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The quantum approximate optimization algorithm (QAOA) has proved to be an effective classical-quantum
algorithm serving multiple purposes, from solving combinatorial optimization problems to finding the ground
state of many-body quantum systems. Since the QAOA is an Ansatz-dependent algorithm, there is always a need
to design Ansdtze for better optimization. To this end, we propose a digitized version of the QAOA enhanced
via the use of shortcuts to adiabaticity. Specifically, we use a counterdiabatic (CD) driving term to design a
better Ansatz, along with the Hamiltonian and mixing terms, enhancing the global performance. We apply our
digitized-CD QAOA to Ising models, classical optimization problems, and the P-spin model, demonstrating that

it outperforms the standard QAOA 1in all cases we study.
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I. INTRODUCTION

Hybrid classical-quantum algorithms have the potential to
unleash a broad set of applications in the quantum comput-
ing realm. The challenges involved in realizing fault-tolerant
quantum computers have promoted the study of such hybrid
algorithms, which proved to be relevant to modern noisy
intermediate-scale quantum (NISQ) devices [1,2] with a few
hundred qubits and limited coherence time. One notable ex-
ample is that of the variational quantum algorithms (VQA),
which is implemented by designing variational quantum cir-
cuits to minimize the expectation value for a given problem
Hamiltonian. The VQA is advantageous given the fact that
preparing a tunable circuit Ansatz is found to be difficult
on a classical computer. It has already been widely ap-
plied in quantum chemistry [3-8], condensed matter physics
[9-11], solving linear systems of equations [12], combi-
natorial optimization problems [13,14], and several others
[15,16]. Remarkably, one of the early implementations of
the VQA was performed using photonic quantum processors
[17], which prompted further theoretical progress [18-23].
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The VQA has been demonstrated in superconducting qubits
[3,6,18] and trapped ions [8,24,25].

One compelling outcome of the VQA is the development
of the quantum approximate optimization algorithm (QAOA)
[26], which provides an alternative for solving combinatorial
optimization problems using shallow quantum circuits with
classically optimized parameters. In the past few years, there
has been a rapid development in QAOA-based techniques that
have been applied not only for solving conventional optimiza-
tion problems like MaxCut but also for solving ground state
problems in different physical systems [25,27,28]. Improved
versions of the QAOA, like ADAPT-QAOA [29] and Digital-
Analog QAOA [30] have also been reported recently. Like any
combinatorial optimization problem, the QAOA depends on
optimizing a cost function to obtain the desired optimal state
corresponding to a p-level parametrized quantum circuit. In
addition, the choice of the approximate trial state, from which
the cost function is obtained, is crucial to the success of the
QAOA. Generally, this is done by using quantum adiabatic
algorithms (QAAs) which produce near-optimal results for
large p which is not suitable for current NISQ devices. More-
over, due to the requirement of large p, the cost of classical
optimization increases, and the algorithms suffer from the
problem of vanishing gradients and local minima [31-33].

Several studies have been reported in the past few years
showing that high-fidelity quantum states can be prepared
by assisting QAAs with additional driving interaction [34].
These studies establish that, for certain problems, the inclu-
sion of additional driving terms can reduce the computational
complexity and with it the circuit depth. These driving terms
are usually calculated using methods developed under the
umbrella of so-called shortcuts to adiabaticity [35,36], which
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have been introduced to improve the traditional quantum
adiabatic processes, removing the requirement for slow driv-
ing [37]. Instances of these methods include counterdiabatic
(CD) driving [38—40], fast-forward approach [41,42], and
invariant-based inverse engineering [43,44]. Among them, CD
driving is interesting and has been used to study fast dynamics
[45-49], preparation of entangled states [50-53], adiabatic
quantum computing [34,54], and quantum annealing [55-57].

In the context of the QAOA, the advantage of the introduc-
tion of CD driving is twofold. The CD driving decreases the
circuit depth, while reducing the number of optimization pa-
rameters. On the other hand, it provides a better approximate
trial state which is beneficial for finding the optimal target
state. In this paper, we propose an algorithm, the Digitized-
counterdiabatic QAOA (DC-QAOA), which improves the
performance of the conventional QAOA using CD driving. In
this context, it is worthwhile to mention the work of Ref. [58],
also inspired by CD driving techniques.

This paper is organized as follows. In Sec. II, we intro-
duce the DC-QAOA and explain it in detail, comparing it
with the quantum adiabatic evolution and the QAOA. In the
following sections, we present a comparative study of the
proposed DC-QAOA and the conventional QAOA method
in the context of various physical systems. In Sec. III, we
prepare the ground state of three different types of one-
dimensional (1D) Ising spin models, namely, the longitudinal
field Ising model (LFIM), the transverse field Ising model
(TFIM), and the Greenberger-Horne-Zeilinger (GHZ) state.
In Sec. IV, we study classical optimization problems such
as the MaxCut problem and the Sherrington-Kirkpatrick (SK)
model, while in Sec. V, different variants of the P-spin model
are considered. In doing so, we establish, by comparing the
approximation ratios, that the DC-QAOA is advantageous
compared to the QAOA for shallow quantum circuits. Finally,
we conclude with a brief discussion in Sec. VI.

II. DC-QAOA

The conventional QAOA method can be viewed as a com-
bination of two distinct parts: the quantum part consists of a
parameterized circuit Ansatz, which is in turn complemented
by a classical optimization algorithm to determine the param-
eters that minimize (maximize) a predefined cost function.
The circuit Ansatz for the quantum part is governed by an
annealing Hamiltonian:

H,(t) = [1 — A(t)]Hmixer + )\(I)Hprob’ ()

where A(t) € [0, 1] is the annealing schedule for ¢ € [0, T'].
Here, Hyixer = Zi hjo} is the mixing Hamiltonian that
produces an equal (weighted) superposition state in the com-
putational basis to begin with, whereas the desired final state
is the ground state (or an eigenstate) of Hpp. In continuous
annealing, the system evolves from the eigenstate of Hpixer
to the eigenstate of Hpp through adiabatic evolution. The
corresponding digital adiabatic circuit Ansatz can be designed
using the trotterized time evolution operator [59,60]:
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FIG. 1. Schematic diagram with circuit used for the Digitized-
counterdiabatic quantum approximate optimization algorithm (DC-
QAOA) having an additional CD term along with the Hamiltonian
and mixing terms.

where we consider that H,(f) can be decomposed into
M k-local terms, i.e., into terms H,(t) which have k-body
interactions at most. Note that the U (0, T') is a product of p
subunitaries, each corresponding to an infinitesimal propaga-
tion step Az. An adiabatic evolution using U (0, T') can always
produce an exact target state at the cost of resorting to a large
value of p. This can be translated to the language of the QAOA
if one parameterizes U (0, T') as

Uy, ﬂ) = Um(ﬁp)Up(yp)Um(ﬁpfl)Up(ypfl)- ..
o Un(BOU, (1), (3)

where the evolution operators are Uy, (8,) = exp (—iB,Hnixer)
and Up(y,) = exp (—iypHpop). Here, the annealing sched-
ule is characterized by the discrete set of parameters
(Bp- Byt - B} and (. vpoi. ... y1). Also, (p. ) de-
fines a 2p parameter space that corresponds to the depth of
the circuit Ansatz, and the cost function F(y, ) is optimized
classically to obtain an optimal parameter set (y*, %), which
produces the desired target state, i.e., | (y*, B*)). Note that,
in most cases, this target state is chosen to be the ground state
of Hprob .

As the case of adiabatic evolution, the QAOA requires
large p to obtain a near-optimal trial state, even with the as-
sistance of the classical optimizer. In addition, the realization
of U(B, y) for an interacting many-body system for large p
becomes inefficient due to the large number of gates involved.
In the DC-QAOQOA, we focus on improving the quantum part
of the QAOA, by adding a variational parameter in each step,
ie.,

Uly.B)—> Uy Bo), F(y.B)—>Fy.Ba) (4

The application of another parameter decreases the size of p
drastically. This additional parameter can be quantified as the
inclusion of the CD driving term in the problem Hamiltonian.
The resulting circuit Ansatz is shown in Fig. 1.

In general, CD driving amounts to using an additional
control Hamiltonian in Eq. (1), required for suppressing nona-
diabatic transitions [38-40,61]. This is especially effective
for many-body systems with tightly spaced eigenstates. CD
driving comes at a cost, as it generally involves nonlocal
many-body interactions, and their exact specification of the
CD Hamiltonian term requires access to the spectral proper-
ties of the driven system [38,40,45]. As a way out, variational
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approximations have been proposed to obtain the CD terms
[50,62,63]. In this context, one can use the adiabatic gauge po-
tential for finding an approximate CD driving without spectral
information of the system [63,64].

In the following sections, a pool of CD operators is defined
using the nested commutator approach of the adiabatic gauge
potential provided by Claeys et al. [65]:

!
AL =i a(t) [Ha, [Hy, - . [Hy, B HN. (5)
k=1 2k—1

Here, we considered up to the second order in the expansion
of the nested commutator / = 2, which gives rise to an oper-
ator pool A = {0, 0%0”, 0¥0%, 0*0”, 0¥0*}, including solely
local and two-body interactions. Note that the choice of this
operator pool depends on H,(t) and may contain other op-
erators depending on the problem Hamiltonian. However, A
contains every possible CD operator that can be derived from
the problem Hamiltonians, which is used in this paper. We
chose the CD term as a combination of these operators for
each system based on the success probability of the algorithm.
For instance, the local CD driving term provides better success
probability in the case of the TFIM and P-spin model; how-
ever, it is not suitable for solving the MaxCut Hamiltonian.
The CD coefficients «; are transformed into the additional
variational parameter associated with the CD driving. The
addition of such a new free parameter increases the degrees
of freedom, making it possible to reach broader parts of the
Hilbert space of the Hamiltonian with a lower circuit depth
than in the QAOA. Furthermore, as the DC-QAOA only re-
quires the operator form of the CD driving combined with the
additional set of parameters e, it eliminates the requirement of
complex calculation of the CD coefficients. The DC-QAOA is
also more flexible in regard to the boundary conditions than
the CD evolution, which permits the application of the driving
term even for one step only. Moreover, the operators can be
chosen heuristically and according to the requirement of the
system which is being studied.

Although there are several ways to define the cost function,
we opt for the most convenient one, which is the energy
expectation value of the problem Hamiltonian calculated for
the trial wave function:

F(}’a ﬂv ‘x) = (1//()” ﬂv a)|Hpr0b|I/,(y7 ﬁ’ a))v (6)

where ¥ (p, B, o) represents the approximate trial state pro-
duced by the digitized CD Ansatz. The efficiency of our
algorithm can be measured in terms of the approximation ratio
given by

_F@y. B
==

where E is the ground state energy of the system.

Classical optimization techniques are an integral part of
variational algorithms, which help to find the optimal pa-
rameters that minimize the cost function. This paper mainly
considers two optimization techniques, namely, Momentum
Optimizer and Adagrad Optimizer, which are specific ex-
amples of stochastic gradient descent (SGD) algorithms.
Momentum Optimizer is a variant of SGD in which a momen-
tum term is added along with the gradient descent. The prime

R @)

purpose of the momentum term is to increase the parameter
update rate when gradients are in the same direction and
decrease the update rate when gradients point in a different di-
rection [66]. On the other hand, the main purpose of Adagrad
Optimizer is to change the update rate based on the past de-
scent results [67]. Adagrad has shown great improvements in
the robustness of SGD [68]. These two classical optimization
techniques work pretty well for the cases we consider. This
is because these optimization routines have proven faster con-
vergence than gradient descent. Moreover, some of the cases
we study involve a large Hilbert space, which may lead to
local minima in the energy landscape. In the presence of steep
gradients, the use of these techniques proves beneficial. This
problem dependence of the performance is shared with other
optimization routines such as Nesterov Momentum, Adam,
and AdaMax. An overview and comparison about challenges
faced by the different types of gradient descent optimization,
can be found in Ref. [69].

III. ISING SPIN MODELS

1D quantum Ising spin chains are the manifestation of the
simplest many-body systems that are widely studied in exist-
ing quantum processors. Numerous computational problems
can be mapped to find the ground state of the Ising-like Hamil-
tonians, which makes it suitable for benchmarking various
quantum algorithms. The general form of the Hamiltonian of
the 1D Ising spin model is given by

Hprob(o—) = — Z]ij(fiz()'; — Zhioiz — Zkio'ix, (8)
(i) i i

where ai‘s denotes the Pauli matrices at the ith site, and (i, j)
corresponds to the nearest-neighbor interaction with strength
Jij. The onsite interaction terms h; and k; represent the lon-
gitudinal and transverse fields, respectively. We consider the
periodic boundary conditions so that our model describes a
ring of interacting spins [70-72]. Note that three special cases
can be retrieved from Eq. (8): (i) the LFIM when k; = 0, (ii)
the TFIM when h; = 0, and (iii) a special case when both
ki = 0and h; = 0, for which the resulting ground state of Hyqp,
is the highly entangled GHZ state [73-76]. For simplicity, we
choose the system to be homogeneous, i.e., J;; = J as well as
h; = h; and k; = h,. To prepare an equal superposition of the
qubits, as a input of the circuit Ansatz, the mixing Hamiltonian
is chosen as Hpixer = D, 0. To implement the DC-QAOA,
as mentioned in Sec. II, along with the problem and mixer
Hamiltonian, we include the CD term to define the circuit
Ansatz. The CD operator is chosen heuristically from the oper-
ator pool A. For instance, in the case of the LFIM, the ground
state is ferromagnetic and constitutes a large energy gap with
the first excited state for the chosen interaction strengths. In
such cases, the local driving term A, = )", o7’ can produce the
ground state. On the other hand, the ground state of the TFIM
is closely spaced with the nearby excited states, which makes
the local driving term insufficient. Similarly, the local driving
term is also not suitable for the GHZ state [61]. Instead, the
second-order term A, = ), afo;il is more likely to produce a
better result. The unitary operator that represents the CD part
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FIG. 2. Comparison of approximation ratios (R) as a function of number of layers (p) for three representative cases of Ising spin
model. Green lines show results of the quantum approximate optimization algorithm (QAOA), whereas red lines show results of the
digitized-counterdiabatic QAOA (DC-QAQOA). (a) R variation of the longitudinal field Ising model (LFIM), where J;; = 1, h; = 1, and k; = 0.
(b) The transverse field Ising model (TFIM), where J;; = 1, h; = 0, and k; = 1. (c) Preparation of the Greenberger-Horne-Zeilinger (GHZ)
state, where J;; = 1, h; = 0, and k; = 0. System sizes for all cases were kept to L = 12 qubits.

of the circuit Ansatz is given by

L
Ucp () = [ [exp [—iaa?], )

j=1

where A/ represents the respective g-local CD operator chosen
from the CD pool A. For instance, if ¢ = 1, then Af ={A/};,
and if ¢ =2, then A/ = {A,}; j11. The circuit is designed
using the gate model of quantum computing, whereas the
classical optimization is the SGD method. Figure 2 depicts the
improvement obtained by the DC-QAOA over the traditional
QAOA. In the simulation, we study a 12-qubit system, for
which we compute R for different p values. For the LFIM,
as shown in Fig. 2(a), R =1 even for p =1 with the DC-
QAOA, which constitutes considerable improvement over the
QAOA, which requires p = 3 to achieve unit R. Hence, for
Fig. 2(a), the number of variational parameters required to
achieve unit R =1 for the DC-QAOA is 3p = 3, whereas
for the QAOA, it is 2p = 6. We also see that, for a lower
number of layers, i.e., p = 1, 2, 3, the DC-QAOA converges
faster to the unit R than the QAOA. Furthermore, while the
DC-QAOA shows better convergence at lower depths, for the
TFIM and the GHZ states, the exact ground state can only be
achieved with p > L/2 layers. This effect can be attributed to
the Lieb-Robinson bound [77,78] which forces the circuits for
the TFIM and the GHZ state to scale linearly with the system
size to achieve unit R.

To compare the resource requirements, both classical and
quantum, one can inspect two crucial elements of these meth-
ods. In the case of systems with nearest-neighbor interactions,
the increase in circuit depth per layer by adding a CD term
will be constant, and it depends on the CD term chosen.
The circuit depth can be quantified as d x p, and the CD
driving increases it to (d + d.4) X p, where d.4 represents the
increment in depth per layer. For the LFIM, the CD term o,
gives d.q = 1, whereas for the TFIM, d.q = 4 for 5,0,. On
the other hand, the increase in parameter space due to the
CD term is always from 2p to 3p, making the DC-QAOA
advantageous specifically for low p values. In the limit of
large p, the performances of the QAOA and the DC-QAOA
become comparable for fixed system size.

IV. CLASSICAL OPTIMIZATION PROBLEMS

Thus far, we have discussed the applications of the DC-
QAOA for finding the ground state of the Ising model and
preparing entangled states. Combinatorial optimization prob-
lems are another set of problems that can be encoded in
the ground state of a quantum Hamiltonian, diagonal in the
computational basis. Here, we discuss the application of the
DC-QAOA for solving combinatorial optimization problems,
where the main objective is to find the optimal solution for
a given classical cost function. MaxCut is one fundamental
combinatorial optimization problem that has been solved us-
ing the QAOA.

For the MaxCut problem, let us consider a graph G =
(V,E), where V and E are the vertex and edge sets, respec-
tively. We consider a classical cost function C(z) defined on
binary strings z = (z1, 22, - - - » Z») and aim at separating the
vertices into two sets so that the number of edges cut by C(z)
is maximized. This maximizes the classical cost function:

1
CQx) = 3 Z w;; (1 = zz)),

(i,j)eE

(10)

where w;; represents the edge weight between vertices i and j.
Depending on the sets that the vertices of each edge are in after
the cut, binary values (either O or 1) are assigned to variables z;
and z; corresponding to respective vertices. This situation can
be encoded in the ground state of the problem Hamiltonian by
mapping the binary variables to Pauli operators:

H(O’): Z J,»j(rfaf.

(i.j)eE

an

Note that Eq. (11) also belongs to the Ising class and is
equivalent to Eq. (8) for GHZ states if only nearest-neighbor
interaction is considered, which is the case of the two-regular
MaxCut. Here, to verify the performance of our algorithm,
we consider the unweighted (w;; =J;; = 1) three-regular
MaxCut problem, with each vertex connected to three other
vertices. The CD operator pool can be obtained from the NC
expansion and is given by A = {o%0”, 6”¢*}. In Fig. 3(a), the
approximation ratios R for different graph sizes with up to 14
vertices (qubits) are shown for a single layer (p = 1). We no-
tice that, for small graph sizes, say, 4 qubits), the DC-QAOA
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FIG. 3. Comparison of approximation ratios obtained for dif-
ferent graph size using the digitized-counterdiabatic quantum
approximate optimization algorithm (DC-QAOA) and the QAOA.
(a) Unweighted three-regular MaxCut for 10 randomly chosen in-
stances. (b) Approximation ratio vs number of layers (p) for the
Sherrington-Kirkpatrick (SK) model with 6 qubits (vertices) is de-
picted. The green and red lines show the values of the QAOA and the
DC-QAOA, respectively. On the right-bottom, a graph of 6 qubits
with all-to-all connectivity is also shown. The results were obtained
by considering 10 different randomly chosen instances of J;; values.
Error bars represent the standard error.

is superior as it reaches unit R. However, for a bigger graph,
R decreases gradually while exceeding the performance of
the QAOA. Although this can be improved for p > 1 but for
large depth in the DC-QAOA, the number of parameters for
each step scales as 3p, so the landscape of the cost function
most likely has a complicated form, and we expect to see the
problem of vanishing gradients (Barren plateau). A detailed
analysis is needed for p > 1 in the DC-QAOA, which we
leave for future work.

Interestingly, if J;; is chosen as random all-to-all two-body
interactions, Eq. (11) represents the so-called SK model. The
SK model is a classical spin model proposed by Sherrington
and Kirkpatrick [79,80] where J;; are interaction terms such
that J = {VJ;;} has zero mean and unit variance. For instance,
they can be randomly chosen from the set J = {—1, 1} with

probability 1. The SK model is interesting for the DC-QAOA
as it can be studied as a combinatorial search problem on
a complete graph. The QAOA on the SK model has been
extensively studied recently [81,82]. Here, 10 different in-
stances of J;; values are considered in a system of L =6
spins. Note that the couplings J;; are nonuniform, and the
CD term depends on the choice of J;;. As this model involves
similar interactions to that in the MaxCut problem, we chose
the CD term from the same operator pool A = {c°c”, 0¥0%},
calculated from the nested commutator Ansatz. In fact, the
CD term chosen for the SK model is A, = J; jafoy , Where
the operators are applied to all the sites due to its all-to-all
connectivity.

In Fig. 3(b), the approximation ratio (R) is shown with
respect to a varying number of layers (p). We observe that
R is higher for the DC-QAOA than the QAOA and that, as
the number of layers increases, the DC-QAOA and the QAOA
start to converge to the same value. This shows that the DC-
QAOA is efficient for instances where the circuit Ansatz is low
layered. In fact, for low layers, although not giving the exact
ground state, the DC-QAOQOA gives significantly enhanced R.
This could be advantageous as we can find optimal parameters
which could be used as initial parameters for the high-layered
QAOA.

V. P-SPIN MODEL

As a final benchmark, we consider the P-spin model,
which is a long-range, exactly solvable, fully connected model
[83-86]. The system Hamiltonian reads

| L p L
H=—— <Z af) —hY o} (12)
i=1

i=1

While the ground state of the Hamiltonian in Eq. (12) is trivial,
the presence of a quantum phase transition makes its prepara-
tion challenging by quantum annealing [83]. For P = 2, this
Hamiltonian exhibits a second-order phase transition, whereas
a first-order phase transition occurs for P > 3, closing the
energy gap exponentially with increasing system size. This
has motivated proposals to change the first-order phase into
a second-order phase transition by making the Hamiltonian
nonstoquastic [87,88]. The nature of the ground state also
depends on P. For odd P, the ground state is nondegenerate,
while for even P, it has a twofold degeneracy with Z, symme-
try, which makes the choice of the CD operator difficult [57].
We study the DC-QAOA in a 6 qubit P-spin model for the
nontrivial case of & # 0 using local CD operator A, = ) ;7.
The QAOA and the DC-QAOA are compared for three dif-
ferent cases: P=3, h=1;P=4, h=0and P=4, h=1
respectively. Figures 4 and 5 show the advantage obtained
by the DC-QAOA for P = 4 and 3, respectively. For P = 4,
R as a function of number of iterations is shown for p = 1
for 10 random parameter initializations. We observe that, for
a finite number of iterations, the DC-QAOA shows higher R
values than the QAOA for both 2 = 0 and 1. It is evident that,
in the case of h = 0, the QAOA is highly dependent on the
choice of initial parameters and lands into local minima in
some instances. By contrast, the DC-QAOA shows unit R for
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FIG. 4. Comparison of approximation ratio (R) with respect to number of iterations for P = 4 and p = 1. (a) The quantum approximate
optimization algorithm (QAOA) and (b) the digitized-counterdiabatic QAOA (DC-QAOA) results for & = 1. The case with 4 = 0 is shown for
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every instance. For P = 3, h = 1, R is shown as a function of
number of layers (p = 1, 2, 3) for 10 random initial parame-
ters. As expected, for the DC-QAOQOA, R values end up close
to unity even for p = 1, and R values increase as the number
of layers increases. However, this is not surprising for P = 3,
as the ground state is a product state making it favorable for
the local CD operator. The more intriguing case is in Fig. 4(b),
where the approximation ratio reaches close to unity for p = 1
even when the ground state is degenerate. This occurs simply
because the trial state converges to a particular one of the
two due to the local CD driving. This is in contrast with the
QAOA, which does not achieve the target state for p = 1 in
any case.

P=3 h=1
1.00{ o —e
(@]
= 0.95
©
o
§ 0.901
o
%0.85 —e— DC-QAOA
—— QAOA
0.80 I 3 3

No. of layers

FIG. 5. Approximation ratio (R) as a function of number of
layers (p = 1,2, 3) for P =3 and h = 1. Green and red lines show
the average results obtained from 10 random parameter initializa-
tion for the quantum approximate optimization algorithm (QAOA)
and the digitized-counterdiabatic QAOA (DC-QAOA), respectively.
Standard deviations are of the order of 1072,

VI. DISCUSSION AND CONCLUSIONS

We have introduced a quantum algorithm leveraging the
strengths of shortcuts to adiabaticity for QAOAs. Specifically,
we have formulated a variant of the QAOA using CD driving,
called the DC-QAOA, and established its enhanced perfor-
mance over the QAOA in finding ground states of different
models. We benchmark our algorithm by considering various
examples, starting with Ising spin models, preparing entan-
gled states, classical optimization problems like MaxCut and
the SK model, and the P-spin model. Including the CD term in
the circuit Ansatz, the performance of the QAOA is enhanced.
Results reveal that, for low-layered circuits, the DC-QAOA
converges to the ground state faster than the state-of-the-art
QAOA. Thus, adding a new free parameter in the form of a
gate chosen from a predefined set (CD term) increases the
performance of the algorithm for shorter circuit depths. Thus,
the DC-QAOA turns out to be a preferable algorithm for
circuits of shorter depth.

In conclusion, the DC-QAOA outperforms the QAOA for
all the models we have studied. For high-depth circuits, the
DC-QAOA can be applied for initial layers only to enhance
the performance of the standard the QAOA. An interesting
prospect would be to use the resulting optimal parameters
from the low-depth DC-QAOA as the initial parameters of
a high-depth QAOA to obtain the minima of the cost func-
tion efficiently. In this paper, we show that implementing
principles of shortcuts to adiabaticity to enhance quantum al-
gorithms has both fundamental and practical importance. The
experimental realization of the DC-QAOA on real hardware
offers an exciting prospect for further progress.

Note added in proof. As we finished this paper, we learned
about the recent preprint devoted to the QAOA assisted by CD
[89].
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