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Current methods used to quantify brain size and compartmental scaling relationships
in studies of social insect brain evolution involve manual annotations of images
from histological samples, confocal microscopy or other sources. This process is
susceptible to human bias and error and requires time-consuming effort by expert
annotators. Standardized brain atlases, constructed through 3D registration and
automatic segmentation, surmount these issues while increasing throughput to robustly
sample diverse morphological and behavioral phenotypes. Here we design and evaluate
three strategies to construct statistical brain atlases, or templates, using ants as a
model taxon. The first technique creates a template by registering multiple brains of
the same species. Brain regions are manually annotated on the template, and the
labels are transformed back to each individual brain to obtain an automatic annotation,
or to any other brain aligned with the template. The second strategy also creates a
template from multiple brain images but obtains labels as a consensus from multiple
manual annotations of individual brains comprising the template. The third technique is
based on a template comprising brains from multiple species and the consensus of their
labels. We used volume similarity as a metric to evaluate the automatic segmentation
produced by each method against the inter- and intra-individual variability of human
expert annotators. We found that automatic and manual methods are equivalent in
volume accuracy, making the template technique an extraordinary tool to accelerate
data collection and reduce human bias in the study of the evolutionary neurobiology of
ants and other insects.

Keywords: standardized brain atlases, computational neuroimaging, evolutionary neurobiology, neuroethology,
social brain evolution, Neuroanatomy, Ant brains
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INTRODUCTION

Our understanding of pattern and process in brain evolution in
group-living animals benefits from sampling phylogenetically
diverse species. Ants and other eusocial insects (primarily
wasps, bees, and termites) have become important models
to explore what is broadly conceptualized as “social brain
evolution” (Dunbar, 1998; Lihoreau et al., 2012, 2019; Godfrey
and Gronenberg, 2019; Muratore and Traniello, 2020; Coto
and Traniello, 2021). Eusocial insects have exceptional
reproductive and ergonomic polyphenisms associated with
division of labor and highly cooperative behavior, and thus
offer multiple opportunities and a rich array of species
to examine how reproductive competence, sterility, and
morphological and behavioral differentiation impact social
roles and neuroarchitecture. Workers show extraordinary
behavior as individuals as well as members of groups that act
collectively, and individuals are so interdependent that the
colony is considered to be a “superorganism” (Hölldobler and
Wilson, 2009). The brains of colony members have evolved to
respond as individuals but also as decision-making groups to
cope socially with the environment and its challenges, as well as
facilitate communication and coordinate foraging, defense, and
nest construction and regulate task performance and nestmate
recognition. Important questions integrating insect sociobiology
and evolutionary neurobiology concern how selection may
favor either an increase or reduction in brain size and structure
(Wehner et al., 2007; Muscedere and Traniello, 2012; Riveros
et al., 2012; O’Donnell et al., 2018; Arganda et al., 2020; DeSilva
et al., 2021).

Ant brains and those of other insects can be adaptive
allometric mosaics composed of functionally specialized
brain compartment allometries. Neuropils are involved in
primary sensory processing (e.g., the antennal, optic lobes,
subesophageal zone), motor control and navigation (the central
complex and subesophageal zone), and multi-sensorial higher-
order processing and integration, learning and memory (the
mushroom bodies) (Strausfeld, 2012). Immunohistochemistry,
confocal microscopy, and other techniques are commonly used
to image brains and neuropil volumes are quantified using
image analysis software to examine brain structure within and
across insect species. Methods to calculate neuropil volumes
require allocating significant effort to manually annotate
brain compartments and subregions because an anatomical
label must be assigned to every pixel or voxel in 2D and 3D
images, respectively (Figure 1). This technique of recording
neuroanatomical data is both time consuming and susceptible to
human bias and error.

Technical problems associated with imaging ant brains can
be reduced by using methodologies developed to study the
human brain (Talairach and Tournoux, 1988). These techniques
usually combine images from multiple brains into a single
reference brain or template (Figure 2). This method has been
applied in studies on honey bees (e.g., Rybak, 2012), flies
(e.g., Rein et al., 2002; Costa et al., 2016; Arganda-Carreras
et al., 2018), and other insects (e.g., Kurylas et al., 2008;
Menzel, 2012; el Jundi and Heinze, 2020). The use of several

brain images to build a template avoids potential biases arising
during tissue fixation and imaging, and accounts for the natural
variability among samples, allows a statistical representation
of the brain of a species or worker phenotype. This type
of template, as opposed to a reference brain derived from a
single individual, is called a “group-wise template.” Because
combining all samples in a single brain representation requires
transforming them onto the same reference space, templates
allow normalizing information from brains that might have
been imaged under different conditions. In addition, group-
wise templates are usually associated to annotations (labels)
of brain subcompartments. These labels of the template are
used to automatically segment (annotate or label) these sub-
compartments in new samples, by registering them against
the template, which consist of transforming them to be in
the same reference space as the template (e.g., Arganda-
Carreras et al., 2018). An alternative to his strategy is that
of Rybak (2012), where a template brain is created in a
similar way to ours, but individual brains are first labeled
using a statistical shape model and then registered against
the template using the label volumes instead of the gray-
value ones. This approach has the advantage of a label-
oriented registration, where each anatomical region can be
treated independently. However, its performance may be too
sensitive to the segmentation result obtained by the model,
which should correctly estimate the sometimes very large shape
diversity of the dataset.

Although template strategies have been widely applied in
mammals (Talairach and Tournoux, 1988; Evans et al., 1994;
Mazziotta et al., 1995; Chen et al., 2006; Dogdas et al., 2007;
Shattuck et al., 2008; Yu et al., 2010), their implementation in
insect research has been less frequent. It has been expanded
from Drosophila (Rein et al., 2002; Jefferis et al., 2007; Cachero
et al., 2010; Costa et al., 2016; Arganda-Carreras et al., 2018)
to other insects only in the last decade (e.g., Menzel, 2012;
Rybak, 2012; el Jundi and Heinze, 2020). The application of
this methodology to research focusing on ants has occurred
more slowly, probably because of their high diversity (∼15,000
species). In addition, intra-specific variability is an issue per
se: workers may show greater variation in brain anatomy at
the level of species and colony, thus constraining the image
registration process needed to generate a template, which usually
requires a minimum spatial overlap of positions between same
sub-regions in the co-registered brain images. Another difficulty
is that neuroanatomical studies performed on ants focus on
more or less detailed brain subdivisions, creating different sets of
compartmental anatomical labels (e.g., Muscedere and Traniello,
2012; Amador-Vargas et al., 2015; Bressan et al., 2015; O’Donnell
et al., 2018; Gordon et al., 2019; Sheehan et al., 2019; Habenstein
et al., 2020). Consequently, most studies describing ant brain
organization have not aimed at building brain templates (e.g.,
Bressan et al., 2015; Habenstein et al., 2020).

Here, we describe and evaluate experimental strategies to
generate brain templates in ants to promote standardized
approaches for comparative neuroanatomical analysis. While
finer descriptions of neuropil sub-compartments exist for ant
brains (e.g., Bressan et al., 2015; Habenstein et al., 2020) and
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FIGURE 1 | Anatomy of a P. spadonia minor brain. MB-LC (mushroom body lateral calyx), MB-MC (mushroom body medial calyx), SEZ (subesophageal zone), OL
(optic lobes), AL (antennal lobes), MB-P (mushroom body peduncle), CX (central complex), and ROCB (rest of the central brain). Scale bar = 100 um. Three brain
slices have been selected to show all the subregions analyzed.

other social Hymenoptera (e.g., Brandt et al., 2005; Rybak, 2012;
Groothuis et al., 2019), we focused this first approach on major
neuropils (which are commonly used to explore neuroanatomical
differences among species, castes, subcastes and experimentally
manipulated individuals, e.g., Kamhi et al., 2016; Seid and Junge,
2016; Gordon et al., 2017; Grob et al., 2021). We recently applied
state-of-the-art imaging techniques to generate templates using
brains from a single or multiple ant species (Arganda-Carreras
et al., 2017; Gordon et al., 2019). Using careful annotations
by trained researchers as our standard, we evaluate template-
based strategies to automatically segment ant brain confocal
images, allowing more efficient and less biased volumetric data
acquisition. We validate the template method by evaluating its
application to workers of species in the ant genus Pheidole.

MATERIALS AND METHODS

We present three methods to produce and use templates for
automatic segmentation (Figure 2). The first consists of building
a template using confocal gray value whole brain images of a
single species, and manually labeling brain compartments on
the template (Figure 2A). This “direct label method” involves
manually tracing a single anatomy (the one of the template)
and automatically tracing other gray value brain images (by
registration against the labeled template). The second “consensus
label method” also uses a single-species template, but gray
value brain images used to build the template contain manually
annotated labels (Figure 2B). Then, these manual labels are used
to create the final template labels. This method considers label
values resulting from more than a single (potentially biased)
tracing, and thus, it may be more accurate than the first method,
at the expense of requiring more manual work. In this case, the
method is only useful to trace new brains. The third possibility—
the “multispecies template method”—is similar to the second but
uses gray value brain images from several species (Figure 2C),
thus enabling the expansion of species sampling. We next
describe the ant brain dataset used, the methods to generate the
different templates and labels, and how to evaluate the efficacies
of the different methods.

Brain Anatomy Dataset
We imaged brains of minor workers of four species of
the hyperdiverse ant genus Pheidole (P. spadonia, P. rhea,
P. tepicana, and P. obtusospinosa). While Pheidole is typically
characterized by complete dimorphism in the worker caste
(small minor and large major [soldier] workers) and in
some basal species (P. rhea) trimorphism, which includes
a third, larger worker subcaste (super soldiers), we used
only minors for proof of concept. Minors and majors
are easily discriminated by body size and head allometry
(Wilson, 2003).

Minor workers were decapitated and their brains were
dissected from the head capsule in ice cold HEPES-buffered
saline. Brains were fixed and immunohistochemically stained
using SYNORF1 (a monoclonal Drosophila synapsin I antibody
obtained from the Developmental Studies Hybridoma Bank,
catalog 3C11) and secondarily stained using Alexa Fluor
488 for visualization of neuropil (slightly modified from
Ott, 2008). Mounted in methyl salicylate, brains were
imaged on an Olympus Fluoview BX50 laser (488 nm)
scanning confocal microscope with a × 20 air objective
(NA = 0.5) at a resolution of ∼0.7 × 0.7 × 5µm/voxel,
producing gray images of 16 bits (in TIFF format). We
imaged 10 brains from P. spadonia, and three each of
P. rhea, P. tepicana, and P. obtusospinosa minor workers.
Each brain image was manually labeled as described
in the “Manual labeling of original brain images and
template” section below.

Standard Brain Image Method: Image
Registration and Template Generation
Templates were built in a diffeomorphic space1 as an average-
shape brain (“Template,” Figure 2). The diffeomorphic space
allows for smooth invertible transformations from one anatomy
to another (T1 and T−1, Figure 2). Our methodology is based

1Diffeomorphism: differentiable transform that allows mapping the coordinates
of one image onto the coordinates of another image in a smooth and invertible
way.
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FIGURE 2 | Automatic labeling methods. (A) Ten confocal images of brains of
P. spadonia minors are combined on a single group-wise template, which is
manually traced (creating “direct labels”). Each brain used to build the
template (and other new brains) can be registered against the template with a

(Continued)

FIGURE 2 | transformation function T. The inverse function T-1 can be used
on the manual labels of the template to automatically label the registered
brain. (B) Nine confocal images of brains of P. spadonia minors are combined
on a single group-wise template. The existing manual labels of each brain are
registered against the template, and every voxel is assigned to one label by
majority voting (creating “consensus labels”). New brains can be registered
against the template with a transformation function T. The inverse function T-1

can be used on the consensus labels of the template to automatically label
the registered brain. (C) Twelve confocal images of brains of P. spadonia,
P. rhea, P. tepicana, and P. obtusospinosa (three of each species) are
combined on a single multispecies group-wise template. Consensus labels
are created for the template as in B, and the same procedure is applied to
automatically trace new brains. Scale bar = 100 um. A single slice per brain
has been shown for illustration clarity.

on a two-step approach using symmetric diffeomorphic image
registration2 (SyN, Avants et al., 2008) of a group of gray
value brain images to one another by maximizing mutual
information3 first and cross-correlation4 later. Following this
optimization process, the group of images are warped into
the same coordinate system. In the first step, all gray value
brain images are registered against one randomly selected image
by optimizing mutual information and allowing only affine
transformations (translations and proportional changes in size).
Transformed images are then averaged to build a preliminary
“blurry” reference brain image. In the second step, the original
gray value brain images are registered to this blurry average using
non-rigid transformations (i.e., allowing local deformations) by
maximizing the cross-correlation of the intensities of all brains. In
this step, the registration is gradually improved at four resolution
levels (sequentially at 1/8, 1/4, 1/2, and 1/1 of the original sizes,
following a resolution pyramid strategy) and produces an optimal
average template. The first registration compensates for large
disparities in size while the second locally finds an optimal
solution. The template was generated by the normalized voxel-
wise median of the co-registered volumes (Arganda-Carreras
et al., 2017). All steps were implemented in the Advanced
Normalization Tools (ANTs) software (Avants et al., 2011) after
transforming in Fiji (Schindelin et al., 2012) gray and label images
to the open format NRRD. For a detailed description of the
software methods used in this paper, we refer the reader to
Supplementary Material.

Seven group-wise templates were generated for this study
(Supplementary Table 1) with 9 (“consensus label method”), 10
(“direct label method”) or 12 (multispecies template method)
original gray value brain images. Six of them were single-
species templates, built using only P. spadonia minor gray
value brain images (“direct/consensus label methods”). One
was a hybrid template, generated from brains of P. spadonia,
P. rhea, P. tepicana, and P. obtusospinosa minors (“multispecies

2Image registration: process of transforming one image (usually known as moving
image) into the coordinate system of another image (usually known as fixed
image).
3Mutual information: metric taken from information theory and used on image
registration to measure the amount of information that one image contains about
another image. It should be maximum when both image are perfectly aligned.
4Cross-correlation: metric of the similarity of two images as a function of the
displacement of one with respect to the other.
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template method”), three brains per species. Templates were also
associated with anatomical brain label values obtained either by
manual or consensus labeling (see below).

Neuropil Labeling
Manual Labeling of Original Brain Images and
Template
For each original gray value brain, an expert annotator
determined the region occupied by each brain compartment by
labeling them manually using Amira (version 6.0 or 2019.2).
Labels were traced on eight compartments (as in Muscedere
and Traniello, 2012; Gordon et al., 2017): the optic lobes
(OL, comprising lobula, medulla and lamina and connecting
fibers), antennal lobes (AL, comprising glormeruli, and central
hub), mushroom-body medial calyx (MB-MC), mushroom-
body lateral calyx (MB-LC), mushroom-body peduncle (MB-
P), central complex (CX, comprising the lower and upper
division of the central body, the protocerebral bridge and the
noduli), subesophageal zone (SEZ) and rest of the central brain
(ROCB). This manual tracing was performed in only one brain
hemisphere, except for the CX, SEZ and ROCB, which lack a clear
subdivision between hemispheres. A trained annotator requires
approximately 1 h to label a brain hemisphere. Figure 1 shows
three confocal scans of a P. spadonia brain. Studies aiming to
analyze differences between the right and the left sides of the
brains would require, however, to have fully traced brains.

A single dataset of manual labels for the template generated
for the “direct label method” was obtained using the same
methodology described above.

Consensus Labeling of Templates
One method used to obtain the same regional label values on
the group-wise template is based on combining the information
provided by the manual label values of the original brains used
to build the template, which also needed to be transformed to the
NRRD format. The first step consisted of applying to each label
image the same diffeomorphic transformations performed on its
original brain anatomy (T1, Figures 2B,C), and later a per-voxel
majority voting over all deformed label images of the same brain
center to produce “consensus labels.” Since not all the samples of
our original dataset contained labels of the same hemisphere, we
used Fiji’s tool “Flip horizontally” (Schindelin et al., 2012) when
needed to create mirror images of brain anatomies and their
manual labels to only have samples with right-hemisphere labels.

Automatic Labeling of Original Brain Images
To automatically label gray value brain images, individual
brain images were registered against a group-wise template
performing the same two-step method described above—initial
affine registration maximizing mutual information followed by a
non-rigid registration optimizing cross-correlation. The inverse
transformations (T−1, Figure 2) were then applied to the
template regional labels (regardless of the method chosen to
generate them), automatically building label values for individual
gray value brain images registered against the template. To avoid
always tracing the same side and prevent bias due to natural brain

asymmetries, a proportion of the gray value brain image datasets
to be traced can be flipped.

Five P. spadonia gray value brain images were automatically
traced using the three methods described before. It is important
to notice that for the “direct label method,” these five gray value
brain images were also used to build the template, while for the
other two methods, which use consensus labels, these five brains
were left out of the templates. This is because the consensus
labels integrate the information from the manual labels of the
brain anatomies used for the template: on one hand, it would
seem unnecessary to relabel those brains, and on the other hand,
the original manual labels and the automatically obtained labels
would be basically the same and the objectivity of the evaluation
of the method would be compromised.

Evaluation of Approaches
Because automatic and manual labels are expected to produce
slightly different results, we needed to determine whether these
differences were acceptable. To do so, we compared differences
between automatic and manual labels with the differences
between manual labels generated by several expert annotators
(“Inter-Person”) and by the same annotator (“Intra-Person”)
tracing the same gray value brain image more than once
(Supplementary Table 3). Three annotators (with at least 2
years of experience tracing brains) traced the same five brains
(to have an acceptable measure of interpersonal differences,
“Inter-Person”), and one of them traced the same five brains
three times (to have an acceptable measure of intrapersonal
differences, “Intra-Person”). The three expert annotators also
traced the single species (P. spadonia) template for the “direct
label method.” As explained for consensus label creation, when
manual labels were on the left side, the gray value brain anatomy
and the labels were flipped to be on the right side.

Because many comparative neuroanatomical studies use
volumetric data, as a measure of neuropil investment (Wehner
et al., 2007; Muscedere and Traniello, 2012; Riveros et al., 2012;
O’Donnell et al., 2018; Arganda et al., 2020), Volume similarity
(Eq. 1) was used as the relevant metric for evaluating automatic
labeling methods and was calculated for each label and brain, as
well as for the total brain volume, using volumes estimated with
the open-source toolbox MorphoLibJ (Legland et al., 2016; see
Supplementary Table 2).

Volume similarity

= 2 ×

∣∣Volume label method 1− Volume label method 2
∣∣∣∣Volume label method 1+ Volume label method 2
∣∣ (1)

Volume similarity between labels annotated for the same
compartment obtained by different methods was calculated
within the same gray value brain image, and for the automatic
and manual labels pairing labels always related to the same
original annotator (e.g., OL volume obtained by the “multispecies
template” strategy using consensus labels built from manual
labels by annotator 1 + OL volume obtained by manual labels
from annotator 1; see Supplementary Table 3).
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Statistical Analysis
We used bootstrapping to perform statistical analyses (Efron and
Tibshirani, 1994). This method has the advantage of making
no assumptions about the distributions underlying the data
and of being able to handle datasets where data are not
fully independent, as is the case in our dataset for different
measurements performed on the same brain. To make pairwise
comparisons between volume similarity measurements of one
brain center provided by two methods, we first we selected one
brain at random and pooled all volume similarity measurements
for the same brain center from the control and the method.
From this pool, we selected volume similarity measurements
randomly and with replacement, creating two randomized sets
of measurements, with the same sizes as the originals. We then
selected a new brain at random with replacement (the same
brain can be selected several times) and repeated the same
procedure 5 times because our dataset to evaluate the methods
has a total of 5 brains. We thus obtained a randomized dataset
with the same statistical characteristics as the original, but in
which measurements in the two groups came from the same
distribution. We then computed the difference between the
means of the measurements of the two groups, d_rand. We
repeated this procedure 10,000 times, obtaining a distribution for
d_rand. This distribution is centered at 0 by construction, and
its width represents the differences between method and control
that we could expect by chance if both belonged to the same
distribution. We then computed the difference between each
method and control from the dataset and defined our p-value as
the proportion of d_rand that had a value greater than the actual
difference between the two methods found in our study. We set
the significance level at p < 0.05.

RESULTS

We compared the variability (measured as volume similarity)
between automatic methods (“Direct labels,” “Consensus labels,”
and “Multispecies template”) and expert annotators, to the
variability among (“Inter-Person”) and within (“Intra-Person”)
annotators (Figure 3 and Supplementary Table 4). This allows
the determination of whether the differences between automatic
and manual labels are comparable to those produced by expert
annotators that we accept as inevitable errors. Regardless of
the comparisons between automatic and manual methods, our
results showed that the inter- and intra-individual differences
can be considerable, reaching ca. 10% and even higher in
compartments such as the AL and the CB (Figure 3).

In general, we found that, regardless of method, differences
between automatic and manual labels were similar to inter-
and intra-individual tracing variability, and in some cases
actually smaller. This indicate that automatic methods were more
reliable than having different annotators or the same annotator
repeat the labels. Compared with inter-person variability for
the same compartments, the variability of the “direct labels
method” was 5% smaller in the OL (Figure 3A, p-value = 0.028,
Supplementary Table 4), 11% smaller in the AL (Figure 3B,

p-value = 0.025, Supplementary Table 4), and 5% smaller in the
MB-P (Figure 3E, p-value = 0.01, Supplementary Table 4).

The variability of the “multispecies template method” was
4% larger than the inter-person variability only for the ROCB
(Figure 3H, p = 0.025, Supplementary Table 4). When
comparing the automatic methods with the intra-individual
variability, larger variabilities of the automatic methods were
found for the MB-MC, in which the variability of “direct label
method” was 5% larger (Figure 3C, p = 0.026, Supplementary
Table 4), for the ROCB, in which the variability of the “direct
label method” was 2% larger (Figure 3E, p-value = 0.004,
Supplementary Table 4) and the variability of the “multispecies
template method” was 6% larger (Figure 3E, p-value = 0.015,
Supplementary Table 4). A marginally significant difference (8%
smaller, Supplementary Table 4) was found when comparing the
“consensus label method” and the intra-person variabilities.

The “consensus label method” produced variabilities similar to
those among and within annotators for all compartments. Some
differences were marginally significant (Supplementary Table 4)
in comparison to the variability among annotators (5% smaller
in the OL, 4% larger in the MB-LC, and 6% smaller in the CX)
and within the same annotator (4% larger in the MB-LC and 3%
larger in the SEZ, the ROCB and for the whole brain).

DISCUSSION

Statistical templates serve as representative neuroanatomies that
integrate variation in brain structure across samples. When
associated with neuroanatomical labels, they are a valuable
tool to automatically and efficiently segment compartments
in similar brains that have not been previously traced.
With these annotations we can calculate descriptive metrics
such as brain compartment volumes useful to understand
differential investment in brain centers and their associated
neural functions in behavior.

We presented and evaluated three methods to determine
whether their results are comparable to manual annotations. To
do so, we compared volumetric differences between automatic
and manual labels to volumetric differences due to inter-
and intra-individual variability of annotators. We found that
automatic segmentation produced satisfactory results. Our three
automatic methods produced compartmental volumetric data
similar to those obtained via manual annotations by different
annotators or by the same annotator repeatedly tracing the
same brain. In some cases, we found that the variability
between automatic and manual data was even smaller than inter-
person variability. Only for one center evaluated (ROCB), the
“multispecies template method” produced a variability 2% larger
than the inter-person one. This error level might be acceptable
considering the benefits of automation and the reduction in
human bias. We expected to find more differences in comparison
with intra-person variability. Surprisingly, only for two neuropils
(MB-MC and ROCB), the “direct label method” and the
“multispecies template method” produced larger differences (2–
6% larger) between automatic and manual data than intra-
person variability.

Frontiers in Ecology and Evolution | www.frontiersin.org 6 February 2022 | Volume 9 | Article 745707

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-745707 February 12, 2022 Time: 16:24 # 7

Arganda et al. Automatic Labeling of Ant Brains

FIGURE 3 | Variability between annotations for brain compartments and the whole brain. Variation (using volume similarity) given is for the (A) optic lobe (OL).
(B) Antennal lobe (AL). (C) Mushroom body medial calyx (MB-MC). (D) Mushroom body lateral calyx (MB-LC). (E) Mushroom peduncle (MB-P). (F) Central complex
(CX). (G) Subesophageal zone (SEZ). (H) For the rest of the central brain (ROCB). (I) For the whole brain. Statistical comparisons are made using bootstrapping tests
for comparing the volume differences found between the manual and the automatic labels (“Direct labels,” “Cons. Labels,” and “Multisp. temp.”) and between
individuals (“Inter-Person”) or within the same individual (“Intra-Person”). “∗” indicates p-values smaller than 0.05.

Standardized average brain atlases (group-wise templates) are
increasingly applied in insects (Rein et al., 2002; Brandt et al.,
2005; El Jundi et al., 2009; Kvello et al., 2009; Rybak et al., 2010;
Peng et al., 2011; Menzel, 2012; Rybak, 2012; Costa et al., 2016;
Arganda-Carreras et al., 2017, 2018; Gordon et al., 2019;
Groothuis et al., 2019; el Jundi and Heinze, 2020) to efficiently
and accurately collect data required to test hypotheses of brain
evolution and to facilitate the establishment of connectomes.
They allow, for example, the registration of multiple marked
neurons into standard anatomies to determine their spatial
relationships and possible inclusion in common neuronal circuits
(e.g., Brandt et al., 2005; Peng et al., 2011). Annotated atlases
also provide information on the shape and size of the different
brain compartments to make intra and interspecific comparisons
(e.g., Rein et al., 2002; Heinze et al., 2013; De Vries et al., 2017)
and generate and test hypotheses on the importance of particular
modalities of sensory processing in insect behavior, ecology, and
sociobiology, and life history.

In ants, most brain studies present 3D models based on
representative individuals (e.g., Bressan et al., 2015; Habenstein
et al., 2020) instead of standardized brain atlases. Aside from
accounting for interindividual variability and reducing the
possible bias of a single representative, the use of group-wise
templates allows the rapid and accurate collection of volumetric
neuroanatomical data. To our knowledge, we were the first to
generate group-wise templates and consensus labels in ants to
automatically trace similar brains (Arganda-Carreras et al., 2017).

In this work, we also presented for the first time a multispecies
template. In another study, we used group-wise templates
manually traced to reduce the time needed to trace 60 brains of
three different brain phenotypes of the polymorphic turtle ant
Cephalotes varians (Gordon et al., 2019). Here we validate these
different methods using the variability of human annotations
as the “gold standard.” All the methods presented reduce the
time required for manually tracing each brain and help decrease
potential errors of multiple annotators, either by allocating a
single annotator to a large dataset or by combining labels that
integrate variability between samples. Group-wise templates also
advantageously ensure blind annotations for samples of different
origins known to the annotator (for example, different treatments
or species) thus minimizing biases. For this purpose, we plan to
build single templates for polymorphic species in future studies.
Each strategy might be more suitable to answer some research
questions than others; for example, the “direct label method”
is recommendable for blind studies comparing individuals
under different treatments. The “consensus label method” might
provide with robust reference anatomical atlases that consider
interindividual variability. And the “multispecies template
method” can make evolutionary and comparative studies
requiring large datasets from multiple species more robust. While
our methods have been evaluated using descriptions of major
neuropils, testing them on finer neuropil sub-structures will be
a logical next step that will increase their potentiality. Regardless
of the neuroanatomical scale, the use of templates to accurately
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and rapidly collect volumetric neuroanatomical data, combined
with sociobiological, socioecological, phylogenetic, metabolic, or
neurochemical analyses can help elucidate macroevolutionary
and microevolutionary patterns of brain evolution. This will
allow to better understand encephalization and allometric
scaling in regard to the behavioral ecology and sociobiology
of individual workers, and the impact of emergent colony-level
processes on the brain.
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