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A B S T R A C T

This work proposes a supervised Deep Learning approach for damage identification in bridge structures. We
employ a hybrid methodology that incorporates Finite Element simulations to enrich the training phase of a
Deep Neural Network with synthetic damage scenarios. The neural network is based on autoencoders and its
particular architecture allows to activate or deactivate nonlinear connections under need. The methodology
intends to contribute to the progress towards the applicability of Structural Health Monitoring practices in full-
scale bridge structures. The ultimate goal is to estimate the location and severity of damage from measurements
of the dynamic response of the structure. The damages we seek to detect correspond to material degradations
that affect wide areas of the structure by reducing its stiffness properties. Our method allows a feasible
adaptation to large systems with complex parametrizations and structural particularities. We investigate the
performance of the proposed method on two full-scale instrumented bridges, obtaining adequate results for
the testing datasets even in presence of measurement uncertainty. Besides, the method successfully predicts
the damage condition for two real damage scenarios of increasing severity available in one of the bridges.
. Introduction

One of the main challenges of Structural Health Monitoring (SHM)
n the civil engineering field is the identification and characterization
f damage [1,2]. It is an inverse problem that seeks to provide the
eal health condition of a structure based on experimental measure-
ents [3]. Vibration-based SHM is a widely extended practice that

mploys the dynamic response of the structure as the damage-sensitive
eature [4–6]. It can be addressed through two main approaches,
amely, model-based and data-driven [1].

Model-based methods consist of updating the structural properties
f a numerical approximation to minimize the discrepancy between its
esponse and that of the real structure [7]. The most widely applied
odel-based technique in the civil engineering field is Finite Element
odel Updating (FEMU) [8]. Some authors, such as Liu et al. [9]

nd Tran-Ngoc et al. [10], apply it for damage detection in full-scale
tructural systems. For example, [11] employs a genetic algorithm-
ased FEMU to a railway bridge with successful location and quan-
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tification of damage. But this approach can be time-consuming when
a large number of parameters with a wide range of variation are
involved [12]. This often prevents its application as a real-time assess-
ment method.

By contrast, data-driven methods rely exclusively on measurements
[13]. In recent years, Artificial Intelligence methods, such as Deep
Neural Networks (DNNs), have broadened their domain of application
to the identification of structural damage [14–16]. These methods
undergo a training phase to learn a mathematical relationship between
the response of the structure and its health condition [15]. Thus, the
computational effort concentrates on the training step, yielding practi-
cally real-time predictions. For example, Abdeljaber et al. [17] employ
one-dimensional Convolutional Neural Networks (CNN) to detect and
locate damage at the different joints of a steel frame in a laboratory
environment. An independent CNN is designed and trained for each of
the joints. Pathirage et al. [18] propose an autoencoder-based network
to identify damage in a small-scale steel frame.
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But despite all the improvements achieved in this multidisciplinary
practice, SHM-based damage identification is still far from its solid im-
plementation in full-scale civil engineering structures [4,19,20]. Unsu-
pervised approaches are often employed, which only detect departures
from a reference (undamaged) condition, but are unable to locate or
quantify the damage [21–24]. Some hybrid approaches that incorporate
numerical simulations as an additional source of information have been
recently investigated [25]. For example, Zhang et al. [26] propose a
physics-guided neural network approach to localize damage in struc-
tures. They design a loss function that accounts for the discrepancy
between the prediction given by the data-driven algorithm and the
result of model updating to enhance the diagnostic. Mousavi et al. [27]
propose a hybrid technique to detect damage in a laboratory beam
structure using a Deep CNN. The network is trained using frequency
data from the healthy experimental response and numerical simulations
to include damaged scenarios. Authors use the undamaged response to
update the parameters of the numerical model before running damage
simulations. In [28], authors propose a CNN-based classification ap-
proach to identify damage in a pin-joint composite truss structure using
synthetic data from FE models. Seventekidis et al. [29] also employ
a Convolutional Network classifier to detect structural damage in an
experimental benchmark beam. The training phase includes simulated
responses from a computational model that is initially updated for the
healthy state, including different load conditions and damaged states.
However, these works reach only a laboratory level of implementation
and their practicality on the full scale has not been demonstrated yet.

This work contributes to the progress towards the practical imple-
mentation of SHM-based damage identification techniques for bridge
structures [4]. The scarcity of experimental data (mainly of damaged
scenarios) together with limited availability of computational resources
often prevents an exact location and quantification of damage [12,
30]. We propose a combined SHM methodology to complement more
exhaustive inspections (e.g. non-destructive tests) for damage identifi-
cation. These practices can be extremely inefficient (and costly) if no
prior knowledge exists to orientate the search [4].

Our goal is to detect the presence of damages that result in a loss
of stiffness at some extended part of the structure. Particularly, the
damages that we attempt to detect correspond to material degradations
that affect a wide area of the bridge. Other damages such as emerging
cracks, fatigue, and deformations at various points of the structure [31],
are out of the scope of this work. In concrete structures, examples of the
sought damages are undermined foundations, eroded piles, abrasion of
deck surfaces, etc [32]. They may occur due to the effect of particular
operating conditions, such as extreme temperature levels, rise in water
flow, and highly humid ambient [33]. We assume these damages
affect the bending stiffness properties at the damage location, which
yields changes in the dynamic response of the bridge structure [34].
Recognizing the damage type is out of our identification scope. Instead,
we expect to infer which part of the bridge has undergone damage and
estimate its degree of severity. This is an insightful outcome to enhance
the execution of further explorations that would become impractical
otherwise.

The proposed method is similar to those presented by Mousavi
et al. [27] and Seventekidis et al. [29] in the sense that they address
hybrid approaches, but they remain in a laboratory domain. Here, we
design the methodology focusing on its application to large systems
with complex parametrizations and structural particularities. Compared
to [27,29], which employ classification methods, we propose a regres-
sion approach to predict location and severity of damage as continuous
variables, yielding a more realistic and easily interpretable output.

Given the shortage of experimental measurements and their lim-
itation to the undamaged state, we endow the training phase with
massive simulations from a parametrization of the structure using
Finite Element (FE) models. This incorporates structural knowledge to
the data-driven approach and broadens the solution space with the
2

inclusion of damaged scenarios [26]. To obtain meaningful results, we
first update the values of a parametrization of the structure for the
healthy condition. We address this step using measurements from a
short-term ambient vibration test. The updating helps to attain more
accurate numerical responses as it reduces model uncertainty [35].

The data-driven technique seeks to establish a relationship be-
tween the dynamic response and the health condition of the bridge.
We propose a particular neural network based on autoencoders [36].
Traditional autoencoders perform an encoding step to compress the
input data and a subsequent decompression (decoding) to recover
most of the original information [37]. Here, we build a two-module
architecture analogous to an autoencoder. The first module corresponds
to the encoding step and compresses the input data into a lower-
dimensional representation. Instead of decoding, the second module
learns a mapping from the compressed input into the damage char-
acteristics, namely, location and severity. The main particularity of
the network architecture lies in the composition of both modules. We
divide each module into two adding terms: a linear and a nonlinear
one. The linear term consists of a single layer affine transformation.
The nonlinear term incorporates the nonlinearity to the network and
follows a feed-forward topology [38]. This architecture enables us to
work with a simpler and explainable [39] architecture in cases where
nonlinearities have a small contribution.

Pathirage et al. [18] also used autoencoders to identify damage in
a small-scale frame structure. They employed the stiffness reduction
(due to damage) at each element of the system directly as the out-
put variables to be predicted. However, this approach may become
unfeasible for full-scale bridge structures, where several properties of
different types are involved. In this work, we propose a more man-
ageable solution with only two output variables: location and severity.
We attain this by dividing the structure into sub-regions (locations)
where we want to locate damage. We then establish a relationship
between the changes in stiffness properties at each location and the
severity level. This approach allows easily adapting different models
(finer parametrizations, complex structural components, etc.) without
penalizing the prediction efficiency of the network. This adaptation
ability is one of the contributions of the present work.

We first validate the method in a full-scale concrete structure in
Porto. It is the Infante Dom Henrique Bridge [40], a singular deck-
stiffened arch bridge with a prestressed reinforced concrete box beam.
We investigate the robustness of the methodology by including mea-
surement noise and environmental variability as an adding term to the
outcomes of the numerical simulations. Results demonstrate that the
neural network delivers adequate predictions even in the presence of
measurement error. The unavailability of real data coming from un-
healthy scenarios forces to validate the method using synthetic unseen
damage cases previously defined by Magalhães et al. [40]

To demonstrate the adaptability of the method, we apply it to
another very different structure: the Z24 bridge, in Switzerland [41].
This is a benchmark case study in the scientific community that al-
lows testing the methodology using experimental measurements from
damaged scenarios. Here, we successfully detect a pier settlement of
increasing depth (40 mm and 80 mm).

2. Methodology

2.1. Problem description

In this work, we propose a supervised learning approach for damage
identification in bridge structures. Let 𝐵 be the bridge under considera-
tion. We denote by  to the operator that solves the partial differential
equations governing the structural behavior of 𝐵 and subsequently
calculates its dynamic response:

𝐑𝐵 =  (𝐵), (1)

with 𝐑𝐵 = {𝐟𝐵 ,𝝓𝐵}. Here, 𝐟𝐵 ∈ R𝑛𝑚 includes 𝑛𝑚 eigenfrequencies and
𝑛𝑜 𝑛𝑚
𝝓𝐵 ∈ R ×R contains the corresponding 𝑛𝑜-dimensional eigenmodes.
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Fig. 1. Block diagram of our SHM problem.

The presence of damage affects the structural properties in 𝐵. We
denote by  to the operator that produces the damage characteristics
from the bridge condition: 𝐃 = {𝐿𝐵 , 𝑆𝐵} = (𝐵). Here, 𝐿𝐵 ∈
[1, 2,… , 𝑛𝑧] indicates the location of damage among 𝑛𝑧 zones in the
bridge. Depending on the bridge type, these zones can be portions of the
spans along the deck, or refer to elements with a particular structural
function, such as regions near piers or abutments. The damage severity
𝑆𝐵 ∈ [𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥] indicates the extent of damage. Damages below 𝑠𝑚𝑖𝑛
are considered negligible and damages above 𝑠𝑚𝑎𝑥 are unlikely to occur
before an action is taken. The damage identification problem consists
of finding the characteristics of damage from measurements of the
dynamic response of the bridge:

𝐃𝐵 = (𝐑𝐵), (2)

where  is the inverse operator. Fig. 1 shows a diagram of the problem,
where the inverse operation of damage characterization is highlighted
in red.

The methodology is structured as follows: (𝑖) we build a compu-
tational parametrization to approximate 𝐵; (𝑖𝑖) we update the values
of the parametrization to match a measured response during normal
operation; (𝑖𝑖𝑖) we establish a relationship between the parametrization
values and the characteristics of damage; (𝑖𝑣) we generate a database
of damage scenarios with different locations and severity levels; finally,
(𝑣) we build a DNN to approximate  with small error and predict
damage in 𝐵 from dynamic data.

2.2. Parametrization of the bridge

Let 𝐵𝜽 = {𝜽1,… ,𝜽𝑛𝑧} be a parametrization that represents 𝐵 with
𝑛𝑧 different zones. The number of zones to locate damage depends on
the density of sensors in the monitoring system. The parametrization
includes elastic material properties, cross-section areas, and spring
stiffness constants to describe boundary conditions. Each zone in 𝐵𝜃
is described by a subset of properties 𝜽𝑖 = {𝜃1,… , 𝜃𝑛𝜃𝑖 }. A Finite
Element solver 𝐹𝐸 is employed to produce the dynamic response of
the parametrization 𝐵𝜽:

𝐑𝐵𝜃
= 𝐹𝐸 (𝐵𝜃). (3)

Here, 𝐑𝐵𝜃
= {𝐟𝐵𝜃

,𝝓𝐵𝜃
} contains the eigenfrequencies and eigenmodes

of the parametrization. For simplicity in notation, we refer to 𝐹𝐸

as  since the difference between both operators is considered to be
negligible.

2.3. Update the values of the parametrization for the healthy state

Under normal operating conditions, the bridge 𝐵𝑢 is assumed to
be undamaged with a dynamic response 𝐑𝐵𝑢

= {𝐟𝐵𝑢
,𝝓𝐵𝑢

}. In large-
scale structures, 𝐑𝐵𝑢

is often measured through a short-term ambient
vibration test and subsequently, the dynamic properties are obtained
using Operational Modal Analysis (OMA) techniques [42,43]. This
approach is deterministic and lacks consideration of environmental and
operational variability. When more measurements are available, a more
complete characterization of the healthy state is achieved using for
example bayesian techniques [44].

The initial parametrization values are set to 𝐵𝜃 = 𝐵𝜃0 based on de-
sign properties and engineering knowledge. This yields the preliminary
3

numerical response as  (𝐵𝜃0 ). However, the real material properties
(e.g., the elastic modulus of concrete or steel) in 𝐵 are uncertain, and
modeling boundary conditions (such as piers or abutments) implies
assumptions and simplifications. This makes the preliminary solution
differ from 𝐑𝐵𝑢

.
The goal of the updating step is to obtain a solution 𝐵∗

𝜃 that makes
𝐑𝐵∗

𝜃
approximate 𝐑𝐵𝑢

with small error. This inverse problem is formu-
lated as the minimization of the discrepancy between the numerical
and the experimental responses in the 𝑙2 norm:

𝐵∗
𝜃 ∶= arg min

𝐵𝜃

‖ (𝐵𝜃) − 𝐑𝐵𝑢
‖2. (4)

The variation intervals of the parameters contained in 𝐵𝜃 must en-
sure consistency in the structural sense to represent a healthy condition.
Hence, 𝐵∗

𝜃 = {𝜽∗1 ,𝜽
∗
2 ,… ,𝜽∗𝑛𝑧} yields the values of material properties

and boundary conditions that adequately represent the undamaged
state of 𝐵.

2.4. Damage characterization

In this step, the relationship  between the structural properties
of the bridge 𝐵𝜃 and the damage characteristics 𝐃𝐵𝜃

= {𝐿𝐵𝜃
, 𝑆𝐵𝜃

} is
established. It is assumed that only one of the 𝑛𝑧 zones experiments
damage at a given time. Thus, when damage occurs at the 𝑖th zone, the
location is given by 𝐿𝐵𝜃

= 𝑖.
Damage severity in 𝐵𝜃 is defined as

𝑆𝐵𝜃
= (𝜽𝑖) =

√

√

√

√

√

1
𝑛𝜃𝑖

𝑛𝜃𝑖
∑

𝑗=1
𝑠𝑖,𝑗2, (5)

where 𝑠𝑖,𝑗 are the individual severity values for each involved property,
described next. The reduction vector 𝜶𝑖 ∈ [𝐥𝑖, 1]

𝑛𝜃𝑖 affects the structural
properties such that 𝜽𝑑𝑖 = 𝜶𝑖𝜽∗𝑖 . The lower bounds 𝐥𝑖 ∈ R𝑛𝜃𝑖 contain
the maximum admissible reduction value for each property in 𝜽𝑖 based
on engineering knowledge to ensure structural sense. The remaining
subsets of properties 𝜽𝑗 (𝑗 ≠ 𝑖) keep their undamaged value in 𝐵∗

𝜃 . Thus,
the parametrization for a certain damage scenario at the 𝑖th zone is
𝐵𝑑
𝜃 = {𝜽∗1 ,… ,𝜽𝑑𝑖 ,… ,𝜽∗𝑛𝑧}.

The relationship between severity and reduction factor depends
on the type of structural property, which can be material or section
properties (type 𝑎), and/or boundary conditions (type 𝑏). This is needed
due to the different sensitivity of the dynamic response to property
changes from these two groups. For type 𝑎, the value of the reduction
factor is directly obtained as:

𝑠𝑖,𝑗 = 1 − 𝛼𝑖,𝑗 𝑗 = 1,… , 𝑛𝑎𝜃𝑖 , (6)

where 𝑛𝑎𝜃𝑖 is the number of 𝑎 type properties at the 𝑖th location. For
type 𝑏, a different scale is employed to induce effective damage in the
structure. In this case, the relationship between the reduction factor
and its corresponding severity level is:

𝑠𝑖,𝑗 =
𝑠𝑚𝑎𝑥

log10(𝑙𝑖,𝑗 )
log10(𝛼𝑖,𝑗 ) 𝑗 = 1,… , 𝑛𝑏𝜃𝑖 , (7)

with 𝑛𝑏𝜃𝑖 = 𝑛𝜃𝑖 − 𝑛𝑎𝜃𝑖 and 𝑙𝑖,𝑗 being the 𝑗th element in the lower bound
vector 𝐥𝑖.

2.5. Database generation

A database is generated that contains damage scenarios of different
severity at each location. While location is a discrete variable that takes
values between 1 and 𝑛𝑧, severity is a continuous variable. To uniformly
sweep the severity interval, we build an iterative process to create
different scenarios.

For each sample at the 𝑖th zone, an initial sampling generates the
value of 𝑆𝐵𝜃

from a uniform distribution: 𝑆𝐵𝜃
∼ 𝑈 (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥). This is

the target value to achieve with the individual severity values of each
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Algorithm 1: Generation of damaged scenarios with uniform severity
Input: 𝜽∗, 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥, 𝒍𝑖, 𝑛𝜃𝑖 , 𝑎, 𝑏
Output: 𝐵𝑑

𝜃 , 𝑆𝐵𝜃

/* */
/* Part I: Initialization */

1 𝑆𝐵𝜃
← 𝑟𝑎𝑛𝑑( (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥)) ; // Obtain posterior severity value

2 𝐵𝑑
𝜃 ← 𝐵∗

𝜃 ; // Initialize the damaged parametrization
3 𝛼𝑖,𝑗 ← 0, 𝑗 = 1, ..., 𝑛𝜃𝑖 ; // Initialize reduction vector 𝜶𝑖

/* */
/* Part II: Obtain a damaged parametrization 𝜽𝑑 */

4 while any (𝛼𝑖,𝑗 < 𝑙𝑖,𝑗 𝑜𝑟 𝛼𝑖,𝑗 > 1 𝑗 = 1, ..., 𝑛𝜃𝑖) do
5 for 𝑗 ← 1 to 𝑛𝜃𝑖 by 1 do
6 𝑠̄𝑖,𝑗 ← 𝑟𝑎𝑛𝑑( (0, 𝑠𝑚𝑎𝑥)) ; // Obtain the preliminary individual severity values 𝐬̄𝑖
7 Obtain 𝑆̄ from Eq. (5). ; // Calculate the preliminary severity 𝑆̄
8 Obtain 𝐬𝑖 from Eq. (8); // Obtain the severity values

/* Calculate the reduction vector 𝜶𝑖 */
9 for 𝑗 ← 1 to 𝑛𝜃𝑖 by 1 do
10 if property type = 𝑎 then
11 Calculate 𝛼𝑖,𝑗 from Eq. (6)
12 if property type = 𝑏 then
13 Calculate 𝛼𝑖,𝑗 from Eq. (7)

/* Part III: Obtain the damaged bridge 𝐵𝑑
𝜃 */

14 𝜽𝑑𝑖 ← 𝜶𝑖𝜽∗𝑖 ; // Calculate the subset of damaged properties 𝜽𝑑𝑖
15 𝐵𝑑

𝜃 ← {𝜽∗1 , ...,𝜽
𝑑
𝑖 , ....,𝜽

∗
𝑛𝑧
}; // Build the damaged bridge parametrization

16 Return {𝐵𝑑
𝜃 , 𝑆𝐵𝜃

}

property at the damaged location using Eq. (5). Random values are
first generated for the individual severity of each property as: 𝑠̄𝑖,𝑗 =
𝑎𝑛𝑑(𝑈 (0, 𝑠𝑚𝑎𝑥)), with 𝑗 = 1,… , 𝑛𝜃𝑖 . The severity level 𝑆̄ is calculated by
eplacing 𝑠̄𝑖,𝑗 in Eq. (5). The individual severity value is then corrected
o produce 𝑆, using the following expression:

𝑖 =
𝑆
𝑆̄
𝐬𝑖 (8)

The reduction vector 𝜶𝑖 is subsequently obtained from Eqs. (6) and (7).
If any element in 𝜶𝑖 lies out of the admissible interval [𝐥𝑖, 1), a new
andom set of individual severity values 𝑏𝑎𝑟𝐬𝑖 is generated and 𝜶𝑖 is re-
alculated. This step is repeated iteratively until a correct set of reduc-
ion factors is achieved. The damaged properties are finally obtained as
𝑑
𝑖 = 𝜶𝑖𝜽∗𝑖 . The damaged bridge is given by 𝐵𝑑

𝜃 = {𝜽∗1 ,… .,𝜽𝑑𝑖 ,… ,𝜽∗𝑛𝑧}.
Algorithm 1 describes this iterative procedure to obtain valid damage
scenarios with uniformly distributed severity (𝐿𝐵𝜃

= 𝑖).
Algorithm 1 is applied to obtain 𝑛 damage scenarios for each struc-

tural region 𝑖 = 1,… , 𝑛𝑧. This results in 𝑁 = 𝑛𝑧 × 𝑛 samples conforming
the database. The corresponding dynamic responses are calculated by
solving:

𝐑(𝑘)
𝐵𝜃

= 
(

𝐵𝑑𝑘
𝜃

)

𝑘 = 1,… , 𝑁 (9)

The 𝑘th sample in the database contains the dynamic response
𝐑(𝑘)
𝐵𝜃

= {𝐟 (𝑘)𝐵𝜃
,𝝓(𝑘)

𝐵𝜃
} and the corresponding damage condition of the bridge

𝐃(𝑘)
𝐵𝜃

= {𝐿(𝑘)
𝐵𝜃
, 𝑆(𝑘)

𝐵𝜃
}.

2.6. Deep neural network

The final goal of the proposed methodology is to identify the
damage state of the bridge from measurements of its dynamic response.
The operator  (see Fig. 1) introduced in Section 2.1 establishes the
relationship between the dynamic response 𝐑𝐵 (input) and the damage
characteristics 𝐃𝐵 (output). The dimension of the input layer depends
on the number of mode shapes (𝑛𝑚) and available measurement points
or sensors (𝑛 ) that describe the dynamic response of the bridge, being:
4

0

𝑚 = 𝑛𝑚(𝑛𝑜+1). Let 𝛾 be a DNN that approximates the inverse operation
of damage identification :

𝐃 ≈ 𝛾 (𝐑𝐵𝜃
; 𝜸), (10)

where 𝜸 includes the parameters of the DNN.
Step 1: Pre-processing:
Due to the disparity between the two output variables (location and

damage severity) in 𝐃, a linear rescaling into the interval [0.5, 1.5] is
applied. This interval is selected as it is of unit length and ensures
correspondence between relative and absolute errors [45]. For a certain
variable 𝐱, let 𝑥𝑚𝑖𝑛 ∶= 𝑚𝑖𝑛(𝐱) and 𝑥𝑚𝑎𝑥 ∶= 𝑚𝑎𝑥(𝐱). The rescaling function
 is defined as:

(𝐱) =
𝐱 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ 0.5 (11)

Thus, the rescaled damage condition is obtained as 𝐃𝑟𝑒𝑠𝑐 = (𝐃). For
simplicity in notation, in the following, the rescaled health condition
𝐃𝑟𝑒𝑠𝑐 is referred to as 𝐃.

Step 2: Loss function: The discrepancy between the predicted
damage condition 𝛾 (𝐑𝐵) and the real state 𝐃𝐵 is measured employing
the 𝑙2 norm of the following loss function:

𝛾 = ‖𝜸 (𝐑𝐵) − 𝐃𝐵‖2 (12)

Step 3: Network architecture: A particular NN architecture based
on autoencoders [36] is proposed in this work. Autoencoders perform
an encoding step to compress the input into a lower-dimensional vector
and subsequently decompress it (decoding step) to recover most of the
original information [37]. Here, we rely on autoencoder approaches but
substitute the decoding step by a mapping between the encoded input
and the structural damage (location and severity).

The architecture contains two connected modules. The first module
solves the encoding task of data compression. The second module finds
a relationship between the compressed input and the damage character-
istics. Each module is created by adding a linear and a nonlinear term.
With this architecture, when the addressed problem is straightforward
and nonlinearities have a small contribution, the nonlinear terms can

be deactivated. Fig. 2 describes our proposed network topology.
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Fig. 2. Block diagram of our proposed Neural Network.

For the first module, we have: 1
𝛾 = 𝑙1

𝛾 + 𝑛1
𝛾 . The linear branch

𝑙1
𝛾 (𝐑𝐵 ; 𝜸𝑙1 ) applies an affine transformation to the input layer through

one single dense layer. This transformation is analogous to Principal
Component Analysis (PCA), one of the most traditional data compres-
sion techniques [46]. 𝜸𝑙1 contains the weights and bias parameters
of the operation. The nonlinear branch 𝑛1

𝛾 (𝐑𝐁; 𝜸𝑛1 ) undergoes a feed-
forward architecture [38] that applies a linear transformation followed
by a nonlinear activation function 𝑔 through 𝐿𝑛1 layers. The parameter
vector 𝜸𝑛1 includes the weights and bias of the operation. The output
of the first module enters a second module with analogous architecture
that performs the feature mapping.

The output layer adds the linear and the nonlinear connections of
the second module: 𝑙2

𝛾 (1
𝛾 ; 𝜸𝑙2 ) + 𝑛2

𝛾 (1
𝛾 ; 𝜸𝑛2 ). This layer is customized

to restrict the output variables to the admissible rescaled interval. Let
 be the clipping function into the interval [0.5, 1.5]:

(𝑥; 0.5, 1.5) =
⎧

⎪

⎨

⎪

⎩

0.5 𝑖𝑓 𝑥 < 0.5
𝑥 𝑖𝑓 0.5 ≤ 𝑥 ≤ 1.5
1.5 𝑖𝑓 𝑥 > 1.5

(13)

The last step is to undo the rescaling operation in Eq. (11) to obtain
the real values of the output variables.

Step 4: Training: The database generated in Section 2.5 is em-
ployed to train the DNN (𝛾 ) and obtain the set of optimal parameters
𝜸∗ that produces an approximation to . This yields:

𝜸∗ ∶= arg min
𝜸

(𝛾 ) (14)

Here, an stochastic gradient descent method is employed to solve the
minimization problem [38]. Tensorflow library available in Python
environment is used to carry out the whole process [47].

The final goal is to employ the DNN to make predictions on new
measured data from the monitoring systems operating in bridge struc-
tures. Fig. 3 shows a flowchart of the whole procedure. We can divide
the different tasks into offline and online. The offline part includes all
the required steps to build the damage identification system. The online
part consists of acquiring new measurements from the bridge to feed
the DNN and obtain a diagnostic of the health condition.

In this work, we focus on the development of the offline part. The
online part consists of the incorporation of the DNN as a real-time
assessment tool for SHM. Once new measurements are acquired under
an unknown structural condition, the DNN would predict a damage
diagnostic. The prediction is to be considered as an assessment that
complements visual inspections as well as other SHM systems.

3. Results

In this section, we describe the results obtained for two cases of
study. The first one is the Infante Dom Henrique bridge in Porto. This
bridge is currently under service and is being monitored. However,
5

data regarding real damage scenarios is unavailable. We subsequently
apply the proposed method to the Z24 bridge in Switzerland. This
brings up the opportunity to perform an experimental test. To solve the
different tasks, we employed a computer (Dell Precision 3520) with the
following specifications: Intel(R) Core i7-7700HQ, 2.80 GHz CPU.

3.1. Case 1: Bridge Infante Dom Henrique

3.1.1. The bridge and monitoring system:
The bridge Infante Dom Henrique bridge (Porto) is a concrete bridge

that contains two main interacting elements: a rigid pre-stressed box
girder of 4.50 m depth, and a reinforced arch of 1.50 m thickness (see
Fig. 4). Due to the high stiffness of the deck compared to that of the
arch, the bridge behaves as a beam structure between abutments [48].

The dynamic monitoring system described in this paper was in-
stalled and activated in September 2007 and operated for five years.
Nowadays, the bridge is being monitored by a simpler wireless mon-
itoring system [49]. Due to existing structural symmetry, only half of
the bridge was monitored at four particular sections (see Fig. 5) [48].

The monitoring system included two acquisition modules and 12
uniaxial force balance accelerometers located inside the deck box
girder. There are four instrumented sections with three sensors each.
For each section, one sensor measures lateral accelerations, and the
other two measure vertical accelerations upstream and downstream
sides, respectively. Additional information can be found in Magalãhes
et al. [48].

In this work, we focus on the vertical accelerations of the bridge
to locate and quantify the damage. Thus, we have access to four
vertical acceleration signals (upstream or downstream) from which we
calculate the dynamic properties (eigenfrequencies and eigenmodes)
using Operational Modal Analysis (OMA) techniques [48]. Fig. 6 shows
the first four unity-scaled vertical mode shapes.

While eigenfrequencies are global features, eigenmodes contribute
to locating damage. A mode shape describes the level of vibration
amplitude for each node of the structure when it is excited with the
corresponding eigenfrequency. The presence of damage at a certain lo-
cation will change differently the mode shape. If changes of the bending
stiffness are under investigation, each eigenmode is more sensitive to
those damages located close to the regions where the curvature of the
mode shape is larger. The number of points describing each eigenmode
depends on the number of sensors in the monitoring system. Hence, the
monitoring system restricts the zones where damage can be located to
those that influence the modal ordinates of the instrumented degrees
of freedom. In this work, we restrict the possible damaged regions to
the instrumented half of the bridge. Although damages at regions on
the left-hand side of the bridge might also be detected, it would be
difficult to distinguish their location.

3.1.2. Ambient vibration test
An ambient vibration test is one of the most convenient approaches

to estimate the modal parameters of a structure under service [48]. It
employs the vibration induced by traffic and wind as the excitation
to characterize the response of the structure. The amplitude of the
accelerations that the bridge suffers under such excitation is very low.
For this reason, especially sensitive sensors must be employed.

In the ambient vibration test carried out at Infante bridge in 2002,
four tri-axial 18-bit strong motion recorders were used [48]. All sensors
were synchronized through external GPS sensors. During the test, two
of the sensors were fixed in the middle-deck cross-section (upstream
and downstream) and acted as a reference. The other two sensors
changed position within a total of 15 set-ups to cover the length of the
bridge deck. For each set-up, records of 16 min were collected with a
sampling frequency of 100 Hz. This frequency was reduced to 20 Hz
after the application of a low-pass filter. Further details regarding the

ambient vibration test can be found in Magalhães et al. [48].
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Fig. 3. Flowchart of the proposed methodology.
Fig. 4. Infante bridge view.

3.1.3. Parametrization
We employ a parametrization developed by Magalhães et al. [48].

It includes 3D bar elements in ANSYS R⃝ to describe the behavior of the
bridge. The structural properties (area, bending and torsion moments
of inertia, and shear deflection constants) are included according to
design specifications. Since we are investigating the vertical bending
response of the structure, 3D bar elements (beam type) have optimal
functionality. They also allow introducing damage as a reduction of
the corresponding cross-section inertial properties. This type of model
was first developed by Magalhães et al. [48] and can be considered an
accurate approximation to represent the vertical bending behavior of
the bridge. More sophisticated models such as those composed of solid
elements could be employed. These provide more precise predictions at
the cost of higher computational effort and modeling complexity. But
these models can introduce unwanted mode shapes (e.g., vibrations of
the cantilever eaves of the deck) and hinder the modal identification
process. Besides, the simulation of damage in this type of model may
become very complex, since solid elements lack section properties as
an accessible parameter. This forces to introduce damage in terms of
geometrical variations, which is a non-trivial task that can produce
mesh problems and prevents an automatic generation of scenarios.

Magalhães et al. [48] described the calibration process, focusing on
the connections of columns and abutments with the deck. While the
highest columns (M1 and M6 in Fig. 5) have a monolithic connection,
the other columns and abutments contain two unidirectional sliding
pot bearings. Three possible connection disposals were considered and
analyzed. The authors designed a final parametrization including fixed
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longitudinal displacement and rotations in the pot bearings at the
columns but free at the abutments, and horizontal springs to simulate
additional stiffness at the abutments. The value of the stiffness con-
stants in the abutments is fixed manually to approximate the first four
vertical bending eigenmodes.

For further steps in this work, we employ the higher-order modes
(third and fourth) since they are more sensitive to localized damages
such as those sought in this work [50].

According to the position of the sensors, we consider eight possible
damage locations along the right-hand side of the bridge, according to
Fig. 7. Each location is 17.5 m long along the bridge deck.

3.1.4. Database generation
Given the beam-type behavior of the bridge [48] and the location

of the sensors in the monitoring system, we focus on the identification
of damages in the deck. Specifically, we employ the real values that
describe the cross-section inertia along with the beam-type elements
that model the deck. All these structural properties are of type 𝑎
introduced in Section 2.4. Each location contains 4 properties, resulting
in a total of 32 structural properties involved in this case of study.
We set the minimum severity to 𝑠𝑚𝑖𝑛 = 2.5% and the maximum to
𝑠𝑚𝑎𝑥 = 50% based on sensitivity analysis and engineering criterion. Dur-
ing sensitivity analysis, we observed that damages below 2.5% barely
introduced changes in the response of the structure. The multiplication
factors in 𝜶 range from 0 (undamaged property) to 0.5 (50% damage
at that property).

We solve 𝑛 = 5, 000 damage scenarios for each of the 𝑛𝑧 = 8
locations, yielding a total of 𝑁 = 40,000 samples. The time required to
obtain the database was 37.3 h. We calculate the dynamic response for
each sample and match it with the corresponding damage label to form
the database. Although only four measurement points (sensors) are
available in the monitoring system, we obtain seven-dimensional eigen-
modes throughout simulations to add extra information for damage
location.

We choose some representative samples from the database to study
the sensitivity of eigenfrequencies to damage. For each location, we
select 10 samples of constant increasing severity from 5% to 50%. Fig. 8
shows the sensitivity of the selected eigenfrequencies.

We observe that the third eigenfrequency is very sensitive to dam-
ages at locations 𝐿1 and 𝐿5. This is related to the curvature (change of
slope) of the eigenmodes [51]. The higher the curvature of the mode
in the affected location, the higher the impact on the corresponding
natural frequency [51]. We observe that for location 𝐿3, since it is
almost a blind node (small curvature), it barely changes with the
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Fig. 5. Instrumented cross-sections in the monitoring system.
Fig. 6. Vertical eigenmodes obtained from ambient vibration test.
Fig. 7. Parametrization of Infante bridge with eight locations.
increase of severity (see Fig. 6(c)). For the same reason, the fourth
vertical eigenfrequency is strongly affected by damages at location 𝐿3
(see Fig. 6(d)).

3.1.5. Deep neural network
We employ the network architecture described in Section 2.6. The

nonlinear connections 𝑛1
𝛾 and 𝑛2

𝛾 are symmetric and contain four
layers each. We employ a ‘‘ReLu’’ [38] activation function at the hidden
layers of the nonlinear connection. The input layer receives a total of
7

𝑚 = 16 input features. These include higher-order (third and fourth)
vertical eigenfrequencies and eigenmodes, as indicated in Section 3.1.3.
The encoding phase compresses this input into an eight-dimensional
feature vector. This topology provides adequate results.

We randomly split the database as follows: 72% of the samples are
employed for training, 18% for validation, and the remaining 10% are
kept for testing. We train the neural network through 10,000 epochs.
This number allows for sufficient training and prevents overfitting.
Each epoch constitutes a new passage of the entire training dataset



Engineering Structures 257 (2022) 114016A. Fernandez-Navamuel et al.
Fig. 8. Evolution of eigenfrequencies with increasing damage severity.
Fig. 9. Loss evolution for the training and validation datasets (Infante bridge).

through the NN [38]. Fig. 9 shows the evolution of the loss function
for both the training and validation datasets. The required training
time was 12 min. We employ a particular gradient descent optimizer
that prevents getting trapped in local minima during training [52].
This optimizer produces high loss function values at certain epochs. To
select an adequate solution, we retain the best trained model based on
a performance indicator. Here, we select the model that achieves the
minimum loss value for the validation dataset.

We evaluate the performance of the trained network for the testing
dataset. Fig. 10 includes the cross-plot of the output variables. It
exhibits a high correlation between the real value (ground truth) and
the prediction given by the DNN. We employ the squared correlation
coefficient 𝑟2 as the correlation metric [53]. The distribution of the
samples in the graph is represented with a color scale, with a darker
color meaning more density of samples.

Fig. 10(a) shows the cross-plot of location for the testing dataset.
Although the ground truth is restricted to the eight possible loca-
tions, the prediction of the DNN is continuous (regression). Most of
the samples concentrate close to the red line (prediction = ground
truth), resulting in a high correlation level (𝑟2). Fig. 10(b) shows the
predictions obtained for the severity level. These results show a good
performance of the DNN during the numerical test.

Given the lack of real measurements from damage scenarios, we
perform a numerical test. We employ two damage cases described by
Magalhães et al. [40]. These are considered minor damages according
to [40]. They consist in reducing the vertical bending inertia at a small
segment of the bridge deck. They were applied at locations 𝐿1 and 𝐿8
according to Fig. 7. We consider two reduction levels – 10% and 30%
– for the affected structural property. We estimate the ground truth
severity for each scenario according to Eqs. (5) and (6). Table 1 shows
the prediction provided by the DNN.
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According to Table 1, the DNN is achieving adequate results. How-
ever, the lack of experimental damage scenarios prevents a more realis-
tic validation. After training and validation, the algorithm is ready to be
implemented in the SHM system. The monitoring sensors will acquire
new measurements and produce the current natural frequencies and
mode shapes of the structure. To make the experimental eigenmodes
(four-dimensional) match the numerical ones (seven-dimensional), we
complete them by fitting a spline and obtaining the corresponding value
between every two sensors. The completed experimental measurements
are fed to the DNN that provides a prediction of the health condition
of the structure.

To demonstrate the contribution with respect to other existing tech-
niques, we consider the work developed by Pathirage et al. [18], which
also employed an autoencoder trained with numerical simulations to
solve the damage identification problem. The main difference lies in the
output of the DNN, where for Pathirage et al. [18] is an N-dimensional
vector based on the 𝑁 parameters (structural properties) that can
change in presence of damage. 𝑁 can be considerably large for large-
scale structures with complex parametrizations. Besides, this approach
requires to adapt the architecture to fit the number of properties of
different structures or different parametrizations of the same structure.
Our approach applies a post-processing to the structural parameters
to make predictions based on a two-dimensional output that describes
damage in terms of location and severity. This allows keeping the same
architecture (with reduced output dimension) of the DNN regardless of
the parametrization and structural system and enhances the interpre-
tation of predictions. Also, the larger is the output (more variables to
predict) the more complex gets the training phase and predictions may
lose accuracy.

For the case of study of Infante Dom Henrique bridge, the output
dimension increases from two to 32 if we employ the approach of
Pathirage et al. [18]. We implement this by adapting our DNN to have a
32-dimensional output, where the output corresponds to the reduction
vector 𝜶. Table 2 compares the value of the 𝑟2 metric that measures the
correlation between ground truth and prediction of the output variables
during testing for both methodologies. The predictions provided by our
approach are better than those using the 32-dimensional. Obtaining ad-
equate results using the methodology proposed by Pathirage et al. [18]
would require a more complex DNN and a larger training database,
which implies more computational effort. Besides, the results provided
by our approach are easier to interpret and enhance applicability
mainly for complex parametrizations with a large amount of involved
structural properties.

3.1.6. Incorporation of measurement uncertainty
In this section, we evaluate the performance of the methodology

in presence of measurement noise and environmental variability. A
long-term monitoring campaign started in 2007 at Infante bridge that
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Fig. 10. Infante bridge cross-plots for the testing dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 1
Numerical testing for Infante bridge.

Scenario Ground truth Prediction

Location Severity (%) Location Severity (%)

10% vertical bending inertia reduction at 𝐿1 1 5.00 1.41 4.21
30% vertical bending inertia reduction at 𝐿1 1 15.00 1.05 13.42
10% vertical bending inertia reduction at 𝐿8 8 5.00 7.89 5.32
30% vertical bending inertia reduction at 𝐿8 8 15.00 8.00 17.85
Table 2
Comparison of metric 𝑟2 value for the output variables during testing using a 2-D approach and a 32-D approach.

Output dimension Variable

Var1 Var2 Var3 Var4 ... Var29 Var30 Var31 Var32

2-D 0.9980 0.9775 – – ... – – – –
32-D 0.8591 0.7802 0.7345 0.8371 ... 0.6446 0.7531 0.7771 0.8375
contained 12 force balance accelerometers installed in four particular
cross-sections of the structure [40,48]. These measurements were sub-
sequently processed to identify the eigenfrequencies and eigenmodes of
the bridge.

Some statistical analyses were carried out by Magalhães et al. [48]
to explore the variability induced by temperature and other operational
phenomena (e.g., concrete hardening) in the eigenfrequencies of the
bridge. Table 2 in their work [48] compared the standard deviation
(SD) of the first twelve eigenfrequencies for the ambient vibration test
and the monitoring campaign, observing much higher values during
the monitoring phase due to the effect of temperature. According to
their study, any eigenfrequency outranging the interval of its value
+∕ − 1.5SD could be considered an outlier. This information was un-
available for eigenmodes, while it is known that they are less sensitive
to environmental variability [54].

Based on this information, we account for measurement noise and
environmental variability as follows: for the eigenfrequencies, we con-
sider the same interval as [48]. To be conservative, we employ the
highest SD value amongst the four vertical eigenfrequencies analyzed.
For the eigenmodes, we employ the variability observed during the am-
bient vibration test that includes measurement noise. We incorporate
measurement error as an additive term [35] such that:

𝑑 = 𝑑 + 𝜖, (15)
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𝑛𝑒𝑤 𝑛𝑢𝑚
Fig. 11. Loss evolution for the training and validation datasets with measurement
uncertainty.

where 𝑑𝑛𝑢𝑚 refers to any magnitude obtained from simulations (eigen-
frequencies and eigenmode amplitudes), 𝜖 stands for the additive error
term, and 𝑑𝑛𝑒𝑤 is the resulting magnitude.

The new database contains three times the original one, including:
(i) the original database described in Section 3.1.4, (ii) the original
database affected by a reduced error level (𝜖 ∈ [−0.0001,+0.0001]),
and (iii) the original database affected by the previously described



Engineering Structures 257 (2022) 114016A. Fernandez-Navamuel et al.
Fig. 12. Infante bridge cross-plots for the testing dataset with measurement uncertainty.
Table 3
Numerical testing for Infante bridge in presence of measurement uncertainty.

Scenario Ground truth Prediction

Location Severity (%) Location Severity (%)

10% vertical bending inertia reduction at 𝐿1 1 5.00 1.06 5.93
30% vertical bending inertia reduction at 𝐿1 1 15.00 0.97 15.32
10% vertical bending inertia reduction at 𝐿8 8 5.00 7.83 5.32
30% vertical bending inertia reduction at 𝐿8 8 15.00 8.00 21.36
measurement uncertainty according to [48]. The value of 𝜖 for each
scenario is randomly sampled from the corresponding interval.

We repeat the training and validation process of the neural network
for the new database. Fig. 11 shows the loss evolution for the training
and validation datasets. The required training time was 28 min.

We then evaluate the performance of the trained network for the
testing dataset. Fig. 12 includes the cross-plot of the output variables.

The achieved correlation levels are slightly lower than those ob-
tained in the deterministic approach, but results are still great, demon-
strating an adequate performance of the DNN.

Table 3 shows the prediction provided by the DNN for the consid-
ered damage scenarios. We observe that the DNN achieves adequate
results in predicting both damage scenarios. This example is a prelim-
inary attempt to include measurement error in the process, but more
extensive research is required to demonstrate the full capability of the
method to operate under diverse noisy and variable environments. We
consider this issue as a future research line to explore in forthcoming
works.

3.2. Case study 2: Z24 bridge

The Z24 bridge is a post-tensioned concrete two-cell box girder with
three spans crossing the highway that connects Bern and Zurich (see
Fig. 13). This bridge was demolished in 1998 to expand its span due to
an enlargement of the highway [41]. Before demolition, some damage
scenarios were generated and monitored during short-term campaigns
for different research purposes [55–58]. In this work, we employ two
damage scenarios corresponding to a settlement of 40 mm and 80 mm
at the Koppigen side pier (see Fig. 13).

3.2.1. Ambient vibration test
Previous to bridge demolition, progressive tests were carried out in

the bridge under the SIMCES project, including some damage simu-
lations [59]. Forced and ambient vibration tests were performed for
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the healthy structure and subsequent damage scenarios. In this work,
we employ measurements from the ambient operational vibration tests
(11–12 min length records of ambient accelerations including fixed
and moving sensors in nine different set-ups) to identify the exper-
imental first and second eigenmodes with high resolution. Further
information regarding the configuration and measurements can be
found in Reynders et al. [41] The available number of points describing
each eigenmode allowed to characterize the dynamic behavior of the
bridge with only the first two eigenmodes. We employ the software
MACEC [60] to obtain the natural frequencies and mode shapes from
the acceleration signals. The first one is a vertical bending, and the
second one corresponds to a torsion.

3.2.2. Parametrization
We build a parametrization in ANSYS R⃝ using shell elements for the

deck and piers and spring type elements to model boundary conditions.
The use of shell-type elements is justified here since one of the selected
mode shapes to represent the structural behavior corresponds to a
torsion. Shell elements provide a better distribution of the structural
masses. Other works, such as [61] or [62], propose similar modeling
elements, supporting the decision taken and the validity of the model.
We consider five different locations (see Fig. 14). The parametrization
includes material properties (type 𝑎) and boundary conditions (type
𝑏). Material properties refer to the elastic modulus of the concrete.
Locations one, two, and three, are described by these properties. Lo-
cations one and three include seven material properties, and location
two contains 14 along its length. We describe locations four and five
(boundary conditions at the piers) with spring constants in the vertical
direction (five properties describe each of these locations). A total of
38 properties are involved in this case of study.

We employ a Genetic Algorithm [63] to solve equation (3) and cali-
brate the parametrization. This yields a good numerical approximation
to the response of the real bridge according to the ambient vibration
test.
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Fig. 13. Z24 bridge in Switzerland [41].
Fig. 14. Parametrization of Z24 bridge with five locations.
Table 4
Results of the updating procedure.

Mode Initial parametrization Updated parametrization

Freq. error (%) MAC Freq. error (%) MAC

1 0.54 0.9774 0.39 0.9886
2 0.02 0.9871 0.01 0.9930

Table 4 gathers the error terms in frequencies and eigenmodes
before and after the updating process. For the eigenmodes, we employ
the Modal Assurance Criterion (MAC) values [64].

3.2.3. Database generation
We set the minimum severity to 𝑠𝑚𝑖𝑛 = 0.05 and the maximum

to 𝑠𝑚𝑎𝑥 = 0.5 based on sensitivity analysis and engineering criterion.
During sensitivity analysis, we observed that damages below 5% barely
introduced changes in the structural response. The multiplication fac-
tors in 𝜶 range from 0 (undamaged property) to 0.5 (50% damage at
that property). We solve 𝑛 = 8, 000 damage scenarios for each of the
𝑛𝑧 = 5 locations, yielding a total of 𝑁 = 40,000 samples. The time
required to obtain the database was 30.6 h. We calculate the dynamic
response for each sample and match it with the corresponding damage
label.

3.2.4. Deep neural network
We employ the network architecture described in Section 2.6. The

architecture of the neural network contains six hidden layers at the
nonlinear connections 𝑛1

𝛾 and 𝑛2
𝛾 . We employ a ‘‘ReLu’’ [38] activation

function at the hidden layers of the nonlinear connection. The input
layer receives a total of 𝑚 = 46 input features. These include the first
two eigenfrequencies and corresponding eigenmodes. The length of the
mode shape vectors is 22 and includes points from both upstream and
11
Fig. 15. Loss evolution for the training and validation datasets (Z24 bridge).

downstream measurement positions. The encoding phase compresses
this input into a 17-dimensional feature vector. This topology provides
adequate results.

We randomly split the database as follows: 72% of the samples are
employed for training, 18% for validation, and the remaining 10% are
kept for testing. We train the neural network through 5,000 epochs.
This number allows for sufficient training while preventing over-fitting.
Fig. 15 shows the evolution of the loss function for the training and
validation datasets. The required training time was 10 min. We employ
an optimizer that prevents from getting trapped in local minima during
training [52]. This optimizer produces high loss function values at
certain epochs, but we select the model with minimum validation loss.

We evaluate the performance of the trained network for the testing
dataset. Fig. 16 includes the cross-plot of the output variables. It shows
that a high correlation exists between the real value (ground truth) and
the prediction given by the network.
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Fig. 16. Z24 bridge testing cross-plots.
Table 5
Experimental validation with two damage scenarios.

Damage Location Severity (%)

D1 4.78 30.64
D2 5.00 43.64

Now, we test the network for the available experimental damages.
We employ two damages of increasing severity at the pier in the
Koppigen side (see Fig. 13), that corresponds to location 𝐿5 according
to Fig. 14. The damage consisted of pier settlements of 40 mm (𝐷1)
and 80 mm (𝐷2) [65]. Both damages are considered to be of high
severity [65]. The monitoring datasets consisted of two 10.9 min
long time series sampled at 100 Hz. Peeters et al. [66] describe the
experiments in more detail. We post-processed the acceleration signals
to obtain the responses 𝑅𝐷1 and 𝑅𝐷2 and evaluated the DNN.

Table 5 gathers the obtained results.
We observe that the DNN correctly predicts the location of the

damage. The true severity level is unknown for both scenarios, although
we expect to obtain high values that increase from the first scenario to
the second one. Accordingly, the obtained results indicate meaningful
severity levels (above 30%).

4. Conclusions and future work

We implemented and tested a novel SHM methodology to identify
damages that induce stiffness reductions at specific parts of a structure.
Experimental measurements from ambient vibration tests were em-
ployed to adjust the properties of the parametrization and approximate
the real dynamic response (natural frequencies and mode shapes). By
grouping the structural properties of the parametrization into various
regions where damage may occur, we designed a database that in-
cluded different scenarios labeled by damage location and severity.
The proposed DNN captured the relationship between the dynamic
response of the structure and the presence of damage with reduced
errors after adequate training. The methodology demonstrated to be
easily adaptable to different types of bridges.

We validated the methodology with two full-scale cases of study: In-
fante Dom Henrique bridge in Porto and Z24 bridge in Switzerland. For
the Infante bridge, we obtained adequate results, including successful
prediction of two synthetic damage scenarios evaluated as testing. The
lack of experimental data prevented a more realistic validation. We also
12
explored the robustness of the method to the presence of measurement
error by introducing noise and environmental variability as an adding
term to the numerical responses of the database. The availability of two
experimental damage scenarios of increasing severity in the Z24 case
study allowed us to evaluate the performance beyond the numerical
frame. The DNN correctly estimated the location of the pier settlements
applied before the bridge demolition. The exact severity level of these
damages is unknown, but high values were expected and achieved,
demonstrating the ability of the methodology.

We consider as future work the inclusion of environmental and op-
erational variability to allow extending the validity of the approach to
different service conditions without the risk of masking the presence of
damage. Although in this work we only employed dynamic monitoring
data from acceleration signals, in most instrumented bridges different
sensor types coexist. These may provide useful information (e.g., tem-
perature, humidity, inclinations, displacements, etc.) to characterize
better the healthy state of the bridge. An interesting future study is
to consider these variables together with dynamic data as the input for
damage detection methods. In this sense, experiences in real bridges
such that in the Z24 bridge considered in this work are of huge interest
to the research community.
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