant head shape. This head shape is later used to combine MEG data with forward 

models derived from MRI data and perform source localization (Magnetic Source Imaging). 

Since the eye movements and activity from the heart have a very strong electric signal, this 

largely affects the MEG data. Two pairs of electrooculogram (EOG) electrodes were placed 

horizontally and vertically around the eyes to capture the eye movements (both eye blinks and 

saccades) during the experiment. Two lead electrocardiogram (ECG) electrodes were also 

placed on the participant's body to monitor heart-beat.   

Although the MEG machines are designed with proper earthing safety measures to protect the 

participants from any shock during hardware failure, as an extra safety measure, two electrodes 

are put behind the participants' ears and connected with the MEG machine, which acts as a 

ground. 
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Artifacts correction in MEG data:  

Artifacts in MEG data can be classified broadly into two types. First, the artifacts generated 

from the sensors and the ambient noise. Second, the artifacts generated from biological signals 

(EOG, ECG, and muscle artifacts). For reducing the sensor noise, Maxfilter software (version 

2.2.12) is used. Maxfilter is specific for Elekta (now MEGIN) MEG machines only. The name 

comes from the famous Maxwell filtering method used as a spatial filtering technique. 

Maxfilter (i) suppresses magnetic interference coming from both outside and inside of the 

sensor arrays, (ii) helps in reducing measurement artifacts, (iii) transforms data between 

various head positions, and finally (iv) plays an important role in correcting head movements. 

Maxfilter uses the signal space separation (SSS) method (Taulu and Simola, 2006) that utilizes 

the basic properties of electromagnetic fields and harmonics functions to decompose the MEG 

signals into three main components:  

 

a) Bin: The brain signals originating within the sensor array (in space Sin) 

b) Bout: External disturbances arising out the sensor array (in space Sout) 

c) N: noise and artifacts generated by sensors and sources of interference close to the 

sensor array (in space ST) 
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Figure 11 : The three different magnetic fields present during the data acquisition and used in the Maxfilter process. 

(Figure adapted from Elekta Maxfilter user manual) 

 

The disturbing magnetic interference is suppressed by omitting the harmonic function 

components corresponding to high spatial frequencies, by neglecting the Sout-space component 

Bout, and by reducing the ST-space component N. The temporal extension of the SSS method 

(tSSS (Taulu and Simola, 2006)) significantly widens the software shielding capability of 

MaxFilter, because tSSS can also suppress internal interference tS^ arises in the sensor space 

or very close to it. 

Other artifacts which are generated from the participant's body are muscle artifacts, EOG, and 

ECG artifacts. Muscle artifacts arise mainly from the neck muscles, which are close to the 

MEG helmet. These artifacts have higher frequency and amplitude compared to the brain 

signal. These artifacts can be easily detected by z-transforming the whole signal and 

thresholding such z-transformed data. Below is an example of a muscle artifact detected using 

z-transformation in Fieldtrip software (“Automatic artifact rejection - FieldTrip toolbox,”). 
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Figure 12: Muscle artifact detection based on z-transform (figure adapted from Fieldtrip toolbox website)  

 

The same approach is also used for removing the jump artifacts which usually occur when a 

sensor or group of sensors have an amplification gain and the baseline of the sensor/sensors 

shifts.  

 

Two important artifacts which are quite common are EOG and ECG artifacts. These artifacts 

are mainly removed using signal separation techniques like Independent Component Analysis: 

FastICA (Hyvärinen and Oja, 2000). First, the MEG data from all the channels is decomposed 

into independent components. ICA has two main assumptions. First, that the input signal is 

composed of statistically independent components; second, these independent components 

should be non-gaussian in nature. ECG and EOG components derived from MEG data used in 

this thesis are shown in figure 13.  
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Figure 13: ECG and EOG artifacts with topographic plots from the data used in the thesis   

 

Data analysis methods:  

Behavioral Analysis  

Behavioral analysis (i.e., a measure of reaction times: RTs) has been a classical and widely 

used method in psychology and neuroscience for noninvasively studying mental processing: 

RTs are assumed to reflect the time required to complete the perceptual and motor-planning 

computations and to plan a response (Donders, 1969; Friston et al., 1996; Sternberg, 1969). 

This assumption appears justified by evidence that RTs are modulated by factors such as 

stimulus complexity, stimulus-response compatibility, number of potential responses, or 

required response accuracy (Fischman, 1984; Fitts, 1954; Henry and Rogers, 1960; Kaswan 

and Young, 1965). Generally, the mean response for a participant is calculated by averaging 

the reaction for all the trials. Later, the average responses for all participants can be statistically 

compared across conditions. The mean and standard deviation across conditions is generally 

reported. In fact, beyond the mean, an important parameter to consider is variance. ANOVA 

(analysis of variance) is a statistical method that splits an observed aggregate variability found 

in a data set into two components. First, the systematic factors that have a statistical influence 

on the data set, and second, the random factors that don’t have a statistical influence on the 

data set. Generally systematic factors affecting variance are typically the ones manipulated in 
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the experimental paradigms. Another important approach used in behavioral literature is linear 

mixed models that allow both fixed and random effects to be considered jointly and are 

particularly used when there is non-independence in the data, such as data arising from a 

hierarchical structure. 

In this thesis, I have reported the mean reaction times across the main experimental conditions, 

analyzed with linear mixed models (lmer toolbox implemented in R software).  

 

Evoked Analysis: 

Event-related fields (ERF) reflect neural activation that occurs at the same time (time-locked 

and phase-locked) with respect to stimulus onset or task onset for all the trials of an experiment. 

Evoked responses typically develop within a few hundred milliseconds from the stimulus 

presentation time or close to the execution of the task. Evoked single-trial responses may be 

detectable in some cases (such as open eyes vs closed eyes); however, some tens or hundreds 

of trials are generally used to yield an average evoked response with a good signal-to-noise 

ratio. The earliest short-latency salient responses are typically transient (short-lasting) and 

tightly time-locked to the stimulus. This yields sharp responses even when averaged across 

several trials. The longer latency responses tend to progressively increase in duration and 

exhibit more jitter to the stimulus timing; while averaged, they appear as sustained responses 

with a slow fade in and out phases. There are several evoked components (such as M100, 

M300, M400, etc.), which are already established as neural markers for different brain 

processing stages. In this thesis, I will only investigate M100 response (i.e., response to a 

stimulus peaking at ~100 milliseconds). In predictive processing literature, M100 has been 

related to the prediction error signals (Den Ouden et al., 2012; Phillips et al., 2015). If a 

stimulus is predictable, it is considered to have a reduced M100 peak (more prediction, less 

prediction error) compared to unpredictable stimuli (less prediction, more prediction error). 
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Such potential differences have been assessed statistically using a repeated-measure ANOVA 

(Dien, 2017) and cluster-based permutation test approach (Maris and Oostenveld, 2007).  

 

Source Reconstruction:  

A time window of interest is selected based on the statistically significant differences observed 

in the sensor space data, and then source reconstruction is computed in this time window only. 

Source reconstruction of the sensor data involves two stages. The first stage is generating a 

forward model based on either participant’s individual MRI or using a standard brain template. 

The forward model helps to understand how does a given individual source contributes to the 

sensor data. The second stage is creating an inverse model, which does an inverse mapping 

from sensor space data to individual sources by using the weights of the forward model. 

 

Forward Model: 

The initial step in solving the forward problem is to generate an individual volume conduction 

model of the patient's head using her/his structural T1 MRI image. The most common head 

models are spherical shell head models (de Munck and Peters, 1993). These models assume 

that the human brain is sphere-shaped. On the opposite, the realistic head model makes use of 

electrically conductive properties and geometric properties of the human brain. The 

information about the geometry of the brain is extracted from the structural MRI. In case there 

is no individual MRI, a brain template/atlas can also be used. While choosing a head model, it 

should be considered that electrophysiological signals (EEG) are affected by different tissue 

types (gray matter, white matter), skin, and hair, as the electric current is distorted by all these 

factors. In contrast, the magnetic field is unaffected by the anisotropic conductance of different 

tissues. So, a single shell head model is sufficient for creating a forward model for MEG. There 

is a wide range of realistic head models such as Boundary Element Method (BEM) (Fuchs et 
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al., 1998; Hämäläinen and Sarvas, 1989), Finite Element Method (FEM) (Thevenet et al., 

1991), and finite difference method (FDM) (Hallez et al., 2005). Before computing a forward 

model, the structural data (i.e., MRI) and functional data (i.e., MEG) must be aligned in a 

common spatial frame. The process is called MEG-MRI coregistration. While recording the 

functional data, the participant’s head is digitized for three fiducial points (i.e., Nasion, Right 

Pre-Auricular (RPA), and Left Pre-Auricular (LPA)), and around three hundred (300) points 

are marked virtually on the participant’s head. These points help to get a shape of the head 

which is later coregistered with structural data. This coregistration can be done either manually 

by matching fiducial points and head points or can be done via automated methods like the 

Interactive closest point algorithm (ICP) (Rusinkiewicz and Levoy, 2001).  

The next step after generating a head model is to compute the lead field. The lead field operator 

(L) embodies all the biophysical and anatomical assumptions one needs to account for in the 

forward model. The L links the current density J in the brain at location rJ with orientation θJ 

to the magnetic field B measured at sensor location r. To define the location (x, y, z) of each 

current, it is necessary to segment the volume of the brain (often called the source spaced) in 

voxels of constant size (e.g., 5 × 5 × 5 mm voxels). The ɛ models an additive measurement 

noise at sensor location r, which is usually assumed to follow a Gaussian distribution with zero 

mean and a parameterized variance structure (Mattout et al., 2006).  

 

B(r)=L(r,rJ,θJ)J(rJ,θJ)+ɛ(r)  

 

Significantly, the magnetic field varies linearly with current amplitude, and magnetic fields 

produced by several dipoles are simply additives due to the linearity of Maxell’s equations. 

Therefore, if B is an NB × 1 vector containing the magnetic field measured in all NB sensors, 
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is a Nɛ × 1 vector containing the noise measured in all Nɛ sensors and J is a NJ × 1 vector 

containing the amplitude of all NJ active sources, one can write 

 

 B = LJ + ɛ ,  

 

where L is a NB × NJ lead field matrix. 

 

 

Inverse Model: 

Inverse modeling is an ill-posed problem, i.e., it may have non-unique (more than one) and 

unstable solutions which are highly sensitive to noise. Brain signals like MEG are naturally 

contaminated by noisy nuisance components (such as environmental noise and human body 

physiological artifacts), which should not be accounted for the inverse modeling of the brain 

activity. Several methods have been used to compute sources of MEG activity in sensor space. 

One such method assumes that the measured magnetic signal is generated by a single dipole, 

e.g., so-called equivalent current dipole (ECD), which is characterized by a set of parameters. 

Precisely, the ECD's position, orientation, and amplitude are interactively estimated to explain 

the measured sensor-level MEG signal at best. The main parameter assessing the certainty of 

an ECD model is the goodness of fit (GoF), defined as:  

 

Goodness of Fit (GoF) =    1 − ‖$%	$'‖(
‖$‖(	  

 

The GoF quantifies the agreement between the measured MEG signals B and the B̂ signals that 

would be produced by this ECD at a given time.  
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Another popular approach to solve the inverse problem is to assume that the recorded brain 

MEG signal is generated by multiple sources distributed through the source space. One of the 

challenges for distributed inverse methods is that the number of currents (sources) by far 

exceeds the number of MEG sensors. Therefore, an infinite number of current distributions can 

explain the observed MEG signals. The non-uniqueness is a situation where an inverse problem 

is said to be ill-posed. This question has been addressed with the physics of ill-posedness and 

inverse modeling, which formalize the necessity of including additional mathematical and 

physical constraints in the model to find a unique solution. Different contextual information 

assumes a family of inverse solution methods, e.g., among others, minimum norm (MN) and 

beamforming estimations.  

In the case of the beamforming approach (used in the present thesis, (Veen et al., 1997)), it is 

assumed that all sources are uncorrelated. For that, a weight vector w(rJ) to apply to B is 

estimated through the following minimization problem.  

 

w(rJ) = argminw E(ǁwBǁ2) constrained to wL(rJ) = I  

 

In this minimization problem, the constraint ensures that the activity coming from the source 

located in rJ is reconstructed with unit gain while minimizing the power from other sources. If 

C denotes the NB × NB covariance matrix of the magnetic field (B) and L(rJ) the NB × Nθ 

leadfield matrix corresponding to sources at location rJ with Nθ orthogonal source orientations 

(Nθ ε {1,2,3}),  

 

w(rJ) = [L(rJ)TC−1L(rJ)]−1L(rJ)TC−1  
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By evaluating the activity in all sources positioned on a grid covering the brain, one can 

compute a topographic map of current densities. Source reconstruction algorithms project 

sensor space data to source space to localize neural activity within the brain. In this way, 

spatiotemporal maps of cerebral activity can be produced to visualize the brain regions 

involved in performing a specific task.  

 

MVPA: Time-resolved decoding  

Evoked responses have been widely used to explore the neurocognitive foundations of a given 

effect. However, evoked responses do not provide information about how the brain is sensitive 

to specific features of a stimulus, a factor that is usually removed while averaging the data. 

Multivariate pattern analysis techniques (MVPA or “decoding methods”) have gained 

popularity as they consider neural responses as a pattern of activity that enables the 

investigation of different time-varying brain states that a system or cortical field can generate. 

These methods provide an advance over the univariate methods. The first MVPA study which 

became popular came from Haxby and colleagues (Haxby et al., 2001) and backed-up by two 

studies in nature neuroscience (Haynes and Rees, 2005; Kamitani and Tong, 2005) drastically 

changed the field of MVPA methods application in functional Magnetic Resonance Imaging 

(fMRI). Using MVPA, cognitive scientists became capable of decoding stimulus information 

in the human brain. The techniques combined with non-invasive imaging modality (fMRI) 

enabled scientists to scrutinize the stimuli specific (or feature specific) information in different 

brain areas. However, human brain processing is very efficient in terms of temporal processing. 

It takes us a few milliseconds to recognize a friend, family members, objects, etc. Non-invasive 

imaging techniques having a good temporal resolution (EEG and MEG) combined with MVPA 

techniques have gained a lot of popularity in recent years and are used in several applications 

like Brain-Computer Interfaces, lie detection, and detection of brain disorders. There are a 
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variety of domains where MVPA methods can be used such as time series, time-frequency 

representation, wavelet, and ICA-based decomposition, connectivity, etc. To limit the scope of 

this thesis, I will limit my MVPA analysis only to time-series (decoding evoked responses). 

The core concept behind time-resolved decoding is explained in figure 14. I will explain time-

resolved decoding with a hypothetical experiment. First, consider an imaging modality (either 

EEG or MEG) which records electrical currents (in case of EEG) or magnetic field (in case of 

MEG) continuously. In every trial, two images, either house or a human face, are recorded, and 

each image is presented 40 times. The data is preprocessed to remove the artifacts (eye blinks, 

ECG, muscle, etc., described above). Every participant has a data matrix containing the number 

of trials (ntrials, 80 in given example), sensors (Msensors, 204 gradiometers in given example), 

and time points (tk where k refers to the number of time points, 100 time points in given 

example). To understand, let's assume the data is recorded with just one sensor. For a single 

sensor classification, the amplitudes at a given time point (let’s assume first time point) act as 

classification features. So, for a given time point, the amplitude values of 80 trials at a given 

sensor and given time. The data is divided into different chunks called k-fold (generally 5-fold) 

to avoid overfitting of classifiers, and the classifier uses most of the data (4-folds) for training 

and the rest of the data for testing. This process is repeated over all the sensors and all the time 

points and averaged across sensors. This gives a classification accuracy curve which represents 

a classification accuracy at every time point. The concept of time-resolved decoding is 

illustrated in the figure below. 



60 
 

 

Figure 14: A) A standard EEG recording electrode template. B) All the channels showing data as a function of time 

C) Plot of data from two different conditions and separating using a linear decision boundary D) Standard 4 fold 

cross validation illustration. E) Time resolved decoding accuracy curve. ( Figure taken from (Carlson et al., 2019)).  
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Chapter 3:  Expectation Suppression in Vision 
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3.1 Introduction:  

In this experiment, I aim to investigate the expectation suppression in the visual domain, and 

how expectation suppression is affected by the context (“what”) and timing (“when”). To do 

so, I designed a 2-by-2 factor experimental paradigm. The first manipulated factor was the 

context/identity of the presented stimuli (“what” manipulation), which either provides stronger 

predictions about the target (by presenting a series of cues rather than one cue reported as in 

previous studies) developing an expectation about the next stimuli. The second factor was the 

timing (“when” manipulation), so that the participants could either predict the onset of next 

incoming stimuli, or not. To avoid the interacting effects of prediction and attention driven by 

the task assigned to the participants, an orthogonal relationship between different features was 

manipulated (i.e., predictions generated for one feature and task associated to another feature). 

This also allows us to generate a prediction versus no prediction paradigm, as there was no 

violation of predictions involved. Detailed explanation about the experimental paradigms is 

provided in the Methods and Material section of this chapter.   

The issues addressed by this experiment are the following:  

i) How expectation suppression is affected by “what” manipulation. Will the 

suppression increase as the predictability about the next stimuli becomes 

stronger and stronger in a sequence? What are the brain areas that are showing 

this suppression in neural responses?  

ii) How does the temporal uncertainty (when factor) affect the expectation 

suppression? Will the predictable timing increase the suppression carried out by 

the what manipulation or attenuate the suppression effect? What are the brain 

areas that will show this suppression?  
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iii) How does the temporal affect the stimulus specific decoding?  Can we decode 

the predictable feature across the sequence of Entrainers? Can the predictions 

generated by the Entrainers be decoded in the pre-stimulus time region ?  

 

Considering all the goals mentioned above, we used the MEG, which has an excellent temporal 

resolution and good spatial resolution, making it a perfect choice for mapping the spatio-

temporal manipulation in our experimental design. Details about MEG modality have already 

been explained in chapter 2.  
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3.1 Methods and Materials: 

This section's methods, results, and discussion were published in the NeuroImage (Nara et 

al., 2021) journal in May 2021. 

Participants: 

Twenty healthy participants were recruited from the BCBL Participa website 

(https://www.bcbl.eu/participa/). Out of twenty, four participants were rejected from the study 

for having a lot of artifacts (more than 50 % of trials). Sixteen participants (7 females) were 

included in the present study (age range: 19 – 31 years old; M = 24.8 y.o. ; SD = 3.6 y.o.). The 

ethical committee and scientific committee of the Basque Center on Cognition, Brain and 

Language (BCBL) approved this experiment (following the principles of the Declaration of 

Helsinki). Participants were informed about the experiment and MEG imaging modality; all 

the participants gave written informed consent and were financially compensated for their 

valuable contribution to the experiment.  

 

Experimental Design:  

We presented a series of Gabor patches manipulating two dimensions, i.e., orientation 

(expressed in degrees) and spatial frequency (expressed in cycles per degree of visual angle, 

CPD). All the Gabors were presented in the center of the screen with a gray background using 

a projector screen, while optimum luminance was maintained in the MEG gantry. Every trial 

began with a fixation cross followed by a sequence of four Gabor patches (called Entrainers 

herewith) presented for 200 ms each sequentially with an inter stimulus interval of 200 ms. A 

fifth Gabor (called Target herewith) was presented for 200 ms (after an inter stimulus interval 

from the fourth Gabor of 600 ms), and participants had to perform a task associated with it. 

The Entrainers had an intermediate number of cycles per degree (40 CPD) for visual angle: 
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participants had to detect if the target had either a higher (60 CPD) or a lower (20 CPD) with 

respect to the Entrainers. There were four manipulations in the experimental design (Figure 

15): a) first, the orientation of the Target Gabor could be either horizontal or vertical; b) second, 

the Target Gabor's CPD could be higher or lower compared to the CPD of the the previous four 

Entrainers; c) third, the orientation angle of the Entrainers could be either predictable (i.e., 

scaled in fixed step angle of either 15 or 30 degrees: for example, 30, 45, 60  75 and 90 degrees 

of orientation angle) or not (for example 60, 30, 75, 45 and 90 degree); d) fourth, the timing 

between all the Entrainers and the Target could be either predictable (i.e., fixed interstimulus 

interval-ISI of 200 ms in between the first four Entrainers and 600 ms between Entrainer 4 and 

Target) or unpredictable (varying interstimulus interval ranging between 70-330 ms for first 

four Entrainers and 450-770 ms between Entrainer 4 and Target).  

 

Participants' task was to determine whether the Target Gabor had a higher or a lower CPD with 

respect to the Entrainers. Participants responded by pressing left or right MEG compatible 

button presses (counterbalanced and randomized across participants). Depending on the 

orientation and interstimulus timing between all the Entrainers and the Target, the trials were 

divided into four conditions (Figure 15): what + when, when, what, and random. In the first 

condition (i.e., when + what ), all the Entrainers had a predictable timing (i.e., fixed ISI of 200 

ms), and the orientation angle of the Target Gabor was also predictable based on the previous 

Entrainers. In the second condition (i.e., when condition), the timing between all the Entrainers 

and the Target Gabor is predictable, but the Target Gabor's orientation was unpredictable. In 

the third condition (i.e., what condition), the Target Gabor's orientation was predictable, but 

the timing was unpredictable between all the Entrainers and the Target Gabor. In the fourth 

condition (i.e., random condition), both the Target Gabor's orientation and the timing between 

Entrainers and the Target Gabor are not predictable. A total of 160 trials were presented for 
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each condition (40 horizontal targets with higher CPD, 40 horizontal targets with lower CPD, 

40 vertical targets with higher CPD, 40 vertical targets with lower CPD), leading to a total of 

640 trials per participant.  
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Figure 15: Experimental design. A) Orientations and timing of upcoming Entrainers and target are predictable 

(what+when condition). B) Orientations of upcoming Entrainers and target are not predictable but the timings are 

predictable (when condition). C) Orientation of upcoming Entrainers and target are predictable but the timing is 

not predictable (what condition). D) Orientations and timing of upcoming Entrainers and target are not predictable 

(random condition). Abbreviations: E1 – Entrainer 1, E2 – Entrainer 2, E3 – Entrainer 3, E4 – Entrainer 4, ISI – 

Inter Stimulus Interval. 

 

 

 

 



68 
 

Data acquisition and preprocessing:  

MEG data were acquired in a magnetically shielded room using the whole-head MEG system. 

The MEG system contains 102 sensor triplets (each comprising a combination of one 

magnetometer and two orthogonal planar gradiometers) uniformly distributed around the 

participant's head. Head position inside the MEG helmet was continuously monitored using a 

set of five Head Position Indicator (HPI) coils. Each coil's location was defined relative to the 

anatomical fiducials (nasion, left and right preauricular points) with a 3D digitizer (Fastrak 

Polhemus, Colchester, VA, USA). This procedure was critical for head movement 

compensation during the data recording session. Digitalization of the fiducials points along 

with ~300 additional points evenly distributed over the scalp of the participant's head was used 

during data analysis to spatially align the MEG sensor coordinates with T1 MRI images 

recorded on a 3T MRI scanning facility installed at BCBL(Siemens Medical System, Erlangen, 

Germany). MEG recordings were acquired with a sampling rate of 1 kHz and a bandpass filter 

at 0.01-330 Hz. Eye movements were recorded with two pairs of electrodes in a bipolar 

montage, one placed on the external chanti of each eye (horizontal electrooculography 

(hEOG)) and another, above and below the right eye (vertical EOG). Similarly, cardiac rhythm 

(ECG) was also monitored using two electrodes, one placed on the right side of the participants' 

abdomen/chest and another, below the left clavicle.  

Continuous MEG data were preprocessed using the temporal Signal- Space-Separation (SSS) 

method (Taulu and Simola, 2006) which suppresses external interferencing noise. MEG data 

were also corrected for head movements, and bad channel time courses were reconstructed 

using interpolation algorithms implemented in the maxfilter software. Subsequent data 

analyses were performed using Matlab R2014b (Mathworks, Natick, MA, USA).  
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Reaction times:  

Participants were asked to indicate if the CPD of the Target Gabor was higher or lower 

compared to the previous Entrainers. We made sure that accuracy was high and comparable 

across conditions. The response time (RT) was calculated for all the four conditions (i.e., what 

+ when, when, what and random). The response times longer than 1500 ms were considered 

as outliers and were removed from the analysis. The mean reaction time and standard deviation 

is computed for each experimental condition.  

 

Sensor level ERFs:  

MEG trials were first corrected for jump and muscle artifacts using standard coherence-based 

automated scripts using Fieldtrip toolbox (Oostenveld et al., 2011) implemented in MATLAB 

2014B. EOG and ECG artifacts were identified using Independent Component Analysis 

method (ICA) and the linearly subtracted from the MEG recordings. The ICA decomposition 

(30 components extracted per participant) was performed using the FastICA algorithm 

implemented in the Fieldtrip toolbox. ICA components maximally correlated with ECG and 

EOG recordings were automatically removed. On average, two components were removed per 

participant. The artifact-free data were bandpass filtered between 0.5 and 45 Hz. Trials were 

segmented time-locked to each of the Entrainers (Entrainers 1, 2, 3, and 4) and the target. The 

trial segments were grouped together for each entrainer and target, and then averaged to 

compute the ERFs. For each planar gradiometer pair, ERFs were quantified at every time point 

as the Euclidean norm of the two gradiometer signals. Baseline correction was also applied to 

the evoked data based on the 400 ms of data prior to the onset of the fixation cross presented 

at the beginning of each trial. 

In brief, I first performed the analysis of the sensor level data to establish expectation 

suppression and its interactions with different kinds of predictability. We then move on to a 
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more detailed analysis of the functional anatomy of expectation suppression using source 

constructed data.  

We applied an ANOVA to sensor-level data to explore the influence of our experimental 

factors on visual ERFs. First, we extracted ERF amplitudes in the set of five occipital sensors 

that had shown maximum response to the visual localizers. We then selected the time window 

classically associated with the initial visual evoked response (85–135 ms post stimulus). A 

three-way repeated measures ANOVA was computed in JASP (JASP Team, 2020) with these 

amplitude values as dependent variables and the following factors: entrainer (four levels; 

corresponding to Entrainers 1, 2, 3, 4); what (two levels; predictable/unpredictable entrainer 

and target orientations); and when (two levels; predictable/unpredictable timing of Entrainers 

and target). Significant interactions (specifically, the triple interaction "entrainer * what * 

when") were further investigated through theoretically relevant pairwise comparisons.  

Pairwise comparisons between conditions were performed using a cluster-based permutation 

test (Maris and Oostenveld, 2007). A randomization distribution of cluster statistics was 

constructed for each subject over time and sensors and used to evaluate whether conditions 

differed statistically over participants. In particular, t-values were computed for each sensor 

(combined gradiometers) and each time point during the 0–270 ms time window, and were 

clustered if they had t-values that exceeded a t-value corresponding to the 99.99th percentile 

of Students t-distribution, i.e. a two-tailed t-test at an alpha of 0.01, and were both spatially and 

temporally adjacent. Cluster members were required to have at least two neighboring channels 

that also exceeded the threshold to be considered a cluster. The sum of the t-statistics in a sensor 

cluster was then used as the cluster-level statistic, which was then tested by permuting the 

condition labels 1000 times. 

 



71 
 

Four different comparisons were carried out. In the first comparison, we contrasted ERFs for 

the when and the what+when conditions. This comparison evaluated the effect of orientation 

predictability when the timing of the Entrainers and target were predictable. In the second 

comparison, we compared ERFs for the random and what conditions. This comparison 

evaluated the effect of orientation predictability when timing was unpredictable. These two 

comparisons mainly focused on the main effect of orientation predictability (i.e., the what 

manipulation) revealed by expectation suppression. We then compared the ERFs for the 

what+when and what conditions. Here we directly contrasted these two predictable orientation 

conditions to evaluate the effect of temporal predictability on stimulus predictability. The final 

comparison contrasted ERFs in the when and random conditions. This comparison was 

performed to analyze the effect of temporal predictability in the absence of orientation 

predictability. 

 

Source level ERFs: 

MEG-MRI co-registration was performed using MRIlab software (Elekta Neuromag Oy, 

version 1.7.25). Individual T1-weighted MRI images were segmented into scalp, skull, and 

brain components using the segmentation algorithms implemented in Freesurfer software 

(Martinos Center of Biomedical Imaging, MQ) (Dale et al., 1999). The source space was 

defined as a regular 3D grid with a resolution of  5 mm and the lead fields were defined using 

a realistic single-shell Boundary element model (BEM) head model (Fuchs et al., 1998). Both 

the planar gradiometers sensors and magnetometers sensors were used for inverse modelling. 

The covariance matrix was estimated combining the information embedded in the pre-stimulus 

time range (i.e., -400–0 ms prior to the cross fixation) and the post-stimulus  time range (i.e., 

0–400 ms after the presentation of Gabor). Whole brain source activity was estimated using 

linearly constrained minimum variance (LCMV) beamformer approach (Veen et al., 1997). 
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LCMV beamformer was computed on the evoked data in the time period 85–125 ms post-

stimulus and in the pre-stimulus interval for all the four conditions at Entrainer 4. Source 

reconstruction was performed only at Entrainer 4 as the strongest effect of prediction were 

present at E4. For each source in the brain, the neural activity index was calculated as the ratio 

of the mean power in the post-stimulus and the pre-stimulus interval. Brain maps containing 

neural activity index (NAI) values  were transformed from the individual MRIs to the standard 

Montreal Neurological Institute (MNI) for computing the group level analysis. For that, we 

applied a non-linear transformation using the spatial-normalization algorithm implemented in 

Statistical Parametric Mapping (SPM8) (Friston et al., 1994). The Freesurfer's tksurfer tool was 

used for visualizing the brain maps in the MNI space. For each condition and Entrainer, we 

obtained the NAI value and the MNI coordinates of local maxima (sets of contiguous voxels 

displaying higher power than all other neighboring voxels) (Bourguignon et al., 2018). NAI 

values were compared between conditions (e.g., when vs. what + when, random vs. what, what 

vs. what + when and when vs. random ) using t- tests.  

 

MVPA: time-resolved decoding:  

Time-resolved within-subjects multivariate pattern analysis was performed to decode the 

feature specificity (i.e., the orientation angle and CPD of Gabor) from MEG data. This within-

subject classification has an advantage over other methods: the classification algorithm may 

leverage individual subject specific characteristics in neural patterns since the classifiers do not 

need to generalize across different subjects. For E1, E2 and E3, data were segmented from 50 

ms prior to 250 ms after the onset of the Entrainers. The time interval between E4 and the 

Target was longer than the time interval between the rest of the Entrainer. For this reason, E4 

data were segmented from 50 ms prior to 600 ms after the onset of the Entrainer. The artifact 

free clean data was segmented from -400 ms to 550 ms time locked to the Target. The data 
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were classified using a linear support vector machine (SVM) classifier with L2 regularization. 

The classifier was implemented in Matlab using the LibLinear package (Fan et al., 2008) and 

the Statistics and Machine Learning Toolbox (Mathworks, Inc.). We performed a binary 

classification of the orientation of each Gabor depending on the orientation of the subsequent 

Target. In other words, the class labels (i.e., horizontal or vertical) were derived from the Target 

orientation: if the Target orientation was horizontal, all the preceding orientation in the 

corresponding conditions were labelled as horizontal and vice-versa. Same approach was used 

for labelling the classes for CPD feature decoding. 

The data were down-sampled by a factor of five (i.e., new sampling frequency 200 Hz) prior 

to the classification. Pseudo trials were generated to improve the SNR by creating trials' bins, 

resulting in a set of 10 trials for each bin (Dima and Singh, 2018). This pseudo trial generation 

was repeated 100 times to generate trials with a higher signal to noise ratio. The data were then 

randomly partitioned using 5-fold cross-validation. The classifier was trained on 4 folds and 

tested on 1 fold and this process was repeated until each fold was left out once. The procedure 

of generating pseudo trials, dividing the data into 5 folds, and training and testing classifiers at 

every time point was repeated 25 times; classification accuracies were then averaged over all 

these instances to yield more stable estimates. To improve data quality, we also performed 

multivariate noise normalization (Guggenmos et al., 2018). The time-resolved error covariance 

between sensors was calculated based on the covariance matrix of the training set and used to 

normalize both the training and test sets in order to down weight MEG channels with higher 

noise levels. Cluster corrected sign permutation tests were applied to the accuracy values 

obtained from the classifier with cluster-defining threshold p < 0.05, corrected significance 

level i.e., cluster-alpha p < 0.01 .  
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3.3 Results 

Reaction times: 

what + when condition showed faster response time (727.5 ± 204 ms) while the random 

condition slower (752 ± 207 ms). In the when and the what conditions participants responded 

respectively after (737.4 ± 203) ms and (741.4 ± 204) ms. These data indicate that temporal 

predictability determines quicker responses (what + when > what & when > random). We fit a 

Linear mixed model (LMER) considering subjects and observations as random effects, and the 

fixed effects of what (orientation predictable or not), when (timing predictable or not) and their 

interaction as fixed effects. We observed a main effect of when (p<0.05).  

 

 

 

Figure 16: Reaction times distribution for CPD detection task across conditions 

 

Sensor level ERFs:  
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We first analysed the amplitude of the initial visual evoked response for 5 occipital sensors to 

determine how the two-by-two experimental design modulated visual responses across 

Entrainers. In the three-way ANOVA (details in Table 1), we observed a significant main effect 

of entrainer (p < 0.001) on the peak amplitudes of the ERFs. Interestingly, this factor interacted 

with the factor what (p < 0.001), suggesting that Gabor orientation predictability affected 

visual-evoked responses differently across Entrainers. We should point out that a main effect 

of what (p < 0.001) supported the observation that orientation predictability influenced visual 

processing. Importantly, the interaction between the three factors, i.e., Entrainers, what and 

when, was significant (p = 0.004). This triple interaction underlines the fact that timing 

uncertainty influenced the development of visual predictions across the sequence of four 

Entrainers.  

Figure 17 shows the sensor-level Event Related Fields (ERFs) time-locked to the onset of each 

Entrainer (E1, E2, E3 and E4) and Target (T) for the when and the what + when conditions. 

The amplitude of the ERFs was significantly (cluster p- value < 0.01) higher for the when 

compared to the what + when condition for E2, E3 and E4, but not for E1 or Target. The 

amplitude enhancement for the when compared to the what + when condition emerged within 

the [95 – 105] ms, [96 – 110] ms and [97 – 121] ms time intervals for the E2, E3 and E4 

respectively. This effect was located in occipital sensors for all the Entrainers. Figure 18 shows 

the sensor-level ERFs for the random and the what conditions. The amplitude of the ERFs was 

significantly (cluster p-value < 0.01) higher for the random compared to the what condition for 

E2, E3 and E4, but not for E1. The amplitude enhancement for the random compared to the 

what condition emerged within the [95 – 119] ms, [94 – 123] ms and [96 – 127] ms time 

intervals for the E2, E3 and E4 respectively. This effect was located in occipital sensors for all 

the Entrainers. It is worth noting that the comparison having temporal predictability (i.e., when 
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vs what + when ) involves more sensors compared to the comparison lacking temporal 

predictability.  

Since both the comparisons are significant from Entrainer 2 onward, we compared the 

orientation predictability with (what + when) and without temporal predictability (what). 

Figure 19 shows that the initial very early evoked activity (0–75 ms) at E1 is similar for both 

conditions. As we move across Entrainers such early difference increases and is statistically 

significant (p < 0.001) but it vanishes at the Target. Since our focus in this analysis is in the 

early evoked response to the visual stimulus showing expectation suppression effects, the time 

window for statistical comparison was selected from 75 to 135 ms. The amplitude enhancement 

for the what compared to the what + when condition emerged within the [106 – 124] ms time 

interval only at E4. This effect was located in occipital sensors. Figure 20  shows the sensor 

level results of the ERFs for the when and the random conditions. This last comparison also 

shows the difference in the very early evoked activity (p<0.001). This comparison does not 

show any significant results for the early visual response at any Entrainer.  

 
Table 1: Repeated measure ANOVA with the factors entrainer (four levels, one for 
each entrainer), what (two levels: orientation predictable or not) and when (two 
levels: timing predictable or not). 

 

   Sum of 
Squares  df  Mean Square  F  p  

entrainer   2.607e -22   3   8.691e -23   42.299   < .001   
what   3.430e -23   1   3.430e -23   65.203   < .001   
when   2.969e -24   1   2.969e -24   2.376   0.144   
entrainer * what   2.572e -23   3   8.572e -24   18.503   < .001   
entrainer * when   8.851e -25   3   2.950e -25   0.860   0.469   
what * when   3.032e -25   1   3.032e -25   0.833   0.376   
entrainer * what * when   2.277e -24   3   7.589e -25   5.073   0.004   
Note.  Type III Sum of Squares  
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Figure 17: Sensor level ERFs for the when and what+when conditions. A) For each condition (red, when; blue, what+when) 

and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related fields (ERFs) in 

representative channels located above occipital regions (MEG02042/3, MEG2032/3, MEG2342/3, MEG2122/3, and 

MEG1922/3). Gray boxes represent time points where the amplitude of the ERFs was higher (p < 0.01) for the when than the 

what+when condition. B) Sensor maps of the ERF difference between the when and what+when conditions in temporal 

windows around the amplitude peak value. Sensors showing significant differences (p < 0.01) are highlighted 
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Figure 18: Sensor level ERFs for the random and what conditions. A) For each condition (orange, what; green, random) and 

stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related fields (ERFs) in 

representative channels located above occipital regions (MEG02042/3, MEG2032/3, MEG2342/3, MEG2122/3, and 

MEG1922/3). Gray boxes represent time points where the amplitude of the ERFs was higher (p < 0.01) for the random than  
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the what condition. B) Sensor maps of the ERF difference between the random and what conditions in temporal windows 

around the amplitude peak value. Sensors showing significant differences (p < 0.01) are highlighted. 
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Figure 19: Sensor level ERFs for the when and what+when conditions. A) For each condition (orange, what; blue, 

what+when) and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related fields 

(ERFs) in representative channels located above occipital regions (MEG02042/3, MEG2032/3, MEG2342/3, MEG2122/3, 

and MEG1922/3). Gray boxes represent time points where the amplitude of the ERFs was higher (p < 0.05) for the when than 

the what+when condition. B) Sensor maps of the ERF difference between the what and what+when conditions in temporal 

windows around the amplitude peak value. Sensors showing significant differences (p < 0.01) are highlighted 
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Figure 20: Sensor level ERFs for the when and what+when conditions. A) For each condition (red, when; green, random) 

and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related fields (ERFs) in 

representative channels located above occipital regions (MEG02042/3, MEG2032/3, MEG2342/3, MEG2122/3, and 

MEG1922/3)  B) Sensor maps of the ERF difference between the when and what+when conditions in temporal windows around 

the amplitude peak value.  

 

Source Level ERFs: 

We then identified the brain regions underlying the significant effects observed at the sensor 

space. Source activity was estimated around the peak amplitude of the sensor-level ERFs in 

the 85–125 ms interval. Whole-brain maps of source activity were created for each condition 

(what+when, when, what and random) at Entrainer 4 (E4), i.e., the stimulus where the 

difference between what+when and what was statistically significant (Figure 21). We identified 

the brain regions underlying the significant effects observed in the sensor space. Source activity 

was estimated around the peak amplitude of the sensor-level ERFs in the time range 85–125 

ms interval. Whole-brain maps of source activity were created for all the four conditions ( 

i.e., what+when, when, what, and random) at Entrainer 4 (E4), i.e., the stimulus where the 

difference between what+when and what was statistically significant (shown in figure 19). 
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Source activity was localized in bilateral occipital regions for all conditions and compared to 

baseline at the group level. The first local maxima emerged in visual association areas (i.e., 

Brodmann Area 18: BA 18, average MNI coordinate [–3, –76, –2]) of the left occipital cortex 

in all the conditions. 

For this local maxima, we evaluate the amplitude of source activity across conditions, 

following the same rationale described for the sensor-level analyses. The brain maps 

representing the maximum peak activity in the source space are shown in figure 21 A. Figure 

21 (B) shows the source amplitudes (also called Neural Activity Index: NAI) with the 

corresponding standard error. Source amplitude was significantly higher for the when than 

the what+when condition (t = 4.16, p < 0.05) and for the random compared to 

the what condition (t = 5.20, p < 0.05) at E4. Crucially, these values were higher for 

the what+when than the what condition (t = 2.38, p < 0.05), while no difference emerged 

between the when and random conditions. Overall, the present results confirm the effects 

observed at the sensor level, providing a candidate location for the generation of the expectation 

suppression effects reported at the sensor level. 
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Figure 21. A) Brain maps representing source activity for each condition (what+when, when, what, and random) at Entrainer 

4 (E4). We included a view of the medial surface and the occipital lobe of the left (LH) and the right (RH) hemispheres. B) 

The mean source activity in BA18 (Brodmann Area 18: xyz MNI coordinate: –3, –76, –2) in the four conditions at E4. Asterisks 

indicate significant differences across conditions. 

 

MVPA: time-resolved decoding:  

The ERF analyses showed that the expectation suppression effect grew incrementally larger 

across the four Entrainers, demonstrating that orientation predictability reduced visual 

processing costs, possibly due to increased reliance on internally generated expectations. We 

performed the following analyses to corroborate the hypothesis further that the visual system 

developed expectations for successive Gabor orientations during the entrainer sequence. We 

first checked whether the orientation of perceived Gabors could be decoded by applying a time-

resolved decoding approach to each entrainer (as a control measure, we also performed the 

same analysis to decode the spatial frequencies, i.e., CPD of these Gabors). MVPA showed 

that only those conditions with predictable orientations (what+when and what) revealed above-

chance and statistically significant decoding accuracy values compared to the conditions where 

orientation was not predictable (see Figures 22 and 23 for the 

comparison what+when vs. when and what vs. random, respectively). Figure 24 shows the 

decoding accuracy of predictable orientations in conditions with (what+when) and without 

(what) temporal predictability. Here, we see how the target orientation becomes increasingly 

decodable across Entrainers (especially at E3 and E4; t-test between peak decoding accuracy 

at E1 and E4 across participants and conditions, p < 0.01) and is most robust at the target. 

While comparing the decoding results, we showed that decoding accuracy was higher for 

Entrainer 4 in a later time interval (525–595 ms, p < 0.05) for the what + when than the what 

condition. By contrast, decoding values for spatial frequencies (high vs. low CPD) were 

significant only at the target. This effect was expected since the CPD of the target could not be 
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predicted from the Entrainers, which had intermediate spatial frequencies; this measure 

provided a good baseline for target orientation decoding effects. 

 

Figure 22. Time-resolved decoding accuracy for the what+when condition (blue line) and when condition (red line) time-

locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The coloured dots under the curves indicate the statistical significance 

of decoding accuracy across time. 

 

 

Figure 23. Time-resolved decoding accuracy for the what condition (orange line) and random condition (green line) time-

locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The coloured dots under the curves indicate the statistical significance 

of decoding accuracy across time. 
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Figure 24. Time-resolved decoding accuracy for the what+when condition (blue line) and what condition (orange line) time-

locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The coloured dots under the curves indicate the statistical significance 

of decoding accuracy across time. The gray box at E4 in Orientation shows the statistical significant differences (p < 0.05) 

between what+when and what. 
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3.4 Discussion 

1. Expectation Suppression for “what” factor  

We report robust expectation suppression effects for predictive processing of visual Gabors. 

Across a series of four Entrainers, we observed incrementally  stronger suppression of the 

visual evoked response peaks when Gabor orientations were predictable. This is in line with 

previous literature for expectation suppression (de Lange et al., 2018; Feuerriegel et al., 2021; 

Larsson and Smith, 2012). This visual evoked response possibly originated in visual area 2 

(V2), which showed reduced activity for predictable stimuli compared to unpredictable stimuli. 

The source location of the present effect could reflect some top-down activity generated in an 

extrastriate region projecting to the primary visual cortex (V1) 

It is worth noting that expectation suppression effects evident during the entrainer sequence 

vanished at the presentation of the target Gabor (where participants had to perform the task). 

The effect was not mirrored in the behavioral responses as well, which probably reflect later 

decision processes. This strengthens the view that expectation suppression effect in the visual 

domain is sensitive to the task in which participants are involved (St. John-Saaltink et al., 

2015). Within the predictive processing literature, the expectation suppression could be 

understood as reduction in prediction error (i.e., increase in predictions).  

 

2. Effect of “when” factor   

We show that expectation suppression effects were modulated by temporal predictability: 

expectation suppression of evoked responses was more prominent (larger) when the timing of 

the Entrainers was jittered/unpredictable. Also, there were very initial differences in the evoked 

responses to the stimuli (0–60 ms). This differential effect indicates that the neurocognitive 

system invested fewer resources in visual processing in temporally uncertain scenarios due to 

some form of precision weighting, i.e., higher reliance on internal predictions. 
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3. Stimulus specific feature decoding 

Our results show that the decoding accuracy for Gabor orientations increased across Entrainers 

when successive entrainer and target orientations were predictable. This indicates that stimulus 

predictability is a crucial factor in enhancing the accuracy of orientation decoding during the 

presentation of Entrainers. In fact, when the stimulus is not predictable, decoding accuracy 

remains at the chance level. Our results show that while the input stimulus is temporally 

predictable, the human brain maintains the representation of the stimulus for a longer time 

compared to unpredictable timing ones. We also show the robustness of our decoding pipeline 

by analyzing a baseline/control decoding model focused on the  CPD features. The classifier 

was only sensitive to the orientation angles which were manipulated in the Entrainer sequence.   
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Chapter 4: Expectation suppression in Auditory 

processing 
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4.1 Introduction 

In this experiment, we aim to investigate the expectation suppression in the auditory domain, 

and similar to the visual domain how expectation suppression is affected by the context 

(“what”) and timing (“when”). We inherited the experimental design structure from our visual 

experiment and used a similar “2-by-2 factors” experimental paradigm. Here, the first 

manipulation factor was the context/identity of the presented stimuli (“what” manipulation), 

which either provides gradually stronger predictions about the target across Entrainers. The 

second factor was the timing (“when” manipulation), so that participants could either predict 

the onset of next incoming stimuli. We also maintained the orthogonal relationship between 

different features (i.e., predictions generated for one feature and task associated with another 

feature). This allowed us to generate a prediction versus no prediction paradigm, where no 

violation of predictions was involved. Detailed explanation about the experimental paradigms 

is provided in the Methods and Material section of this chapter.   

The goals of this experiment are the following:  

i) How expectation suppression in the auditory domain is affected by “what” 

manipulation? Does this effect mirror the effects in the visual domain or the two 

modalities deal with expectation suppression in a different manner? Also, it will 

be interesting to observe the brain areas that are showing this potential 

suppression in neural responses. Will this suppression be evident in both the 

hemispheres?   

ii) How will the temporal uncertainty (when factor) affect the expectation 

suppression in the auditory domain? Will the predictable timing increase the 

suppression carried out with predictable context of the target or attenuate the 

suppression effect? What are the brain areas that will show this suppression?  
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iii) How does the temporal uncertainty affect the stimulus specific decoding?  Can 

we decode the predictable feature across Entrainers? Can the predictions 

generated by the Entrainers be decoded in the pre-stimulus time region?  

 

Considering all the goals mentioned above, we used MEG to meet the research goals explained 

above. Details about MEG modality have been explained in chapter 2.  
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4.2 Methods and Materials 

Participants: 

Twenty-one healthy participants were recruited for this experiment. Five participants were 

excluded from the study due to artifactual data. Remaining sixteen participants (13 females; 

age range: 19 - 31; M = 26.12; SD = 5.52) took part in our experiment. It is worth mentioning 

that the participants who took part in this experiment were different from the ones who took 

part in the visual experiment of this thesis. Participants gave written informed consent and 

were financially compensated. The participants were recruited from the BCBL Participa 

website  

 

Experimental procedure: 

A series of tones with variable pitch and length was presented. The tones were played to 

participants using MEG-compatible headphones and the instructions were presented on a 

screen placed 60 cm from each participant's nasion. The instructions were presented in the 

centre of the screen on a gray background. Each trial began with a fixation cross (black color) 

followed by four tones (Entrainer tones), each presented for 200 ms followed by an 

interstimulus silent interval of 200 ms. After a longer interstimulus interval (600 ms), a fifth 

tone (Target tone) was presented. The entrainer tones had fixed length (200 ms), while the 

target could have either a longer length (300 ms) or shorter length (100 ms). Participants were 

required to indicate if the target tone had a longer or shorter duration compared to the entrainer 

tones by pressing the correct button.  

Four properties of these entrainer sequences were experimentally manipulated (Figure 25): a) 

the length of the target tone was either long or short; b) the pitch of the target was either high 

or low; c) the pitch of the target was either predictable based on the pitch of previous entrainer 
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tones (i.e., increasing or decreasing e.g., pitch of 246.94, 261.63, 293.66, 329.63 Hz for 

entrainer tones and then target of 349.23 Hz) or unpredictable (a random pitch selection from 

a set of 12 different pitch levels ranging from low to high (details provided in supplementary 

materials); e.g., 261.63, 246.94, 329.63, 293.66 for entrainer tones and then target of 349.23 

Hz); d) the timing of the interstimulus intervals (blank period) between the four entrainer tones 

and between the last entrainer (entrainer tone 4) and the target was either predictable (i.e., fixed 

interstimulus intervals of 200 ms between Entrainers and 600 ms between entrainer 4 and the 

target) or unpredictable (varying interstimulus intervals ranging between 70-330 ms between 

Entrainers and 350-850 ms between entrainer 4 and the target).  

Depending on the timing and pitch of the entrainer tones and target, trials were divided into 

four conditions (Figure 1): (i) in the what+when condition, both the timing and the pitch of 

successive Entrainers - and the final target Gabor - were predictable; (ii) in the when condition, 

timing was predictable but pitch were unpredictable. (iii) in what condition, successive 

Entrainers and target pitch were predictable but timing was unpredictable; (iv) in the random 

condition both pitch and timing were unpredictable.  

A total of 160 trials were presented in each condition (80 low pitch and 80 high pitch, randomly 

assigned 80 long and 80 short length) for a total of 640 trials per participant. 80 localizer trials 

for long and short tones (40 high and 40 low pitch) targets were also acquired while participants 

simply fixated the centre of the screen. These 640 trials are selected randomly from two pre-

defined presentation sequences.  

On each trial, participants had to indicate whether the target tone had a longer or a shorter 

length than the preceding entrainer tones. Participants responded by pressing a button with 

their left or right hand, with the response hand counterbalanced across participants. To keep 

the participants relaxed, a longer mandatory break took place every 60 trials (the MEG 

researcher pressed a button from the operating console to pause and restart the presentation). 
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Also, a short optional break (participants pressed the button when they were ready to continue) 

was available every 12 trials.  

 

 

 

 

 

Figure 25: Experimental design. A) Target pitch and timing of upcoming entrainer tone and target tone are 

predictable (what+when condition). B) Pitch of upcoming entrainer tone and target tone are not predictable but the 

timings are predictable (when condition). C) Target pitch of upcoming entrainer tone and target tone are predictable 

but the timing is not predictable (what condition). D) Target tone and timing of upcoming entrainer tone and target 

tone are not predictable (random condition). Abbreviations: E1 – Entrainer 1, E2 – Entrainer 2, E3 – Entrainer 3, 

E4 – Entrainer 4, T - TargetISI – Inter Stimulus Interval. 

 

 

Methods: 

The methods used in the auditory experiment of this thesis followed the same methods used 

in the visual experiment.  
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Data acquisition and preprocessing:  

MEG data were acquired in a magnetically shielded room using the whole-head MEG system 

installed at the BCBL. The data acquisition parameters and procedures such as head movement 

tracking using HPI coils, fiducial point markings, digitization of head shape, band-pass filters, 

EOG and ECG collection etc. were the same as explained in the visual experiment. Continuous 

MEG data were preprocessed using the temporal Signal- Space-Separation (SSS) method 

(Taulu and Simola, 2006) to  suppress external interference noise. Subsequent data analyses 

were performed using Matlab R2014b (Mathworks, Natick, MA, USA).  

 

Reaction times:  

Participants were asked to indicate if the length of the Target tone was longer or shorter 

compared to the previous Entrainers tones. We made sure that accuracy was high and 

comparable across conditions. The response time (RT) was calculated for all the four 

conditions (i.e., what + when, when, what and random). The response times longer than 1500 

ms were considered as outliers and were removed from the analysis. The mean reaction time 

and standard deviation is computed for each experimental condition.  

 

Sensor level ERFs:  

MEG trials corrected for jump, muscle artifacts, EOG and ECG artifacts were identified using 

the same pipeline which was used in the visual experiment. In this experiment, the EOG and 

ECG components were identified manually and later linearly subtracted from the MEG data. 

On average, two components were removed per participant. The artifact-free data were 

bandpass filtered between 0.5 and 45 Hz. Trials were segmented time-locked to the 

presentation of each of the entrainer tones (Entrainers 1, 2, 3, and 4) and the target tone. The 
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trial onsets were computed from the MISC channel which recorded the tones’ envelope online. 

The trial segments were grouped together for each entrainer and target, and then averaged to 

compute the ERFs. Baseline correction was also applied to the evoked data from baseline time 

period which was 1000 ms before the fixation cross (i.e., at the beginning of a trial).  

 

We used a similar approach to the visual experiment by performing the analysis of the sensor 

level data to establish expectation suppression and its interactions with different kinds of 

predictability. We applied an ANOVA to sensor-level data to explore the influence of our 

experimental factors on visual ERFs. We extracted ERF amplitudes in the set of ten sensors 

(five on each hemisphere) from sensors close to temporal brain regions. We then selected the 

time window classically associated with the initial auditory evoked response (75–125 ms post 

stimulus). A three-way repeated measures ANOVA was computed in JASP (JASP Team, 2020) 

with these amplitude values as dependent variables and the following factors: entrainer (four 

levels; corresponding to Entrainers 1, 2, 3, 4); what (two levels; predictable/unpredictable 

entrainer and target tone pitch); and when (two levels; predictable/unpredictable timing of 

Entrainers and target tone)1. Significant interactions (specifically, the triple interaction 

"entrainer * what * when") were further investigated through theoretically relevant pairwise 

comparisons. Pairwise comparisons between conditions were performed using a cluster-based 

permutation test (Maris and Oostenveld, 2007). T-values were computed for each sensor 

(combined gradiometers) and each time point during the 0–270 ms time window, and were 

clustered if they had t-values that exceeded a t-value corresponding to the 99.99th percentile 

of Students t-distribution, i.e., a two-tailed t-test at an cluster-alpha of 0.05, and were both 

spatially and temporally adjacent. Cluster members were required to have at least two 

 
1 I also computed a 4-factor ANOVA by adding the hemisphere as a fourth factor (two levels: right and left  
hemisphere ), I did not observe interaction of the hemisphere factor with other factors. 



96 
 

neighboring channels that also exceeded the threshold to be considered a cluster. The sum of 

the t-statistics in a sensor cluster was then used as the cluster-level statistic, which was then 

tested by permuting the condition labels 1000 times. 

 

Similar to the visual experiment, four different comparisons were carried out. In the first 

comparison, we contrasted ERFs for the when and the what+when conditions. This comparison 

evaluated the effect of pitch predictability when the timing of the entrainer tones and target 

were predictable. In the second comparison, we compared ERFs for the random and what 

conditions. This comparison evaluated the effect of pitch predictability when timing was 

unpredictable. These two comparisons mainly focused on the main effect of target tone's pitch 

predictability (i.e., the what manipulation) revealed by expectation suppression. We then 

compared the ERFs for the what+when and what conditions. Here we directly contrasted these 

two predictable pitch conditions to evaluate the effect of temporal predictability on stimulus 

predictability. The final comparison contrasted ERFs in the when and random conditions. This 

comparison was performed to analyze the effect of temporal predictability in the absence of 

pitch predictability. 

 

Source level ERFs:  

We used the same pipeline for performing the source reconstruction of significant effect at 

sensor space. First MEG-MRI co-registration was performed using MRIlab software, then 

Individual T1-weighted MRI images were segmented into different tissue types using 

Freesurfer software (Martinos Center of Biomedical Imaging, MQ) (Dale et al., 1999). The 

source space was defined as a regular 3D grid with a resolution of  5 mm and the lead fields 

were defined using a realistic single-shell Boundary element model (BEM) head model. Both 

the planar gradiometers sensors and magnetometers sensors were used for inverse modelling. 
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The covariance matrix was estimated combining the information embedded in the pre-stimulus 

time range (i.e., -400–0 ms prior to the cross fixation) and the post-stimulus  time range (i.e., 

0–400 ms after the presentation of Gabor). Whole brain source activity was estimated using 

linearly constrained minimum variance (LCMV) beamformer approach (Veen et al., 1997). 

LCMV beamformer was computed on the evoked data in the time period and brain maps 

containing neural activity index were transformed and normalized similarly to what has been 

explained for the visual experiment.  

 

The mricron software was used for visualizing the brain maps in the MNI space. For each 

condition at  Entrainer 3 (see Results below for the motivation in selecting this Entrainer), we 

obtained the NAI value and the MNI coordinates of local maxima (sets of contiguous voxels 

displaying higher power than all other neighboring voxels) (Bourguignon et al., 2018). NAI 

values were compared between conditions (e.g., when vs. what + when, random vs. what, what 

vs. what + when and when vs. random ) using t-tests and repeated measures ANOVA.  

 

MVPA: time-resolved decoding: 

Time-resolved within-subjects multivariate pattern analysis was performed to decode the 

feature specificity (i.e., the pitch and length of the tone) from MEG data.  Similar to visual 

experiment, data at E1, E2 and E3, were segmented from 50 ms prior to 250 ms after the onset 

of the Entrainers. For E4 data were segmented from 50 ms prior to 600 ms after the onset of 

the Entrainer. The artifact free clean data was segmented from -400 ms to 550 ms time locked 

to the Target. The data were classified using a linear support vector machine (SVM) classifier 

with L2 regularization. We performed a binary classification of the pitch of each tone 

depending on the pitch of the subsequent Target. In other words, the class labels (i.e., high 

pitch or low pitch) were derived from the Target pitch only: if the Target pitch was high all the 
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preceding pitch in the corresponding conditions were labelled as high pitch class and vice-

versa. Same approach was used for labelling the classes for tone length feature decoding. 

 

The data were down-sampled by a factor of five (i.e., new sampling frequency 200 Hz) prior 

to the classification. Pseudo trials were generated to improve the SNR by creating trials' bins, 

resulting in a set of 10 trials for each bin (Dima and Singh, 2018). This pseudo trial generation 

was repeated 100 times to generate trials with a higher signal to noise ratio. 5-fold cross 

validation was used and the classification process was repeated 25 times (details provided in 

visual experiment). The data were then randomly partitioned using 5-fold cross-validation. To 

improve data quality, we also performed multivariate noise normalization (Guggenmos et al., 

2018). The noise normalization and cluster-based permutation test were computed similarly to 

the visual experiment.  

 

4.3 Results 

Reaction Time: 

what + when condition showed the fastest response time (888.1 ± 236 ms) while the random 

condition was slowest (910.9 ± 242 ms). In the when and the what conditions participants 

responded respectively after (894.5 ± 286) ms and (882.7 ± 233) ms. We fit a Linear mixed 

model (LMER) considering subjects and observations as random effects, and the fixed effects 

of what (orientation predictable or not), when (timing predictable or not) and their interaction 

as fixed effects. We observed an effect of when (p<0.05).  
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Figure 26: Reaction time distribution of duration task across conditions 

Sensor level ERFs: 

Similar to visual domain, we analysed the amplitude of the initial auditory evoked response for 

10 temporal sensors (5 on each hemisphere) to determine how the two-by-two experimental 

design modulated auditory responses across Entrainers. In the three-way ANOVA (details in 

Table 2), we observed a significant main effect of entrainer (p < 0.001) on the peak amplitudes 

of ERFs. Interestingly, this factor interacted with the factor what (p < 0.001), suggesting that 

target pitch predictability affected auditory-evoked responses differently across Entrainers. We 

should point out that a main effect of what (p < 0.001) supported the observation that 

orientation predictability influenced auditory processing. The when factor did not affect the 

auditory processing but a two-way interaction of entrainer*when was significant.  Importantly, 

the interaction between the three factors, i.e., entrainers, what and when, was significant (p = 

0.017). This triple interaction underlines the fact that timing uncertainty influenced the 

development of auditory predictions across the sequence of four entrainer tones.  
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Figure 27 shows the sensor-level Event Related Fields (ERFs) time-locked to the onset of each 

Entrainer tone (i.e., E1, E2, E3 and E4) and Target tone (T) for the when and the what + when 

conditions. The amplitude of the ERFs was significantly (cluster p-value < 0.01) higher for the 

when compared to the what + when condition for E2, E3 and Target, but not for E1 or E4. The 

amplitude enhancement for the when compared to the what + when condition emerged within 

the [88 – 125] ms, [92 – 125] ms and [83 – 108] ms time intervals for the E2, E3 and Target 

respectively. This effect was located in temporal sensors for all the Entrainers.  Figure 28 shows 

the sensor-level ERFs for the random and the what conditions. The amplitude of the ERFs was 

significantly (cluster p-value < 0.01) higher for the random compared to the what condition for 

E2, E3 and E4 and Target, but not for E1. The amplitude enhancement for the random 

compared to the what condition emerged within the [77 – 125] ms, [81 – 122] ms, [103 – 121] 

and [79 – 108] ms time intervals for the E2, E3,  Target respectively. This effect was located 

in temporal sensors, sensors close to motor and pre-motor sensor areas for the Entrainers. It is 

worth noting that the comparison having temporal predictability (i.e., when vs what + when ) 

involves a larger number of  sensors compared to the comparison lacking temporal 

predictability.  

Since both the comparisons are significant from Entrainer 2 onward, we compared the 

orientation predictability with (what + when) and without temporal predictability (what). 

Figure 29 shows that the initial very early evoked activity (0–60 ms) at E1 is similar for both 

conditions. As we move across Entrainers such early difference is present at Entrainer 2 but 

then it vanishes for the rest of the Entrainers. Since our focus in this analysis is in the early 

evoked response to the auditory stimulus showing expectation suppression effects, the time 

window for statistical comparison was selected from 75 to 125 ms. The amplitude enhancement 

for the what compared to the what + when condition emerged within the [93- 108] ms time 

interval only at E2. This effect was located close to pre-motor area sensors. Importantly, this 



101 
 

effect is already evident since time 0 and could emerge from some ongoing difference 

preceding E2. The effect flips out at E3 in polarity and what + when has lesser amplitude 

compared to the what condition. I consider this difference genuinely driven by the temporal 

uncertainty interfering with the expectation suppression effect driven by pitch predictability. 

The effect emerged within [99 - 125] ms and was not significant across the subsequent 

Entrainers and Target. Figure 30 shows the sensor level results of the ERFs for the when and 

the random conditions. This last comparison also shows the difference in the peak amplitudes 

at E2 which emerged at [111 – 125] ms.  

 

Table 2: Repeated measure ANOVA with the factors entrainer (four levels, one for each 

entrainer), what (two levels: target pitch predictable or not) and when (two levels: timing 

predictable or not). 

Within Subjects Effects  

   Sum of 
Squares  df  Mean 

Square  F  p  

Entrainers   1.308e -22   3   4.360e -23   15.69
1   

< .00
1   

when   1.138e -25   1   1.138e -25   1.393   0.256   

what   4.661e -24   1   4.661e -24   19.13
5   

< .00
1   

Entrainers ✻ when   1.607e -24   3   5.357e -25   4.995   0.004   

Entrainers ✻ what   3.711e -24   3   1.237e -24   6.677   < .00
1   

when ✻ what   1.300e -26   1   1.300e -26   0.110   0.745   
Entrainers ✻ when ✻ what   9.682e -25   3   3.227e -25   3.784   0.017   
     

 
Note.  Type III Sum of Squares  
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Figure 27: Sensor level ERFs for the when and what+when conditions. A) For each condition (red, when; blue, 

what+when) and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related 

fields (ERFs) in representative channels located in bilateral auditory regions ('MEG0222+0223', 'MEG0232+0233', 

'MEG0242+0243', 'MEG1312+1313', 'MEG1322+1323', 'MEG1342+1343', 'MEG1612+1613', 'MEG1622+1623', 

'MEG2412+2413', 'MEG2422+2423' ) . Gray boxes represent time points where the amplitude of the ERFs was 

higher (p < 0.05) for the when than the what+when condition. B) Sensor maps of the ERF difference between the 

when and what+when conditions in the temporal window around the amplitude peak value. Sensors showing 

significant differences (p < 0.05) are highlighted. 
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Figure 28: Sensor level ERFs for the when and what+when conditions. A) For each condition (orange, what; green, 

random) and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related fields 

(ERFs) in representative channels located in bilateral auditory regions ('MEG0222+0223', 'MEG0232+0233', 

'MEG0242+0243', 'MEG1312+1313', 'MEG1322+1323', 'MEG1342+1343', 'MEG1612+1613', 'MEG1622+1623', 

'MEG2412+2413', 'MEG2422+2423' ) . Gray boxes represent time points where the amplitude of the ERFs was 

higher (p < 0.05) for the when than the what+when condition. B) Sensor maps of the ERF difference between the 

when and what+when conditions in the temporal window around the amplitude peak value. Sensors showing 

significant differences (p < 0.05) are highlighted. 
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Figure 29: Sensor level ERFs for the when and what+when conditions. A) For each condition (blue, what+when; 

orange, what) and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related 

fields (ERFs) in representative channels located in bilateral auditory regions ('MEG0222+0223', 'MEG0232+0233', 

'MEG0242+0243', 'MEG1312+1313', 'MEG1322+1323', 'MEG1342+1343', 'MEG1612+1613', 'MEG1622+1623', 

'MEG2412+2413', 'MEG2422+2423' ) . Gray boxes represent time points where the amplitude of the ERFs was 

higher (p < 0.05) for the when than the what+when condition. B) Sensor maps of the ERF difference between the 

when and what+when conditions in the temporal window around the amplitude peak value. Sensors showing 

significant differences (p < 0.05) are highlighted. 
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 Figure 30: Sensor level ERFs for the when and what+when conditions. A) For each condition (orange, what; green, 

random) and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target [T]), we show the average of the event related fields 

(ERFs) in representative channels located in bilateral auditory regions ('MEG0222+0223', 'MEG0232+0233', 

'MEG0242+0243', 'MEG1312+1313', 'MEG1322+1323', 'MEG1342+1343', 'MEG1612+1613', 'MEG1622+1623', 

'MEG2412+2413', 'MEG2422+2423' ) . Gray boxes represent time points where the amplitude of the ERFs was 

higher (p < 0.05) for the when than the what+when condition. B) Sensor maps of the ERF difference between the 

when and what+when conditions in the temporal window around the amplitude peak value. Sensors showing 

significant differences (p < 0.05) are highlighted. 
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Source Level ERFs: 

Data from 15 participants were used in the source reconstruction (excluding a participant for 

which we did not have the T1 structural image). We identified the brain regions underlying the 

significant effects observed at the sensor space. Source activity was estimated around the peak 

amplitude of the sensor-level ERFs in the 75–125 ms interval. Whole-brain maps of source 

activity were created for each condition (what+when, when, what and random) at entrainer 3 

(E3), i.e., the stimulus where the difference between what+when and what was statistically 

significant and theoretically more relevant.  

 

Source activity was localized in bilateral temporal and parietal regions for all conditions and 

compared to baseline at the group level. Two local maxima located in both the hemispheres 

were selected for further analysis. The first local maxima emerged in close vicinity to the left 

primary auditory cortex (average MNI coordinate [–45, –24, 14]).  

For this local maxima, we evaluate the amplitude of source activity across conditions, 

following the same rationale described for the sensor-level analyses. The brain maps 

representing the maximum peak activity in the source space are shown in figure 31 A. Figure 

31B  shows the source amplitudes with the corresponding standard error. Source amplitude 

was significantly higher for the when than the what+when condition (t = -1.774) and for 

the random compared to the what condition (t = -1.120) at E3. In this local maxima, no effects 

emerged between what compared to what + when and random compared to when.  

The second local maxima emerged in the right primary auditory cortex (average MNI 

coordinate [49, –16, 12]). For this local maxima also, we evaluate the amplitude of source 

activity across conditions, following the same rationale described for the sensor-level analyses.. 

Figure 31 B  shows the source amplitudes with the corresponding  
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Figure 31 A.  Brain maps representing source activity for each condition (what+when, when, what, and random) at 

Entrainer 3 (E3). We included a view of the medial surface and the occipital lobe of the left (LH) and the right (RH) 

hemispheres. B) The mean source activity MNI -45 -24 14 (LH) and 49 -16 12  (RH) in the four conditions at E3.  
 

standard error. Source amplitude was significantly higher for the when than 

the what+when condition (t = -1.694) and for the random compared to the what condition (t = 

-2.781) at E3. In this local maxima, there is a significant effect emerging between what 

compared to what + when (t= -1.276), consistent with the effect observed at the sensor level.  

 
MVPA: time-resolved decoding: 

The ERF analyses showed that the expectation suppression effects in the auditory domain are 

much stronger compared to the visual domain. We performed the following analyses to further 

corroborate  the hypothesis that the auditory system developed expectations for successive tone 

pitches during the entrainer tone sequence, given the fact that the neural responses are largely 

suppressed. We first checked whether the pitch of perceived tones could be decoded (as a 

control measure, we also performed the same analysis to decode tone length, i.e., CPD). MVPA 

showed that the decodable information was only available at the target tone only in both the 
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features. The classifiers were not able to pick the representational information of the pitch 

stimulus while the potential auditory expectations were building up during the entrainers’ 

sequence.
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Figure 32. Time-resolved decoding accuracy for the what+when condition (blue line) and what condition (orange line) time-locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The 

coloured dots under the curves indicate the statistical significance of decoding accuracy across time.  

 

  

Pi
tc

h 
Le

ng
th

 



110 
 

 

 

 

 

 

 

 

 

 

 

Figure 33. Time-resolved decoding accuracy for the what condition (orange  line) and random condition (green  line) time-locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The 

coloured dots under the curves indicate the statistical significance of decoding accuracy across time.  
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Figure 34. Time-resolved decoding accuracy for the what+when condition (blue line) and what condition (orange line) time-locked to Entrainer 1 (E1), E2, E3, E4 and Target (T). The 

coloured dots under the curves indicate the statistical significance of decoding accuracy across time.  
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4.4 Discussion 

1. Expectation Suppression for “what” factor  

Across a series of four entrainer tones, we observed extensive suppression of the auditory 

evoked response peaks, independently of the experimental condition: at E2, E3 and at E4, the 

suppression was so strong that we observed almost a floor effect in the last entrainer (E4) where 

the auditory response was in some conditions hard to discern.  

Importantly, we report expectation suppression effects for predictive processing of auditory 

tones. Across the entrainer tones, we observed stronger suppression of auditory evoked 

response peaks when the pitch of the next tone was predictable.  

This auditory evoked response originated in the left and right primary auditory cortex, showing 

reduced activity for predictable stimuli compared to unpredictable stimuli. The source location 

of the present effect is limited to the primary auditory cortex which is usually considered a 

low-level brain area in cortical auditory processing hierarchy. This could be mainly due to the 

fact that we used pure tones, whose processing does not require the involvement of higher 

auditory associative regions.  

It is worth noting that expectation suppression effects evident during the entrainer sequence 

were also present at the presentation of the target tone (where participants had to perform the 

task). This is an interesting effect: When the prior information about the target tone pitch was 

available (in the what+when and what conditions), the neural response to the tone is largely 

suppressed (it was almost absent). In the other case, when no predictable prior pitch 

information was present (in the when and random conditions), the neural responses did not get 

so strongly suppressed. This shows that the predictions developed during the entrainer 

sequence were largely affecting the target processing even if participants were focusing on a 

different feature (tones’ duration). 
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2. Effect of “when” factor   

We also report that the expectation suppression effects for predictive processing of entrainer 

tones are not only sensitive to the frequency/spectral content of the tones but also to the timing 

at which the tones were presented. In fact, expectation suppression effects were highly 

modulated by temporal predictability: The when factor is increasing the suppression of evoked 

response given by the what factor (figure 29, what > what + when at E3). The neural signals 

at the second entrainer show a difference in peak response based on both the when and the what 

factor, as well as the differences in very initial evoked response to stimuli (0-50 ms). 

Importantly though, I am theoretically mainly interested in the interaction of what and when 

factors. To investigate further, I performed a two-way ANOVA (what and when factor) on peak 

evoked amplitudes extracted from channels close to temporal brain regions at both E2 and E3. 

The interaction of what*when factor is missing at E2 (p = 0.545), and is present at E3 (p = 

0.017). So, I considered the effect at E3 theoretically more relevant, and selected this effect for 

source reconstruction.  

 

The sources of evoked responses appear to arise from the primary auditory cortex in both the 

hemispheres. My experimental findings, first of all, recall the existing literature on auditory 

and speech processing. The ‘asymmetric sampling in time model of speech processing’ (AST 

model, (Poeppel, 2003)) suggests that the left auditory areas preferentially extract information 

from short (~20–40 ms) temporal integration windows. The right hemisphere homologs 

preferentially extract information from longer (~150–250 ms) integration windows like 

temporal expectations. In my experiment the left-hemisphere regions show more activation 

compared to the right hemisphere. Higher responses (independently of condition) on the left 

hemisphere indicate that in this paradigm (focused on pitch tones), there is larger involvement 

of the left hemisphere probably due to its specialization on shorter integration windows. The 
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effect of the when factor only emerges in the right hemisphere probably because the right 

hemisphere auditory regions, operating on longer temporal integration windows, can capture 

the temporal jittering across tones (in line to AST model of speech, Poeppel, 2003). 

 

3. Stimulus specific feature decoding 

Decoding accuracy for entrainer tones was at chance level, thus indicating that pitch specificity 

could not be identified from the neural responses during the presentation of the entrainers. This 

is a surprising finding because the perception of the incoming sensory data that match 

previously generated expectations is facilitated (more neural suppression, better perception). 

This neural facilitation is expected in the predictive processing framework: The brain does not 

directly pass the information about sensory input forward, but rather computes the difference 

between expectations and sensory input. The prediction errors provide the informative 

(decodable) neural representation of the sensory input mainly if these expectations are 

“uninformative” and the sensory input is sufficiently precise (in other words, if prediction error 

is large). In conditions that match prior (what and when) expectations, increasing the sensory 

expectation reduces the informativeness of multivariate neural representations (see also (Blank 

and Davis, 2016)).  

At the target, I observed that the task related feature (length) has higher and long-lived 

decoding accuracy (figure 32) compared to the task unrelated/prediction feature (pitch). 

However, the conditions involving what and when expectations about the target show more 

neural suppression but less decoding accuracy compared to the condition lacking such 

expectations. This strengthens my claim that higher expectation suppression of the neural 

response does not yield higher decodable multivariate representational information.  

Finally, it could be noted that evoked responses across entrainers are incrementally suppressed 

becoming in some conditions not recognizable. This suppression could also contribute to the 
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fact that such low evoked auditory responses do not have enough signal-to-noise ratio to boost 

the decodability of the eliciting stimulus pitch.  

 

As a separate note, current Predictive Processing theories (Friston, 2005; Rao and Ballard, 

1999) suggest that cortical regions involved in sensory processing contain two subpopulations 

of neurons: a) prediction error units that represent the unexpected part of the incoming sensory 

information and b) prediction units that represent the expected part of the incoming sensory 

information. My results could indicate that the neural representation of a stimulus in the human 

brain is mainly driven by prediction error units which have stronger magnitude compared to 

the weaker prediction units. Since I have used a population coding neuroimaging method 

(MEG), it is not possible to separate the activity from two subpopulations It could be that other 

neural measures, such as neurophysiological recordings with depth electrodes or laminar-

specific ultra-high field strength fMRI, are better able to detect responses from different 

prediction units and could provide clearer evidence of laminar-specific representations of 

predictions and prediction errors. 
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Chapter 5: General Discussion 

 

 

 

 

 

 

 

 

 

 

 

  



117 
 
 

The relevance of the present experimental paradigm 

The goal of these experiments was to evaluate how visual and auditory expectations 

differentially modulate sensory perception due to variable temporal and stimulus predictability. 

I would like to first remark how my experimental design for studying predicting what and when 

is different and has critical advantages compared to the previous literature. In both the 

experiments, I mainly focused on the expectation suppression effect (Walsh et al., 2020) and, 

in contrast to previous studies focused on repetition suppression (Auksztulewicz and Friston, 

2016; Costa-Faidella et al., 2011; Stefanics et al., 2018; Utzerath et al., 2017) and expectation 

suppression (Auksztulewicz et al., 2018; Han et al., 2019; Kok et al., 2012a; St. John-Saaltink 

et al., 2015), (i) I did not use mismatching stimuli, and (ii) participants were not aware of the 

experimental manipulations in the study (based on post-experiment debriefing sessions). Given 

the much-debated interaction between attention and predictive processing (Kok et al., 2012b), 

I thus developed an experimental design that aimed to control for strategic effects related to 

the processing of an orthogonal feature (Egner et al., 2010).  

Several studies that have reported reduced neural responses for predictable stimuli have used 

passive viewing (Alink et al., 2010) and stimuli that are fully task-irrelevant (Den Ouden et al., 

2009). It thus seemed that expectation suppression effects emerge even in the absence of a task 

driving the attention of the participants to the prediction manipulation. However, some authors 

had reported no  effects of sensory activity when stimuli were unattended (Larsson and Smith, 

2012). These findings would indicate that contextually predictable stimuli may not necessarily 

suppress early visual neural responses in the absence of a prediction-focused task. But, opposite 

to these findings, there are studies which report that expectation suppression is mainly driven 

by the task associated with the stimulus (St. John-Saaltink et al., 2015). This variability about 

the associated task on one side and expectation suppression on the other side motivated us to 

employ an orthogonal relationship between task and the expectation introduced in our design.  
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My experimental design has been thought to evaluate (even if with separate groups of 

participants) prediction effects in two separate sensory domains. In the visual domain, the 

orthogonal relationship was established between Gabor orientation and spatial frequencies 

(CPD). While the orientation manipulation was noticeable, it is essential to underscore that our 

participants did not report having observed any temporal jitter of the visual stimuli in the 

temporally unpredictable conditions. In the auditory experiment, the orthogonal relationship 

was maintained between the target pitch and the length of the tones.  

 

Expectation suppression of early sensory responses 

Auksztulewicz et al. (2018) showed that predictability increased the evoked responses' 

amplitudes only at late latencies (~450 ms). In this thesis, the first finding I would like to 

underscore is that the expectation suppression affects a predictable stimulus’ (i.e., what effect) 

response emerging as early as 100 ms (i.e., the first evoked response to a stimulus) both in the 

visual and auditory domain. I found the expectation suppression effect in the visual domain 

when the target feature was predictable and showed that these effects increased incrementally 

across the entrainer sequence. I interpret this effect as demonstrating that the visual system 

constantly develops expectations for the upcoming stimuli across the entrainer sequences: the 

stronger the expectation for a Gabor orientation, the larger the suppression of the visual 

response. This effect was significant in the evoked responses of the second, third, and fourth 

Entrainers and was present in conditions both with and without temporal predictability. It is 

worth noting that the suppression of neural responses was sensitive to the what manipulation 

(i.e., the context of the stimuli) from the second entrainer, whereas the effect of when (i.e., 

timing) emerged later in time, being present only at the fourth entrainer. This suggests that the 

visual domain is more sensitive to the content (what) than the stimuli's timing (when). In 

addition to this differential sensitivity to what and when, I also report that the timing (when 
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manipulation) only played a role when the content (what manipulation) was predictable (at the 

fourth entrainer); if there is no supporting contextual information present, there was no effect 

of timing (in line to Correa and Nobre, 2008; Doherty et al., 2005; Rohenkohl and Nobre, 2011; 

Rohenkohl et al., 2012).   

In the auditory domain, I observed that the expectation suppression effect was larger when both 

the target feature and the timing were predictable. The suppression effect increased 

incrementally across the entrainer sequence being clearer at the third entrainer. I interpret this 

effect as demonstrating that the auditory system develops increasingly strong expectations for 

the upcoming stimuli across sequences both for the content (what) as well for the timing 

(when): the stronger the joint expectation about timing and context, the larger the suppression 

of the auditory response. The suppression effect was significant in the evoked responses of the 

second, third, and fourth Entrainers and was present in conditions both with and without 

temporal predictability.  

 

The visual and the auditory systems are thus differently handling what and when information. 

To strengthen my claim about the differential sensitivity to what and when across modalities, 

I have also tested the 3-factor interaction (what, entrainers, and when). In the visual domain 

my results show that the entrainer factor and the what factor were mainly driving the 

suppression effect (Table 1). A two-way interaction of entrainers with what factor was also 

affecting the suppression effect. Finally,  a three-way interaction of entrainer*what*when was 

also significant. The visual domain evoked responses are highly sensitive to the what features, 

even if  the when features also interact to shape the visual perception.  

Similar to the visual domainIn the auditory domain, the entrainer and what factors modulated 

the suppression effect, but, differently from the visual domain, a two-way interaction between 

entrainer and when was significant. This can be interpreted as a stronger influence of timing 
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on expectation suppression even in the absence of what features. Similar to visual domain, the 

three-way interaction of entrainer*what*when was also significant. 

It can be inferred from these results that the auditory domain is more sensitive to the when 

manipulation (better integrating it with what expectations) compared to the visual domain. This 

can be explained with two points. First, the auditory domain has a stronger tendency of 

grouping multiple subsequent tokens in time together than the visual domain. For example, in 

the case of music and speech, the individual units (notes, syllables, phonemes) which have low 

perceptual meaning are grouped together to construct intelligible words and semantically more 

relevant units. This temporal structure of our auditory environment is less relevant in the visual 

domain, where the “perceptual grouping” becomes more relevant in the spatial dimension. The 

biological organization of the two sensory systems is relevant here: In the visual domain, the 

stimuli from external world create an image on the retina (retinotopic mapping), which 

critically represents more “spatially defined” features; on the other hand, in the auditory 

domain, the processing of the stimuli is mainly based on the pitch frequency (tonotopic 

mapping) giving less relevance to spatially defined features. Identifying features in the auditory 

domain (pitch) is more interwoven with time compared to the visual domain, because “timing” 

is an inherent property of the auditory domain.  

 

Source-level inferences 

The visual evoked response probably originated in visual area 2 (V2), showing reduced activity 

for predictable stimuli compared to unpredictable stimuli. The source location of the present 

effect could reflect some top-down activity generated in an extrastriate region projecting to the 

primary visual cortex (V1). However, this possibility should be further validated (possibly by 

employing direct brain recordings in non-human primates) with additional connectivity 

analyses to investigate the bidirectional interaction between V1 and V2 and determine if the 
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flow of information in the top-down direction is enhanced for predictable content conditions. 

The potential cortical sources of auditory evoked responses are present in both hemispheres 

(i.e., in close vicinity of the left and right primary auditory cortex). As mentioned in section 

4.3, these sources mainly localize in low-level areas due to the fact that we used pure tones and 

one could infer that no top-down dynamics are going on in this sensory domain.  

This different hierarchical location of the sources of the effects observed in the present 

paradigms is not easy to explain. It is important to note however that while primary auditory 

regions are usually involved in processing basic tones, Gabor patches are processed in a higher 

order non-primary visual region that could integrate pretty complex visual stimuli such as 

Gabor patches (Rowekamp and Sharpee, 2017). In the future, it would be interesting to use 

more complex auditory features such as complex and naturalistic stimuli (like speech) to 

evaluate the involvement of higher order associative auditory regions.  

 

Decoding expected sensory features from early neural signals 

My results show that decoding accuracy in the visual domain for Gabor orientations increased 

across Entrainers if the successive (entrainer and target) orientations were predictable. 

Temporal predictability did not affect the decodability of the predicted visual stimulus in the 

earlier time interval when the early visual evoked response emerged. This indicates that the 

neural representation of the Gabor orientation was stable and preserved independently of the 

amplitude of the related evoked response and independently of the timing of the visual stimuli. 

On the other hand, temporal predictability differently affected orientation decoding in a later 

time interval (525–595 ms, Figure 24), showing that the orientation representation of the fourth 

entrainer was maintained active for a longer period of time if the timing of the stimulus was 

predictable. In other words, this suggests that the visual system invests more resources and 

prolongs the processing of stimulus features when the temporal onset of the visual stimulus is 
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predictable. This difference mirrors the evoked effects, where I observed stronger visual 

responses to temporally predictable than temporally unpredictable conditions2.  

In the auditory domain, I could not decode the pitch predictions during the entrainer sequence, 

but only at the target the classifier was performing very well. This can be explained by the fact 

that in my experiment, the stimuli that closely match prior expectations about what and when, 

increases the sensory detail of the internal representation which, in turn, reduces the 

informativeness of multivariate representations. Moreover, the high amount of suppression 

observed across the entrainer sequence could also be involved in the fact that such low evoked 

auditory responses does not have enough signal-to-noise ratio to boost the decodability of the 

eliciting stimulus pitch. Thus, it is an open question if, with larger auditory evoked responses, 

the feature of the expected target tone could be detected or not across the sequence of the 

entrainers. My goal is to adapt this paradigm for future studies, trying to evaluate this 

conundrum.  

It is worth noting that I did not find the pre-stimulus decoding effect (i.e., representations 

related to highly predictable stimulus can be decoded from neural responses before it actually 

appears) reported in previous studies employing expectation/prediction paradigms (in any of 

the sensory modality: Kok, P., Failing, M. F., & de Lange, 2014; Kok et al., 2017). There still 

is the possibility that I could observe some pre-stimulus effects in phase or oscillation measures 

that I have not explored in the present thesis. I am running specific analyses in this direction to 

address this issue. 

 

 

 

 
2 Please note that the condition showing larger evoked response is the one showing better decoding accuracy, 
reinforcing the observation reported in the auditory experiment that more neural suppression is associate to worse 
decoding accuracy 
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Prediction and perception 

This thesis provided empirical evidence about predictive processing and temporal expectations 

across sensory modalities. First, my results reinforce the notion of predictive processing as an 

automatic mechanism (Bendixen et al., 2012). I observed expectation suppression to a 

predictable feature of sensory stimuli, even when the participants were engaged in processing 

a different feature of the incoming sensory stimuli. 

Second, predictive processing theories (Friston, 2009; Summerfield and De Lange, 2014) 

associates the attenuation of sensory evoked responses with accurate predictions, and explain 

the effect in terms of reduced prediction error for predictable stimuli (conversely, it relates 

unpredicted stimuli with larger evoked responses due to the increased prediction error). My 

results also show a higher attenuation/suppression to expected stimuli and this suppression 

increases as the stimuli becomes more predictable in a sequence.  

It has been reported that the suppression of evoked responses to predictable stimuli (which is 

a key notion of predictive processing theories) has recently been challenged by studies on 

attention and speech (Alink and Blank, 2021; Luthra et al., 2021). Alink and Blank (2021) 

argue that reduced responses to predictable stimuli can also be explained by a reduced saliency 

driven allocation of attention. Luthra and colleagues (2021) show that, similarly to the 

predictive coding theory, the TRACE model (McClelland and Elman, 1986) of speech 

perception shows reductions in total lexical activation, lexical feedback, and phoneme 

activation when the input matches prior expectations. Both of these  proposals  still require 

critical empirical replications and it is not clear how they dissociate from the predictive coding 

models. More importantly, no weighting of the expectations is addressed in these proposals. 

Under a predictive coding framework, the internal generative mental model actively infers the 

precision (the inverse variance) of prediction error (Feldman and Friston, 2010). Prediction 

error, generated from the comparison between top-down predictions and bottom-up sensory 
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signal, is used to update the prior beliefs. This, in turn, is crucial for weighting the “subsequent” 

prediction errors (assigning precision), so that more is learned from precise and reliable 

prediction errors (associated with higher precision) compared to noisy and unreliable 

prediction errors (associated with lower precision). Attentional selection could be identified as 

a precision-weighting mechanism, which increases/decreases the gain of prediction errors 

depending on the relative relevance of predictions, on one side, and the sensory evidence, on 

the other side. In the present thesis, using an orthogonal task to control for selective attention, 

I tried to isolate predictive coding from selective attention. Precision-weighting however could 

still play a role in the present results as explained below. 

Third, although there is evidence that spatial and temporal expectations can be dissociable, it 

is still not understood how temporal expectations interact with spatial expectations in task-

irrelevance situations. Experimental evidence on such interaction is missing. According to  the 

predictive coding theory (Friston, 2009), when stimuli are presented after a short interval with 

greater frequency, the likelihood of stimuli occurring at that time increases, and therefore, 

prediction error for such stimuli should be reduced, resulting in smaller M100  amplitude (often 

called N1 effect in auditory EEG literature). There is however the possibility that temporal 

expectation might attenuate, boost or have additive effects to neural suppression determined 

by stimulus predictions. My results suggest that temporal expectations alone cannot elicit 

robust prediction errors. Instead, temporal prediction could determine the precision associated 

with pre-existing stimulus-specific predictions, and this associated precision is domain-

specific. The visual domain is less affected by precision modulation from temporal expectation, 

whereas the auditory domain experiences a higher precision modulation arising from temporal 

expectations. This thesis underscores the variable role of temporal expectation in perception. 

My findings thus contribute to the expansion of predictive coding frameworks by directly 

addressing the role of timing in sensory processing (Sherwell et al., 2017). 
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Finally, I provide evidence to support the idea that the multivariate representations decodable 

from the neural signals are mainly driven by the prediction error signals and are highly 

dependent on the signal-to-noise ratio of the signals. Higher suppression to predictable stimuli 

improves the perceptual processing of stimuli, but this does not necessarily increase the 

stimulus-specific decodable information  (Blank and Davis, 2016).  

 

Conclusions 

In the present thesis I explored expectation suppression across sensory modalities (vision and 

audition). I conclude that the sensory modalities deal differently with the contextual 

expectations and temporal predictability. This suggests that while investigating predictive  

processing in the human brain, the modality specific differences should be considered, since 

the predictive mechanism at work in one domain should not necessarily be generalised to other 

domains as well. Importantly, predictive processing across other modalities (like tactile and 

olfactory) in animal models should also be specifically studied since they do not necessarily 

follow similar predictive principles as visual and auditory perception.  
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Chapter 6: Appendix 
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Publications from the thesis:  

1. Nara, S., Lizarazu, M., Richter, C.G., Dima, D.C., Cichy, R.M., Bourguignon, M., Molinaro, 
N., 2021. Temporal uncertainty enhances suppression of neural responses to predictable visual 
stimuli. Neuroimage 239, 118314. https://doi.org/10.1016/j.neuroimage.2021.118314 
 
2. Nara, S., Lizarazu, M., Klimovich-Gray, A., Bourguignon, M., Molinaro, N., 2021. Role of 
temporal uncertainty in auditory processing. (in preparation) 
 
3. Nara, S., Zarraga, A., Bourguignon, M., Molinaro, N., 2018. Oscillatory representations of 
pre-stimulus visual Predictions in Hierarchical Predictive Coding framework, Poster 
presentation at Neurogune Workshop, Vitoria, Spain.  
 
4. Nara, S., Zarraga, A., Bourguignon, M., Molinaro, N., 2018. Pre and Post stimulus correlates 
of Prediction in Visual domain, Poster presentation at BIOMAG 2018, Philadelphia, USA  
 
5. Nara, S., Zarraga, A., Bourguignon, M., Molinaro, N., 2018. Neural correlates of Predictable 
and Non-Predictable targets in Visual Predictions. Poster presentation at 1st International 
Workshop on Predictive Processing (WoPP), Donostia,San Sebastian, Spain.  
 
6. Nara, S., Zarraga, A., Bourguignon, M., Molinaro, N., 2017.  Predicting visual percepts: 
MEG evidence. Poster presentation at the BrainModes 2017, NBRC, Manesar, India.  
 
Invited talks: 
 
1. “Temporal uncertainty and predictive processing in visual domain” at TEQIP-III sponsored 
International Conference on Atamnirbhar Bharat: Technological Transformation and 
Preparedness in the Post COVID World" scheduled to be held on March 22-23, 2021.  
 
2. “Predictive Processing account of Temporal Uncertainty in visual processing” at Society for 
Neurochemistry India (SNCI) Virtual meeting on "Cognitive and Neurodevelopmental 
Disorders" from 30th October to 1st November, 2021. 
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