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Abstract

Design and Topological Characterization of 2D Photonic Crystals

by María BLANCO DE PAZ

This thesis provides a complete guide for the topological characterization
of 2D photonic crystals. It gives a general description of topological mate-
rials and applies most of the concepts used in condense matter physics to
bosonic systems. Therefore, the methodology described in the thesis can be
extended or adapted to any non-interacting periodic system. Besides, the
thesis presents several examples of 2D photonic crystals with different topo-
logical characters, analyzing the main features of their topological invariant
quantities.Finally, the thesis includes several design examples of 2D photonic
crystals with different topological properties based on adiabatic transforma-
tions. In particular the thesis includes design examples for lattices with ob-
structed atomic limit (OAL) character and the first 2D photonic crystal model
which posses fragile topology.
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Resumen

Diseño y Caracterización de Cristales Fotónicos Bidimensionales.

por María BLANCO DE PAZ

La historia de la humanidad puede clasificarse en épocas en función de la
principal tecnología material desarrollada en cada período. Así, solemos
referirnos a diferentes épocas humanas como la edad de piedra, la edad de
bronce o la edad de hierro. Nuestra época está dominada por las tecnologías
basadas en el silicio y, por lo tanto, podríamos referirnos a esta era como la
edad del silicio.

Desde el punto de vista de una física (o un físico), la era del silicio comenzó
con el descubrimiento de los semiconductores. Estos materiales se conocían
desde finales del siglo XIX. Sin embargo, la explicación de su extraño com-
portamiento conductor en términos de ideas de llenado de bandas no se in-
trodujo hasta principios de la década de 1930. Por aquel entonces, las ban-
das electrónicas eran un concepto bien conocido, pero los mecanismos físi-
cos que rigen la conducción de electrones en los semiconductores aún no se
comprendían del todo. Alrededor de 1930, Alan Wilson propuso la siguiente
explicación: si la banda de valencia está completamente llena, los electrones
de un material sólo pueden conducir la electricidad si son excitados a otra
banda a través de la brecha de energía. Sin embargo, si la banda de valencia
no está llena, los electrones pueden dispersarse a estados cercanos y con-
ducir así la electricidad. Wilson y sus contemporáneos ya sabían que la se-
paración entre bandas estaba controlada por las impurezas dentro del cristal,
impulsando así el desarrollo de técnicas para purificar y controlar la concen-
tración de dopantes en los semiconductores de silicio y germanio [1, 2]. En
la física moderna, la caracterización de un material se basa en los conceptos
de simetría y cantidades conservadas. La clasificación de las diferentes fases
de la materia en términos de simetrías y su ruptura se conoce comúnmente
como el paradigma de Landau [3–5]. Aunque proporciona un marco exitoso
para describir las transiciones de fase, tanto a nivel clásico como cuántico,
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no logra captar algunos fenómenos novedosos en la física del estado sólido:
las fases topológicas. La razón es que la conductividad de los materiales
topológicos no depende de la simetría local, sino de otras propiedades no
locales denominadas invariantes topológicas. Como estas propiedades no
pueden definirse localmente, los fenómenos topológicos sólo pueden cap-
tarse considerando el conjunto de modos en las bandas de energía de un
material. La principal implicación de este carácter no local de los efectos
topológicos es que las impurezas o los defectos locales no les afectan. Por
lo tanto, estos prometedores materiales presentan propiedades poco conven-
cionales y robustas que pueden dar lugar a una nueva revolución en la tec-
nología de materiales, abriendo la puerta a la edad topológica.

El concepto de invariante topológico procede del área de topología dentro de
las matemáticas, que se enfoca en el estudio de las propiedades que se conser-
van bajo deformaciones continuas [6]. El ejemplo más conocido para ilustrar
este concepto consiste en clasificar geometrías como la esfera y el donut a
través de su "género" g. Esta propiedad, cuenta el número de agujeros de
un objeto: la esfera tiene g = 0 y el donut tiene g = 1. Como no es posible
deformar una en otra, el "género" es un invariante topológico. Esta canti-
dad, al igual que otros invariantes topológicos, suelen ser números enteros
que, por definición, no pueden cambiar continuamente, lo que implica que
las propiedades físicas topológicamente invariantes serían robustas frente a
perturbaciones locales.

La primera manifestación física de la topología fue el efecto Hall cuántico
(QHE) descubierto por Klaus von Klitzing en gases de electrones bidimen-
sionales bajo un fuerte campo magnético [7]. En 1985, von Klitzing recibió el
Premio Nobel de física por demostrar la cuantificación y la excepcional ro-
bustez de la conductividad de Hall en estos sistemas. En 1982, Thouless et
al. [8] propuso la primera caracterización topológica de este comportamiento
en términos de un invariante topológico conocido como el número Chern,
que está directamente relacionado con la conductividad de Hall. Esta con-
tribución al campo de los materiales topológicos fue reconocida con el Pre-
mio Nobel de física en 2016.

Aunque la mayoría de los conceptos clave de la topología de sistemas de
bandas se desarrollaron originalmente en física de la materia condensada,
muchos de ellos se aplicaron rápidamente a la propagación de ondas electro-
magnéticas en cristales fotónicos [9]. Dado que la mayoría de las magnitudes
fundamentales en el campo de los materiales topológicos, como la fase de
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Berry, la curvatura de Berry y el espectro del operador Wilson loop, se basan
en la propagación de ondas a través de un potencial periódico, la mayoría de
las características topológicas pueden trasladarse a la propagación de ondas
en sistemas periódicos clásicos [10].

El primer capítulo introductorio de esta tesis, explica como comenzó el estu-
dio de los efectos topológicos tanto en sistemas electrónicos como bosónicos.
Incluyendo también los ejemplos más relevantes de fases topológicas, enfa-
tizando en sistemas clásicos, ya que esta tesis se centra en la realización y
análisis de aislantes topológicos en cristales fotónicos bidimensionales. Esto
significa que consideramos sistemas en los que la constante dieléctrica es per-
iódica a lo largo de dos direcciones espaciales, y la constante de red es com-
parable al orden de la longitud de onda incidente. Dicha periodicidad del
sistema limita la frecuencia a la que se propagan las ondas de luz, al igual
que los electrones en física de la materia condensada [11]. Por lo tanto, los
modos del sistema pueden ser descritos con la estructura fotónica de ban-
das — de manera similar a la estructura de bandas electrónica [12]. En el
capítulo 2 se incluye la descripción teórica de la propagación de la luz en
un cristal fotónico a partir de las ecuaciones macroscópicas de Maxwell, así
como los supuestos necesarios para obtener un problema periódico de va-
lores propios formalmente comparable a la ecuación de Schrödinger.

Además, en los capítulos 2 y 3 de esta tesis se incluye la descripción teórica
de los conceptos fundamentales en el campo de los materiales topológicos,
revisando las expresiones utilizadas para definir invariantes topológicos en
sistemas periódicos bidimensionales. Dichas cantidades topológicamente in-
variantes son la curvatura, la fase y la conexión de Berry, así como el número
Chern y el número Chern de valle. También se explica el procedimiento para
obtener los valores propios del operador Wilson loop y su relación con la posi-
ción de las funciones de Wannier en la celda unidad del cristal. Todas estas
expresiones en el límite continuo son explicadas en el capítulo 2. Mientras
que la discretización de dichas cantidades en el espacio recíproco se mues-
tran en el capítulo 3, proporcionando un enfoque práctico para aplicar dichos
conceptos teóricos a la clasificación topológica de cristales fotónicos.

Para la caracterización completa de dichos cristales, también se presenta en
el capítulo 2 una descripción básica de la teoría de Topological Quantum Chem-
istry (TQC), basada en la relación entre la simetría de los modos propios del
sistema y la de las funciones de Wannier, obteniendo información sobre la
posición de estas funciones en la celda unidad. Además, en el capítulo 3
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se incluye una descripción práctica detallada sobre cómo aplicar TQC en la
respuesta óptica de los cristales fotónicos para obtener la topología de cada
estructura de bandas.

Como se explica a lo largo de esta tesis, la forma y posición de las funciones
de Wannier en la celda unidad real están estrechamente relacionadas con el
carácter topológico del cristal. La posición predicha por TQC de las fun-
ciones de Wannier exponencialmente localizadas, son comparadas con la lo-
calización de los máximos de densidad local de estados, integrada sobre gru-
pos de bandas aisladas.

Por tanto, la tesis incluye la descripción del cálculo de la densidad de esta-
dos y la densidad local de estados en cristales fotónicos, cuyo formalismo
matemático empieza en el límite continuo explicado en el capítulo 2, y acaba
proporcionando una guía paso a paso para calcular numéricamente dichas
magnitudes en el capítulo 3.

Mientras los capítulos 2 y 3 están dedicados a la descripción teórica y a la
metodología utilizada, respectivamente. Los capítulos de resultados se cen-
tran en la implementación práctica de dicha meodología para la caracteri-
zación topológica de cristales fotónicos bidimensionales.

En el capítulo 4 de esta tesis se presentan varios ejemplos de fases con dife-
rente topología, incluyendo una caracterización detallada de las caracterís-
ticas distintivas de cada una de las diferentes fases. Concretamente, se pre-
senta el análisis para un aislante topológico de tipo Chern, un sistema con
grado de libertad de valle, un sistema de límite atómico obstruido (OAL) y
un sistema que alberga bandas con topología frágil. Aunque la fase frágil y el
OAL se introducen por primera vez en el capítulo 4, ambas fases se explican
en profundidad en los capítulos sucesivos.

En el capítulo 5 de esta tesis se presenta el primer caso conocido de un cristal
fotónico con bandas topologicamente frágiles. Además, se explica cómo se
puede diseñar un cristal fotónico con topología frágil. En este capítulo se
hace especial hincapié en cómo se puede aplicar TQC a cristales fotónicos.
Comenzando por la descripción del grupo de simetría de las redes hexago-
nales bidimensionales (p6mm), se detallan los pasos necesarios para realizar
una evaluación topológica mediante TQC. Además, esta caracterización se
combina con el análisis espectral del operador Wilson loop. Para explorar la
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manifestación topológica de las bandas frágiles en un sistema finito, se emu-
lan las propiedades de los modos finitos mediante la construción de una su-
percelda que combina sistemas fotónicos triviales y frágiles a lo largo de una
dirección.

Por último, el capítulo 6 está dedicado a explorar la relación entre la concen-
tración de carga en el espacio real, calculada mediante la densidad de estados
local para conjuntos de bandas conectadas, y la posición de las funciones de
Wannier exponencialmente localizadas predichas por TQC en diferentes re-
des hexagonales. Además, el análisis se complementa con los espectros del
operador Wilson loop. En este capítulo, se explica en profundidad la natu-
raleza de la fase OAL y por qué puede confundirse fácilmente con una fase
topológica Z2.

En general, esta tesis introduce una forma sistemática de caracterizar la topo-
logía de los cristales fotónicos bidimensionales, que puede ser extendida a
otras redes bosónicas bidimensionales. Contiene estrategias prácticas para
calcular invariantes topológicos como el número Chern, el número Chern
de valle y los valores propios del operador Wilson loop. Además, se intro-
duce por primera vez la aplicación de TQC a cristales fotónicos mostrando
su utilidad para una eficiente caracterización topológica de las estructuras
de bandas fotónicas.Finalmente, se muestra la correspondencia entre la dis-
tribución de densidad local de estados de conjuntos de bandas conectadas y
la posición de los centros de Wannier predichos por TQC y los espectros del
operador Wilson loop. Todos estos instrumentos permiten analizar en profun-
didad el carácter topológico de las estructuras fotónicas. El conjunto de estas
herramientas ha permitido diseñar la primera implementación física cono-
cida hasta la fecha de un sistema con topología frágil.
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1 Introduction

1.1 Introduction to topology

Human history can be categorized into eras depending on the leading mate-
rial technology developed at each period. Thus, we commonly refer to differ-
ent human epochs as the stone age, the bronze age or the iron age. Our times
are dominated by Silicon-based technologies, and thus, we could refer to this
era as the silicon age. From the point of view of a physicist, the silicon age
started with the discovery of semiconductors. These materials were known
since the late 1800s. Nevertheless, an explanation to their strange conductive
behaviour in terms of band filling ideas was not introduced until the early
1930s. Back then electronic bands were a well known concept, but the phys-
ical mechanisms governing electron conduction in semiconductors were not
yet fully understood. Around 1930 Alan Wilson proposed the following ex-
planation: if the valance band is fully filled, electrons in a gapped material
can only conduct electricity if they are excited to another band across the
energy band-gap. Nevertheless, if the valence band is not filled, electrons
can be scattered to nearby states and thus conduct electricity. Wilson and his
contemporaries already knew that band gaps were controlled by impurities
within the crystal and this idea boosted the development of techniques to
purify and control the concentration of dopants in silicon and germanium
semiconductors [1, 2].

In modern physics, the characterization of a material is based on the con-
cepts of symmetry and conserved quantities. The classification of the differ-
ent phases of matter in terms of symmetries and their breaking is commonly
known as the Landau paradigm [3–5]. Although this structure provides a
successful framework for describing phase transitions —classical and quan-
tum— it fails to capture some novel phenomena in solid-state physics: topo-
logical phases. The reason behind this is that the conductivity of topological
materials does not depend on local symmetry, but on some other non-local
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properties called topological invariants. Since these properties cannot be lo-
cally defined, topological phenomena can only be captured by considering
the entire set of modes in the energy bands of a material. The main implica-
tion of this non-local character of topological effects is that impurities or local
defects will not affect them. Therefore, these promising materials present un-
conventional and robust properties which may give rise to a new revolution
in material technologies opening the door to the era of topology.

The concept of topological invariant comes from the mathematical area of
topology, which studies properties that are conserved under continuous de-
formations [6]. The most typical example to illustrate this concept consists in
classifying geometries such as a sphere and doughnut through their genus
g. This property, counts the number of holes in an object: the sphere has
g = 0 and the doughnut has g = 1. Since it is no possible to smoothly de-
form one into another, the genus is a topological invariant. The genus of
geometry is mathematically formalized through the Gauss–Bonnet theorem.
This theorem states that the surface integral of the Gaussian curvature of a
closed geometry (K) is quantized. The associated topological invariant can
be calculated for two-dimensional surfaces through the Euler characteristic
χ, defined as

χ =
1

2π

∫∫
S

KdA (1.1)

where S is a closed surface. This quantity is an integer related to the genus
as χ = 2− 2g. For example, the Gaussian curvature of a spherical object of
radius R is K = 1/R2. Since the curvature is constant, the integral over its
area A = 4πR2 gives χ = 2 which is consistent with g = 0, an object with no
holes. This quantity is conserved if the sphere is deformed by flattering some
parts of the surface and curving other parts. This is an important implication
of the Gauss–Bonnet theorem to define topological invariant quantities. The
Euler characteristic and the genus are usually integer numbers that, by def-
inition, cannot change continuously implying that the physical properties
topologically invariants would be robust to local perturbations.

1.1.1 Topology in condense matter

The first physical manifestation of topology was the quantum Hall effect
(QHE) discovered by Klaus von Klitzing in two-dimensional (2D) electron
gases under a strong magnetic field [7]. In 1985, von Klitzing received the
Nobel Prize for showing the quantization and exceptional robustness of the
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Hall conductance in these systems. In 1982, Thouless et al. [8] proposed the
first topological characterization of this behaviour in terms of a topological
invariant Cn, also known as the Chern number.1 They determined the re-
lation between this number and the Hall conductance σxy which can be ex-
pressed as,

σxy = − e2

h ∑
n

Cn. (1.2)

The conductance increases with a quantized behaviour as the magnetic field
is increased and consequently, more edge states occur on the 2D electron
gas. Semi-classically,the electrons of the gas subjected to a perpendicular
magnetic field undergo a cyclotron motion. At the interface with an insulat-
ing material, the electron motion is restricted resulting in chiral edge states.
Since there are no available states to backscatter to, the electrons cannot travel
along the interface in the opposite direction which results in robust chiral
states. Equation 1.2 exemplifies the so-known bulk-boundary correspondence,
where the Chern number (a topological invariant of the bulk), is related to
the number of boundary modes. The QHE is the most common example of
a topological phenomenon presenting an insulating bulk, while sustaining
surface states topologically protected against disorder. This contribution of
Thouless et al. to the field of topological materials was recognized with the
Nobel Prize in 2016. An illustrative representation of how chiral edge states
emerge due to the QHE is shown in Fig. 1.1.

There exits several models which describe the topological behaviour of Chern
insulators [13, 14], nevertheless, the most relevant is the Haldane model [15].
Haldane highlighted for the first time that the key ingredient is not the ap-
plied magnetic field, but the breaking of the time-reversal symmetry (TRS).
For example, the energy spectrum of a honeycomb lattice along its irreducible
Brillouin zone (BZ) presents Dirac cones at the high symmetry points K and
K′ due to the crystalline symmetry. Although the Dirac cones can be gaped
breaking either TRS or inversion symmetry, Haldane showed that the topo-
logical modes only emerge with broken TRS. In the recent years, the question
was whether non-trivial topology can be found in systems preserving TRS.

In a new class of topological insulators systems, there is an effect reminis-
cent of the Haldane model [15] is known as the quantum spin-Hall effect
(QSHE) [16, 17]. In an electronic system which preserves TRS, the Kramer’s
theorem imposes that for each state at energy E(k), there will always be a

1The detail formulation of the Chern number is explained in Chapter 2.
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FIGURE 1.1: Quantum Hall effect in a two-dimensional elec-
tron gas: the first realization of a protected topological phase.
Electrons follow a semiclassical cyclotron motion under a per-
pendicular magnetic field B = Bzẑ. At the interface between
the 2D electron gas under the magnetic field (with Chern num-
ber C = 1) and an insulator (C = 0), a chiral edge state emerges.
Since there is no available state to backscatter, the eletrons are
force to describe unidirectional propagation along the interface
which is protected against defects. Figure adapted from Ref.

[13].

state at E(−k) with opposite momentum and spin. This implies that spin up
and spin down modes are degenerate. The degeneracy is extended over the
whole BZ when spin-orbit interactions (SOI) are neglected. As a consequence
of SOI, the spin modes preserve the degeneracy only at high symmetry points
in the BZ [16, 17]. Within this framework, the edge modes that emerge in a
band gap can cross an even or odd number of times. The modes that cross an
even number of times are topologically trivial since they can be adiabatically
removed from the gap. While if they cross an odd number of times, they are
topologically non-trivial since they the cannot be adiabatically changed [13].
In this type of system, the topological invariant is Z2 which results from
C↑/↓ mod 2, where C↑/↓ is the spin-Chern numbers. Thus, Z2 = 0 indicates
trivial topology whilst Z2 = 1 indicates non-trivial topology. An essential
condition to fulfil Kramer’s theorem is that the fermionic TRS operator (T̂)
satisfies T̂2 = −1. Typically, the term topological insulator (TI) refers to a Z2

insulator hosting QSHE edge states [13].

Additionally, within systems preserving TRS, there is another class of ma-
terials with edge modes that arise due to underlying crystalline symmetry
properties, the so-called quantum valley Hall effect, which relies on inversion
symmetry breaking [18]. As we introduced in the Haldane model, break-
ing inversion symmetry in a honeycomb lattice will lift the degeneracy of
a Dirac point at the K and K′ high symmetry points; however, the Chen
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number is zero since TRS is preserved. Nevertheless, this type of system
can still present some topological features determined by another topologi-
cal invariant: the valley Chern number, Cv [19–21]. This fractional number
quantifies the Berry curvature around valleys related by TRS — as K and K′

points [22] — displaying opposite sign at each Cv(K) = −Cv(K′). The sum
of all the valley Chern numbers within the BZ is equal to the Chern number.
For these particular 2D systems C must zero since TRS is preserved. Nev-
ertheless, there is a bulk-boundary correspondence that predicts the pres-
ence of topological valley states between regions with valley invariants of
opposite sign [23]. Since the gap is locally closed at the valley, facing two
materials with opposite Cv for the same valley results in the emergence of
valley-polarized edge states at their interface that would be robust against
defects that do not interact with the valleys.

1.2 Topological invariants and Wannier represen-

tation

Topologically invariant quantities characterize the topological character of
any band insulator [24–28]. As we mentioned before, these quantities can be
calculated from the complete set of Bloch modes in the energy band. These
Bloch functions are periodic and delocalized in the lattice. Nevertheless, it
is also possible to study topology of a material in terms of Wannier func-
tions that are the real space representation of the modes that constitute the
band. In condense matter physics these functions can be understood as lo-
calized orbitals. When a system can be described in terms of exponentially
localized Wannier functions, it said to be “Wannier representable". The po-
sitions where this function is maximized are known as “Wannier centers".
Importantly, this type of description is only possible for topologically trivial
materials, since the Wannier functions in topologically non-trivial materials
are delocalized and consequently, these materials are not “Wannier repre-
sentable" [29]. However, there is a type of system which is Wannier repre-
sentable but still possess localized modes protected by the lattice symmetry.
The most representative model which presents this character, due to so called
Wannier obstructions, is the Su-Schrieffer–Heeger (SSH) chain[30–32]. In or-
der to explore the localization of the Wannier functions, the spectrum of the
Wilson loop operator becomes an useful tool (specially for those phases pre-
serving TRS) since this quantity is related to the projected position of Wannier
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functions [33]. The shape of the Wilson loop spectrum for sets of connected
bands indicates if the Wannier functions can be exponentially localized, as
well as the Chern number associated to those bands. If the eigenvalues of
the Wilson loop along the BZ do not wind — the phase does not cover a 2π

change — then, this spectrum can be adiabatically transformed to a constant.
This indicates that the Wannier functions can be exponentially localized and
we can identify the system as topologically trivial. On the contrary, when the
spectrum presents windings, this indicates a delocalization of the Wannier
functions. The Chern number can be extracted from the spectrum since is
equal to the number of the windings, where sign of the Chern number is de-
termined by the slope of the spectrum. For example, the spectrum of a Chern
insulator will wind with a slope of the same sign. On the other hand, in the
case of Z2 insulators, two eigenvalue spectra will wind with opposite sign
slopes. In addition to these simple examples, different topological phases
can also be detected through the application of Topological Quantum Chem-
istry (TQC) [27]. This characterization tool is based on the symmetry analysis
of Wannier and Bloch functions in real and reciprocal space respectively. Ap-
plying group theory to the Bloch states, TQC can predict the symmetry and
position of the Wannier functions in real space. Moreover, TQC can deter-
mine if the system is Wannier representable and sort different topological
phases including fragile topology and obstructed atomic limits.

1.3 Topology in photonic systems

Although most of the key concepts in band topology were originally devel-
oped in condensed matter physics, many of them were quickly transferred
to propagating electromagnetic waves in photonic crystals [9]. Since most
fundamental quantities such as the Berry phase, Berry curvature and Wil-
son loop spectra in the field of topological materials are based on the single-
particle picture and the wave propagation through a periodic potential, most
topological features can be translated to the propagation of waves in periodic
classical systems [10].

In this thesis we focus on the realization of photonic topological insulators
for photonic crystals. This means that we consider dielectric systems in which
the dielectric constant is periodic and the lattice constant is comparable to
the order of incident wavelength. The periodicity of the system limits the
frequency at which light waves propagate in the system, alike electrons in
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condense matter [11]. Thus, the modes of the system can be described by the
photonic band structures — similarly to the electronic band structure [12].

1.3.1 Photonic Chern insulators

As we described before, breaking TRS is the key ingredient to achieve a topo-
logical Chen insulator. This implies that the direct analogy of QHE can be
found in photonic systems. In 2008, Haldane and Rahgu proposed the first
theoretical model for a photonic QHE realization [12, 34]. It consists of a sys-
tem composed by gyromagnetic rods arranged in a hexagonal lattice, whose
TRS breaking relies on the Faraday effect. Successively, a physical platform
sustaining the photonic QHE was theoretically proposed and experimentally
realized in a magneto-optical photonic crystal at microwave frequencies [35,
36]. For the experimental realization, a square lattice is used instead a hexag-
onal one, since the emergence of the chiral edge states only relies on the dif-
ference in the Chern number at the interface [37]. These states are topologi-
cally robust, they require strong magnetization conditions to operate.

1.3.2 Photonic Z2 insulators

The method to achieve TRS invariant topological effects in photonic systems
is more complex. Due to the incompatibility between the bosonic time rever-
sal operator and Kramer’s theorem, it is very difficult to achieve a strict anal-
ogy for a Z2 insulator and the QSHE in photonics. Therefore, most research
on topological effects in TRS invariant bosonic systems has been focused on
methods that simulate certain characteristics of those topological systems, as
the examples shown in Fig. 1.2. These effects can be realized in TRS invari-
ant systems as coupled ring resonators [21, 38] and photonic crystals made
of bianistropic metamaterials [39, 40]. More detailed information about these
effects, can be found in Refs. [10, 14, 37].

1.3.3 Photonic valley effects

Since the topological valley effect in electronic systems relies mostly in in-
version symmetry breaking, direct analogs can be achieved with quite ease
in classical systems Thus, many theoretical and experimental realizations of
Photonic topological valley systems have been develop in the recent past [10,
43, 44]. In all of them, breaking inversion symmetry is the key ingredient to
gap Dirac cones and achieve a valley-Chern phase [45–47]. In Chapter 4, we
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FIGURE 1.2: Examples of unidirectional propagation in pho-
tonic systems. (a) Coupled silicon ring resonators [38]. Pseudo-
spins engineered from different phases giving rise to edge
states. Reproduced from Ref. [21]. (b) Control of the in-
trinsic spin-orbit interaction of light [41], to achieve unidirec-
tional propagation using a dipole emitter near the dielectric
substrates and metal interfaces. Reproduced from Ref. [42].
(c) Bianistropic metamaterials, such lattices of split-ring res-
onators, used to engineer pseudo-spins and unidirectional

modes. Adapted from Ref. [39].

will present an example of a photonic crystal that presents this valley effect,
characterized by the valley Chern number Cv.

1.3.4 Photonic Obstructed Atomic Limit (OAL) insulators

In 2015, Wu and Hu proposed a method using photonic crystals to achieve
edge states while preserving TRS [48]. This pseudo-spin effect depends on
the crystalline symmetry of the so-called “breathing honeycomb" lattice —
Fig. 1.3. As we will explain along this thesis, the lattice symmetry leads to
similar properties to those of Z2 topological insulators showing the QSHE.
By adjusting the symmetry, they showed that the crystal lattice has similar
characteristics, including the energy band inversion between the bulk states
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FIGURE 1.3: Engineering modes in a photonic crystal which re-
minds to those of the quantum spin Hall effect. (a) The breath-
ing honeycomb lattice. A triangular lattice composed by six
rods per unit cell, which are contracted (perturbed inwards) or
expanded (perturbed outwards). (b) Edge states at the interface
between contracted and expanded phases. A small impercepti-
ble gap is present at Γ. (c) Excitation of edge modes with linear
polarized light. (d) Excitation of edge modes with circularly
polarized light, the excitation position is critical in exciting the

unidirectional modes shown. Reproduced from [48].

and the directional edge state with pseudo-spin character. Due to its ap-
parently simple approach and the promise of a true photonic insulator with
topological protection, this contribution has led to a considerable interest in
these kind of “breathing honeycomb" lattices. These ideas have been ap-
plied not only to the study of photonic crystals [49, 50], including optical [51]
and microwave [52, 53] regimes, but to other classical systems as acoustic lat-
ices [54] or mechanical [55] systems. For all of them, the emerging edge states
have been successfully used to guide and manipulate waves. Although this
wave propagation has been proved to be robust against some disorder [56],
as we will show in this thesis, none of these breathing honeycomb lattices
phases posses a non-trivial Z2 topological invariant. This implies that they
are not a true bosonic analogue of the QSHE. As we detail in Chapters 4
and 6, the effect that Wu and Hu observed can be rigorously explained either
using TQC or the eigenvalues of the Wilson loop operator. In a few words,
the system turns out to be Wannier representable. Its maximally localized
Wannier functions are localized either at the origin or at the edges of the unit
cell depending on if the the lattice is on its expanded or contracted configura-
tion. The Wannier states of each lattice represent two opposite atomic limits,
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and could be considered a 2D analog of the 1D SSH chain introduced be-
fore. The phase these materials represent is named the photonic Obstructed
Atomic Limit (OAL) [57].

1.3.5 Photonic fragile topology

Most of the work in the field of topological photonic systems has been fo-
cused on producing chiral or helical edge modes in Photonic Chern insula-
tors and Photonic Crystals presenting Z2 or OAL phases. However, there
is still an additional topological phase called “fragile”, which was barely ex-
plored at the time the research contained in this thesis was beginning to be
developed [58–65].

Fragile topology is a property of a given number of bands that can be iden-
tified by a bulk topological invariant through the eigenvalues of the Wilson
loop operator. The Wilson loop spectra of a set of fragile bands consist in
a pair of eigenvalues with opposite windings, which indicate that the Wan-
nier centers are delocalized within the unit cell. This could in principle be
an indication of Z2 topology. Nevertheless, this topological phase presents
a distinctive feature; if a trivial band is added in the calculation of the non-
Abelian Berry connection (2.19), then the eigenvalues of the wilson loop loose
their winding and they behave as in the case of the OAL.

In solid state systems, this phase has been predicted to emerge in twisted
bilayer graphene [66, 67] and transition metal dichalcogenide (TMD) het-
erostructures [68]. More importantly, an experimental realization of fragile
topology in acoustic systems were recently shown in Ref. [69].

Chapter 5 of this thesis introduces the first known instance of a photonic
crystal presenting fragile topology. Moreover, Chapter 5 explains in detail
how fragile topology can be engineered in a Photonic Crystal.

1.4 Thesis structure

The forthcoming chapters of the thesis are structured as follows:

• Chapter 2 summarizes the basic theoretical tools applied along the rest
of the thesis. The first part is dedicated to a detailed explanation of
how light propagates within a photonic crystal. Here we detail the as-
sumptions needed to transform macroscopic Maxwell’s equations into
a periodic eigenvalue problem comparable to Schrödinger’s equation.
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The second part of this chapter is devoted to an explanation of the fun-
damental concepts in the field of topological materials. Thus it reviews
the expressions used to define topological invariants in the continuous
limit. Additionally, this chapter presents a basic description of the the-
ory of TQC, based on symmetry and Wannier functions. The last part
of the chapter describes the calculation of quantities such as the density
of states (DOS) and local density of states (LDOS) in photonic crystals
in the continuous limit.

• Chapter 3 provides a practical approach on how to apply the theoreti-
cal concepts introduced in Chapter 2 in numerical calculations. The first
part details the discrete expressions of the key quantities introduced in
the previous chapter, together with procedures to compute topologi-
cal invariants such as the Chern number, the valley-Chern number and
the eigenvalues of the Wilson loop operator in numerical computations.
Then, we offer a practical description on how to apply TQC in the op-
tical response of photonic crystals. The final part provides a guide to
compute the DOS and LDOS numerically.

• Chapter 4 presents several examples of topological phases found in
2D photonic crystals. We include a detailed characterization of each
of them via the computation of the invariants described in Chapter 2
and Chapter 3. We present the analysis for a Chern insulator with bro-
ken TRS, a valley Chern insulator with broken inversion symmetry, a
system with OAL and a system presenting fragile topology.

• Chapter 5 is devoted to a in-depth analysis of fragile topology. Here
we put a special emphasis on how TQC can be applied to photonic
crystals. This characterization is combined with the spectral analysis of
the Wilson loop operator.

• Chapter 6 shows a topological analysis of the breathing honeycomb lat-
tice and other lattices based on it. We analyze the position of the Wan-
nier functions, determined through TQC and the spectra of the Wilson
loop operator. Additionally, we compare the predicted Wannier posi-
tions with the LDOS for sets of connected bands. This chapter explains
in-depth the nature of the OAL phase and why can be easily confused
with a Z2 topological phase.

We wrap up the thesis with a chapter devoted to Conclusions.
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2 Theoretical Background

This chapter is focused on the theoretical background used to develop this
thesis. Our description will start from the macroscopic Maxwell equations
that govern light propagation within photonic crystals (PhCs). First, the
Maxwell equations must be reduced to an eigenvalue problem. Then, trough
the application of Bloch’s theorem, we include periodic boundary conditions
in our formulation. Afterwards, we explain the theory behind several topo-
logical invariants that can be found in the study of the optical response of
PhCs. Moreover, we also describe how the theory of topological quantum
chemistry (TQC) can be applyied to bosonic systems. Finally, we show as
complementary characterization tool how to calculate the density of states
(DOS) and the local density of states (LDOS) of PhCs [70, 71].

2.1 Maxwell equations

The propagation of electromagnetic waves in complex media– including the
light propagation within PhCs – is governed by the macroscopic Maxwell
equations:

∇ · B = 0 (2.1a)

∇× E +
δB
δt

= 0 (2.1b)

∇ ·D = ρ (2.1c)

∇×H− δD
δt

= J (2.1d)

Here, E(r, t) and H(r, t) are the electric and magnetic field, respectively. D(r, t)
and B(r, t) are the electric displacement and the magnetic flux; finally, ρ and
J are the free charges and current densities. The derivation of these formulas
from their microscopic counterparts can be found in Ref. [72].
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For the purpose of this thesis, we will limit our analysis to media composed
by regions of homogeneous dielectric materials that can be described as a
function of the position vector (r). We consider as well that there are no free
charges or currents in the material, so we can set ρ = 0 and J = 0.

Furthermore, we take other reasonable assumptions for many macroscopic
dielectric media including PhCs:

• We assume that the field strengths are small enough such that the re-
sponse can be restricted to linear regime.

• We consider isotropic macroscopic materials. Thus, the relative permit-
tivity ε(r, ω) is a scalar function.

• The materials under study are transparent and have no losses. So, we
can treat the dielectric constant ε(r) as a purely real and positive quan-
tity.

• Finally, we consider that the dielectric function is periodic in space.
Then, ε(r) = ε(r + R), where R is the lattice vector expressed as lin-
ear combination of the primitive lattice vectors of the crystal (a1 a2 a3),
R = n1a1 + n2a2 + n3a3.

Under these assumptions, the electric displacement and magnetic flux can be
written in terms of the electric and magnetic fields as,

D(r) = ε0ε(r)E(r) (2.2a)

B(r) = µ0H(r) (2.2b)

Then, combining Eq. (2.1) and Eq. (2.2) we get the Maxwell equations as func-
tion of the fields:

∇ ·H(r, t) = 0 (2.3a)

∇× E + µ0
δH(r, t)

δt
= 0 (2.3b)

∇ · [ε(r)E(r, t)] = 0 (2.3c)

∇×H(r, t)− ε0ε(r)
δE(r, t)

δt
= 0 (2.3d)
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To avoid the time dependency — and since we are working with linear equa-
tions — we can expand the fields into a set of harmonic modes:

H(r, t) = H(r)e−iωt (2.4a)

E(r, t) = E(r)e−iωt (2.4b)

In this way, we define the fields — or modes of the system — as a spatial part
harmonically modulated in time by a complex exponential. Inserting this
definition into Eq. (2.3), we can follow the formulation in frequency domain.
Obtaining two divergence equations that set the conditions of transversality,

∇ ·H(r) = 0 (2.5a)

∇ · [ε(r)E(r)] = 0, (2.5b)

and two curl equations that relate H(r) and E(r),

∇× E(r)− iωµ0H(r) = 0 (2.6a)

∇×H(r) + iωε0ε(r)E(r) = 0. (2.6b)

Then, following the algebraic manipulation described in Ref. [70], Eq. (2.6)
can be decoupled and expressed as two separate eigenvalue problems. One,
in terms of the electric field

∇×∇× E(r) =
(ω

c

)2
ε(r)E(r). (2.7)

And the other one, commonly known as Master Equation, in terms of the mag-
netic field

∇×
[

1
ε(r)
∇×H(r)

]
=
(ω

c

)2
H(r), (2.8)

where c is the speed of light, c = 1/
√

ε0µ0.
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Although both formulations are eigenvalue problems,1 they must be treated
differently. Eq. (2.7) is more complex to solve due to the presence of the func-
tion ε(r) on the right-hand side of the expression, which makes it a generalized
eigenvalue equation. On the contrary, Eq. (2.8) can be easily solved as a Her-
mitian eigenvalue problem. For this reason, it is the expression most com-
monly used to determine the eigenfrequencies and eigenmodes of a given
system. The usual procedure to explore the modes consists on computing
the eigensolutions of the magnetic field using Eq. (2.8), and then recover-
ing the electric field from Eq. (2.6a) [70, 71]. Many commercial and open
source software packages have this procedure implemented. All the electro-
magnetic calculations in this thesis are carried out using MIT Photonic Bands
(MPB) [73], which is one of these open sources solvers.

2.1.1 Solid-state electromagnetism

Given that this thesis is focused on the description of 2D PhCs, we can exploit
the effect of the crystalline symmetries to complete our description.

Unlike homogeneous media, as air, where the translational symmetry is con-
tinuous — the system is invariant under translations of any distance and
direction — PhCs have discrete translational symmetry imposed by the lat-
tice. Therefore, the system remains unchanged only if it is shifted by units of
the lattice vector R. It is common practice to consider continuous translation
symmetry along the z-direction and discrete in the xy-plane as we illustrate
in Fig. 2.1.

The translational symmetry operation is defined by the unitary operator of
translation, T̂R, which acting over a function displaces the argument by R, i.e.
T̂Rε(r) = ε(r− R) = ε(r). As the PhCs that we consider are translationally
invariant, the operator of Eq. (2.8) commutes with T̂R. Consequently, the
eigenmodes can be classified according to how they behave under T̂R.

Since the fields are expressed in plane wave expansion,2 the eigenvalues of
T̂R take the form of eiφR . For our system we know — from the Maxwell equa-
tions — that φR must be linear in R, so introducing the wave vector k as a

1the operator acts over the function transforming it by a scalar factor.
2the solutions of Maxwell’s equations take the form of a plane wave in structures where

the refractive index is constant along the z direction.
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FIGURE 2.1: Segment illustration of a 2D photonic crystal with
discrete translational symmetry in the xy-plane and invariant

along the z-direction.

parameter, we can define it as φR = −k ·R. Hence, the fields of a PhC can be
expressed as Bloch modes labeled by the wave vector k,

Hk(r) = eikruk(r) (2.9a)

Ek(r) = eikrvk(r) (2.9b)

where uk and vk are periodic functions of the lattice, i.e. uk(r) = uk(r + R).

Going back to the eigen formulation of the Maxwell equations — Eqs. (2.7–
2.8) —, now we can solve the problem for each of the propagation directions
given by k.

∇×∇× Ek(r) =
(ωk

c

)2
ε(r)Ek(r) (2.10a)

∇×
[

1
ε(r)
∇×Hk(r)

]
=
(ωk

c

)2
Hk(r) (2.10b)

The corresponding set of discrete eigenvalues from the problem resolution
compose the band dispersion of the system. In this way, we can identify the
modes by the band index n — given by the frequency —, and the propagation
direction k.

Despite the fact that Eq. (2.10) must be solved as a fully vectorial problem in
three-dimensional (3D) structures, we can take advantage of the symmetries
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FIGURE 2.2: Illustration of different field polarizations of the
electromagnetic field in 2D crystals, which is propagated along
the xy-plane. Since the mirror symmetry plane coincides with
the propagation plane, we can observe how for TM modes the
electric field is odd transformed while for TE modes the mag-
netic field is even transformed due to its psudovectorial nature.

of our 2D system to simplify the resolution. Particularly, we exploit the mir-
ror reflection symmetry which allows us to classify the eigenmodes into even
and odd solutions with respect to this symmetry operation. In general, for
any given 2D PhC where ẑ is the invariant direction of the system, the fields
can be either polarized as (Ex, Ey, Hz) (mirror even) or (Hx, Hy, Ez) (mirror
odd). These two polarizations are known as transverse electric (TE) or trans-
verse magnetic (TM) modes respectively. We illustrate how the modes are
arrange with respect a mirror plane in Fig. 2.2.

For TM modes, the magnetic field is confined to the xy-plane, therefore the
non-zero components of the magnetic field are Hx(r), Hy(r). Most impor-
tantly, the electric field becomes a scalar function, being Ez(r) the only nonzero
vector component. Similarly, for TE modes, Hz(r) is the only nonzero com-
ponent of the magnetic field. Consequently, Eq. (2.10) can be rewritten for 2D
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PhCs as two decoupled scalar equations, one for each of polarization.

∇×∇× Ez(r) =
(ω

c

)2
ε(r)Ez(r) (2.11a)

for TM modes

∇×
[

1
ε(r)
∇× Hz(r)

]
=
(ω

c

)2
Hz(r) (2.11b)

for TE modes

We can reduce the differential equation for TE modes defining the following
differential operator:

Θ̂[#] = ∇×
(

1
ε(r)
∇× #

)
(2.12)

which is linear and Hermitian [70, 71]. Now, Eq. (2.11b) can be written as

Θ̂ Hz(r) =
(ω

c

)2
Hz(r) , (2.13)

where (ω/c)2 is the eigenfrequency of the eigenfunction Hz(r).

At this point, it is important to recall the formal equivalence of Eq. (2.13) with
respect to the stationary Schrödinger equation (Ĥ Ψ(r) = E Ψ(r)) — used
to described periodic systems in condense matter physics. As consequence,
most of the concepts developed for condense matter can be applied to PhCs
keeping in mind the most important difference: the fermionic character of
electronic systems vs. the bosonic character of electromagnetic systems.

2.2 Topology

In general, given a quantum or classical periodic differential operator, its
spectrum can be arranged in a sequence of bands and gaps. Many of the
physical properties of crystalline materials can be inferred from the intensity
distribution of the Bloch states and their bulk spectrum. Nevertheless, these
quantities cannot tell us anything about the geometrical phase acquired by
the eigenmodes when they evolve in k-space. Instead, considering the shape
of the Bloch states is essential for the topological classification of materials.
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This classification could be carried out through topological invariants cal-
culations or through symmetry analysis of the eigenmodes. In this section,
we review the theory behind the invariants used throughout this thesis [14,
74]. Also, we explain the fundamentals of the theory of topological quantum
chemistry (TQC) that relates real and reciprocal space by symmetry, and how
a material can be topologically assessed.

2.2.1 Berry phase, curvarture and connection

In electronic systems the topological properties are associated to the bands
below the Fermi level, but this concept does not exist for classical waves.
However, it is possible to address the bands and gaps of the system individ-
ually by tuning the frequency of the photons exciting the lattice. Therefore,
we can characterize the topological properties associated to gaps by the anal-
ysis of the band or group of bands — whenever they present degeneracy
points — below the gap.

Although this thesis is focused in 2D systems, we start explaining the topo-
logical phenomena with the most simple case in one dimension (1D) — the
Su-Schrieffer–Heeger (SSH) model [30–32]. This model consists on a 1D chain
composed by two lattice sites with different connectivity (Figure 2.3).

FIGURE 2.3: Schematic structure of the Su-Schrieffer–Heeger
(SSH) model

In this system there are two different type of hoppings3, one intracell and
another intercell. Tuning those hoppings drive the system to different topo-
logical regimes.

The first regime occur when the intracell hopping term v is stronger than
the intercell w, so the charge will be concentrated inside the unit cell. As
we mentioned in the previous section, from the eigenproblem that define

3term used referring the interaction strength between cell sites
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the system, we can obtain the eigenvalues and Bloch eigenvectors along the
first BZ. We illustrate in Figure (2.4) how the band structure looks like for
this case, and we can see the closed path described by the bands taking into
account the periodicity of reciprocal space.

FIGURE 2.4: Schematic representation of the bands in the Bril-
louin zone for the trivial regime of the SSH model.

For the 1D case, the first BZ takes values between −π/a and π/a. This
2π/a periodicity is reflected in the bands as well as in the eigenfunctions.
To identify the topology of the system, we explore the adiabatic evolution
of the function along the BZ. The band n — bellow the gap (Figure 2.4) —
can be characterized by the study of the so-called Berry (Pancharatnam-Zak)
phase [74–77]. This phase is acquired by the eigenstate of the band n along
a closed path γ in reciprocal space. The general expression of the Berry-
Pancharatnam-Zak phase is:

φn =
∮

γ
An(k) · dk , (2.14)

where An(k) is the so-called Berry connection that is defined as

An(k) ≡ i 〈un,k| ∇k |un,k〉 (2.15)

where un,k are the periodic part of the Bloch states at a given k of the band n.

Following the SSH case, the integral is performed between −π/a and π/a
which are the values that k can take in the first BZ. Due to the periodicity
in reciprocal space, the eigenstate at k = −π/a is equal to the one at k =

π/a. Therefore, if we explore the phase evolution of the states, we expect
— looking at Eqs. (2.14–2.15)— phase conservation for trivial cases. On the
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contrary, any phase with modulo 2π acquired in the adiabatic evolution of
the state along the BZ is due to topological effects.

If we want to change from a trivial phase to a topologically non-trivial phase,
we have to perform a non-adiabatic transformation which is reflected in the
bands as a gap closing and reopening. The degeneracy point happen in the
ssh model when both hoppings are equal, v = w, as we illustrate in Fig. 2.5.
For this case, the maxima of charge are placed exactly on the cell sites.

FIGURE 2.5: Schematic representation of the bands in the Bril-
louin zone for the SSH model when both hoppings are equals.

The bands present a degeneracy marked by a star.

Finally, the second regime of the ssh model occur when the itercell hopping
w is greater than the intracell v. This change in the hopping lead to the
reopening of the gap. In this case, the charges are placed between unit cells.

For an atomic system, we can easily visualize how the electronic cloud will
be concentrate between unit cells while the positive charge of the nuclei is
still place on the lattice sites. This unbalance of charge can be translated in
the finite size system as edge states protected by chiral symmetry 4. This is so
called the bulk-boundary correspondence, which allow us to predict proper-
ties of the boundary — finite system — from the study of the properties of
the bulk — infinite periodic system. Although in this regime, the bands are
exactly the same as in the first regime showed in Fig. 2.4, the phase evolution
is different.

As one can expect from the charge unbalance, the state acquire an additional
phase along the BZ in the second regime (w > v) due to topological effects,
while the phase is preserved in the first regime (w < v). Thus, the Berry

4name given for the state invariance under parity transformation
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phase of the band n in the first regime has a value of 0, whereas in the second
regime has a phase of 2π. At this point it is important to recall that unlike
the Berry connection, which is gauge-dependent, the Berry phase is gauge
invariant up to multiples of 2π.

Aside from the most simple 1D case, we want to apply those concepts in 2D.
So, we can introduce another gauge invariant quantity, the Berry curvature
Ωn(k), which is defined as:

Ωn(k) = ∇k ×An(k) . (2.16)

Applying Stoke’s theorem to Eq. (2.14), we can express the Berry phase, φn,
as a function of Ωn(k),

φn =
∮

γ
An(k) · dk =

∫∫
Γ
[∇k ×An(k)] ds ≡

∫∫
Γ

Ωn(k)ds (2.17)

where Γ is a surface bounded by the closed path γ along which the integral
in Eq. (2.14) is evaluated. From this expression we can see that the Berry
curvature can be understood as the Berry phase per unit of reciprocal area.
Mapping this curvature within the first BZ allows to explore phase disconti-
nuities that can be induced by topological effects.

2.2.2 Chern and Valley-Chern number

The first BZ define a closed surface in the directions of periodicity. In Fig. (2.6)
we show the closed path in 1D, where the k points are equivalent to those that
are displaced by G — that in general is the reciprocal lattice vector expressed
as combination of the reciprocal unit vectors.

FIGURE 2.6: Schematic representation of the reciprocity for a
one dimensional Brillouin zone.

If we extend the periodicity to a second spatial dimension, for 2D systems,
the surface is closed in an additional direction describing a torus. In Fig. 2.7
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we illustrate how get a torus from a square 2D BZ. This periodicity in re-
ciprocal space implies that the eigenfunctions at k and k+G are equivalent.

FIGURE 2.7: Schematic representation of the reciprocity for a
two dimensional Brillouin zone.

Exploring how the eigenfunctions transform adiabatically within the 1st BZ,
the boundary term vanishes but its modulo 2π indeterminacy manifests in
the Chern theorem [78]. This theorem states that the integral of the Berry
curvature over a closed manifold — as the 1st BZ — is quantized in units of
2π. This integer number is the so-called Chern number, and it is essential for
understanding various physical effects when TRS is broken, such as as the
QHE [8].

The Chern number for a two-dimensional manifold is defined as:

Cn =
1

2π

∮
BZ

Ωn(k) d2k with Cn ∈ Z, (2.18)

where the closed surface Γ coincides with the torus defining the 1st BZ (Fig. 2.7).

Therefore, this number quantified the phase acquired due to topological ef-
fects. The so-called Chern insulators posses C 6= 0 when the TRS is bro-
ken, this number also gives information about the boundary since the inte-
ger number coincides with the number of edge states and the sign indicates
the propagation direction of those states. On the other side, when TRS is
preserved, the Chern number is always zero.
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However, it does not mean that the system is completely trivial. For exam-
ple, there are systems which present pair of valleys — other “internal” de-
grees of freedom in the BZ — related by TRS. Although we can observe this
valleys mapping the Berry curvature, we also can quantified the topological
charge around each valley. Performing the integral in Eq. (2.18) around each
valley, the contribution from each valley is isolated and quantified by the so-
called valley-Chern number [79]. This number is not integer anymore but
fractional. As the topological charge is equally distributed into both valleys
but with opposite sign, we expect the same fractional valley Chern number
for both valleys but with opposite sign.

2.2.3 Wilson loop and Wannier functions

Aside from valley-Chern insulators, other materials preserving TRS can also
have topological properties. This is the case of systems supporting QSHE [17]
and fragile phases [58, 59, 62]. For those cases, the study of the eigenvalues
of the Wilson loop operator — in momentum space — helps to determine
the topological nature of the system. This operator is obtained considering a
non-Abelian generalization of the Berry-Pancharatnam-Zak phase.

Considering N connected bands, the non-Abelian Berry connection takes the
form:

Am,n(k) = i〈uk,m|∇k|uk,n〉, n, m = 1, . . . N . (2.19)

From it, we can derive the unitary matrix that describes the Wilson loop op-
erator as,

W(`) = P exp
{
−i
∫
`

dl ·A(k)
}

, (2.20)

where ` is a loop in momentum space and P denotes a path ordering of the
exponential.

For a closed path ` described by a straight line through the BZ, the eigenval-
ues of the Wilson loop correspond to the expectation value of the position
operator in real-space with modulo 2π [33, 74].

Therefore, gives us information about the localization in real space of the
Wannier center — expected position of the Wannier function5.

5Although the Wannier functions are used to described the electronic cloud in condense
matter physics, for the case of EM-waves they can be related with the localization of the
EM-fields.
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The Wannier functions are Fourier related with the Bloch modes and can be
defined as,

wiR(r) ≡∑
k

e−ik·RUij(k)ψjk(r), (2.21)

where R is the lattice vector, and Uij(k) is an N × N unitary matrix that
represents the space spanned by the N-bands.

These functions can be maximally localized with a well defined center po-
sition in the UC as for the cases of topologically trivial materials. Or they
can be delocalized within the UC as for topologically non-trivial materials.
The position of the Wannier center is equivalent to the bulk polarization
which is Zn-quantized topological invariant for crystalline insulators with
Cn-symmetry rotations. The location of these positions for a set of bands can
be explored by the adiabatically change of the Wilson loop spectrum.

For trivial bands where the Wannier states are maximally localized, the Wil-
son loop spectrum shows almost constant values along the reciprocal direc-
tions. If the value is 0, it means that the charges are in equilibrium in the UC.
Going back to the SSH example, we were in this case at the w = v regime
where the nuclei and the electronic cloud are placed at the same lattice site.
While when we change to the regimen w > v, the function is localized be-
tween two UCs. In those cases, occur an obstruction due to the charge un-
balance generating symmetry protected edge modes. This is reflected in the
spectrum of the Wilson loop will as constant values around π or −π. There-
fore, in terms of Wannier functions the obstructions are trivial.

In the same terms, for systems that posses non-trivial topology, the Wannier
states are delocalized in the crystal. This is reflected in the Wilson loop spec-
trum as windings, it means that along the reciprocal direction the eigenvalues
differs by 2π.

Thus, the Wilson loop is a very powerful tool to extract information about the
Wannier states in our system and consequently, about the topological char-
acter of the band or group of bands that we want characterized.
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2.2.4 Topological Quantum Chemistry

Since the topological nature depends on the crystalline symmetries, we ap-
plied the theory of topological quantum chemistry [27] — developed initially
for condense matter physics — to photonic energy bands. This theory is
based on the fact that the Bloch modes transform in reciprocal space with
the same symmetry as — isomorphic to — the Wannier functions do in real
space.

Considering a topologically trivial set of bands, the functions wnR are ex-
ponentially localized around some center rn + R— which posses the lattice
periodicity. In real space, we call Wyckoff position to each point of the unit
cell (UC) where those centers can be placed. Nevertheless, for trivial systems
the Wannier centers are placed in a more symmetric Wyckoff positions called
maximal — which are determined by the spatial group of the lattice. These
positions are characterized because they remain invariant under the symme-
try operations called generators of the lattice.6 Each maximal Wyckoff po-
sition transforms under its site-symmetry group7 (Grn). Thus, the Wannier
function centered at this maximal Wyckoff position transforms according to
one irreducible representation (irrep) of this site-symmetry group.

The symmetry of the eigenmodes in reciprocal space is determined by the
symmetry of the function that induce the band(s). The Bloch modes are trans-
formed at each k-point under a certain irrep of the little group of k (Gk) [80]
— which is the group of symmetry operations that leaves k invariant. At
specific high symmetry k-points, the irreps have dimensionality greater than
1 — and up to 8. This type of degeneracy is imposed by the symmetry of the
crystal and cannot be broken with small perturbations — that is why they are
also known as crosses protected by symmetry.

Assessing the irrep of the high symmetry k-points for isolated set of bands
— separated by gaps, we get their corresponding band representation (BR).
The BRs are essential mathematical artefacts to extract topological informa-
tion [27, 81, 82], since relate by symmetry the localized Wannier functions in
real space with the set of bands induced in momentum space.

6symmetry operations needed to create the lattice.
7symmetry group that describe the maximal Wyckoff position and is a subgroup of the

spatial group of the lattice.
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All BRs can be obtained as a sum of elementary band representations (EBRs),
which are tabulated in Ref. [83, 84]. Each EBR is identified by its space group,
the Wyckoff position which labels the set rn of centers, and an irrep of the
group Grn which leaves each center invariant. Inverting this observation,
any set of bands that cannot be expressed as a sum of EBRs does not admit
exponentially localized and symmetric Wannier functions, and is therefore
topologically nontrivial. Note that these considerations apply equally well
to both photonic and electronic crystals.

2.3 Density of states (DOS) and local density of

states (LDOS)

In this section we describe the calculation needed to define the DOS and
LDOS in photonic crystalline lattices. Combining both we can get informa-
tion about the number of states available to excite in the PhC for a given
frequency and position. This represents essential key information to couple
a crystal and a quantum emitter. To explore how the eigenmodes of the PhC
overlap with a radiating dipole emitter, we can define the LDOS [85] as,

ρµ(r; ω) =
6ω

πc2

[
nµ · Im

[
G(r, r′; ω)

]
· nµ

]
(2.22)

where nµ is the unit vector in the µ-direction which is determined by the
spatial orientation of the emitter. Therefore, |µ| is the module of the resulting
dipolar moment.

If we consider the most simple case, an spherical emitter, the photons can
propagate in any spatial direction.8 Therefore, we can averaging over all the
directions,

ρ(r; ω) =
2ω

πc2 Tr
[
Im
[
G(r, r′; ω)

]]
(2.23)

In both, Eq. (2.22) and Eq. (2.23), G(r, r; ω) is the Green’s tensor which de-
scribes how the emmitter placed at r′ interacts with the electric field of the
crystal at a given frequency and position r. In Appendix A we show the
derivation needed to find an analytical solution of the Green’s function in
terms of the eigenvectors. Which is defined as,

8Consequently, at certain directions the emitted photons can couple with the electric field
of the crystal.
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G(r, r′; ω) =
∫

k
dk ∑

n

c2ω2
kn

ω2
(
ω2

kn −ω2
)Ekn(r)⊗ E∗kn(r

′)−
( c

ω

)2 δ(r− r′)
ε(r)

I .

(2.24)

where the last term, is a real quantity proportional to the identity tensor.
The integral of Eq. (2.24) should be treated as a Cauchy principal value inte-
gral when the frequency of the dipole coincides with the eigenfrequency, i.e.
ω = ωkn.

As we are considering the PhC infinite and lossless — as we show in sec-
tion 2.1 — then, the spectrum is discrete in the form of δ(ω − ωkn). Hence,
another approach for this problem resolution consists on introducing an in-
finitesimal loss to the permittivity ε(r). This makes the resonant frequencies
complex with real parts comparable to ωkn, and a small imaginary part from
the loss rate γkn.9

To solve Eq. 2.24 we need to invoke the following mathematical identity:

lim
η→0

Im

[
1

ω2
kn − (ω + iη)2

]
=

π

2ωkn
[δ(ω−ωnk)− δ(ω + ωkn)] =

π

2ωkn
δ(ω−ωkn)

(2.25)
where we have neglected the term δ(ω + ωkn) because we are concerned
only about positive frequencies.

Combining Eq. (2.24) and Eq. (2.25), we get:

ρ(r; ω) =
∫

BZ
dk ∑

n
Ekn(r)⊗ E∗kn(r)δ(ω−ωkn) (2.26)

The information about the number of resonant eigenstates at each frequency
can be extract from the DOS, which are defined as the LDOS integral over the
UC,

J(ω) =
∫

UC

∫
BZ

dk ∑
n

δ(ω−ωkn) (2.27)

9Conceptually, this means that all the poles of the system are moved from the real axis
to the lower-half of the complex plane, preventing in that way the divergence of the afore-
mentioned subspace in the Green’s tensor. With this extension to the complex plane, the
contribution of each mode to the tensor is a Lorentzian.
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If the eigenmodes are normalized with respect to the UC — such that they
fulfill the condition 〈Ekn(r)|Ekn(r)〉 = 1 — the previous expression is re-
duced to

J(ω) =
∫

BZ
dk ∑

n
δ(ω−ωkn) (2.28)

Although the DOS and LDOS were first derived to couple the crystal and an
external emitter, in this thesis we use the LDOS for topological assessment.
As we can explore the EM field concentration from a set of bands in real
space, we also can relate the position of the maximum density within the UC
with the predicted Wannier center position.
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3 Fundamentals of topology: the
discrete limit

In this chapter, we describe the methodology applied in this thesis to assess
the topology of two dimensional (2D) photonic crystals (PhCs). This method-
ology consists in an adaptation of the continuous formulation described in
Chapter 2, to the discrete limit. As we usually do not have access to a con-
tinuous form of the periodic part of the field, un,k(r), to provide a practical
procedure for topological characterization we have to address their values at
a set of discrete ki-vectors — within the first Brillouin zone (BZ).

In the following sections, we detail the calculation methods used in this thesis
to compute topological invariants from a finite grid defined in momentum
space.

3.1 Discretization of the first Brillouin zone

First, we identify the unit cell and the point group of symmetry for a given
periodic 2D system. To carry out such identification, we can analyze the
proper symmetry operations following the flowchart shown in Fig. 3.1.

Then, we define its first BZ which is the unitary cell in momentum space de-
termined by the lattice vectors. The set of points generated by translation
operations of the primitive vectors, describe its Bravais lattice. We show in
Fig. 3.2, how identify the Bravais lattice and the BZ for a square and hexago-
nal lattice.

Nevertheless, the election of the unitary reciprocal cell is not unique, can be
equivalently deformed if the symmetry are respected and the enclosed area
is preserved. In Fig. 3.3, we illustrate how the BZ previously defined can be
equivalent displaced/distorted in reciprocal space.

Then, we discretize it into a regular mesh of equally spaced k-points follow-
ing the b1- and b2-directions. Each point of the grid defines the momenta of
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FIGURE 3.1: Point Group determination flowchart. [86]

the periodic eigenfunctions. In Fig. 3.4 we illustrate two examples of BZ dis-
cretizations for different lattices in 2D: square and triangular (or hexagonal).

As we mentioned before, the choice of the BZ is not unique but, in general,
it is better to choose the most convenient cell to simplify the discretization.
For instance, in the case of the triangular lattice (right panel of Fig. 3.4), we
take the rhombus BZ instead of the hexagonal one. Since the rhombus is de-
fined by the reciprocal lattice vectors, the discretization is simplified along-
side those directions.
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FIGURE 3.2: Schematic graphical determination of the first BZ
— shaded area — in a Bravais lattice. On the left side, the blue
points define a square lattice. On the right side, the violet points

define a hexagonal Bravais lattice.

FIGURE 3.3: Schematic representation of reciprocal space for an
hexagonal (or triangular) lattice. Panel a) shows that the area
enclosed on the hexagonal BZ is equivalent to the the rhombus
BZ defined by the reciprocal lattice vectors — (b1, b2). Panel
b) shows how this rhombus BZ can be equivalently displaced,

setting different high symmetry points as corners.

Although in principle, the grid size should not affect the result of the calcu-
lation, we have to use a large enough discretization to achieve an accurate
description. For the calculations shown in this thesis we use a grid of at
least (24× 24) k-points, increasing this number with the complexity of the
system. One must choose a number which includes all the high symmetry
points, since degeneracies usually occur at these momenta. Therefore, they
are the most important k-points for the calculation of topological invariants.
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FIGURE 3.4: Discretization of the first BZ for a square a) and
triangular lattice b). For each lattice, a zoom-in of the plaquette

over which the Berry curvature is evaluated is shown.

Finally, we compute numerically the Bloch eigenstates for each of the grid
points, ki. In our case, we use MPB [73] to solve the eigenvalue equation (2.8).

3.2 Discrete Berry curvature

Using the discrete set of Bloch states computed for each k-point defined by
the grid, we can explore how the geometrical phase evolves non-adiabatically
in a closed path. Consecuently, we can explore the topological character of a
given crystalline PhC. For that purpose, we compute the discrete version of
the Berry curvature — or Berry phase per unit of area — applying the four-
point formula to each plaquette of the grid. This formulation is a discrete
version of Eq. (2.16), that represent the phase acquired by the system due to
topological effects. In this discret limit, the Berry-Pancharatnam-Zak phase
around a plaquette for a non-degenerate band, is given by [87]:

φ = −Im log
[ 〈

uk1(r)
∣∣uk2(r)

〉 〈
uk2(r)

∣∣uk3(r)
〉 〈

uk3(r)
∣∣uk4(r)

〉 〈
uk4(r)

∣∣uk1(r)
〉 ]

(3.1)
where ukj(r) are the periodic functions at each corner of the plaquettes (as is
shown in Fig. 3.4).

It is important to emphasize that the path defined along each plaquete is
closed, and therefore, the first and last point are the same. Additionally, we
observe that in Eq. (3.1) each state appears twice — once as a 〈bra| and once
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as a |ket〉— and consequently any arbitrary phase coming from the diagonal-
ization procedure cancels out. So, the four point formula essentially isolates
the phases coming from topological effects at each plaquette.

For the case of a set of n bands — isolated from the rest — that exhibits one or
more degeneracies, we have to replace the scalar products in Eq. (3.1) by the
determinant of overlap matrices in order to consider the contribution of all
the bands involved. Equivalently to the case of a single band, we can write:

φ = −Im log
{

det
[
Sk1k2Sk2k3Sk3k4Sk4k1

] }
(3.2)

where S is the overlap matrix with size (n× n) which considers all the possi-
ble overlaps between k and k′ for the set of n degenerate bands. This matrix
can be expressed as,

Skk′ =



〈
u1

k(r)
∣∣u1

k′(r)
〉 〈

u1
k(r)

∣∣u2
k′(r)

〉
. . . . . .

〈
u1

k(r)
∣∣un

k′(r)
〉〈

u2
k(r)

∣∣u1
k′(r)

〉 〈
u2

k(r)
∣∣u2

k′(r)
〉 〈

u2
k(r)

∣∣u3
k′(r)

〉
. . .

〈
u2

k(r)
∣∣un

k′(r)
〉

... . . .
. . . . . .

...〈
un

k(r)
∣∣u1

k′(r)
〉 〈

un
k(r)

∣∣u2
k′(r)

〉
. . .

〈
un

k(r)
∣∣∣un−1

k′ (r)
〉 〈

un
k(r)

∣∣un
k′(r)

〉


(3.3)

where the superscript ` of u`
k indicates the band index.

As we are considering 2D PhCs in this thesis, we can decouple the modes
into two different polarizations to simplify the problem arising from the vec-
torial nature of electromagnetic fields (see Chapter 2). As we will see, for
each polarization, the field is normalized differently with respect the unit
cell and consequently, the scalar product must be defined according to each
polarization. For TM modes, the solutions for the electric field are simpler
to manipulate, since they become scalar functions (Ek(r) = Ek(r)ẑ). Defin-
ing the Bloch wavefunctions as in Eq. (2.9b), vk(r) is the periodic part of the
electric field solutions. The fields coming from MPB [73] are normalized with
respect the unit cell as

〈ε(r) Ekn(r)|Ekn(r)〉 = 1.

Due to this normalization constraint, the scalar products in Eqs. (3.1–3.3)
must be defined as:

〈vk(r)|vk′(r)〉 = ∑
r1,r2

[ε(r1, r2) vk(r1, r2)]
∗vk′(r1, r2)∆S . (3.4)
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where r1 and r2 are the components of the real-space positions, and ∆S is the
surface differential.

On the other hand, for TE modes, uk(r) is the periodic part of the magnetic
fields, as we defined in Eq. (2.9a). If we consider materials without magnetic
response, we set µ = 1, and the scalar products in Eqs. (3.1–3.3) are defined
as:

〈uk(r)|uk′(r)〉 = ∑
r1,r2

u∗k(r1, r2)uk′(r1, r2)∆S (3.5)

while if we consider materials with magnetic response, as in some Chern
insulators, µ 6= 1. In those scenarios, the magnetic fields are normalized by
MPB such that

〈µ(r) Hkn(r)|Hkn(r)〉 = 1.

The magnetic permeability, µ, should be included in the scalar product as:

〈uk(r)|uk′(r)〉 = ∑
r1,r2

[µ(r1, r2) uk(r1, r2)]
∗uk′(r1, r2)∆S . (3.6)

3.3 Chern and valley-Chern number

If we integrate the Berry curvature of all the plaquettes over the BZ, we get
information about the total topological charge. The result of the integration
can be expressed in terms of multiples of 2π, which gives us the definition of
the discrete version of the Chern number,

C =
1

2π ∑
BZ

φj =
1

2π ∑
BZ

Im

[
log ∏

i

〈
uki

∣∣uki+1

〉]
(3.7)

when TRS is preserved, this number is strictly zero. On the contrary, if TRS
is broken, as for materials with an external magenetic field, this number can
take non-zero integer values. In those cases, we call the systems Chern in-
sulators. If we consider a heterogeneous system composed of a finite size
topological part (C 6= 0) and a trivial part (C = 0), it will present edge states
at the interface. The number of edge states is directly connected to the Chern
number of the topological part through the so-called bulk-edge correspon-
dence [13].

Moreover, there are cases where the TRS is preserved and relates pairs of high
symmetry points — e.g., the K and K′ points for a hexagonal or triangular lat-
tice — with non-trivial topological charges that can be complementary. Then,
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in order to quantify the topological charge we can define another topologi-
cal invariant, the valley-Chern number. This invariant addresses the regions
that enclose one of the high symmetry points related by the TRS operator.

The computational procedure to calculate the valley-Chern number is the
same as the one employed in Eq. (3.7), but reducing the integration of the
Berry curvature to one exact half of the first BZ. In the case of a square lattice
it can be done with the same four-points formula, while for the hexagonal
case, an additional set of three points plaquettes must be added in order to
divide the BZ into two identical parts, drawing the division line from Γ′ to
Γ′′′ (Fig. 3.4 right panel). Therefore, this “topological invariant” will be half-
integer evaluated and with opposite sign for each half of the first BZ.

3.4 Discrete Wilson loop

In this section we discretize the Wilson loop introduced in the previous chap-
ter. As the Wilson loop is path ordered along one of the reciprocal directions,
the first and last k-point of the calculation should be equivalent by transla-
tional symmetry. Nevertheless, the arbitrary phase added by the diagonal-
ization procedure will be different at each k-point and, in this calculation,
it does not cancel out for those points at the BZ boundaries. Therefore, we
need to apply a periodic gauge transformation in order to remove any arbi-
trary phase coming from the diagonalization.1

3.4.1 Periodic gauge

In order to fix the gauge choice for the periodic part of the field, we will take
advantage of their periodicity. As we mentioned in the previous chapter, the
eigenfunctions of a periodic system are described as Bloch states:

Hk(r) = eik·r uk(r) . (3.8)

In k-space, the states related by a reciprocal lattice vector G are equivalent,

Hk+G(r) = ei(k+G)·r uk+G(r) = Hk(r) . (3.9)

1Although there are other procedures to exclude arbitrary phases in the calculation, we
only described the one used in this thesis.
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Nevertheless, since calculation at each k-point are independently done, eigen-
states with different momentum can present a different arbitrary phase after
the diagonalization.

Certain calculations, such as the Wilson loop, require fulfilling the condi-
tion imposed by Eq. (3.9). Therefore, we need to fix this arbitrary phase at
the boundary eigenstates using the following relation between their periodic
parts,

uk+G(r) = e−iG·ruk(r) , (3.10)

The phase factor of the previous expression can be written as:

e−iG·r =
uk+G(r)
Hk+G(r)

eik·r , (3.11)

where we have used the formal boundary condition Eq. (3.9). The phase
factor on the right-hand side can be obtained from Eq. (3.8),

eik·r =
Hk(r)
uk(r)

. (3.12)

Combining Eqs. (3.11) and (3.12), we finally obtain the phase factor in which
we are interested in

e−iG·r =
uk+G(r)
Hk+G(r)

Hk(r)
uk(r)

. (3.13)

Concluding, we define the gauged periodic part of the field at (k + G) by
inserting the previous phase factor into Eq. (3.10):

u′k+G(r) =
uk+G(r)
Hk+G(r)

Hk(r) (3.14)

uk+G(r) being the periodic part of the field at (k + G) obtained directly
from numerical evaluation — in our case with MPB [73] — and Hk(r) and
Hk+G(r) the Bloch states at k and (k + G), respectively, also directly ob-
tained from MPB [73].
For Wilson loop calculations, it is mandatory to fix this phase at the bound-
aries by implementing this new corrected periodic function u′k+G(r) along
the boundaries of the 1st BZ for all (k + G) positions.

Importantly, one needs to apply this transformation individually to the Γ-
point in order to avoid applying the transformation more than once. Addi-
tionally, if we look Eq. (2.11b), at zero frequency any constant function is a
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solution to Maxwell’s equations in 2D. Nevertheless, in order to avoid sin-
gularities in the Wilson loop calculation, we choose a constant, normalized
eigenfunction for ω = 0 at the Γ point.

3.4.2 Wilson loop calculation

First, it is important to recall that the calculation has to be performed differ-
ently for the case of one band or for a group of degenerate bands — in both
cases separated from the rest by gaps. For the most simple case, the one-band
case, we can calculate the discrete Wilson loop as,

W(ki) = −Im

log

∏
kj

〈
u(ki,kj)

(r)
∣∣∣u(ki,kj+1)

(r)
〉 . (3.15)

This formula indicates that the Wilson loop can be computed for each ki along
the k1 direction by taking the phase of the final product of the overlap be-
tween pairs of consecutive periodic functions. Then, all the eigenvalues of
this operator are projected at each k jalong the k2 direction.

For the case of a group of degenerate bands, we replace the scalar product by
overlap matrices with the same structure as the ones described in Eq. (3.3).
Then the Wilson loop reads,

W(ki) = −Im

log

∏
kj

S(ki,kj),(ki,kj+1)

 . (3.16)

In this case, we construct the overlap matrices between consecutive points
along the lines in the k1 direction. Then we multiply the overlap matrices
for each pair of points element by element, and the resultant matrix must
be diagonalized. The phases of its eigenvalues along the k2 direction encode
information about the position of the (hybrid) Wannier centers in real space.

In two dimensions, one of the momenta k1 defines the integration variable
of the closed path ` in Eq. (2.20), while the other momentum k2 is a free
parameter characterizing the Wilson loop.

For a topologically trivial system, the eigenvalues along the momentum k2

are adiabatically deformable to a constant value, reflecting that the Wannier
functions are localized.
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For non-trivial topological systems, the eigenvalues may wind as a function
of the momentum k2, meaning that the Wilson loop spectrum presents a vari-
ation of 2πn, n ∈ Z along the BZ (c.f. Sec. 4.1) — corresponding to delo-
calization of the Wannier functions. Additionally, from the slope and the
number n of windings we can extract important information. The sign of the
slope will tell us about the sign of the Chern number, whereas the number of
windings will tell us its absolute value. Another possible topological phase is
the photonic obstructed atomic limit (OAL), which presents non-winding but
displaced values of the Wilson loop. Therefore, this phase supports a maxi-
mally localized Wannier representation, but in this case the Wannier centers
are located between consecutive the real space unit cells, instead of at the ori-
gin as for trivial systems. In analogy with an electronic system, it means that
in a photonic OAL the Wannier centers are not located at the position where
the photonic “atoms” — the collection of dielectric objects in the unit cell —
sit [9].

Moreover, there is a recently discovered class of topology referred to as “frag-
ile” topology. Usually, this phase displays a Wilson loop spectra with oppo-
site windings which indicates that although the total Chern number is equal
to zero, the Wannier centers are delocalized within the unit cell. This system
presents a spectra and topological features similar to those of Z2 insulators.
Although, the special feature of this phase is that if a trivial band is added
in the non-Abelian Berry connection (2.19), then the eigenvalues of this en-
larged system behave as in the case of the OAL, losing their topological char-
acter.

Thus, the Wilson loops are very useful to identify fragile topological phases
and Z2 topological insulators. In both of these scenarios, the total Chern
number is equal to zero since TRS is preserved, but the WL spectrum shows
clearly pairs of winding with opposite slopes. Although the shape of the
Wilson loop spectra is the same for both topological phases, their charac-
ter significantly differs. For topologically fragile systems, the windings are
transformed into a trivial WL spectrum when a new set of trivial bands is
added to the topological ones, while for Z2-insulators, the winding of the
WL spectrum is preserved.

At this point, it is important to mention that mimicking Z2 strong topology
in photonic systems requires of duality symmetry and crystal symmetries as
a proxy for fermionic TRS [39].
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3.5 Topological Quantum Chemistry of light

In this section we describe how to apply the theory of Topological Quantum
Chemistry (TQC) to PhCs. The constituents of atomic or molecular crystals
are always placed at specific positions of the unit cell (UC), at the maximal
Wyckoff positions where the Wannier functions — if the are localized — are
placed as well. Therefore, TQC usually analized the ireducible representa-
tions (irreps) induced from the real functions. On the contrary, for PhCs — or
metamaterials — the dielectric material can be placed in any position of the
UC. Then, the bands are induced from the collective electromagnetic charge
in the UC whose function can be or not exponentially localized. Therefore,
the most practical approach to analyze metamaterials starts from the recipro-
ciprocal space.

The topological analysis by symmetry of PhCs consists in several steps sum-
marized in Figure 3.5. Once we have identified the spatial group of the lattice
— as well as the group of the reciprocal space if they do not coincide —, we
compute the fields at each high symmetry point. Taking into account that
each of them transform under specific subgroups of the spatial one, the so-
called little group. Using GT-Pack[88, 89] for Mathematica we extract the
corresponding collection of irreps under which the Bloch modes at high sym-
metry points are transformed. Then, we can define the band representation
(BR) of the system. The BR is composed by all those irreps for set of bands
separated by gaps. The BR of the system must be compared with the ele-
mentary band representation (EBR) of the spatial group that are available
on the Bilbao Crystallographic Server (BCS). If the BR of the system can be
expressed as sum of EBR then, the system is trivial. If the BR can not be ex-
pressed as a sum — or sum of integer linear combination — then, the system
is topological. Meaning that the Wannier functions are delocalized. Last, if
the BR can be express as a substraction of EBR indicates that this set of bands
present fragile topology. If a set of bands induced from a function with the
same substracted symmetry is added, then the topology is destroyed becom-
ing trivial.

3.6 DOS and LDOS calculation

In this section, we describe how the DOS and LDOS integrals defined in the
previuos chapter can be expressed in a discrete formulation.
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FIGURE 3.5: Flowchart to summarize how to implement TQC.

As, in principle, we want to study the coupling of PhCs to electric dipolar
emmiters, we use the electric fields computed for each k-point of the BZ grid
to introduce the discretize version of Eq. (2.26),

ρ(r; ω) = ∑
kx,ky

∑
n
|Ekn(r)|2 δ(ω−ωkn)∆kx∆ky (3.17)
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This formula considers the electric response over all the kx and ky directions
of the modes belonging to all n bands with eigenfrequencies at ω.

If we integrate over all real space positions we obtain the discrete formulation
of the DOS

J(ω) = ∑
kx,ky

∑
n

δ(ω−ωkn)∆kx∆ky (3.18)

This formula essentially counts the number of states available at each fre-
quency, therefore,

δ(ω−ωkn) =

{
1 if ω < ωkn < ω + dω

0 otherwise
(3.19)

where dω is the numerical tolerance that we set to detect the values of k at
which the bands present eigenvalues similar to ω.

We name this method of calculation of the DOS and LDOS the "Area Method".
Nevertheless, one can also express ρ(r; ω) and J(ω) as line integrals:

ρ(r; ω) =
∫

lk
dl ∑

n

|Ekn(r)|2

|∇kωkn|
=
∫

lk
dl ∑

n

|Ekn(r)|2∣∣vg(k)
∣∣ (3.20)

J(ω) =
∫

lk
dl ∑

n

1
|∇kωkn|

=
∫

lk
dl ∑

n

1∣∣vg(k)
∣∣ (3.21)

where
∣∣vg(k)

∣∣ is the norm of the group velocity for the wave vector k at
which ω < ωkn < ω + dω, and lk is the closed contour defined by the
wavevectors satisfying the condition. These equations can be discretized as

ρ(r; ω) = ∑
lk

∑
n

|Ekn(r)|2∣∣vg(k)
∣∣ ∆li (3.22)

J(ω) = ∑
lk

∑
n

1∣∣vg(k)
∣∣∆li (3.23)

Note that ∆li, the differential of line, now will be different on each particular
point on the line depending on the computationally determined k = (kx, ky)-
s satisfying ω < ωkn < (ω + dω), and indexed by i. Thus,

∆li =
√
(ki+1

x − ki
x)

2 + (ki+1
y − ki

y)
2 (3.24)
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We name this method of calculation of the DOS and LDOS the "Line Method".

The practical application of this method requires of several computational
steps — summarized in Fig. 3.6. First, we take a grid discretization of the BZ

FIGURE 3.6: Flowchart summarizing all the steps needed to
compute the LDOS and DOS at each frequency, as well as the

LDOS for set of bands.

large enough — in our case, at least 128× 128 points2. Then, we compute
the eigenvalues in order to construct the energy surface. Once we have the
surface, we explore the contour levels at each ω with a tolerance of dω =

10−7. Then, all the wavevectors k with ω are sorted in order to define a
2Usually depends on the system, while more complex, more points are needed to achive

a considerable resolution.
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closed path3 and compute the differentials needed as in Eq. 3.24. Finally, at
each of those points we compute the electric field and the group velocity to
apply Eqs. 3.22–3.23

3If the grid is not large enough we can make an interpolation between the k points of the
contour.
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4 Topological Photonic Systems:
Examples

In this chapter, we apply the procedures described in Chapter 3 to differ-
ent topological systems. For different systems, starting from a trivial phase
we exploit the symmetry of each system to get topology features by non-
adiabatically transformations. Furthermore, we explain how determine the
topological phases studied in this thesis as well as their main features and
implications.

4.1 Chern Insulator

We start presenting the case of a photonic crystal (PhC) where the electric
permittivity ε → ε(r) and the magnetic permeability µ → µ(r) are both pe-
riodic functions. For this particular example, we reproduce the case of the
gyromagnetic Chern insulator proposed by Wang et al. [35].

The proposed trivial system consists on a 2D PhC composed by a square ar-
ray of yttrium-iron-garnet (YIG) magneto-optic cylinders with radius R =

0.11a0 and isotropic electric response, ε = 15, in air [see Fig. 4.1 a)]. If an ex-
ternal magnetic field is applied in the z-direction, it will induce a gyromag-
netic anisotropy which results in the following permeability tensor inside
each of the rods:

µ =

 µ iκ 0
−iκ µ 0

0 0 µ0

 , (4.1)

where µ = 14µ0 and κ = 12.4µ0. According to Ref. [35], these values corre-
spond to an applied magnetic field of 0.16 T.

Then, we solve the corresponding equation that describes the propagation of
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transverse magnetic (TM) modes1 in the system (Eq. 2.7). Nevertheless, one
must be aware that for the case where the system has magnetic response, we
have to reformulate it as,

∇×
[

1
µ(r)
∇× Ez(r)

]
=
(ω

c

)2
ε(r)Ez(r) ; (4.2)

defining the generalized eigenvalue problem of the system — which includes
µ(r).

In Fig. 4.1, we show the TM band dispersion for the trivial — panel a) — and
the topological case — panel b) —, respectively. The transition between the
two phases is obtained by switching on the external magnetic field.

For the trivial case, we observe degeneracies between the second and the
third band at M, and between the third and the fourth at Γ. The only gap
in the system is between the first and the second band. Although this gap
is preserved when the magentic field is switched on, the associated Chern
number is zero — which means that it is a trivial gap. The external mag-
netic field breaks time reversal symmetry (TRS) in the system, resulting on
the emergence of topological properties. In panel b) we can see that the de-
generacies of the higher bands are removed, and two gaps are non-trivially
opened.

FIGURE 4.1: a) Square array of YIG magneto-optic cylinders of
radius R = 0.11a0 in air. The basis vectors of the lattice are:
a1 = (1, 0)a0 and a2 = (0, 1)a0. b) TM band dispersion for the
trivial system and c) for the Chern insulator with applied exter-

nal magnetic field.

The next step is compute the fields at each discrete k-point. For the calcula-
tions shown here, we used a grid size of (128× 128).

1Modes with the magnetic field confined in the xy-plane and perpendicular electric field
along the z-direction.
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Since we are interested in TM modes, we compute Ez(r) and its periodic part,
vk(r) — which are normalized in the unit cell as: 〈ε(r)vk(r)|vk(r)〉 = 1. As
we detailed in previous chapters, this normalization of the eigensolutions
must be considered for the topological invariants calculation.

If the use of magnetic field solutions H(r) is preferred, we have to take into
account the magnetic response — when it is needed — for the correct normal-
ization. The periodic part of the magnetic modes are normalized with respect
the unit cell as: 〈µ(r)uk(r)|uk(r)〉 = 1. We extract the topological informa-
tion associated with each gap, from the band(s) bellow, using the methods
described in previous chapters.

As we can see in Fig. 4.2 a), the Berry curvature of the first band is homoge-
neous and equal to zero, thus corresponds to a trivial band, while for the rest
of the bands Fig. 4.2 b)-d), the Berry phase presents a spatial modulation with
a finite average value. This phase modulation indicates that as the eigenvec-
tor is propagating in a closed path, there is a manifestation of topological
character due to the application of the external magnetic field. It means that
those bands possess an associated Chern number different from zero.

FIGURE 4.2: Berry phase distribution in the unit cell for each
band. a) The trivial character of the first band is evidenced by
a constant Berry phase equal to zero, while the higher bands –
the second b) and third c) – present a phase structure since the

Chern number is different from zero.

These results are confirmed and completed by the analysis of the Wilson loop
spectra. The spectrum of the first band, Fig. 4.3 a), shows trivial character
since the value is constant. On the contrary, the Wilson loop spectrum of the
second band winds with positive slope, meaning that the Chern number of
this band is 1 — Fig. 4.3 b). For the third band we observe two windings of



50 Chapter 4. Topological Photonic Systems: Examples

the Wilson loop eigenvalues, in this case with positive slope. Therefore the
Chern number of this band is −2 [see Fig. 4.3 c)]. It is important to note that
the slope of the Wilson loop spectra depends on the sign convention chosen
in the exponential in Eq. (2.20).

FIGURE 4.3: Wilson loop for each band of the system. (a) Trivial
band, C = 0, (b) second band, C = 1 and (c) third band, C =

−2.

The windings, and consequently the non-trivial Chern number, are telling us
that the Wannier functions are delocalize within the lattice and the charge
moves between consecutive unit cells. The consequence of this charge delo-
calization is reflected in the finite-size system by the emergence of topological
modes in the gap. The number edge states that will emerge can be predicted
by the sum of the Cher numbers bellow the gap. Also, they will propagate
forward or backwards depending on the sign of the Chern number.

These ideas have been experimentally realized in the same set-up but em-
ploying different gyromagnetic materials [36]. The experiments have shown
the presence of uni-directional edge states associated to the quantized Chern
numbers of the system between the second and the third band. A similar
experiment in the same set-up has been also conducted as a function of the
applied magnetic field to show further topological features of the system [90].

4.2 Valley-Chern Insulator

In this section, we analyze a system that possesses a valley degree of freedom
based on the system described by Ma and Shvets in Ref. [91].

We start modeling a PhC which consists in a triangular array of dielectric
cylinders made of silicon, ε=13, and radius R = 0.3075a0 — as is shown
in Fig. 4.4 a). Then, we explore the spectrum of the transverse electric (TE)
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modes2 of the system. It presents degeneracy points at K and K′ between the
second and the third band [Fig. 4.4 a)]. As K and K′ are points related by
TRS, we can observe how this symmetry is preserved in the system since the
bands are completely mirror symmetric respect to Γ — along a path including
K and K′, such as M− K− Γ− K′ −M.

FIGURE 4.4: a) TE band structure and geometry of triangular
array of cylinders of radius radius R = 0.3075a0 and ε=13. b)
Band structure and geometry of triangular array of triangles
with ε=13. The length of the larger edge is d1 = 0.825a0 and for
the shorter one is d2 = 0.055a0. Unitary lattice vectors for both

are a1 = (1/2,
√

3/2)a0 and a2 = (1/2,−
√

3/2)a0.

Since we are using the most symmetric shape for the dielectric material,
cylinders, all the symmetry of the point group of the triangular lattice (p6mm)
are preserved. While if we change the shape of the dielectric we reduce
the symmetry. Transforming the cylinder into cut triangles, as shown in
Fig. 4.4 b), we remove 3-fold mirror axis as well as the C6 rotation. The main
rotation axis of this system is C3 and thus, the spatial group of the lattice
is reduced to p3m1. This real space transformation has its consequences for
the symmetry of the reciprocal space, where the symmetry is also reduced.
Therefore, the modes transform under the symmetry operations of this dif-
ferent space group.

2Modes with the electric field confined in the xy-plane and perpendicular magnetic field
along the z-direction.
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If now we compare the band dispersion of both lattices, we can observe that
the only degeneracy preserved is the one at Γ between the third and the
fourth band. While the degeneracy at K — and K′ — between the second
and the third band is removed opening a new gap, as can be seen in Fig. 4.4.

FIGURE 4.5: Berry curvature distribution for the first BZ for
the first three bands in the reciprocal space, computed with the
four-point formula and plotted with squared shape. We can see
that there is a discontinuity of this phase around the K-point
and the same but with opposite sign around its time-reversed

partner, K′-point.

Since TRS is preserved, the total Chern number associated to this gap is equal
to zero. But looking at the Berry curvature (Fig. 4.5) of each set of bands, we
observe a spatial modulation with opposite sign around the K and K′ points.
We can compute the valley-Chern number around these related points, by
integrating the Berry curvature over half of the BZ containing only one of
the high symmetry points [79]. For this system, we explore the valley-Chern
number associated with the gap opened between the second and the third
band, around the K point is Cv = +0.5, and around K′ is Cv = −0.5. There-
fore, this system present localize topological properties around those points
which implies certain propagation directions to achive non-trivial modes.

The absence of a total Chern number is confirmed by the analysis of the Wil-
son loop spectra, as we can see the displacement of the Wannier centers but
without any winding (Fig. 4.6). Since the rate of change of the Wilson loop
is proportional to the Berry curvature, we can see also that these plots are
consistent with the curvature maps (Fig. 4.5).
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FIGURE 4.6: Eigenvalues of the Wilson loop for the first band
a), the second b) and the set of the following two degenerate
bands, third and fourth c). All of them show trivial character

due to the zero-valued Chern number.

4.3 Photonic OAL Insulator

In this section we explore the topological properties of one of the most popu-
lar designs employed in the field of topological photonics, introduced by Wu
and Hu in Ref. [48, 92].

The system is a triangular lattice with a unit cell containing six cylinders
(ε = 11.7) with radius R = 0.12a0, placed at a distance 1/3a0 from the center
of the unit cell. The band structure of this lattice — upper panel of Fig. 4.7 b)
— shows an artificial fourfold degeneracy at the Γ-point. This degeneracy
emerges from the folding of the bands due to the choice of an artificial en-
larged unit cell which is necessary to simulate a breathing honeycomb lattice
— in order to move the cylinders towards the center, or the edges, of the
hexagon. Displacing the cylinders to different distances from the center of
the unit cell these artificial degeneracies are lifted and topological properties
may emerge in the associated gaps.

On one hand, placing the cylinders at a0/3.16, contracting the lattice — up-
per panel of Fig. 4.7 a) — the artificial degeneracy is broken leaving the first
band isolated, and two sets of degenerate bands: one group of bands formed
by the second and the third band bellow the gap; and another set formed
by the fourth and the fifth above. Both sets of bands present degeneracies
at Γ and K. To analyze the topological character of those new gaps we can
look at the Wilson loop spectra — Fig. 6.10 a) and 6.10 b) — of the bands.
For the first band, it shows a constant value equal to zero, which is repre-
sentative of a trivial gap. For the set of the second and third bands we can
see that the projected position of the Wannier centers are slightly moving
but without any winding, preserving the trivial character. Which means that
the gap is trivially opened. On the other hand, if the cylinders are placed
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FIGURE 4.7: TM band structure of the artificial honeycomb lat-
tice formed by six cylinders per unit cell. Panel b) refers to
the cylinders placed at 1/3a0 from the center; a) refers to a
contracted lattice, with the center of the cylinders moved to
1/3.16a0, and c) to an expanded lattice with the centers of the
cylinders at 1/2.78a0. For the three of them the unitary vectors

are a1 = (1/2,
√

3/2)a0 and a2 = (1/2,−
√

3/2)a0.

at a0/2.78, expanding the lattice — upper panel of Fig. 4.7 c)— only the gap
between the third and the fourth band is opened. In this case, the degener-
acy at Γ between the second and the third band is preserved when the gap is
opened but the crossing at K is now between the first and the second band
indicating that possibly a band inversion occur when the gap is opened by
a non-adiabatic transformation. Therefore, to study the topological charac-
ter of this gap we have to analyze the three lowest bands together. Looking
at the Wilson loop spectra — Fig. 6.10 c) — we observe no windings, which
indicates trivial character because the Wannier functions are not delocalized.
But instead, are localized in the center (W = 0) and around the edge of the
unit cell (W = ±π). Although the charge is not as delocalized as a strong
topological insulator, the charge can be shared between consecutive unit cells
making possible the emergence of symmetry protected modes with similar
features as topological modes. This indicates that the system presents an ob-
struction similar to that emergent in the Su-Schrieffer-Heeger (SSH) chain in
1D [74], called obstructed atomic limit. Therefore, in analogy to condensed
matter, we call optical systems presenting this phenomenology photonic OAL
insulators.
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FIGURE 4.8: Wilson loops of the contracted a) and b) and ex-
panded c) artificial honeycomb lattice, respectively. The con-
tracted lattice shows trivial Wilson loops while the expanded

shows the characteristic Wilson loop of an OAL.

4.4 Fragile-Phase Insulator

In the previous section, we show how a honeycomb lattice defined by an
artificial unit cell that can be adiabatically changed moving the positions of
the dielectrics. In this section, we use the system described in [57] to show a
fragile photonic phase.

For this case, we use the artificial honeycomb unit cell with six lattice posi-
tions but the adiabatic change is made by reshaping the dielectrics — pre-
serving the spatial group symmetry of the lattice (p6mm). We transform the
cylinders into ellipses and the variation of the length of the ellipses’ axes
drives topological phase transitions — from fragile to trivial, and from trivial
to OAL — by closing and reopening gaps.3

The system to exemplify the fragile topology consists of an array of six di-
electric ellipses of silicon (ε = 11.7) per unit cell, whose length of the two
principal axes are d1 = 0.4a0 and d2 = 0.13a0, and are placed at a0/3 from
the center of the unit cell — Fig. 4.9 a). In Fig. 4.9 b) we show the band dis-
persion for the TM modes. We can observe two main gaps: one between the
first and the second band and another between the third and the fourth. The
second and the third present degeneracies at K and Γ. We analyze the Wil-
son loop spectra to characterize the corresponding sets of bands separated by
gaps. For the first band — Fig. 4.10 a) — the eigenvalues of the Wilson loop
has a constant value equal to zero which means that the Wannier centers are
localized in the center of the unit cell. This shape is typically associated with
single trivial bands. For the set of the second and the third bands, we see
that the Wilson loops wind with opposite signs. Therefore, the total Chern

3We described the system with more details in Chapter 6.
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FIGURE 4.9: a) Schematic representation of the system con-
sisting on a triangular array with a1 = (1/2,

√
3/2)a0 and

a2 = (1/2,−
√

3/2)a0, composed by ellipses whose diagonals
length are d1 = 0.4a0 and d2 = 0.13a0 with ε = 11.7 and placed

at a0/3. b) The corresponding TM band dispersion.

number for this set of bands is equal to zero. This shape of the Wilson loop
spectra is similar to the one of Z2 insulators, but occurs frequently for fragile
bands with twofold rotational symmetry [29]. To distinguish between both

FIGURE 4.10: Wilson loop for: a) first band that possesses triv-
ial topological character, b) set of the second and third band
which has two windings with opposite sign and c) set of the
three lowest bands that present the shape of an OAL, proving

the topological fragility of the former set.

phases, we can add a trivial band to our topological set. If the winding is
preserved, then it is a Z2 topological insulator. While for fragile phases, the
winding is destroyed. Thus, we analyze a new subset of bands, the one that
contains the three lowest bands. In this case, the winding of the Wilson loop
is destroyed and takes the shape of an OAL [Fig. 4.10 c)]. This is a clear proof
of the topological fragility associated to the second and the third bands.

In the following chapter, we use group theory as well to deep analyze all the
phases obtained by changing the length of the main ellipses’ axes.
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5 Fragile topology

This chapter is based in the work published in Ref. [57]. First, we introduce
the model that describes our family of photonic crystals (PhCs) and we com-
pute the band structures for a several lattice structures. Then, we determine
the symmetry properties of the photonic Bloch functions in order to deter-
mine the positions of the maximally localized photonic Wannier centers —
when they exist — for each crystal structure. Using this symmetry analysis
we can identify the parameter range over which our model exhibits fragile
topology. Moreover, we verify the results by computing Wilson loop spectra.

5.1 Crystallographic description of the model

For our design, we start choosing a two-dimensional triangular lattice of lat-
tice constant a0 with an artificially enlarged unit cell of six silicon cylinders
(ε = 11.7) of diameter d arranged in a hexagonal pattern. Since we want to
preserve the symmetry of the lattice, this non-primitive unit cell is necessary
to distort — in a second step — the rods into ellipses along proper lattice di-
rections. The ellipses are described by their principal axes of length d1 and d2,
being d1 oriented in the direction of the lattice vectors — i.e. pointing towards
the center of the unit cell as is shown in panel a) of Fig. 5.1. The PhCs con-
sidered in this chapter have the symmetries of the symmorphic space group
p6mm(# 183) [93]. The Bravais lattice for this space group is generated by the
primitive translations:

a1 = a0

(
1
2

x̂ +

√
3

2
ŷ

)
, a2 = a0

(
1
2

x̂−
√

3
2

ŷ

)
; (5.1)

where a0 is the lattice parameter.

The point group of the lattice is isomorphic to C6v(6mm) whose generators
are a sixfold rotation C6 about the origin, and the mirror reflection my —
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which interchanges a1 and a2. In panel b) of Fig. 5.1, we show the Wyck-
off positions1 of the space group p6mm which are relevant for our PhCs.
The 1a position has reduced coordinates q1a = (0, 0), and the site symme-
try group G1a which leaves this position invariant is isomorphic to the full
point group of the lattice, C6v. The lattice translations applied to the 1a po-
sition describe a triangular lattice. The 2b position has multiplicity 2 with
reduced coordinates {q1

2b, q2
2b} = {(1/3, 2/3), (2/3, 1/3)}, since the oper-

ation my interchanges q1
2b and q2

2b. The site symmetry group G2b of each
point at the 2b position is isomorphic to the point group C3v — that con-
sists of a threefold rotation and a mirror symmetry C3my. Applying the lat-
tice translations to the points in the 2b Wyckoff position yields to a honey-
comb lattice. The 3c position has multiplicity 3, with reduced coordinates
{q1

3c, q2
3c, q3

3c} = {(1/2, 0), (0, 1/2), (1/2, 1/2)}. The symmetry operation
which permutes these points is C3. The stabilizer group G3c of each 3c po-
sition is isomorphic to the point group C2v. Although these points are all
the maximal Wyckoff positions of the space group, we also indicate in the
figure the non-maximal 6d Wyckoff position where we place the elliptical di-
electric rods. This latter position has multiplicity 6, and lies along the lines
connecting the 1a and 3c Wyckoff positions.

5.2 Photonic Band Representations

Afterwards, using the MIT Photonic Bands package (MPB) [73], we compute
the band structures for the transverse magnetic (TM) modes of three repre-
sentative configurations of these crystals (Fig. 5.2). As we will show below,
there exists a parameter regime where the second and third bands (counting
up from zero energy) are isolated from the rest of the states in the spectrum
and exhibit fragile topology. Also, there are two different regimes where the
set of the three lowest bands present degeneracies: one is a trivial phase and
the other an obstructed phase, which are connected by band inversion.

In order to assess the topological properties of the bands in our system, we
apply the theory of Topological Quantum Chemistry (TQC) [27] to our pho-
tonic energy bands. First, we examine the transformation properties of the
Bloch eigenstates of the PhC at each of the high symmetry points k∗ in the
Brillouin zone (BZ).

1Points within the unit cell that fall into orbits under the action of the space group.
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FIGURE 5.1: a) Schematic showing the real-space unit cell of
the structures studied in this work. a1 and a2 are the real-space
lattice vectors. The centers of the ellipses are fixed at a distance
b = a0

3 from the center of the unit cell, a0 being the lattice con-
stant. d1 and d2 are the lengths of the principal axes of the el-
lipses. Higher dielectric constant is shown in blue. When tiling
this pattern we use the convention that the dielectric function in
any blue region is the same, including when ellipses overlap. b)
Shows the real space unit cell with relevant Wyckoff positions
labelled. The 1a position is indicated by a black circle , the 2b
position by blue squares, the 3c position by red stars, and the

6d position by pink crosses.

In the following, we use the reciprocal lattice the vectors as a basis for vectors
in the reciprocal space
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(5.2)

As we explain in Chapter 2, the group of symmetry operations Gk∗ that
leaves k∗ invariant is known as the little group of k∗. Within the BZ, there
are three main classes of k-points with nontrivial little group — the so-called
high-symmetry k-points. First, the Γ point with reduced coordinates (0, 0)
that has as its little group the full space group of the lattice. Next, the K
and K′ points with reduced coordinates (1/3, 1/3) and (2/3, 2/3), respec-
tively. The little group of these points is isomorphic to the space group p3m1,
with point group C3v. Finally, we have another set of points, the M, M′,
and M′′ points with reduced coordinates (1/2, 0), (0, 1/2), and (1/2, 1/2),
respectively. The little group of these points is isomorphic to the space group
p2mm, with point group C2v. We show the hexagonal Brillouin zone with the
high-symmetry points labelled in Fig. 5.3.

Thus, the eigenstates at each k∗ transform under irreducible representations
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FIGURE 5.2: Photonic band structures of three representative
examples studied in this work, with little group representations
labeled at the high symmetry points. Inset shows the corre-
sponding arrangement of dielectric ellipses. a) Topologically
trivial structure, with d1 = 0.52a0 and d2 = 0.31a0. b) Band
structure of a structure representative of the “obstructed atomic
limit" (OAL) phase, with d1 = 0.4a0 and d2 = 0.61a0. c) Topo-

logically fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

(irreps) of its little group Gk∗ [80]. Note that in 2D lattices, the Wannier func-
tions can be exponentially localized at one specific high-symmetry Wyckoff
position q, transforming according to irreducible representations of the sta-
bilizer group Gq of q. Since the space group p6mm is symmorphic, both site
symmetry and little group irreps can be labelled by irreps of point groups. In
this case, we have seen above that the relevant point groups are C2v, C3v, and
C6v. In Table 5.1 we give the character tables for these representations.

Using the GTPack package [88, 89] for Mathematica, we now compute the
representation labels at each k∗ in our photonic band structures (see Fig. 5.2).
Then, we use the representations of the corresponding little groups given in
the Bilbao Crystallographic Server (BCS) [94–96] to compare them with our
assignments. Doing so, by looking at the irreps of the lowest three bands we
identify three different phases in our model (see Table 5.2).

In order to understand how to extract the information about the topological
character from the representation labels, it is important to recall [27, 81, 82]
that for a set of isolated bands i ∈ {1, . . . , N} the symmetry properties of
the Bloch-wave eigenstates at every momentum k in the BZ are determined
by the symmetry transformation properties of the Wannier function which
induces the set of bands.

wiR(r) ≡∑
k

e−ik·RUij(k)ψjk(r). (5.3)
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FIGURE 5.3: Schematic representation of the first Brillouin zone
with the high symmetry Γ, M, and K points labelled [57]. Note
that little group and site symmetry representations of points
labelled by black circles are given by irreps of C6v. Irreps for all
blue squares are given by labels for C3v. Irreps for all red stars

are given by labels for C2v.

Where R is a lattice vector, and Uij(k) is an (N × N)-unitary matrix which
represents a choice of “gauge" for the space spanned by the N-induced bands.
For a topologically trivial set of bands, the matrix U can be chosen to make
the functions wnR exponentially localized about some center rn + R. In this
case, the irreps of the site-symmetry group under which the Wannier func-
tions transform fully determines the irreps of the little group at each k∗ within
the BZ for a given set of bands. Such set of bands receives the name of band
representation, as defined in Refs. [27, 97, 98]. Therefore, these Wannier func-
tions carry a band representation which can be expressed as a sum of ele-
mentary band representations (EBRs) tabulated in Ref. [83, 84].

Each EBR is identified by its space group, the maximal Wyckoff position —
which labels the set rn of centers (in this case: 1a, 2b, or 3c) — and an irrep of
the corresponding site-symmetry group Grn . Thus, they are denoted as:

(ρ ↑ G)rn , (5.4)

where ρ is an irrep of the site symmetry group Grn of the Wyckoff position
rn. Although, each EBR contains a finite number of bands, we can define a
direct sum ⊕ of EBRs concatenating bands. The total multiplicity of all little
group irreps that appear in a sum of EBRs is equal to the sum of the EBR
multiplicities. Similarly, we can define a formal difference of EBRs [29, 67] at
the level of little group irreps. We define

S ≡ (ρ1 ↑ G)r1 	 (ρ2 ↑ G)r2 (5.5)
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ρ E C2 m1 m2
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

ρ E m C3
A1 1 1 1
A2 1 −1 1
E 2 0 −1

ρ E m1 C2 C3 m2 C6
A1 1 1 1 1 1 1
A2 1 −1 1 1 −1 1
B1 1 −1 −1 1 1 −1
B2 1 1 −1 1 −1 −1
E1 2 0 −2 −1 0 1
E2 2 0 2 −1 0 −1

TABLE 5.1: Character tables for the point groups used in this
work. (a) is the character table for C2v, which labels representa-
tions of both G3c, the stabilizer group of the 3c position, as well
as of the little groups GM, GM′ , and GM′′ of the M points. (b) is
the character table for C3v, which labels representations of both
G2b, the stabilizer group of the 2b position, as well as of the lit-
tle groups GK and GK′ of the K points. (c) is the character table
for C6v which labels representations of both G1a, the stabilizer
group of the 1a position, as well as of the little group GΓ of the

Γ point.

Γ K M
Trivial A1, E1 A1, E A1, B1, B2
OAL A1, E2 E, A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

TABLE 5.2: Little group irreps for the three gapped phases of
our model. Irreps at each k∗ are ordered from lowest to high-
est energy. Note that while the OAL and fragile bands contain
the same irreps in the lowest three bands, they differ by a band

inversion at K and M.

to be the set of little group irreps obtained by subtracting the irreps in (ρ2 ↑
G)r2 from those in (ρ1 ↑ G)r1 — which determines as well the multiplicity.

The full set of EBRs for all space groups can be found in Ref. [83]. Here, we
summarized in Table 5.3 the little group irreps which appear in the relevant
EBRs for the assignment of phases emerging in our particular system.

Using the irrep labels — given in Table 5.2 — for the representative phases,
along with the catalogue of EBRs in the BCS [94–96] — summarized in Ta-
ble 5.3 — we can identify the band representations describing each phase of
the PhCs.

For the first structure, with ellipses of d1 = 0.52a0, d2 = 0.31a0, we see that
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EBR Γ K M
(A1 ↑ G)1a A1 A1 A1
(E1 ↑ G)1a E1 E B1 ⊕ B2
(A1 ↑ G)3c A1 ⊕ E2 E⊕ A1 A1 ⊕ B1 ⊕ B2

TABLE 5.3: EBRs appearing in the lowest three bands of our
photonic crystal structures. The first column gives the label
of the EBR. The second column gives the little group irreps de-
scribing bands at Γ in the EBR. Similarly, third column gives the
little group irreps describing bands at K, and the fourth column

the irreps for bands at M.

the lowest band carries irrep labels consistent with the band representation
(A1 ↑ G)1a. This EBR indicates that the photonic Wannier functions are
centered at the origin of the unit cell with zero angular momentum (s-like
orbital).2 The second and third bands are connected to each other, and con-
sistent with the (E1 ↑ G)1a band representation, with a pair of Wannier func-
tions centered at the origin of the unit cell and transforming like a dipole (p-
like orbital). The set of three bands must be considered together since they
present a degeneracy between the first and second band at K which indicates
that the characters of both modes are correlated. The spectra of this structure
is indicated as the “trivial" phase in Fig. 5.4 a), since all the photonic states
can be expressed in terms of localized modes near the origin of the unit cell.
Note that although there are no dielectric rods at this maximal 1a Wyckoff
position, the Wannier functions are trapped by the symmetric arrangement
of dielectrics surrounding the origin.

For the next representative structure, with d1 = 0.4a0, d2 = 0.61a0, we see that
the first three bands are all interconnected. Taken their irrep labels together,
we observe that are consistent with s-like photonic Wannier functions cen-
tered on a kagome lattice (3c position) which transform under the (A1 ↑ G)3c

EBR. Although this phase was identified in Ref. [48] as possessing nontrivial
topology, here we show that the photonic Wannier functions are localized on
a kagome rather than a triangular lattice. Therefore, in contrast to the trivial
phase, the centers of these functions lie within the dielectric ellipses and be-
tween consecutive unit cells. The band dispersion of this structure is shown
in panel b) of Fig. 5.2, labelled as “obstructed atomic limit" (OAL) phase in
analogy with similar transitions in electronic materials.

For the last representative structure, with d1 = 0.4a0, d2 = 0.1333a0, we see

2The singularity near Γ for photonic modes [99] should not obstruct the formation of
Wannier functions for the electric field of TM modes in 2D, since it is polarized out of plane.
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that the lowest band can be described by s-like Wannier function centered
at the origin of the unit cell [(A1 ↑ G)1a], while the second and third bands
cannot be expressed as the sum of EBRs. However, the three bands taken
together have the same representations as the (A1 ↑ G)3c EBR — as in the
OAL phase. Therefore, the set of bands 2&3 have the representations which
correspond with a subtraction of EBRs, (A1 ↑ G)1a 	 A1 ↑ G)3c. This repre-
sentative band structure is shown in Fig. 5.2 c). We will show in following
sections that the set of bands two and three realizes fragile topology in this
crystal [58, 59].

We summarize our results as a function of the axis lengths d1 and d2 in
Fig. 5.4, where we show the range parameters for each phase. The numer-
ical details of the calculation are detailed in Appendix C.

FIGURE 5.4: Phase diagram for the photonic band topology.
We show the topological properties of the second and third
bands as a function of the length of principal axes of the ellip-
tical rods. Light blue indicates that the bands form the triv-
ial band representation, Dark blue indicates the “obstructed
atomic limit” (OAL), and Purple indicates the fragile topolog-
ical phase. Finally, magenta indicates an intervening gapless

phase with fine-tuned degeneracy.
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5.3 Wilson loop of the fragile phase

To support the conclusions of the previous section, we compute the eigenval-
ues of the Wilson loop operator for each isolated set of bands of the structure
supporting the fragile topological phase.

As we introduce in Chapter 2, the Wilson loop is a unitary matrix and the
phases {θi} of its eigenvalues are gauge-invariant modulo 2π. These phases
are related to the centers of hybrid Wannier functions — localized in the a2

direction and extended in the a1 direction — supported by the bands [87,
100]. In the case when we evaluate the Wilson loop spectra for a small num-
ber of bands, the irreps of the Bloch functions at high symmetry momenta can
place constraints on the allowed topological phases {θi}— see Appendix B.
Therefore, the EBRs from each of the different maximal Wyckoff positions
in this space group have qualitatively different Wilson loop spectra.3 The
Wilson loop spectrum for topologically trivial bands do not cover the entire
range [0, 2π] of possible phases — i.e. they do not wind. In Fig. 5.5 a) we

FIGURE 5.5: Wilson loops corresponding to the lowest three in
the fragile topological phase. (a) shows the Wilson loop for the
isolated first band. The Wilson loop phase here is pinned to θ =
0, a consequence of the C2 eigenvalues of the band. (b) shows
the Wilson loop eigenvalues for the interconnected second and
third bands. The Wilson loop spectrum consists of two bands,
which wind in opposite directions from −π to π as a function
of momentum. As in Ref. [58], this winding is guaranteed by
the C2 eigenvalues of the bands, and indicates their nontrivial
fragile topology. (c) shows the Wilson loop for all three bands

taken together, which does not display any winding.

show the Wilson loop spectrum of the lowest band in the fragile topologi-
cal structure. The phase is pinned at Weigenvalues = 0, which is consistent
with a maximally localized Wannier functions centered at the 1a position. In
contrast, the Wilson loop spectrum for the second and third bands, shown

3We show the Wilson loop spectra of the trivial and OAL phases in Appendix C.
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in Fig. 5.5 c), clearly display a nontrivial winding. As we mentioned before,
the integer winding number is an indicator of nontrivial topology. Note that
before performing these detailed Wilson loop calculations, we were already
able to anticipate these results demonstrating the utility of TQC applied to
photonic systems.

5.4 Fragile Topology

In contrast to a conventional Z2 topological insulator, the Wilson loop wind-
ing in the topologically fragile phase is not protected. In fact, due to the
limited number of bands considered, the crossings in the spectrum at k1 = 0
and k1 = π are guaranteed by the twofold rotational symmetry C2z. It is
important to recall that the C2z invariant points in the BZ are Γ together with
M, M′ and M′′. We can observe in Table 5.2, that bands two and three of
the Fragile phase at Γ transform according to the irrep E2 whose C2z eigen-
values are (+1,+1), while at the M points the eigenvalues are (−1,−1) —
corresponding to irreps B1, B2. This means, as was shown in Refs. [58, 101],
that the Wilson loop at k1 = 0 passes through Γ and M and has its phases
pinned to π. Similarly, at k1 = π passes through M′ and M′′, and its phases
are hold in 0. Thus, this forces the winding of the spectrum in panel b) of
Fig. 5.5 which indicates nontrivial topology — for a detailed explanation see
Appendix C. Indeed, bands two and three realize the same fragile topologi-
cal phase discussed previously in a toy model in Ref. [58]. In both cases, the
irreps at the high symmetry points do not match a sum of EBRs, instead they
do match a difference of EBRs. Particularly, we can see from above that the
irreps for bands two and three are consistent with the formal difference

(A1 ↑ G)3c 	 (A1 ↑ G)1a, (5.6)

reflecting the fact that if all the three bands are taken together, they have the
same irreps as in the OAL case. This reflects the defining feature of fragile
topology — that fragile topological bands become trivial when a topologi-
cally trivial band is added. We verify this for our model computing the Wil-
son loop for the lowest three bands — shown in Fig. 5.5 c). The three-band
Wilson loop exhibits no winding, and is consistent with Wannier functions
centered at the kagome (3c) position — showing topological features of OAL.
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5.5 Finite-size System

In this section we define a periodic structure composed by a topologically
fragile part and another part with trivial topology. To emulate the properties
of the finite-size system, we construct a super-cell with the two topological
phases extended along one dimension (1D) emulating a ribbon. This super-
cell allows us to study the possible emergence of in-gap localized states at the
boundary between phases. The fragile topology of the structure is associated
to the set of the second and third band of the bulk TM modes. Since this
topological character is destroyed when a trivial band is considered together
with this specific set of fragile bands, we need a trivial structure that presents
a well defined gap in this specific frequency range. This way, we preserve the
isolation of the fragile bands and their topological character. To that purpose,
we explore the TM modes of a triangular array of cylinders placed at the
center of the cell. The dielectric constant of the cylinder is ε = 11.7 and the
radius r = 0.18a0. In Fig. 5.6 we show together the band dispersion of the
bulk TM modes for both periodic structures. We can observe that the fragile
bands are placed into the gap of the trivial phase. Although there are no
degeneracies with the fragile bands, the first band of the fragile phase —
light blue in Fig. 5.6 — around K is within the energy range delimited by
the fragile bands. This fact can lead to the mixing of the character of both
structures in the finite-size system.

FIGURE 5.6: Band structure of the TM modes of the trivial and
fragile phases. The bands corresponding to the trivial structure
which are plotted in dark blue together while the light blue are
the bands obtained from the periodic structure which shows
fragile topology in the set formed by the second and the third
band. The shaded area indicates the energy range where the

fragile bands are located.
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We define a super-cell composed by a repetition of twenty unit cells of the
non-trivial phase in y-direction, followed by other twenty unit cells of the
trivial phase in the same direction. Using MPB [73], we solve the macro-
scopic Maxwell’s equation for this ribbon. Note that as we elongate the
cell in real space along one spatial direction, the reciprocal space acquires a
one-dimensional character since one of the reciprocal lattice vectors becomes
smaller as one real space lattice vector is extended. The bands in the super
cell are folded along this direction, showing a well defined set of bulk bands
separated by gaps — as we show in left panel of Fig. 5.7. The shaded area of
the figure corresponds to the frequency range where we are going to explore
possible emergence of edge states since it coincides with the gap above the
fragile bands. In the right panel of Fig. 5.7, we show the zoom in of this fre-
quency range where we can observe the presence of two states (pointed by
arrows) that seem to be hanging from the bulk bands.

FIGURE 5.7: Schematic structure of the super-cell composed
by twenty unit cells of trivial triangular array of cylinders and
twenty unit cells of topological fragile triangular array of el-
lipses. The material of both topological phases is silicon (ε =
11.7) in air. Bellow, the left panel shows the bands along kx, be-
ing the shaded area the gap correlated with the fragile bands.
A zoom in of the shaded area is shown in the right panel. In
this range can be observed a full band gap between well de-
fined bulk of bands and two degenerate bands that seem hang-

ing from the upper bulk marked in color lime.

Trying to detach those states from the upper bulk bands, we explore the effect
of the progressive change of the dielectric constant in the fragile part of the
super-cell. In each step, we increment by a value of 0.1 up to 12.7; we observe
that for values of ε up to 12.4 the in-gap states are still connected to the upper



5.5. Finite-size System 69

FIGURE 5.8: Band structure of the super-cell composed by
twenty unit cells of trivial triangular array of silicon cylinders
(ε = 11.7) in air, and twenty unit cells of topological fragile
triangular array of ellipses. The left panel shows the bands
along kx for the ribbon composed by ellipses with ε = 12.4.
The two degenerate bands in pink are edge states that are con-
nected with the upper bulk of bands. In the right panel, the
band structure correspond to a ribbon which contains ellipses
with ε = 12.7. The pink bands are degenerate edge states that

are placed completely into the gap.

FIGURE 5.9: Upper panel shows the ribbon structure composed
by a trivial phase and a topologically fragile phase. Both lower
panels correspond to the degenerate modes that exit within the

gap.

bulk modes. However, for larger values of ε the in-gap states are completely
detach from the upper bulk modes and are fully inside the gap of the system.

In order to characterize these two degenerate bands we plot the correspond-
ing z component of the electric field at Γ to observe their profile along the
ribbon. In Fig. 5.9 we show that the field is concentrate at the interface be-
tween the two phases with a well defined decay.
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6 LDOS vs. Wannier functions

In Chapter 5 we applied different techniques to identify the topological char-
acter of several photonic crystals (PhCs) based on two dimensional (2D) arti-
ficial honeycomb lattices.

In this chapter, we combine the theory of topological quantum chemistry
(TQC), the Wilson loop spectrum and the local density of states (LDOS) cal-
culation to analyze the topological character of various PhCs which are based
on an artificial honeycomb lattice. From this configuration, we expand and
shrink the lattice to perform geometric adiabatic changes to the system. Then,
we construct a PhC composed by a expanded and a shrunken lattice together.
We show how changing the dielectric materials in such system we can design
different topological phases.

6.1 Breathing honeycomb lattice

6.1.1 Model

In this section we characterize the topological properties of the breathing
honeycomb PhC introduced by Wu and Hu in Ref. [48]. We define a two di-
mensional (2D) honeycomb lattice — being z the invariant direction — with
an artificially enlarged unit cell. This non-primitive cell is composed by six
silicon rods (ε = 11.7) of radius r = 0.12a in vacuum (ε = 1), being a the lat-
tice parameter. Each of those rods is located at a distance R = R0(1± δ) from
the origin, where R0 = a/3 is the location of the cylinders in the unperturbed
honeycomb arrangement; and the parameter ±δ quantifies the perturbation
in the system which expand or shrink the lattice. While for positive values of
δ the lattice is expanded, for negative values of δ the lattices is contracted —
as is shown in Fig. 6.1.

The band dispersion of the TM modes in the unperturbed honeycomb lattice
presents an artificial four-fold degeneracy at Γ caused by folding of the band
structure due to the enlarged unit cell — center panel of Fig. 6.2. Then, we
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FIGURE 6.1: Non-primitive unit cell of the photonic breathing
honeycomb lattice composed by six silicon rods (ε = 11.7) of
radius r = 0.12a in vacuum (ε = 1). From left to right: Unit cell
of the unperturbed honeycomb lattice with the rods placed at a
distance R0 = a/3 from the origin. Unit cell of the contracted
lattice whose cylinders are moved towards the center at a dis-
tance R = R0(1− δ), being the perturbation δ = 0.11. Unit cell
of the expanded honeycomb lattice with the rods displaced to a
distance R = R0(1 + δ) from the center, keeping the perturba-

tion δ = 0.11.

consider a perturbation of δ = ±0.11, that moves the rods farther (δ = +0.11)
or closer (δ = −0.11) from the center of the unit cell. The TM band structure
of both perturbed lattices — right and left panel of Fig. 6.2 — shows the
opening of a band gap between ωa/(2πc) = 0.4 − 0.5, which indicates a
non-adiabatic change in the system’s response.

FIGURE 6.2: Band dispersion of the TM modes, from left to right,
of the expanded, unperturbed and contracted lattices. The per-
turbation of the expanded and contracted lattice is δ = ±0.11,
respectively. For gaped systems, the shaded area indicates com-
plete band gaps and, the irrep of each Bloch modes at high sym-

metry k-points are labeled inset.
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6.1.2 Topological analysis

At first, we determine the topological properties of the system applying TQC.
Fig. 6.2 shows the band structure of the expanded and contracted lattices
together with the irreps of the Bloch modes at the high symmetry k-points,
computed using GTPack [88, 89]. As we introduced in Chapter 5, we use
the catalogue of Elementary Band Representations (EBRs) of the space group
of the lattice (p6mm), found in the Bilbao Crystallographic Server [94–96], to
characterize the topology of each gaped system. We summarize the relevant
EBRs for the breathing honeycomb lattice in Table 6.1.

EBR Γ K M
(A1 ↑ G)1a A1 A1 A1
(E1 ↑ G)1a E1 E B1 ⊕ B2
(A1 ↑ G)3c A1 ⊕ E2 E⊕ A1 A1 ⊕ B1 ⊕ B2

TABLE 6.1: Relevant EBRs of p6mm for the lowest three bands
of the photonic breathing honeycomb lattice.

For topologically trivial gaped systems, the Band Representation of connected
bands can be expressed as linear combinations of these EBRs. Addition-
ally, we can identify where the Wannier function that induces the connected
bands is placed. For both gaped systems, the expanded and contracted lat-
tice, we consider the three lowest energy bands for the corresponding analy-
sis, which is shown in Table 6.2.

Γ K M EBR
Expanded A1, E2 E, A1 B1, A1, B2 (A1 ↑ G)3c
Contracted A1, E1 A1, E A1, B1, B2 (A1 ↑ G)1a ⊕ (E1 ↑ G)1a

TABLE 6.2: Little group irreps for the three lowest bands of each
phase. Together with the corresponding EBR for the contracted

lattice, or sum of EBRs for the expanded lattice.

We can observe several band inversions comparing the band representation
of both gaped lattices, as is shown in the band structures of Fig. 6.2. A band
inversion is identified — for two bands cases — as the flipping of the irreps
at certain high symmetry point between consecutive bands. The artificial un-
perturbed honeycomb lattice with δ = 0, presents degeneracies that allow
the mixing of the character between bands. Those artificial degeneracies are
lifted perturbing the lattice with δ = ±0.11, defining an expanded or con-
tracted lattice respectively. The bands acquire a different character in the
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high symmetry point of the degeneracy depending on the sign of the pertur-
bation. In this case, we observe at Γ that the irrep of the bands 2 & 3 is E1

for the contracted lattice and E2 for the expanded. This indicates a different
character of the Bloch modes in each structure for the lowest energy set of
bands. At the K point instead, we observe that in the contracted case there is
a degeneracy between bands 2 & 3 and band 1 is isolated. Alternatively, in
the expanded lattice, bands 1 & 2 present a degeneracy while band 3 is non
degenerate. Therefore, the irreps at the K point flip their character being A1, E
for the contracted case and E, A1 for the expanded. Similarly, at the M point,
the irreps of the bands 1 & 2 are flipped, being A1, B1 for the contracted lattice
and B1, A1 for the expanded case.

For the contracted lattice we observe two sets of isolated bands, band 1 and
bands 2 & 3, while for the expanded lattice we only observe one connected set
formed by the three lowest bands. We now determine which EBRs form the
band representation of each set of connected bands. These EBRs will give us
information about the irrep of the Wannier function which induces the bands,
as well as its location in real space, labelled by one of the maximal Wyckoff
position.

Looking at the EBRs of the contracted lattice, we observe that the two sets
of bands are induced from Wannier functions placed at the position 1a —
which corresponds to the center of our real space unit cell. The lowest energy
band is induced from a Wannier function of character A1 and the second set
is induced from Wannier functions of character E1. For the expanded lattice
instead, the three lowest energy bands form a connected set which is induced
from a Wannier function that transforms under the irrep A1 and is centered
in the position 3c — the edge between two cells in our definition. Therefore,
we can understand this two configurations as a 2D analogy of the 1D SSH
chain [27]. In the case of the contracted lattice, the Wannier functions sit at the
position 1a. We call this limit the natural (atomic) limit. While in the case of
the expanded lattice, the Wannier center is located between consecutive unit
cells at the 3c position. This situation is refereed as the obstructed (atomic)
limit (OAL1). Therefore, the obstructed phase has to be defined with respect
to a natural limit. Nevertheless, as both limits admit exponentially localized
Wannier representations, we can conclude that our system presents a trivial
Z2 topological character.

1This topological phase was labeled in the past in analogy with solid-state systems as the
photonic obstructed atomic limit (OAL).
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Moreover, as in the previous chapter, we can characterize each system through
the calculation of the Wilson loop spectrum for each set of connected bands,
Fig. 6.3.

FIGURE 6.3: Wilson loop spectra along Γ- M -Γ of each set of
connected bands. The lower part shows the spectrum of the
set of bands for the contracted lattice, which indicates that the
Wannier centers are trivially localized around the center of the
unit cell. While, in the upper part we can observe the spectrum
of the set of bands for the expanded lattice, which indicates that
the Wannier centers as well localized at the edge of the unit cell,
representing an obstruction phase of the trivial phase. Figure

adapted from Supplemental Material of Ref. [102].

The resulting eigenvalues of the Wilson loop operator shown in Fig. 6.3,
present no winding — which are characteristic of Z2 or Chern insulators —
for all sets of bands in both structures. Nevertheless, we can observe that the
localization of the Wannier centers is different for each lattice. For the con-
tracted lattice (δ = −0.11), we confirm that the Wannier centers are placed
at the 1a maximal Wyckoff position, which is represented with eigenvalues
pinned at 0 or around it. For the expanded lattice (δ = +0.11), the eigenval-
ues are not exclusively localized in the origin of the unit cell as in the previ-
ous system. They are localized around its edges as well. We can observe that
at Γ the eigenvalues are pinned at ±π which indicates a charge localization
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shared between consecutive unit cells. The eigenvalues of the Wilson loop
operator around ±π confirms that the Wannier centers are located at the 3c
Wyckoff position, indicating that the system presents an obstruction similar
to the 1D SSH chain.

In this chapter, we introduce an additional analysis tool through the calcu-
lation of the local density of states (LDOS) for each set of connected bands
following the methodology described in Chapter 3. The maximum values of
this real space function integrated over a set of connected bands, should cor-
respond to the maximal Wyckoff position predicted by TQC for the Wannier
center.

For the contracted lattice — right column of Fig. 6.4 — we observe that the
LDOS in the first band is mostly concentrated inside the dielectric rods and
pointing towards the position 1a. To explore the LDOS outside the rods,
we artificially set to zero the values of the LDOS in the dielectric regions by
making ε = 0 in the calculation of the LDOS 3.22. The maximum of the LDOS
in the air region forms a ring centered around the origin and connecting the
dielectric rods. We observe a highly symmetric LDOS distribution which fits
with the irrep (A1) of the band’s EBR — see Table 6.2.

The LDOS of the set of bands 2 & 3 shows a more precise localization of
the maximimum inside the dielectric rods and a less symmetric shape. The
maximum values of the LDOS presents an arc shape that connect non-equally
all the rods. Comparing it with the LDOS of band 1, there is a clear lowering
of the symmetry, as indicated by the different EBR of the bands — which
specifically is induced with E1 irrep in this case.

For the expanded lattice — top left panel of Fig. 6.4 — we observe that the
LDOS for the set of the three lowest energy bands is localized inside the di-
electric rods, but in this case pointing to the position 3c. Observing the LDOS
outside the rods, its maximum values connect dielectric rods from different
unit cells (Wyckoff position 3c). Moreover, we observe that the highly sym-
metric LDOS distribution fits as well with irrep A1, as indicated by the EBR
for this set of connected bands — see Table 6.2.

Since the contracted lattice is the trivial phase of the breathing honeycomb
lattice, it represents the configuration that sets the natural atomic limit. In this
configuration, the maximum of the LDOS in real space is located is around
the center of the unit cell. For the expanded lattice instead, the maximum
distribution is between consecutive unit cells. Therefore, this configuration
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FIGURE 6.4: Transverse magnetic Local density of states
(LDOS) considering the contribution of connected bands. For
each set of bands, the LDOS calculation with ε = 11.7 is shown
at the left side, and those with artificial ε = 0 at the right side.
This procedure permits to resolve the LDOS distribution in the
media, air in our case. Both of them are plotted in a supercell
composed by four consecutive unit cells. The unit cell at the top
of the super cell also includes an eye guide of the Wyckoff posi-
tions. The legend is shown in the bottom left panel. The panel
above — top left — shows the LDOS of the set of bands 1− 3
for the expanded lattice, with a maximum of LDOS around the
position 3c.The right column, shows from top to bottom, the
LDOS of the first band and the set of bands 2 & 3 for the con-
tracted lattice. The maximum of both are placed within the di-

electrics pointing towards the 1a position.

is the obstruction of the atomic limit, the 2D analog of the 1D SSH topological
phase.

Although from the point of view of Wannier localization (TCQ and Wilson
loop analysis) both lattices present a trivial topology, the obstructed phase
can emulate some topological features. Since the charge is maximally local-
ized at the edges and corners of the unit cell, it allows for the emergence of
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symmetry protected localized modes which can present robustness against
certain disorder [102].

6.2 Combined breathing honeycomb lattice

In this section, we explore the topological character of different photonic
crystal whose unit cell is composed by twelve dielectric rods, six in the ex-
panded positions and six in the contracted positions.

6.2.1 Model

These new structures are defined by a 2D triangular lattice with space group
p6mm. As we mention above, the unit cell is composed by twelve dielectric
rods; six of them are placed in the contracted honeycomb positions (δ =

−0.11), with radius r = 0.05a, while the rest, with radius r = 0.1a, take
expanded honeycomb positions (δ = +0.11). To explore different phases
using this configuration, we vary the dielectric constant (ε). The different
structures analyzed are shown in Fig. 6.5. For the structures contained in this
section, we will use rods with two concrete dielectric values. Some rods will
be made of ε = 12 (plotted in black) and the rest ε = 4 (plotted in grey).

As a starting point, we set ε = 12 for the smaller rods located closer to the cen-
ter of the unit cell, and ε = 4 for the bigger rods, located closer to the edges
— this structure is labelled as Trivial in Fig. 6.5 a.1). Since the contracted
rods posses a higher ε, the maximum localization of the fields is expected
around them. Looking at the spectrum of this structure, we observe three
sets of connected bands separated by gaps. The band dispersion is shown in
Fig. 6.5 a.2), where these isolated sets of bands are plotted in different colours.

We define the next structure setting ε = 12 for the bigger rods placed at the
edges of the unit cell, and ε = 4 for the smaller rods around the center. This
structure is labelled as Obstructed in Fig. 6.5 b.1). The maximum localization
of the fields is now expected around the rods in expanded positions, as they
posses the highest ε. In this case, the spectrum shows two set of bands sep-
arated by gaps, one for bands 1-3 and other for bands 4-6 — plotted with
different colours in Fig. 6.5 b.2).

For the last structure, we define ε = 12 for all the rods. We label this structure
as Fragile in Fig. 6.5 c.1). The band structure, presented in Fig. 6.5 c.2), shows
a partial gap between the two lowest energy bands, being the lowest energy
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FIGURE 6.5: Top panels show different photonic crystals struc-
tures represented by four unit cells. Each unit cell is composed
by six smaller dielectric rods of radius r = 0.05a placed at
contracted honeycomb positions and other six rods of radius
r = 0.1a placed at expanded honeycomb positions. Addition-
ally, the maximal Wyckoff positions of the space group p6mm
are labelled inset — with the correspond legend below. Setting
different values of the dielectric constant (ε), black rods with
ε = 12 and grey rods ε = 4, we get three different topologi-
cal phases: trivial, a.1), obstructed atomic limit (OAL), b.1), and
fragile, c.1). The spectrum of each phase is shown bellow. The
sets of bands separated by gaps are plotted in different colours.

band fully isolated and the second band connected with the third. The set of
bands 2 & 3 is separated by a full band gap from the following set of bands
(bands 4-7).

In following sections, we determine the topological character of each system
through Topological Quantum Chemistry, the eigenvalues of the Wilson loop
operator and the LDOS calculation.

6.2.2 Trivial phase

Here, we analyze the topological character of the first structure described
above — Fig. 6.5 a). In this case, we differentiate two set of connected bands:
band 1 and bands 2− 4.
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First, using the GT-Pack package in Mathematica, we analyze the symmetry
representation of the Bloch modes at high symmetry k-points. The collection
of all the irreps for each set of bands constitutes a BR. Then, we will proceed to
analyze these BRs with respect to the EBRs of the space group p6mm. In this
particular example, we can express all BRs of the structure as specific EBRs
of p6mm, meaning that the band structure is induced from exponentially lo-
calized Wannier functions. The EBRs defining the first two sets of bands are
collected in Table 6.3.

Γ K M EBR
Band 1 A1 A1 A1 (A1 ↑ G)1a

Bands 2-4 A1, E2 E, A1 B1, B2, A1 (A1 ↑ G)3c

TABLE 6.3: Little group irreps for the set of lowest bands in the
trivial structure; together with the corresponding EBR.

The EBR of the first band, (A1 ↑ G)1a, indicates that such band is induced
from a Wannier function maximally localized at the 1a Wyckoff position which
transform under the A1 irrep. The set of bands 2− 4, is induced from a Wan-
nier function which transform with the same symmetry, A1, but in this case
maximally localized around the 3c position. The EBR which correspond to
this set is (A1 ↑ G)3c.

Additionally, we labelled the irreps in the band structure, shown in the left
part of Fig. 6.6. At the right panel of Fig. 6.6 we show the density of states
(DOS) of the band structure — calculated as described in Chapter 3 — and,
we specify inset the EBR of each set of connected bands. Here, we observe the
Van Hove singularities associated to the band structure. These singularities
are related to k-points where the gradient of the bands goes to zero.

As we observed from the EBRs, the functions which induced the first band
are maximally localized at the 1a Wyckoff position, while for bands 2 − 4,
they are localized at the 3c position. For the p6mm space group, these posi-
tions are located at the center or at the edge of the unit cell respectively. To
support these results, we now compute the eigenvalues of the Wilson loop
operator (see Fig. 6.7). For the first band the eigenvalues are constant and
equal to zero. As there is no winding, the Wannier function is maximally
localized which indicates a trivial character of the gap above. On the other
hand, the value is related to the position where the function is placed. In this
case, it correspond to the center of the unit cell.
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FIGURE 6.6: Symmetry analysis of the trivial phase. Panel a)
shows the band structure for TM modes with the correspond-
ing irrep of each Bloch mode at high symmetry k-points labelled
inset. The color shaded area indicates different groups of con-
nected bands. The color code is kept for in panel b), which
shows the density of states (DOS) in arbitrary units. The cor-

respond EBR of each set of bands is labelled inset.

FIGURE 6.7: Wilson loop eigenvalues of the trivial phase. The
Wilson loop spectra for the first band is plotted at the left side,

and at the right size for the set of bands 2-4.

For the set of the bands 2− 4, we observe no winding in the spectrum of the
Wilson loop operator which indicates a trivial topological character, meaning
that these bands are induced from maximally localized Wannier functions.

Finally, we complete this analysis with calculations of the local density of
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states (LDOS) for the different sets of bands — shown in Fig. 6.8. We perform
the calculation considering εcont. = 12 and εexp. = 4 to see the actual LDOS
within the unit cell. Complementary, we perform the calculation considering
ε = 0 in Eq. 3.17 to explore the LDOS of the surrounding medium — air in
our case. For clarity, the results are plotted in a larger cell formed by four
unit cells where we label the Maximal Wyckoff positions — Fig. 6.8.

FIGURE 6.8: Transverse magnetic local density of states (LDOS)
considering connected bands — labelled together with their
EBR. The LDOS calculation with (εcont. = 12, εexp. = 4) is shown
at the left side, and with ε = 0 at the right side. Both plotted
in a supercell composed by four consecutive unit cells. Panel a)
shows the LDOS of the first band which present the maximum
localization around the center, the 1a position. Panel b) shows
the LDOS of the set of bands 2-4, where the maximum is shared

at the edges and corners of the unit cell, at the 3c position.

For the lowest band in energy — Fig. 6.8 a) — we observe that the maximum
of LDOS is located inside the rods with higher ε placed at the contracted pos-
tions. Furthermore, the maximum LDOS is well localized around the center
of the unit cell, the 1a Wyckoff position. Thus, there is a good correlation
between the maximum of LDOS with the Wannier center position predicted
by the EBR of the band.

For the set of bands 2− 4 — Fig. 6.8 b) — we observe again the highest LDOS
inside the rods in the contracted positions. In this case, compared with the
first band, we observe a higher concentration of LDOS within the rods at ex-
panded positions. Looking at the LDOS of the medium, we observe some
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concentration around the contracted rods but the maximum LDOS are lo-
cated between consecutive unit cells, at the edges and corners which corre-
spond with the 3c position. Although we observe the maximum LDOS con-
centration around the center due to the higher ε, the LDOS of the medium
clearly support the prediction of TQC indicating that the Wannier center of
the function that induce this set of bands is placed at the 3c position.

6.2.3 Obstructed phase

Next we analyze the opposite structure, the one with the rods of higher ε

placed at the expanded honeycomb positions — see Fig. 6.5 b). In this case,
we identify two sets of connected bands — bands 1− 3 and bands 4− 6 —
that we will characterize independently. In Fig. 6.9 we show the band struc-
ture with the irreps at every high symmetry point. Additionally, we compute
the corresponding DOS — shown at the right side of Fig. 6.9.

FIGURE 6.9: Symmetry analysis of the obstructed phase —
OAL. Panel a) shows the band structure for TM modes with
the corresponding irrep of each Bloch mode at high symmetry
k-points labelled inset. The color shaded area indicates differ-
ent groups of connected bands. The color code is kept for in
panel b), which shows the density of states (DOS) in arbitrary
units. The correspond EBR of each set of bands is labelled inset.
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We can now define the band representation of each set of bands, and relate
them with the EBRs of the space group p6mm. We summarize the results in
Table 6.4.

Γ K M EBR
Bands 1-3 A1, E2 E, A1 B1, A1, B2 (A1 ↑ G)3c
Bands 4-6 E1, B2 A1, E A1, B2, A2 (B1 ↑ G)3c

TABLE 6.4: Little group irreps for the set of lowest bands in
the obstructed limit structure; together with the corresponding

EBR.

The first set, composed by bands 1− 3, is induced from Wannier functions
centered at the 3c Wyckoff position that transform under the irrep A1. The
Wannier function that induces the set of bands 4− 6 is centered the 3c posi-
tion as well, but it is transformed under a different irrep of the space group,
B1.

We now confirm these results by looking at the Wilson loop spectrum (Fig. 6.10).

FIGURE 6.10: Spectrum of the Wilson loop operator for the sets
of bands 1-3 and bands 4-6 corresponding to the obstructed

phase.

For both set of bands we observe that the eigenvalues of the Wilson loop
operator present no winding, indicating a trivial character. Nevertheless,
the eigenvalues are located around ±π which indicates that the expecta-
tion value of the Wannier function is located between consecutive unit cells.
Therefore, this structure is characterized as an obstructed atomic limit (OAL)
phase. Despite OAL phases could present features associated to topological
effects as corner and/or edge modes with some protection due to the lattice
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symmetries, the protection against disorder is not as robust as for topological
states.

We continue the characterization by exploring the LDOS integrated over the
sets of connected bands (Fig. 6.11).

FIGURE 6.11: Transverse magnetic local density of states
(LDOS) for bands separated by gaps, labelled together with
the corresponding EBR. The LDOS calculation with (εcont. =
4, εexp. = 12) is shown at the left side, and with ε = 0 at the
right side. Both plotted in a supercell composed by four con-
secutive unit cells. Panel a) shows the LDOS of the bands 1− 3
which present the maximum localization around the 3c posi-
tion, shared at the edges and corners of the unit cell. Panel b)
shows the LDOS of the set of bands 4− 6, where the maximum
is placed at the rods in the expanded positions, close to the 3c

position but oriented to the center.

The LDOS of the set of bands 1 − 3, shows a clear localization at the rods
with higher dielectric constant with the maximum values oriented towards
the edges of the unit cell. This observation is found as well for the medium.
Therefore, we observe for this bands a good correlation between the pre-
dicted position of the Wannier centers (3c) with the position of our maximum
values of LDOS. For the set of bands 4− 6, we observe again the maximum
within the rods with higher ε placed at the expanded honeycomb positions.
Compared with the previous set of bands, in this case the localization inside
the rods is more defined and oriented to the center of the unit cell.



86 Chapter 6. LDOS vs. Wannier functions

6.2.4 Fragile phase

Last, we analyze the lattice composed by rods in expanded and contracted
positions with ε = 12 — as shown in Fig. 6.5 c). For this structure, we dis-
tinguish three set of bands: the first band isolated from the next set of bands
2 & 3 by a partial gap, and the set of bands 4− 7 separated by a complete
gap. We extract the EBR of each set of bands looking at their correspond
band representation. Such representation is constructed computing the ir-
reps of the Bloch modes at the high symmetry k-points — labeled inset the
band structure shown in Fig. 6.12 a). We summarize the band representation

FIGURE 6.12: Symmetry analysis of the fragile phase. Panel a)
shows the band structure for TM modes with the correspond-
ing irrep of each Bloch mode at high symmetry k-points labelled
inset. The color shaded area indicates different groups of con-
nected bands. The color code is kept for in panel b), which
shows the density of states (DOS) in arbitrary units. The cor-
respond EBR of each set of bands is labelled inset. In this case
the band representation of the set of bands 2 & 3 — in increasing

energy order — can be expressed as a subtraction of EBRs.

of each set of connected bands in Table 6.5. We include as well their corre-
sponding EBRs of the space group p6mm. For this case, we observe that the
set of bands 2 & 3 can only be expressed as a subtraction of EBRs indicating
a fragile topological character. The sets of band 1 and bands 4− 7, present



6.2. Combined breathing honeycomb lattice 87

trivial character since their band representation can be expressed as an EBR
and sum of EBRs, respectively.

Γ K M EBR
Band 1 A1 A1 A1 (A1 ↑ G)1a

Bands 2 & 3 E2 E B1, B2 (A1 ↑ G)3c 	 (A1 ↑ G)1a
Bands 4-7 E1, A1, B2 A1, E, A1 A1, B2, A2, A1 (B1 ↑ G)3c ⊕ (A1 ↑ G)1a

TABLE 6.5: Little group irreps of the lowest bands for the struc-
ture with fragile bands. The band representation is expressed

in terms of EBR of the space group p6mm in the last column.

In Fig. 6.12 b), we show the DOS of this structure with the corresponding
EBR of each set of bands. TQC predicts that the Wannier function which
induces the first band is centered in the 1a maximal Wyckoff position; while
the sets of bands 2 & 3 and bands 4 − 7, are induced from a function that
transforms respectively as a subtraction or a sum of EBRs centered at 3c and
1a. Therefore, we explore the eigenvalues of the Wilson loop operator —
shown in Fig. 6.13 — to get information of the expectation position of the
Wannier function within the unit cell.

The Wilson loop spectrum of the lowest energy band shows a constant zero
value which indicates that the Wannier function associated to this band is
exponentially localized at the center of the unit cell, the 1a Wyckoff position.
For the set of bands 2 & 3, we get eigenvalues of the Wilson loop operator
that wind from π to −π and from −π to π. This spectrum indicates that
the Wannier functions that induce the bands are not exponentially localized
at any position of the unit cell, indicative of non-trivial topology. As we
explained in previous chapters, this is the representative spectrum of Z2 in-
sulators. Fragile topology can be distinguished from a Z2 topological phase
by adding a trivial band to the calculation. While the Z2 phase preserves
the winding, the fragile phase becomes trivial instead — with no winding in
the Wilson loop spectrum2. The last spectrum, corresponding to the bands
4− 7, shows values with no winding centered around ±π and 0, which in-
dicates that the Wannier function is exponentially localized around the edge
(3c position) and the center (1a position) of the unit cell.

We conclude the analysis computing the LDOS integrated over the differ-
ent sets of bands, which allows to explore the correlation with the predicted
positions of Wannier functions that induce each set.

2Note that we do not consider relevant to include this calculation of the Wilson loop spec-
trum for bands 1− 3 together for this case since this test was already included in Chapter 5
for bands with identical symmetry representation and topological properties.
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FIGURE 6.13: Wilson loop spectrum. The sets of band 1 and
bands 4-7 shows no winding indicating trivial character, while
the set of bands 2 & 3 shows two winding with opposite slopes

which indicates fragile topology.

For the first band — Fig. 6.14 a) — we observe the maximum LDOS at the
dielectric rods in contracted positions while in the medium, the maximum
LDOS is concentrated around the center of the unit cell — the 1a position.

The LDOS for the set of bands 2 & 3 — Fig. 6.14 b) — shows higher val-
ues within the rods in expanded positions oriented to the adjacent unit cells
while the lowest values are within the rods in contracted positions. The same
distribution is observed for the LDOS in the medium. The LDOS of the last
set of bands 4− 7 — Fig. 6.14 c) — shows the maximum values centered in
the rods placed at expanded positions and lower values for those placed in
the contracted positions. While the media shows a clear maximum in the
center of the unit cell and around the expanded rods pointing towards the
center — the 1a position.
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FIGURE 6.14: Transverse magnetic local density of states
(LDOS) for different set of bands isolated by gaps — labelled
together with the corresponding EBR. The LDOS calculation
with (εcont. = 12, εexp. = 12) is shown at the left side, and with
ε = 0 at the right side. Both plotted in a supercell composed
by four consecutive unit cells. Panel a) shows the LDOS of the
first band which present the maximum localization around the
center of the unit cell, 1a position. Panel b) shows the LDOS of
the set of bands 2 & 3 which posses fragile topology, the maxi-
mum is placed inside the rods placed at the expanded positions
with shared charge between consecutive unit cells in the media.
Panel c) shows the LDOS of the set of bands 4-7, where the max-
imum is placed at the rods in the expanded positions while in
the media is mostly centered around the center of the unit cell.
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7 Conclusions

This thesis focused on the topological characterization of 2D photonic crys-
tals. The first introductory chapter was dedicated to explain in brief how the
study of topological effects emerged both in electronic and photonic systems.
The chapter highlighted the most relevant examples of topological phases,
putting a special emphasis on classical systems. The theoretical background
of the calculations used along this thesis was provided in Chapter 2. The first
part of the chapter was dedicated to the description of the considerations
needed to transform the macroscopic Maxwell’s equations into the eigen-
value problem that describes the propagation of light within a photonic crys-
tal. The second part of Chapter 2 introduced the theoretical expressions in the
continuum limit for the physical quantities associated to the computation of
topological invariants in periodic systems. These invariant quantities of in-
terest are the Berry curvature, the Berry phase, and the Berry connection as
well as the Chern and valley Chern number, and the eigenvalues of the Wil-
son loop operator. In the chapter, we introduced the connection between the
Wilson loop operator and the position of the Wannier centers. These concepts
are essential in order to understand topology within the framework of Topo-
logical Quantum Chemistry (TQC). The final part of Chapter 2 introduced the
mathematical formalism necessary to calculate the photonic density of states
(DOS) and local density of states (LDOS) of photonic crystal structures.

In Chapter 3, we presented the discrete expressions of the theoretical con-
cepts shown in Chapter 2, providing a practical description of the computa-
tional methods used throughout this thesis. In the first part of the chapter, we
explained how to compute the Berry phase and Berry curvature using an ad
hoc discretization of reciprocal space, and how this quantities are essential for
the numerical calculation of the Chern and valley-Chern numbers. The fol-
lowing numerical method described in Chapter 3 is the calculation of the Wil-
son loop spectrum including the numerical considerations needed to prop-
erly impose the periodicity of the photonic crystal in reciprocal space. Then,
Chapter 3 continues describing how TQC can be applied to photonic crystals
in order to assets the topology of photonic band structures. The last part of
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the chapter focuses on the numerical calculation of the DOS and LDOS in
photonic crystals. Moreover, this section introduced an integrated expres-
sion of the LDOS, which we used to visualize the location of the predicted
Wannier functions by TQC in Chapter 6.

The following Chapters were focused on practical implementations of dif-
ferent topological photonic systems, and their analysis. Chapter 4 presents
several Photonic Crystals with different topological characters: a Chern in-
sulator, a system with valley degree of freedom, an obstructed atomic limit
(OAL) system and a system hosting fragile topological bands. Here, we ex-
plained the distinctive features of the obtained results for each topological
phase. Although the fragile phase and the OAL are first introduced in Chap-
ter 4, both phases are explained in depth in the successive chapters.

Chapter 5 focused mostly on the fragile phase. Here we started by describing
the symmetry group of 2D hexagonal lattices (p6mm) and from here, we de-
tail necessary steps to perform a topological assessment using TQC. Beside,
we complemented the analysis of fragile topology using the eigenvalues of
the Wilson loop operator for an example Photonic Crystal and explored the
manifestation of edge states on finite-sized super-cells combining trivial and
fragile topological photonic systems.

Finally, Chapter 6 is dedicated to the exploration of the relationship between
the charge concentration in real space and the predictions made by TQC.
In particular, we analyzed a crystal combining two breathing honeycomb
lattices. In particular, we compared the LDOS calculations to the Wannier
center positions predicted by TQC. Moreover, the chapter explained the main
features of OAL phase and why OAL systems can be easily confused with
topological phases.

To summarize, this thesis introduced a systematic way to characterize the
topology of 2D photonic crystals. We provided strategies to compute topo-
logical invariants such as the Chern number, the valley-Chern number and
the eigenvalues of the Wilson loop operator. Additionally, we introduced
for the first time the application of TQC to photonic crystals and we show
its utility for an efficient topological characterization of photonic band struc-
tures.Finally, we established a correspondence between the LDOS distribu-
tion of sets of connected bands and the position of the Wannier centers pre-
dicted by TQC and Wilson loop spectra.

All these instruments permit to analyze the topological character of photonic
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topological structures in-depth. Last but not least, this tool-set allowed us
to design the first known physical implementation of a fragile topological
system to that date.





95

A Appendix A: Green’s function
for photonic crystals.

As we described in section 2.1, the operator of the eigenvalue problem ex-
pressed as a function of the electric modes Eq. (2.7) is not Hermitian. Hence,
it is not straightforward to investigate the completeness and orthogonality of
the solutions in this form. Instead the equation can be re-written as

∇×H(r) = −iω
√

ε(r)C(r) , (A.1)

with C(r) =
√

ε(r)E(r). This re-arrangement allows a symmetric form of
vector field C(r) equation. Therefore, we have

∇×∇× 1√
ε(r)

C(r) =
(ω

c

)2√
ε(r)C(r) . (A.2)

Finally, the electric vector field is derived in terms of a fully symmetric Her-
mitian operator as

1√
ε(r)
∇×∇× 1√

ε(r)
C(r) =

(ω

c

)2
C(r) . (A.3)

The operator on the left hand side, HE, is a Hermitian operator for the electric
vector field. Following the identity holds for HE∫

dv E∗2(r) · HE[E1(r)] =
∫

dv E1(r) · HE[E∗2(r)] . (A.4)

Which means that 〈E2|HE |E1〉 = 〈E1|HE |E2〉∗ proving that HE is indeed, a
Hermitian operator.

Due to the periodicity of the permittivity in PCs, the formal solutions of the
eigenproblem have the form of Bloch modes with a momentum in the first



96 Appendix A. Appendix A: Green’s function for photonic crystals.

BZ, that read as Eq. (2.9b).

Note that while n is an integer counting the discrete bands, as one expects
from a discrete spectrum of a Hermitian operator, the k-wavevector is a con-
tinuous variable in the BZ.

There are two types of orthogonality with this basis. On one hand, the modes
of a given k-vector at different bands are orthogonal to each other since the
spectrum is discret in momentum due to the hermicity of the operator. On the
other hand, in each n-band the modes with different k-vectors are orthogonal
to each other, too.

Therefore, we get

∫
UC

dv ε(r)E∗kn(r) · Ek′n′(r) = δnn′δ(k− k′) , (A.5)

where the overlap integral is evaluated over the UC.

Using Ckn(r), the identity at each Bloch k-wavevector can be spanned as

∫
k

dk ∑
n

Ckn(r)⊗ C∗kn(r
′) + CL

kn(r)⊗ CL∗
kn (r

′) = I2δ(r− r′) , (A.6)

where I2 indicate the identity tensor of dimension 2 and the superscript L
refers to the longitudinal subspace used as basis of HE.

Finally, in terms of the electric field we get

∫
k

dk ∑
n

Ekn(r)⊗ E∗kn(r
′) + EL

kn(r)⊗ EL∗
kn (r

′) = I2
δ(r− r′)

ε(r)
. (A.7)

From the hermitian electric field eigenproblem – Eq. (A.3) – it is clear to see
that the Green’s tensor G satisfies the following equation

[
1

ε(r)
∇×∇×−

(ω

c

)2
]

G(r, r′) = I2
δ(r− r′)

ε(r)
. (A.8)

Combining the last two equations – Eq. (A.7) and Eq. (A.8) – one gets the
subsequent equality,
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[
1

ε(r)
∇×∇×−

(ω

c

)2
]

G(r, r′)=
∫

k
dk ∑

n
Ekn(r)⊗E∗kn(r

′)+EL
kn(r)⊗EL∗

kn (r
′) .

(A.9)

To find the Green’s function expression, one needs to apply the following
operator on both sides of Eq. (A.9),

Li =

[
1

ε(r)
∇×∇×−

(ω

c

)2
]−1

, (A.10)

where Li only acts on r.

On one side, from the spectral solutions of Eq. (A.3) we have

1
ε(r)
∇×∇× Ekn(r) =

(ωkn
c

)2
Ekn(r) . (A.11)

Therefore, we get

Li[Ekn(r)] =
c2

ω2
kn −ω2

Ekn(r) . (A.12)

Furthermore, since the longitudinal modes are basis of the HE subspace, the
expression

1√
ε(r)
∇×∇× 1√

ε(r)
CL

kn(r) = 0 , (A.13)

is satisfied, which is equivalent to

∇×∇× EL
kn(r) = 0 . (A.14)

Hence, we get

Li[EL
kn(r)] = −

c2

ω2 EL
kn(r) . (A.15)

Finally, the Green’s tensor equation, after applying Li to the both sides, be-
comes
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G(r, r′; ω) =
∫

k
dk ∑

n

c2

ω2
kn −ω2

Ekn(r)⊗ E∗kn(r
′)− c2

ω2 EL
kn(r)⊗ EL∗

kn (r
′) .

(A.16)

Rearranging Eq. (A.7) we get,

∫
k

dk ∑
n

EL
kn(r)⊗EL∗

kn (r
′) = I2

δ(r− r′)
ε(r)

−
∫

k
dk ∑

n
Ekn(r)⊗E∗kn(r

′) . (A.17)

Finally, by plugging Eq. (A.17) into Eq. (A.16), an analytical expression for
the Green’s tensor G(r, r′; ω) is obtained:

G(r, r′; ω) =
∫

k
dk ∑

n

c2ω2
kn

ω2
(
ω2

kn −ω2
)Ekn(r)⊗ E∗kn(r

′)−
( c

ω

)2 δ(r− r′)
ε(r)

I2 .

(A.18)

Where the last term, is a real quantity proportional to the identity tensor I2.
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B Appendix B: Symmetry
properties of Wilson loops.

First note that our photonic crystals shown in Chapter5, have both C2 ro-
tation and time reversal (T) symmetries. The combined symmetry C2T is
antiunitary, and leaves all k points invariant. Since each projector P(k) is
C2T invariant, the net effect of this symmetry on the Wilson loop is to take
W(k1) to itself. Imposing this symmetry, and recalling that it is antiunitary,
we deduce that W(k) and W∗(k) must have the same spectrum. The phases
θi thus come in pairs {θi,−θi}, or else θi = 0, π. If we compute this Wilson
loop for a single isolated band, it must have either θ = 0 or θ = π.

In the case of one or two occupied bands, we can determine {θi} solely from
the eigenvalues of C2 symmetry at Γ and M. To see this, let us consider first
W(0). Starting with the definition Eq. (3.15) and splitting the product in half,
we find

W(0) = 〈um,(0,π)|
π←−π

∏
k2

P(0, k2)|un,(0,−π)〉 (B.1)

= 〈um,(0,π)|
π←0

∏
k2

P(0, k2)|u`,(0,0)〉〈u`,(0,0)|
0←−π

∏
k2

P(0, k2)|un,(0,−π)〉 (B.2)

≡Wπ←0(0)W0←−π(0) (B.3)

Now, with C2 symmetry we can write

C2|um(0,−π)〉 = |un(0,pi)〉Bnm
M (C2), (B.4)

C2|um(0,0)〉 = |un(0,0)〉Bnm
Γ (C2), (B.5)

where Bmn
Γ (C2) and Bmn

M (C2) is the matrix representations of C2 at the Γ and
M points, respectively. Inserting the identity operator C2

2 in the expression
for W0←−π and using the invariance of the projectors, we find

W0←−π(0) = BΓ(C2)W†
π←0(0)BM(C2) (B.6)
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and so
W(0) = Wπ←0(0)BΓ(C2)W†

π←0(0)BM(C2) (B.7)

We can apply similar considerations to W(π) to deduce

W(π) = Wπ←0(π)BM(C2)W†
π←0(π)BM′′(C2) (B.8)

These expressions are particularly useful when the representation matrices
B(C2) are proportional to the identity matrix. This is always true in the case
of one or two occupied bands for the irreps in Table 6.1. In this case, we have

W(0) = sign(χΓ(C2)χM(C2))I (B.9)

W(π) = I, (B.10)

where χ(C2) is character of C2 in each little group irrep, and I is the appro-
priately sized identity matrix. From this formula two observations used in
the main text follow immediately:

1. For a single isolated band, the little group irreps at Γ and M have the
same C2 eigenvalues. This Wilson loop will be pinned to θ = 0. This
encompasses the case of the (A1 ↑ G)1a band representation observed
in our fragile photonic crystal.

2. For two isolated bands with a single irrep at Γ and M, the Wilson loop
at k1 = 0 will be pinned to 0 if the irreps have the same C2 eigenvalues,
and will be pinned to π in the case that the irreps have opposite C2

eigenvalues. In this latter case, the Wilson loop must wind so that W(π)

has θ1 = θ2 = 0. This is what occurs for the fragile topological bands.
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C Appendix C: Detailed
Numerical Methods

C.1 Phase Diagram

Here we describe the methods used to calculate the photonic phase diagram
from the band dispersion of the structures and the Bloch-modes transforma-
tions. We first define a scan of 300 by 300 structures varying the values of
the axes of the ellipses, d1 and d2, from 0.1a0 to 0.7a0. All ellipses are then
placed at a distance of a0/3 from the center of the triangular unit cell. Next,
we use the program MIT Photonic-Bands (MPB) [73] to solve the eigenvalue
problem and get the band structure and the eigenvectors at the high sym-
metry points (Γ, K and M). We then determine the symmetry of the Bloch
functions using GTPack [88, 89], taking into account the little group of the
high symmetry points. Once we have the irreps for the first three bands, the
structures can be classified into trivial, fragile or OAL by symmetry. If the
phase is fragile, for Γ the representations must be: A1, E2, and for K: A1, E. If
it is OAL, the irreps on Γ are the same but on K are inverted: E, A1. Any other
combination of irreps gives either a trivial or a gapless phase. To further re-
fine this classification, we exclude symmetry-allowed band crossings at high
symmetry points. This allows us to build the phase diagram in Fig. 5.4.

C.2 Wilson loop of Trivial and OAL phases

From the phase diagram, we picked one representative structure for each
phase. Their band dispersion and real space structures are shown in Fig. 5.2.

To compute the Wilson loops, we use the discretized formula, following the
algorithm of Marzari and Vanderbilt [87]. Enforcing boundary conditions to
ensures that the Bloch wavefunctions are periodic in k. Then, we numeri-
cally compute the overlap matrices along a line k2 ∈ [0, 2π] which gives the
Wilson loop matrix W(k1). After the diagonalization, we take the phase of
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FIGURE C.1: Wilson loops for the trivial, fragile and OAL struc-
tures. (a) shows the Wilson loop for bands 1, bands 2 and 3, and
bands 1,2 and 3 for the trivial structure. (b) shows the same
loops for the fragile structure. (c) shows the Wilson loop for the

three lowest bands in the obstructed atomic limit structure.

the eigenvalues in order to project the spectrum along k1. In Fig. C.1 we
show the Wilson loop spectra for the Trivial and OAL band structures which
are induced from Wannier functions placed at 1a and 3c maximal Wyckoff
positions, respectively.
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