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Abstract
Regular vine-copula models (R-vines) are a powerful statistical tool for modeling the dependence
structure of multivariate distribution functions. In particular, they allow modeling di�erent types
of dependencies among random variables independently of their marginal distributions, which is
deemed the most valued characteristic of these models. In this thesis, we investigate the theoretical
properties of R-vines for representing dependencies and extend their use to solve supervised
classi�cation problems. We focus on three research directions.

In the �rst line of research, the relationship between the graphical representations of R-vines
and Bayesian polytree networks is analyzed in terms of how conditional pairwise independence
relationships are represented by both models. In order to do that, we use an extended graphical
representation of R-vines in which the R-vine graph is endowed with further expressiveness, being
possible to distinguish between edges representing independence and dependence relationships.
Using this representation, a separation criterion in the R-vine graph, called R-separation, is de�ned.
The proposed criterion is used in designing methods for building the graphical structure of polytrees
from that of R-vines, and vice versa. Moreover, possible correspondences between the R-vine graph
and the associated R-vine copula as well as di�erent properties of R-separation are analyzed.

In the second research line, we design methods for learning the graphical structure of R-vines
from dependence lists. The main challenge of this task lies in the extremely large size of the search
space of all possible R-vine structures. We provide two strategies to solve the problem of learning
R-vines that represent the largest number of dependencies in a list. The �rst approach is a 0-1 linear
programming formulation for building truncated R-vines with only two trees. The second approach
is an evolutionary algorithm, which is able to learn complete and truncated R-vines. Experimental
results show the success of this strategy in solving the optimization problem posed.

In the third research line, we introduce a supervised classi�cation approach where the
dependence structure of the problem features is modeled through R-vines. The e�cacy of these
classi�ers is validated in a mental decoding problem and in an image recognition task. While R-
vines have been extensively applied in �elds such as economics, �nance and statistics, only recently
have they found their place in classi�cation tasks. This contribution represents a step forward in
understanding R-vines and the prospect of extending their use to other machine learning tasks.
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Introduction

In the few last years, there has been a growing interest in modeling the dependence of multivariate
distributions using copulas [97]. Thanks to the possibility of modeling di�erent types of
dependencies among random variables independently of their marginal distributions, copulas have
been successfully used in applications of di�erent domains, and these achievements have led to
further advances in both theory and practice. In arti�cial intelligence, for instance, we can �nd
copula-based contributions in classi�cation [29, 41, 95, 125, 128, 135], regression [30, 98, 132] and
optimization [3, 34,38,121,122,136] tasks.

Copulas are distribution functions with uniformly distributed margins [97]. The relevance of
copulas in probabilistic modeling is summarized in Sklar's theorem [120], which establishes that
any multivariate distribution function can be decomposed into its marginal distributions and a
multivariate copula that describes the dependence structure among them.

Despite the generality of the copula-based framework, building high dimensional copulas is a
challenging problem [1]. Although there is a variety of bivariate copula families that cover a wide
range of di�erent types of dependencies, the range of standard higher-variate copula families is quite
limited [75]. Another drawback of these copulas is that they express the same type of dependence
among random variables, which could be misleading in real-world data-driven applications where
the selected variables interact di�erently [36].

Pair-copula constructions (PCCs) [74] overcome these disadvantages by using (conditional)
bivariate copulas, called pair-copulas, as building blocks to describe a multivariate distribution.
Developed in [8, 9, 84], regular vine-copula models (R-vines) organize such PCCs graphically by
means of a hierarchy of nested trees with undirected edges that constitute the R-vine graph. This
representation facilitates the identi�cation of the required pair-copulas associated with the edges
of the trees. Moreover, by combining pair-copulas of di�erent families, R-vine copulas are able
to model a wide variety of dependencies in multivariate data with regard to symmetry and tail
dependence of the bivariate distribution [36]. Thereby, these models combine the strengths of
multivariate copula modeling, namely the separation of marginal and dependence modeling as well
as the diversity of pair-copula families, which can be mixed in the same PCC. Moreover, each
pair-copula can be chosen independently from the others [19].

R-vines are the research object of the present thesis, which focuses on the three directions
presented in the following paragraphs.

The �rst line of research concerns the relationship between the graphical representations of R-
vines and polytrees�a particular type of Bayesian networks (BNs) [101] with only one undirected
path joining any two nodes in the graph (i.e., singly connected). The possible connection between
both structures is analyzed. We focus on pairwise graph separations and non-separations encoded in
the R-vine graph that could correspond with the set of (un)conditional1 pairwise (in)dependencies2

of the dependence model associated with the polytree graph, and vice versa.

1(un)conditional denotes unconditional and conditional.
2(in)dependence denotes independence and dependence.

1
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Graphical models (GMs) [86], are a powerful statistical tool for describing the relationships of
(un)conditional (in)dependence in a set of random variables in an intuitive way using graphs. To
deduce such relationships from the topology of the graph, graphical separation criteria are used.
These criteria are the rules for understanding how (un)conditional (in)dependencies of a set of
random variables are encoded in a graph. The de�nition of these concepts strongly depends on the
type of graph, for instance, D-separation for directed graphs used in BNs, and U-separation for
undirected graphs used in Markov networks (MNs) [27]. Since R-vines are relatively recent models,
their own graphical separation criterion has not yet been de�ned. A de�nition of this concept is
needed to carry out the analysis of the connection between the graphical representations of R-vines
and polytrees. To this end, in this thesis a concept of graphical separation for R-vines, called
R-separation, is de�ned.

When de�ning the concept of R-separation, two aspects should be taken into account: that the
edges of R-vine graphs illustrate the required pair-copulas only [7], and also that the pair-copulas can
represent independence relationships (e.g., through the Product copula). In order to disambiguate
whether the pair-copula relationship is that of dependence or independence, we use an extended
representation, in which the R-vine graph is endowed with further expressiveness with edges
indicating the type of relationship they represent [83]. The proposed criterion is used in designing
methods for building the graphical structure of polytrees from that of R-vines, and vice versa,
and their use is illustrated through examples. Moreover, a theorem on possible correspondences
between R-vine graphs and the associated R-vine copulas is presented. In addition, properties of
R-separation such as symmetry, decomposition, contraction, intersection, (strong/weak) union, and
(strong/weak) transitivity are analyzed.

The second line of research focuses on designing methods for learning the graphical structure
of R-vines from dependence lists. Attributable to the vast search space, the task of �nding the
globally optimal R-vine graph for a high-dimensional dataset is challenging, since the number of
possible structures grows extremely fast as the number of nodes increases. Indeed, model selection
is a challenge even for eight or nine nodes [91]. This scenario makes unfeasible to evaluate all
possible graphical structures and select the optimal one.

Learning the graph structure of R-vines is an active research topic and di�erent methods have
been proposed in the literature (see, among others, [1,36,42,82]). These methods are mainly focused
on greedy heuristics that learn directly from data. The rationale behind these algorithms is to build
R-vines that cover the strongest dependencies in the �rst trees, since they can be estimated with
more accuracy. Non-greedy heuristics based on �t indices and the Monte Carlo tree search have
been also studied in [18,28]. It is usual that the R-vine learning heuristics perform the tree selection
and the estimation of the corresponding pair-copulas at the same time, i.e., the subsequent tree in
the hierarchy can not be constructed until the pair-copulas of the previous tree have been selected.
In order to reduce the learning cost of R-vine models, the truncation strategy proposed in [17]
allows building only the �rst trees, assuming conditional independence in the last trees.

A di�erent avenue is explored in this work. We design methods for learning the graph structure
of R-vines from lists of (un)conditional pairwise dependence relationships (or simply, dependence
lists), instead of a dataset, as has been done up to now. This is a common practice in other
graphical models, such as Bayesian networks and Markov networks, where the dependence lists can
be supplied by experts in the application domain [27]. Speci�cally, the research question we deal
with is an optimization problem which aims to build R-vine graphs that incorporate the largest
number of dependence relationships given in a dependence list.

Two approaches are proposed for solving the optimization problem posed. The �rst approach
is a 0-1 linear programming formulation that builds truncated R-vine graphs with only two trees.
The second approach is a genetic algorithm (GA) [71] that is able to learn complete and truncated
R-vine graphs. The designed GA uses crossover and mutation operators speci�cally designed to
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ensure that the resulting solutions are feasible. Furthermore, numerical experiments are carried
out to assess the e�ectiveness of the designed evolutionary algorithm in solving the optimization
problem posed.

The third line of research focuses on extending the use of R-vines to solve supervised classi�cation
tasks. These models are increasingly popular in classi�cation applications, mainly because they can
accommodate a wide range of complex dependencies by using copula-pairs from di�erent families.
Supervised classi�cation is concerned with assigning a new sample (example or instance) to a class
based on the predictor variables (features) of the classi�cation problem. Typically, the algorithms
utilized to perform this task use training data to model the feature distribution of each class.
Relevant references of these methods are Bayesian classi�ers such as Naive Bayes (NB) [44,85] and
Tree Augmented Naive Bayes (TAN) [52], which assume severe conditional independence constraints
among the predictor variables.

Motivated by the �exibility of R-vines to model the dependence structure of multivariate
distributions, this thesis proposes to incorporate them in the design of probabilistic classi�ers.
This property could be particularly useful in applications where the dependence patterns among
the predictor variables are quite diverse. This is the case of the two real-world classi�cation tasks
addressed in this thesis, namely the Mind Reading Problem (MRP) [96] and the Dune Classi�cation
Problem (DCP) [5]. The potential existence of complex and diverse dependence patterns among
the predictor variables in these problems encourage us to select R-vines as a promising candidate
to approach them in the �rst place.

Based on the motivations outlined earlier, the main aim of this dissertation is to investigate
theoretical properties of R-vines for representing dependencies and extend the use of these models
to solve supervised classi�cation problems.

Subsidiary aims derived from the main goal are the following:

1. To formulate a graphical separation criterion for R-vines, and to analyze the relationship
between the graph representations of R-vines and polytrees.

2. To design strategies for learning the graph structure of R-vines from dependence lists.

3. To design a supervised classi�cation approach based on R-vines.

The research contributions of this thesis are summarized as follows:

1. De�nition of R-separation, a graphical separation criterion for R-vines. In addition, possible
dependence maps between the R-vine graph and the associated R-vine copula, as well as
di�erent properties of R-separation are analyzed. Moreover, algorithms for building the graph
structure of polytrees from that of R-vines, and vice versa, using R-separation, are designed.
These algorithms allow to analyze the possible dependence maps between both models.

2. Design of optimization strategies for learning the graphical structure of R-vines from
dependence lists.

3. Introduction of a classi�cation approach where the dependence structure of the features is
modeled through R-vines. The designed classi�ers are successfully applied to the MRP and
DCP.

This thesis is divided into four chapters as follows. First, in Chapter 1, the necessary mathematical
context on copulas and R-vines is provided. Next, the contributions of this dissertation are
presented. Chapter 2 studies the connection between the graphical representation of R-vines and
polytrees, de�nes the concept of R-separation, and proposes algorithms for building the graphical
structure of a polytree from an R-vine graph, and vice versa. Chapter 3 exposes a 0-1 linear
programming formulation and an evolutionary algorithm for learning R-vines from dependence
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lists. Chapter 4 introduces supervised classi�ers based on R-vines, which then are applied to the
MRP and DCP. Finally, the general conclusions of this thesis, the lines of possible future work, and
the list of publications produced during this dissertation are presented.





Chapter 1

Mathematical Context

This chapter provides the mathematical framework for understanding the document, including
notation and de�nitions. First, the concept of copula and Sklar's theorem are presented. Then, a
review of pair-copula constructions (PCCs) and R-vines, which is the probabilistic graphical model
derived from PCCs, is provided. We proceed by presenting some measures of dependence, examples
of families of bivariate copulas, a strategy for the selection of pair-copulas, a method for R-vine
model selection based on information theory metrics, and also an algorithm for learning R-vine
models. This chapter closes with a section dedicated to the presentation of basic de�nitions on
directed graphs, Bayesian networks (BNs), polytrees, and concepts on dependence maps used in
the context of graphical models (GMs).

1.1 Copulas

LetX = (X1, . . . , Xn) be an n-dimensional random variable and x = (x1, . . . , xn) be a sample ofX,
with joint density function f : Rn → [0,∞) and cumulative distribution function F : Rn → [0, 1].
Furthermore, let Fi : R → [0, 1], i = 1, . . . , n, be the corresponding strictly increasing and
continuous marginal distribution of Xi. Capital letters denote variables and lower case letters
are their assignments.

De�nition 1 (Copula) An n-dimensional copula C is a distribution function C : [0, 1]
n → [0, 1]

with uniformly distributed margins.

The function C is an n-dimensional copula if and only if there exist random variables
U1, . . . , Un such that the probability P (Ui ≤ ui) = ui for i = 1, . . . n and C (u1, . . . , un) =
P (U1 ≤ u1, ..., Un ≤ un).

The relevance of copulas in probabilistic modeling is summarized in Sklar's theorem [120], which
states that any multivariate distribution function F can be decomposed into its marginals Fi and
a copula describing the dependence structure among them.

Theorem 1 (Sklar's Theorem) For every joint cumulative distribution function F of random
variables X1, . . . , Xn with marginal cumulative distribution functions (cdfs) F1, . . . , Fn, there exists
a copula C such that

F (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) . (1.1)

If F1, . . . , Fn are continuous, C is a unique n-dimensional copula. Conversely, given C and
F1, . . . , Fn, F in Equation (1.1) is a multivariate cdf with marginals F1, . . . , Fn.

5
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Moreover, if F is an n-dimensional distribution function with continuous marginals F1, . . . , Fn
and C satis�es Equation (1.1), then for any u = (u1, . . . , un) ∈ [0, 1]

n
we have

C (u1, . . . , un) = F
(
F−11 (u1) , . . . , F−1n (un)

)
, (1.2)

where F−1i , i = 1, . . . , n, denotes the inverse distribution function Fi de�ned as F−1i (ui) =
inf {xi;Fi (xi) ≥ ui} , for all ui ∈ [0, 1].

For continuous F and F1, . . . , Fn, the copula density function c of C can be obtained by partially
di�erentiating Equation (1.1), such that

f (x1, . . . , xn) = c (F1 (x1) , . . . , Fn (xn)) ·
n∏
i=1

fi (xi) , (1.3)

where f1, . . . , fn are the marginal densities and f the multivariate density of F .
The simplest copula is the Product copula. It appears naturally as the copula in Equation (1.1)

associated to a random vector of independent variables. It can be shown that if F (x1, . . . , xn) =
F1 (x1) · . . . · Fn (xn) = C (F1 (x1) , . . . , Fn (xn)), then C is de�ned as C (u1, . . . , un) = u1 · . . . · un
and c (u1, . . . , un) = 1.

A further example is the multivariate Normal copula, which is the copula of the multivariate
normal distribution. In fact, the random vector X = (X1, . . . , Xn) is multivariate normal if and
only if the univariate marginals F1, . . . , Fn are Gaussian and the dependence structure among them
is described by the Normal copula such that

C (u1, . . . , un) = ΦR
(
Φ−1 (u1) , . . . ,Φ−1 (un)

)
,

where ΦR is the standard multivariate Normal distribution function with linear correlation matrix
R and Φ−1 is the inverse of the standard univariate Gaussian distribution function. In the bivariate
case, for example, departing from Sklar's theorem, we get

f (x1, x2) = c12 (F1 (x1) , F2 (x2)) · f1 (x1) · f2 (x2) , (1.4)

where

fi (xi) =
1√
2π
· e{−

1
2x

2
i}, i = 1, 2, (1.5)

and

f (x1, x2) =
1

2π
√

(1− ρ212)
· e
− x

2
1+x22−2ρ12x1x2

2(1−ρ212)
,

(1.6)

are the univariate and bivariate densities, and ρ12 is the linear correlation between X1 and X2.
Using Equation (1.4), we have that

f (x1, x2)

f1 (x1) f2 (x2)
= c12 (F1 (x1) , F2 (x2)) , (1.7)

and therefore

c12 (u1, u2) =
1√

(1− ρ212)
· e
−
ρ212(x21+x22)−2ρ12x1x2

2(1−ρ212) , (1.8)

where u1 = φ1 (x1), u2 = φ2 (x2), and x1 = φ−11 (u1) , x2 = φ−12 (u2).
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1.2 Pair-Copula Constructions

PCCs are multivariate models that factorize multivariate copula densities into (conditional)
bivariate copula densities, so-called pair-copulas [8,74,84]. PCCs provide a �exible way of modeling
the dependence structure of multivariate distributions, since pair-copulas of di�erent families can
be combined in the same decomposition, making it possible to capture di�erent features such as
non-linear, asymmetric dependence and tail dependence [35].

Applying the chain rule [27], any probability density function can be expressed as

f (x1, . . . , xn) = f (x1) · f (x2 |x1 ) · f (x3 |x1, x2 ) · . . . · f (xn |x1, . . . , xn−1 ) . (1.9)

Each conditional density in Equation (1.9) can be decomposed into a pair-copula and a conditional
marginal density as

f (xi |xS ) = ci,k|S−k
(
F
(
xi
∣∣xS−k

)
, F
(
xk
∣∣xS−k

))
· f
(
xi
∣∣xS−k

)
, (1.10)

for i,k,S ⊆ I = {1, . . . , n} ∈ N disjoint subsets, and |i| = |k| = 1. xS denotes an arbitrary set of
{x1, . . . , xn} \ xi with xk in it, xk is one arbitrarily chosen component of xS , and xS−k = xS \ xk
denotes all the components from xS excluding xk. For instance, the second factor in (1.9) is the
simplest conditional term and can be written using (1.10) as

f (x2 |x1 ) = c1,2 (F (x1) , F (x2)) · f (x2) , (1.11)

where c1,2 denotes the pair-copula density for the pair of transformed variables F (x1) and F (x2).
In the three-variate case, the third factor of (1.9) can be decomposed for the pair-copula density
c13|2 and treated as a bivariate density again as

f (x3 |x1, x2 ) = c1,3|2 (F (x1 |x2 ) , F (x3 |x2 )) · f (x3 |x2 ) . (1.12)

Notice that we could also have decomposed the third term for c2,3|1 as

f (x3 |x1, x2 ) = c2,3|1 (F (x2 |x1 ) , F (x3 |x1 )) · f (x3 |x1 ) , (1.13)

where c2,3|1 is di�erent from c1,3|2 in (1.12). Thus, given a speci�c factorization, there are di�erent
decompositions. Decomposing f (x3 |x2 ) in (1.12) further leads to

f (x3 |x1, x2 ) = c1,3|2 (F (x1 |x2 ) , F (x3 |x2 )) · c2,3 (F (x2) , F (x3)) · f (x3) , (1.14)

where two pair-copulas are present: c2,3 describes the unconditional dependence of X2 and X3,
while c1,3|2 describes the conditional dependence of X1 and X3 given X2.

Using (1.10), we can obtain similar expressions for the remaining terms of Equation (1.9) and
derive a pair-copula decomposition of f that consists of marginal densities and pair-copulas.

More parsimonious models can be built by assuming conditional independencies: For any vector
of variables XS with Xi, Xk /∈ XS , Xi and Xk are conditionally independent given XS if and
only if [1]

ci,k|S (F (Xi |XS ) , F (Xk |XS )) = 1. (1.15)

For instance, if we consider the following three-variate pair-copula decomposition of f :

f (x1, x2, x3) = c1,2 (F (x1) , F (x2)) · c2,3 (F (x2) , F (x3))
c1,3|2 (F (x1 |x2 ) , F (x3 |x2 ))
3∏
i=1

fi (xi)
(1.16)
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Assuming that X1 and X3 are independent given X2, Equation(1.16) is simpli�ed as

f (x1, x2, x3) = c1,2 (F1 (x1) , F2 (x2)) · c2,3 (F2 (x2) , F3 (x3))
3∏
i=1

fi (xi)
(1.17)

where c1,3|2 = 1.

1.2.1 Conditional Distribution Functions

The conditional distribution functions F (xi |xS ) constituting the pair-copula arguments in (1.10)
can be obtained by applying recursively the formula derived in [74], written as

F (xi |xS ) =
∂Ci,k|S−k

(
F
(
xi
∣∣xS−k

)
, F
(
xk
∣∣xS−k

))
∂F
(
xk
∣∣xS−k

) , (1.18)

where Ci,k|S−k is the bivariate copula to Fi,k|S−k , xS is a random vector without the component xi
and with xk in it, xk is an arbitrary component of xS , and xS−k denotes the vector xS excluding
xk.

For the case in which xS is univariate, Equation (1.18) is simpli�ed as

F (xi |xk ) =
∂Ci,k (F (xi) , F (xk))

∂F (xk)
. (1.19)

Moreover, when Xi and Xk are uniformly distributed, i.e., f (xi) = f (xk) = 1, F (xi) = xi and
F (xk) = xk, Equation (1.19) reduces further as

F (xi |xk ) =
∂Ci,k (xi, xk)

∂xk
. (1.20)

1.3 Regular Vines

There exist many PCC decompositions in high dimensions. To organize such decompositions, a
graphical model called regular vine (R-vine) is introduced in [8,9]. It involves the speci�cation of a
graph comprised of a hierarchy of n− 1 trees T1, ..., Tn−1, and n (n− 1) /2 pair-copulas associated
to each edge of the graph.

The following concepts follow the de�nitions provided in [8, 84].

De�nition 2 (R-vine graph) An R-vine graph on n indexes {1, . . . , n} is de�ned by a hierarchy
of trees G = (T1, . . . , Tn−1), where Tj =

(
N j , Ej

)
is the tree at level j = 1, . . . , n − 1 in the tree

hierarchy, and N j and Ej denote the node set and edge set of Tj respectively, such that:

1. T1 is a tree with n nodes N1 = {1, . . . , n} and a set of edges denoted by E1.

2. For j = 2, . . . , n− 1, Tj is a tree with nodes N j = Ej−1 and edge set Ej.

3. Proximity condition: For j = 2, . . . , n− 1, two nodes in Tj can only be adjacent (joined by an
edge) if the corresponding edges in Tj−1 share a common node.

In an R-vine graph, the edges of Tj−1 become nodes in Tj for j = 2, . . . , n − 1. Any edge of
Tj joins a pair of nodes Na,Nb ∈ N j . Each edge is identi�ed as e = {ie, ke,Se}, where ie ∈ Na
and ke ∈ Nb are single indexes of {1, . . . , n}, ie 6= ke, Se = Na ∩Nb is a subset of {1, . . . , n}, and
ie, ke /∈ Se.
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De�nition 3 (R-vine copula) Let G be an R-vine graph on n indexes. The n-variate copula
density corresponding to G is given by∏

Tj∈G

∏
e∈Ej

cie,ke|Se
(
Fie|Se (xie |xSe ) , Fke|Se (xke |xSe )

)
, (1.21)

where x = (x1, . . . , xn), e = {ie, ke,Se}, ie 6= ke, Se ⊂ {1, . . . , n} \ {ie ∪ ke}, and ie, ke,Se
determine the variables Xie , Xke ,XSe in X respectively, and each cie,ke|Se associated to the edge
e comes from a set of bivariate copula densities de�ned as:

B =
{
cie,ke|Se

(
Fie|Se (xie |xSe ) , Fke|Se (xke |xSe )

) ∣∣e ∈ Ej , j = 1, . . . , n− 1
}
, (1.22)

where the two arguments of cie,ke|Se denote, respectively, the conditional distribution functions of
xie given xSe and xke given xSe .

De�nition 4 (R-vine density) An n-variate density function f (x), where x = (x1, . . . , xn),
with a dependence structure represented by an R-vine copula (De�nition 3) with associated R-vine
graph G (De�nition 2), and marginal densities fi (xi), where i = 1, . . . , n, is given by

∏
Tj∈G

∏
e∈Ej

cie,ke|Se
(
Fie|Se (xie |xSe ) , Fke|Se (xke |xSe )

)
︸ ︷︷ ︸

R-vine copula

n∏
i=1

fi (xi)︸ ︷︷ ︸ .
Marginal densities︸ ︷︷ ︸

R-vine density (1.23)

From now on, the symbol e will be omitted from the previous expressions for better readability, so
we simply write {i, k,S} and ci,k|S for denoting an edge and its associated pair-copula respectively.

As shown in [84], in R-vine models, each pair of variables Xi and Xk can occur only once as
a conditioned set of only one pair-copula ci,k|S , which is associated with the edge {i, k,S} of the
corresponding R-vine graph.

Throughout the dissertation, we adopt the simplifying assumption explored in [61], which
states that the pair-copula ci,k|S

(
Fi|S (xi |xS ) , Fk|S (xk |xS )

)
is independent of the conditioning

variables xS except through their conditional distributions Fi|S (xi |xS ) and Fk|S (xk |xS ), which
still depend on xS . However, even when the simplifying assumption is not ful�lled and the PCC
is not exact, it can be a good approximation of the distribution. This matter has been reviewed in
further detail in [79,92,124].

Figure 1.1 shows a seven-dimensional R-vine graph whose associated R-vine copula is given by

c1,2 · c2,3 · c2,5 · c3,4 · c3,6 · c6,7︸ ︷︷ ︸
T1

· c1,3|2 · c2,4|3 · c2,6|3 · c3,5|2 · c3,7|6︸ ︷︷ ︸
T2

· c1,4|2,3 · c1,5|2,3 · c1,6|2,3 · c2,7|3,6︸ ︷︷ ︸
T3

· c4,5|1,2,3 · c5,6|1,2,3 · c1,7|2,3,6︸ ︷︷ ︸
T4

· c4,6|1,2,3,5 · c5,7|1,2,3,6︸ ︷︷ ︸
T5

· c4,7|1,2,3,5,6︸ ︷︷ ︸
T6

,

(1.24)

where the arguments for the bivariate copulas are omitted.
Two representative examples of R-vines are the Canonical and the Drawable vines (C-vine and

D-vine respectively) [1, 84]:
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Figure 1.1: A seven-dimensional R-vine graph over the index set {1, . . . , 7}. Edges are labeled
with the indexes i, k,S, comprising the edge {i, k,S}. As edges of Tj become nodes in the next
tree, nodes are labeled with ikS (displayed without commas) in Tj+1 ; except T1, where nodes are
labeled with a single index. Each edge has a pair-copula associated with it.
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• In a C-vine, the tree Tj , for j = 1, ..., n− 1, has a node connected to the rest of the nodes, so
the degree of this node is n− j (see Figure 1.2).

• In a D-vine, in all the trees all nodes have a degree of at most two (see Figure 1.2).

The C-vine copula of a multivariate density f (x) is written as

n−1∏
j=1

n−j∏
i=1

cj,j+i|i,...,j−1 (F (xj |x1, . . . , xj−1 ) , F (xj+i |x1, . . . , xj−1 )) , (1.25)

and the D-vine copula of a multivariate density f (x) is written as

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1 (F (xi |xi+1, . . . , xi+j−1 ) , F (xi+j |xi+1, . . . , xi+j−1 )) , (1.26)

where j identi�es the trees, while i runs over the edges in each tree.
The C-vine in Figure 1.2 has density

c1,2 · c1,3 · c1,4 · c1,5︸ ︷︷ ︸
T1

· c2,3|1 · c2,4|1 · c2,5|1︸ ︷︷ ︸
T2

· c3,4|1,2 · c3,5|1,2︸ ︷︷ ︸
T3

· c4,5|1,2,3︸ ︷︷ ︸
T4

, (1.27)

while the D-vine in Figure 1.2 has density

c1,2 · c2,3 · c3,4 · c4,5︸ ︷︷ ︸
T1

· c1,3|2 · c2,4|3 · c3,5|4︸ ︷︷ ︸
T2

· c1,4|2,3 · c2,5|3,4︸ ︷︷ ︸
T3

· c1,5|2,3,4︸ ︷︷ ︸
T4

, (1.28)

where the inputs for the bivariate copulas are omitted.
Among these PCC decompositions, R-vines have the most �exible structure as they are not

a�ected by the particular structural constraints of C-vines and D-vines.
In Chapter 4, the D-vine and R-vine copulas are used to model the dependence structure of the

features (variables) in two supervised classi�cation tasks.

1.4 Bivariate Dependence Measures

We review two dependence measures that can be used to select and specify a regular vine-
copula: Pearson's correlation and Kendall's tau coe�cients, which here are given according to
their de�nition in [43]. More details can be found in [84].

1.4.1 Pearson's Correlation

Pearson's linear correlation coe�cient is a measure of the strength of a linear association between
two random variables. It takes values in [−1, 1].

De�nition 5 (Pearson's correlation coe�cient) The Pearson's correlation coe�cient of two
random variables X,Y is de�ned as

ρ (X,Y ) =
cov (X,Y )√
σ2 (X)

√
σ2 (Y )

, (1.29)

where cov (X,Y ) denotes the covariance of X,Y ; and σ2 (X) and σ2 (Y ) denote the variance of X
and Y respectively.
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Figure 1.2: C-vine (top) and D-vine (bottom) graphs for n = 5. A C-vine describes the notion of
the in�uence of one node over others, while in a D-vine each tree has a path structure.
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X and Y are uncorrelated if ρ (X,Y ) = 0. A value of ρ (X,Y ) > 0 indicates a positive
relationship, i.e., as the values of X increase/decrease, the values of Y do so as well, and vice versa;
or simply put, the variables move in the same direction. A value of ρ (X,Y ) < 0 indicates a negative
relationship, i.e., as the value of one variable increases, the value of the other variable decreases.
The stronger the linear association of X and Y , the closer the Pearson's correlation coe�cient is
to either 1 or −1, depending on whether the relationship is positive or negative respectively.

Givenm pairs of observations (xl, yl) , l = 1, . . . ,m from the random vector (X,Y ), the empirical
Pearson's correlation ρ̂ is calculated as

ρ̂ (X,Y ) =

∑m
l=1 (xl − x̄) (yl − ȳ)√∑m

l=1 (xl − x̄)
2
√∑m

l=1 (yl − ȳ) 2

,

where x̄ = 1
m

∑m
l=1 xl and ȳ = 1

m

∑m
l=1 yl denote the empirical mean of X and Y , respectively.

There are some drawbacks from the Pearson's correlation that need particular attention when
modeling dependence and marginal distributions separately. These include the fact that it depends
on the marginal distributions of X and Y , and that it is not invariant under non-linear strictly
increasing transformations of the variables [84].

1.4.2 Kendall's tau

The term correlation coe�cient generally refers to measures of linear dependence between random
variables (e.g., the Pearson's correlation coe�cient (1.29)). The more general term association
coe�cient is used to refer to a group of dependence measures that are not restricted to be linear.
The Kendall's tau correlation coe�cient is among these measures.

De�nition 6 (Kendall's tau coe�cient) Let (X1, Y1) and (X2, Y2) be two independent pairs of
random variables. Kendall's tau is given by

τ (X,Y ) = P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0] . (1.30)

Given m pairs of observations (xl, yl) , l = 1, . . . ,m from the random vector (X,Y ), two pairs
(xi, yi) and (xj , yj) of these observations are said to be concordant if xi < xj and yi < yj or xi > xj
and yi > yj . Similarly, they are said to be discordant if xi < xj and yi > yj or xi > xj and yi < yj .

Informally, two random variables are concordant if the large values of one are usually
associated with the large values of the other, or the small values of one are usually associated
with the small values of the other. In Equation (1.30), P [(X1 −X2) (Y1 − Y2) > 0] and
P [(X1 −X2) (Y1 − Y2) < 0] denote the probability of concordance and discordance respectively.
Then, the empirical Kendall's tau τ̂ for the data sample is calculated as

τ̂ (X,Y ) =
c− d
c+ d

, (1.31)

where c and d denote the number of concordant and discordant pairs in the data sample, respectively.
This coe�cient also takes values in the interval [−1, 1].

Unlike Pearson's correlation, Kendall's tau is one of the so-called rank correlation coe�cients,
so it does not depend directly on the values of the variables, instead it is a function of relationships
between them. This coe�cient is invariant by monotone increasing transformations of the
variables [54].
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1.5 Bivariate Copula Families

As previously discussed in Sections 1.2 and 1.3, pair-copulas are the building blocks for constructing
multivariate vine-copula models. In a PCC, bivariate copulas from di�erent families can be selected
independently, providing great �exibility for dependence modeling. In particular, symmetry, tail
and positive/negative dependencies as well as conditional independencies to build simple models
(see Equation (1.15)) can be taken into account when modeling with PCCs.

In this section, we give an overview of �ve common bivariate copulas, namely Product (P),
Gaussian or Normal (N), Student's t (S), Clayton (C) and Gumbel (G), following the de�nitions
provided in [1, 43].

Bivariate Product Copula Two random variables X1 and X2 with continuous distribution
functions F1 and F2 and joint distribution function F are independent if and only if F (x1, x2) =
F1 (x1) ·F2 (x2) for all x1, x2 ∈ R. The structure of such a relationship is given by the independence
or Product copula, whose distribution and density functions are de�ned as follows

CP (u1, u2) = u1 · u2, (1.32)

and

cP (u1, u2) = 1, (1.33)

respectively. A scatter plot of bivariate independent data is shown in Figure 1.3.

Bivariate Normal Copula The distribution and density functions of the bivariate Normal
copula with Pearson's correlation parameter ρ1,2 ∈ (−1, 1) are given by

CN (u1, u2) = Φρ1,2
(
Φ−1 (u1) ,Φ−1 (u2)

)
, (1.34)

and

cN (u1, u2) =
1√

1− ρ21,2
· e
−
ρ21,2(x21+x22)−2·ρ1,2·x1·x2

2·(1−ρ21,2) , (1.35)

respectively, where Φρ1,2 is the bivariate standard Normal distribution function with correlation
parameter ρ1,2, x1 = Φ−1 (u1), x2 = Φ−1 (u2), and Φ−1 is the inverse of the standard univariate
Gaussian distribution function. The closer ρ1,2 is to either 1 or −1, the stronger the linear positive
or negative relationship between U1 and U2, respectively, while ρ1,2 = 0 means there is no linear
relationship between them.

Bivariate Student's t Copula The distribution and density functions of the Student's t copula
with parameters ρ1,2 ∈ (−1, 1) and ν1,2 > 0 are given by

CS (u1, u2) = tρ1,2,ν1,2

(
t−1ν1,2 (u1) , t−1ν1,2 (u2)

)
, (1.36)

and

cS (u1, u2) =
Γ

(
ν1,2+2

2

)
/Γ(

ν1,2
2 )

ν1,2·π·dtν1,2 (x1)·dtν1,2 (x2)·
√

1−ρ21,2

(
1 +

x2
1+x

2
2−2·ρ1,2·x1·x2

ν1,2·(1−ρ21,2)

)− v1,2+2

2

, (1.37)
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respectively, where x1 = t−1ν1,2 (u1), x2 = t−1ν1,2 (u2), Γ is the Gamma function, and dtν1,2 and

t−1ν1,2 are the density and the inverse functions, respectively, of the standard univariate Student's t

distribution function with ν1,2 degrees of freedom, expectation 0 and variance
ν1,2
ν1,2−2 .

Bivariate Clayton Copula The distribution and density functions of the bivariate Clayton
copula with parameter δ1,2 ∈ (0,∞) are given by

CC (u1, u2) =
(
u
−δ1,2
1 + u

−δ1,2
2 − 1

)− 1
δ1,2

, (1.38)

and

cC (u1, u2) = (1 + δ1,2) · (u1 · u2)
−1−δ1,2

(
u
−δ1,2
1 + u

−δ1,2
2 − 1

)− 1
δ1,2
−2
, (1.39)

respectively. The larger the value of δ1,2, the stronger the positive relationship between U1 and U2,
while the closer δ1,2 is to zero, the more independent they are.

Bivariate Gumbel Copula The distribution and density functions of the bivariate Gumbel
copula with parameter δ1,2 ∈ [1,∞) are given by

CG (u1, u2) = e−((− log u1)
δ1,2+(− log u2)

δ1,2)
1

δ1,2 , (1.40)

and

cG (u1, u2) = 1
CG(u1,u2)

(
−
(

(−logu1)
δ1,2 + (−logu2)

δ1,2
) 2
δ1,2
−2
)

· (logu1 · logu2)
δ1,2−1

·
(

1 + (δ1,2 − 1) ·
(

(−logu1)
δ1,2 + (−logu2)

δ1,2
) 1
δ1,2

)
,

(1.41)

respectively. The larger the value of δ1,2, the stronger the positive relationship between U1 and U2,
while δ1,2 = 1 implies independence.

The Kendall's tau correlation coe�cient can be expressed as a function of the dependence
parameter of the bivariate copulas described in this section. These expressions can be inverted to
obtain the value of the copula parameter from the value of Kendall's tau correlation coe�cient [97]
(see Section 1.4). Table 1.1 shows the relationship between Kendall's tau and the dependence
parameter for the bivariate copulas described in this section.

The bivariate Product copula describes pairwise independence while the other four copulas
capture di�erent types of pairwise dependence, regarding features such as symmetry, strength in
the tails, and a positive/negative relationship of the bivariate distribution. The bivariate Normal
and Student's t copulas are symmetric. In particular, the Normal has neither lower nor upper tail
dependence, while the Student's t has both lower and upper tail dependence. On the other hand, the
bivariate Clayton and Gumbel copulas are asymmetric. In particular, the Clayton copula has lower
tail dependence, but not upper, while the Gumbel has upper tail dependence, but not lower. Unlike
the Normal and Student's t copulas, which can represent both positive and negative relationships,
the Clayton and Gumbel copulas only capture positive relationships. A comprehensive reference
about bivariate copula families can be found in [75,97].

To get a sense of how these copulas represent di�erent types of bivariate dependencies, Figure 1.4
shows scatter plots of samples generated from the bivariate Normal, Clayton and Gumbel copulas,
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Table 1.1: Expressions of the dependence parameter of a group of bivariate copulas as a function
of Kendall's tau.

Copula Dependence Parameter Kendall's tau

Normal ρ1,2 = sin
(
π
2 τ
)
, ρ1,2 ∈ (−1, 1) τ = 2

πarcsin (ρ1,2)

Student's t ρ1,2 = sin
(
π
2 τ
)
, ρ1,2 ∈ (−1, 1) , ν > 2 τ = 2

πarcsin (ρ1,2)

Clayton δ1,2 = 2τ
1−τ , δ1,2 > 0 τ =

δ1,2
δ1,2+2

Gumbel δ1,2 = 1
1−τ , δ1,2 ≥ 1 τ = 1− 1

δ1,2

Figure 1.3: Scatter plots of 500 points sampled from the bivariate Product copula.

for di�erent levels of dependence strength according to Kendall's tau coe�cient, namely weak
(τ̂ = ±0, 25), moderate (τ̂ = ±0, 5) and strong (τ̂ = ±8, 0).

In addition to these families, in the analysis of Chapter 4, we allow the rotated versions of
the Clayton and Gumbel copulas by 90◦, 180◦ and 270◦ for the modeling of negative dependence,
which is not possible with their non-rotated versions (Equations (1.38) and (1.40) respectively).
The dependence parameters of the rotated pair-copulas by 90◦ and 270◦ are on the negative scale
(see Table 1.1). The distribution functions C90, C180 and C270 of a copula C rotated by 90◦, 180◦

and 270◦, respectively, are given by

C90 (u1, u2) = u2 − C (1− u1, u2) ,
C180 (u1, u2) = u1 + u2 − 1 + C (1− u1, 1− u2) ,
C270 (u1, u2) = u1 − C (u1, 1− u2) .

(1.42)

1.6 Selection of Pair-Copulas

Strategies of copula selection allow us to determine whether a copula is a suitable representation
of the dependence patterns presented in a set of observations. Typically, these methods select,
from a set of families, the one that best �ts the data sample, using, for instance, a model selection
criterion such as the Akaike Information Criterion (AIC) [2] or the Bayesian Information Criterion
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Normal (negative relationship)

Normal (positive relationship)

Clayton (positive relationship)

Gumbel (positive relationship)

Figure 1.4: Scatter plots of 500 points sampled from the bivariate Normal, Clayton, and Gumbel
copulas, respectively, for di�erent values of the dependence parameter. The Normal copula has
neither lower nor upper tail dependence, and can represent positive/negative correlations. The
Clayton copula is asymmetric, positive, and lower tail dependent, but not upper. The Gumbel
copula is asymmetric, positive, and upper tail dependent, but not lower. Parameter setting: weak
(τ̂ = ±0, 25), moderate (τ̂ = ±0, 5), and strong (τ̂ = ±8, 0) positive/negative relationship.
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(BIC) [117] presented in [17]. Further approaches include the goodness-of-�t test for bivariate
copulas based on the Cramér-von Mises statistic1 as proposed in [56]. The latter is the method
used in this thesis for the selection of pair-copulas.

1.6.1 Goodness-of-�t Test for Bivariate Copulas

Goodness-of-�t tests for copulas allow us to assess how good a copula describes the dependence
structure of a data sample. In particular, we use a goodness-of-�t test based on the Cramér-von
Mises statistic. According to this test, the parametric copula family with the smallest distance to
the empirical copula distribution [39] is chosen.

De�nition 7 (Empirical bivariate copula) The empirical copula distribution Cm of m
observations {u1, . . . ,um}, where ul = (ul,1, ul,2), l = 1, . . . ,m, of a random vector (U1, U2) ∈
(0, 1) 2 is given by

Cm (u1, u2) =
1

m

m∑
l=1

1ul,1≤u1,ul,2≤u2
, (1.43)

De�nition 8 (Cramér-von Mises statistic) The Cramér-von Mises statistic Sm is given by

Sm =

m∑
l=1

(
Cm (ul,1, ul,2)− Cθ̂ (ul,1, ul,2)

)2
, (1.44)

where Cm denotes the empirical copula (Equation (1.43)), and Cθ̂ is a parametric bivariate copula,

where θ̂ is an estimation of θ using the data sample (ul,1, ul,2) , l = 1, . . . ,m.

The Cramér-von Mises goodness-of-�t test is based on the di�erence between the empirical
bivariate copula Cm and the estimated parametric copula Cθ̂ of the unknown pair-copula C, under
the null hypothesis that C belongs to a parametric copula family Cθ with parameter θ, i.e.,

H0 : C ∈ Cθ versus H1 : C /∈ Cθ,

where θ ∈ Θ, Θ is a subset of Rr for an integer r ≥ 1. Then, the parametric copula with the
highest p-value is selected. Corresponding p-values can be calculated by the bootstrapping-based
methods [56,81]. However, we will use the copula with the smallest Sm assuming that, among the
tested copulas, this should be the least likely to be rejected.

A test of independence can be considered a particular case of the goodness-of-�t test for copulas,
where the null hypothesis is that the unknown bivariate copula C is the Product copula [40, 55].
Therefore, the Cramér-von Mises statistic can be used, replacing Cθ̂ (u1, u2) by CP (u1, u2) in
Equation (1.44). CP is selected if the corresponding Sm is the smallest.

1.7 AIC and BIC for R-vine Model Selection

The �exibility of R-vines comes at the price of a rapid increase in the number of parameters with
the dimension. In order to reduce the number of parameters in high-dimension applications, the
truncation strategy proposed in [17] allows the creation of parsimonious models by using simple
pair-copula terms in the last trees.

1The Cramér-von Mises criterion is a classical goodness-of-�t statistic that characterizes the distance between a
cumulative distribution function F and a given empirical distribution function Fn in `2-norm.
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De�nition 9 (Truncated R-vine Copula) An R-vine copula (De�nition 3) is said to be
truncated at level t when all pair-copulas with the conditioning set equal to or larger than t are
set to bivariate Product copulas. Then, the density of a truncated R-vine copula at level t is given
by

ctRV (t) =

t∏
j=1

∏
e∈Ej

cie,ke|Se
(
Fie|Se (xie |xSe ) , Fke|Se (xke |xSe )

)
. (1.45)

If t = 1, the truncated R-vine copula becomes a Markov tree distribution, where independence
is assumed between all pairs of variables [62].

To identify the most appropriate truncation level, a heuristic based on a statistical model
selection approach via AIC or BIC is proposed in [17]. These criteria are commonly used in the
comparison of nested models.

De�nition 10 (AIC) Given a set of m observations {x1, . . . ,xm}, where xl = (xl,1, . . . , xl,n),
l = 1, . . . ,m, the AIC for a parametric model is de�ned as

AIC = −2

m∑
l=1

logL
(
xl; θ̂

)
+ 2k, (1.46)

where L denotes the likelihood function for the model, and θ̂ is the vector of the k parameters of
the model estimated by maximum likelihood.

De�nition 11 (BIC) Given a set of m observations {x1, . . . ,xm}, where xl = (xl,1, . . . , xl,n),
l = 1, . . . ,m, the BIC for a parametric model is de�ned as

BIC = −2

m∑
l=1

logL
(
xl; θ̂

)
+ k logm, (1.47)

where L denotes the likelihood function for the model, and θ̂ is the vector of the k parameters of
the model estimated by maximum likelihood.

In these kind of metrics, the �rst term is a measure of the goodness-of-�t, i.e., the higher the
values of L, the better the model describes the sample. The second term penalizes the complexity
of the model in terms of the number of parameters to be estimated, which favors the selection of
models with fewer parameters [116]. A complex model will then have a good score only if the gain
in terms of likelihood is high enough to justify the number of parameters used. In the BIC metric,
the penalization term also includes the sample size.

From (1.46) and (1.47), the AIC and BIC of a truncated R-vine copula at level t (1.45) are
given by

AIC (tRV (t)) = −2LtRV (t)

(
x; θ̂

)
+ 2k, (1.48)

and
BIC (tRV (t)) = −2LtRV (t)

(
x; θ̂

)
+ k logm, (1.49)

respectively, where LtRV (t) denotes the log likelihood of the truncated R-vine copula density (1.45),
which is given by
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LtRV (t)

(
x; θ̂

)
=
m∑
l=1

t∑
j=1

∑
e∈Ej

log cie,ke|Se

(
Fie|Se (xlie |xlSe ) , Fke|Se (xlke |xlSe ) ; θ̂ie,ke|Se

)
,

(1.50)

where m is the number of observations xl = (xl,1, . . . , xl,n), l = 1, . . . ,m, θ̂ ={
θ̂ie,ke|Se : e ∈ Ej , j = 1, . . . , t

}
, and θ̂ie,ke|Se denotes the parameters of the copula density

cie,ke|Se .
The procedure for identifying the truncation level starts by �tting the R-vine copula to the �rst

level t = 1. With each iteration, t is increased by one, only stopping at a truncation level t = t0 if
the contribution from �tting an extra tree is not signi�cant. To assess whether there is gain of an
additionally �tted tree, we can compare the AIC (1.48) or BIC (1.49) of the two models tRV (t)
and tRV (t+ 1), and the model with the lowest metric is selected.

Since tRV (t) is nested within tRV (t+ 1), the truncation heuristic only needs to calculate the
contribution from the level t+ 1 to the AIC or BIC of tRV (t+ 1), since the values of these metrics
for tRV (t) and tRV (t+ 1) are equal except for the contribution from the level t + 1. Due to the
fact that all pair-copulas associated to the tree at level t + 1 of tRV (t) are Product copulas, the
contribution from the level t+1 to the AIC or BIC of tRV (t) is zero. Therefore, if the contribution
from the level t+ 1 to the metric of tRV (t+ 1) is positive, i.e., BIC (tRV (t+ 1)) > 0 (similar to
AIC), the R-vine copula is truncated at level t = t0. See [16] for details.

1.8 R-vine Learning

An attractive feature of the copula framework is that it provides a way to �t f (x) by estimating the
marginal densities fi (xi) and the R-vine copula separately [76, 77]. This property is leveraged by
the learning algorithms, which �rst �t the marginals and then learn the R-vine copula. The latter
is accomplished by the following three closely related tasks: (i) Selection of the R-vine structure;
(ii) Selection of pair-copulas; (iii) Estimation of the pair-copula parameters.

Algorithms to learn R-vines from data have mainly focused on greedy heuristics [37, 82]. Since
pair-copulas can be estimated more accurately in the �rst trees (as the conditioning sets involve
fewer variables), a natural way to proceed is by building the structure one tree at a time in a
top-down approach, while trying to maximize the dependence in the �rst levels. Such a heuristic,
proposed in [42], proceeds sequentially, starting to optimize individually the �rst tree, T1, continuing
with the second tree, T2, and so on. This procedure requires that at each level the pair-copulas
and their parameters are simultaneously estimated before moving on to the next level.

In this thesis, the procedure used to learn the R-vine density function (1.21) combines both
the top-down R-vine learning procedure and the AIC/BIC-based truncation heuristic (described
previously in Section 1.7). Here, we refer to this algorithm as Top-Down Sequential Heuristics
(TDSH). A description of this algorithm is given in the next section.

1.8.1 Top-Down Sequential Greedy Heuristic

We introduce some notation before describing the TDSH in Algorithm 1.1. First, i, k = 1, . . . , n
is run over indexes, j = 1, . . . , n − 1 over trees, and l = 1, . . . ,m over observations (sample data).
Further, let DX = {x1, . . . ,xm} be the set of m observations (the so-called original data), where
xl = (xl,1, . . . , xl,n) denotes an observation of X = (X1, . . . , Xn), and Dj

U = {u1, . . . ,um}
the set of m observations (the so-called transformed data) associated to the level j, where
ul = (ul,1, . . . , ul,n−j+1) denotes an observation of U = (U1, . . . , Un−j+1).
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This algorithm starts by estimating nmarginal cumulative distributions Fi (Xi) from the original
data DX . Then, by evaluating Ui = Fi (Xi), it computes the transformed observations needed to
estimate the unconditional pair-copulas of the �rst tree T1. To select this tree, the algorithm starts
by �nding the maximum spanning tree (MST) (using Prim's algorithm [32]) from the complete
graph G over n nodes, which is the tree on all nodes that maximizes the sum of the pairwise
dependence measures used as weights on the edges. Then, the pair-copulas associated to the
edges of T1 are selected and their parameters are estimated using the transformed data previously
computed. New transformed observations, Fi|S and Fk|S (the arguments of the pair-copulas), are
recursively computed from the pair-copulas estimated in the previous level using Equation (1.18).
These observations are used as input data for the subsequent trees, which are obtained similarly by
�nding the MST from a connected and weighted graph G (usually, not complete) with those edges
allowed by the proximity condition. In each level, given the pair-copulas of the previous tree, the
conditional pair-copulas of the next tree are selected and estimated. This procedure iterates until a
complete or truncated R-vine is learned. Steps of this algorithm are described in the following2.

Step 1 The univariate cumulative and density functions Fi (Xi) and fi (Xi) are estimated from
a set of original observations DX . Two strategies can be used to select the type of margins:
The simplest, but rather inaccurate, strategy selects the same family of distributions to model
all margins. A more �exible method chooses the one that best �ts the data among a prede�ned
group of parametric families (e.g., Beta, Gamma) as well as an empirical distribution based on a
kernel function, which allows us to prevent making assumptions about the shape of the univariate
distribution. The density estimator K of an unknown density f at any given point x is given by

f̂h (x) =
1

nh

m∑
i=1

K

(
x− xi
h

)
, (1.51)

where {x1, . . . , xm} are samples of the unknown f , and h > 0 is a smoothing parameter called
the bandwidth [14]. The Normal (or Gaussian) kernel is one of the most widely used kernels to
approximate univariate data, which means that K (x) = Φ (x), where Φ is the standard Normal
density function, and is expressed as

K (x) = e−
(x−xi)

2

2h2 , (1.52)

where the choice for h according to a rule-of-thumb bandwidth estimator is given by h =(
4σ̂5
/3m
) 1

5 ≈ 1.06σ̂m−
1
5 , where σ̂ denotes the empirical standard deviation.

Step 2 From the marginal distributions estimated at Step 1, the algorithm computes the
(unconditional) observations ul = (ul,1, . . . , ul,n), where ul,i = Fi (xl,i), l = 1, . . . ,m, and
i = 1, . . . , n.

Steps 3 and 8 We use the empirical Kendall's tau coe�cient (see (1.30)) as a measure of pairwise
dependence. This measure does not rely on any assumptions on the distributions of the variables,
which is especially useful when di�erent bivariate copulas are combined in the same decomposition.
For j = 1, a complete graph G over n nodes is built. Then, for each edge {i, k} of G, empirical
Kendall's tau τ̂ are computed from D1

U and assigned as weights of the edges. For the subsequent
levels (j > 1), the graph G is built over n− j+ 1 nodes for all possible conditional pairs allowed by
the proximity condition. Then, in a similar way to the previous tree, for each edge {i, k,S} of G,
empirical Kendall's taus τ̂ are computed from Dj

U , j = 2, . . . , n− 1 and assigned as weights of the
edges.

2The implementation of the TDSH is available at https://github.com/DianaCarrera
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Algorithm 1.1 Steps of TDSH for learning R-vine distributions.

Input
DX � Original observations.
C � Set of candidate copula families.
t � Truncation level. Possible values 1 ≤ t ≤ n− 1.
t0 = j = 1 � Auxiliary variables.

Output
f (Xi)� Marginal density, i = 1, . . . , n.
G � R-vine graph.
B � Set of pair-copulas associated to G.

1: Estimate Fi from DX .
2: Obtain m× n observations Dj

U for Tj by computing Fi (Xi).
Compute fi (Xi).

3: Build the complete graph G over n nodes and compute dependence
measures (e.g., τ̂) as weights of the edges {i, k} ∈ G from Dj

U .
4: Select the MST Tj from the weighted graph G.
5: For each edge {i, k} in Tj , select ci,k ∈ C and estimate its

parameter θ̂i,k from Dj
U .

if t > j:
6: Compute LtRV (t0) (1.50) and BIC (tRV (t0)) (1.49).

for j = 2 : t:
t0 = j − 1

7: Obtain m× n− j + 1 transformed observations Dj
U for Tj by

computing conditional distribution functions Fi|k∪S (1.18).
8: Build a graph G over n− j + 1 nodes with all possible edges that

meet the proximity condition from Tj−1 and compute dependence

measures (e.g., τ̂) as weights of the edges {i, k,S} ∈ G from Dj
U .

9: Select the MST Tj from the weighted graph G.
10: For each edge {i, k,S} in Tj , select ci,k|S ∈ C and estimate its

parameter θ̂i,k|S from Dj
U .

11: Compute LtRV (t0+1) and BIC (tRV (t0 + 1)).
if BIC (tRV (t0 + 1))−BIC (tRV (t0)) > 0:

12: Set all pair-copulas with |S| > t0 to Product copulas.
exit for

else j == t
13: Set all pair-copulas with |S| > t to Product copulas.

exit for
end if

end for
end if
return G = {T1, . . . , Tt}, B =

{
ci,k|S in Tj , j = 1, . . . , t

}
, fi (Xi)
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Steps 4 and 9 For R-vine selection, in each level the tree that maximizes the sum of absolute
empirical Kendall's taus is built using the MST method. However, while in the �rst step (j = 1),
the TDSH starts from a complete weighted graph, in subsequent steps it departs from a connected
weighted graph (not complete in general) with the edges that meet the proximity condition. For
the selection of a C-vine, the algorithm chooses as root node the node that maximizes the sum of
absolute pairwise dependencies to this node. In the case of a D-vine, the path structure of the �rst
tree determines the path structure of the subsequent trees. Therefore, the optimization of a D-vine
graph can be formulated as the optimization of T1, which translates into �nding a Hamiltonian
path that maximizes the sum of absolute pairwise dependencies. It can be transformed to a related
Traveling Salesman Problem (TSP) [16]. As TSP is NP-hard, we use a heuristic called Cheapest
Insertion [63,64,111] to �nd the best path of n nodes to build the �rst tree.

Steps 5 and 10 In general, one can select the same copula family for all the edges of the R-
vine, and in this case, we only need to estimate their parameters, or select the suitable pair-copula
family individually for each edge. In the latter case, we use the Cramér-von Mises statistic Sm
(1.44). By comparing a parametric copula Cθ (chosen from a prede�ned group of candidate copula
families C) to the empirical copula Cm, the tested copula with the smallest Sm is selected. The
corresponding pair-copula parameters are estimated via the Kendall's tau-based method (when the
copula parameter is a scalar). The relationship of Kendall's tau and the dependence parameter of
the bivariate Normal, Student's t, Clayton and Gumbel bivariate families are given in Table 1.1.

Step 7 The algorithm computes the transformed observations (i.e., conditional distribution
functions) for the trees at levels j > 2 using the copula parameters from the previous tree and the
recursive evaluation of (1.18). Notice that the only pair-copulas needed in this calculation are those
already speci�ed in the previous trees. The obtained transformed observations (also called copula
data) at each level are used to compute the pairwise dependence measures as well as estimate the
pair-copulas and their parameters for the subsequent level.

Steps 6, 11, 12 and 13 These steps are optional and have to do with learning truncated R-
vines (De�nition 9). AIC (1.48) or BIC (1.49) is computed for the two models tRV (t0) (Step 6) and
tRV (t0 + 1) (Step 11). An R-vine can be truncated either at level t0 (Step 12), which is identi�ed
by the AIC/BIC-based truncation heuristic described in Section 1.7, or at a truncation level t (Step
13), which is given as an input parameter of the TDSH.

Appendix A is a simple illustration of the TDSH using a four-variable example.

1.9 Bayesian Networks

This section provides basic de�nitions on directed graphs, BNs, polytrees, and some concepts on
dependence maps used in the context of GMs, which are the core of Chapter 2 focused on the
relationship between graphical representations of R-vines and polytrees.

1.9.1 Directed Graphs

In this section, we follow the terminology used in [6], adapting the notation to that used in this
thesis in order to ensure its consistency.

Let G = (N,E) be a graph with node set N and edge set E, where V 6= ∅ is a �nite set and
E ⊆ E = {(v, w) |v, w ∈ N, v 6= w}. G is said to be complete if every pair of nodes is joined by
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an edge. G is said to be totally non-connected if E = ∅. Directed graphs only contain directed
edges, which are represented with the symbol �→�. If G contains the directed edge v → w, then
(v, w) ∈ E, but (w, v) /∈ E. If v → w, v is then referred to as a parent of w, and w as the child of
v. Undirected graphs only contain undirected edges, which are represented with the symbol ���. If
G contains the undirected edge v�w, then (v, w) , (w, v) ∈ E. The skeleton of a directed graph is
the undirected graph obtained by replacing all directed edges with undirected edges. A path from
v1 to vd is a sequence of distinct nodes v1, . . . , vd ∈ N , d ≥ 2, connected by edges in G, where
(vi, vi+1) ∈ E, i = 1, . . . , d − 1. A cycle is a path where v1 = vd. In particular, a directed path
from v1 to vd is a directed cycle if v1 = vd. A graph containing only directed edges and without
directed cycles is known as a directed acyclic graph (DAG). In DAGs, we can refer to sets of parents
(pav), ancestors (anv), descendants (dev), and non-descendants (ndv) of v, de�ned as follows. For
v, w ∈ N , v 6= w:

• pav = {w |(w, v) ∈ E } is the set of parents of v. Analogously, v is a child of w.

• anv = {w |G contains a path from w to v} is the set of ancestors of v.

• dev = {w |G contains a path from v to w} is the set of descendants of v.

• ndv = N \ {v} ∪ dev is the set of non-descendants of v.

1.9.2 Graphical Independence in Directed Graphs

A separation concept serves to translate topological properties over a graph to conditional
independence of a distribution. The graphical independence criterion in DAGs, called D-separation,
provides a semantic interpretation of a DAG in terms of the independence relationships encoded in
the graph. A formal de�nition of this concept is given as follows.

De�nition 12 (D-separation) Let G = (N,E) be a DAG. If I,K,S are three disjoint subsets
of nodes in G, then S separates I from K or, similarly, I and K are separated given S if all the
paths between any node of I and any node of K are blocked by S. In other words, S separates I
and K, denoted as I (I,K |S ), if and only if along any undirected path between any node of I and
any node of K there is an intermediate node A such that:

• Either A is a head-to-head node in the path and neither A nor its descendants are in S.

or

• A is not a head-to-head node in the path and it is in S.

Let G = (N,E) be a DAG on n = |N | nodes and I,K,S ⊆ N = {1, . . . , n} ∈ N be pairwise
disjoint sets. Furthermore, P (X) denotes the probability distribution on X, and PI , PK , PS

denote the corresponding I,K,S-marginal distributions of P respectively. Therefore, XI ∼ PI ,
XK ∼ PK , and XS ∼ PS . If I = {i} (i.e., |I| = 1), we write Xi and Pi. Furthermore, the
conditionally independence ofXI andXK givenXS is denoted as I (XI ,XK |XS ). The following
properties associate conditional independencies of P with separations of G:

P is say to exhibit the local and global G-Markovian properties if

I
(
Xi,Xndi\pai |Xpai

)
∀i ∈ N, (1.53)

and

I (I,K |S ) =⇒ I (XI ,XK |XS ) ∀ disjoint I,K,S ⊆ N, (1.54)

respectively. If P satis�es (1.53) and (1.54), it is called G-Markovian.
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Figure 1.5: A �ve-dimensional polytree. According to this structure, f (X) factorizes as
f (X1) · f (X5) · f (X3 |X1, X5 ) · f (X2 |X3 ) · f (X4 |X3 ).

1.9.3 Bayesian Networks and Polytrees

De�nition 13 (Bayesian Network) A BN is a pair (G (N,E) , P ), where G is a DAG, N
denotes the set of nodes and each node represents a random variable, and E denotes the set of
edges. Furthermore, P = {f (X1 |Xpa1 ) , · · · , f (Xn |Xpan )} is a set of n conditional probability
distributions (one for each variable), where Xpai , i = 1, . . . , n, is the set of parents of Xi in G.
The set P de�nes a probability density function given by

f (X) =

n∏
i=1

f (Xi |Xpai ) . (1.55)

A polytree is a BN for which the skeleton of the DAG is both connected and acyclic, i.e.,
a tree. In polytrees, there is no more than one undirected path that connects any two nodes.
The number of edges in a polytree is n − 1. Figure 1.5 shows a �ve-dimensional polytree and the
corresponding factorization of f (X). Particular types of polytrees include chains: each node has at
most one parent and/or only one child, and trees: each node has only one parent. A comprehensive
introduction to graph theory and graphical models can be found in [33,86].

In a polytree, we can �nd di�erent types of connections:

• A head-to-head connection is a subgraph i → s ← k in which s is a node with convergent
edges, also called a head-to-head node.

• A fork connection is a subgraph i← s→ k in which s is a node with divergent edges.

• A chain connection is a subgraph i→ s→ k (or i← s← k) in which the edges are directed
towards the same direction.

According to the concept of D-separation (De�nition 12), the head-to-head connection indicates
that i and k are non-separated by s in G, since the path between i and k has s as a head-to-head
node. This connection represents the conditional dependence relationship of Xi and Xk given Xs

(D (Xi, Xk |Xs )) in the probability distribution represented by G. On the other hand, the fork and
chain connections indicate that i and k are separated by s inG, since in the path between i and k, s is
neither a head-to-head node nor a descendant of a head-to-head node. These connections represent
the conditional independence relationship of Xi and Xk given Xs (I (Xi, Xk |Xs )) in the probability
distribution represented by G. It is worth noticing that, D (Xi, Xk |Xs ) is represented by a unique
head-to-head connection, while I (Xi, Xk |Xs ) can be represented by di�erent connections.
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1.9.4 Dependence Models

Every probabilistic model p (x) has an associated dependence model. While p (x) contains a
complete description (quantitative and qualitative) of the relationships among random variables,
the dependence model only describes its qualitative structure [27], which can be obtained using
di�erent approaches: from directed or undirected graphs, a dependence list, or a set of conditional
probability functions. Here we focus on dependence models de�ned graphically. An advantage
of using the graphical approach is that the graph de�nes a factorization of p (x) as a product of
conditional probability functions.

The following de�nitions, provided in [27], concern types of correspondences (mapping) between
graphs and dependence models, namely I-map, D-map and P-map.

De�nition 14 (Dependence model) Any model M of a set of random variables X that allows
verifying whether XI and XK are conditionally independent or dependent given XS, denoted as
I (XI ,XK |XS ) and D (XI ,XK |XS ) respectively, for all possible disjoint subsets XI ,XK ,XS ⊆
X, where I,K,S ⊆ {1, . . . , n} ∈ N, and |XI | , |XK | ≥ 1, is called a dependence model.

De�nition 15 (I-map) A graph G is an independence map of a dependence model M if all
separations derived from G are veri�ed by M , that is,

I (I,K |S )G =⇒ I (XI ,XK |XS )M . (1.56)

De�nition 16 (D-map) A graph G is a dependence map of a dependence model M if all non-
separations derived from G are veri�ed by M , that is,

D (I,K |S )G =⇒ D (XI ,XK |XS )M . (1.57)

De�nition 17 (P-map) A graph G is a perfect map or faithful to a dependence model M , if
every independence relationship obtained from G can also be obtained from M , and vice versa, that
is,

I (I,K |S )G ⇐⇒ I (XI ,XK |XS )M . (1.58)

From De�nition 17, it follows that a P-map has to be simultaneously an I-map and a D-map.
An I-map G of M includes some of the independence relationships of M , but not necessarily all

of them. An I-map guarantees that the separated nodes correspond to independent variables in M ,
but does not guarantee that connected nodes correspond to dependent variables inM . On the other
hand, a D-map G of M includes some of the dependence relationships of M , but not necessarily
all of them. A D-map guarantees that connected nodes correspond to dependent variables in M ,
but does not guarantee that the d-separated nodes correspond to independent variables in M .
Moreover, it is not always possible to build a graph G that is a P-map of a given M . Nevertheless,
every M has associated a trivial I-map and D-map, since any complete graph is a trivial I-map of
any M , and a totally unconnected graph is a trivial D-map of any M .

Lauritzen's et al. theorem [87] relates the concept of an I-map and the factorization of p (x) as
follows.

De�nition 18 (Factorization of probability functions) Given a probability function p (x)
and a graph G, the following two conditions are equivalent:
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• p (x) factorizes according to G.

• G is an I-map of a dependence model M of p (x).

Theorem 18 states that given G, a factorization of the probability function can be found. The
set of parameters that de�ne the model can be identi�ed thereupon either given by an expert in
the problem domain or estimated from data. The set of conditional probability functions together
with the assigned parameter values is known as the complete model structure.





Chapter 2

R-separation Criterion, Regular

Vine-Copulas and Polytrees

2.1 Introduction

Graphical models (GMs) are a powerful statistical tool to model uncertain events and describe the
dependence structure among random variables in an intuitive graphical way [101,129]. This chapter
concerns the relationship (or connection) between graphical representations of two types of GMs:
R-vines and polytrees.

There exist di�erences in interpreting R-vines with respect to other GMs, such as Bayesian
Networks (BNs) and Markov networks (MNs), regarding the dependence structure in the
distribution represented by these models. In [9], the authors claim that: �A vine is a convenient
tool with a graphical representation that makes it easy to describe which conditional speci�cations
are being made for the joint distribution.� R-vines di�er from BNs and MNs in that �the concept
of conditional independence is weakened to allow for various forms of conditional dependence�.
The authors illustrate these di�erences using the graphical representations in Figure 2.1, which
correspond to a BN, a MN, and an R-vine on three variables, from left to right respectively. While
in the BN and MN models, X1 and X3 are conditionally independent given X2, in the R-vine, in
contrast, X1 and X3 are conditionally dependent given X2.

In general, BNs have well-studied mathematical properties that have been developed throughout
decades. In contrast, interest in R-vines has grown in the last few years. In the literature, the
relationship between BNs and PCCs has been approached from di�erent perspectives. In [65], a

1 2 431 2 43
1 2 43

12 23

Figure 2.1: Examples of graphical representations of a BN, a MN, and an R-vine on three variables,
from left to right respectively. These models highlight the di�erences in interpreting R-vines with
respect to other graphical models. While in the BN and MN models, X1 and X3 are conditionally
independent given X2, in the R-vine, in contrast, X1 and X3 are conditionally dependent given X2.

28
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non-parametric BN, as an alternative to a particular subclass of R-vines, is proposed. There is also
a discussion on the di�erences between both models as well as guidelines on when to use one or
the other from a quantitative perspective. In [6,7], a BN that uses pair-copulas of di�erent families
is built using the PCC framework. However, the procedure for learning the graph structure of
the BN (i.e., the graph) requires the computation of multidimensional integration, necessary to
compute the conditional distributions that are arguments of pair-copulas. In [62], the proposed
approach is restricted to the subclass of R-vines, which means that there is a computationally
e�cient procedure for learning BNs. In [83], procedures that build a C-vine or a D-vine graph from
the joint factorization corresponding to a DAG, and vice versa, are proposed.

However, the problem of verifying whether the pairwise graphical independencies found in a
polytree can be represented in an R-vine, and vice versa, has not yet been answered. Here, we
address this matter in both directions: to build the R-vine graph that represents the largest number
of pairwise (un)conditional independencies represented in a polytree graph, and vice versa.

To accomplish this task, two challenges have to be overcome: First, in order to extract the list
of separation relationships represented in the R-vine graph, an appropriate graphical separation
criterion is required. However, as far as we know, such a concept has not yet been de�ned for
R-vines. In this thesis, a concept of graphical separation for R-vines, called R-separation, is
formulated. Secondly, it turns out that the edges of the R-vine graph only indicate which pair-
copulas are present in the decomposition, but not whether the relationship they represent is that
of independence or dependence. In order to di�erentiate the pair-copula relationship, we use an
improved representation of the R-vine graph, in which its edges indicate the type of the relationship
they represent [83].

The de�ned R-separation concept leads to a theorem that in turn establishes the possible
correspondences or maps of (in)dependence between the R-vine graph and the associated R-vine
copula. Furthermore, properties of R-separation such as symmetry, decomposition, contraction,
intersection, (strong/weak) union, and (strong/weak) transitivity are analyzed.

Based on R-separation, two algorithms that build a polytree graph that encodes as many
pairwise relationships as possible derived from an R-vine graph, and vice versa, are designed. These
algorithms are useful as they make it clear that properties and procedures that can be applied to
polytrees can be carried over to R-vines, and vice versa. The use of these algorithms is illustrated
through examples.

The chapter is organized as follows. Section 2.2 introduces the R-separation criterion.
Section 2.3 presents a theorem on possible dependence maps between the R-vine graph and the
associated R-vine copula. Section 2.4 discusses the R-separation properties. Section 2.5 explores
the relationship between graphical representations of R-vines and polytrees and Section 2.6 provides
the conclusions of the chapter.

2.2 R-separation

In this section, the concept of graphical separation for R-vines is formulated. As we have already
discussed in the introductory section of this chapter, in de�ning the R-separation concept, it should
be taken into account the lack of graphical expressiveness of R-vines in the sense that, while the
edges in DAGs specify conditional (in)dependence conditions (see Section 1.9.2), the edges of R-
vine graphs illustrate the required pair-copulas only [7]. Similar to DAGs, the nodes in the �rst
tree of the R-vine graph represent univariate marginal distributions of the associated R-vine copula.
However, in contrast to DAGs, the R-vine graph does not have an interpretation in terms of Markov
properties of its associated R-vine copula [6]. Notice that there is a one-to-one correspondence
between edges and (in)dependence relationships represented in the R-vine graph.

In order to make the R-vine graph more expressive, we adopt the extended representation used
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Figure 2.2: Four-dimensional R-vine to illustrate R-separation.

in [83], which modi�es its graphical appearance by using two types of edges: dashed and continuous
to indicate graphical separation and non-separation respectively. From now on, a discontinuous edge
is denoted as 〈i, k,S〉 and a continuous edge as {i, k,S}.

The R-separation1 concept formulated in this chapter works over R-vines with additional
expressiveness. It is de�ned as follows.

Let I = {1, . . . , n} be a �nite set of indexes with n ≥ 2, and G = (T1, T2, . . . , Tn−1) be an R-vine
graph composed of a hierarchy of n− 1 trees Tj , where j = 1, . . . , n− 1 denotes the level of the tree
in the hierarchy (see De�nition 2). Tj has n− j + 1 nodes and n− j edges. Moreover, Na⊆I and
Nb⊆I are two nodes of the jth tree with cardinality |Na| = |Nb| = j. Furthermore, let i,k,S ⊆ I
be disjoint subsets. If i = {i} and k = {k}, which implies that |i| = 1 and |k| = 1, we write i and
k (not in boldface) respectively.

De�nition 19 (R-separation criterion) Given an R-vine graph G = (T1, . . . , Tn−1) on n
indexes, the disjoint subsets i, k ⊆ I are graphically separated in G by a set S ⊆ I\i∪k, |S| = j−1,
which is denoted as I (i, k |S ), if there exist two nodes Na and Nb in Tj with i ∈ Na and k ∈ Nb
such that the following composite condition is met: Na and Nb are adjacent, S = Na ∩ Nb, and
Na and Nb are joined by a dashed edge 〈i, k,S〉.

Based on the R-separation concept, a non-separation criterion for R-vines can be de�ned as
follows.

De�nition 20 (Non-separation concept) Given an R-vine graph G = (T1, . . . , Tn−1) on n
indexes, the disjoint subsets i, k ⊆ I are graphically non-separated in G by a set S ⊆ I \ i ∪ k,
|S| = j−1, which is denoted as D (i, k |S ), if there exist two nodes Na and Nb in Tj with i ∈ Na and
k ∈ Nb such that the following composite condition is met: Na and Nb are adjacent, S = Na∩Nb,
and Na and Nb are joined by a continuous edge {i, k,S}.

Let us consider the R-vine graph shown in Figure 2.2. The set of graphical relationships
derived from this R-vine graph using the R-separation criterion are listed in Tables 2.1-(a) and (b)
respectively.

Notice that:

• A dashed edge 〈i, k,S〉 denotes a separation relationship I (i, k |S ), meaning that i and k are
separated by S in G.

1The R-separation concept represents an evolution of that presented in [26].
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Table 2.1: Separation and non-separation relationships derived from the four-dimensional R-vine
graph shown in Figure 2.2 using the R-separation criterion.

Dashed Edges Separations
〈2, 4, 3〉 I (2, 4 |3)
〈1, 4, 2, 3〉 I (1, 4 |2, 3)

(a) Separations.

Continuous Edges Non-separations
{1, 2} D (1, 2)
{2, 3} D (2, 3)
{3, 4} D (3, 4)
{1, 3, 2} D (1, 3 |2)

(b) Non-separations.

• A continuous edge {i, k,S} denotes a non-separation relationship D (i, k |S ), meaning that i
and k are non-separated by S in G.

Notice that the separation and non-separation relationships represented in G occur only between
pairs of single indexes i, k. Furthermore, notice that each pair of variables occurs once as conditioned
variables of only one pair-copula in the associated R-vine copula [84]. A brief discussion on this
topic was previously presented in Section 1.3.

By using the R-separation and non-separation criteria, we can easily list the pairwise
separation and non-separation relationships represented in the R-vine graph, which correspond
to (un)conditional independence and dependence relationships in the associated R-vine copula
respectively.

The usefulness of having the R-separation criterion is twofold: From a practical point of view,
it facilitates the task of listing separation and non-separation relationships by merely examining
the topology of the graph and the edge types. From a methodological point of view, similarly to
other GMs, the R-vine is provided with its own graphical separation criterion, thus �lling this gap
for this class of models.

2.3 Relationship Between R-vine Graphs and R-vine Copulas

Based on the R-separation criterion, we formalize the possible dependence maps (namely I-map,
D-map and P-map in (1.56)-(1.58) respectively) between the R-vine graph and its associated R-vine
copula in Theorem 2. Necessary de�nitions for the present section are provided in Section 14.

Theorem 2 (R-vine maps) Let G be an R-vine graph and M a set of (un)conditional
(in)dependencies associated to pair-copulas involved in the R-vine copula associated to G. The
following statements are true:

(i) G is an I-map of M , which is written as

I (i, k |S )G =⇒ I (Xi, Xk |XS )M . (2.1)

(ii) G is a D-map of M , which is written as

D (i, k |S )G =⇒ D (Xi, Xk |XS )M . (2.2)

(iii) It cannot be deduced from G whether this graph is a P-map of M .
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One of the key points in the proof of the statements (i), (ii) and (iii) has to do with the Product
copula. Let M be the set of (un)conditional (in)dependencies in the R-vine copula associated to
G. Every edge of G joins two nodes Na and Nb, such that i ∈ Na, k ∈ Nb, and S = Na ∩ Nb.
Moreover, each edge corresponds to a pair-copula in M , which is determined by the indexes of the
edge i, k,S. Then, we have:

• If ci,k|S = cPi,k|S , then I (Xi, Xk |XS ) is true and 〈i, k,S〉 is a dashed edge in G.

• If ci,k|S 6= cPi,k|S , then D (Xi, Xk |XS ) is true and {i, k,S} is a continuous edge in G.

Proof

(i) Suppose that the dashed edge 〈i, k,S〉 joins two nodes Na,Nb ∈ Tj , i ∈ Na, k ∈ Nb, and
|S| = j − 1. Therefore,

〈i, k,S〉 ∈ Tj =⇒ I (i, k |S ) =⇒ ci,k|S = cPi,k|S ∈M =⇒ I (Xi, Xk |XS ) . (2.3)

Using the R-separation criterion (De�nition 19), it follows that G is an I-map of M , which is
written as

I (i, k |S )G =⇒ I (Xi, Xk |XS )M . (2.4)

(ii) Suppose that the continuous edge {i, k,S} joins two nodes Na,Nb ∈ Tj , i ∈ Na, k ∈ Nb,
and |S| = j − 1. Therefore,

{i, k,S} ∈ Tj =⇒ D (i, k |S ) =⇒ ci,k|S 6= cPi,k|S ∈M =⇒ D (Xi, Xk |XS ) . (2.5)

Using the non-separation criterion (De�nition 20), it follows that G is a D-map of M , which is
written as

D (i, k |S )G =⇒ D (Xi, Xk |XS )M . (2.6)

(iii) Although G is an I-map and a D-map of M , it is not necessarily a P-map of M , since, from
the R-vine graph, it is not possible to infer (non)separations other than those represented by edges
in G.

Let us illustrate this matter using the example o�ered in [79] for the three-dimensional R-vine
graph shown in Figure 2.3. Here, c1,2 and c2,3 are associated to the edges {1, 2} and {2, 3}, and
specify the dependence relationships D (X1, X2) and D (X2, X3) in M , respectively. The third
unconditional pair-copula c1,3 can be obtained via one-dimensional integration as

c1,3 (u1, u3) =

∫ 1

0

c (u1, v, u3) ∂v. (2.7)

However, c1,3 is not associated with any edge in G.

2

In summary, the proof of this theorem leads us to conclude that R-vines do not allow a graphical
separation concept that yields a complete independence map to be de�ned.
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Figure 2.3: A three-dimensional R-vine graph.

2.4 Properties of R-separation

In the �eld of GMs, properties of conditional (in)dependence have been de�ned which, depending
on the type of graph, can be represented graphically. The usefulness of describing these properties
from the graphical perspective lies in the fact that, from the initial set of separation/non-separation
relationships, it is possible to derive new ones. An in-depth discussion on conditional (in)dependence
properties of graphical models is presented in [27].

Graphical properties for R-separation analyzed in this section include symmetry, decomposition,
contraction, intersection, (strong/weak) union, and (strong/weak) transitivity.

To make the description of these properties easier, when it is pertinent, we illustrate them
graphically in Figures 2.4-2.5. In order to facilitate the interpretation of these �gures, only the
right side of the implication relationship is represented. The �gure legend reads as follows: Indexes
belonging to S appear in bold in the node and over the edge, whereas i and k appear underlined
in shaded nodes.

Let i, k, w,S be disjoint subsets of {1, . . . , n}.

Symmetry The property of symmetry states that:

I (i, k |S )⇐⇒ I (k, i |S ) . (2.8)

It can be veri�ed that R-separation meets symmetry on G, since graphical pairwise relationships
do not depend on the order of the pair i and k. Notice that when I (i, k |S ) in M , separations in G
correspond to dashed edges of adjacent nodes Na and Nb, with i ∈ Na and k ∈ Nb, or vice versa,
k ∈ Na and i ∈ Nb.

Strong transitivity The property of strong transitivity states that:

D (i, w |S ) ∧ D (w, k |S ) =⇒ D (i, k |S ) . (2.9)

It can be veri�ed that R-separation does not meet strong transitivity on G. A counter-example
can be seen in Figure 2.4: In the case where i = {4}, k = {5}, w = {2}, and S = {3}, it can be
veri�ed that although D (4, 2 |3) and D (2, 5 |3) (on the left of (2.9)) are true by De�nition 20, the
edge {4, 5, 3} associated with D (4, 5 |3) (on the right of (2.9)) does not belong to G. In addition,
the edge {4, 5, 3} is not in G because it would create a cycle with {4, 2, 3} and {2, 5, 3}.

Summarizing, R-vine graphs cannot represent graphical transitivity relationships. It can be
veri�ed that D (i, w |S ) and D (w, k |S ) are associated with the edges {i, w,S} and {w, k,S},
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Figure 2.4: Illustration of strong transitivity violation: In the case where i = {4}, k = {5}, w = {2},
and S = {3}, it can be veri�ed that although D (4, 2 |3) and D (2, 5 |3) (on the left of (2.9)) are
true by De�nition 20, the edge {4, 5, 3} associated with D (4, 5 |3) (on the right of (2.9)) does not
belong to G. In addition, the edge {4, 5, 3} is not in G because it would create a cycle with {4, 2, 3}
and {2, 5, 3}.

respectively. Therefore, the edge {i, k,S} associated with D (i, k |S ) cannot be in G, since it would
violate the tree restriction of having no cycles (even though it meets the proximity condition).

Weak transitivity The property of weak transitivity states that:

D (i, w |S ) ∧ D (w, k |S ) =⇒ D (i, k |S ) ∧ D (i, k |S ∪ w ) . (2.10)

It can be veri�ed that R-separation does not meet weak transitivity on G. A counter-example
can be seen in Figure 2.5: In the case where i = {4}, k = {5}, w = {3}, and S = ∅, it can be veri�ed
that although D (4, 3) and D (3, 5) (on the left of (2.10)) are true by De�nition 20, the edges {4, 5}
and {4, 5, 3} associated with D (4, 5) and D (4, 5 |3) (on the right of (2.10)), respectively, are not in
G, since these non-separations would create cycles as well as the pair 4 and 5 would be involved as
a conditioned set in more than one relationship.

Summarizing, it can be veri�ed that D (i, w |S ) and D (w, k |S ) are associated with the edges
{i, w,S} and {w, k,S}, respectively, whereas the edges {i, k,S} and {i, k,S, w} are not in G, since
they would violate the tree restriction of having no cycles and also the R-vine property that every
pair i and k occurs once as a conditioned set of only one relationship.
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Figure 2.5: Illustration of weak transitivity violation: In the case where i = {4}, k = {5}, w = {3},
and S = ∅, it can be veri�ed that although D (4, 3) and D (3, 5) (on the left of (2.10)) are true by
De�nition 20, the edges {4, 5} and {4, 5, 3} associated with D (4, 5) and D (4, 5 |3) (on the right
of (2.10)), respectively, are not in G, since both they would create cycles and the pair 4 and 5 would
be involved as a conditioned set in more than one relationship.

Strong union The property of strong union states that:

I (i, k |S ) =⇒ I (i, k |S ∪ w ) . (2.11)

It can be veri�ed that R-separation does not meet strong union on G. A counter-example can
be seen in Figure 2.6: In the case where i = {1}, k = {4}, w = {5}, and S = {2, 3}, it can be
veri�ed that although I (1, 4 |2 ∪ 3) (on the left of (2.11)) is true, the edge 〈1, 4, 2, 3, 5〉 associated
with I (1, 4 |2, 3 ∪ 5) (on the right of (2.11)) is not in G, since the pair 1 and 4 would be involved
as a conditioned set in more than one relationship.

Summarizing, it can be veri�ed that I (i, k |S ) is associated with the edge 〈i, k,S〉, whereas the
edge 〈i, k,S, w〉 is not in G, since it would violate the R-vine property that every pair i and k occurs
once as a conditioned set of only one relationship (even though it meets the proximity condition).

The following properties cannot be veri�ed since R-vine graphs represent relationships between
pairs of single indexes only, not between sets of indexes, which is the case of the statement
I (i, k ∪ w |S ) that appears in all the properties listed in (2.12)-(2.15).
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Figure 2.6: Illustration of strong union violation: In the case where i = {1}, k = {4}, w = {5}, and
S = {2, 3}, it can be veri�ed that although I (1, 4 |2 ∪ 3) (on the left of (2.11)) is true, the edge
〈1, 4, 2, 3, 5〉 associated with I (1, 4 |2, 3 ∪ 5) (on the right of (2.11)) is not in G, since the pair 1 and
4 would be involved as a conditioned set in more than one relationship.
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Weak Union The property of weak union states that:

I (i, k ∪ w |S ) =⇒ I (i, w |S ∪ k ) ∧ I (i, k |S ∪ w ) . (2.12)

This property cannot be veri�ed since R-vine graphs represent relationships between pairs of
indexes only, not between sets of indexes, which is the case of I (i, k ∪ w |S )G on the left side
in (2.12).

Decomposition The property of decomposition states that:

I (i, k ∪ w |S ) =⇒ I (i, k |S ) ∧ I (i, w |S ) . (2.13)

This property cannot be veri�ed since R-vine graphs represent relationships between pairs of
indexes only, not between sets of indexes, which is the case of I (i, k ∪ w |S ) on the left side in (2.13).

Contraction The property of contraction states that:

I (i, k |S ) ∧ I (i, w |S ∪ k ) =⇒ I (i, k ∪ w |S ) . (2.14)

This property cannot be veri�ed since R-vine graphs represent relationships between pairs of
indexes only, not between sets of indexes, which is the case of I (i, k ∪ w |S ) on the right side
in (2.14).

Intersection The property of intersection states that:

I (i, w |S ∪ k ) ∧ I (i, k |S ∪ w ) =⇒ I (i, k ∪ w |S ) . (2.15)

This property cannot be veri�ed since R-vine graphs represent relationships between pairs of
indexes only, not between sets of indexes, which is the case of I (i, k ∪ w |S ) on the right side
in (2.15).

2.5 Relationship Between Graph Representations of R-vines

and Polytrees

In this section, we study the relationship between graphical representations of R-vines and polytrees.
The focus is on pairwise separations and non-separations encoded in one graph that correspond
with the set of pairwise (in)dependencies of the dependence model M associated with the other
graph. For this purpose, two algorithms are designed: One algorithm that aims to induce the
R-vine graph that encodes as many pairwise relationships (either separations or non-separations)
as possible derived from the polytree graph. The other algorithm achieves the same goal but in
reverse, from the R-vine graph to the polytree graph. The output of these algorithms allows us to
determine whether the output graph is an I-map or a D-map of the dependence model associated
with the input graph.
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Algorithm 2.1 Procedure for building an R-vine graph from a polytree graph.

Input
Polytree graph.
t � Number of trees. Possible values 1 ≤ t ≤ n− 1 (see Algorithm 1.1).

Output
G = (T1, . . . , Tt) � R-vine graph.

1: Create LI and LD from the polytree graph via D-separation.
2: Build T1 as the skeleton of the polytree graph with continuous edges {i, k} (S = ∅).

for j = 2, . . . , t:
3: Build the graph G =

(
N j , Ej

)
, where N j = Ej−1 in Tj−1, and E

j contains the edges
allowed by the proximity condition.

4: Assign weights (one or zero) and edge types (dashed or continuous) to the edges in Ej of G:
4.1: Set edges in Ej as dashed 〈i, k,S〉 and assign them weight one.

for D (i, k |S ) in LD, where |S| = j − 1:
if 〈i, k,S〉 ∈ Ej :

4.2: Replace the dashed edge 〈i, k,S〉 (that it is in Tj) by the continuous edge {i, k,S},
and the weight value is changed to zero in G.

end if
end for

5: Create Tj from G using the MST method. Ties are resolved randomly.
end for
return G = {T1, . . . , Tt}

2.5.1 From Polytree Graphs to R-vine Graphs

Algorithm 2.1 presents the pseudo-code of a method capable of building an R-vine graph G (the
target or the output graph) that encodes as many pairwise relationships as possible derived from a
polytree graph (the starting or the input graph). This algorithm is described in the following.

Step 1 Create two lists LI and LD, which contain all pairwise separation I (i, k |S ) and non-
separation D (i, k |S ) relationships, respectively, derived from the starting polytree graph via D-
separation (De�nition 12).

Step 2 Build T1 of the target R-vine graph as the skeleton of the starting polytree graph. Notice
that T1 and the polytree skeleton have the same edge set, all of which are continuous.

Step 3 Subsequent trees of the target R-vine graph are built inside a for-loop that runs over
j = 2, . . . , t. Before building Tj , it is necessary to construct the graph G =

(
N j , Ej

)
(usually, not

complete). Nodes in N j are the edges of the already built Tj−1 of the target R-vine graph, while
the edge set Ej contains those edges allowed by the proximity condition in Tj .

Step 4 Assigning weights to edges of G is carried out in two steps. At Step 4.1, all edges in Ej are
set as dashed and weighted with value one by default. Next, at Step 4.2, the algorithm runs through
those non-separations in LD that could potentially be in Tj (i.e., unconditional relationships in T1,
conditional of order one in T2, and so on) and checks whether the possible corresponding edges
exist in Ej of G. If that is the case, the dashed edge 〈i, k,S〉 (of Tj) is replaced by the continuous
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{i, k,S}, and the weight value is set to zero in G. When this step is completed, all edges of G have
an assigned weight as per design they are assigned weight one by default at Step 4.1.

Step 5 The maximum spanning tree (MST) method (using Prim's algorithm [32]) chooses a MST
from G over n − j + 1 nodes, which becomes the tree Tj of the target R-vine graph. It should be
noted that one of the following scenarios can occur:

• First scenario: G is a tree. In this case, �nding the MST can be omitted and G turns directly
into Tj (see Example 1).

• Second scenario: G is a graph that contains a single MST (see Example 2).

• Third scenario: G is a graph that contains multiple MSTs. In this case, multiple R-vine graphs
could potentially be generated from the same starting polytree graph, all of them encoding
existing relationships in it (see Example 3).

In conclusion:

1. In the end, multiple R-vine graphs can be built from the same starting polytree graph. This
is because, in polytrees, di�erent graph connections (i.e., fork and chain) can represent the
same set of separations (see Section 1.9.3).

2. In general, not all pairwise separations and non-separations encoded in the starting polytree
graph can necessarily be represented in the built R-vine graph.

3. However, all pairwise separations and non-separations represented in the built R-vine
graph are encoded in the starting polytree graph, since the n (n− 1) /2 possible pairwise
relationships inserted in the built R-vine graph are a subset of pairwise relationships
represented in the starting polytree graph of n nodes. It is worth remembering that, while in
the R-vine graph the pair i and k appears once as a conditioned set of only one relationship
(either a separation or a non-separation), in contrast, in the polytree graph every pair i and
k can be involved in multiple relationships with di�erent conditioning sets.

4. Consequently, Algorithm 2.1 guarantees that the built R-vine graph is both an I-map and a
D-map of the dependence model associated with the starting polytree graph.

In the following, Examples 1-3 illustrate Algorithm 2.1 through the three di�erent scenarios referred
to earlier.

Example 1 From the polytree graph to the R-vine graph (Algorithm 2.1 and Figure 2.7).
The derived L1 and L2 via D-separation (Step 1) from the four-dimensional polytree graph in

Figure 2.7 are given by

LI = [I (1, 3) , I (1, 4) , I (2, 4) ,
I (1, 3 |4) , I (1, 4 |3) , I (2, 4 |3) ,
I (1, 4 |2, 3)] .

LD = [D (1, 2) , D (2, 3) , D (3, 4) ,
D (1, 3 |2) , D (1, 4 |2) ,
D (1, 2 |3, 4) , D (1, 3 |2, 4) , D (2, 3 |1, 4)] .

The skeleton of the polytree graph turns into T1 of the R-vine graph (Step 2). Therefore, in
this tree, non-separations D (1, 2) , D (2, 3) , D (3, 4) inLD are represented by the continuous edges
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Figure 2.7: Illustration of Example 1 (Scenario 1), from the polytree graph to the R-vine graph
(Algorithm 2.1): (From left to right, from top to bottom) Starting polytree graph; polytree skeleton;
T1 of the built R-vine graph encodesD (1, 2) , D (2, 3) , D (3, 4) inLD; weighted graphs G; T2 encodes
I (2, 4 |3) inLI and D (1, 3 |2) inLD, whereas T3 encodes I (1, 4 |2, 3) inLI respectively.

{1, 2}, {2, 3} and {3, 4}, whereas I (1, 3) , I (1, 4) , I (2, 4) inLI cannot be represented in T1, since
the possible corresponding edges 〈1, 3〉 , 〈1, 4〉 , 〈2, 4〉 not inE1 would create cycles.

Since T1 has a chain structure, the structure of the subsequent trees is completely determined.
This makes G a tree in itself (Step 3).

Initially, the two edges of G, 〈1, 3, 2〉 and 〈2, 4, 3〉, are dashed with weight one by default
(Step 4.1). Then, for D (1, 3 |2) , D (1, 4 |2) inLD (the two non-separations that could eventually
be represented in T2) it is checked whether the possible corresponding edges exist in E2. This is
the case of the dashed edge 〈1, 3, 2〉, which is replaced by the continuous {1, 3, 2} and the weight
value set to zero in G (Step 4.2). Consequently, T2 encodes D (1, 3 |2) inLD and I (2, 4 |3) inLI .
Here, the �rst scenario has taken place (Step 5). On the other hand, I (1, 3 |4) , I (1, 4 |3) inLI
and D (1, 4 |2) inLD cannot be represented in T2 given that their possible corresponding edges
〈1, 3, 4〉, 〈1, 4, 3〉 and {1, 4, 2}, respectively, do not belong to this tree. At T3 (the last tree of
the built R-vine graph), its single dashed edge 〈1, 4, 2, 3〉 represents I (1, 4 |2, 3) inLI . Therefore,
D (1, 2 |3, 4) , D (1, 3 |2, 4) , D (2, 3 |1, 4) inLD cannot be represented in T3.

Conclusions from Example 1 Only one R-vine graph can be generated from the starting poly-
tree graph. The built R-vine graph is both an I-map and a D-map of the dependence model
M associated with the polytree graph since pairwise separations, I (2, 4 |3) , I (1, 4 |2, 3) inLI ,
and non-separations, D (1, 2) , D (2, 3) , D (3, 4) , D (1, 3 |2) inLD, represented in the built R-
vine graph correspond to (in)dependence relationships of the dependence model associated
with the starting polytree graph, namely I (X2, X4 |X3 ), I (X1, X4 |X2, X3 ), D (X1, X2),
D (X2, X3), D (X3, X4), D (X1, X3 |X2 ) inM .

Example 2 From the polytree graph to the R-vine graph (Algorithm 2.1 and Figure 2.8).
The derived L1 and L2 via D-separation (Step 1) from the four-dimensional polytree graph in

Figure 2.8 are given by

LI = [I (2, 3) , I (2, 4) , I (3, 4) ,
I (2, 4 |1) , I (3, 4 |1) ,
I (2, 4 |1, 3) , I (3, 4 |1, 3)] .
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Figure 2.8: Illustration of Example 2 (Scenario 2), from the polytree graph to the R-vine graph
(Algorithm 2.1): (From left to right, from top to bottom) Starting polytree graph; polytree skeleton;
T1 of the built R-vine graph encodesD (1, 2) , D (1, 3) , D (1, 4) inLD; weighted graphs G; T2 encodes
I (2, 4 |1) , I (3, 4 |1) inLI , whereas T3 encodes D (2, 3 |1, 4) inLD respectively.

LD = [D (1, 2) , D (1, 3) , D (1, 4) ,
D (2, 3 |1) ,
D (2, 3 |1, 4)] .

The skeleton of the polytree graph turns into T1 of the R-vine graph (Step 2). Therefore, in
this tree, non-separations D (1, 2) , D (1, 3) , D (1, 4) inLD are represented by the continuous edges
{1, 2}, {1, 3} and {1, 4}. Moreover, I (2, 3) , I (2, 4) , I (3, 4) inLI cannot be represented in T1, since
the possible corresponding edges 〈2, 3〉 , 〈2, 4〉 , 〈3, 4〉 not inE1 would create cycles.

Unlike Example 1, here G is a complete graph with three dashed edges, 〈2, 3, 1〉, 〈2, 4, 1〉 and
〈3, 4, 1〉 (Step 3), with weight one by default (Step 4.1). Then, for D (2, 3 |1) inLD (the single
non-separation that could eventually be represented in T2) as its corresponding edge 〈2, 3, 1〉 in E2

is replaced by the continuous {2, 3, 1}, and the weight set to zero in G (Step 4.2). Notice that only
two out of three edges of G can be inserted in T2 given the tree restriction of having no undirected
cycles.

The Prim's MST method used to build T2 from G selects the dashed edges 〈2, 4, 1〉 and
〈3, 4, 1〉 (both having weight one) leaving out edge {2, 3, 1} (having weight zero). Consequently,
T2 encodes I (2, 4 |1) , I (3, 4 |1) inLI . Here, the second scenario has taken place (Step 5). On
the other hand, D (2, 3 |1) inLD cannot be represented in T2, because the possible corresponding
edge {2, 3, 1} does not belong to this tree. At T3 (the last tree of the built R-vine graph), its
single continuous edge {2, 3, 1, 4} represents the non-separation D (2, 3 |1, 4) inLD (Figure 2.8) and
, therefore, I (2, 4 |1, 3) , I (3, 4 |1, 3) inLI cannot be represented in this tree.

Conclusions from Example 2 Only one R-vine graph can be generated from the starting poly-
tree graph. The built R-vine graph is both an I-map and a D-map of the dependence model
M associated with the polytree graph since pairwise separations, I (2, 4 |1) , I (3, 4 |1) inLI ,
and non-separations, D (1, 2) , D (1, 3) , D (1, 4) , D (2, 3 |1, 4) inLD, represented in the built
R-vine graph correspond to (in)dependence relationships of the dependence model associ-
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ated with the starting polytree graph, namely I (X2, X4 |X1 ), I (X3, X4 |X1 ), D (X1, X2),
D (X1, X3), D (X1, X4), D (X2, X3 |X1, X2 ) inM .

Example 3 From the polytree graph to the R-vine graph (Algorithm 2.1 and Figure 2.9).
Let us consider the four-dimensional polytree graph in Figure 2.9-(a). Notice that the polytree

graph in this �gure di�ers from that used in Example 2 (Figure 2.8) in that the edge joining nodes 1
and 4 has been reversed towards node 1. The present example illustrates how this seemingly small
change leads to a di�erent R-vine graph compared to that obtained in Example 2.

The derived L1 and L2 via D-separation (Step 1) from the four-dimensional polytree graph in
Figure 2.9-(a) are given by

LI = [I (2, 3) , I (2, 4) , I (3, 4)] .

LD = [D (1, 2) , D (1, 3) , D (1, 4) ,
D (2, 3 |1) , D (2, 4 |1) , D (3, 4 |1) ,
D (2, 3 |1, 4) , D (2, 4 |1, 3) , D (3, 4 |1, 2)] .

The skeleton of the polytree graph turns into T1 of the R-vine graph (Step 2). Notice that the
polytree skeleton in the present example (Figure 2.9-(a)) is the same as in Example 2 (Figure 2.8).
In T1, D (1, 2) , D (1, 3) , D (1, 4) inLD are represented by the continuous edges {1, 2}, {1, 3} and
{1, 4}. Moreover, I (2, 3) , I (2, 4) , I (3, 4) inLI cannot be represented in this tree, since the possible
corresponding edges 〈2, 3〉 , 〈2, 4〉 , 〈3, 4〉 not inE1 would create cycles.

Analogously to Example 2, here G is a complete graph with three dashed edges,
〈2, 3, 1〉, 〈2, 4, 1〉 and 〈3, 4, 1〉 (Step 3), with weight one by default (Step 4.1). Then,
for D (2, 3 |1) , D (2, 4 |1) , D (3, 4 |1) inLD (the three non-separations that could eventually be
represented in T2) it is checked whether the possible corresponding edges exist in E2. Being that
true, the three dashed edges of G are replaced by the continuous {2, 3, 1}, {2, 4, 1} and {3, 4, 1},
and the weight set to zero in G (Step 4.2). It turns out that since the three edges in G have
the same weight value, the three trees embedded in G are optimal solutions of the Prim's MST
algorithm (Step 5). Here, the third scenario has taken place (Step 5). Therefore, let us assume
that the built T2 has the continuous edges {2, 4, 1} and {3, 4, 1} corresponding to D (2, 4 |1) and
D (3, 4 |1) inLD, respectively. Accordingly, D (2, 3 |1) inLD cannot be represented in T2, given
that their possible corresponding edge {2, 3, 1} does not belong to this tree. In T3 (the last tree
of the built R-vine graph), its single continuous edge {2, 3, 1, 4} represents D (2, 3 |1, 4) inLD and,
therefore, D (2, 4 |1, 3) , D (3, 4 |1, 3) inLD cannot be represented in this tree.

Another two R-vine graphs (Figure 2.9-(b)) could be generated from the same starting polytree
graph, in addition to the one shown in Figure 2.9-(a). In one R-vine graph, the edges of T2 would
be {2, 3, 1} and {2, 4, 1}, and that of T3 would be {3, 4, 1, 2} (all continuous), corresponding to
non-separations D (2, 3 |1), D (2, 4 |1), D (3, 4 |1, 2) inLD respectively. In the other R-vine graph,
the edges of T2 would be {2, 3, 1} and {3, 4, 1}, and that of T3 would be {2, 4, 1, 3} (all continuous),
corresponding to non-separations D (2, 3 |1), D (3, 4 |1), D (2, 4 |1, 3) inLD respectively.

Conclusions from Example 3 Three di�erent R-vine graphs, representing the same set of
relationships, can be generated from the same starting polytree graph. Algorithm 2.1
guarantees that all relationships they encode exist in the starting polytree graph.
Consequently, these R-vine graphs are an I-map and a D-map of the dependence model
associated with the starting polytree graph. Speci�cally, in the example described here, the
pairwise non-separations D (1, 2) , D (1, 3) , D (1, 4) , D (2, 4 |1) , D (3, 4 |1) , D (2, 3 |1, 4) inLD
encoded in the built R-vine graph correspond to (in)dependence relationships of the
dependence model associated with the starting polytree graph, namely D (X1, X2),
D (X1, X3), D (X1, X4), D (X2, X4 |X1 ), D (X3, X4 |X1 ), D (X2, X3 |X1, X4 ) inM .
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(a) From the polytree graph to the R-vine graph.

(b) Another two R-vine graphs.

Figure 2.9: Illustration of Example 3 (Scenario 3). (a) From the polytree graph to the R-vine graph,
using Algorithm 2.1: (From left to right, from top to bottom) Starting polytree graph; polytree
skeleton; T1 of the built R-vine graph encodes D (1, 2) , D (1, 3) , D (1, 4) inLD; weighted graphs
G; T2 encodes D (2, 4 |1) , D (3, 4 |1) inLD, whereas T3 encodes D (2, 3 |1, 4) inLD respectively.
(b) Another two R-vine graphs that could be built from the same starting polytree graph, in
addition to the one shown in (a): (On the left) Edges of T2 would be {2, 3, 1} and {2, 4, 1}, and that
of T3 would be {3, 4, 1, 2} (all continuous), corresponding to non-separations D (2, 3 |1), D (2, 4 |1),
D (3, 4 |1, 2) inLD respectively. (On the right) Edges of T2 would be {2, 3, 1} and {3, 4, 1}, and that
of T3 would be {2, 4, 1, 3} (all continuous), corresponding to non-separations D (2, 3 |1), D (3, 4 |1),
D (2, 4 |1, 3) inLD respectively. What is di�erent in these R-vine graphs with respect to the one
shown in (a) is depicted in blue.
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Algorithm 2.2 Procedure for building a polytree graph from an R-vine graph.

Input
R-vine graph with all edges in T1 continuous.

Output
G = (N,E) � Polytree graph.

1: Create LI and LD from the R-vine graph via R-separation.
for Edges in Tj , j ≥ 2, in the R-vine graph:

if 〈i, k,S〉:
1.1 Add I (i, k |S ) to LI .

else
1.2 Add D (i, k |S ) to LD.
2: Build the skeleton of G as T1 in the R-vine graph.
3: Direct the edges of the skeleton of G:

for I (i, k |S )G in LI :
if there is at least one undirected edge in the path between i and k with nodes of S in

between (without considering the edge direction):
3.1: Direct undirected edges in the path between i and k without creating head-to-head

connections.
end if

end for
for D (i, k |S )G in LD:

3.2: Set a node of S in the path between i and k as a head-to-head if the direction of the edges
related with previous separations are preserved. Edges involved in the head-to-head
connection are marked as �xed .

end for
return G

2.5.2 From R-vine Graphs to Polytree Graphs

Algorithm 2.2 presents the pseudo-code of a method capable of building a polytree graph G (the
target or the output graph) that encodes as many pairwise relationships as possible derived from
an R-vine graph (the starting or the input graph). This algorithm is described in the following.

Step 1 Create two lists LI and LD, which contain all pairwise separation I (i, k |S ) and non-
separation D (i, k |S ) relationships, respectively, derived from the R-vine graph via R-separation
(De�nition 19).

A for-loop runs through edges of the starting R-vine graph, from top to bottom in the hierarchy
such that, separations associated with continuous edges are added to LI (Step 1.1), and non-
separations associated to continuous edges are added to LD (Step 1.2).

It is worth noticing that, for building a polytree graph from an R-vine graph, it is required that
all edges of T1 are continuous, since a discontinuous edge implies a disconnection in the resulting
graph and, hence, no longer singly connected (see Section 1.9.3).

Step 2 Build the skeleton of the target polytree graph as T1 of the starting R-vine graph.
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Step 3 Edge direction of the skeleton is carried out in two phases. First, at Step 3.1, the algorithm
goes through separations I (i, k |S ) inLI (from lower to higher order separations, regarding the size
of the separating set), checking if undirected edges in the path between i and k (through nodes
in S) exist. If they do, undirected edges in that path are directed without creating head-to-head
connections. To ensure such a requirement, edges already directed in that path can be redirected
in the opposite direction, if necessary.

At Step 3.2, the algorithm goes through non-separations in LD (from lower to higher order
relationships) in order to orient the corresponding edges as follows: Edges belonging to the path
between i and k with nodes of S in between (without considering the edge direction) are directed
in such a way that it allows the creation of at least one head-to-head node of S, only if the direction
of the edges related with previous separations are preserved. Edges involved in such a head-to-head
connection are marked as �xed , so that they cannot be redirected again.

When Step 3 is completed, all edges of the polytree skeleton become directed. As in R-vine
graphs, each pair i and k appears once as a conditioned set (either as a separation or a non-
separation), all skeleton paths have been traversed more than once for edge direction according to
LI and LD.

In conclusion:

1. Building a polytree graph from an R-vine graph requires that edges of T1 are continuous to
ensure that the resulting graph is singly connected.

2. In general, multiple polytree graphs can be built from the same starting R-vine graph. This is
because di�erent polytree connections can represent the same separation set (see Section 1.9.3
for di�erent connections in polytree graphs).

3. All separations encoded in the initial R-vine graph can be incorporated in the built polytree
graph because of the following facts: Separations in the starting R-vine graph are a subset
of those in the built polytree graph. Moreover, separations in LI are inserted before non-
separations in LD, and con�icts can be resolved using the edge redirection strategy. In general,
not all non-separations existing in the starting R-vine graph can be represented in the built
polytree graph, and it can encode relationships not represented in the starting R-vine graph.

4. Consequently, the built polytree graph using Algorithm 2.2 is neither an I-map nor a D-map
of the dependence model associated with the starting R-vine graph.

These conclusions are illustrated in Examples 4-6 using Figures 2.10-2.12 respectively. In these
�gures, the starting R-vine graph is framed in the gray rectangle, whereas head-to-head connections
in polytree graphs appear in gray as well.

Example 4 From the R-vine graph to the polytree graph (Algorithm 2.2 and Figure 2.10-(a)).
L1 and L2 derived via R-separation (Step 1) from the �ve-dimensional R-vine graph in

Figure 2.10-(a) are given by

LI = [I (2, 5 |4) , I (3, 5 |2, 4)] .

LD = [D (1, 2) , D (2, 3) , D (2, 4) , D (4, 5) ,
D (1, 3 |2) , D (3, 4 |2) ,
D (1, 4 |2, 3) ,
D (1, 5 |2, 3, 4)] .
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(a) From the R-vine graph to the polytree graph.

(b) Another polytree graph.

Figure 2.10: Illustration of Example 7. (a) From the R-vine graph to the polytree
graph, using Algorithm 2.2: (From left to right, from top to bottom) Starting R-
vine graph; skeleton of the built polytree graph as T1; edge direction for representing
I (2, 5 |4) , I (3, 5 |2, 4) inLI and D (1, 3 |2) , D (3, 4 |2) , D (1, 4 |2, 3) inLD in the built polytree
graph step by step. D (1, 5 |2, 3, 4) inLD cannot be represented in it, and I (1, 5 |2, 3, 4) not inLI
is encoded instead. (b) Another polytree graph that could be built from the same starting R-vine
graph, in addition to the one shown in (a), obtained by changing the fork connection 2← 4→ 5 to
the chain connection 2 ← 4 ← 5. What is di�erent in this polytree graph with respect to the one
shown in (a) is depicted in blue.
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The �rst tree of the R-vine graph turns into the skeleton of the polytree graph (Step 2).
Therefore, undirected edges associated to D (1, 2) , D (2, 3) , D (2, 4) , D (4, 5) inLD are inserted in
the target polytree graph, whose skeleton has the undirected edges 1− 2, 2− 3, 2− 4 and 4− 5.

Separations I (2, 5 |4) , I (3, 5 |2, 4) inLI are represented in the target polytree graph as 2 →
4 → 5 and 3 → 2 → 4 → 5 respectively (Step 3.1). In order to represent D (1, 3 | 2) inLD,
node 2 is turned into a head-to-head node in the connection 1 → 2 ← 3 by reversing 2 → 3
as 2 ← 3. Analogously, for representing D (3, 4 |2) inLD, node 2 is turned into a head-to-head
node in the connection 3 → 2 ← 4 by reversing 2 → 4 as 2 ← 4. Likewise, for representing
D (1, 4 |2, 3) inLD, again, 2 becomes a head-to-head in the connection 1 → 2 ← 4, with no need
to direct its two edges, since they were directed and marked as �xed by the two separations
set before (Step 3.2). Notice that 3 is not on the path (undirected) path between 1 and 4.
Finally, D (1, 5 |2, 3, 4) inLD cannot be represented in the built polytree graph, while the opposite
I (1, 5 |2, 3, 4) not inLI is represented instead. Having completed the edge direction phase, the
resulting polytree graph speci�es separations and non-separations which do not exist in the starting
R-vine graph, for instance, I (1, 5), I (2, 5), I (3, 5), I (1, 5 |4), I (3, 5 |4), I (1, 5 |2, 4) not inLI and
D (1, 5 |2), I (3, 5 |2) not inLD respectively.

Another polytree graph could be built from the same starting R-vine graph, in addition to the
one shown in Figure 2.10-(a), obtained by changing the fork connection 2 ← 4 → 5 to the chain
connection 2← 4← 5, as shown in Figure 2.10-(b).

Conclusions from Example 4 Two di�erent polytree graphs, representing the same set of
relationships, can be generated from the same starting R-vine graph with Algorithm 2.2.
This is related with the edge direction, i.e., although the fork and chain connections are
graphically di�erent, they represent the same set of separations. Moreover, all separations
derived from the starting R-vine graph can be speci�ed in the built polytree graph, but the
opposite cannot be speci�ed. In addition, since the built polytree graph encodes separations
and non-separations that do not exist in the starting R-vine graph, while leaving out a non-
separation that does exist in the starting R-vine graph, the built polytree graph is neither an
I-map nor a D-map of the dependence model associated with the starting R-vine graph.

Example 5 From the R-vine graph to the polytree graph (Algorithm 2.2 and Figure 2.11).
In this example, a distinctive feature of the starting R-vine graph is that all edges are continuous,

representing only non-separations. The derived L1 and L2 via R-separation (Step 1) from the �ve-
dimensional R-vine graph (indeed, a C-vine graph) in Figure 2.11 are given by

LI = ∅.

LD = [D (1, 2) , D (1, 3) , D (1, 4) , D (1, 5) ,
D (2, 3 |1) , D (2, 4 |1) , D (2, 5 |1) ,
D (3, 4 |1, 2) , D (3, 5 |1, 2) ,
D (4, 5 |1, 2, 3)] .

The �rst tree of the R-vine graph turns into the skeleton of the polytree graph (Step 2).
Therefore, undirected edges associated to D (1, 2) , D (2, 3) , D (2, 4) , D (2, 5) inLD are inserted in
the target polytree graph, whose skeleton has the undirected edges 1− 2, 1− 3, 1− 4 and 1− 5.

In order to represent the �rst order relationships, D (2, 3 |1), D (2, 4 |1) , D (2, 5 |1) inLD in the
target polytree graph, the corresponding head-to-head connections 2 → 1 ← 3, 2 → 1 ← 4 and
2→ 1← 5 are created, where 1 is head-to-head node. In this way, the built polytree graph has all its
edges directed, and the separations D (3, 4 |1, 2) , D (3, 5 |1, 2) , D (4, 5 |1, 2, 3) inLD encoded in it
(Step 3.2). This is because they share the same head-to-head node as well as directed edges in head-
to-head connections created before. Having completed the edge direction phase, the built polytree
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Figure 2.11: Illustration of Example 5. From the R-vine graph to the polytree graph, using
Algorithm 2.2: (From left to right, from top to bottom) Starting R-vine graph; skeleton of the built
polytree graph as T1; edge direction for representing D (2, 3 |1), D (2, 4 |1), D (2, 5 |1), D (3, 4 |1, 2),
D (3, 5 |1, 2), D (4, 5 |1, 2, 3) inLD in the built polytree graph step by step.
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graph is able to encode all non-separations derived from the starting R-vine graph (Figure 2.11),
but also others that are not represented in the starting R-vine graph, for instance, D (3, 4 |1),
D (3, 5 |1), D (2, 3 |1, 4, 5) not inLD.

Conclusions from Example 5 When the starting R-vine graph has a C-vine structure with all
edges continuous, i.e., all relationships are of non-separation, all of them can be codi�ed in the
built polytree graph. This is because in a C-vine graph, the index that acts as the root node
in T1 belongs to the separating set of all non-separations, becoming the single head-to-head
node in the built polytree graph. This particularity prevents the emergence of con�icts when
orienting edges, as all can be directed towards the same head-to-head node. However, since
the built polytree graph encodes other separations and non-separations which do not exist in
the starting R-vine graph, the built polytree graph is neither an I-map nor a D-map of the
dependence model associated with the starting R-vine graph.

Example 6 From the R-vine graph to the polytree graph (Algorithm 2.2 and Figure 2.12-(a)).
A distinctive feature of the starting R-vine graph is that it is truncated at T1. This implies

that in T2, T3 and T4 all edges are dashed, representing only separations. L1 and L2 derived via
R-separation (Step 1) from the �ve-dimensional R-vine graph in Figure 2.12-(a) are given by

LI = [I (2, 3 |1) , I (2, 4 |1) , I (2, 5 |1) ,
I (3, 4 |1, 2) , I (3, 5 |1, 2) ,
I (4, 5 |1, 2, 3)] .

LD = [D (1, 2) , D (1, 3) , D (1, 4) , D (1, 5)].

The �rst tree of the R-vine graph turns into the skeleton of the polytree graph (Step 2).
Therefore, undirected edges associated to D (1, 2) , D (1, 3) , D (1, 4) , D (1, 5) inLD are inserted in
the target polytree graph, whose skeleton has the undirected edges 1− 2, 1− 3, 1− 4 and 1− 5.

First, the separations I (2, 3 |1) , I (2, 4 |1) , I (2, 5 |1) inLI from T2 are represented in the target
polytree graph through the fork connections 2 ← 1 → 3, 2 ← 1 → 4 and 2 ← 1 → 5 respectively.
The other three separations I (3, 4 |1, 2) , I (3, 5 |1, 2) , I (4, 5 |1, 2, 3) inLI , are encoded in the target
polytree graph through three fork connections, 3← 1→ 4, 3← 1→ 5 and 4← 1→ 5 respectively,
with no need to direct edges involved in them, because they are already directed (Step 3.1). When all
separations of LI have been inserted, the edge direction phase ends, since non-separations, coming
only from T1, are encoded by edges joining adjacent nodes. Having completed the edge direction
phase, the polytree graph encodes all non-separations derived from the starting R-vine graph and no
others, which is evidenced by the absence of head-to-head connections. On the other hand, the built
polytree graph is able to encode all separations derived from the starting R-vine graph, but also
others which do not exist in it, for instance, I (2, 3), I (3, 4), I (4, 5), I (3, 4 |1) , I (4, 5 |1) not inLI .

Other four polytree graphs can be built from the same starting R-vine graph, in addition to
the one shown in Figure 2.12-(a), obtained by interchanging between fork and chain connections,
as shown in Figure 2.12-(b).

Conclusions from Example 6 Five di�erent polytree graphs, representing the same set of
relationships, can be generated from the same initial R-vine graph with Algorithm 2.2.
Moreover, when the starting R-vine graph is truncated at T1, all non-separations and
separations derived from the starting R-vine graph are represented in the built polytree graph:
Unlike Examples 4 and 5, here all non-separations come only from T1, so that each edge of the
built polytree graph represents one of them. On the other hand, all non-separations encoded
in the remaining trees of the starting R-vine graph are encoded in the built polytree graph by
inserting fork and chain connections, although others not in the starting R-vine graph also
emerge. Consequently, since all non-separations encoded in the built polytree graph exist
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(a) From the R-vine graph to the polytree graph.

(b) Another four polytree graphs.

Figure 2.12: Illustration of Example 6. (a) From the R-vine graph to the polytree graph, using
Algorithm 2.2: (From left to right, from top to bottom) Starting R-vine graph; skeleton of the built
polytree graph as T1; edge direction for representing I (3, 4 |1, 2) , I (3, 5 |1, 2) , I (4, 5 |1, 2, 3) inLI
in the built polytree graph step by step. (b) Another four polytree graphs that can be built from
the same starting R-vine graph, in addition to the one shown in (a), obtained by interchanging
between fork and chain connections. What is di�erent in these polytree graphs with respect to the
one shown in (a) is depicted in blue.
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in the starting R-vine graph, the built polytree graph is a D-map of the dependence model
associated with the starting R-vine graph. Moreover, since the built polytree graph encodes
other separations which do not exist in the starting R-vine graph, the built polytree graph is
not an I-map of the dependence model associated with the starting R-vine graph.

2.6 Summary

In this chapter, a graphical separation criterion for R-vines, called R-separation, has been de�ned.
The proposed criterion facilitates the enumeration of (non-)separation relationships encoded in
the R-vine graph with enhanced expressiveness by examining its topology and the edge types. The
derived graphical relationships correspond to (un)conditional pairwise (in)dependence relationships
in the associated R-vine copula. Moreover, from the R-separation criterion, a theorem of R-vine
dependence maps is enunciated and it has been proved that every R-vine graph is an I-map and a
D-map of the associated R-vine copula, but not necessarily a P-map, since from the R-vine graph,
it is not possible to infer (non)separations other than those represented by its edges. Summarizing,
R-vines do not allow to de�ne a graphical separation concept that yields a complete independence
map. We further analyzed di�erent R-separation properties. Findings on this concept include the
following: (i) It satis�es symmetry; (ii) it does not satisfy strong transitivity, weak transitivity nor
strong union; (iii) weak union, decomposition, contraction and intersection cannot be veri�ed, since
R-vine graphs represent pairwise relationships only, and these properties involve sets of indices as
the conditioned set.

Furthermore, the relationship between graphical representations of R-vines and polytrees has
been analyzed. The focus has been on pairwise separations and non-separations encoded in one
graph that correspond with the set of (un)conditional pairwise (in)dependencies of the dependence
model associated with the other graph. For this purpose, two algorithms have been designed: One
algorithm that aims to induce the R-vine graph that encodes as many pairwise relationships as
possible derived from the polytree graph. The other algorithm achieves the same goal but in reverse,
from the R-vine graph to the polytree graph. The former algorithm is capable of building an R-
vine graph that encodes all separation and non-separation relationships derived from the starting
polytree graph. Therefore, the R-vine graph is both an I-map and a D-map of the dependence
model associated with the starting polytree graph. The other algorithm can produce the polytree
graph that represents all separations derived from the starting R-vine graph, but not all the non-
separations. In addition, graphical properties that favor the generation of multiple polytree graphs,
representing the same set of separations and non-separations, have been identi�ed. However, since
the built polytree graph can represent additional non-coded relationships in the starting R-vine
graph, the built polytree is neither an I-map nor a D-map of the dependence model associated with
the starting R-vine graph.





Chapter 3

Learning the Graph Structure of

Regular Vine-Copulas from

Dependence Lists

3.1 Introduction

Typically, greedy heuristics for learning the graph structure of R-vines from data aim to maximize
the strengths of the dependencies captured by the �rst trees using pairwise dependence measures
computed from the dataset [1,36,42,82]. We adopt a di�erent approach by designing optimization
strategies for building R-vine graphs from dependence lists, as opposed to computing them
straightforward from the dataset. In the proposed approach, only the graph structure is built
and, therefore, the designed strategies do not require the simultaneous estimation of pair-copulas,
which is usual in other heuristics [1, 42].

Dependence lists are a way for building probabilistic models [27]. In some applications, these
lists can be provided directly by experts in the domain of the problem being addressed [9, 27, 83].
However, it should be taken into account that the proposed method could be used to learn the
graph structure of R-vines from a dependence list that is also generated from data, or using the
joint factorization associated to a Bayesian network as in [83], or even derived from other GMs by
applying the appropriate separation concept. Such is the case presented in Chapter 2, where the
concepts of R-separation (as formulated in this thesis) and D-separation are used to extract the set
of pairwise relationships encoded in R-vine graphs and polytree graphs respectively.

In the proposed approach, these lists can contain both dependence and independence
relationships. However, R-vines, unlike other graphical models (e.g., Bayesian and Markov
networks), can only represent explicit (un)conditional pairwise (in)dependencies. In other words,
other possible (in)dependence relationships, not explicitly represented in the graph, cannot be
derived from it. Therefore, and without loss of generality, we assume that the dependence list
used for learning the graph structure of R-vines only contains (un)conditional pairwise dependence
relationships D (Xi, Xk |XS ), since the goal of the proposed strategies is to maximize the number
of edges {i, k,S} corresponding to relationships in the dependence list.

Speci�cally, the research question we deal with is an optimization problem which aims to build
the R-vine graphs that incorporate the largest number of dependence relationships given in a
dependence list. This task faces several challenges. One of them concerns the (potentially) large
number of possible R-vine graphs, which grows exponentially with the number of variables. Indeed,

52
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the search space is so huge (
(
n
2

)
· (n− 2)! · 2(n−2

2 ) for n dimensions [91]) that the brute-force search
is only feasible for a few number of variables. The graphical constraints of the R-vine models as
well as possible incompatibilities among the relationships belonging to the dependence list present
a further challenge for the search strategies that should ensure that the generated solutions are
feasible.

Two approaches are proposed for solving the optimization problem posed. The �rst approach
is a 0-1 linear programming formulation that builds truncated R-vines with only two trees. The
second approach is a genetic algorithm (GA) [71] that is able to learn complete and truncated R-
vine graphs. The designed GA uses crossover and mutation operators speci�cally designed to ensure
that the resulting solutions are feasible. Furthermore, extensive numerical experiments are carried
out to assess the e�ectiveness of the designed evolutionary algorithm in solving the optimization
problem posed.

This chapter is organized as follows. Sections 3.2 and 3.3 introduce the 0-1 linear programming
and GA-based approaches. Section 3.4 describes the experimental framework and discusses
numerical results in the context of the second approach, and Section 3.5 provides the conclusions
of this chapter.

3.2 Linear Programming Approach

In this section, we present a 0-1 linear mathematical approach to address the problem of learning
R-vine graphs that represent the largest number of dependence relationships in a dependence list.
This approach works for R-vines graphs with two levels, therefore, the dependence list, denoted by
L, is comprised of unconditional and order-one conditional dependence relationships of the form
D (Xi, Xk) and D (Xi, Xk | Xs) respectively. Notice that in the expressions of this section, we use
s instead of S, since s represents a single index in all of them.

Let each possible edge in T1 be associated to one binary variable yi,k and each possible edge
in T2 be associated to one binary variable zi,k,s, where i 6= s, k 6= s, i < k, i = 1, . . . , n − 1,
k = i+ 1, . . . , n, and s = 1, . . . , n. The meaning of the variables is as follows:

yi,k =

{
1 if the edge {i, k} is in the tree T1
0 otherwise

zi,k,s =

{
1 if the edge {i, k, s} is in the tree T2
0 otherwise

(3.1)

For the dependencies in L, we assume that ∀i, k, i < k, since that D (xi, xk) = D (xk, xi) as well
as D (xi, xk |xs ) = D (xk, xi |xs ).

A formal de�nition of the linear programming problem posed is as follows:

max
∑

i,k|D(xi,xk)∈L

yi,k +
∑

i,k,s|D(xi,xk|xs)∈L

zi,k,s (3.2)

subject to

yi,k +

n∑
s=1,i6=s,k 6=s

zi,k,s ≤ 1,∀i, k, i < k (3.3)
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n−1∑
i=1

n∑
k=i+1

yi,k = n− 1 (3.4)

∑
i,k∈M

yi,k ≤ |M | − 1,∀M ⊆ {1, . . . , n} , i < k (3.5)

n−2∑
i=1

n−1∑
k=i+1

n∑
s=1

zi,k,s = n− 2 (3.6)

∑
{i,s},{k,s}∈M1,i<k

zi,k,s ≤ |M1| − 1, (3.7)

∀M1 ⊆ {{a, b} | a < b, a = 1, . . . , n− 1, b = a+ 1, . . . , n}

2 · zi,k,s ≤ (ys,i + ys,k) ,∀i, k, s, i 6= s, k 6= s, i < k (3.8)

yi,k ∈ {0, 1} , ∀i < k (3.9)

zi,k,s ∈ {0, 1} , ∀i 6= s, k 6= s, i < k (3.10)

Note that zi,k,s = 1 occurs if the edge {i, k} is not in the tree T1 and there are two edges {i, s}
and {k, s} in T1. The triples (i, k, s) that satisfy (yi,s = 1, yk,s = 1, zi,k,s = 1) serve to de�ne the
edges {i, k, s} of T2. This is so because these triples do not form a cycle in T1 (zi,k,s = 1) and each
triple groups two edges of T1 that have a common node in T1.

The objective function of the optimization problem (3.2) is subject to several constraints. (3.3)
means that an edge can not be part of the tree T1 and, at the same time, join two other edges
in T1. Moreover, (3.4), and (3.5) (together with (3.3)) guarantee that variables yi,k represent a
tree T1. Speci�cally, (3.4) means that the number of edges in T1 is n − 1. The inequality (3.5)
enforces the resulting graph to not contain any cycles, which is, together with the enforced number
of edges, also a su�cient condition for trees. On the other hand, (3.6) and (3.7) guarantee that
the zi,k,s represent a tree T2. Speci�cally, (3.6) means the number of edges in T2 is n − 2, and
(3.7) ensures that the resulting graph does not contain any cycles. The ful�llment of the proximity
condition relating T1 and T2 is guaranteed by (3.8), which reinforces the condition that whenever∑n
k=1 zi,k,s = 1 then there exist two variables ys,i = 1 and ys,k = 1, which correspond to two edges

with a common node in T1. (3.9) and (3.10) mean this is a binary problem1. In the proposed
formulation, the number of constraints of the linear program increases exponentially.

3.3 Evolutionary Approach

The evolutionary approach used for building R-vine graphs that incorporate the largest possible
number of dependencies in L is based on GAs. Over the following sections, we present how R-vine
graph solutions are encoded, the �tness function used to quantify the quality of each solution, and
the genetic operators used to generate new solutions.

1More speci�cally, it is a 0-1 problem with linear restrictions and a linear objective function.



CHAPTER 3. LEARNING R-VINE GRAPHS FROM DEPENDENCE LISTS 55

44

321 1,2 2,3

2,4

2312 1,3,2 4243,4,2

132

T1

T2

T3 3421,4,2,3

1,3,2 3,4,2

1,4,2,3

1,2 2,3 2,4

1,2 2,3 2,4 1,3,2 3,4,2 1,4,2,3

Figure 3.1: An R-vine graph solution is encoded by a list of edges, where each edge is represented by
a tuple of integers, each one representing an index in I. For instance, the list of tuples associated
to the R-vine graph solution of this picture, which has six edges, contains six tuples, namely
(1, 2) , (2, 3) , (2, 4) , (1, 3, 2) , (3, 4, 2) , (1, 4, 2, 3).

3.3.1 Representation

In the designed GA, each solution represents an R-vine graph encoded as a list of edges, where
each edge {i, k,S} is represented by a tuple of integers, each representing an index in I. The list
of tuples consists of n (n− 1) /2 tuples, where the �rst n− 1 tuples correspond to the edges of T1;
the following n− 2, to the edges of T2, and so on, until the last tuple representing the one edge of
Tn−1. Figure 3.1 shows a three-dimensional R-vine graph represented by a list of six tuples.

3.3.2 Fitness Function

Let yi,k,S be a binary variable associated to an edge {i, k,S}. The �tness function of the solution
R is written by

f (R) =
∑

i,k,S|D(xi,xk|xS)∈L

yi,k,S , (3.11)

where

yi,k,S =

{
1 if {i, k,S} ∈ R
0 otherwise

This is a maximization problem, as the goal of the search is to �nd the solutions that represent
the largest number of dependence relationships given in L. Notice that the �tness function goes
over the dependencies in L to count how many of them are captured by edges in R.
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Algorithm 3.1 Procedure for building an initial R-vine graph solution from L in the initial
population. This procedure uses the following edge-prioritization-strategy: high weights are
assigned to possible edges associated with dependencies in L, and low weights to other possible
edges. The term possible edges refers to the edges of the graph that meet the proximity condition.

Inputs
n - Number of indexes.
L - A dependence list.

Outputs
R - An initial R-vine graph solution.

for j = 1 : n− 1:
if j = 1:

1: Build a complete graph of n nodes.
else

2: Build a graph of n− j + 1 nodes that contains
all possible edges from Tj−1.

end if
3: Assign high weights to the edges of the graph associated with L

and low weights to the rest of the edges.
4: Built a MST Tj from the weighted graph.

end for
return R = (T1, . . . , Tn−1)

3.3.3 Initialization

In order to generate the initial population, R-vine graph solutions encoded as shown in Figure 3.1
have to be generated. The procedure for generating an initial R-vine graph solution is inspired by
the Top-Down Greedy Heuristic (TDGH) for learning R-vines from data introduced in [42] (see
Algorithm 1.1). This heuristic relies on individually optimizing the tree at each level, while trying
to recover the strongest dependencies in the dataset. Departing from a complete graph, where the
weights of the edges represent empirical pairwise dependence values (for instance, Kendall's tau or
BIC values) the algorithm starts �nding the maximum spanning tree (MST) of n nodes (which is
the tree that maximizes the sum of empirical pairwise dependencies) using Prim's algorithm [105].
Subsequent trees are also built using the MST method. However, while in the �rst step the heuristic
starts from a complete graph, in subsequent steps it departs from a graph that only contains edges
that meet the proximity condition (not a complete graph in general). Such a heuristic requires that
at each level the pair-copulas and their parameters are simultaneously estimated before moving on
to the next tree.

Indeed, what is new in Algorithm 3.1 for generating an initial R-vine graph solution in
comparison with the TDGH is threefold: (i) The R-vine graph is learned from a dependence
list, not from data. (ii) It implements a strategy that assigns high weights to those possible edges
associated with dependencies in L and low weights to the rest, instead of using as weights empirical
pairwise dependence values. Such weights are randomly generated in R+. (iii) It does not require
pair-copula �tting.

Algorithm 3.1 can be used to build truncated R-vine graph solutions by simply executing the
for loop for a certain truncation level 1 ≤ t ≤ n− 1.
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3.3.4 Genetic Operators

We describe the selection, crossover and mutation operators designed to produce new R-vine graph
solutions.

Selection

We used truncation selection where a percentage of the best solutions are selected to be parents in
the next generation.

Crossover

Designing a crossover operator for R-vine graphs is a challenging task because, as previously
noted, the hierarchical nature of these models implies that the structure of each tree depends
on the previous one. Consequently, a modi�cation in one tree must be propagated throughout the
hierarchy, in such a way that the resulting structure is an R-vine graph.

Taking into account this peculiarity, the designed crossover method is accomplished in several
steps, graphically illustrated in Figure 3.2, namely choosing, recombining, and rebuilding.

The crossover operator uses a single parameter, denoted by d < n − 1, which stands for the
number of edges of the maximum weight subtrees extracted from each individual parent solution.

We illustrate this process for one of the two new solutions generated by the crossover method in
Figure 3.2. The illustration for the second solution is analogous. In this �gure, edges associated to
dependencies in L are represented by solid lines; otherwise, they are represented by dashed lines.
Furthermore, we set the number of variables to n = 4, the crossover parameter to d = 2, and
assume the possible edges associated with dependencies in L are given by

{1, 2} , {1, 3} , {1, 4} , {2, 3} , {3, 4}︸ ︷︷ ︸
T1

, {2, 3, 1}︸ ︷︷ ︸
T2

, {2, 4, 1, 3}︸ ︷︷ ︸
T3

Choosing The crossover method starts by assigning weight values to the edges of the �rst tree
T1 of the individual solution RA. These values are randomly generated in R+ and assigned in the
following way: Weight values assigned to edges associated to dependencies in L are larger than
those assigned to the rest of the edges. Then, the MST method chooses the subtree of maximum
weight of d edges, SubT , from T1 of RA.

In Figure 3.2-(Choosing), we use d = 2 and assume that the edges of SubT are {1, 2} , {1, 3}.
The nodes of SubT are shaded.

Recombining The goal of this phase is to build the �rst tree of a new solution, Rnew, by
recombining structures from the �rst tree of two individual solutions RA and RB . We proceed
as follows:

1. Consider a graph that contains the nodes and the edges that meet the following:

{i, k} if i /∈ SubT and k /∈ SubT
{i, k} if i ∈ SubT and k /∈ SubT or i /∈ SubT and k ∈ SubT
{i, k} if i ∈ SubT and k ∈ SubT and {i, k} ∈ SubT

(3.12)

That is, (3.12) is a complete graph except for the sub-graph generated by the nodes in SubT ,
for which the tree structure coming from RA is kept. The weight values of this graph are
randomly generated in R+ and assigned in the following way:
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• High weight values to the edges associated to dependencies in L that also belong to RB .
This ensures that the �rst tree of Rnew inherits structures from both parent solutions,
which also determine the structure of the subsequent trees of the new solution.

• Intermediate weight values to the edges associated to dependencies in L that are not in
RB .

• Low weight values to the rest of edges.

High weight values are higher than intermediate weight values, which in turn are higher than
low weight values.

2. Departing from the graph with all weights assigned and �xed edges of SubT , the MST method
�nds the �rst tree T1 of Rnew.

In Figure 3.2-(Recombining), we assume that the edges of T1 of Rnew are {1, 2}, {1, 3}, {1, 4},
where the �rst two edges come from SubT ∈ RA and the last one, from RB .

Rebuilding The subsequent n − 2 trees of Rnew are rebuilt sequentially similar to the previous
constructions: At each level (except for the last one), a tree of maximum weight is built departing
from a weighted graph that contains all possible edges using the MST method. Weight values of
this graph are randomly generated in R+ and assigned in the following way: Weight values assigned
to edges associated to dependencies in L are larger than those assigned to the rest of the edges.

In Figure 3.2-(Rebuilding), we assume that the two edges of T2 of Rnew are {2, 3, 1}, {2, 4, 1}
where only the �rst one is associated with a dependence in L. Notice that, the insertion of {2, 4, 1}
in T2 prevents the edge {2, 4, 1, 3} (which is associated with a dependence in L) from being included
in the last tree T3 of Rnew. The only edge of T3 is {3, 4, 1, 2}.

Mutation

The mutation operator uses a single parameter, h, which indicates that trees at levels lower than
h, i.e., T1, . . . , Th−1, are not modi�ed; while trees that are at levels higher or equal to h, i.e.,
Th, . . . , Tn−1, are rebuilt. At each level (except for the last one), the MST method departs from
a weighted graph that contains all the edges that meet the proximity condition (not complete in
general). The weights of this graph are randomly generated in R+ and assigned in the following
way: Weight values assigned to edges associated to dependencies in L are larger than those assigned
to the rest of the edges. It is worth noticing that, for the mutation to have a chance of impacting
the population diversity, the value of h must be less than or equal to the number of variables in
the conditioning set of the highest-order dependencies in L.

Figure 3.3 illustrates the mutation operator, for h = 2, applied on Rnew, the solution previously
generated by the crossover method. The �rst tree of the mutated solution, Rmutated, is the same
as the �rst tree of Rnew, while the subsequent two trees are rebuilt. The edges of T2 are {2, 3, 1},
{3, 4, 1}, where the �rst one is associated with a dependence in L. The only possible edge of T3 is
{2, 4, 1, 3}, which is in turn associated with a dependence in L.

3.4 Experiments

We conduct numerical experiments to analyze the e�ectiveness of the evolutionary approach in
solving the optimization problem posed. This section is divided in two parts: we �rst outline the
experimental framework and then present and discuss the obtained numerical results.
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Figure 3.2: Illustration of the crossover operator. Edges associated to dependencies in L are
represented by solid lines; otherwise, they are represented by dashed lines. In the choosing phase,
we use d = 2 and assume that the edges of SubT are {1, 2} , {1, 3}. The nodes of SubT are shaded.
In the recombining phase, we assume that the edges of T1 of Rnew are {1, 2}, {1, 3}, {1, 4}, where
the �rst two edges come from SubT ∈ RA, and the last one from RB . In the rebuilding phase,
the two edges of T2 of Rnew are {2, 3, 1}, {2, 4, 1} where only the �rst one is associated with a
dependence in L. Notice that, the insertion of {2, 4, 1} in T2 prevents the edge {2, 4, 1, 3} (which is
associated with a dependence in L) from being included in the last tree T3 of R

new. The only edge
of T3 is {3, 4, 1, 2}. The �tness of the new solution is f (Rnew) = 4.
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Figure 3.3: Illustration of the mutation operator, for h = 2, applied on Rnew. Edges associated to
dependencies in L are represented by solid lines; otherwise, they are represented by dashed lines.
The �rst tree of the mutated solution, Rmutated, is the same as the �rst tree of Rnew, while the
subsequent two trees are rebuilt: The edges of T2 are {2, 3, 1}, {3, 4, 1}, where the �rst one is
associated with a dependence in L. The only possible edge of T3 is {2, 4, 1, 3}, which is in turn
associated with a dependence in L. The �tness of the mutated solution is f

(
Rmutated

)
= 5. In this

example, the solution generated by the mutation is better than the original solution, with �tness
f (Rnew) = 4.
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3.4.1 Experimental Framework

Since there are no antecedents on the use of GAs in the optimization problem addressed here,
a benchmark or baseline method (BM) is designed in order to evaluate the e�ectiveness of the
designed GA compared to the BM. The BM is similar to the method that generates the solutions
of the initial population in the designed GA, where no genetic operators are involved, hence it can
be seen as a fairly basic procedure to solve the optimization problem posed.

In order to evaluate the algorithms, we propose two types of problems based on two types of
dependence lists: feasible and unfeasible, according to whether the dependencies in L are or not
compatible with an R-vine graph. To generate these lists, the following two steps are carried out:

Step 1 Build an R-vine graph: T1 is obtained from a complete weighted graph over n nodes, where
the weights of its edges are values randomly generated in R+. Departing from this graph, T1
is found using the MST method. Subsequent trees T2, T3, . . . are also built using the MST
method on graphs over n − 1, n − 2, . . . nodes, respectively, containing the edges that meet
the proximity condition, which are labeled with weight values randomly generated in R+.

Step 2 Create a (feasible or unfeasible) dependence list using the R-vine graph built in the previous
step as follows:

Feasible dependence list A subset of the dependence relationships represented by the
edges of the R-vine graph is chosen and included in L. An optimal solution is the R-vine
graph that encodes all the relationships contained in the feasible dependence list, and the
optimal �tness value is the number of dependencies in L.

It is worth noticing that, if the feasible list contains the full set of dependence relationships
that a complete R-vine graph can represent, then the optimal solution corresponds, precisely,
to that graph, and the optimal �tness value is n (n− 1) /2. In this case, the optimal solution
can be recovered by the BM. However, it should be pointed out that in real-world applications
(especially in high dimensions), the complete dependence list is not only unlikely to be
available, but actually not necessary. In addition to the fact that for building simple models,
such as truncated ones, it is enough that the dependence list contains a few relationships
associated with the �rst trees in the R-vine hierarchy.

Unfeasible dependence list These lists can be generated in di�erent ways. For instance,
by randomly generating tuples, mixing lists from di�erent R-vine graphs, or combining the two
previous strategies. Therefore, the lists created in these ways can have more than n (n− 1) /2
dependencies. When working with unfeasible lists, both the optimal solution and the optimal
�tness value are unknown, which prevents us from accurately assessing how good the best
generated solution is.

To alleviate this scenario, we propose a strategy that provides a lower bound for the optimal
�tness value. It consists of joining in L two feasible lists created from two di�erent original R-
vine graphs. Both graphs must have the same dimension and the same number of trees. Each
of these lists contains a percentage of dependencies represented as edges by the corresponding
R-vine graph. The lower bound of the optimal �tness value is the number of relationships in
the longer dependence list.

We set n = 50, 100, 150 variables. To ensure a fair comparison between the algorithms, parameter
values for the genetic operators are selected as follows: The crossover parameter d, which indicates
the size of the sub-graph extracted from the �rst tree of one parent solution, is set as a ratio
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according to the size of that �rst tree. The crossover ratio is denoted by dratio. The mutation
parameter h is set as a ratio of the n − 1 trees that comprise the R-vine graph solutions. The
mutation ratio is denoted by hratio. After preliminary experiments, we set dratio = 30, 50, 70%
with respect to the number of edges of the �rst tree of the R-vine graph solution (a small, medium
and large crossover ratio); and hratio = 50, 70% with respect to the number of trees of the R-vine
graph solution. We use elitism, where the best two solutions of each generation are guaranteed a
place in the next generation. Additional parameters for the GA aremaxGen = 100 as the maximum
number of generations; and N = 100 as the population size.

The optimization algorithm stops when it reaches at least one of the following stopping criteria:
The optimum is found; the best �tness function value found over 10 successive generations remains
constant; and the maximum number of evaluations is reached, which is given by maxGen ·N .

The number of independent runs of the GA for the same dependence list and parameter setting
is 30. The metrics used to evaluate the performance of the GA are the average of the �tness value
of the best solutions found in each run expressed as a percentage of the number of dependencies in
L (%Fitness); the average of the total number of function evaluations required to reach the best
solution found in each run (numEvals); the number of times the optimum is found in all the runs
(numOpt) when the dependence list is feasible; and the number of times the lower bound is either
reached or exceeded in all the runs (numBnd) when the dependence list is unfeasible.

The BM is run 10000 times for the same dependence list. Notice that we have set the number
of evaluations performed by the BM equal to the maximum number of evaluations that could be
performed by the GA. The metric used to evaluate the e�ectiveness of the BM is the average of
the �tness value of solutions built in each execution expressed as a percentage of the number of
dependencies in L (%Fitness). The metrics numEvals, numOpt, and numBnd used to evaluate
the e�ectiveness of the GA do not apply to the BM. Instead, we report how many times the BM
builds the optimal R-vine graph solution.

3.4.2 Numerical Results

In this section, we focus on three main topics: First, we analyze the e�ectiveness of the proposed
evolutionary approach through a comparison between the BM and the GA. In a second step, we
explore possible scenarios that allow the GA to converge to sub-optimal solutions and, �nally, we
analyze the robustness of the GA.

3.4.2.1 Comparison Between GA and BM

We begin with a comparison between the GA and the BM. In the present experiments, the feasible
dependence list contains 40% of all dependencies represented by the corresponding original complete
R-vine graph. The unfeasible dependence list contains two feasible lists created with 40% of all
dependencies represented by the corresponding original complete R-vine graph.

Tables 3.1 and 3.2 show the results obtained with feasible and unfeasible lists respectively.
In all experiments, the GA converges to optimal or near-optimal solutions, while the BM stays
further away from optimal solutions, which is more remarkable if the dependence list is unfeasible.
Figure 3.4 illustrates this behavior through convergence curves of the GA for the feasible and
unfeasible dependence lists. In both cases, the average %Fitness increases with each new generation
for each value of n.
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Table 3.1: Comparison between the BM and the GA using the feasible dependence list for each
value of n. For the GA, three di�erent values for the crossover parameter d corresponding to
dratio = 30, 50, 70% respectively, and two values for the mutation parameter h corresponding to
hratio = 50, 70% are used.

Feasible dependence list
BM GA

n %Fitness d h %Fitness numEvals numOpt
50 50, 18± 4, 15 15 25 96, 83± 2, 90 7722± 2, 05 25

35 95, 92± 2, 97 7963± 2, 66 24
25 25 98, 12± 2, 37 6998± 2, 52 27

35 98, 31± 2, 11 6890± 2, 45 27
35 25 96, 60± 2, 76 7872± 2, 96 25

35 96, 42± 2, 88 7643± 2, 99 26
100 46, 01± 4, 37 30 50 96, 20± 2, 84 8224± 3, 47 24

70 95, 12± 3, 12 8270± 3, 48 24
50 50 97, 81± 3, 04 8101± 3, 22 26

70 97, 53± 3, 27 8031± 2.15 25
70 50 94, 70± 3, 33 8331± 3, 60 23

70 95, 32± 3, 65 8410± 3, 58 24
150 42, 41± 4, 89 45 75 94, 46± 3, 87 8865± 4, 11 22

105 93, 27± 4, 02 8891± 4, 22 21
75 75 96, 09± 3, 95 8677± 3, 91 24

105 97, 30± 3, 91 8654± 4, 00 25
105 75 93, 80± 4, 22 9022± 4, 33 21

105 95, 25± 4, 03 8947± 4, 14 23
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Figure 3.4: Convergence curves of average of the best �tness value expressed in percent in each
generation using the feasible (left panel) as well as unfeasible dependence list (right panel) for each
value of n, dratio = 50%, and hratio = 50%.
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Table 3.2: Comparison between the BM and the GA using the unfeasible dependence list for each
value of n. For the GA, three di�erent values for the crossover parameter d corresponding to
dratio = 30, 50, 70% respectively, and two values for the mutation parameter h corresponding to
hratio = 50, 70% are used.

Unfeasible dependence list
BM GA

n %Fitness d h %Fitness numEvals numBnd
50 38, 78± 4, 59 15 25 94.37± 3, 75 8999± 4, 27 24

35 94, 94± 3, 14 8972± 3, 22 24
25 25 96, 03± 4, 26 8767± 4, 13 26

35 95, 13± 4, 32 8754± 3, 77 25
35 25 95, 61± 4, 16 8553± 3, 04 24

35 94, 23± 4, 11 8772± 3, 16 25
100 37, 11± 4, 82 30 50 94, 18± 3, 41 8990± 4, 44 23

70 93, 74± 3, 57 8866± 4, 06 23
50 50 95, 45± 3, 39 8964± 4, 07 25

70 94, 58± 3, 69 8943± 4, 15 24
70 50 94, 81± 4, 02 8876± 3, 89 24

70 93, 22± 3, 94 8893± 4, 00 25
150 35, 32± 4, 94 45 75 93, 22± 4, 10 9344± 4, 67 22

105 93, 16± 4, 23 9567± 4, 21 21
75 75 94, 01± 3, 80 9245± 4, 43 23

105 93, 76± 3, 87 9486± 4, 04 22
105 75 93, 99± 3, 94 9533± 4, 17 23

105 92, 04± 4, 15 9579± 4, 87 21
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Figure 3.5: Example of a scenario that leads to the evolutionary algorithm being trapped in a sub-
optimal local solution. Suppose that L = [D (X1, X2) , D (X1, X3) , D (X3, X4 |X1, X2 )] and n = 4.
Then, prioritized edges associated to dependencies in L are {1, 2} and {1, 3} for the �rst level, and
{3, 4, 1, 2} for the third level, respectively. Since edges {1, 2} and {1, 3} are assigned high weights,
they are inserted in T1. Suppose that, to complete this tree, {1, 4} is also inserted. To build the
tree at the second level, T2, the procedure departs from a graph that contains three possible edges,
namely {2, 3, 1}, {2, 4, 1}, {3, 4, 1}. These edges receive low weights as not one is associated with
L. Among the three possible trees at the second level, only the tree with the edges {2, 3, 1} and
{2, 4, 1} ensures that the tree at the third level, T3, represents the prioritized edge {3, 4, 1, 2}. The
optimal solution is framed in the gray rectangle. Discontinuous lines symbolize the prioritized edges
and dashed lines, the non-prioritized ones.

3.4.2.2 Analysis of GA Behavior

A question that arises is why sometimes the optimization algorithm converges to sub-optimal
solutions using the same dependence list and parameter setting. We address this question in
the following lines. Because the construction of R-vine graphs is implicitly sequential, i.e., the
construction of a tree depends on the structure of the previous one, it might happen that possible
edges not associated to dependencies in L are inserted in the current tree in order to complete its
construction. The insertion of those edges may prevent the representation of dependencies in L in
subsequent trees, since they are incompatible with the R-vine graph solution. If the dependence list
is unfeasible, the previous scenario becomes more evident, since, by de�nition, these lists contain
dependence relationships that are incompatible among themselves with an R-vine graph.

Figure 3.5 illustrates a scenario that leads to the GA being trapped in a sub-optimal solution.
Suppose L = [D (X1, X2) , D (X1, X3) , D (X3, X4 |X1, X2 )] and n = 4. Then, prioritized edges
associated to dependencies in L are {1, 2} and {1, 3} for the �rst level, and {3, 4, 1, 2} for the third
level, respectively. Since edges {1, 2} and {1, 3} are assigned high weights, they are inserted in T1.
Suppose that, to complete this tree, {1, 4} is also inserted. To build the tree at the second level, T2,
the procedure departs from a graph that contains three possible edges, namely {2, 3, 1}, {2, 4, 1},
{3, 4, 1}. These edges receive low weights as none is associated with L. Among the three possible
trees at the second level, only the tree with the edges {2, 3, 1} and {2, 4, 1} ensures that the tree
at the third level, T3, represents the prioritized edge {3, 4, 1, 2}. The optimal solution is framed in
the gray rectangle.

Figure 3.6 is based on the experiment reported in Table 3.1, where a feasible dependence list
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Figure 3.6: Bar-plot for each value of n, dratio = 50%, hratio = 50%, and feasible dependence
list. In this plot, only executions where the GA does not converge to an optimal solution are taken
into account. The bars stand for several trees as follows: For n = 50, each bar accounts for �ve
consecutive trees, except the last bar, which accounts for the last four trees that correspond to
50-dimensional R-vine graphs; for n = 100, each bar accounts for ten consecutive trees, except the
last bar, which accounts for the last nine trees that correspond to 100-dimensional R-vine graphs;
for n = 150, each bar accounts for �fteen consecutive trees, except the last bar, which accounts for
the last fourteen trees that correspond to 150-dimensional R-vine graphs. This plot shows that the
dependencies in L not represented in the generated sub-optimal solutions are distributed in all the
trees.

was used. In this plot, only executions where the GA does not converge to an optimal solution are
considered. This �gure shows a bar-plot for each value of n. The bars group several R-vine trees
as detailed in the caption of the plot. Dark-blue bars account for dependencies in L, whereas light-
blue bars correspond to %Fitness of the best sub-optimal solutions found by the GA. This plot
shows that those relationships in the dependence list not represented in the sub-optimal solutions
are distributed throughout all the trees.

It is expected that the more complete the dependence list is, the easier it is for the optimization
algorithm to �nd optimal solutions. Figure 3.7 illustrates this behavior. The box-plots of this �gure
show the distribution of the best �tness achieved by the BM (light-blue) and the GA (dark-blue)
for di�erent groups. These groups (on the x-axis) indicate the percentage of completeness of the
feasible dependence list, which ranges from 10% to 90% with a step of 10 units. From left to right,
each �gure corresponds to n = 50, 100, 150 respectively. Unlike the BM, the GA is highly e�ective
in generating optimal and near-optimal solutions, regardless of the degree of completeness of the
dependence list. Nevertheless, we notice that the more complete the list is, the easier it is for
the algorithm to accommodate the dependencies of the list. We attribute this advantage to the
designed crossover and mutation operators, capable of generating better solutions from generation
to generation.

3.4.2.3 Robustness of GA

A fact worth mentioning is that the designed GA is able to achieve optimal or near-optimal solutions
with di�erent parameter settings, working with both feasible and unfeasible dependence lists. As
shown in Tables 3.1 and 3.2, the GA parameters changed in the experiments are dratio = 30, 50, 70%
(crossover ratio) and hratio = 50, 70% (mutation ratio). In summary, the proposed GA is robust
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Figure 3.7: Box-plots that show the distribution of the best �tness achieved by the BM (light-blue)
and the GA (dark-blue) for di�erent groups. These groups (on the x-axis) indicate the percentage
of completeness of the feasible dependence list, which ranges from 10% to 90% with a step of 10.
From left to right, each �gure corresponds to n = 50, 100, 150 respectively. These plots show that
the GA is highly e�ective in generating optimal and near-optimal solutions, regardless of the degree
of completeness of the dependence list.

and reliable. Furthermore, it is worth pointing out that the higher the n, the more complex the
optimization problem, due to an exponential growth of the search space. As a consequence, this
translates into a slight increase in the number of evaluations required to achieve similar �tness
values.

3.5 Summary

With the aim of designing methods for learning the graph structure of R-vines from dependence lists,
two approaches have been proposed. The �rst approach is a 0-1 linear programming formulation
for building truncated R-vine graphs with only two trees. The second approach consists of a GA,
which is able to learn complete and truncated R-vine graphs. A further distinctive feature of
the proposed evolutionary approach is that it uses crossover and mutation operators speci�cally
designed to ensure that the generated R-vine graphs are feasible. The designed operators are
e�ective in generating valid and good solutions when working with both feasible and unfeasible
dependence lists. Furthermore, this method further fosters a synergy between global and local
optimization mechanisms in the sense that, while the MST method produces locally optimized
trees, the engineered genetic operators modify those trees in such a way as to generate better
global solutions. Experimental results endorse the success of the designed GA in �nding R-vine
graphs that incorporate the largest number of dependence relationships given in a dependence list.
They reveal that although the GA does not guarantee optimal solutions, it is highly e�ective in
producing optimal or near optimal solutions.





Chapter 4

Classi�cation Based on Regular

Vine-Copulas

4.1 Introduction

Due to the ability of R-vines to capture complex dependence structures, these models are
increasingly gaining prominence in the area of arti�cial intelligence. In this chapter, we introduce
the most general class of regular vine-copulas in the framework of supervised classi�cation in order
to provide classi�ers with the strengths of these models.

Previous works on the use of copula functions as classi�ers have been limited to a few papers
[22,45,112,115,123]. In [45], a graphical model called Copula Bayesian Network is introduced and
applied to several supervised classi�cation benchmark problems. This model integrates the copula
and Bayesian network frameworks, capturing the multivariate dependence structure through a set
of local copula densities associated with the nodes of the network. The BIC is used to select the
copula that best �ts the data between the Normal and Clayton to model the local copulas. In [112],
a classi�er based on three-variate Normal copulas is used for classifying when a color pixel in an
image belongs to either the foreground or the background class.

The goal of supervised classi�cation is to assign a new instance to a label based on its features.
Usually, the classi�cation methods based on probabilistic models perform this task by learning
the distributions of features for each class from a labeled dataset [44, 52, 85]. Particularly, the
classi�cation approach proposed in this thesis consists of estimating a regular vine-copula model
for each class, from the corresponding training samples, to then assign the label with the highest
probability to each new sample.

The valuable properties of regular vine-copulas to model the dependence of multivariate
distributions motivate us to select them to address two real-world classi�cation problems in which
complex and diverse patterns of dependence between variables might arise. The �rst application
called Mind Reading Problem (MRP) [96] belongs to the class of mental signal classi�cation
problems. In particular, the MRP consists of inferring which type of video a subject has watched
from multiple time series recorded from di�erent brain regions. The second application, called
Dune Classi�cation Problem (DCP) [5], is an image recognition task whose goal is to detect the
presence or absence of sand dunes from remotely sensed images of the surface of Mars using gradient
histogram features extracted from the images.

It is worth noticing that, through the MRP and the DCP applications, we show the usefulness of
vine-copulas in the modeling of high dimensional problems. The �rst papers reporting R-vine-based
applications addressed problems with a small number of variables, for instance [1, 122]. However,
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recent research has reported R-vines results on larger problems, for instance, 448 variables in [23],
400 in [93], and 96 in [94], among others. In the present thesis, the dimension of the MRP is 408 [25]
and of the DCP is 180 [24].

This chapter is organized in three parts: Section 4.2 outlines the vine-copula classi�cation
approach proposed in this dissertation. In Sections 4.3 and 4.4, the designed vine-copula-based
classi�ers are tested by their application in MRP and DCP, respectively. Section 4.5 provides the
conclusion of the chapter.

4.2 Regular Vine-Copula Classi�cation Approach

When using probabilistic models for supervised classi�cation, a possible approach is to learn a
model for each class of the problem. This is the approach used in this thesis.

Using Bayes's rule, the classi�er learns one model f (x |k ) for each class k ∈ {k1, . . . , kK} from
the corresponding set of labeled training observations of a feature vector X = (X1, . . . , Xn). K
denotes the number of labels. The probability of the unlabeled observation x = (x1, . . . , xn) of
being assigned to the class k is expressed as

p (k |x ) ∝ f (x |k ) · p (k) , (4.1)

where p (k | x) is the (posterior) probability of k given x, and p (k) is the (prior) probability for k.
The learned models are used to predict the most likely class k∗ ∈ {k1, . . . , kK} of the unlabeled

observation x, which is determined by choosing the label with the highest probability. This decision
rule is formulated as

k∗ = argmax
k∈{k1,...,kK}

f (x |k ) · p (k) . (4.2)

Assuming that f (x |k ) in (4.1) is codi�ed by R-vines de�ned in (1.23), we have

f (x |k ) =
∏
Tj∈G

∏
{i,k,S}

ci,k|S
(
Fi|S (xi |xS ) , Fk|S (xk |xS ) |k

)
·
n∏
i=1

fi (xi |k ) (4.3)

For C-vine and D-vine classi�ers, the dependence structure of f (x |k ) is codi�ed by the
corresponding expressions in (1.25) and (1.26).

4.2.1 Regular Vine-Copula Strategies

In the design of classi�cation strategies based on regular vine-copulas, among the most relevant
factors that should be taken into account are the type of vine-copula model (e.g., C-vine, D-vine,
R-vine), the diversity of copulas to be �tted (e.g., Normal, Clayton, Gumbel), the types of marginal
distributions (e.g., Gaussian, Beta, Gamma), and the number of trees of each model (the structure
can be complete or truncated). According to this spectrum of choices, in order to facilitate the
study of the properties of these models to deal with classi�cation tasks, we de�ne two vine-copula
classi�cation strategies, namely unmixed or homogeneous, and heterogeneous. The latter is further
divided into partially-mixed and fully-mixed strategies.

Unmixed or homogeneous Regular vine-copula models comprising the classi�ers of this group
use a single bivariate copula family and a single type of univariate distribution to model the pair-
copulas and marginals in (4.3) respectively.
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Partially-mixed heterogeneous Allow for more �exible classi�ers than those described above
since pair-copulas of di�erent families are combined in the same model. However, the marginals
are of a single type of distribution.

Fully-mixed heterogeneous Among the heterogeneous classi�ers, fully-mixed are the most
�exible since their regular-vine-copula models combine pair-copulas of di�erent families and
marginals of di�erent types of distributions.

These classi�cation approaches are evaluated in a comprehensive numerical study in the MRP
and DCP applications using both D-vines and R-vines. As the graph structure of R-vines is more
expressive than that of D-vines, we also assess the impact of this characteristic in the e�ectiveness
of the tested classi�ers.

We emphasize that when we refer to the number of trees of a regular vine-copula model, we are
referring to whether or not the model is truncated. For instance, we say that a D-vine or R-vine of
n variables has t < n− 1 trees when in the subsequent levels only Product pair-copulas are �tted.

4.3 Application to the Mind Reading Problem

This section presents the research carried out on how the properties of regular vine-copula models
can be exploited to create successful probabilistic classi�ers through their application in the MRP.

4.3.1 Description of the MRP

MRP consists of decoding the original stimuli (e.g., seen, heard) received by a subject from
the analysis of his/her brain signals. The type of stimuli as well as the methods used
to register the subject's brain activity may di�er, e.g., electroencephalography (EEG) vs.
magnetoencephalography (MEG) [96]. Nevertheless, a common element on di�erent types of
recording of brain signals is the high number of features involved and the high variability of the
data.

The particular publicly available MRP benchmark produced by the Mind Reading Challenge
Competition consists of inferring the type of video stimulus shown to the subject from MEG brain
signals (recorded from a single subject in two experimental sections at di�erent time-points). A
successful brain decoding classi�er should be able to recognize which type of video (among the �ve
possible) the subject has watched by analyzing the brain signals. All videos were presented without
audio, and �ve di�erent types of stimuli were used:

• Class 1 (c1): Arti�cial Screen savers showing animated shapes or text.

• Class 2 (c2): Nature Clips from nature documentaries showing natural scenery such as
mountains or oceans.

• Class 3 (c3): Football Clips taken from European football matches of "La Liga" in Spain.

• Class 4 (c4): Mr. Bean Clip from the episode "Mind the baby, Mr. Bean" of the Mr. Bean
television series.

• Class 5 (c5): Chaplin Clip from the "Modern Times" feature �lm.

MRP is considered a challenging problem for the classi�cation methods. The brain data are highly
noisy by virtue of the variability of brain signals recorded in di�erent sessions (in particular, two
di�erent days) which immediately implies the variability between the distribution of the training
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and test data. The main consequence of this scenario is that the classi�ers learned using the
training data may have a low prediction accuracy on the test data. Another source of di�culty is
the dimension of the problem, which has 408 features.

In this experimental benchmark, the training and test data are taken from two di�erent sessions:
677 training examples were recorded the �rst day and 653 examples the second day; 50 samples
from the second day will be used for the training to facilitate the modeling of possible variations
in the data distribution between 2 the days.

ML algorithms have been used to decode the information contained in the brain signals and
recognize a stimulus received by the subject or an intended action (e.g., decide between right and
left movements) [89]. From the ML point of view, the MRP is a multi-class classi�cation problem
with �ve classes. This problem is considerably di�cult due to the highly noisiness of the brain data,
which corresponds to a set of multivariate time series with a large number of variables. Moreover,
there is also a variability between the distribution of the training and test data, a problem usually
known as covariate shift [118].

The mind decoding problem involves di�erent multi-disciplinary approaches, from the
conception of the experiments and a preliminary analysis of the mental mechanisms implicated,
to the decision on the type of signals to be investigated and the recording devices to employ. In
this thesis, we approach the MRP from a pure ML perspective, in which the goal is to address the
classi�cation problems involved in the MRP. However, in order to understand the peculiar features
of this problem, we provide the su�cient background on the necessary experimental conditions and
also a brief review of previous works on classi�cation approaches to mind decoding and related
problems. Special attention is given to classi�cation methods that were previously applied to the
data used in the numerical study of this thesis.

Much e�ort has been devoted to solve the mind decoding problem in the context of research on
brain-computer interfaces (BCIs) [88,131]. BCIs are devices conceived to translate electrical signals
into commands without the need for motor intervention. Di�erent voluntary and involuntary mental
processes can serve as a basis for implementing BCIs, but in most of the cases a decoding component
is required to decode the stimulus received by the subject or his intended command. As part of
this decoding component, classi�cation algorithms are implemented. A variety of classi�cation
algorithms have been used to analyze brain data in the context of BCI applications [89]. They
include Linear Discriminant Classi�ers (LDA) [53], Support Vector Machines (SVMs) [12, 106],
Neural Networks (NNs) [66], and other classi�cation methods [99, 107, 109, 114]. For a survey of
classi�cation algorithms applied to BCI, [89] can be consulted.

Until recently, an obstacle limiting the advance of research on MRPs was the lack of available
brain recording databases where ML approaches could be tested. However, in the past few years a
number of brain decoding or mind reading competitions have provided the needed benchmarks to
evaluate and develop more accurate classi�ers for this problem. In particular, the Mind Reading
Challenge Competition [80] allowed the comparison of nine di�erent approaches to solve this
challenging classi�cation task.

Now, we brie�y discuss the three best approaches presented in this competition.
Huttunen et.al. [73] presented an algorithm based on regularized logistic regression. The authors
use the mean and the slope of the selected features. Samples were weighted such that data from the
second day had a higher weight in the cost function used to learn the classi�er. Also, to estimate
the error, large computational resources were employed. The training data were split in two parts,
and this was done in hundreds of ways. For each split, a dedicated processor was assigned to the
k-fold cross validation task. The computation was done on a grid of computers.

An ensemble of three types of classi�ers is used in [113]: regularized multi-logistic regression,
regression trees, and an a�nity propagation [50] based classi�er. The authors also proposed the
combination of the classi�ers learned from di�erent types of features extracted from raw data,
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channel correlations, mutual information between channels, and channel interaction graphs. The
computation of this large number of features is a costly process. In [113], it is not discussed whether
the classi�cation accuracy obtained by the ensemble approach is due to the synergy among the
di�erent types of features used or to the combination of di�erent classi�ers.

The approach proposed in [78] used a representation based on power features from the �ltered
MEG signals. In addition, linear one-versus-all logistic regression-based classi�ers were applied for
dimensionality reduction of the MEG gradiometer channel space. Nonlinear Gaussian process (GP)
multi-class classi�er with a squared exponential covariance function [108] was applied to predict
the class from the features. Although the GP approximation is suitable for theoretical analysis,
the learning process can be computationally demanding and sensitive to numerical instabilities.
However, these aspects of the solution were not discussed in [78].

4.3.2 Adding Flexibility to D-vine Classi�ers

In the �rst application of the proposed vine-copula classi�cation approach, we focus only on D-vine
structures. According to the classi�cation strategies introduced in Section 4.2.1, we de�ne eight
types of homogeneous and heterogeneous D-vine classi�ers.

It is worth remembering that the learning algorithm for D-vines only requires �nding the path
of n nodes that maximizes all pairwise Kendall's tau values used as weights for T1, as the rest of
the structure is completely determined by this tree. To further simplify the model building, the
truncation level is �xed (given as an input parameter of the learning algorithm), instead of being
determined by the AIC/BIC model selection strategy presented in Section 1.7. In addition, all the
marginal distributions of the proposed classi�ers are Gaussian.

Next, we describe the individual characteristics of designed D-vine classi�ers to approach the
MRP.

Unmixed or homogeneous

• D-vine-P-g is the simplest D-vine classi�er of this group. It uses only bivariate Product (P)
copulas. Therefore, f (x |k ) =

∏n
i=1 fi (xi |k ) (see (4.3)).

• D-vine-t1-N, D-vine-t2-N, D-vine-t3-N: These classi�ers build D-vine models with the same
number of trees�one, two or three, denoted as t1, t2, and t3 respectively. They use only
bivariate Normal (N) copulas.

Partially-mixed heterogeneous

• D-vine-t1-Sel, D-vine-t2-Sel, D-vine-t3-Sel: As in the homogeneous classi�ers, these classi�ers
build D-vine models with the same number of trees, i.e., one, two or three, denoted as t1,
t2, and t3 respectively. Pair-copulas are selected (Sel) individually from a set of candidate
bivariate copula families.

• het-D-vine: This classi�er di�ers from the previous ones in that the number of trees of the
models comprising this classi�er can be di�erent.

We notice that the D-vine models comprising these classi�ers are learned using Algorithm 1.1.

4.3.3 Experiments

We empirically investigate the classi�cation approaches described in Section 4.3.2 through classi�ers
based on D-vine models in the solution of the MRP. First, we present a description of the
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experimental framework, explaining in detail the classi�cation scenarios considered and how the
training and test data are selected. Then, we present a comparison between di�erent variants of
D-vine classi�ers introduced previously in Section 4.3.2. Furthermore, we compare the proposed
D-vine-copula approach with other classi�cation approaches applied to MRP.

4.3.3.1 Experimental Framework

As previously mentioned, in the experimental benchmark for the MRP, the training and test data
were recorded from two di�erent sessions. One important question is to determine whether the
potential variations between the distribution of the training and test sets a�ects the classi�cation
accuracy. Therefore, we considered two di�erent scenarios for the validation of the classi�ers:

Training 1 The training dataset contain examples recorded only the �rst day.

Training 2 The training dataset are mixed, containing the 677 examples recorded the �rst day plus
50 examples of the second day.

According to the probabilistic classi�cation approach proposed in this thesis (see Section 4.2.1), to
address the MRP, we assume that f (x |k ) (4.1) is codi�ed by D-vine-copulas (1.26). This means
that the dependence structure between the problem features and the target class is expressed by
a set of D-vine-copula models. Therefore, as the MRP challenge has �ve stimulus categories,
one D-vine copula per category is learned from the corresponding training data using the TDSH
procedure (see Algorithm 1.1). As a result, a single D-vine classi�er comprises �ve D-vine copulas
of 408 variables.

The set of candidate bivariate copulas used by the four heterogeneous D-vine classi�ers are
Product, Normal, Clayton and Gumbel. Both homogeneous and heterogeneous classi�ers use only
Gaussian marginals.

Furthermore, taking into account possible di�erences between the distribution training and
testing datasets, we carry out a �ve-fold cross validation (CV) [110] with 30 repetitions using
the training dataset in order to highlight these di�erences. In this context, we will evaluate the
performance of the classi�ers at two di�erent steps:

• At the validation step, a �ve-fold cross validation is carried out using only the training dataset.

• At the classi�cation step, a D-vine copula classi�er is learned from the training dataset; then,
the instances of test dataset are classi�ed using the D-vine classi�er.

The metric accuracy, computed from the confusion matrices, is used to evaluate the global and per
class performance of the tested classi�ers.

4.3.3.2 Comparison Between Training Datasets

In this experiment, we assess the e�ectiveness of D-vine classi�ers when trained with the Training 1
and Training 2 datasets. As to be expected, the classi�ers trained with the Training 2 dataset
achieve higher classi�cation accuracy values than those trained with the Training 1 dataset. These
results are shown in Table 4.1 where the highest accuracy values achieved by each classi�er at
the classi�cation step are highlighted in bold. One possible explanation for this behavior is that,
by including data from the second day, the classi�ers learn those dependence patterns that remain
unchanged across sessions. Furthermore, the number of available samples is larger in the Training 2
dataset, so this additional information may contribute to improve the classi�cation accuracy. From
here on, the following experiments are performed just for the Training 2 dataset.
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Table 4.1: Comparison between D-vine classi�ers in the Training 1 and Training 2 scenarios.

Accuracy
Training 1 Dataset Training 2 Dataset

Validation Classi�cation Validation Classi�cation
Classi�er Step Step Step Step

D-vine-P 62, 00 49, 15 62, 71 52, 22
D-vine-t1-N 72, 36 46, 09 71, 81 48, 85
D-vine-t2-N 81, 40 52, 52 79, 98 59, 57
D-vine-t3-N 82, 07 52, 67 79, 79 62, 02
D-vine-t1-Sel 61, 06 48, 08 68, 16 52, 67
D-vine-t2-Sel 76, 72 53, 44 73, 47 60, 79
D-vine-t3-Sel 77, 40 54, 21 75, 03 62, 63

4.3.3.3 Heterogeneous vs. Homogeneous

Here, we test whether D-vine-based classi�ers can recognize the dependence patterns that arise in
MRP. A simple visual inspection of pairwise scatter plots (Figures 4.1-4.5) for 10 arbitrary features
(from a total of 408) from all datasets reveals a great variety of pairwise patterns: positive/negative
relationships as well as weak/strong dependence strength, according to the small and large absolute
values of Kendall's tau (located in the upper-triangle of the pair-matrix plots).

The global and per class accuracy values achieved by the tested homogeneous and heterogeneous
classi�ers at validation and classi�cation steps for the Training 2 dataset are displayed in Table 4.2.
The highest accuracy achieved in each class is highlighted in bold. The numerical results show
that, essentially, all classi�ers performed well. Nevertheless, at the validation step, the accuracy of
the tested classi�ers is found to be higher than in the classi�cation step, which indicates possible
over�tting.

The e�ectiveness of (partially-mixed) heterogeneous classi�ers (they use Product, Normal,
Clayton and Gumbel copulas) is clearly higher than those based exclusively on Normal copulas.
The covariate shift has a more negative e�ect on Normal classi�ers than on the heterogeneous ones.
Since the latter combine copulas from di�erent families, they are better equipped to capture the
variations in the data by the covariate shift phenomena. We also observe that the accuracy increases
with the number of trees. In fact, at the validation and classi�cation steps, D-vine-t3-Sel achieves
the highest accuracy among all tested classi�ers. It is also the most accurate in three classes: c2,
c4, c5. Another observation is that classi�ers whose D-vine models use more trees (allowing them
to capture a larger number of dependencies) perform better when compared to classi�ers of the
same group.

An analysis of these results suggests that the better the D-vine models represent the
dependence patterns that emerge in the MRP via combining copula families in a larger number
of trees, the better they are able to distinguish among the di�erent classes. Thus, we would
prefer heterogeneous classi�ers rather than homogeneous ones, even when learning them involves
additional computational cost.

4.3.3.4 Mix of Di�erent D-vines in a Classi�er

So far, we have modeled the dependence structure between the problem features and the target
class by building a set of D-vine models, which use the same families of bivariate copulas and have
the same number of trees (i.e., all �ve models, one per class, are truncated at the same level).
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Figure 4.1: Pairwise scatter plot of 10 arbitrary features from a total of 408 from the sample data
of the class c1 (Arti�cial).
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Figure 4.2: Pairwise scatter plot of 10 arbitrary features from a total of 408 from the sample data
of the class c2 (Nature).
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Figure 4.3: Pairwise scatter plot of 10 arbitrary features from a total of 408 from the sample data
of the class c3 (Football).
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Figure 4.4: Pairwise scatter plot of 10 arbitrary features from a total of 408 from the sample data
of the class c4 (Mr. Bean).
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Figure 4.5: Pairwise scatter plot of 10 arbitrary features from a total of 408 from the sample data
of the class c5 (Chaplin).
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Table 4.2: Global and class accuracy at the validation and classi�cation steps in the Training 2
dataset. c1 - Arti�cial, c2 - Nature, c3 - Football, c4 - Mr. Bean, c5 - Chaplin classes.

Accuracy
Classi�er c1 c2 c3 c4 c5 Global

Validation Step
D-vine-P 79,81 53, 71 57, 10 35, 01 87, 94 62,71
D-vine-t1-N 58, 33 67, 08 62, 61 86, 72 84, 31 71, 81
D-vine-t2-N 64, 50 79, 72 72, 61 94, 31 88, 79 79, 98
D-vine-t3-N 67, 50 83, 19 66, 90 92, 41 88, 96 79, 79
D-vine-t1-Sel 60, 00 61, 80 50, 23 85, 68 83, 10 68, 16
D-vine-t2-Sel 59, 30 78, 19 50, 71 92, 75 86, 37 73, 47
D-vine-t3-Sel 59, 33 81, 52 52, 61 96, 20 85, 51 75, 03

Classi�cation Step
D-vine-P 76, 70 35, 76 47, 05 16, 80 82, 40 52, 22
D-vine-t1-N 62, 66 47, 01 49, 01 14, 40 68, 80 48, 85
D-vine-t2-N 54, 66 64, 90 47, 05 44, 00 84,80 59, 57
D-vine-t3-N 50, 00 64, 23 50, 98 59, 20 85,60 62, 02
D-vine-t1-Sel 55, 33 47, 68 51, 96 32, 00 76, 80 52, 67
D-vine-t2-Sel 51, 33 60, 92 36, 27 68, 00 84, 80 60, 79
D-vine-t3-Sel 48, 66 64, 90 35, 29 76, 80 86, 40 62, 63

Table 4.3: Confusion matrices at the classi�cation step in the Training 2 dataset. c1 - Arti�cial,
c2 - Nature, c3 - Football, c4 - Mr. Bean, c5 - Chaplin classes.

D-vine-t1-N D-vine-t2-N D-vine-t3-N
Class c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5
c1 94 18 29 4 5 82 34 23 6 5 75 38 24 8 5
c2 53 71 17 5 5 33 98 8 7 5 27 97 10 12 5
c3 31 17 50 3 1 32 18 48 3 1 31 13 52 5 1
c4 22 17 41 18 27 11 12 17 55 30 7 4 9 74 31
c5 13 0 22 4 86 4 2 7 6 106 2 2 6 8 107

D-vine-t1-Sel D-vine-t2-Sel D-vine-t3-Sel
Class c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5
c1 83 19 33 8 7 77 34 11 19 9 71 40 11 21 7
c2 44 72 22 6 7 26 92 6 21 6 20 98 2 25 6
c3 34 9 53 5 1 32 20 37 12 1 32 19 36 12 3
c4 26 5 23 40 31 5 3 0 85 32 4 1 0 96 24
c5 9 1 11 8 96 1 1 2 15 106 1 1 2 13 108

D-vine-P
Class c1 c2 c3 c4 c5
c1 115 8 24 2 1
c2 72 54 18 5 2
c3 46 4 48 2 2
c4 35 7 45 21 17
c5 7 0 13 2 103
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Table 4.4: Global accuracy and confusion matrix of het-D-vine in the Training 2 dataset.

Class het-D-vine Accuracy
c1 D-vine-t2-N 61, 33
c2 D-vine-t3-Sel 52, 98
c3 D-vine-t3-N 54, 90
c4 D-vine-t3-Sel 64, 00
c5 D-vine-t2-N 88, 00

het-D-vine 64, 01

Confusion matrix of het-D-vine
Class c1 c2 c3 c4 c5
c1 92 16 24 12 6
c2 34 80 16 16 5
c3 34 4 56 7 1
c4 12 0 12 80 21
c5 5 1 7 2 110

Table 4.5: Global accuracy of the best four teams at Mind Reading Challenge and het-D-vine in
the Training 2 dataset.

Rank Team Accuracy
1 Huttunen et.al. 68, 0
2 het-D-vine 64, 1
3 Santana et.al. 63, 2
4 Jylanki et.al. 62, 8
5 Tu et.al. 62, 2

However, this approach does not necessarily have to be the most appropriate. Notice, for example,
that D-vine-t3-Sel is far more accurate than D-vine-t1-Sel (62, 63% vs. 52, 67%). In contrast, D-
vine-t1-Sel reaches better accuracy than D-vine-t3-Sel in two of the �ve classes, namely c1 (55, 33%
vs. 48, 66% ) and c3 (51.96% vs. 35.29%). This information can be found in Table 4.2. The global
and per class accuracy values of the tested classi�ers are highlighted in bold.

This information can be seen in Table 4.2 which shows the global and class accuracy values of
the tested D-vine-based classi�ers. These values are calculated from the confusion matrices shown
in Table 4.3. This behavior suggests a more �exible approach to classi�er design that combines
di�erent D-vine models, regarding the pair-copula families as well as the number of trees they use.
This is exactly the rationale of the heterogeneous classi�er het-D-vine presented in Section 4.3.2.

In the experiment of this section, we tested all the classi�ers resulting from combining all
the possible con�gurations used in the construction of classi�ers analyzed in the previous section
(see Table 4.2). The model combination yielding the highest classi�cation accuracy, denoted as
het-D-vine in Table 4.4, is as follows: Mixed D-vine-copulas with three trees for c1 and c2, and
Normal D-vine-copulas with two trees for c1 and c5, and three for c3. We point to the fact that
model combination of het-D-vine allows the accuracy of the best heterogeneous classi�er to be to
outperformed, namely D-vine-t3-Sel (see Table 4.2). Such a result suggests that the dependence
structure of brain signals appears to be quite complex across classes.

4.3.3.5 Comparison with Other Algorithms

We compare het-D-vine with the four best algorithms at the Mind Reading Challenge Competition
according to the global accuracy. In Table 4.5, we can see that het-D-vine ranks second compared
to previous algorithms. We notice that such an accuracy has been obtained without any further
processing of the data or applying more elaborated strategies for D-vine model selection as those
used in previous works (see Section 4.3.1).
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4.4 Application to the Dune Classi�cation Problem

This section extends the classi�cation approach presented in Section 4.3 in two signi�cant ways as
follows: (i) In order to extend the representation capabilities of D-vine classi�ers, instead of D-vines,
we use R-vines. (ii) In order to gain e�ciency in the building of classi�ers without compromising its
e�ectiveness, instead of using a di�erent R-vine graph for each class, we learn a single structure for
all the classes, while the pair-copulas are estimated from the corresponding dataset. Both aspects
are discussed in more detail in section 4.4.1.

Here, two learning methods that guarantee the same structure for all the classes of an R-vine
classi�er are introduced. These methods are evaluated through their application in the DCP.

4.4.1 Description of the DCP

Aeolian features are those produced by the action of the wind on a given surface. They are not only
found on Earth but have also been reported for other planets and satellites [48, 127]. Analyzing
the characteristics of these features can provide information about the current or past atmospheric
circulation patterns on the planet; providing therefore relevant information about the atmospheric
conditions in the area.

Dunes are the most frequent aeolian features on the Martian surface, and their study contributes
to the understanding of the interactions between the atmosphere and the surface of the planet, the
way the climate has evolved throughout the history of Mars and how it currently is [60,130].

In recent years, the need to process large volumes of remotely sensed images has greatly
boosted research into the use of automated methods for feature and change detection of structures
on planetary surfaces and several works on the analysis of remote sensed imagery have been
reported [11,13,47,72,119].

A geological classi�cation scheme of sand dunes was proposed in [90] for terrestrial examples,
mostly based on �eld-work. So far, the dunes identi�ed on the Martian surface have been classi�ed
according to that scheme, and, although most of them �t into the main types, there are some
unde�ned morphologies not known to occur on Earth [68].

Examples of the great diversity of types of Martian dunes can be seen in Figure 4.6: barchan,
barchanoid, transverse, dome, linear, and star, being among the most representative [68]. From this,
the multitude of factors that a�ect the visual aspect of dune �elds become clear (e.g., constituents,
size, shape and density, association to seasonal advance and withdrawal of ice cover, and angle of
illumination, among others) and also the need to design classi�cation strategies capable of detecting
the presence of dunes on images.

Recently, supervised learning approaches based on image analysis and pattern recognition
techniques have been applied to detect sand dunes on remotely sensed images of the surface of
Mars. In particular, SVMs [126] and Boosting [137] algorithms were applied to features derived
from gradient analysis made at each pixel of the images [4]. However, although a diversi�ed image
dataset was used containing examples from both hemispheres of Mars, the dunes present were
mainly of the barchan and barchanoid types. In a subsequent work, SVMs and Random Forest
(RF) [20] were evaluated for this problem with a set of high spatial resolution images including all
types of Martian dunes [5].

Inspired by [5], in this thesis we deal with the dune detection problem, which consists of
identifying the presence or absence of sand dunes from remotely sensed images of the surface
of Mars, whatever their scale. The set of features extracted from these images describes both the
directional and periodic characteristics of the dunes, regardless of the diversity of Martian dune
types. In this thesis, we use the same methodology and feature representation introduced in that
work, but we adopt a regular vine-copula based approach.

We also modify the approach developed in Section 4.3.2 in two main ways:
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Figure 4.6: Examples of the diversity of Martian sand dunes (the side of each square image is
2500m): From left to right and top to bottom: barchan, barchanoid, transverse, dome, linear, and
star. Image credits: NASA/JPL/MSSS.
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1. The classi�cation approach utilized in Section 4.3.2 is based on D-vine distributions. In these
models, the node trees are organized in a speci�c and �xed order, in such a way that each
tree has a path structure. The structure of the D-vine is more restrictive than the R-vine
structure, which can limit their capacity to produce accurate factorizations of distributions.

2. The classi�ers designed to address the MRP (see Section 4.3.2) learn a di�erent D-vine graph
for each class of the MRP. This characteristic also represents a limitation in terms of the
interpretability and the potential use of the classi�er to reveal insights about the signi�cant
pairwise dependencies as well as the variability of them across classes.

In a probabilistic classi�cation approach, it is common to assume the structure of the models to be
the same among classes. This is the case of the NB, which assumes attributes are independent of
each other, given the class; and more remarkably the TAN, which employs a tree structure where
each attribute only depends on the class and one other attribute as parent nodes. In both classi�ers,
there is a unique tree structure shared among the classes, although it is learned with a di�erent
method to the one we propose here. Sharing structure sacri�ces some accuracy but the task of
identifying which pairwise dependencies are those that can help to characterize the classes, and
the one of assessing how the strength and shape of the bivariate dependencies changes among the
classes, are eased.

Although this constraint leads to a lack of �exibility of the model, and therefore deteriorates the
performance of the classi�ers, the experimental results show that the impact is not too severe due
to the fact that R-vine classi�ers with shared structure still keep a high degree of �exibility owing
to the use of pair-copulas of di�erent families that are estimated from the data of the corresponding
class. This strategy also contributes to reducing the cost of construction of R-vine classi�ers because
only a single structure is built for all classes instead of one for each class.

4.4.2 Learning R-vine Classi�ers with a Common Structure

Algorithm 1.1 describes the modeling scheme used to learn the distributions of an R-vine classi�er.
In this scheme, for each class, an R-vine distribution is learned from samples (data) aiming to
get the best �t to the data. However, higher accuracy has a cost, the price that must be paid
to build more accurate models is an increase of the cost of the estimation procedure. Learning
an R-vine distribution for each class may not only impact the cost of estimation, but, since each
class has its own model, also makes it more di�cult to identify the most informative features and
relevant pairwise dependence patterns of the problem. This is particularly true for problems with
a high number of variables. In order to alleviate these disadvantages, we propose two di�erent
methods that allow a common R-vine structure for all classes to be learned. This constraint limits
the �exibility of the learned distributions and therefore impacts the performance of the classi�ers.
However, this in�uence could be mitigated because the copulas corresponding to the vines learned
in each class are selected using the respective data. Therefore, the di�erence in the distributions
between classes is captured by these copulas.

Let us describe the proposed methods, namely CS1 and CS2 respectively (CS stands for Common
Structure). These methods learn a structure that is shared by all classes, instead of learning a
structure for each class. From now on, this last case is called DS method (DS stands for Di�erent
Structure). Whereas the DS method executes Algorithm 1.1 for each class independently, CS1 and
CS2 implement a modi�cation of this algorithm, since some steps require information coming from
all classes.

Let us introduce the necessary notation. Let k ∈ {k1, . . . , kK} be the set of labels, where K is
the total number of labels. Indices l = 1, . . . ,mk, i = 1, . . . , n, and j = 1, . . . , n − 1 respectively
run over the samples tagged with the label k, variables, and trees of a regular vine-copula model.
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Dk
X =

{
xk1 , . . . ,x

k
mk

}
denotes an mk × n matrix storing the original observations labeled with k,

and xkl =
(
xkl,1, . . . , x

k
l,n

)
is an observation of X = (X1, . . . , Xn). Similarly, Dk

U =
{
uk1 , . . . ,u

k
mk

}
denotes an mk × (n− j + 1) matrix storing the transformed copula data labeled with k, and

ukl =
(
ukl,1, . . . , u

k
l,n−j+1

)
is a sample of Uk =

(
Uk1 , . . . , U

k
n−j+1

)
.

4.4.2.1 Method CS1

The CS1 method consists of learning K regular vine-copula models with a common structure
(using Algorithm 1.1), where each tree Tj is learned from a single dataset denoted as all.DU ={
D1

U , . . . ,D
K
U

}
. This dataset is obtained by combiningK di�erent datasetsDk

U , k ∈ {k1, . . . , kK},
which contain transformed data (obtained by (1.18)) labeled with k. However, pair-copulas at the
jth level of the kth regular vine-copula model are estimated from the corresponding copula data.

This method proceeds as follows. At each level, it creates a matrix W that contains Kendall's
tau values computed from all.DU for all possible pairs of variables (one variable less at each new
level). Next, a single MST that maximizes the absolute values of previously computed Kendall's
taus is found. Then, pair-copulas are selected individually from the corresponding copula dataDk

U .
This algorithm is executed tree-by-tree until all trees are built and their pair-copulas are estimated.
The output of CS1 is K regular vine-copula models that share a common structure. Figure 4.7
shows a diagram describing the steps of the CS1 method.

When CS1 works together with the BIC-based truncation strategy, the best truncation level
of the regular vine-copula models can be reached at di�erent levels. Therefore, the question that
arises is how to build a common structure for all the models of a classi�er. To achieve this goal,
we propose the following strategy: Suppose we have two classes, namely c1 and c2, and that for
each class the truncation level is reached in the trees T2 and T5 respectively. Therefore, the single
structure created with CS1 has �ve trees. Then, in the last two trees of c1 (i.e., T4 and T5) only
Product copulas are �tted, whereas in the other class, pair-copulas are selected normally from the
corresponding copula data.

4.4.2.2 Method CS2

Similar to CS1, the method CS2 learns K R-vine distributions (using the Algorithm 1.1) with a
common structure, but in a di�erent way. CS2 consists of learning a MST from a single pairwise
weight matrix, denoted asW.sum. This matrix is computed as follows: Firstly, for each class k, a
matrix of absolute Kendall's taus, denoted asW k, is computed in each level of the R-vine structure
from the corresponding copula data Dk

U . Then, the matrix w.sum is obtained by element-wise

addition of all W k matrices such that W.sum =
∑K
k=1

∣∣∣W k
∣∣∣. Then, for the current level, a

single MST is built using W.sum as the weight matrix. For each class, pair-copulas are selected
individually from the corresponding copula data Dk

U . CS2 is executed tree-by-tree, until all trees
are built and their pair-copulas estimated. The �nal R-vine structure is shared by all classes. The
output of CS2 is K R-vine distributions that share a common tree structure. Figure 4.8 shows a
diagram describing the steps of the CS2 method. Similarly to CS1, CS2 can also work together
with the BIC-based truncation strategy to create a common structure.
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Figure 4.7: Diagram illustrating how CS1 works. It learns a single structure that is shared by all
the classes. This method consists of learning K R-vine distributions with a common structure,
where each tree Tj is learned from a single dataset (denoted as all.DU ). This dataset contains K
copula data obtained when the R-vine distribution for each class k is learned.
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Figure 4.8: Diagram illustrating how CS2 works. In particular, CS2 consists of learning a MST
from a single pairwise weight matrix, denoted asW.sum. For each class, pair-copulas are selected
individually from the corresponding copula data Dk

U . The output of CS1 is K R-vine distributions
that share a common tree structure.
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Figure 4.9: Example of the image analysis: Tiling an image in (left) cells of 40 × 40 pixels and
(center) blocks of 3× 3 cells; (right) block displacement with overlapping to the right.

4.4.3 Methodology for DCP

The methodology adopted for the automatic detection of sand dunes on images is based on the
classi�cation of small square regions of the image called cells. The task of extracting and analyzing
local information (image features) is done throughout a regular grid of tiled image. The image is
divided into cells with 40× 40 pixels from which features are extracted (see Figure 4.9-(left)). The
way of computing the vectors of features is explained later in Section 4.4.4.

The size of each cell is the same for all images. To increase the invariance to speci�c factors
such as illumination and shadowing, an aggregation of the local features is performed within larger
regions of 3× 3 cells, called blocks (i.e., one block has nine cells), which are the detection windows
(see Figure 4.9-(center)). To analyze the complete image, this block window is moved along the
entire image grid with an overlapping between adjacent blocks equal to one cell side (see Figure 4.9-
(right)).

Each cell, represented by a vector of features extracted in the block that contains this cell in
the center, is classi�ed as dune or non-dune. The labeling is carried out using the R-vine classi�ers
proposed in section 4.2.

4.4.4 Feature Extraction

We consider features based on the image gradient g(x) ∈ R2 computed at each pixel x of the image.
The gradient vector is characterized by the magnitude |g (x)| and phase φ (x). These features are
appropriate to detect the patterns presented by sand dunes, since they describe the directional and
periodic characteristics of the dunes [4]. In particular, the phase and magnitude histograms try to
capture the typical edge structure of the local shape of a dune with a controlled degree of invariance
to local geometric and radiometric factors.

The phase histogram associated to the kth cell Ck is given by

hki =
∑
x∈Ck

bi (φ (x))

where bi (φ) =

{
1, if φ ∈ ith bin (of the histogram)

0, otherwise
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The magnitude histogram associated to the kth cell Ck is given by

h̃ki =
∑
x∈Ck

b̃i (|g (x)|)

where b̃i (|g|) =

{
1, if |g| ∈ ith bin (of the histogram)

0, otherwise

The 180 features computed for each image block, constituting nine cells, result from 81 features
for the phase (from 9 bins per cell, using an angular interval of 20◦), and 99 features for the
magnitude (from 11 bins per cell, using four unit intervals between a minimum of 0 and a maximum
of 40).

A normalization step is performed globally for each image and for each individual feature in
order to have the features in [0, 1].

4.4.5 Image Database

The image analysis is conducted on two databases with a total of 230 MOC-NA (Mars Orbiter
Camera Narrow Angle) images: One database has 160 images representative of the major types
of Martian dunes identi�ed in [68] (see Figure 4.6); and the other has 70 images containing other
geomorphological structures that can be confounded with dunes, such as channels, crater rims, and
textured terrain, among others.

Each original gray-scale image of the �rst database (see Figure 4.10-(left)) has associated its
ground-truth image, which was obtained by manually delineating the contours of the dunes therein
contained, indicating the dune and not-dune regions (see Figure 4.10-(center)).

In order to compare the ground-truth with the result produced by the classi�er, both images
had to be in the same format, such that the ground-truth images were tiled in the same fashion as
the original ones (Figure 4.10-(right)). In this image there are three types of cells: dune, in green;
non-dune, in yellow; and unclassi�ed, in gray. To assign one of these labels to a cell, the area of the
block (from which the cell is the center) that is occupied by ground-truth dune was computed: If
this area is higher than 30% of the number of pixels of the block, the cell is considered a dune (in
green); if it is less than 10%, the cell is non-dune (in yellow); if the area is between 10 and 30%, the
cell is not classi�ed as any decision is considered ambiguous (in gray). In the 230 images, there are
a total of 370019 cells, of which 112029 belong to the dune class and 257990 cells to the non-dune
class. The ambiguous cells have been removed from the study.

4.4.6 Adding Flexibility to D-vine and R-vine Classi�ers

The R-vine classi�cation approaches used to address the DCP are presented as an evolution of D-
vine-based approaches applied to the MRP. Indeed, the classi�ers we design here use both D-vines
and R-vines. Another feature incorporated in the present study is that the number of trees used
by the models of a classi�er is not �xed in advance, but is determined by the BIC-based model
selection strategy presented in Section 1.7.

Next, we describe the individual characteristics of the designed D-vine and R-vine classi�ers to
approach the DCP.

Unmixed or homogeneous

• R-vine-P-g: This classi�er uses only Product (P) copulas and Gaussian (g) marginals. It
assumes that the variables are not correlated. Obviously, in this case, the graphical structure
is totally irrelevant.
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Figure 4.10: Image preparation: (right) original gray-scale image MOC-NA E18-00494; (center)
manually drawn binary ground-truth; (right) tiling of the ground-truth in cells, where the dune
cells are in green, non-dune cells are in yellow, and gray cells are unclassi�ed. Image credits:
NASA/JPL/MSSS. This �gure is available in color online at wileyonlinelibrary.com/journal/espl.
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• D-vine-t*-t*-N-g and R-vine-t*-t*-N-g: These classi�ers build D-vine and R-vine models
respectively. They use only bivariate Normal (N) copulas and Gaussian (g) marginal
distributions.

Partially-mixed heterogeneous

• D-vine-t*-t*-Sel-g and R-vine-t*-t*-Sel-g: These classi�ers build D-vine and R-vine models
respectively. They select (Sel) and �t bivariate copulas of di�erent families, whereas all the
marginal distributions are Gaussian (g).

Fully-mixed heterogeneous

• D-vine-t*-t*-Sel-sel and R-vine-t*-t*-Sel-sel: These classi�ers build D-vine and R vine models
respectively. They use bivariate copulas of di�erent families, which are selected (Sel) from a
set of candidate copulas. Marginals are also selected (sel) from di�erent distributions.

In the name of the designed classi�ers, the �rst and the second 't*' denote the number of trees
of the model learned from the dune and non-dune datasets respectively. The symbol '*' is the
mask for the number of trees. Indeed, 't*' is the truncation level of the regular vine-copula model.
However, since in a truncated model at the jth level all pair-copulas in the subsequent levels are
Product, in practice, these trees are not built. For instance, the classi�er name 'R-vine-t2-t5-Sel-g'
means that the R-vine models learned from the dune and non-dune datasets have two and �ve
trees respectively. In other words, these models have been truncated at the second and �fth levels
respectively. Furthermore, both models select (Sel) and �t pair-copulas from di�erent families,
whereas the marginals are all Gaussian (g).

For the selection of pair-copulas, we use the strategy based on the Cramér-von Mises statistic
(1.44), which, among the set of candidate copulas, selects the one with the smallest distance to the
bivariate empirical copula (see Section 1.6.1).

4.4.7 Experiments

In this section, through numerical experiments, we evaluate the classi�cation approaches presented
previously in Section 4.2. Here, the classi�ers use both D-vine and R-vine models. We �rst analyze
the performance of several classi�ers, which di�er from each other in the number of trees, the
pair-copula families, and the types of univariate distributions used to model gradient histogram
features (see Section 4.4.4). We then analyze how the behavior of classi�ers is a�ected when they
use the same structure for the two problem classes (see Section 4.4.2). Furthermore, we carry out
comparisons of regular vine-copula classi�ers and several state-of-the-art approaches.

4.4.7.1 Experimental Framework

To approach the DCP, we use a greater variety of copula types and marginals compared to that in
the MRP, because using a shared structure requires greater diversity of copula families and marginal
distributions.

Regarding the copula families, (partially-mixed and fully-mixed) heterogeneous approaches �t
Product, Normal, Student's t, Clayton, Gumbel and rotated by 90◦, 180◦ and 270◦ Clayton and
Gumbel pair-copulas. These copulas describe di�erent features of the bivariate dependence (see
Section 1.5). Obviously, there is a trade-o� between the �exibility provided by the use of di�erent
copulas and the computational cost of learning vine-copulas selecting a large set of copula types. For
the DCP applications addressed in this thesis, we have assumed that a greater modeling capacity
is better even at the expense of a higher computation cost.
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Regarding the marginal families, fully-mixed heterogeneous approaches use four parametric
distributions, namely Gaussian, Student's t, Beta and Gamma as well as univariate empirical
distributions based on Normal kernels (see Equations (1.51) and (1.52).

As explained in Section 4.4.3, the methodology for DCP is based on cells extracted from images
of the surface of Mars. The prior probabilities of being a dune and non-dune cell are approximately
0, 3 and 0, 7 respectively.

We conduct a �ve-fold CV with 30 repetitions. Each fold has around 74003 cells of which around
22405 belong to the dune class and 51598 belong to the non-dune class.

The metrics used to assess the performance of the designed classi�ers are both the classi�cation
accuracy and area under the ROC curve (AUC) [15, 46, 104]. Moreover, we also provide statistical
comparisons via the Kruskal-Wallis and post-hoc Dunn statistical tests [31], which allow us to
establish the statistical signi�cance of the results according to AUC.

4.4.7.2 Data Exploration

The assumption that underlies the application of regular vine-copula classi�ers to the DCP is that
the univariate distributions of the features as well as the patterns of correlation among them are
di�erent in both classes. To test this assumption, we explore the statistical properties of the dune
and non-dune datasets through visual analytic tools.

To begin with, we analyze graphically the distributions of some of the variables in the two
classes. Figure 4.11 shows symmetric violin plots [70] of 6 (out of the 180) features arbitrarily
chosen: X_81, X_84, and X_96 belong to the set of magnitude features and X_100, X_109,
and X_153 belong to the set of phase features. The violin plot is a Normal kernel density plot that
is rotated and placed on each side to show the distribution shape of the data, where the vertical axis
represents the values of x and the horizontal axis is the density of x. Values in the wider sections (in
the bottom part) of the violin are more probable than those in the narrower sections. From these
charts, we observe that none of these variables are normally distributed as well as that the shape of
the distribution is di�erent in each class: In X_100, X_109, X_153 and X_96, the non-dune
class has wider sections than the dune class. However, in X_81 and X_84 the opposite occurs,
the dune class being that which has the widest sections. Moreover, the widest section appears
in opposite positions in each class, i.e., the highest probability is on the zero value in the dune
class, and on the one value in the non-dune class. A �nal remark with regard to this topic, is that
to properly model non-Gaussian features such as those shown by the variables X_81 and X_96,
it could be convenient to use alternative univariate parametric families other than the Gaussian
(e.g., Beta, Gamma) as well as the univariate empirical distributions smoothed with Normal kernel
functions (see Equations (1.51) and (1.51)).

Next, we graphically assess the shape of the feature dependence in the dune and non-dune
sample data in Figures 4.12 and 4.13 respectively. In these �gures, the copula data is transformed
to have standard Normal margins over the same six features used in the violin charts of Figure 4.11.
They show scatter plots along with pairwise Pearson's correlation values above the diagonal and
contour plots with standard Normal margins below the diagonal. The bivariate contour plots
di�er from dispersed and elliptical shapes (which characterize the pairwise independence and linear
dependence, respectively) showing the need for di�erent copulas other than the Normal to better
model the diversity of types of dependencies presented in the data. Furthermore, these pair plots
also reveal that both the strength and the types of dependence for the same pair are quite di�erent
in the dune and non-dune sample data.

In summary, the exploratory data analysis performed in this section shows that both the
marginal behavior of the gradient features and the dependence patterns between them are di�erent
across the dune and non-dune sample data. These �ndings further justify the use of regular vine-
copula models to design probabilistic classi�ers.
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Figure 4.11: Symmetric violin plots with the distribution of 6 (of the 180) features arbitrarily chosen
using the data of the respective class: X_81, X_84, and X_96 belong to the set of magnitude
features and X_100, X_109, and X_153 belong to the set of phase features. We observe that none
of these variables are normally distributed as well as that the shape of the distribution is di�erent
in each class: In X_100, X_109, X_153 and X_96, the non-dune class has wider sections
than the dune class. However, in X_81 and X_84 the opposite occurs, the dune class being that
which has the widest sections. Moreover, the widest section appears in opposite positions in each
class, i.e., the highest probability is on the zero value in the dune class, and on the one value in
the non-dune class. In summary, the existence of non-Gaussian margins (for instance, X_81 and
X_96) justi�es the use of empirical margins, which do not assume any speci�c distributional shape
of the variables.
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Figure 4.12: Pair plot over 6 (out of the 180) features arbitrarily chosen from the dune sample
data with scatter plots above the diagonal and contour plots with standard Normal margins below
the diagonal. We observe that the bivariate contour plots di�er from dispersed and elliptical
shapes (which characterize the pairwise independence and linear dependence, respectively) showing
the need for di�erent copulas other than the Normal to better model the diversity of types of
dependencies presented in the data.
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Figure 4.13: Pair plot over 6 (out of the 180) features arbitrarily chosen from the non-dune sample
data with scatter plots above the diagonal and contour plots with standard Normal margins below
the diagonal. As in the pair plot for the dune data (Figure 4.12), here we observe that the
bivariate contour plots di�er from dispersed and elliptical shapes (which characterize the pairwise
independence and linear dependence, respectively) showing the need for di�erent copulas other
than the Normal to better model the diversity of types of dependencies presented in the data.
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4.4.7.3 Analysis of D-vine and R-vine Classi�ers

In the previous section, we presented evidence that the dune and non-dune datasets are di�erent
to each other in terms of the statistical characteristics of both magnitude and phase histogram
features as well as the pairwise correlations between them. This evidence supports the working
hypothesis of the experiments of this section that the better the vine-copula models capture the
distribution of dune and non-dune datasets, the better the predictive ability of the classi�ers.

To test the working hypothesis, we compare the regular vine-copula approaches presented in
Section 4.4.6. Let us start by analyzing the performance of the unmixed classi�ers, namely R-vine-P-
g, D-vine-t2-t1-N-g and R-vine-t1-t1-N-g. Accuracy and AUC values obtained by them in the DCP
are shown in Table 4.6. The two classi�ers that use Normal copulas outperform the one that only
uses Product copulas, which does not take into account the dependence structure of the problem.
Furthermore, when comparing the heterogeneous classi�ers (which combine copulas from di�erent
families) with those using exclusively Normal copulas, the former achieve higher accuracy and
AUC values than the latter. This �nding suggests the presence of asymmetric pairwise dependence
structures that are better modeled by the di�erent versions of Gumbel and Clayton copulas used
in these experiments.

Now, we analyze the e�ect of marginal distributions in improving the functioning of
(homogeneous and heterogeneous) D-vine and R-vine classi�ers (see Table 4.6). We can appreciate
that fully-mixed classi�ers, which encode marginals of di�erent distributions, outperform the
partially-mixed classi�ers, which assume that all the features follow a Gaussian distribution. We
explain this result through the variable X_84, whose shape is similar to other variables of DCP.
Figure 4.14 shows the Beta, Gamma and Normal density curves estimated from the sample data
of this variable in order to visually check how these curves resemble the smoothed empirical. For
the dune class (left panel), we can appreciate that the Gamma and smoothed empirical curves
overlap each other such that they are almost indistinguishable, whereas the Beta and Gaussian
distributions provide a very poor �t. For the non-dune class (right panel), the best �t is achieved
with the Beta distribution, its curve is the one that most resembles the smoothed empirical curve,
whereas the Gamma and Gaussian distributions produce a poor �t.

Summarizing this section, we can say that, among the tested classi�ers, R-vine-t5-t7-Sel-sel is
not only the most accurate, it is also the most �exible. A look at the di�erences in the frequencies
of marginal and copula families between the R-vine-copulas learned from the dune and non-dune
sample data provides an insight into how the di�erent data distributions are captured by the R-
vine-copulas of this classi�er:

• For the dune class, it chooses (in ascending order) 9 Student's t, 10 Gaussian, 38 smoothed
empirical, 48 Beta, and 75 Gamma margins; and 98 Rotated Clayton 90◦, 102 Rotated
Clayton 270◦, 109 Gumbel, 117 Student's t, 135 Normal, 151 Product, and 173 Clayton,
pair-copulas, and copulas (there are 885 edges in an R-vine with 5 trees and 180 variables).

• For the non-dune class, it chooses (in ascending order) 12 Student's t, 13 Gaussian,
28 smoothed empirical, 46 Gamma, and 81 Beta margins; and 96 Rotated Clayton 270◦,
113 Rotated Clayton 90◦, 184 Product, 197 Gumbel, 199 Student's t, 202 Normal, and
241 Clayton pair-copulas (there are 1232 edges in an R-vine with 7 trees and 180 variables).

From here on, the following experiments are performed only for the heterogeneous regular vine-
copula classi�ers.

4.4.7.4 Using a Common R-vine Structure

The proposed R-vine-based classi�cation strategy requires that the learned R-vine distributions of
the classes be di�erent from each other in order that the classi�er can distinguish which class a
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Figure 4.14: Comparison of Beta, Gamma and Gaussian margins with the empirical distribution
for the same variable in the dune and non-dune classes.
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Table 4.6: Classi�cation accuracy and AUC results in the DCP with (unmixed) homogeneous and
(partially-mixed and fully-mixed) heterogeneous D-vine and R-vine-based classi�ers learned with
the DS method.

Type of Classi�er Classi�er Accuracy AUC
Unmixed R-vine-P-g 81, 0 76, 1

D-vine-t2-t1-N-g 85, 7 86, 5
R-vine-t1-t1-N-g 87, 3 90, 1

Partially-mixed D-vine-t4-t2-Sel-g 89, 8 91, 3
R-vine-t3-t4-Sel-g 92, 6 94, 0

Fully-mixed D-vine-t4-t4-Sel-sel 92, 1 92, 5
R-vine-t5-t7-Sel-sel 95, 2 98, 8

sample belongs to. When using the CS1 and CS2 methods, the linked features are the same in both
classes but not the pair-copulas, which are selected and estimated from the corresponding data.
We believe that these methods make it easier to interpret and identify which pairwise dependencies
are those that contribute to characterize the classes and to assess how the pairwise dependencies
change among them.

The price to be paid for learning an R-vine structure per class is that the models can not be
directly compared in terms of the selected pair-copulas, because the variables that determine the
most important dependence patterns may be di�erent in each class. A classi�er with a shared
structure is more amenable for identi�cation of the di�erences between classes. That said, here we
investigate how the performance of R-vine classi�ers is a�ected if only a single structure is estimated
for all classes. In this approach, only the structure is common for the R-vine distributions of both
classes, whereas the pair-copulas and their parameters are selected individually from data of the
corresponding class.

Let us begin with the discussion of the results. Table 4.7 presents the accuracy and AUC
statistics for the partially-mixed and fully-mixed classi�ers learned with the CS1 and CS2 methods
(we use the cross validation methodology presented in Section 4.4.7.1). We can appreciate that these
results are coherent with those presented in Section 4.4.7.3: The classi�ers that combine di�erent
types of pair-copulas and margins achieve higher accuracies. However, the most interesting result
comes from comparing DS-based classi�ers (see Table 4.6) with those learned using CS1 and CS2.
Comparing classi�ers with the best performance learned with DS, CS1 and CS2, we can see that
the accuracy and AUC of the DS-based R-vine-t5-t7-Sel-sel is 95.2% and 98, 8%, whereas with
CS1-based R-vine-t3-t3-Sel-sel the accuracy decreases around 4, 2% and the AUC decreases around
6, 4%, and with CS2-based R-vine-t4-t3-Sel-sel the accuracy decreases around 3, 6% and the AUC
decreases around 5, 6% .

Figures 4.15-4.17 account for such behavior through the most accurate R-vine classi�ers built
with the methods of the three learned strategies. Figure 4.15 displays box plots of Kendall's tau
values associated to the edges of the �rst tree learned with CS1 (left), CS2 (center) and DS (right)
for the dune and non-dune classes respectively. Each box plot is drawn from 179 values of Kendall's
tau (there are 179 edges in the �rst tree of an R-vine of 180 variables). It is important to clarify
that in the cases of the CS1 and CS2 box plots, the Kendall's tau values are estimated for the
edges of the common structure, using, however, the copula data of the respective class. From this
�gure, we see that the absolute maximum, the third quartile, the median, the �rst quartile and
the minimum of the dune and non-dune box plots for the DS reached higher absolute Kendall's
tau values than in the other four box-plots. It is easy to see that R-vine classi�ers that learn the
structure of each class can more freely accommodate the strongest dependencies than those that
use a common structure.
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Table 4.7: Classi�cation accuracy and AUC results in the DCP with (partially-mixed and fully-
mixed) heterogeneous D-vine and R-vine classi�ers using the methods CS1 and CS2.

Method Type of Classi�er Classi�er Accuracy AUC
CS1 Partially-mixed D-vine-t2-t2-Sel-g 85, 6 90, 2

R-vine-t2-t3-Sel-g 88, 4 91, 3
Fully-mixed D-vine-t3-t2-Sel-sel 89, 9 87, 2

R-vine-t3-t3-Sel-sel 91, 2 92, 4
CS2 Partially-mixed D-vine-t3-t2-Sel-g 87, 3 89, 3

R-vine-t3-t2-Sel-g 90, 8 89, 2
Fully-mixed D-vine-t3-t3-Sel-sel 89, 2 89, 8

R-vine-t4-t3-Sel-sel 91, 7 93, 2

Figure 4.16 con�rms this clear trend in favor of the DS method. The x-axis represents the edges
belonging to the �rst tree learned with CS1 (circle), CS2 (triangle) and DS (square). The edges
are arranged in descending order according to the absolute Kendall's tau values computed from the
copula data of the dune class; the y-axis represents the Kendall's tau value associated to the edges
in the x-axis. This �gure is made only for the dune class since for the non-dune class the behavior
is similar. The DS method has more freedom than CS1 and CS2 to include a greater number of
strong dependencies. However, with CS1 and CS2, the strong edges for one class may be out of the
tree since they are weak edges for the other class. The restriction of common structure together
with that of being a tree prevents the insertion of strong edges that are replaced by weak ones.
This behavior leads to an increase in the number of Product copulas �tted, as can be seen in the
stack graph of Figure 4.17, which shows the bivariate copula families selected by each method in
the �rst tree for both classes. The DS method selects the smallest number of Product copulas and
the largest number of Clayton copulas for both classes.

The use of a single structure can facilitate the interpretation of R-vine classi�ers since the set
of dependencies explicitly represented is the same for all classes. This means that it is possible
to compare, for each edge of the tree, which copula families are learned for this edge for the two
classes. When the copula family coincides in the two trees, the strength of the dependence can help
to characterize and interpret the di�erences between classes. In Figure 4.18, we show the copula
families assigned to the 20 strongest edges of the �rst tree found by CS1, CS2, and DS. On one
hand, we can see that the DS-based classi�er �ts a large number of Clayton copulas. In fact, in
these edges most of the �tted copulas belong to this family (9 and 11), whereas only 2 Normal
copulas are �tted in the dune and non-dune classes respectively. Conversely, the classi�ers that
share a common structure �t more Normal copulas (12 and 13 with CS1, and 9 and 8 with CS2 in
the dune and non-dune classes respectively) than the classi�er that uses di�erent structures at the
same time being the most accurate.

In summary, although the constraint of a common structure can limit the �exibility of the model
and therefore impact the accuracy of the classi�ers, the experiments show that the impact is not
severe, which could be explained by the fact that R-vine classi�ers with a shared structure still
keep a high degree of �exibility thanks to the use of copulas from di�erent families.
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Figure 4.15: Box plots of empirical Kendall's tau values computed from the dune (dark blue) and
non-dune sample data (light blue). These values are the weights associated to the edges of the �rst
tree built with the methods CS1 (left), CS2 (center) and DS (right).
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Figure 4.16: Scatter plots of empirical Kendall's tau values computed from the dune and non-dune
sample data. These values are the weights associated to the 179 edges of the �rst tree built with the
methods CS1 (red), CS2 (green) and DS (blue). In the x-axis, the edges are arranged in descending
order according to the absolute empirical Kendall's tau values.
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Figure 4.17: Number of Product, Normal, Student's t, Clayton, Gumbel, and rotated (by 90◦, 180◦

and 270◦) Clayton and Gumbel copulas �tted in the �rst tree built with the methods CS1, CS2,
and DS. These copulas are estimated from the dune and non-dune sample data.
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Figure 4.18: Types of copulas �tted in the 20 strongest edges of the �rst tree built with the methods
CS1, CS2, and DS for the dune and non-dune classes.
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4.4.7.5 Comparison with Other Algorithms

We assess the performance of D-vine and R-vine classi�ers in comparison with 10 supervised learning
classi�cation algorithms. We here use the 'scikitlearn'1, a widely used ML library in Python.
They are the following:

• GB - Gradient Boosting [51].

• RF - Random Forest [20].

• SVM - Support Vector Machines [103].

• LR - Logistic Regression [133].

• LDA - Linear Discriminant Analysis [49].

• EDT - Extra Decision Trees [57].

• KNN - K Nearest Neighbors [10].

• NN - Multilayer Perceptron Neural Network [69].

• GNB - Gaussian Naive Bayes [134].

• DT - Decision Tree [21].

These algorithms cover commonly applied approaches to classi�cation tasks including linear and
non-linear classi�ers, tree-based classi�ers, ensemble classi�ers, and distance-based classi�ers. Some
of these algorithms are able to capture non-linear associations between the variables, while others
incorporate regularization techniques. For more information on these algorithms, see [67].

For the optimization of the hyperparameters of each classi�er, we �rst split the set of
hyperparameters in two groups, those that have a strong in�uence on the results of the algorithm
and those with a low relevance according to the suggestions given in [100]. Then, for each algorithm
we perform a grid search to optimize the �rst group of hyperparameters using the cross validation
methodology presented in Section 4.4.7.1. The second group of hyperparameters (those with low
relevance) were set to the default values in the scikit-learn implementation of the algorithms. The
optimized hyperparameters and the corresponding best values obtained via grid search are shown
in Table 4.8.

For comparison purposes, we focus on the most �exible variants of D-vine and R-vine classi�ers
built with the DS, CS1, and CS2 methods, namely R-vine-t5-t7-Sel-sel (with DS), R-vine-t3-t3-
Sel-sel (with CS1), and R-vine-t4-Sel-sel (with CS2). We renamed them, in short, R-vine-DS,
R-vine-CS1, and R-vine-CS2 respectively. The same notation applies to D-vine-t3-t3-Sel-sel or
D-vine-DS in short.

Numerical comparisons according to the accuracy and AUC are given in Table 4.9 (in increasing
order according to AUC). In order to assess the statistical signi�cance of the observed di�erences in
algorithm performance, we use the Kruskal-Wallis statistical test on the AUC's values to determine
whether all the groups originate from the same distribution. If the null hypothesis is rejected (p-
value< 0, 05), a post-hoc test is applied to all the sample data pairs, looking for di�erences between
them. The results of the Dunn test used for the pairwise comparison of 14 algorithms are shown
in Figure 4.19. Vertical lines stand for the algorithms. Horizontal lines mean that there are no
statistical signi�cant di�erences among algorithms that cut. On the contrary, the di�erences among

1https://github.com/scikit-learn/scikit-learn [102]
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Table 4.9: Numerical comparisons of R-vine classi�ers with other approaches with respect to the
accuracy and AUC in the DCP. The compared R-vine classi�ers belong to the fully-mixed group
and are learned with the DS, CS1 and CS2 methods. Classi�ers are ranked in descending order
according to AUC.

Rank Classi�er Accuracy AUC
1 R-vine-DS 95, 2 98, 8
2 R-vine-CS2 92, 1 92, 5
3 D-vine-DS 91, 7 93, 2
4 R-vine-CS1 91, 2 92, 4
5 GB 90, 7 91, 7
6 RF 90, 0 91, 0
7 SVM 89, 0 90, 2
8 LR 90, 2 90, 1
9 LDA 90, 4 89, 8
10 EDT 90, 6 89, 2
11 KNN 89.4 88, 3
12 NN 88, 7 85, 3
13 GNB 87, 8 81, 2
14 DT 89, 2 79, 1

algorithms are statistically signi�cant if there is no horizontal line that cuts the vertical algorithm
line.

Among all compared algorithms, R-vine-DS reaches the highest accuracy (96, 4%) and AUC
(98, 8%), which is a remarkable performance. It is followed closely, �rst, by the other regular vine-
copula classi�ers, namely R-vine-CS2, D-vine-DS, and R-vine-CS1. We notice that these classi�ers
are the ones that obtain the highest AUC. These results are statistically signi�cant in relation to
the particular instances of algorithms tested in the DCP. It is also remarkable that classi�ers based
on common structure strategies, CS1 and CS2, are in the top positions.

A �nal remark is that these results con�rm that the methodology based on gradient histograms,
combined with ML algorithms, is a good approach to deal with the DCP. These features
adequately describe the characteristics of the dune and non-dune images, allowing the algorithms
to discriminate between the two classes.

4.5 Summary

We have introduced a classi�cation approach where the dependence structure of the problem is
modeled through R-vines. In this scheme, a vine-copula model is built for each class from the given
samples. Then, a new instance is assigned to the class with the highest probability among the
learned models.

We have recognized three types of classi�ers according to their complexity: A simpler
(homogeneous) one that uses a single family of pair-copulas and marginals and where the number
of trees is the same for all the R-vines that comprise the classi�er. A more general (partially-
heterogeneous) scenario allows the use of pair-copulas and marginals from di�erent families, and
this feature de�nes the classi�ers of medium complexity. The ideal (fully heterogeneous) scenario
is that in which the models combine di�erent types of pair-copulas and marginals, and the required
number of trees is identi�ed by means of statistical model selection strategies

The performance of R-vines as classi�ers has been experimentally validated in a mental decoding
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Figure 4.19: Statistical comparisons of tested classi�cation approaches based on the Kruskal-Wallis
and post-hoc Dunn statistical tests according to AUC.
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problem and in an image recognition task. In the former, we found out that, although brain signals
have a diverse and complex dependence structure, the designed D-vine classi�ers are able to discover
them. Their ability to accurately decode brain signals, even under the e�ect of covariate shift,
underpins the feasibility of the proposed approach.

The representation capability of D-vine classi�ers is extended by mean of R-vines in the dune
classi�cation problem. To aid the interpretation of R-vine classi�ers, two methods that allow the
construction of a common graphical structure for all the classes of this image recognition problem
have been designed and evaluated. Although this strategy may prevents the representation of
important dependencies, the designed classi�ers are still e�ective, since the use of di�erent copula
families (which are learned from the corresponding dataset), can compensate for the structural
constraints. In e�ect, the numerical results show that the regular vine-based classi�ers with
a common structure outperform the traditionally applied classi�ers in the dune classi�cation
problem, which shows that, despite the incorporation of constraints in their structure, they remain
competitive.

In addition, experimental results con�rm that the designed classi�ers are robust across a variety
of scenarios. They further reveal that these models nicely capture the di�erence among the
distributions learned from sample data of di�erent classes as well as the fact that the better the
distribution of each class is approximated, the more accurate the classi�cation is. Moreover, the
proposed regular vine-copula classi�cation approach can successfully deal with high-dimensional
multi-class problems.





Conclusions

This research aimed to investigate the theoretical properties of R-vines for representing
dependencies and to extend the use of these models to solve supervised classi�cation problems.
Towards achieving this goal, we �rst have introduced a graphical separation criterion for R-
vines with improved graphical expressiveness, and studied the relationship between the graphical
representations of R-vines and polytrees. Thereafter, we have presented approaches for learning
R-vine structures that incorporate the largest number of dependencies given in a list. Furthermore,
a classi�cation approach, where the dependence of the features is modeled through R-vines, has
been introduced and applied in MRP and DCP. Hereafter, we summarize the contributions made
during this dissertation in further detail.

First, a graphical separation criterion for R-vines, called R-separation, has been de�ned. The
proposed criterion facilitates the enumeration of (non-)separation relationships encoded in the R-
vine graph with enhanced expressiveness by examining its topology and the edge types. The
derived graphical relationships correspond to (un)conditional pairwise (in)dependence relationships
in the associated R-vine copula. Moreover, from the R-separation criterion, a theorem of R-vine
dependence maps is enunciated and it has been proved that every R-vine graph is an I-map and a
D-map of the associated R-vine copula, but not necessarily a P-map, since from the R-vine graph,
it is not possible to infer (non)separations other than those represented by its edges. Summarizing,
R-vines do not allow to de�ne a graphical separation concept that yields a complete independence
map. We further analyzed di�erent R-separation properties. Findings on this concept include the
following: (i) It satis�es symmetry; (ii) it does not satisfy strong transitivity, weak transitivity nor
strong union; (iii) weak union, decomposition, contraction and intersection cannot be veri�ed, since
R-vine graphs represent pairwise relationships only, and these properties involve sets of indices as
the conditioned set.

Furthermore, the relationship between graphical representations of R-vines and polytrees has
been analyzed. The focus has been on pairwise separations and non-separations encoded in one
graph that correspond with the set of (un)conditional pairwise (in)dependencies of the dependence
model associated with the other graph. For this purpose, two algorithms have been designed: One
algorithm that aims to induce the R-vine graph that encodes as many relationships as possible
derived from the polytree graph. The other algorithm achieves the same goal but in reverse,
from the R-vine graph to the polytree graph. The former algorithm is capable of building an R-
vine graph that encodes all separation and non-separation relationships derived from the starting
polytree graph. Therefore, the R-vine graph is both an I-map and a D-map of the dependence
model associated with the starting polytree graph. The other algorithm can produce the polytree
graph that represents all separations derived from the starting R-vine graph, but not all the non-
separations. In addition, graphical properties that favor the generation of multiple polytree graphs,
representing the same set of separations and non-separations, have been identi�ed. However, since
the built polytree graph can represent additional non-coded relationships in the starting R-vine
graph, the built polytree is neither an I-map nor a D-map of the dependence model associated with
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the starting R-vine graph.
With the aim of designing methods for learning the graph structure of R-vines from dependence

lists, two approaches have been proposed. The �rst approach is a 0-1 linear programming
formulation for building truncated R-vine graphs with only two trees. The second approach consists
of a GA, which is able to learn complete and truncated R-vine graphs. A further distinctive feature
of the proposed evolutionary approach is that it uses crossover and mutation operators speci�cally
designed to ensure that the generated R-vine graphs are feasible. The designed operators are
e�ective in generating valid and good solutions when working with both feasible and unfeasible
dependence lists. Furthermore, this method further fosters a synergy between global and local
optimization mechanisms in the sense that, while the maximum spanning tree method produces
locally optimized trees, the engineered genetic operators modify those trees in such a way as to
generate better global solutions. Experimental results endorse the success of the designed GA in
�nding R-vine graphs that incorporate the largest number of dependence relationships given in a
dependence list. They reveal that although the GA does not guarantee optimal solutions, it is
highly e�ective in producing optimal or near optimal solutions.

Aiming to extend the use of R-vines to solve supervised classi�cation tasks, this thesis presents
an approach where the feature dependence structure is modeled by means of pair-copulas through
D-vines and R-vines. The e�ectiveness of R-vines as classi�ers has been experimentally validated
in a mental decoding problem and in an image recognition task. In the former, the numerical
simulations show that the D-vine classi�cation approach has a competitive performance compared
to the four best classi�cation methods presented at the Mind Reading Challenge Competition 2011.
The obtained results also suggest that the proposed regular vine-copula classi�cation approach is
able to successfully deal with high-dimensional multi-class problems.

To aid the interpretation of R-vine based classi�ers, methods that allow the construction of a
common graphical structure for all the classes of the dune classi�cation problem have been designed
and evaluated. Although this strategy may restrict the �exibility of the learned distributions and,
therefore, impact the performance of the classi�ers, these remain competitive, since the use of
di�erent copula families (which are learned from the corresponding dataset), can compensate for
the structural constraints. One could anticipate that the use of regular vine-copula classi�ers that
use a common structure for all classes is more advantageous in multi-class classi�cation problems
since, at each level of the R-vine, the algorithm only has to build one maximum spanning tree instead
of having to do so for as many trees as number of classes. Moreover, the proposed regular vine-
copula classi�cation approach can produce classi�ers that balance their accuracy and complexity
when dealing with a wide variety of feature distributions and dependence patterns.

Experimental results con�rm that the designed classi�ers are robust across a variety of scenarios,
especially those where the learned R-vines combine di�erent types of pair-copulas and marginals,
and the number of trees is identi�ed by means of statistical model selection strategies. They
further reveal that these models nicely capture the di�erence among the distributions learned from
sample data of di�erent classes as well as the fact that the better the distribution of each class is
approximated, the more accurate the classi�cation is.

To better meet the outlined aims, two R libraries, called 'rvclass'2 and 'VinecopulaedasExtra'3,
have been designed and implemented. These libraries extend the functionalities of 'vines'4 and
'copulaedas'5, two R packages widely used in the numerical experiments of this research. In the
comparisons with di�erent existing algorithms, the 'scikitlearn' Python library was used.

Future research directions derived from this dissertation are presented thereafter. As discussed
earlier, this dissertation establishes a graphical separation criterion for R-vines. An ongoing

2https://github.com/DianaCarrera/rvclass
3https://github.com/DianaCarrera/VinecopulaedasExtra
4https://CRAN.R-project.org/package=vines [59]
5https://CRAN.R-project.org/package=copulaedas [58]
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topic demanding future work is to extend the study on the connection between the graphical
representations of R-vines and more general Bayesian networks by using the respective graphical
separation criterion.

Regarding the learning of graphical structure of R-vines from dependence lists, a question that
arises here is how the number of relationships in the dependence list as well as their distribution
at each level of the R-vine graph in�uence the complexity of the optimization problem posed.
In particular, how does the search space reduce with respect to the number of R-vines as the
information drawn from the dependence list increases. It is also interesting to conduct an
experimental study of the 0-1 linear programming approach proposed in this thesis in order to
assess its e�ectiveness in �nding R-vine graphs that incorporate the largest number of dependence
relationships given in a dependence list.

Although we have focused on the straightforward application of vine-copulas to the MRP and
DCP, there are several research lines that could be investigated to further assess the potential of
vine copulas as classi�ers. Within this realm of interest, a general question arises on how to use
a priori information about the problem to learn the vine-copulas more accurately. For example,
whether the information about the variables (groups, types, etc.) in the classi�cation problem
could be translated into e�ective constraints (e.g., fewer dependencies to search) when constructing
the vines in order to reduce the learning complexity of the model at an equal or better precision.
Another possibility is to consider the characteristics of the copula models that are used when
performing the feature selection. Speci�cally, to not only consider the discriminatory power of the
features, but also the goodness-of-�t test of pair-copulas.

Another question left unanswered is how to modify the R-vine learning algorithms in order to
mitigate the impact of the covariate shift in classi�cation accuracy. The rationale behind CS1 and
CS2 is that one can determine and easily evaluate how R-vine distributions with the same structure
modify the types of copulas and their parameters when adapting to class distributions. A future
research line here would be to determine further strategies on how to modify the learning methods
in order to increase the interpretability of the problem with at least the same accuracy. Future
investigation can address common structure-based strategies in multi-class classi�cation problems.

We have modeled pairwise dependencies with parametric bivariate copulas that describe a wide
range of dependence structures of sample data. Worthy of comprehensive testing are the (smoothed)
empirical copulas to model complex forms of dependence that cannot be captured by any parametric
copula. We believe that a more accurate modeling of the pair-copulas may lead to an increase in
the predictive ability of R-vine classi�ers.
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Appendix: A Simple Illustration of

the TDSH

We illustrate a simpli�ed version of the TDSH (Algorithm 1.1) using a four-variable example, where
X = (X1, X2, X3, X4).

1. Estimate the univariate cumulative and density functions Fi (Xi) and f (Xi) from the original
observations DX de�ned over X, such that we have

X1 ∼ F1,
X2 ∼ F2,
X3 ∼ F3,
X4 ∼ F4.

2. Obtain the transformed observations DU by evaluating the unconditional distribution
functions Fi (Xi) estimated at Step 1, such that we have

u1 := F1 (x1) ,
u2 := F2 (x2) ,
u3 := F3 (x3) ,
u4 := F4 (x4) .

3. Compute the Kendall's tau value for each pair of variables from a set transformed observations
DU de�ned over U = (U1, U2, U3, U4) obtained at Step 2, such that we have

u1 u2 u3 u4
u1 0, 8 0, 4 0, 2
u2 0, 7 0, 5
u3 0, 6
u4

4. Build the MST T1 that maximizes the sum of the absolute Kendall's tau values obtained at
Step 3. Then, from a prede�ned group of candidate copula families, select the copula with
the smallest Cramér-von Mises statistic (1.44). Afterwards, compute the parameters of the
selected copulas using the relationship between Kendall's tau and the dependence parameter of
the corresponding bivariate copula (see Table 1.1). Three unconditional pair-copulas, namely

c1,2 (u1, u2) ,
c2,3 (u2, u3) ,
c3,4 (u3, u4) ,
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are associated to the edges of the �rst tree as shown in the following �gure:

5. Obtain conditional copula data DU (needed for T2) by evaluating conditional distribution
functions using the bivariate copulas �tted in T1, such that we have

F (x1 |x2 ) =
∂C1,2(F (x1),F (x2))

∂F (x2)
=

∂C1,2(u1,u2)
∂u2

,

F (x2 |x3 ) =
∂C2,3(F (x2),F (x3))

∂F (x3)
=

∂C2,3(u2,u3)
∂u3

,

F (x3 |x4 ) =
∂C3,4(F (x3),F (x4))

∂F (x4)
=

∂C3,4(u3,u4)
∂u4

.

The derivation of these expressions for the Normal, Student's t, Clayton and Gumbel copulas
can be found in [1].

6. Compute the Kendall's tau values for all possible possible edges that meet the
proximity condition from the conditional copula data DU de�ned over U =
(F (X1 |X2 ) , F (X2 |X3 ) , F (X3 |X4 )), such that we have

F (x1 |x2 ) F (x2 |x3 ) F (x3 |x4 )
F (x1 |x2 ) 0, 6 NA
F (x2 |x3 ) 0, 5
F (x3 |x4 )

where NA means that the Kendall's tau value is not being computed (the nodes {12} and
{34} are not joined by an edge).

7. Build the tree T2 that maximizes the sum of absolute Kendall's taus and �t two conditional
pair-copulas, namely

c1,3|2 (F (x1 |x2 ) , F (x3 |x2 )) ,
c2,4|3 (F (x2 |x3 ) , F (x4 |x3 )) ,

which are associated to the edges of the second tree as shown in the following �gure:

8. Obtain conditional copula data DU (needed for T3) by evaluating conditional distribution
functions using the bivariate copulas �tted in T2, such that we have

F (x1 |x2, x3 ) =
∂C1,3|2(F (x1|x2 ),F (x3|x2 ))

∂F (x3|x2 ) ,

F (x2 | x3, x4) =
∂C2,4|3(F (x2|x3 ),F (x4|x3 ))

∂F (x4|x3 ) .

9. Build the tree T3 and �t the conditional pair-copula

c1,4|2,3 (F (x1 |x2, x3 ) , F (x4 |x2, x3 )) ,

which is associated to the single edge of the last tree as shown in the following �gure:
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10. The result is a four-dimensional R-vine density function with six pair-copulas written as

f (x1, x2, x3, x4) = c1,2 · c2,3 · c3,4 · c1,3|2 · c2,4|3 · c1,4|2,3 ·
4∏
i=1

fi (xi) .

The corresponding R-vine graph is shown in the following �gure:

321 4
1,2 2,3 3,4

342312 1,3,2 2,4,3

243132 1,4,2,3

T1

T2

T3
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