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ABSTRACT 

 

In my thesis, I contributed to the field of exercise physiology and sport science by focusing on 

several open questions about the effects of different high-intensity interval training (HIIT) 

prescription models on physiological response and performance in trained distance runners. 

This aim was achieved through investigating different families of hypotheses, which focused 

on separated but related aspects of the topic. 

In the first investigation, I tested whether a highly-individualized, physiologically-based 

approach to HIIT prescription was more efficacious (i.e., superior) than a standardized one that 

imposes the same HIIT scheme to all runners for what concerns the development of 

cardiorespiratory fitness, in terms of maximal oxygen consumption (V̇O2max) and peak treadmill 

speed (Vpeak). Coaches often include HIIT sessions in their plan to develop specific 

physiological adaptations and enhance athletic performance in distance runners. The 

prescription is usually performed using a standardized and common empirical approach, in 

which runners of a similar level train together using the same HIIT scheme. However, previous 

studies showed that it is possible to target some physiological adaptations by individualizing 

HIIT prescriptions according to the physiological characteristics of the runners and their 

responses to exercise. This may be given that of the longest time spent at or near V̇O2max – and 

thus the stronger cardiorespiratory stimulus – that occurs with this training prescription model. 

Since in the standardized approach, in which the speed is the same for everyone, runners who 

fall outside the desired intensity range may face blunted or null gains in cardiorespiratory 

fitness, a smaller mean training effect coupled with a larger heterogeneity of training effect may 

be observed. I tested 46 distance runners [35 men and 11 women, age: 36 (8) yr, 10000-m speed: 

14.4 (1.3) km · h–1] before and after 8 weeks of training, in which they replaced a similar part 

of their habitual training volume with two sessions per week of either individualized (IND, N 

= 23) or standardized (STD, N = 23) HIIT, without major modifications in the overall training 

structure. I assessed V̇O2max, running economy (RE), Vpeak, and lactate thresholds during an 

incremental test performed on a treadmill, followed by a verification phase, and I measured 

10000-m speed performance on a 400-m track. HIIT prescriptions were individualized for the 

speed and duration of each interval according to each runner’s physiological values as 

previously described by Billat and colleagues in IND. Specifically, the speed and the duration 

of each interval were set at the speed halfway between the second lactate threshold and Vpeak 

(v∆50) and 50% of the time to exhaustion at v∆50 (Tlim), respectively, whereas the speed and 

the duration of each recovery period were set at 50% of the Vpeak and 25% of Tlim, respectively. 



 

The average group values were instead used for prescribing HIIT in STD. IND and STD were 

matched for HIIT characteristics at the group level. Relative V̇O2max and Vpeak improved 

significantly only in IND [V̇O2max: +2.8 mL · kg–1· min–1, p < .001, 95% confidence interval 

(CI): +1.4 to +4.1; Vpeak: +0.4 km · h–1, p < .001, 95% CI: +0.2 to +0.5], with a statistically 

significant difference of +3.7 mL · kg–1· min–1 (p = .01, 95% CI: +1.3 to +∞), +0.20 L · min–1 

(p = .02, 95% CI: +0.04 to +∞), and +0.4 km · h–1 (p = .02, 95% CI: +0.1 to +∞) for relative 

V̇O2max, absolute V̇O2max, and Vpeak, respectively, between the groups. IND reduced 

heterogeneity of intervention effect for Vpeak compared with STD (−0.4 km · h–1, p = .04, 95% 

CI: −∞ to −0.1). RE improved significantly only in IND (−4.5 mL · kg–1· min–1, p = .05, 95% 

CI: −9.1 to 0.0), with no statistically significant difference between the groups. Fractional 

V̇O2max at the second lactate threshold decreased significantly only in IND (−2.2%, p = .007, 

95% CI: −3.8 to −0.7), with a statistically significant difference of −5% (p = .008, 95% CI: −8.7 

to −1.4) between the groups. No significant changes or differences were observed in the other 

physiological parameters investigated and 10000-m speed performance within and between the 

groups. These results showed that individualizing HIIT prescriptions according to the 

physiological responses to exercise induces superior cardiorespiratory fitness adaptations 

compared with standardized prescriptions and reduces the heterogeneity of intervention effects 

in trained distance runners. The experimental data corroborated my hypotheses, which led me 

to conclude that individualizing HIIT prescription according to physiological characteristics 

and response to exercise should be the choice for coaches and athletes in those training phases 

aimed to improve cardiorespiratory fitness (usually during the preparatory phase and the early 

part of the specific period). 

Since most of the runners do not have easy access to physiology labs, medical clinics, and 

expert personnel to obtain valid and reliable data for individualizing HIIT prescription 

according to the physiological approach, I looked for alternative parameters to estimate the 

v∆50 that did not require lab tests. Informed by the previous literature on the topic, I evaluated 

the suitability of various treadmill-related and race pace-related measures for this purpose. 

Specifically, I investigated whether the relative percent of the Vpeak at v∆50, the difference 

between v∆50 and Vpeak, the relative percent of the 10000-m speed at v∆50, and the difference 

between v∆50 and 10000-m speed had sufficiently-low inter-individual variability – expressed 

as standard deviation (SD) – to be used as valid surrogates of v∆50. The physiological and 

performance testing protocol was identical to the one adopted in my first investigation with no 

experimental intervention between the 8 weeks that separated the two testing sessions. By using 

a much larger sample size than what had previously been used in the literature (N = 75) and a 



 

repeated-measurement design (on 61 out of 75 runners for treadmill-related measures and 57 

out of 75 for race pace-related measures), I was able to obtain sufficient precision in parameter 

estimation and to isolate the true inter-individual variability by the biological (within-

individual) variability. The observed vΔ50 corresponded to the 110% (95% CI: 109 to 111) of 

the 10000-m speed with a SD of 5% (95% CI: 4 to 6) and it was 1.4 km · h–1 (95% CI: 1.3 to 

1.6) faster than the 10000-m speed with a SD of 0.7 km · h–1 (95% CI: 0.6 to 0.8). Instead, the 

observed vΔ50 corresponded to the 92% (95% CI: 91 to 92) of the Vpeak with a SD of 2% (95% 

CI: 0 to 2) and it was 1.4 km · h–1 (95% CI: 1.5 to 1.3) lower than the Vpeak with a SD of 0.5 

km · h–1 (95% CI: 0.4 to 0.8). After having accounted for the within-individual variability, the 

inter-individual variability of the 10000-m speed at vΔ50 was 4% (95% CI: 3 to 6) when 

expressed as a percentage of the 10000-m speed and to 0.5 km · h–1 (95% CI: 0.4 to 0.8) when 

expressed as the difference between vΔ50 and 10000-m speed. Instead, the inter-individual 

variability of the Vpeak at vΔ50 was 1% (95% CI: 1 to 2) when expressed as a percentage of the 

Vpeak and to 0.2 km · h–1 (95% CI: 0.2 to 0.3) when expressed as the difference between vΔ50 

and Vpeak. The data indicated that treadmill-related measures can inform about the v∆50 value 

with sufficiently-low heterogeneity between individuals to be used as valid alternatives to lab 

measures. On the contrary, the larger variability in the race pace-related measures at v∆50 does 

not make them suitable for prescribing HIIT according to the physiological approach. 

Treadmill-related measures only require a commercial (and properly calibrated) treadmill 

available in any gym and allow to estimate the vΔ50 with discrete precision and reasonable 

effort. The use of treadmill-related measures to individualize HIIT prescriptions according to 

the physiological approach would make this form of HIIT more accessible to the largest part of 

the runner population. 

Developing cardiorespiratory fitness only represents an intermediate step in training 

preparation, whereas maximizing performance represents the main goal when approaching 

competitions. As my last family of hypotheses, I investigated the effects of two different 

individualized HIIT prescriptions models – the physiological approach and the race pace 

approach − on cardiorespiratory fitness and 10000-m speed performance in trained distance 

runners. Following the same rationale adopted in my first investigation, I hypothesized larger 

gains in cardiorespiratory fitness for the physiological approach. In agreement with the modern 

network physiology − according to which anchoring the training intensity to a given higher 

percentage of the target race pace would maximize race performance through a more efficient 

network of physiological interactions for that task at the condition the intensity is not too high 

to lose the specificity for the task −, I also hypothesized larger gains in performance for the race 



 

pace approach. Moreover, I hypothesized a larger heterogeneity of intervention effects for 

cardiorespiratory fitness for the race pace approach and a larger heterogeneity for 10000-m 

speed performance in the physiological approach. I tested 31 distance runners [20 men and 11 

women, age: 38 (9) yr, 10000-m speed: 14.0 (1.4) km · h–1] before and after 8 weeks of training, 

in which they replaced a similar part of their habitual training volume with two sessions per 

week of either physiologically-based (PHY, N = 16) or race pace-based (RP, N = 15) 

individualized HIIT prescriptions, without major modifications in the overall training structure. 

The physiological and performance testing protocol was identical to the one adopted in my first 

investigation so was the training intervention in PHY. Race pace-based HIIT prescriptions were 

instead intended to mimic coaching-like practice, with the speed of each interval determined 

according to a given percentage of the target race pace, a fixed duration for each interval, and 

a given distance to cover during the recovery time. Specifically, runners were required to cover 

1000 m at the 110% of the target 10000-m pace during each interval, and 300 m in 2 min during 

recovery, since these values are similar to the physiological-based HIIT prescriptions values at 

a group level in a large cohort of similar runners. V̇O2max and Vpeak improved significantly in 

PHY (V̇O2max: +3.1 mL · kg–1· min–1, p < .001, 95% CI: +1.8 to +4.4; V̇O2max: +0.13 L · min–

1, p = .02, 95% CI: +0.03 to +0.23; Vpeak: +0.4 km · h–1, p < .001, 95% CI: +0.2 to +0.7), whereas 

V̇O2max decreased significantly in RP (V̇O2max: −2.0 mL · kg–1· min–1, p = .009, 95% CI: −3.4 

to −0.6; V̇O2max: −0.11 L · min–1, p = .05, 95% CI: −0.22 to 0.00), with a statistically significant 

difference of +5.1 mL · kg–1· min–1 (p < .001, 95% CI: +3.6 to +∞), +0.24 L · min–1 (p = .001, 

95% CI: +0.12 to +∞), and +0.5 km · h–1 (p = .003, 95% CI: +0.2 to +∞) for relative V̇O2max, 

absolute V̇O2max, and Vpeak, respectively, between the groups. On the contrary, 10000-m speed 

improved significantly only in RP (+0.5 km · h–1, p < .001, 95% CI: +0.2 to +0.7), with a 

statistically significant difference of −0.5 km · h–1 (p = .01, 95% CI: −∞ to −0.1) between the 

groups. Fractional V̇O2max at the first lactate threshold improved significantly only in RP 

(+4.1%, p = .02, 95% CI: +0.7 to +7.5), with a statistically significant difference of −4.2% (p = 

.05, 95% CI: −8.3 to 0.0) between the groups. Although the experimental data were 

inconclusive for heterogeneity of intervention effects, they corroborated both my hypotheses 

about the mean training effect, which led me to conclude that the physiological approach and 

race pace approach may be performed within the same macrocycle, but the implementation of 

the former should precede the latter in terms of proximity to major competitions. 

 

KEYWORDS: endurance running; exercise physiology; high-intensity interval training; sport 

performance 



 

RESUMEN 

 

Esta tesis contribuye al campo de la fisiología del ejercicio y la ciencia del deporte centrándose 

en varias preguntas abiertas sobre los efectos de los diferentes modelos de prescripción de 

entrenamiento en intervalos de alta intensidad (HIIT) con la respuesta fisiológica y el 

rendimiento en corredores de fondo entrenados. Este objetivo se logró a través la investigación 

de diferentes familias de hipótesis, que se centraron en aspectos separados, pero relacionados 

al tema.  

Inicialmente se estudió si un enfoque altamente individualizado y fisiológicamente basado 

en la prescripción de HIIT era más eficaz (es decir, superior) que uno estandarizado que impone 

el mismo esquema de HIIT a todos los corredores en lo que concierne al desarrollo de la aptitud 

cardiorrespiratoria, en términos de consumo máximo de oxígeno (V̇O2max) y velocidad máxima 

en cinta rodante (Vpeak). Los entrenadores a menudo incluyen sesiones HIIT en su plan para 

desarrollar adaptaciones fisiológicas específicas y mejorar el rendimiento deportivo en los 

corredores de fondo. La prescripción generalmente se realiza usando un enfoque empírico 

común y estandarizado, en el que los corredores de un nivel similar entrenan juntos usando el 

mismo esquema HIIT. Sin embargo, estudios previos mostraron que es posible enfocarse en 

algunas adaptaciones fisiológicas individualizando las prescripciones de HIIT acorde con las 

características fisiológicas de los corredores y sus respuestas al ejercicio. Esto puede estar 

relacionado al mayor tiempo pasado en (o cerca del) V̇O2max y, por lo tanto, a un estímulo 

cardiorrespiratorio más fuerte que se produce con este modelo de prescripción de 

entrenamiento. Dado que en el enfoque estandarizado, en el que la velocidad es la misma para 

todos, los corredores que caen fuera del rango de intensidad deseado pueden conseguir menores 

ganancias  (o nulas) en la aptitud cardiorrespiratoria, se puede observar un efecto promedio de 

grupo más pequeño junto con una mayor heterogeneidad del efecto de entrenamiento. Se 

analizaron a 46 corredores de fondo [35 hombres y 11 mujeres, edad: 36 (8) años, velocidad de 

10000-m: 14.4 (1.3) km · h–1] antes y después de 8 semanas de entrenamiento, en las que 

reemplazaron una parte similar de su volumen de entrenamiento habitual con dos sesiones por 

semana de HIIT individualizado (IND, N = 23) o estandarizado (STD, N = 23), sin 

modificaciones importantes en la estructura general del entrenamiento. Se evaluó el V̇O2max, la 

economía de carrera (RE), el Vpeak y los umbrales de lactato durante una prueba incremental 

realizada en una cinta de correr, seguida de una fase de verificación, y se medió el rendimiento 

de velocidad de 10000-m en una pista de 400 m. Las prescripciones de HIIT se individualizaron 

por velocidad y la duración de cada intervalo de acuerdo con los valores fisiológicos de cada 



 

corredor, como describieron anteriormente Billat y cols. en IND. Específicamente, la velocidad 

y la duración de cada intervalo se establecieron a la velocidad a medio camino entre el segundo 

umbral de lactato y Vpeak (v∆50) y el 50% del tiempo hasta el agotamiento en v∆50 (Tlim), 

respectivamente, mientras que la velocidad y la duración de cada período de recuperación se 

fijó en el 50% del Vpeak y el 25% del Tlim, respectivamente. En cambio, los valores medios del 

grupo se utilizaron para prescribir HIIT en ETS. IND y STD se emparejaron para las 

características HIIT a nivel de grupo. El V̇O2max relativo y el Vpeak mejoraron significativamente 

solo en IND [VO2max: +2.8 mL · kg –1 · min–1, p < .001, intervalo de confianza (CI) del 95%: 

+1.4 a +4.1; Vpeak: +0.4 km · h–1, p < .001, CI 95%: +0.2 a +0.5], con una diferencia 

estadísticamente significativa de +3.7 mL · kg–1 · min–1 (p = .01, 95 % CI: +1.3 a + ∞), +0.20 

L · min–1 (p = .02, 95% CI: +0.04 a + ∞), y +0.4 km · h–1 (p = .02, 95% CI: +0.1 a + ∞) para 

V̇O2max relativo, V̇O2max absoluto y Vpeak, respectivamente, entre los grupos. IND redujo la 

heterogeneidad del efecto de la intervención para Vpeak en comparación con STD (−0,4 km · h–

1, p = .04, 95% CI: −∞ a −0.1). RE mejoró significativamente sólo en IND (−4,5 mL · kg−1 · 

min−1, p = .05, 95% CI: −9.1 a 0.0), sin diferencias estadísticamente significativas entre los 

grupos. El V̇O2max fraccional en el segundo umbral de lactato disminuyó significativamente 

solo en IND (−2.2%, p = .007, 95% CI: −3.8 a −0.7), con una diferencia estadísticamente 

significativa de −5% (p = .008, 95% CI: −8.7 a −1.4) entre los grupos. No se observaron 

cambios o diferencias significativas en los otros parámetros fisiológicos investigados y en el 

rendimiento de velocidad de 10000-m dentro y entre los grupos. Estos resultados mostraron que 

la individualización de las prescripciones de HIIT, de acuerdo con las respuestas fisiológicas al 

ejercicio, induce adaptaciones de aptitud cardiorrespiratoria superiores en comparación con las 

prescripciones estandarizadas y reduce la heterogeneidad de los efectos de la intervención en 

corredores de fondo entrenados. Los datos experimentales corroboraron ambas hipótesis, lo que 

lleva a concluir que individualizar la prescripción de HIIT de acuerdo con las características 

fisiológicas y la respuesta al ejercicio debería ser la elección de entrenadores y deportistas en 

aquellas fases de entrenamiento destinadas a mejorar la aptitud cardiorrespiratoria 

(normalmente durante la fase preparatoria y la primera parte del período específico). 

Dado que la mayoría de los corredores no tiene fácil acceso a laboratorios de fisiología, 

clínicas médicas y personal experto para obtener datos válidos y confiables para individualizar 

la prescripción de HIIT de acuerdo con el enfoque fisiológico, se buscaron parámetros 

alternativos para estimar el v∆50 que no requirieran pruebas de laboratorio. En base a la 

literatura previa sobre el tema, se evaluó la idoneidad de varias medidas relacionadas con el 

tapiz rodante y el ritmo de carrera para este propósito. Específicamente, se investigó si el 



 

porcentaje relativo de Vpeak en v∆50, la diferencia entre v∆50 y Vpeak, el porcentaje relativo de 

la velocidad de 10000-m en v∆50 y la diferencia entre v∆50 y 10000-m. La velocidad tenía una 

variabilidad interindividual – expresado como desviación estándar (SD) – suficientemente baja 

para ser utilizada como sustitutos válidos de v∆50. El protocolo de pruebas fisiológicas y de 

rendimiento fue idéntico al adoptado en mi primera investigación sin intervención experimental 

entre las 8 semanas que separaron las dos sesiones de prueba. Mediante el uso de un tamaño de 

la muestra mucho mayor que el que se había utilizado previamente en la literatura (N = 75) y 

un diseño de medición repetida (en 61 de 75 corredores para medidas relacionadas con la cinta 

de correr y 57 de 75 para medidas relacionadas con el ritmo de carrera), se pudo obtener 

suficiente precisión en la estimación de parámetros y aislar la verdadera variabilidad 

interindividual por la variabilidad biológica (intraindividual). El vΔ50 observado correspondió 

al 110% (95% CI: 109 a 111) de la velocidad de 10000-m con una SD del 5% (95% CI: 4 a 6) 

y fue de 1.4 km · h–1 (95% CI: 1.3 a 1.6) más rápido que la velocidad de 10000-m con una SD 

de 0.7 km · h–1 (95% CI: 0.6 a 0.8). En cambio, el vΔ50 observado correspondió al 92% (95% 

CI: 91 a 92) del Vpeak con una SD del 2% (95% CI: 0 a 2) y fue de 1.4 km · h–1 (95% CI : 1.5 a 

1.3) menor que el Vpeak con una SD de 0.5 km · h–1 (95% CI: 0.4 a 0.8). Después de haber tenido 

en cuenta la variabilidad intraindividual, la variabilidad interindividual de la velocidad de 

10000-m en vΔ50, expresada como SD, fue del 4% (95% CI: 3 a 6) cuando se expresó como 

un porcentaje de la velocidad de 10000-m velocidad ya 0.5 km · h–1 (95% CI: 0.4 a 0.8) cuando 

se expresa como la diferencia entre vΔ50 y 10000-m de velocidad. En cambio, la variabilidad 

interindividual del Vpeak en vΔ50 fue del 1% (95% CI: 1 a 2) cuando se expresó como un 

porcentaje del Vpeak y de 0.2 km · h–1 (95% CI: 0.2 a 0.3) cuando expresado como la diferencia 

entre vΔ50 y Vpeak. Los datos indicaron que las medidas relacionadas con el tapiz rodante 

pueden informar sobre el valor de v∆50 con una heterogeneidad suficientemente baja entre los 

individuos para usarse como alternativas válidas a las medidas de laboratorio. Por ello contrario, 

la mayor variabilidad en las medidas relacionadas con el ritmo de carrera en v∆50 no las hace 

adecuadas para prescribir HIIT de acuerdo con el enfoque fisiológico. Las medidas relacionadas 

con la tapiz rodante solo requieren una cinta de correr comercial (y debidamente calibrada) 

disponible en cualquier gimnasio y permiten estimar el vΔ50 con precisión discreta y un 

esfuerzo razonable. El uso de medidas relacionadas con la cinta de correr para individualizar 

las prescripciones de HIIT de acuerdo con el enfoque fisiológico haría que esta forma de HIIT 

sea más accesible para la mayor parte de la población de corredores. 

El desarrollo de la aptitud cardiorrespiratoria solo representa un paso intermedio en la 

preparación del entrenamiento, mientras que maximizar el rendimiento representa el objetivo 



 

principal al acercarse a las competiciones. Como última familia de hipótesis, se invetigaron los 

efectos de dos modelos de prescripción HIIT individualizados diferentes, el enfoque fisiológico 

y el enfoque del ritmo de carrera, sobre la aptitud cardiorrespiratoria y el rendimiento de 

velocidad de 10000-m en corredores de fondo entrenados. Siguiendo el mismo razonamiento 

adoptado adoptado en la primera investigación, se formuló la hipótesis de mayores ganancias 

en la aptitud cardiorrespiratoria para el enfoque fisiológico. De acuerdo con la fisiología 

moderna, fijar la intensidad del entrenamiento a un porcentaje mayor dado del ritmo de carrera 

objetivo maximizaría el rendimiento de la carrera a través de una red más eficiente de 

interacciones fisiológicas siempre y cuando la intensidad no sea demasiado alta. También se 

planteó la hipótesis de mayores ganancias en el rendimiento para el enfoque de ritmo de carrera. 

Además, se planteó la hipótesis de una mayor heterogeneidad de los efectos de la intervención 

para la aptitud cardiorrespiratoria para el enfoque del ritmo de carrera y una mayor 

heterogeneidad para el rendimiento de la carrera en el enfoque fisiológico. Se testearon 31 

corredores de distancia [20 hombres y 11 mujeres, edad: 38 (9) años, velocidad de 10000-m: 

14.0 (1.4) km · h–1] antes y después de 8 semanas de entrenamiento, en las que reemplazaron 

una parte similar de su volumen de entrenamiento habitual con dos sesiones por semana de 

prescripciones de HIIT individualizadas, ya sea fisiológicamente (PHY, N = 16) o basadas en 

el ritmo de carrera (RP, N = 15), sin modificaciones importantes en la estructura general de 

entrenamiento. El protocolo de pruebas fisiológicas y de rendimiento fue idéntico al adoptado 

en la primera investigación, al igual que la intervención de entrenamiento en PHY. En cambio, 

las prescripciones de HIIT basadas en el ritmo de carrera estaban destinadas a imitar la práctica 

de entrenamiento, con la velocidad de cada intervalo determinada de acuerdo con un porcentaje 

dado del ritmo de carrera objetivo, una duración fija para cada intervalo y una distancia 

determinada para cubrir durante la recuperación. Específicamente, los corredores debían cubrir 

1000 ma el 110% del ritmo objetivo de 10000-m durante cada intervalo, y 300 m en 2 min 

durante la recuperación, ya que estos valores son similares a los valores de prescripción de HIIT 

basados en fisiología a nivel grupal en una gran cohorte de corredores similares (Estudio 2). 

V̇O2max y Vpeak mejoraron significativamente en PHY (V̇O2max: +3.1 mL · kg–1 · min–1, p < .001, 

95% CI: +1.8 a +4.4; V̇O2max: +0.13 L · min–1, p =. 02, 95% CI: +0.03 a +0.23; Vpeak: +0.4 km 

· h–1, p < .001, 95% CI: +0.2 a +0.7), mientras que el V̇O2max disminuyó significativamente en 

RP (V̇O2max: −2.0 mL · Kg–1 · min–1, p = .009, 95% CI: −3.4 a −0.6; V̇O2max: −0.11 L · min–1, 

p = .05, 95% CI: −0.22 a 0.00), con una diferencia estadísticamente significativa de +5.1 mL · 

kg–1 · min–1 (p < .001, 95% CI: +3.6 a +∞), +0.24 L · min–1 (p = .001, 95% CI: +0.12 a + ∞) y 

+0.5 km · h–1 (p = .003, 95% CI: +0.2 a +∞) para V̇O2max relativo, V̇O2max absoluto y Vpeak, 



 

respectivamente, entre los grupos. Por el contrario, la velocidad de 10000-m mejoró 

significativamente solo en RP (+0.5 km · h–1, p < .001, 95% CI: +0.2 a +0.7), con una diferencia 

estadísticamente significativa de −0.5 km · h–1 (p = .01, 95% CI: −∞ a −0.1) entre los grupos. 

El V̇O2max fraccional en el primer umbral de lactato mejoró significativamente solo en RP 

(+4,1%, p = .02, 95% CI: +0.7 a +7.5), con una diferencia estadísticamente significativa de 

−4,2% (p = .05, 95% CI: −8.3 a 0.0) entre los grupos. Aunque los datos experimentales no 

fueron concluyentes para la heterogeneidad de los efectos de la intervención, sí se corroboraron 

las dos hipótesis sobre el efecto promedio del grupo, lo que lleva a concluir que el enfoque 

fisiológico y el ritmo de carrera pueden realizarse dentro del mismo macrociclo, pero que la 

implementación del primero debería preceder a este último en términos de proximidad a las 

principales competiciones. 

 

PALABRAS CLAVE: carrera de resistencia; fisiología del ejercicio; entrenamiento de 

intervalos de alta intensidad; rendimiento deportivo 
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1 
INTRODUCTION 

 

‘Run often. Run long. But never outrun your joy of running.’ 

Julie Isphording − distance runner 
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1. INTRODUCTION 

 

1.1  Born to run 

Running activities are very common in our modern society. About a tenth of the global adult 

population practices some form of running activity, and there are indeed more than 7.9 million 

people registered for running races in 2018 (Hulteen et al., 2017; Andersen, 2019). There is no 

surprise in these numbers. Bipedal running has accompanied the evolution of mankind for 

probably the last two million years (Lieberman & Bramble, 2007). For some scientists (Bramble 

& Lieberman, 2004), running may have shaped our body along the path of human evolution, 

making us unique among all primates. Running may then be responsible for what we are today. 

It is then little wonder that we, as humans, require a certain amount of running, and physical 

activity in general, to stay healthy (Garber et al., 2011). However, cultural evolution does not 

pace with biological evolution (Perreault, 2012). The same adapting path that had been 

responsible for our survival on this planet for three hundred thousand years is now obsolete for 

the needs of modern human society. This ‘evolutionary mismatch’ has opened the door to most 

modern chronic diseases (Booth et al., 2012). Nowadays, endurance running is no longer driven 

by the need to survive but by the need to stay healthy in an environment that does no longer 

accept us as its natural parts. 

Endurance running does not only represent a healthy practice, but it is also a competitive 

challenge to test human limits. As Homo sapiens species, we inherited an intraspecific 

competitive behavior from our ancestors (Bhattacharya, 2020). Today this behavior is no longer 

oriented toward ‘classical’ resources, such as food or territory, but victories in sports for many 

of us. As a unique ultra-cultural species (Henrich, 2011), we also have an innate desire to 

understand the nature of things. We wish to separate and properly characterize each piece of 

the often-complicated puzzle representing the topics we are interested in to have a full view and 

control over it. Thus, it is not surprising that, along with the natural sense of disappointment, 

the first questions that come after failing a goal in competition usually are ‘why did I fail?’ and 

‘how can I improve?’. Exercise physiologists and sports scientists have spent a tremendous 

effort to answer these two common but fundamental questions. Although their conclusions did 

not always converge, they have provided important pieces of information to place the athletes 

and coaches one step closer to their goals. 
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1.2  Distance running performance: E Pluribus Unum 

Understanding the structure of complex phenomena is the key to reducing their perceived 

complexity (Mazzocchi, 2008). This also applies to human performance. Generations of 

exercise physiologists and sports scientists have contributed to building and continuously 

refining explanatory models of distance running performance. After the first pioneering studies 

(Hill & Lupton, 1923; Hill, 1925), the ‘60s and the ‘70s saw the growth in studies attempting 

to identify candidate physiological determinants and understand their linkages and interactions 

(Saltin & Astrand, 1967; Costill, 1967, 1970, 1972; Wyndham et al., 1969; Costill et al., 1971, 

1973; Pollock, 1977; Foster et al., 1977, 1978; Davies & Thompson, 1979; Farrell et al., 1979; 

Conley & Krahenbuhl, 1980). However, it was not until the ‘80s and ‘90s that the first 

integrated physiological models were presented to the public (Sparling, 1984; Sjödin & 

Svedenhag, 1985; Di Prampero et al., 1986; Joyner, 1993; Coyle, 1995, 1999; Bassett & 

Howley, 1997, 2000) (Figure 1).  

 

FIGURE 1. Overview of the main factors related to the maximal speed that can be maintained in 

distance races according to Bassett and Howley (1997). The maximal oxygen uptake (V̇O2max), lactate 

threshold (LT), and running economy represent the main physiological factors determining distance 

running performance in any purely physiological model. 
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These models progressively became more and more complex by integrating other 

physiological components, such as neuromuscular and anaerobic characteristics, that had been 

overlooked by earlier scientists (Joyner & Coyle, 2008; Beattie et al., 2014) (Figure 2). 

 

FIGURE 2. The physiological factors that determine performance speed according to Joyner and Coyle 

(2008). This model is an expansion of the one proposed by Bassett and Howley (1997), which did not 

include anaerobic characteristics among the determinants. 

 

The process of expansion and refinement of physiological models of distance running – and 

more general endurance exercise – performance has not been free from a disagreement between 

scientists. Disputes about the proper physiological structure of the model and the relation among 

its components were raised almost immediately after the first integrated models were published 

(Noakes, 1988, 1996; Ulmer, 1986; Bassett & Howley, 1997; Bergh et al., 2000). The debate 

that arose from these disputes led to new theories that gave greater importance to the role of the 

brain as a regulator of effort and fatigue during exercise (Noakes, 2000; St Clair Gibson & 

Noakes, 2004; Lambert et al., 2005) (Figure 3a). These theories attracted, in turn, new criticisms 

(Marcora, 2008) (Figure 3b) that resulted, in turn, in new theories (St Clair Gibson et al., 2018; 

Venhorst et al., 2018a) (Figure 4). Although it is not clear whether or not science has ultimately 

benefited from these shortly repeated paradigm shifts (Inzlicht & Marcora, 2016; Robergs, 
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2017), we should still give credit to those scientists for having raised awareness, at least in the 

most recent versions of their theories, about the deep interconnection between physiological 

and psychological factors.  

 

FIGURE 3. The central governor (a) and the psychological-motivational (b) models of exercise 

performance by St Clair Gibson and Noakes (2004) and Marcora (2008), respectively. Despite the 

fundamental differences in the structure, conscious and subconscious processes represent integral parts 

of both models.  

 

Today scientists agree about the psychophysiological structure of distance running 

performance. However, given the complexity of human nature, it is not surprising that a single 

unifying model is still lacking. Recent lines of evidence define distance running performance 
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as a very complex phenomenon involving dynamic and non-linear interactions of several 

psychophysiological factors interacting at multiple levels (Millet, 2011; Knicker et al., 2011; 

Edwards & Polman, 2013; Pageaux, 2014; Renfree & Casado, 2018; St Clair Gibson et al., 

2018; Venhorst et al., 2018a) (e.g., Figure 4). Success in competing events may then depend on 

the optimal dynamic interplay between physiological, psychological, technical, and tactical 

factors, which include interactions with other competitors (Renfree & Casado, 2018; Venhorst 

et al., 2018a).  

 

FIGURE 4. Simplified representation of the integrative governor model of exercise proposed by St 

Clair Gibson and colleagues (2018). The model describes a continuous dynamic interplay between 

competing physiological and psychological drives, whose product of the relative weighting – affected 

by the endpoint (circled), distance, and time duration – defines the level of functional reserve maintained 

during a given physical task. 

 

Despite the awareness of the dynamic multi-level structure of regulation of distance running 

performance, the knowledge about the network of linkages and interactions between the factors 

and levels is limited. Science is still far from precisely modeling the complex paths that exist 

among all the factors involved. The recent development of dynamic multiple-level 

psychophysiological regulatory models of endurance exercise performance and their 

complexity has also restricted their use in interventional studies to very late research (e.g., 

Venhorst et al., 2018b, c), whereas the vast majority of the literature so far focused only on a 

few major physiological factors (e.g., Buchheit & Laursen, 2013a, b; Beattie et al., 2014).    
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1.3  The ‘Big Three’ 

1.3.1 Maximal oxygen uptake (V̇O2max) 

The maximal oxygen uptake, or V̇O2max, represents the maximum integrated capacity of the 

pulmonary, cardiovascular, and muscular systems to uptake, transport, and use O2, respectively 

(Poole et al., 2008). Although there is still no consensus about the main limiting factors of the 

V̇O2max, it can be considered synonymous with maximal aerobic power and the best indicator 

of cardiorespiratory fitness (Astrand, 1955; Bassett & Howley, 2000). Exercise physiologists 

and sports scientists typically assess V̇O2max during a maximal incremental treadmill test, in 

which they progressively increase the speed on the treadmill until the runner is no longer able 

to sustain it (Bentley et al., 2007). The general criterion for V̇O2max determination is the 

achievement of a plateau in the V̇O2 (Taylor et al., 1955). While different researchers have used 

different criteria to define what they consider a plateau, the rationale they should have all in 

common is observing a larger deflection in the linear running speed-V̇O2 relationship than what 

could be explained by the measurement error alone (Midgley et al., 2007a, 2009). However, the 

low frequency of plateau occurrence in V̇O2 – regardless of the criterion – has led scientists to 

adopt secondary criteria and/or supplementary procedures to validate V̇O2max achievement 

(Midgley et al., 2007a; Midgley & Carroll, 2009). Today, it is a common practice when testing 

runners to require a second (usually constant-intensity) test at a similar, lower, or higher, speed 

than the highest speed reached during the incremental test, known as the verification phase, to 

confirm the attainment of V̇O2max (Thoden et al., 1982; Midgley et al., 2006a, 2007a; Schaun, 

2017). 

From the energetic standpoint, distance running performance is essentially an aerobic-driven 

activity. The aerobic metabolism indeed provides most of the energy to runners for competing 

in any long-distance race (Gastin, 2001). Given the essential contribution of the aerobic energy 

system in distance running races, it should not surprise that several scientists initially considered 

the V̇O2max the main determinant of distance running performance (Foster et al., 1978; Davies 

& Thompson, 1979). Exercise physiologists and sports scientists discovered the relation 

between V̇O2max and distance running performance almost a century years ago (Hill, 1925; 

Robinson et al., 1937). Numerous subsequent studies further investigated the value of the 

parameter in different populations and its relation with training and distance running 

performance (Astrand, 1955; Saltin & Astrand, 1967; Costill, 1967; Wyndham et al., 1969; 

Costill et al., 1971, 1973; Pollock, 1977; Daniels et al., 1978; Foster et al., 1977, 1978; Davies 

& Thompson, 1979; Foster, 1983). The value of the V̇O2max in elite runners is usually 50–100% 
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greater than the one observed in untrained individuals, regardless of whether V̇O2max is 

expressed in absolute terms (L · min–1) or relative to the body mass (mL · kg–1· min–1) (Joyner 

& Coyle, 2008). Researchers also found that V̇O2max explains distance running performance in 

distance runners of heterogeneous performance levels (Costill, 1967; Wyndham et al., 1969; 

Costill et al., 1973; Foster et al., 1977, 1978; Farrell et a., 1979; Davies & Thompson, 1979; 

Foster, 1983; McLaughlin et al., 2010), and the largest improvements usually take places during 

the first weeks of training (Daniels et al., 1978). However, the relation between V̇O2max and 

performance is weaker in homogeneous groups of highly-trained runners (Pollock, 1977; 

Conley & Krahenbuhl, 1980), and the long-term trainability of V̇O2max is limited in this 

population (Daniels et al., 1978). Today we know that, despite being a prerequisite for success 

in distance running, V̇O2max does not represent a sensitive parameter to assess performance or 

track changes in performance in highly-trained runners (Legaz-Arrese et al., 2005; Joyner & 

Coyle, 2008). 

 

1.3.2 Lactate threshold(s) 

A major limitation of using V̇O2max to explain distance running performance is its short 

sustainability. V̇O2max declines after a few minutes of intense exercise mainly due to accelerated 

metabolic fatigue, which leads runners to reduce the intensity or interrupt the exercise (Joyner 

& Coyle, 2008; Billat et al., 1994; Hill & Rowell, 1997; Hill et al., 1997; Midgley & 

McNaughton, 2006; Black et al., 2017). Since runners cannot sustain V̇O2max for more than a 

few minutes, most of the long-distance running events are performed at an average speed below 

the one corresponding to V̇O2max (Costill et al., 1973; Bassett & Howley, 2000; Joyner & Coyle, 

2008). The implications of this phenomenon are straightforward: for runners who are already 

close to their genetic potential for V̇O2max, the ability to sustain high fractions of V̇O2max in 

competition may then be a stronger determinant of performance than V̇O2max itself (Wyndham 

et al., 1969; Costill, 1970; Costill et al., 1971, 1973; Farrell et al., 1979; Sjödin & Svedenhag, 

1985; Di Prampero et al., 1986). Since the ability to sustain high fractions of V̇O2max for 

prolonged periods finds a strong correspondence with the maximal intensity that can be 

sustained without a progressive rise in blood lactate levels (Sjödin & Svedenhag, 1985; Joyner, 

1993; Coyle, 1995, 1999; Bassett & Howley, 1997, 2000; Joyner & Coyle, 2008), researchers 

have used submaximal blood lactate levels as a means to explain distance running performance 

(Wyndham et al., 1969; Costill, 1970; Farrell et al., 1979; Sjödin & Svedenhag, 1985). In this 
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regard, the concept of maximal lactate steady state (MLSS) has been utilized to identify the 

upper boundary of constant intensity exercise (Faude et al., 2009). However, the MLSS 

determination requires performing several (three to seven) prolonged (≥ 30 minutes) constant-

intensity tests on separate days at different running speeds, which has limited its use in the 

research practice (Beneke, 2003; Faude et al., 2009). Due to the difficulties in adequately 

estimating MLSS with a single laboratory visit, alternative methods based on the determination 

of physiologically meaningful ‘thresholds’ on the running speed-blood lactate curve have 

gained popularity among exercise physiologists and sports scientists. These thresholds consist 

of two typical breakpoints: the lowest intensity at which blood lactate concentration starts to 

increase above resting levels (LT1) and the highest intensity at which lactate production and 

clearance are in equilibrium (LT2), which is used to approximate MLSS. Various blood lactate 

threshold concepts have emerged [see Faude et al., (2009) for a review] (Figure 5).  

 

FIGURE 5. Representation of four methods used to detect the maximal lactate steady-state and the first 

and second blood lactate threshold from the running speed-blood lactate relationship during exercise. 

Panel A: maximal lactate steady state (MLSS, approximated by LT2) – defined as the highest intensity 

at which the blood lactate concentration increases less than or equal to 1.0 mmol ∙ L–1 during the final 

20 minutes of a 30-min constant-intensity test. Panel B: lactate threshold (LT1) – defined as the point of 

deflection in the log [blood lactate] versus log VO2 transformation. Panel C: lactate threshold (LT1) – 

defined as the intensity preceding a 0.4 mmol ∙ L–1 increase in blood lactate above resting levels. Panel 

D: modified Dmax (LT2) – defined as the point on running speed-blood lactate curve at maximal distance 

from a line connecting LT1 and the highest intensity (modified from Tanner & Gore, 2012). 
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Generally, individual threshold concepts detect the submaximal metabolic inflection points 

on the running speed-blood lactate curve without constraining the thresholds to any absolute 

blood lactate level. On the contrary, the fixed threshold concepts constrain the lactate thresholds 

to prespecified blood lactate levels (e.g., the running speed at 2 and/or 4 mmol ∙ L–1). Explaining 

performance using fixed blood lactate thresholds was a common practice in the past (Sjodin & 

Jacobs, 1981; Weltman et al., 1987). However, several factors, such as the characteristics of the 

test, the diet, the site, the method of blood sampling, and the laboratory method may heavily 

influence overall blood lactate levels (Bentley et al., 2007; Faude et al., 2009). Given the large 

inter-individual variability in blood lactate levels at MLSS, several researchers have 

recommended abandoning fixed blood lactate approaches in favor of the individualized ones 

(Stegmann et al., 1981; Beneke et al., 2011). While different in terminology and/or the 

physiological background, the blood lactate threshold concepts have in common the possibility 

of estimating submaximal metabolic inflection points, along with V̇O2max and other 

physiological variables, using a single incremental treadmill test (Bentley et al., 2007; Tanner 

& Gore, 2012). 

The variety of methods available to estimate lactate thresholds has led to considerable 

confusion and misinterpretation (Bentley et al., 2007; Faude et al., 2009). Although there is still 

no agreement among researchers on the best approach(es) to estimate blood lactate thresholds, 

many studies found strong correlations between lactate thresholds and distance running 

performance, regardless of the approach adopted to estimate the thresholds (Faude et al., 2009). 

 

1.3.3 Running economy 

Running economy (RE) is defined as the energy demand for a given submaximal running speed, 

and it is typically expressed either as the submaximal V̇O2 at a given running speed or the V̇O2 

required to cover a given distance (Sanders et al., 2004; Barnes & Kilding, 2015). While the 

importance of V̇O2max and its sustainable fraction to determine success in the competition was 

already clear among exercise physiologists during the ‘70s (Astrand, 1955; Saltin & Astrand, 

1967; Costill, 1967; Wyndham et al., 1969; Costill, 1970; Costill et al., 1971, 1973; Pollock, 

1977; Daniels et al., 1978; Foster et al., 1977, 1978; Farrell et al., 1979; Davies & Thompson, 

1979), RE was still an overlooked aspect of performance at that time. Although researchers 

have acknowledged RE as a potential factor influencing performance since their first 

explanatory models (Wyndham et al., 1969; Costill et al., 1971; Costill, 1972; Pollock et al., 
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1977), early studies showed poor correlations between RE and performance (Costill et al., 1973; 

Farrell et al., 1979). The work by Conley and Krahenbuhl (1980) represented a turning point 

on this topic. Using a much more homogeneous group of runners than those that other 

researchers previously used, these researchers found that RE was indeed a major determinant 

of performance in highly-trained runners. This discovery should not be surprising. Since RE 

defines the oxygen demand at a given speed, the most economical runners may run at a higher 

speed than their competitors with a worse economy while sustaining a similar fraction of 

V̇O2max, all else equal (Pollock, 1977; Conley & Krahenbuhl, 1980; Noakes, 1988). Highly-

trained and elite runners with a similar V̇O2max may vary up to ∼30% in their RE (Costill et al., 

1973; Conley and Krahenbuhl, 1980; Daniels, 1985; Morgan et al., 1991; Morgan & Craib, 

1992). Today we know that this inter-individual variability depends on a complex interplay of 

different anthropometric, physiological, and biomechanical characteristics (Anderson, 1996; 

Arampatzis et al., 2006; Saunders et al., 2004; Nummela et al., 2007; Spurrs et al., 2003; Barnes 

et al., 2013). While some of these characteristics are immutable, others can change in response 

to specific interventions (Midgley et al., 2007b; Barnes & Kilding, 2015). 

Training interventions represent the most powerful tool available to coaches to optimize the 

physiological characteristics of their athletes (Hawley, 2002; Joyner & Coyle, 2008). The 

characteristics of the training stimulus, in terms of volume (duration), intensity, and frequency, 

induce specific acute physiological responses which, when of sufficient magnitude and repeated 

over time with adequate recovery periods, lead to chronic adaptations associated with increases 

in athletic performance (Hawley, 2002; Midgley et al., 2007b). In the next chapter, I will review 

and discuss the different training approaches to prescribe exercise and manipulate the 

physiological determinants of distance running performance that have been investigated in the 

exercise physiology and sport science literature so far. The review is not meant to be exhaustive, 

but it intends to provide a general overview of some training aspects that will be expanded in 

chapter 1.5. 
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1.4 Endurance training strategies to enhance the physiological determinants 

of distance running performance 

1.4.1 One size doesn’t fit all: the role of the training level in training prescriptions 

At the beginning of a distance running career, virtually any endurance training stimulus will 

induce several different physiological adaptations and improve performance (Wenger & Bell, 

1986; Midgley et al., 2006b, 2007b; Beneke et al., 2011; Bangsbo, 2015). There is not much 

need to carefully manipulate the training variables to properly characterize, differentiate and 

vary the stimulus at this stage. An increase in the overall training volume is usually the first 

naïve but effective strategy that beginners employ when approaching distance running. 

However, as the runners acquire and develop physical conditioning and running techniques, the 

importance of the overall training volume shrinks, and other factors, such as the training 

intensity or its distribution across the overall training volume become predominant (Faulkner, 

1968; MacDougall & Sale, 1981; Sjödin & Svedenhag, 1985; Wenger & Bell, 1986; Priest & 

Hagan, 1987; Pate & Branch, 1992; Laursen & Jenkins, 2002; Midgley et al., 2006b, 2007b; 

Bangsbo, 2015; Stögg & Sperlich, 2015). 

Recreational runners can obtain very large improvements in the V̇O2max just by increasing 

the volume of moderate-intensity runs without the need to increase the intensity (Gettman et 

al., 1976; Patton & Vogel, 1977; Wenger & Bell, 1986; Beneke & Hütler, 2005). On the 

contrary, runners who are already adapted to high training volumes may not respond to further 

increases in the volume and require intensities at or close V̇O2max sustained for prolonged 

periods to further develop V̇O2max adaptations (Wenger & McNab, 1975; Daniels & Scardina, 

1984; Sjödin & Svedenhag, 1985; Wenger & Bell, 1986; Robinson et al. 1991; Hill & Rowell, 

1997; Laursen & Jenkins, 2002; Midgley & Naughton, 2006; Midgley et al., 2006b, 2007b; 

Buchheit & Laursen, 2013a; Stöggl & Sperlich, 2014; Wen et al., 2019). The main mediating 

physiological mechanism for V̇O2max improvements in already trained runners seems to be the 

exercise-induced mechanical overload (i.e., myocardial pressure and volume overload), 

associated with the enhancement of the maximal stroke volume, that occurs at intensities that 

elicit the V̇O2max (Midgley et al., 2006b, 2007b). Since elite runners have already reached their 

genetic potential for the V̇O2max, the only changes that can be observed in these populations are 

generally due to seasonal fluctuations (Daniels, 1974; Daniels et al., 1978; Svedenhag & Sjödin, 

1985; Berg et al., 1995; Coyle, 2005; Legaz Arrese et al., 2005; Martin et al., 2005; Jones, 2006; 

Sassi et al., 2008; Lacour et al., 2009).  
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Traditionally, coaches and athletes considered prolonged, moderate-intensity running 

optimally for improving lactate thresholds (MacDougall, 1977; MacDougall & Sale, 1981). 

However, experimental evidence did not always agree with this view (Lehmann et al., 1991). 

Researchers have shown that moderate-intensity running at or below the speed associated with 

LT1 (vLT1) may improve LT1 and LT2 in the short term in previously untrained individuals but 

not in trained individuals, which may need higher intensities [at or above vLT1 for LT1 and − 

probably − at or above the speed associated with LT2 (vLT2) for LT2] to develop long-term 

adaptations (Sjodin et al., 1982; Tanaka et al., 1986; Priest & Hagan, 1987; Yoshida et al., 1990; 

Weltman et al., 1992; Londeree, 1997; Billat et al., 2004; Beneke & Hütler, 2005; Philp et al., 

2008). Exercise physiologists and sports scientists have proposed two possible mechanisms 

eliciting training adaptations in LT1 and LT2. One is related to specific muscle adaptations in 

type II fibers that decrease lactate production and increase clearance at higher running speeds 

(MacDougall, 1977; Anderson & Rhodes, 1989; Midgley et al., 2007b). The other is related to 

the role of lactate as a candidate molecule for gene induction involved in lactate thresholds 

adaptations (Midgley et al., 2007b; Iaia & Bangsbo, 2010). Since both these mechanisms 

depend on reaching high lactate levels, intensities above the vLT2 should represent the optimal 

training stimulus to maximize adaptations in the lactate thresholds. Although this seems true 

for intensities at or slightly above the vLT2 (Sjodin et al., 1982; Yoshida et al., 1990; Londeree, 

1997; Billat et al., 2004), intermittent exercise at or close V̇O2max appeared less efficacious in 

enhancing the lactate thresholds (Acevedo & Goldfarb, 1989; Billat et al., 1999; Slawinski et 

al., 2001; Garcin et al., 2002; Lafitte et al., 2003; Denadai et al., 2006), probably due to the 

relatively low lactate accumulation (Buchheit & Laursen, 2013b). 

Despite the large inter-individual variability observed in highly-trained and elite runners, 

training experience seems to be a major determinant of RE (Mayhew, 1977; Sjödin & 

Svedenhag, 1985; Svedenhag & Sjödin, 1985; Morgan et al., 1995). Elite runners tend to have 

a better economy than lower-caliber runners (Sjödin & Svedenhag, 1985; Morgan et al., 1995). 

Data collected from world-class runners indicate that the RE improves over time (Daniels, 

1974; Conley et al., 1984; Jones, 2006). This long-term improvement in RE is likely the result 

of continued adaptations in metabolic, biomechanical, and/or neuromuscular efficiency (Nelson 

& Gregor, 1976; Midgley et al., 2007b). Intensities below and above the vLT1 seem to be 

efficacious to improve RE in previously untrained individuals and recreational runners, 

respectively (Patton & Vogel, 1977; Beneke & Hütler, 2005), although it is difficult to isolate 

the effect of the training intensity from the training volume and time effect (Midgley et al., 

2007b; Barnes & Kilding, 2015). Among the training interventions that coaches may adopt to 
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improve RE in trained distance runners, both continuous running at vLT2 (Sjodin et al., 1982) 

and high-intensity intermittent exercise performed at speeds around V̇O2max (Conley et al., 

1981; Franch et al., 1998; Billat et al., 1999; Slawinski et al., 2001; Lafitte et al., 2003; Denadai 

et al., 2006) appear efficacious. Although some researchers speculated that very high-intensity 

running (e.g., equal to or larger than 130% of V̇O2max) might negatively affect RE due to a 

deterioration in running technique or insufficient training volume achievable to induce a 

training effect (Zavorsky et al., 1998; Midgley et al., 2007b; Barners & Kilding, 2015) and 

some studies supported this view (Franch et al., 1998), other studies found this form of exercise 

very effective in enhancing RE in trained distance runners (Iaia et al., 2008, 2009; Bangsbo et 

al., 2009; Skovgaard et al., 2017). 

 

1.4.2 Lactate thresholds concept as a means to prescribe exercise intensities 

Threshold or turn point concepts do not only explain performance, but they can also guide 

training prescriptions. Several guidelines (e.g., Garber et al., 2011; Piercy et al., 2018) often 

individualize training intensity prescriptions using various percentage ranges of different 

physiological measures (maximal heart rate, V̇O2max, etc.). This approach named the ‘relative 

percent concept’ has been criticized by many authors since it overlooks the individual 

variability in the physiological stimulus within a given percentage range (Katch et al., 1978; 

Scharhag-Rosenberger et al., 2010; Mann et al., 2013; Wolpern et al., 2015; Weatherwax et al., 

2019; Meyler et al., 2021). This limitation may have important implications on the 

heterogeneity of the training stimulus and the magnitude of adaptations for the desired 

outcome(s). To prevent this risks, exercise physiologists and sports scientists usually prescribe 

training intensity according to specific physiological markers from incremental exercise tests 

(Seiler, 2010; Beneke et al., 2011). The physiological meaning of LT1 and LT2 can indeed be 

used to divide the overall endurance exercise intensity range into three different domains 

(Kindermann et al., 1979; Gaesser & Poole, 1996; Jones & Poole, 2005; Burnley & Jones, 2007; 

Faude et al., 2009; Seiler, 2010; Jones et al., 2011, 2019) (Figure 6). At the bottom of this range, 

there is the ‘moderate-intensity domain’, which includes all running speeds below LT1 and 

marks the upper limit of a nearly exclusive aerobic metabolism. At these intensities, there is a 

mono-exponential increase in V̇O2, which generally reaches a steady-state within 3 min in 

healthy individuals (Gaesser & Poole, 1996; Jones & Poole, 2005; Burnley & Jones, 2007; 

Seiler, 2010; Jones et al., 2011, 2019) (Figure 6). Exercise intensities within this domain allow 

exercising for hours and generally characterize recovery and regeneration runs (McLellan & 



16 
 

Skinner, 1981; Londeree, 1997; Jones, 2006). Exercise intensities between LT1 and LT2 

correspond to the ‘heavy-intensity domain’ – also known as the ‘aerobic-anaerobic transition’ 

– and are characterized by elevated but constant blood lactate levels and delayed steady-state 

in V̇O2 due to a short-lasting slow component, whose causes are still debated among exercise 

physiologists (Gaesser & Poole, 1996; Jones & Poole, 2005; Burnley & Jones, 2007; Jones et 

al., 2011, 2019) (Figure 6). Exercise performed continuously in the heavy domain may last 45 

min to approximately 4 hours, depending on the intensity (Urhausen et al., 1993; Baron et al., 

2008; Fontana et al., 2009; Faude et al., 2009). Although anaerobic glycolysis is enhanced, 

some researchers speculated that training in the heavy domain may induce a considerable 

increase in the oxidative metabolism of muscle cells (Kindermann et al., 1979; Mader & Heck, 

1986). Exercising at or near LT2, commonly known as ‘threshold training’ or ‘tempo run’, is a 

very common training method to improve performance among coaches and athletes (Seiler, 

2010; Stöggl & Sperlich, 2015; Kenneally et al., 2018, 2021a, b). Above LT2, we have the 

‘severe-intensity domain’, which is characterized by a constant increase in V̇O2 and blood 

lactate levels. The former usually reaches its maximum within a few minutes, whereas the latter 

raises until exhaustion (Gaesser & Poole, 1996; Jones & Poole, 2005; Burnley & Jones, 2007; 

Jones et al., 2011, 2019) (Figure 6). Since muscle fatigue limits exercise duration above LT2, 

interval training represents the most common form of exercise in this domain (Faude et al., 

2009; Bangsbo, 2015). 

 

FIGURE 6. Representation of the pulmonary V̇O2 (left panel) and blood lactate (right panel) response 

to constant-intensity exercise in the moderate-intensity (below LT1), heavy-intensity (between LT1 and 

LT2), and severe-intensity (above LT2) domains. The shaded areas in the left panel define the slow 

component of V̇O2, which occurs above vLT1 (Jones et al., 2011). 
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The specificity principle recommends training at intensities similar to those used during the 

competition (Hawley & Hopkins, 1995). However, the scientific evidence does not support this 

dogma (Hewson & Hopkins, 1996; Hawley, 2008; Beneke et al., 2011). Since runners cannot 

sustain exercise at LT2 for more than an hour (Urhausen et al., 1993; Baron et al., 2008; Fontana 

et al., 2009), many long-distance races are run at intensities that fall between the two thresholds 

(Costill, 1970; Costill et al. 1973; Farrell et al., 1979; Sjödin et al., 1982; Maughan & Leiper, 

1983; Tanaka & Matsuura, 1984; Londeree, 1986; Bassett & Howley, 2000; Billat, 2001; 

Joyner & Coyle, 2008). We previously saw that training at heavy intensities is not always the 

best approach to develop the physiological determinants of distance running performance in 

already trained runners (Wenger & McNab, 1975; Daniels & Scardina, 1984; Wenger & Bell, 

1986; Hill & Rowell, 1997; Midgley et al., 2006b, 2007b). Observational studies inform that 

successful distance runners typically perform the largest part (70–90%) of the overall training 

volume at moderate intensities (below LT1) and allocate little of their training volume around 

the LT2 (Billat et al., 2001b, 2003; Esteve-Lanao et al., 2005; Seiler, 2010; Enoksen et al., 2011; 

Stellingwerf, 2012; Tjelta et al., 2014; Stöggl & Sperlich, 2015; Kenneally et al., 2018, 2021a, 

b). Recreational runners also seem to spend most of their training at moderate intensities; 

however, they also spend a substantial part of their training at heavy intensities (Manzi et al., 

2015). A possible reason for the limited training volume spent in the heavy domain by 

successful runners may be the negative effect that these training intensities exert on the 

autonomic and endocrine systems (Esteve-Lanao et al., 2007; Beneke et al., 2011; Muñoz et 

al., 2014; Manzi et al., 2015; Stöggl & Sperlich, 2015; Kenneally et al., 2018), other than the 

risk of accumulated glycogen depletion in the elite runner population (Beneke et al., 2011). 

While the latter may not be a serious concern for recreational runners given the much lower 

overall training volume, the former may explain the contradiction between the specificity 

principle and the training practice. In a randomized parallel study, Muñoz and colleagues (2014) 

did not observe statistically significant differences in 10-km race performance between two 

groups of recreational runners who spent the same absolute amount of time training at high 

intensities but gave different emphasis to moderate- and heavy-intensity training when using 

intention-to-treat analysis. On the contrary, Esteve-Lanao and colleagues (2007) observed 

significant improvements in 10.4-km cross country race performance following a reduction in 

the training volume performed at heavy intensities in 12 male sub-elite endurance runners, 

while maintaining a similar volume of severe-intensity training. 

The ‘pyramidal’ approach to training intensity distribution (TID), in which runners 

progressively decrease the training volume from the moderate to the severe domain, and the 
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‘polarized’ approach, in which runners performed relatively high training volumes in the 

moderate (~80%) and severe (~20%) domains, with little or none in the heavy domain, represent 

the two most common TID schemes adopted by distance runners (Seiler, 2010; Stöggl & 

Sperlich, 2015; Kenneally et al., 2018). Both these schemes seem justified by the need of 

maintaining a large endurance base via moderate-intensity exercise (Sjödin & Svedenhag, 1985; 

Pate & Branch, 1992; Hawley, 1995; Hawley et al., 1997; Kubukeli et al., 2002), on which 

building the desired physiological characteristics using higher intensity exercise while 

minimizing the risk of overtraining (Esteve-Lanao et al., 2007; Beneke et al., 2011; Manzi et 

al., 2015; Stöggl & Sperlich, 2015). A recent meta-analysis conducted by Rosenblat and 

colleagues (2018) found that polarized TID may induce a larger improvement in performance 

than threshold-based training. While scientific evidence indicates both pyramidal and polarized 

approaches are superior to the threshold training for what concerns their ability to maximize 

physiological adaptations and performance (Esteve-Lanao et al., 2007; Muñoz et al., 2014; 

Stöggl & Sperlich, 2014; Kenneally et al., 2018), there is little consensus on which one of these 

two is the most efficacious (Stöggl & Sperlich, 2015; Kenneally et al., 2018). Several factors, 

such as the race distance, the different phases of the season, the training history of the runners, 

the method adopted to define the exercise intensity domains (or training zones), and the inter-

individual variation in training response, may play a role in determining the efficacy of one TID 

scheme above the other (Muñoz et al., 2014; Sylta et al., 2014; Tjelta et al., 2014; Stöggl & 

Sperlich, 2015; Kenneally et al., 2018, 2021a, b; Bellinger et al., 2019). Stöggl (2018) suggested 

that professional endurance athletes may typically prioritize a high-volume low-intensity 

training during the preparation phase, a pyramidal TID during the pre-competition period, and 

a polarized TID during the competition phase. However, the recent findings by Kenneally and 

colleagues (2021a, b) partly disagree with this suggestion since they showed that, when using 

race pace to define the training zones, world-class long-distance runners adopt a pyramidal 

distribution across all phases of a 12-month season. It is worth mentioning that scientific 

evidence does not necessarily match training practice. Despite the superiority of pyramidal and 

polarized approaches to TID observed in the literature, anecdotal evidence from top-level 

coaches indicates that threshold-based training is a key component in structuring the world’s 

best marathon performance when approaching competitions (Kenneally et al., 2018, 2021a, b).  

Several methods exist to determine the amount of training spent in each physiological 

domain (or training zone) and TID across the domains/zones (Seiler, 2010; Sylta et al., 2014; 

Stöggl and Sperlich, 2015). These methods differ primarily in the parameter used to place the 

training intensity within a given zone [i.e., speed, heart rate, or rate of perceived exertion (RPE)] 
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(Bannister, 1991; Edwards, 1993; Foster et al., 2001; Lucia et al., 2003; Stagno et al., 2007; 

Manzi et al., 2009), in the metric used to quantify the training volume (i.e., time or km) (Seiler, 

2010), and in the approach used to calculate the cumulative volume or dose performed in each 

training zone (i.e., ’time in the zone’, ’session goal, or ’hybrid session-goal/time in the zone’) 

(Sylta et al., 2014). Although there is no consensus on the best method to quantify the amount 

of training spent in each zone and determine TID, Manzi and colleagues (2015) observed that 

using the session-RPE – a method that quantifies the (internal) training load by multiplying the 

whole training-session RPE using the 10-point Borg category ratio (CR10) scale by its duration 

(Foster et al., 2001) − may overestimate the percentage of training spent in the zone 2 

(corresponding to the heavy domain) and underestimate the percentage of training spent in the 

zone 3 (corresponding to the severe domain) compared with two different heart rate-based 

methods proposed by Edwards (1993) and Manzi and colleagues (2009) in recreational distance 

runners. However, the choice by Manzi and colleagues of using the same RPE-based thresholds 

from a previous study (Seiler & Kjerland, 2006) may have biased their results. Sylta and 

colleagues (2014) found that the ’time in the zone’ approach to quantify TID, which is based 

on the percentage of time spent with heart rate within each intensity zone, overestimated the 

amount of training in zone 1 and 3, and underestimated the amount of training in the zone 2 

compared with the ’hybrid session-goal/time in the zone’ approach, in which the goal of the 

session informs in placing training time within given intensity zones, based on a combination 

of heart rate and speed data. Without neglecting the important distinction between internal and 

external training load (Borresen & Lambert, 2009; Foster, 2017; Mujika, 2017), it is important 

to note that the fact that heart rate slow component phenomenon may occur even during 

moderate-intensity exercise (Zuccarelli et al., 2018) may overestimate the amount of training 

performed in the higher zones when using heart rate-based methods compared with speed-based 

methods, regardless the approach used to quantify TID.  

 

1.4.3 The use of the Delta concept to prescribe high-intensity intermittent exercise 

We saw in the previous sections that high-intensity running may be an efficacious approach to 

further stimulate different physiological adaptations in already trained individuals (MacDougall 

& Sale, 1981; Wenger & Bell, 1986; Priest & Hagan, 1987; Pate & Branch, 1992; Laursen & 

Jenkins, 2002; Midgley et al., 2006b, 2007b; Stögg & Sperlich, 2015). In this regard, a 

particular training method named ‘high-intensity interval training (HIIT)’, used by coaches and 

runners for almost a century has received great attention from exercise physiologists and sports 
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scientists in the last few decades (Billat, 2001). HIIT is generally defined as the repetition of 

intervals at an intensity greater than the vLT2 interspersed by recovery periods (MacDougall & 

Sale, 1981; Daniels & Scardina, 1984; Hawley et al., 1997; Billat, 2001; Laursen & Jenkins, 

2002; Laursen, 2010; Buchheit & Laursen, 2013a, b; Tschakert & Hofmann, 2013). The 

rationale behind HIIT is to maximize the time spent at high intensity to stress the physiological 

systems used during exercise to a greater extent than required during the competition 

(MacDougall & Sale, 1981; Pate & Branch, 1992; Hawley et al., 1997; Billat et al., 2000; Billat, 

2001; Laursen & Jenkins, 2002; Tschakert & Hofmann, 2013). Several studies supported the 

beneficial effect of HIIT on physiological adaptations and performance in the distance runner 

population (e.g., Acevedo & Goldfarb, 1989; Billat et al., 1999; Demarle et al., 2001, 2003; 

Slawinski et al., 2001; Lafitte et al., 2003; Smith et al., 2003; Denadai et al., 2006; Helgerud et 

al., 2007; Bangsbo et al., 2009; Kohn et al., 2011; Ferley at al., 2013; Muñoz et al., 2015). 

The physiological adaptations induced by HIIT may depend on the intensity level (Buchheit 

& Laursen, 2013a, b). However, the classical three-domain/zone model described in the 

previous sections (Gaesser & Poole, 1996; Jones & Poole, 2005; Burnley & Jones, 2007; Jones 

et al., 2011, 2019) cannot differentiate between the different forms of HIIT. In this regard, Hill 

and colleagues (2002) stressed the need for an additional, supra-severe exercise domain, in 

which intensity is so high that exercise will terminate before V̇O2 reaches its maximal value 

(typically within 2 min) (Figure 7). The existence of this ‘extreme-intensity domain’ may in 

part explain why certain types of HIIT led to improvements in V̇O2max while others did not 

(Buchheit & Laursen, 2013a). Runners generally performed HIIT in the extreme domain as 

repeated maximal or near-maximal sprints. These forms of HIIT take various names – such as 

‘sprint interval training’ (or ‘speed endurance production’) and ‘repeated sprint training’ (or 

‘speed endurance maintenance’) – depending on the intensity and duration of the sprints and 

recovery periods (Iaia & Bangsbo, 2010; Buchheit & Laursen, 2013a, b; Bangsbo, 2015). 

Because of its very limited exercise duration, any form of HIIT in the extreme domain is 

unlikely to provide a substantial cardiorespiratory stimulus (Houston & Thomson, 1977; 

Daniels et al., 1978; Shepley et al., 1992; Billat et al., 1999; Bickham et al., 2006; Esfarjani & 

Laursen, 2007; Iaia et al., 2008, 2009; Bangsbo et al., 2009; Iaia & Bangsbo, 2010; Buchheit & 

Laursen, 2013a, b; Bangsbo, 2015; Skovgaard et al., 2017). Some researchers suggested that 

training in the extreme domain may still be useful to stimulate the neuromuscular and anaerobic 

characteristics (Buchheit & Laursen, 2013a, b; Bangsbo, 2015), which may, in turn, provide an 

important contribution during short distance races (Bulbulian et al., 1986, Houmard et al., 1991, 

Brandon, 1995, Paavolainen et al., 1999, 2000; Nummela et al., 2006; Joyner & Coyle, 2008; 
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Baumann et al., 2012; Bangsbo, 2015). However, only some studies observe increases in 

glycolytic enzyme levels after repeated sprints periods (Skovgaard et al., 2017), while others 

did not (Iaia et al., 2008; Bangsbo et al., 2009). That being said, a few weeks of repeated 

maximal or near-maximal sprints were capable to induce different muscle adaptations 

associated with improved fatigue resistance during intense short-term exercise (Sejersted & 

Sjogaard, 2000; Iaia et al., 2008; Bangsbo et al., 2009; Iaia & Bangsbo, 2010; Bangsbo, 2015; 

Skovgaard et al., 2017). As expectable, these findings were paralleled with an improved short-

term exercise capacity (Iaia et al., 2008, Bangsbo et al., 2009; Skovgaard et al., 2017). 

Moreover, despite acute perturbation induced by the training session (Zavorsky et al., 1998), 

several studies observed improvements in RE and the speed associated with V̇O2max (vV̇O2max) 

or the highest speed achieved at the end of an incremental treadmill test (Vpeak) following 

repeated sprint periods (Iaia et al., 2008, 2009; Bangsbo et al., 2009; Skovgaard et al., 2017; 

Koral et al., 2018). Finally, researchers observed improvements in 3000-m and 10000-m 

performance in trained distance runners after a few weeks of repeated sprints when performed 

together with a basic amount of aerobic training (Daniels et al., 1978; Esfarjani & Laursen, 

2007; Bangsbo et al., 2009; Koral et al., 2015; Skovgaard et al., 2017). 

 

FIGURE 7. The four-domain model proposed by Hill and colleagues (2002). The exercise intensities 

in the extreme domain are so high that exercise terminates before the runners can reach V̇O2max. The gas 

exchange threshold (GET) and the critical power (CP) reported in the figure serve the same function as 

the LT1 and LT2, respectively, in separating the domains (Poole & Jones, 2012).  
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Although the four-domain/zone model may help to separate the forms of HIIT that 

potentially induce important cardiorespiratory stimuli from those that do not (Figure 8), it still 

fails to differentiate all the forms of HIIT. Moreover, the estimation of the lower boundary of 

the extreme domain requires several constant-intensity tests, therefore sharing the same 

feasibility issues as MLSS. These points may not be a problem for HIIT programs consisting 

of repeated maximal or near-maximal sprints, which can be easily prescribed without the need 

for exercise intensity frameworks (Buchheit & Laursen, 2013a, b). However, they may become 

critical when the aim is maximizing cardiorespiratory adaptations. Since spending a substantial 

amount of time at (or near) V̇O2max may play a key role in inducing V̇O2max development in 

already trained individuals (Wenger & Bell 1986; Laursen and Jenkins, 2002; Midgley & 

McNaughton, 2006; Midgley et al., 2006b; Buchheit & Laursen, 2013a, b), ensuring that the 

exercise intensity stays within the severe domain for the whole duration of the training period 

becomes a prerequisite for a successful HIIT program aimed to maximize cardiorespiratory 

adaptations during certain phases of the training season. Although using vV̇O2max (or Vpeak) may 

seem an intuitive way to accomplish this purpose (Billat & Koralsztein, 1996; Hill & Rowell, 

1996; McLaughlin et al., 2010), this approach may not necessarily be the most effective one to 

maximize cardiorespiratory adaptations in trained distance runners (Hill & Rowell, 1997; Hill 

et al., 1997; Billat et al., 1999; Smith et al., 1999, 2003; Danadai et al., 2006). Most of the 

studies that used vV̇O2max (or Vpeak) for HIIT prescriptions observed significant improvements 

in RE and vV̇O2max (or Vpeak) in recreational and trained distance runners (Esfarjani & Laursen, 

2007; Billat et al., 1999; Smith et al., 1999; Danadai et al., 2006). These studies also observed 

consistent improvements in 3000-m performance and less consistent improvements in 5000-m 

performance in these populations (Esfarjani & Laursen, 2007; Billat et al., 1999; Smith et al., 

1999, 2003; Danadai et al., 2006). However, significant improvements in V̇O2max were observed 

in recreational runners (Esfarjani & Laursen, 2007) but not in trained runners (Billat et al., 1999; 

Smith et al., 1999, 2003; Danadai et al., 2006). Since the total time spent at (or near) V̇O2max is 

longer at submaximal speed than when running at vV̇O2max or Vpeak (Hill & Rowell, 1997; Hill 

et al., 1997; Demarie et al., 2000), near to maximal aerobic speeds may be more efficacious 

than vV̇O2max or Vpeak in stimulating V̇O2max adaptations in the distance runner population 

(Buchheit & Laursen, 2013a, b). 

At the beginning of the century, Billat and colleagues introduced the ‘Delta concept’ as a 

means to differentiate HIIT within the severe domain (Demarie et al., 2000) (Figure 8). The 

Delta concept uses vLT2 (or MLSS) and vV̇O2max (or Vpeak) as physiological boundaries for 

defining near-to-maximal aerobic intensities (Demarie et al., 2000). Particularly, using v∆50 − 
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which is the speed halfway between vLT2 (or MLSS) and vV̇O2max (or Vpeak) – for HIIT 

prescriptions was shown to allow runners to accumulate more than 10 min at (or near) V̇O2max 

before exhaustion (Demarie et al., 2000). This duration is considered a potent stimulus for 

cardiorespiratory adaptations (Buchheit & Laursen, 2013a, b). 

 

FIGURE 8. The intensity ranges typically used for the different forms of HIIT. Although the inclusion 

of the extreme domain in the classical thresholds-based exercise intensity model may help to separate 

the forms of ‘aerobic’ HIIT from the forms of ‘anaerobic’ HIIT, it cannot differentiate all the forms of 

HIIT. On the contrary, the Delta concept (expressed as v∆50 in the figure) allows to precisely manipulate 

HIIT intensity for intensities at (or near) V̇O2max and, altogether with the knowledge of the boundary of 

the extreme domain, within the whole severe domain (modified from Buchheit & Laursen, 2013a). 

 

Similar to higher-intensity forms of HIIT, prescribing HIIT using the Delta concept showed 

to improve RE and vV̇O2max (or Vpeak) in trained distance runners (Demarle et al., 2001, 2003; 

Slawinski et al., 2001; Lafitte et al., 2003). However, despite the sound rationale for 

cardiorespiratory adaptations, most of the interventional studies that used the Delta concept to 

prescribe HIIT failed to observe improvements in V̇O2max in this population (Demarle et al., 

2001, 2003; Slawinski et al., 2001; Garcin et al., 2002; Lafitte et al., 2003). There are several 

possible explanations for these results. All the studies that failed to observe changes in V̇O2max 
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did not use a control group. This fact makes it very difficult to separate the net effect of the 

HIIT intervention from the effect of the whole training program and seasonal variation 

(Hecksteden et al., 2018). Moreover, the very small sample size characterizing these studies 

(i.e., 6 to 8 runners) may have affected the statistical power of the inferential tests. The fact that 

the same research group conducted all these studies also restricted the cohort of individuals 

from which the effect of this form of HIIT was investigated and thus the generalizability of the 

findings to the distance runner population. Randomized controlled studies conducted on 

distance runners or mixed cohorts of endurance athletes from different research groups 

observed significant improvements in the V̇O2max following near to maximal HIIT programs 

(Helgerud et al., 2007; Stöggl & Sperlich, 2014). Although these studies did not adopt the Delta 

concept to prescribe HIIT, they suggest that the Delta concept can be useful to maximize 

V̇O2max. These studies also support the use of intensities near V̇O2max to induce cardiorespiratory 

adaptations in distance runners. 

 

1.5 Scientific research vs training practice: how should distance runners 

train? 

1.5.1 Physiological and race pace approach: two faces of the same medal 

In the previous chapters, we saw that highly-trained and elite distance runners favor two specific 

TIDs (i.e., pyramidal and polarized), which may vary depending on the phase of the season, 

and that several methods exist to determine TID across the different physiological domains or 

training zones (Seiler, 2010; Sylta et al., 2014; Stöggl and Sperlich, 2015). An important aspect 

we should consider when interpreting the available evidence about the optimal TID for distance 

runners relates to the suitability of the underpinning model for our purpose. By taking into 

consideration both scientific evidence and world-class training practice, Kenneally and 

colleagues (2018) recently proposed a new perspective on how to approach and interpret TIDs 

in distance runners, whose optimization may ultimately depend on the training goal, phase of 

the season, race distance, and runners’ characteristics, and where different approaches to 

training prescription may best fit different scenarios. The authors initially suggested that the 

anchor used to prescribe training intensity may determine the target of adaptations of a given 

training program. Specifically, Kenneally and colleagues speculated that the ‘physiological 

approach’ to exercise prescriptions, which defines the training zones by anchoring the training 

speeds to the classical exercise-intensity domain model based on a threshold or turn point 
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concepts (Kindermann et al., 1979; Gaesser & Poole, 1996; Jones & Poole, 2005; Burnley & 

Jones, 2007; Faude et al., 2009; Jones et al., 2011, 2019), may be the optimal choice whenever 

the aim is to isolate, and thus maximize specific physiological adaptations (e.g., V̇O2max). On 

the contrary, prescribing exercise according to given percentages of the athletes’ event-specific 

target race pace – the so-called ‘race pace approach’ – may be more effective to improve 

performance by providing the perfect stimulus for the concurrent development of the 

physiological processes involved in that task (Kenneally et al., 2018). Keneally and colleagues 

later observed that the two approaches may lead to differences in both the percentage of the 

overall training volume spent within each intensity zone (Keneally et al., 2021a) and in the type 

of TID across the different phases of the season (Keneally et al., 2021b) in a group of world-

class long-distance runners. The authors concluded that both approaches may lack sensitivity 

to detect changes in TID and proposed an integrated approach, in which scientists, coaches, 

and/or athletes collect physiological data longitudinally, and use these data to create individual 

‘signature’ physiological profiles that match with specific race performances (Kenneally et al., 

2021a). Although the latter proposal by Keneally and colleagues sounds appealing, the fact that 

the choice of the percentages of race pace used for analysis were rather arbitrary limits the 

power of data interpretation. Moreover, difficulties in properly isolating and modeling 

individual responses for single individuals (Hecksteden et al., 2015) may also limit the use of 

the integrated approach proposed by Keneally and colleagues in everyday training practice. 

Noteworthy, the authors did not conduct any investigation to verify their initial hypothesis (i.e., 

prescribing exercise according to given percentages of race pace may induce different outcomes 

than exercise prescriptions based on the classical exercise-intensity domains), thus leaving an 

open question on the ability of each training prescription approach to maximize its benefits 

depending on the type of outcome (i.e., physiological adaptations or race performance). 

 

1.5.2 Network physiology: the forgotten piece of the puzzle 

Although more complex paradigms have been recently proposed (Kiely, 2018), the classical 

stress theory (Cannon, 1929; Selye, 1936, 1978) represents a major influencer of sports training 

theory to date. The General Adaptation Syndrome (GAS) (Selye, 1978), in particular, is often 

referred to as the starting point to understand how humans adapt to the stress of training (Viru, 

2002). This conceptual framework is based on the primacy of homeostasis maintenance and 

defines three sequential stages of the stress response: first alarm, then resistance, and, if the 

stress is overwhelming, exhaustion (Selye, 1978). Sports training theory has taken the GAS as 
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evidence that mechanical training load (determined by the physical training parameters such as 

volume, intensity, and frequency) directly dictates the direction and magnitude of subsequent 

physiological adaptations, which take place during the (later-termed) ‘supercompensation’ 

phase (Viru, 2002) (Figure 9). On this theoretical platform – that is, the supercompensation 

model − many coaches have developed various training strategies to create a balance between 

training load and recovery to target the desired adaptations with the proper timing (Issurin, 

2010, 2016). 

 

FIGURE 9. Representation of the supercompensation cycle following a single training load. The 

training load represents the physiological stressor imposed on the athlete, the (acute) fatigue after the 

load represents the alarm phase, and the supercompensation represents the (transitional) resistance phase 

characterized by an improved work capability. If no further stimuli occur, the work capability will return 

to the pre-load level (detraining). Exhaustion is not considered in this figure (from Issurin, 2010). 

 

Despite the fundamental role that GAS has played in guiding exercise prescriptions as a 

function of maximizing physiological adaptations in the long term, the model – as it was 

originally conceived – is inadequate to explain and predict changes in performance in response 

to training prescriptions (Bannister et al., 1975). The main reason for this conceptual failure 

relates to the multi-level structure of human performance (Renfree & Casado, 2018; Venhorst 

et al., 2018a), which cannot fit in the single-level structure of the GAS model. We previously 

saw that success in distance running events may depend on the optimal dynamic interplay 

between different factors (Renfree & Casado, 2018; Venhorst et al., 2018a). Even when limiting 

to the solely physiological aspects, several factors are involved in distance running performance 
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(Bassett & Howley, 1997, 2000; Joyner & Coyle, 2008). Although the relative importance of 

the individual physiological predictors across the different running distances has been estimated 

and some integrative models have been presented (Sparling, 1984; Sjödin & Svedenhag, 1985; 

Di Prampero et al., 1986; Joyner, 1993; Coyle, 1995, 1999; Bassett & Howley, 1997, 2000; 

Joyner & Coyle, 2008; McLaughlin et al., 2010), we are still far from precisely determining the 

optimal combination of such determinants for any given running distance. Treating any of these 

factors independently without acknowledging the possible − but still largely unknown − 

interactions between the different factors [i.e., to what extent the development of one factor 

(e.g., V̇O2max) may affect the development of the others (e.g., RE) (Joyner, 1991)] may not be 

the best training strategy when the aim is maximizing endurance performance as a whole. There 

is solid evidence showing that distance running performance is better explained by the 

combination of the different physiological predictors than by the single factors alone (Sparling, 

1984; Sjödin & Svedenhag, 1985; Di Prampero et al., 1986; Joyner, 1993; Coyle, 1995, 1999; 

Bassett & Howley, 1997, 2000; Joyner & Coyle, 2008; McLaughlin et al., 2010). This means 

that, although training programs targeting the development of specific (but isolated) 

physiological adaptations can be built on the GAS framework, the latter cannot be used to guide 

programs to maximize overall performance development, unless some framework expansion is 

done. It is worth mentioning that exercise physiologists and sports scientists have already 

developed and expanded the original GAS framework into performance-oriented multi-

component models (Bannister et al., 1975, 1999; Calvert et al., 1976; Morton et al., 1990, 1991, 

1997; Busso et al., 1994, 1997, 2002; Mujika et al., 1996; Avalos et al., 2003; Busso, 2003). 

However, these models often lack sufficient precision to explain and predict changes in 

performance in the athlete population (Hellard et al., 2006).  

Modern physiological science has recognized the importance of the interaction(s) between 

the different physiological systems in successfully executing a task while ensuring a certain 

level of safety for the systems involved − a concept that fairly resembles the homeostasis 

(Bashan et al., 2012; Balagué et al., 2020; Ivanov, 2021). Particularly, the new field of network 

physiology acknowledges the human organism as an ‘integrated network of multi-component 

physiological systems, each with its regulatory mechanism, continuously interact both 

horizontally and vertically through circular causality to coordinate their functions’ (Balagué et 

al., 2020) (Figure 10). Coordinated network interactions among systems and organs are thus 

fundamental for determining the different physiological states and maintaining health (Balagué 

et al., 2020). Within this new framework, any physical task can be viewed as a whole-body 

stressor that activates the integrated network, where the single physiological components are 
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stressed only to the extent that is required to perform the task, at a given network state. The 

implications of applying this framework to exercise physiology and sport science scenarios are 

straightforward. Since a certain amount of training stress is needed to induce 

supercompensation and evoke adaptations, a given physical task may at the same time represent 

an adequate training stimulus for the bodily functions and parameters that represent the limiting 

factors for that task and an insufficient stimulus for those physiological components that are 

already sufficiently developed to sustain that task. Regardless of the impact on the single 

physiological components, the final result would be improving the ability of the integrated 

network (i.e., the human organism) to perform that task. Classical stress theory and modern 

network physiology provide the theoretical rationale to hypothesize that the approach used to 

prescribe the training can be oriented towards maximizing specific physiological determinants 

or performance as a whole, as proposed by Kenneally and colleagues (2018). 

 

FIGURE 10. The vision on network physiology of exercise is explained in a diagram: hierarchically 

organized physiological network levels interact both horizontally and vertically through circular 

causality to coordinate their functions (from Balagué et al., 2020). 

 

1.5.3 The right training, at the right time, in the right way 

The points raised in the previous sections stress an intuitive but very important point, which has 

been well known by coaches for decades: the optimal training may ultimately depend on the 

given training goal for a given phase of the season. This point agrees with previous 
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recommendations from researchers (Stöggl and Sperlich, 2015; Stöggl, 2018) about 

manipulating training intensity, volume, and frequency – and thus prioritizing different TIDs − 

depending on the training phase. The novelty involves the possibility of optimizing training 

preparation by choosing the approach used for training prescriptions depending on the training 

goal. Specifically, coaches may prescribe based on the physiological characteristics of their 

athletes when they want to emphasize the development of one or more isolated physiological 

factors (e.g., V̇O2max) during the preparatory phase of the season. Alternatively, they may 

prescribe according to the race pace when they want to maximize performance when 

approaching competitions (Kenneally et al., 2018). 

There are still several points that need to be considered and open questions, though. While 

essentially straightforward for the exercise prescriptions in the moderate and heavy-intensity 

domains, the use of the physiological approach may become complicated to prescribe HIIT 

sessions in the severe domain. Adopting this approach for HIIT prescriptions may indeed 

require multiple tests in the lab at any new training prescription (Demarle et al., 2001, 2003; 

Slawinski et al., 2001; Garcin et al., 2002; Lafitte et al., 2003). Reliable and valid portable 

versions of lab devices exist on the market (Bonaventura et al., 2015; Perez-Suarez et al., 2018); 

however, their use is still mostly limited to research purposes and this has possibly prevented 

widespread use of the delta approach among coaches and non-professional athletes. Although 

the critical speed (CS) can be used to set the minimum training intensity during HIIT (Gaesser 

& Poole, 1996; Jones & Poole, 2005; Burnley & Jones, 2007; Jones et al., 2011, 2019), several 

exhaustive exercise bouts are typically required to obtain an accurate estimate of this value 

(Jones & Vanhatalo, 2017; Jones et al., 2019). This may limit the use of the CS to adjust 

repeatedly HIIT intensity across subsequent mesocycles. While this may not be an issue for 

professional runners, adopting the physiological approach to HIIT prescription is simply not an 

option for the vast majority of the distance runner population, which often use extremely 

standardized approaches to HIIT, in which groups of runners train together. This standardized 

approach is often the preferred choice among many runners because it requires no equipment, 

little expertise, and can be prescribed quickly in any setting. Moreover, it is the only form of 

HIIT that can be performed together with teammates and companions (Casado et al., 2019). 

However, since the speed is the same for everyone, runners who perform intermittent exercise 

below severe intensity, either as a consequence of an overestimation of their training level when 

choosing the group or of an improvement in the CS during the training period, may face blunted 

– if not null – gains in V̇O2max, leading to a smaller mean training response and a larger 

heterogeneity of training effects. That being said, given the lower training level compared with 
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professionals, the overall impact of this practice may be trivial, and recreational and trained 

runners may still achieve similar benefits in terms of physiological adaptations when using 

standardized HIIT approaches as to when using individualized ones. If this were not the case, a 

very important missing piece of information would be the identification of valid measures, 

obtainable using accessible devices, that would allow most of the runners to perform HIIT 

according to the physiological approach without requiring repeated visits to the labs. In this 

regard, Billat and colleagues (Billat, 2001, Billat et al., 2002) proposed to use the speeds on 

given race distances to approximate physiological velocities. Alternatively, we may look for 

treadmill-related measures that can be obtained without the need for a metabolic chart and/or 

lactate analyzer. Another important point requiring investigation is whether the relation 

between physiological parameters and race pace across individuals is indeed sufficiently weak 

to make the distinct adaptations following the physiological approach and the race pace 

approach plausible. If so, the last point would be obtaining an empirical validation of the effects 

of the two approaches for HIIT prescription on the desired training outcomes.  

Other than identifying meaningful research questions, it is also important to remember that 

data do not speak by themselves and no conclusion can be drawn without a solid statistical 

framework. Particular attention within this context should be posed to the different families of 

null hypotheses. Exercise physiology and sport science have traditionally made use of the null 

hypothesis of no difference to make decisions about experimental interventions. The traditional 

null-hypothesis test allows making informed decisions about whether an experimental 

intervention is superior to an inactive or reference intervention while controlling the Type I and 

Type II error rates. However, the traditional null hypothesis may not be the most informative 

choice in all research scenarios and other families of hypotheses may be more appropriate when 

researchers are interested in whether the experimental intervention is superior to control by 

more than a prespecified amount – the smallest effect size of interest (SESOI) −, two 

interventions are similar in efficacy,  or a given intervention is not unacceptably worse than a 

standard one with no restriction for its maximal efficacy. These research questions acquire 

particular relevance whenever two training interventions substantially differ with respect to 

factors such as cost-effectiveness, invasiveness, or administrative procedures (Hecksteden et 

al., 2018). However, such methods are not widespread in exercise physiology and sport science 

yet, a fact which limits the tools that researchers may use to design their studies and often limits 

the power of data interpretation. Therefore, clarifications are needed for helping exercise 

physiologists and sports scientists to understand the valid statistical methods for those research 

questions. 
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1.6 Moving beyond the traditional null-hypothesis: the use of equivalence 

and non-inferiority tests for interventional studies in exercise physiology and 

sport science 

An often-overlooked aspect when designing and analyzing interventional studies in exercise 

physiology and sport science concerns the type and direction of the research hypothesis(es) 

(Caldwell & Cheuvront, 2019). Most studies use the null hypothesis of no effect when making 

decisions about experimental interventions. That is, researchers usually examine whether there 

is a statistical difference between the experimental and the control group on one or more 

primary outcomes. However, other hypothesis tests may be more appropriate when researchers 

are interested in whether two interventions are similar in efficacy but substantially differ with 

respect to factors such as cost-effectiveness, invasiveness, or administrative procedures 

(Hecksteden et al., 2018). The correct approach to designing and analyzing interventional 

studies in exercise physiology and sport science continues to be extensively discussed in the 

literature (Hopkins et al., 1999; Hecksteden et al., 2018; Mansournia & Altman, 2018; Caldwell 

& Cheuvront, 2019). Recently, several researchers have recommended complementing the 

traditional null hypothesis with tests of equivalence and non-inferiority, which evaluate whether 

two interventions or conditions are similar or do not differ by more than a given amount (Dixon 

et al., 2018; Caldwell & Cheuvront, 2019; Aisbett et al., 2020). I will review and expand the 

statistical toolset that can be used by exercise physiologists and sports scientists when designing 

and analyzing interventional studies. I will refer to the best practices as developed in 

biomedical, social, and behavioral research since I recognize sufficient similarities with 

exercise physiology and sport science regarding the design of interventional studies. To 

increase understanding by exercise physiologists and sports scientists, I will also provide two 

worked examples from exercise physiology and sport science research that highlight how 

typical research designs and analyses conducted using traditional null hypothesis tests could be 

re-imagined using equivalence or non-inferiority tests. Moreover, I will provide theoretical and 

practical recommendations to exercise physiologists and sports scientists who would like to 

apply the different hypothesis tests in future research. 

 

1.6.1 Investigating statistical differences (superiority) 

Unless otherwise specified, most interventional studies in exercise physiology and sport science 

have the implicit aim of determining if the efficacy of a given intervention is superior, or 
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possibly inferior, to placebo, sham, or reference intervention. In the most common study design, 

researchers randomize participants to either an experimental or a control group. The observed 

difference in group means after the intervention period (i.e., the effect size) is used to perform 

a hypothesis test examining a difference in population means. Following traditional null 

hypothesis testing, a difference between interventions can be concluded, while controlling the 

Type I error rate, whenever the p-value calculated from a particular test statistic indicates the 

observed or more extreme data are surprising (i.e., the p-value is less than or equal to the 

significance level, or α), assuming there is no difference between the interventions and all other 

modeling assumptions are met. Alternatively, researchers can choose a confidence interval (CI) 

approach. Confidence intervals can be used to inspect and interpret the point estimate and the 

lower and upper limits of the interval in relation to effects of practical importance. Thus, a 

properly derived CI can also be used to evaluate superiority or any other family of null 

hypotheses (Bauer & Kieser, 1996). The two approaches lead to identical decisions in a 

hypothesis test, as p is less than or equal to .05 when a 95% CI excludes the value that is tested 

against (i.e., zero for the traditional null hypothesis) (Figure 11a – first example). 

Regardless of the inferential approach employed, investigating differences between 

interventions without taking into consideration any meaningful value does not permit informed 

decisions regarding the practical significance of the outcome(s). From an exercise physiology 

and sport science perspective, testing the superiority of the experimental intervention against 

an effect size that is exactly zero may increase the risk of endorsing interventions, such as 

exercise training protocols or nutritional strategies, that are expensive, demanding, or time-

consuming, but have no practical benefit – that is, they do not provide a noticeable advantage 

over an existing benchmark. For adequately powered tests (i.e., 80–90% power), testing data 

against the nil (zero) effect using the SESOI – which should be defined a priori and justified on 

sound grounds – as a target mean difference may lead to concluding efficacy for effects as low 

as the 60–70% of SESOI, the so-called ‘decision value’ (Chuang-Stein et al., 2010; 

Roychoudhury et al., 2018). Chuang-Stein et al. (2010) recommended this approach as a 

reasonable compromise between desirability and feasibility, stressing how this approach also 

acknowledges the impact of sampling variation in reducing the observed intervention effect. 

However, although an effect as low as 60–70% of SESOI may be observed when the true effect 

equals the SESOI, the opposite may not necessarily be true. By rearranging the equation used 

to determine the decision value, it is possible to obtain an adequate sample size that leads to 

rejecting the null hypothesis when the decision value equals at least the SESOI. In this way, 

statistical significance is ensured whenever practical relevance is observed (Figure 11a – second 
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example). For a deeper insight into the statistical aspects of this approach – named ‘dual-

criterion designs’ – I refer the readers to Roychoudhury et al. (2018). An even more 

conservative criterion for assessing superiority consists of determining whether the mean 

difference, after having considered its uncertainty, is larger than the SESOI (Lakens, 2021) 

(Figure 11a – third example). This approach leads to the same conclusions as testing the shifted 

(non-zero) null hypothesis (Victor, 1987) or a ‘minimum-effect test’, whose null hypothesis 

assumes that the mean difference between the interventions falls within a range of practically 

irrelevant values (Murphy et al., 2014). However, raising the standard of evidence to claim 

superiority comes at a cost. Testing data against the SESOI may require sample sizes that are 

prohibitively large when the ‘true’ effect size is close to the SESOI unless prespecifying 

unrealistically large effect sizes with an attendant risk of Type II error (Gelman & Carlin, 2014). 

Therefore, researchers should decide very carefully what standard of evidence they want to 

achieve for intervention efficacy when designing their studies, taking into account the 

implications of their findings and their resources. 

Although the definition of SESOI is self-explanatory, exercise physiologists and sports 

scientists should be aware that several different methods exist to determine this value, 

depending on data and applications (Cook et al., 2018; Lakens, 2021). The ‘anchor-based’ 

method, which uses the researcher’s judgment, participant’s experience, or clinical endpoint(s) 

to define the SESOI, provides a common approach to interpret study outcomes in clinical 

research. In this field, the SESOI – also known as the minimal clinically important difference 

– is often determined by examining the association between a certain change in an outcome 

variable and a meaningful change in a (hard) clinical outcome from prospective epidemiological 

data or randomized controlled trials. The expert panel approach, also known as the Delphi 

method, is an alternative (although not necessarily straightforward) way to define the SESOI 

based on expert consensus. Previous studies may give an indication of the expected effect sizes. 

However, researchers should be aware that due to publication bias published effect sizes often 

overestimate the true effect of interventions, and that the distribution of effect sizes observed 

in literature does not necessarily inform about the SESOI, whose determination needs careful 

consideration and justification. Cohen’s classical benchmarks (Cohen, 1988), developed for the 

social and behavioral sciences, are not recommended as guidance on identifying the SESOI in 

exercise physiology and sport science since an effect size of interest is context-dependent and 

should be decided based on a substantive research question (Caldwell & Vigotsky, 2020). 

Although some authors (Hopkins et al., 1999; Rhea, 2004) have developed scales for assessing 

the magnitude of effect sizes in some specific areas of exercise physiology and sport science, 
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researchers should be aware that determining the SESOI is not a straightforward process, and 

it may be challenging in many sporting and physiological contexts. 

Interpreting inconclusive evidence for superiority, or interpreting failure to reject the null 

hypothesis, as evidence for the equality of two interventions, is a common misconception 

(Altman & Bland, 1995). A statistically non-significant result (e.g., p > .05) cannot be 

interpreted as the absence of an effect (Figure 11a – fourth example). To be able to conclude an 

effect is absent, one needs to specify the alternative hypothesis explicitly, and perform a test 

that statistically rejects the alternative hypothesis. The traditional null hypothesis testing only 

rejects the null hypothesis, and, especially in small studies, a non-significant result is not 

informative about whether the alternative hypothesis can be rejected. Exercise physiologists 

and sports scientists must keep in mind that no correct conclusions other than superiority or 

inferiority can be drawn using traditional hypothesis tests. Because a well-designed study is 

informative about both the presence and absence of an effect of interest, researchers should 

consider complementing traditional null hypothesis tests with equivalence and non-inferiority 

tests. 

 

1.6.2 Investigating equivalence and non-inferiority 

Proving that two interventions or conditions are perfectly equal in efficacy is impossible from 

a statistical standpoint. What is possible in a statistical test is to reject the presence of a 

difference that is large enough to be practically relevant, defined by the upper (∆U) and lower 

(∆L) equivalence margins (Hodges & Lehmann, 1954; Lakens, 2017). Although various 

approaches exist to perform an equivalence test (Meyners, 2012), equivalence is typically 

investigated via the ‘two one-sided tests’ (TOST) procedure, which is a simple variation of a 

traditional hypothesis test (Schuirmann, 1987). In this procedure, the null and alternative 

hypotheses within each set are reversed and data are tested against ∆U and ∆L in two one-sided 

tests, each carried out at the α level (conventionally set to .05 or even to .025 in some regulated 

settings). Equivalence can be concluded at the α level only if both tests statistically reject the 

presence of effects equal to or larger than the equivalence margins. It is common to report only 

the greater p-value of the two one-sided tests when testing for equivalence since this p-value is 

also the one for the overall equivalence test (Berger & Hsu, 1996). The TOST procedure is 

operationally identical to concluding equivalence whenever the two-sided 100(1 − 2α)% CI for 
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the mean difference between the interventions lies entirely within the equivalence margins 

(Westlake, 1981; Schuirmann, 1987) (Figure 11b – second example). 

Equivalence studies are very common in clinical research, in which new drug formulations 

or generic versions of the product are often compared to brand-name pharmaceuticals to prove 

bioequivalence (Senn, 2021). Moreover, this design has attracted growing interest in the social 

and behavioral sciences for its utility in evaluating replication results and corroborating risky 

predictions (Lakens, 2017; Lakens et al., 2018a). The latter application of equivalence 

hypotheses may also make them valuable for exercise physiology and sport science, which 

suffers from a shortage of replication experiments (Halperin et al., 2018). Nevertheless, until 

recently, investigating equivalence did not appear to be a common practice among exercise 

physiologists and sports scientists, who have so far restricted the use of equivalence tests mostly 

to measurement agreement research as an alternative or complementary approach to the Bland–

Altman method (Dixon et al., 2018). 

If there is an interest, along with a solid rationale, to investigate whether a given intervention 

is not unacceptably worse than a standard one with no restriction for its maximal efficacy, 

researchers can opt for a non-inferiority study. This is usually the case when the new 

intervention has better cost-effectiveness, is safer, is easier to implement, or is less demanding 

than the standard. Non-inferiority studies can also be useful to evaluate modifications to well-

established interventions and extend applicability to special populations. These research 

questions may also apply to exercise physiology and sport science. In non-inferiority testing, 

the non-zero null hypothesis is shifted towards the negative side of the nil effect, favoring the 

standard. It follows that, when applying the CI approach, non-inferiority is conventionally 

concluded when the lower margin of the two-sided 95% CI for the mean difference between 

the interventions lies above the non-inferiority margin (∆NI) (Senn, 2021) (Figure 11c – second 

and third examples). 
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Figure 11 Testing for superiority, equivalence, and non-inferiority within a typical parallel-group 

design. The error bars indicate the 95% confidence interval (CI) in relation to the traditional null-

hypothesis test (Figure 11a) and non-inferiority test (Figure 11c) and the 90% CI in relation to the two 
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one-sided test procedure (Figure 11b). The shaded areas indicate the rejection region for each hypothesis 

test. Figure 11a From a traditional perspective (i.e., deciding on the presence of an effect), the 

superiority of the experimental group (EXP) compared with the control (CON) can be concluded in the 

first three examples. However, the standard of evidence to claim superiority differs between the 

examples. In the first example, it is only possible to reject effects that are smaller than zero. In the second 

example, it is also possible to claim practical importance besides statistical significance. In the third 

example, it is possible to reject any effect that is not practically important – that is, an effect that is 

smaller than the smallest effect of interest (SESOI). Superiority cannot be concluded in the lower 

example, since the 95% CI extends beyond zero, which reflects in a p-value larger than α. Figure 11b 

It is possible to conclude equivalence between the interventions only in the second example since in the 

upper and lower example the 90% CI spans beyond the lower (∆L) or the upper (∆U) equivalence margin. 

Figure 11c The observed data are identical to Figure 11b. Despite the wider CI, the absence of an upper 

margin allows concluding non-inferiority in both the second and third examples. 

 

Compared with classical parallel-group studies, the design and analysis of non-inferiority 

studies face several additional methodological challenges, which include the suitability of the 

reference intervention, the determination of the ∆NI, and sample size estimation. I will briefly 

review and discuss the main aspects of each of these challenges in the following sections. Since 

some of these issues also apply to equivalence studies, I will expand those parts where relevant.  

 

1.6.3 Suitability of the reference intervention 

From a clinical perspective, the non-inferiority of an experimental intervention can be firmly 

concluded only when compared to a reference intervention of well-established efficacy 

(International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use, 1998, 2001; Committee for Proprietary Medicinal Products, 

2000; Committee for Medicinal Products for Human Use, 2005). The design characteristics of 

the reference intervention (population selection, intervention protocol, primary outcome 

measures, etc.) should be replicated as closely as possible to reduce the risk of violating the 

‘constancy assumption’, which requires consistency between the effect of the reference group 

in the new study and the historical effect estimated from the literature. Violating this assumption 

may increase the chances of incorrectly concluding non-inferiority for inefficacious or even 

harmful interventions. 
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When considering the extreme paucity of replication experiments (Halperin et al., 2018), 

along with the small sample sizes characterizing exercise physiology and sport science research 

(Speed & Andersen, 2000), it becomes self-evident that satisfying the prerequisite for the choice 

of the comparator arm represents the first critical issue to be addressed by exercise physiologists 

and sports scientists interested in conducting non-inferiority studies. Even when a discrete 

amount of evidence is available, the large sampling variability related to studies with small 

sample sizes (e.g., 8–16 participants per group) makes it difficult to identify an intervention 

whose efficacy had been consistently demonstrated across the literature. Moreover, 

questionable practices such as publication bias and p-hacking (i.e., the manipulation of data 

collection and analysis to obtain statistically significant results) tend to overestimate the 

intervention effect in meta-analyses and thus impact the ‘assay sensitivity’ of the new 

investigation, which is the ability of a study to distinguish between an efficacious and less 

efficacious intervention. Several graphical and statistical approaches seeking to quantify or 

adjust for publication bias in meta-analyses have been developed (Simonsohn et al., 2014; 

Carter et al., 2019). However, most of these methods lack large-scale empirical validation, do 

not work well when there are few studies or large heterogeneity in effect sizes, and their 

performance and efficiency are often highly sensitive to deviations from the model 

assumptions. Note that the problem of publication bias and p-hacking would be dramatically 

reduced if pre-registration or Registered Reports Protocols became common practice in exercise 

physiology and sport science (Lakens & Evers, 2014; Caldwell et al., 2020). The 

aforementioned aspects highlight the importance of gaining reliable knowledge about effect 

sizes reported in the literature before deciding whether to adopt a non-inferiority design. This 

also emphasizes the need for more collaborations across exercise physiology and sport science 

departments to design and conduct studies with high accuracy, and the need for more 

transparent research practices, as stressed by several scientists in a recent call (Caldwell et al., 

2020). 

 

1.6.4 Determination of non-inferiority and equivalence margin(s) 

Once the reference intervention has been chosen, the next step in designing non-inferiority 

studies concerns the choice for the margin. An appropriate ∆NI should be based on a 

combination of statistical reasoning and domain expertise (International Conference on 

Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, 

1998, 2001; Committee for Proprietary Medicinal Products, 2000; Committee for Medicinal 
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Products for Human Use, 2005). The general principle states that the ∆NI should not be larger 

than the smallest effect the reference intervention would be reliably expected to have compared 

with a placebo. Despite more sophisticated approaches being proposed (Snapinn & Jiang, 

2018a; Yu et al., 2019), the ‘point-estimate method’ and the ‘fixed-margin method’ are the most 

widely used for specifying the margin in clinical research (Althunian et al., 2017). In the point-

estimate method, the ∆NI is based upon the pooled effect estimate of the active comparator from 

a meta-analysis without considering the uncertainty in the estimate (∆NI–P). In the fixed-margin 

method, the two-sided 95% CI of the meta-analytic effect size estimate that is closest to the null 

effect is used to determine the non-inferiority ∆ (∆NI–C) (Figure 12). This makes the latter 

approach more conservative than the former, especially when – as is often the case in exercise 

physiology and sport science – the precision of the individual study estimates is generally low, 

and the total number of studies is small. A third common approach to analyze non-inferiority 

trials applies the same criteria as the fixed-margin method to determine ∆NI but also adjusts the 

CI derived from the non-inferiority trial to account for the sampling variability in the effect of 

the active comparator against placebo (Holmgren, 1999; Althunian et al., 2017). This ‘synthesis 

method’ is slightly more efficient than the fixed-margin method but it is also more sensitive to 

a violation in the assumptions of assay sensitivity and constancy (Schumi & Wittes, 2011). 

Regardless of the method used to determine the ∆NI, several factors such as the importance 

of the outcome measure, clinical or practical considerations in terms of cost-effectiveness of 

the active comparator, model misspecification, or violation of the constancy assumption can 

make putative superiority over placebo alone an insufficient criterion to establish non-

inferiority and additional assurance may be needed. In this respect, pre-specifying a percentage 

of the historical effect of the reference intervention that must be retained by the new one 

(usually 50%), the so-called ‘preserved fraction’ (λ), has become common practice in non-

inferiority clinical trials (Figure 12) (Snapinn, 2004; Snapinn & Jiang, 2018b). Despite its 

widespread use in clinical research, it is important to note that there is no consensus as to 

whether setting the ∆NI by including a preserved fraction represents an effective discounting 

approach (Snapinn, 2004; Snapinn & Jiang, 2018b). 



40 
 

NI–C

Effect size
0.0 0.5 1.0 1.5 2.0

Pooled effect estimate

Randy et al., 2019

Ruth et al., 2015

McKay et al., 2007

Burton et al., 1986

Plissken et al., 1981

 

 NI–P

Figure 12 The two-step process commonly employed to determine the non-inferiority margin (∆NI) in 

clinical research. A pooled effect estimate is calculated from a meta-analysis of hypothetical studies and 

the margin is determined using either the point estimate (point-estimate method; ∆NI–P) or the lower 95% 

confidence limit (fixed-margin method; ∆NI–C) of the effect size. The chosen margin (∆NI–C in the 

example) is then multiplied by a pre-specified factor (λ; usually 50%) to preserve a fraction of the active-

control effect (shaded area). 

 

Whether or not the stringency in the criteria to determine non-inferiority should be further 

adjusted according to the degree of magnitude of the historical effect of the comparator is a 

matter of debate among clinical researchers (Schumi & Wittes, 2011). Although the choice of 

the preserved fraction would have negligible implications on the study conclusions for small to 

moderate effects, considerable discrepancies may take place for largely efficacious standard 

interventions. In these cases, determining the fraction without any adjustment for the historical 

effect of the comparator may rule out a large part of the effect, eventually leading to the 

paradoxical situation in which non-inferiority is established although the experimental 

intervention is inferior compared with the standard (Schumi & Wittes, 2011; Althunian et al., 

2018). A maximum margin criterion that prevents clinically important differences between the 

standard and the new intervention may be applied in these situations (Schumi & Wittes, 2011). 

Whereas (bio)equivalence margins in clinical trials are often set by regulatory authorities 

(Committee for Medicinal Products for Human Use, 2010), several approaches to justify the 

equivalence range have been proposed in the social and behavioral sciences (Lakens, 2017, 

2021; Lakens et al., 2018a). Among them, it is worth mentioning a method based on the 
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maximum sample size researchers are willing to collect given the available resources. This 

approach may be used for those situations, also common in exercise physiology and sport 

science, in which there are time, money, or population size constraints that limit the effect size 

that can be properly investigated, especially in novel lines of research. Under such conditions, 

determining ∆U and ∆L based on feasibility may be justified, and may represent a starting point 

for future studies aiming for a more precise assessment, if researchers see no way to specify the 

SESOI based on theoretical predictions or practical concerns. 

 

1.6.5 Sample size planning for non-inferiority and equivalence studies 

As I previously discussed, sample size estimation in superiority studies conventionally aims to 

achieve the desired level of statistical power (typically 80% or 90%) against an alternative 

hypothesis, expressed in terms of a target difference between interventions in the primary 

outcome(s), at a given α (Cook et al., 2018). Since superiority and non-inferiority are logically 

opposite tests, sample size estimation for non-inferiority studies follows the same principles as 

for superiority studies. However, because the ∆NI is usually smaller than the superiority 

difference, larger sample size is often needed. Due to the nature of the TOST procedure, in 

which each one-sided test must statistically reject effects as small as the equivalence margins 

to prove efficacy, the power of an equivalence test equals the power to detect the smallest 

margin. In the light of the above, researchers should be aware that the adequate sample size for 

equivalence and non-inferiority tests may be prohibitively large for very small effects. For this 

reason, researchers should carefully consider the target or expected effect size, along with the 

margin(s), when planning equivalence and non-inferiority studies. Whenever there is 

substantial uncertainty about the mean difference between the interventions, or when it is 

plausible that the true effect is larger or smaller than the margin the test was powered to detect, 

researchers may opt for sequential analysis (Lakens et al., 2021). This efficient approach allows 

terminating data collection while controlling the Type I error rate as soon as there is convincing 

evidence to decide on the presence, or absence, of an effect. 

Julious (2004) provided detailed overviews and approximations to calculate power and 

sample size in superiority, equivalence, and non-inferiority studies. Researchers who wish to 

exact solutions for power and sample size for equivalence designs may look at Shieh (2016). 

Moreover, there are several spreadsheets (Lakens, 2017), statistical packages (Castelloe & 

Watts, 2015; Lakens, 2017), and web-based applications (Magnusson, 2016; Kovacs et al., 
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2021) that exercise physiologists and sports scientists can use to estimate sample sizes for 

equivalence and non-inferiority tests. 

 

1.6.6 Re-imagining interventional studies using equivalence and non-inferiority tests 

I provide two worked examples from exercise physiology and sport science research comparing 

sprint interval training (SIT) against moderate-intensity continuous training (MICT) to show 

how the statistical approaches discussed above can be applied to real-world data. I have 

included all the formulas used in these examples in an accompanying workbook (openly 

available – along with the SAS and R code used for validation – at https://osf.io/ndqhe/), which 

can also be used to perform calculations based on summary statistics or complete datasets. 

Example 1 - use of equivalence hypothesis: In a comprehensive study investigating the 

effects of 4 weeks of SIT (60 min per week) or MICT (300 min per week) on cardiorespiratory, 

musculoskeletal, and metabolic characteristics in obese men, Cocks et al. (2016) concluded that 

SIT and MICT have equal benefits on aerobic capacity, as no statistical difference was observed 

between the two groups with respect to the changes in V̇O2max. As previously stated, the absence 

of an effect cannot be concluded based on p > .05 from the traditional null-hypothesis test. 

However, we wanted to determine whether the authors’ conclusions concerning the absence of 

an effect between the groups can indeed be inferred from the observed data. Unfortunately, the 

authors did not report the nominal p-value for the time ‧ group interaction in the 2 ‧ 2 mixed 

analysis of variance (ANOVA) model, or any other necessary information about the differences 

in the changes in V̇O2max between the groups. Since the authors did not make the raw data 

available along with the manuscript, we cannot perform a proper covariate-adjusted analysis; 

nonetheless, we can still appraise the between-group differences by extracting summary data 

from the paper. Specifically, we can estimate the standard deviation (SD) of the change score 

within each group by imputing different plausible correlation coefficients (r) between pre‐

training and post‐training scores, construct the two-sided 90% CI for the mean difference 

between the groups using the different SD estimates, and then perform a sensitivity analysis on 

the results (Higgins et al., 2019). For r = .5, the SIT – MICT 90% CI around the observed mean 

difference of −2.3 mL · kg–1 · min–1 ranges from −7.1 to 2.5 mL · kg–1 · min–1. The SDs of the 

change scores decrease at greater values of r, and the 90% CI narrows by ~ 17% (ranging from 

−6.3 to 1.7 mL · kg–1 · min–1) when r = .7. However, even in the optimistic scenario in which r 

= .9, the 90% CI for the between-group difference ranges from −5.2 to 0.6 mL · kg–1 · min–1, 

which indicates a large imprecision of the parameter estimate. Since a difference in V̇O2max as 

https://osf.io/ndqhe/
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small as 1 mL · kg–1 · min–1 has been associated with a 9% instantaneous relative risk reduction 

for all-cause mortality (hazard ratio 0.91) (Laukkanen et al., 2016), the mean difference 

between SIT and MICT that was observed by Cocks and colleagues of −2.3 mL · kg–1 · min–1 

is hardly trivial, let alone after having considered its uncertainty. 

If we wish, we can also formally test for equivalence against symmetric margins ∆U and ∆L 

of 1 mL · kg–1 · min–1 by using the TOST procedure, which is very similar to the Student’s t-

test when assuming equal population variances. This equivalence test examines the question of 

whether we can reject the presence of an effect as large, or larger than 1 mL · kg–1 · min–1, 

which we know is large enough to have practical benefits. 

For ∆U 

 

where tU is the test statistic for the one-sided t-test on ∆U, M1, and M2 are the means of the SIT 

and MICT group respectively, n1 and n2 are the sample size in each group, and SDP is the pooled 

SD: 

 

 

 

where SD1 and SD2 are the SD of the SIT and MICT group, respectively.  

In this example, 

         𝑆𝐷𝑃 = √
(8 − 1) 2.12 + (8 − 1) 4.22

8 +  8 − 2
= 3.3 

 

 

therefore 

  𝑡𝑈 =
2.4 − 4.7 − 1

3.3 √
1
8 +

1
8 

=  −2 

which correspond to a p-value of .03 from the t-distribution with 14 degrees of freedom (df) for 

a left-sided test. 
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𝑆𝐷𝑃 = √
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2 + (𝑛2 − 1) 𝑆𝐷2
2

𝑛1 + 𝑛2  − 2
 

           (2)  



44 
 

For ∆L 

   
𝑡𝐿 =

𝑀1 − 𝑀2 −  ∆𝐿

𝑆𝐷𝑃 √
1

𝑛1
+

1
𝑛2

 

 
(3) 

being tL the test statistic for the one-sided t-test on ∆L. 

In this example, 

𝑡𝐿 =
2.4 − 4.7 − (−1)

3.3 √
1
8 +

1
8 

 = −0.8 

which corresponds to a p-value of .78 from the t-distribution with 14 df for a right-sided test. 

Since the one-sided test with the greater p-value is not statistically significant [t(14) = −0.8, p 

= .78] based on an α = .05, we cannot reject differences larger than 1 mL · kg–1 · min–1. 

Therefore, we cannot conclude that the difference between the two interventions is too small to 

matter (given a SESOI of 1 mL · kg–1 · min–1) with respect to the changes in V̇O2max. 

It is important to note that, unlike in traditional hypothesis tests where effects that are 

substantially greater than expected can compensate small sample sizes, underpowered tests 

inevitably increase the risk of inconclusive results in equivalence studies. If we want to estimate 

how many individuals Cocks and colleagues should have recruited and tested to reach an 

adequate level of power (e.g., 80%) for the TOST procedure at the desired α level (e.g., .05), 

the most informative approach is to perform an a priori power analysis. For the sake of 

simplicity in calculations, we can define equivalence margins that are symmetric around a zero 

difference in population means (μ1 – μ2). Moreover, we assume that the estimated pooled SD 

represents the true SD for the two populations (σ). For simplicity, we will rely on the normal 

approximation of the power equation for equivalence tests (Julious, 2004) and estimate the 

sample size (n) required in each group to achieve the desired power against ∆U and ∆L as: 

 

 
𝑛𝑈  =   

(𝑟 + 1) 𝜎2 (𝑧𝛼 +  𝑧𝛽/2)2

𝑟 |∆𝑈|2
 

 (4) 

and 

 

where r is the allocation ratio (n1 / n2), and zα and zβ/2 are the standardized normal deviates 

corresponding to the levels of α and β / 2 respectively (with 1 – β that represents the desired 

power). With an equal allocation (1:1 ratio), the equations 5 and 6 are reduced to: 

 
𝑛𝐿  =   

(𝑟 + 1) 𝜎2 (𝑧𝛼 +  𝑧𝛽/2)2

𝑟 |∆𝐿|2
 

    (5) 
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In this example, 

𝑛 =  
2 × 3.32 (1.6 + 1.3)2

12
=  192 

which indicates that the minimum sample size that Cocks and colleagues should have recruited 

to have a properly powered test for equivalence was twenty-four times larger than the n = 8 per 

group that was collected in that study. Even using a much more liberal SESOI of 3.5 mL · kg–

1 · min–1, associated with up to a 25% risk reduction in mortality (Ross et al., 2016), the smallest 

sample size should have been double the one collected. Note that these also represent optimistic 

estimations: any situation in which some inequality between interventions can be expected (i.e., 

the expected difference is not 0), would increase the required sample size, all else being equal. 

Example 2 - use of non-inferiority hypothesis: Gillen et al. (2016) investigated whether 30 

min per week of SIT was a time-efficient exercise strategy to improve indices of 

cardiometabolic health in healthy men to the same extent as 150 min per week of MICT. 

Although the time ‧ group interaction in the 3 ‧ 2 mixed ANOVA model was significant for 

V̇O2max, the authors were unable to reject a nil effect and conclude statistical differences 

between the groups after 12 weeks of training intervention. The exact p-value and the 95% CI 

for the between-group comparison were not reported; however, since the authors reported the 

95% CI for the change scores of the two groups, as well as their sample sizes, we can obtain 

the information we need using statistical first principles (Higgins et al., 2019). The calculations 

reveal a p-value of .94 and a 95% CI ranging from −2.9 to 2.7 mL · kg–1 · min–1 constructed 

around a mean difference between the interventions of −0.1 mL · kg–1 · min–1. From a 

superiority standpoint, the study is inconclusive for what concerns the ability of SIT to improve 

the V̇O2max compared with MICT. Given the rationale supporting the study, a more informative 

research question might be whether the improvements in the V̇O2max induced by SIT are not 

substantially lower than those induced by a standard MICT program. To answer such a question, 

first, we must define the ∆NI that we will use to test our hypothesis. The net effect of MICT 

against no-exercise control on V̇O2max has been estimated to be 4.9 mL · kg–1 · min–1 with a 

95% CI ranging from 3.5 to 6.3 mL · kg–1 · min–1 (Milanović et al., 2015). If we assume the 

MICT protocol prescribed by Gillen and colleagues is sufficiently representative of the ‘typical’ 

MICT from which the average intervention effect has been estimated and we prefer a 

conservative approach to the margin determination without further need for a preserved 

fraction, we can rely on the fixed-margin method and test the SIT – MICT difference against a 

                        
𝑛𝑈 =  𝑛𝐿  =  

2 𝜎2 (𝑧𝛼 +  𝑧𝛽/2)2

|∆𝑈 = ∆𝐿|2
 

        (6) 
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∆NI of −3.5 mL · kg–1 · min–1. The calculation of the t-statistic for the non-inferiority test is 

identical to those for the one-sided test against the ∆L in the TOST procedure. 

 
𝑡𝑁𝐼 =

𝑀1 − 𝑀2 −  ∆𝑁𝐼

𝑆𝐷𝑃 √
1
𝑛1

+
1

𝑛2
 

 

 

        (7) 

being tNI the test statistic for the non-inferiority test. 

In this example, 

𝑡𝑁𝐼 =
5.9 − 6 − (−3.5)

2.9 √
1
9 +

1
10 

= 2.6 

which corresponds to a p-value of .02 from the t-distribution with 17 df for a two-sided test. If 

all the assumptions underlying the statistical model are correct, the non-inferiority test is 

significant [t(17) = 2.6, p = .02] for an α = .05. We can then reject a loss in the efficacy of SIT 

compared with MICT larger than 3.5 mL · kg–1 · min–1 and conclude that SIT is non-inferior to 

MICT for what concerns increase in V̇O2max. Unsurprisingly, given the close relationship 

between p-values and CIs, the CI approach leads to the same conclusion as the formal non-

inferiority test since the lower 95% confidence limit of the SIT – MICT difference (i.e., −2.9 

mL · kg–1 · min–1) is larger than the ∆NI (i.e., −3.5 mL · kg–1 · min–1), which indicates that the 

entire set of plausible values for the population parameter contained in the 95% CI is consistent 

with the non-inferiority of SIT against MICT. 

 

1.6.7 Switching between hypotheses 

Switching the objective of a clinical trial from non-inferiority to superiority or vice versa may 

be possible at the analysis stage of the study; however, the change is not always straightforward, 

and several points need to be considered (Committee for Proprietary Medicinal Products, 2000; 

Schumi & Wittes, 2011). From a statistical perspective, testing first for non-inferiority and then 

for superiority, does not require a statistical penalty for multiple testing, since the closed testing 

procedure properly controls the overall Type I error rate of the two tests. When the ∆NI has been 

prespecified, and the trial design and conduct have been strict, it is also possible to test for non-

inferiority after a superiority test that does not show any statistical benefit. Despite being 

statistically appropriate, researchers should be warned that this testing order could result in 

paradoxical outcomes (i.e., a new intervention that is both non-inferior and inferior to the 

standard), especially for largely efficacious standard interventions. As stated previously, 
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considering the SESOI as a criterion for the largest acceptable ∆NI may help to minimize this 

risk. 

Departing from the initial aim of establishing equivalence does not appear to be a common 

practice in clinical research (Senn, 2021). Moreover, the greater value of α usually adopted in 

such investigations would lead to an inflated Type I error rate if the researcher attempted to 

draw straightforward conclusions on superiority or non-inferiority. Nonetheless, various 

comprehensive methods to investigate equivalence along with superiority have been recently 

presented in the social and behavioral sciences literature (Lakens, 2017; Lakens et al., 2018a) 

(Figure 13). Exercise physiologists and sports scientists interested in conducting equivalence 

and non-inferiority studies may benefit from exploring these approaches. 

It is also worth mentioning the possibility to test against both the nil effect and the SESOI in 

all those situations in which the researcher, after having concluded that the effect is non-zero, 

is interested in rejecting effects too small to be relevant. 

Effect size
-1.0 -0.5 0.0 0.5 1.0

Favours CON   Favours EXP

UL

Equivalent and not different

Equivalent and different (inferior)

Not equivalent and different (superior)

Not equivalent and not different

Figure 13 Testing for both equivalence and superiority. The thin error bars indicate the 95% CI in 

relation to the traditional null-hypothesis test, whereas the thick error bars indicate the 90% CI in relation 

to the two one-sided tests procedure. The solid vertical lines indicate the traditional null hypothesis, 

whereas the shaded area indicates the equivalence region. Conclusions for hypothesis tests are reported 

next to each example. 
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1.6.8 Limitations and additional considerations 

I have detailed how to expand the statistical toolset used to design and analyze interventional 

studies in exercise physiology and sport science. To achieve clarity and brevity, I focused on 

parallel-group studies with means and variances determined from pairs of independent random 

samples of normally distributed observations. Readers must be aware that the analytical 

approach to other research designs or variables with different probability distributions may 

slightly differ from the one presented herein. When discussing the acceptable standard of 

evidence, I maintained consistency with the defaults commonly used in biomedical, social, and 

behavioral research. Nonetheless, the optimal error rates should be decided based on a cost-

benefit analysis, depending on the context, goals, and resources (Lakens et al., 2018b). It is 

worth keeping in mind that frequentist estimation (i.e., CI) and hypothesis testing do not 

represent the only way to draw inferences from data. Wald’s statistical decision theory provides 

a coherent frequentist framework to use sample data to make decisions on interventions 

(Manski, 2019). Compared with hypothesis testing, the Wald framework has the advantage of 

taking into account the magnitudes of the losses that Type I and II errors (whose probabilities 

are considered symmetrically) yield as an integral part of the framework. Among the alternative 

or complementary methods to frequentist statistics, Bayesian statistics or Likelihood 

approaches can also be used to answer the questions that might be of interest to researchers 

(Wang & Blume, 2011; van Ravenzwaaij et al., 2019; Lakens et al., 2020). These approaches 

have the main advantage of allowing researchers to make probabilistic statements about the 

(random) parameter of interest. Whenever prior data are available from other studies, Bayesian 

statistics also allows incorporating such information in the analysis to update the (posterior) 

probability of the parameter and provide the relative weight of evidence for the alternative 

hypothesis compared with the null. Although presenting such methods to design and analyze 

superiority, equivalence, and non-inferiority studies were beyond the scope of this manuscript, 

exercise physiologists and sports scientists should consider their use within the context of 

statistical inference when deciding which method(s) is the most appropriate for their research 

purpose(s). 

 

1.6.9 Conclusions and recommendations for future research 

Exercise physiology and sport science have largely relied on the traditional null hypothesis test 

to make informed decisions in interventional studies. This approach, combined with 
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underpowered tests, has often led to the misinterpretation of a non-significant test result as 

support for the equivalence between interventions. While it should be clear at this point that 

this is a statistical misconception, exercise physiologists and sports scientists should also 

understand that research should not be limited to investigating whether one intervention is 

superior or inferior to another. Equivalence and non-inferiority designs may be adopted 

whenever the research context, conditions, applications, researchers’ interests, or reasonable 

beliefs justify them. Although these research hypotheses require additional methodological 

considerations than superiority hypotheses to be properly investigated, they may also better 

answer the empirical question researchers are interested in. Equivalence and non-inferiority 

studies may help exercise physiologists and sports scientists to answer questions that the 

traditional null hypothesis cannot address. Figure 14 provides a flowchart to facilitate the 

decision-making process about the most informative study design. 

 

Figure 14 Processes of decision making for selecting the different hypothesis tests based on the research 

question that is being asked. 
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2 
RESEARCH GOALS 

 

‘The aim of science is not to open the door to infinite wisdom, but to set a 

limit to infinite error.’ 

Bertolt Brecht − poet 
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2. RESEARCH GOALS  

 

2.1 General goal 

The experimental part of the thesis is structured by a line of research consisting of three different 

families of hypotheses aimed to clarify most of the points and still open questions raised in 

chapter 1.5 about the effects of different HIIT prescription models on physiological response 

and performance in trained distance runners. The general goal of this thesis is to provide some 

enlightenment on the best approaches to training prescription, especially for what regards the 

relationship between the prescribed training and the desired outcome. The thesis is focused on 

HIIT since this form of training is the one that requires more careful characterization and thus 

the one that is potentially more sensitive to mis-prescriptions. This work may provide several 

important pieces of information that may serve as support for further investigations and that 

may help coaches to maximize the benefits of this training method in their athletes. 

 

2.2 Specific goals 

1) Investigating whether individualizing HIIT according to the physiological characteristics and 

the response to exercise (i.e., the physiological approach) induces larger cardiorespiratory 

adaptations than a standardized HIIT program in trained distance runners.   

 

2) Quantifying the interindividual variability that exists in different treadmill-related measures 

and race pace-related measures at v∆50, after having accounted for the biological variability 

(i.e., the intra-individual variability) in the measures, to identify a valid surrogate for v∆50 to 

prescribe HIIT according to the physiological approach without the need of lab measurements. 

 

3) Investigating whether individualizing HIIT prescriptions according to physiological 

characteristics (i.e., the physiological approach) or percentage of target race pace (i.e., the race 

pace approach) determines different physiological adaptations and performance improvement 

in trained distance runners. 
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3 
RESEARCH HYPOTHESES 

 

‘I have approximate answers and possible beliefs in different degrees of 

certainty about different things, but I'm not absolutely sure of anything.’ 

Richard Feynman – theoretical physicist and science communicator 
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3. RESEARCH HYPOTHESES  

 

1) The individualized, physiologically-based approach to HIIT prescription will improve 

V̇O2max and Vpeak more than the standardized approach and it will decrease the heterogeneity of 

intervention effects in trained distance runners. 

 

2) Treadmill-related measures – namely the relative percent of Vpeak and the absolute difference 

between Vpeak and v∆50 − can be used as valid surrogates of the delta concept to individualize 

HIIT prescriptions according to the physiological approach without the need for lab 

measurements. Please note that from a statistical standpoint, this is an estimation approach. 

 

3) The physiological approach to HIIT prescription will improve V̇O2max and Vpeak more than 

the race pace approach and it will lead to a smaller heterogeneity of intervention effects in 

trained distance runners. On the contrary, the race pace approach will improve running 

performance more than the physiological approach, other than leading to a smaller 

heterogeneity of intervention effects in this population. 
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4 
METHODOLOGY 

 

‘We need less research, better research, and research done for the right 

reasons’ 

Doug Altman – statistician 
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4. METHODOLOGY 

 

4.1 Participants 

4.1.1 Individualizing HIIT according to the physiological characteristics  

Seventy-two distance runners (56 men, 16 women; ≥ 2 years of experience) were recruited for 

this investigation between October 2019 and January 2020. Recruitment and selection of 

participants were conducted in the provinces of Milan and Pavia (Italy) using flyers, social 

media advertising, and personal contact. Eligible participants were men and women between 

18 and 50 years old that were training and competing in long-distance running events (from 

5000-m to the Marathon) with a personal best achieved in the last year between 100 and 500 

points and between 400 and 900 points for men and women, respectively, according to the latest 

edition available of the IAAF Scoring Tables for Outdoor Events (Spiriev & Spiriev, 2017). 

These scores correspond approximatively to times from 36 to 45 min (men) and 37 to 50 min 

(women) on 10000-m races and classify these individuals as ‘trained’ runners according to the 

classification framework recently proposed by McKay and colleagues (2022). According to the 

Italian national law (Law 91/1981), a valid Medical Certificate for Competitive Sports Activity 

was also required to participate in this investigation. Potential participants who had underlying 

medical problems (injury or surgery in the last 6 months, illness, infection, cardiovascular, 

respiratory, metabolic, and musculoskeletal diseases or dysfunctions) that may have affected 

their participation in the project or the results were excluded. Out of the 106 people initially 

contacted (80 men, 26 women), 24 (16 men, 8 women) declined participation due to lack of 

time or interest, 8 (7 men, 1 woman) did not meet the eligibility criteria, and 2 (1 man, 1 woman) 

suffered from injury before the beginning of the data collection, leaving a total of 72 runners 

partaking in this investigation. The sample size estimation was conducted using PROC POWER 

in SAS Studio 3.8 on SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) to achieve an 80% power 

to detect a difference of at least 3.2 mL · kg–1 · min–1 in V̇O2max − corresponding to the typical 

within-individual variability for this population (Katch et al., 1982) − and at least 0.5 km–1 · h–

1 in Vpeak – derived from the speed-V̇O2 linear regression model (Batliner et al., 2017) applied 

to a group of 22 runners from a pilot study conducted on the same population using the same 

incremental protocol and assuming negligible changes in RE − between the groups at a one-

sided α level of .05 assuming an equal number of participants in each group. The expected 

between-variability of V̇O2max (5.1 mL · kg–1 · min–1) and Vpeak (0.8 km–1 · h–1) for this 



62 
 

population were instead estimated using the pooled SD extracted from previous relevant studies 

(Acevedo & Goldfarb, 1989; Demarle et al., 2001, 2003; Slawinski et al., 2001; Garcin et al., 

2002; Lafitte et al., 2003; Denadai et al., 2006; Kohn et al., 2010). The benefit of covariate 

adjustment on statistical power (Thompson et al., 2015) was not considered in the calculation 

and the estimated sample size for the t-test design was considered as an ‘upper bound’ of the 

estimation since efficiencies are produced by the chosen design (High, 2007). Since none of 

these relevant studies reported information on the number of dropouts, the initial sample (33 

participants per group) was inflated assuming a plausible ~8% dropout rate for this type of 

training intervention (Stöggl & Sperlich, 2014), and rounded up to the nearest integer.  

 

4.1.2 Testing interindividual variability in different treadmill-related measures and race 

pace-related measures 

Seventy-five trained distance runners (58 men, 17 women; ≥ 2 years of experience) were 

recruited into this investigation for estimating the observed between-individual variability 

between May 2020 and May 2021. Sixty-one runners (46 men, 15 women) from this cohort 

underwent repeated measurements to estimate the true variability (i.e., the inter-individual 

variability that is left after having accounted for the biological variability). The eligibility 

criteria were the same as those reported when investigating the first family of hypotheses. The 

sample size estimation was conducted using PROC POWER in SAS. Since the main research 

questions involved estimation rather than hypothesis testing, sample size analysis was based on 

achieving a given CI precision rather than statistical power (Maxwell et al., 2008; Lakens, 

2021). Specifically, the aim was to achieve a 1% and 0.1 km–1 · h–1 (since this often represents 

the smallest speed variation that is allowed by commercial treadmills) for estimating – as two-

sided 95% CI with 99% assurance − the percentage of Vpeak at vΔ50 and the difference between 

vΔ50 and Vpeak, respectively. Previous data from my first investigation were used to inform 

about the expected SD for the parameters of interest in this population (i.e., 2% and 0.3 km–1 · 

h–1, and 1% and 0.2 km–1 · h–1 for the observed and true between-individual SD, respectively). 

In this regard, pre-intervention data were used to estimate the expected (gross) between-

individual SD, whereas pre-intervention and post-intervention data were combined to separate 

the true between-individual SD from the within-individual SD via mixed modeling (using the 

same approach described in the statistical section). However, since the individualized and the 

standardized approach to HIIT prescription might have led to different effects on Vpeak and the 

standardized approach might have also led to a larger heterogeneity of intervention effects, the 
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estimated values of the true between-individual SDs from the previous data were inflated by a 

fourth to compensate for any possible reasonable underestimation. The required sample size for 

estimating the gross between-individual SD in the percentage of Vpeak at vΔ50 and in the 

difference between vΔ50 and Vpeak was 23 and 55 individuals, respectively. Instead, the 

required sample size for estimating the true between-individual SD was 15 and 47 individuals. 

Since estimating the percentage of 10000-m speed at vΔ50 and the difference between vΔ50 

and 10000-m speed was also part of the aims, sample size analysis was performed even for 

these parameters using the same criteria that were used for the treadmill-related measures. 

However, the estimated between-individual SDs (i.e., 5% and 0.7 km–1 · h–1, and 4% and 0.5 

km–1 · h–1 − inflated to 5% and 0.6 km–1 · h–1 − for the observed and true between-individual 

SD, respectively) resulted in unrealistic sample size estimates (i.e., 148, 250, 141, and 200 

individuals) given time and resource constraints. Therefore, a larger margin of errors was 

accepted for these measures (i.e., 2% for the percentage of 10000-m speed at vΔ50 and 0.2 km–

1 · h–1 for the difference between vΔ50 and 10000-m speed) to obtain feasible sample sizes of 

47, 75, 45, and 61 individuals, respectively. To ensure sufficient precision for all the parameter 

estimations and account for the (possible) underestimated sample sizes for treadmill-related 

measures, the largest sample size estimates for estimating the expected (75 individuals) and 

true (61 individuals) between-individual SD were chosen.  

 

4.1.3 Individualizing HIIT prescriptions: physiological characteristics vs race pace  

Thirty-eight distance runners (24 men, 14 women; ≥ 2 years of experience) were recruited for 

this investigation between May and September 2020. The eligibility criteria for participants and 

the method of recruitment were the same as those reported when investigating the first family 

of hypotheses. Out of the 51 people initially contacted (32 men, 19 women), 8 (5 men, 3 women) 

declined participation due to lack of time or interest, and 5 (3 men, 2 women) did not meet the 

eligibility criteria, leaving a total of 38 runners partaking in this investigation. The sample size 

estimation was aimed to achieve the desired error rate (i.e., α = .05) for each specified 

alternative hypothesis and was conducted according to the ‘dual-criterion designs’ 

(Roychoudhury et al., 2018) using a customized spreadsheet. This approach provides a sample 

size that ensures statistical significance whenever practical relevance is observed (i.e., 

whenever the decision value equals at least the SESOI or the target difference) (Roychoudhury 

et al., 2018). Target mean differences and between-variability for V̇O2max and Vpeak were the 

same as those reported for the first family of hypotheses [i.e., 3.2 (5.1) mL · kg–1 · min–1 and 



64 
 

0.5 (0.8) km–1 · h–1, respectively]. Regarding race performance, SESOI at 0.8 km–1 · h–1 in 

10000-m speed (corresponding to an improvement from 42:30 to 40:00) was set. This effect 

was considered ‘satisfactory’ according to a modified Delphi technique, which involved 

repeated-stage interviews with several coaches and runners. The expected between-variability 

of 10000-m speed (1.2 km–1 · h–1) for this population was instead estimated from the data 

available from my second investigation. The benefit of covariate adjustment on statistical power 

(Thompson et al., 2015) was not considered in the calculation. The largest sample size 

estimation for the three main outcomes (i.e., 14 participants per group) was inflated by ~36% 

to account for a plausible dropout rate for this type of training intervention – estimated from 

my first investigation − and rounded up to the nearest integer. 

All the participants were fully informed of the aim and procedures of the study, including its 

risks and benefits, before signing the informed consent form. The research protocol complied 

with the latest revision of the Declaration of Helsinki (Fortaleza, 2013) and was approved by 

The Ethics Committee for Research on Human Subjects of the University of the Basque 

Country (CEISH-UPV/EHU 96/2018). 

 

4.2 Experimental design 

All the research investigations were conducted at the Human Integrative Physiology of Exercise 

(HIPE) Laboratory of the University of Pavia (Italy). The first investigation was carried out 

between January and March 2020 and it was preceded by a pilot study conducted in Madrid 

(Spain) between January and March 2019, which served to test the feasibility of the project and 

inform about the plausible direction of the effect(s). The second investigation was conducted 

between May 2020 and July 2021, whereas the third one took place between August and 

November 2020. 

A pre-post parallel-group design was chosen to achieve the first and third specific aims 

(Figure 15). V̇O2max and Vpeak, along with other physiological adaptations (RE, V̇O2 at LT1 and 

LT2, %V̇O2max at LT1 and LT2, vLT1 and vLT2), were assessed during two lab tests (incremental 

treadmill test and constant-speed treadmill test), whereas a 10000-m time trial on a 400-m 

athletic track was used to determine changes in performance. I planned to perform all tests for 

each of these two investigations within 3 weeks (~25 runners per week), before and after an 8-

week training intervention period. After the pre-intervention measurements, participants were 

equally allocated to two different training groups using a pseudo-random number generator 
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provided by PROC PLAN in SAS. The two experimental groups for each investigation [i.e., 

the individualized group (IND; 27 men and 9 women) and the standardized group (STD; 29 

men and 7 women) for the first investigation, and the physiologically-based group (RP; 11 men 

and 8 women) and the race pace-based group (PHY; 13 men and 6 women) for the second 

investigation] replaced a similar part of the habitual training volume with two HIIT sessions 

per week. A longitudinal design with two blocks of repeated measures separated by 8 weeks 

was instead used to achieve the second specific aim. Other than the lack of a comparator and 

training intervention, the design was identical to the one adopted when investigating the other 

two families of hypotheses. 

 

Figure 15 Overview of research design for the first investigation. IND and STD represent the 

individualized and standardized group, respectively; whereas the track and the treadmill logo represent 

the 10000-m time trial and the incremental treadmill test followed by the constant-speed test, 

respectively. This pre-post parallel-group design was essentially identical for the first and the third 

investigation, whereas only one group and no experimental intervention was used to investigate the 

second family of hypotheses. 

 

4.3 Procedures 

4.3.1 Physiological and performance testing 

Participants were asked to abstain from strenuous exercise and other excessive stressors that 

had the potential to influence performance in the 48 h before each testing session. Participants 

were asked to follow their usual diet during the study and maintain habitual intakes in the lead-

up to the testing period. The general recommendation will be to avoid alcohol and caffeine-

containing products intake during measurement periods for the 12 h preceding each 
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measurement. However, moderate use of caffeine was allowed for those participants with 

habitual caffeine practices (Jeacocke & Burke, 2010). Participants were also encouraged to get 

sufficient sleep the night before each session and arrive in a well-hydrated state. Careful 

instructions about the proper clothing and shoes to wear and about the correct way to perform 

the tests were provided to participants. To minimize the influence of circadian variance on the 

results, all tests associated with this study were performed at the same time of the day for each 

participant (to within ± 4 h) (Ammar et al., 2015). The incremental and constant-load treadmill 

tests were conducted at the HIPE Laboratory of the University of Pavia (Italy), under standard 

laboratory conditions (~20 °C ambient temperature, ~100 kPa barometric pressure, ~50% 

relative humidity).  

The days of the 10000-m time trial were scheduled in such a way to guarantee similar 

weather conditions (temperature, pressure, humidity) between pre-training and post-training, 

although achieving a perfect matching was not possible due to seasonality and participant 

availability. The trial was preceded by a ‘typical’ pre-competitive resting period characterized 

by 3 – 4 days of low-intensity running (Muñoz et al., 2014). To avoid collective behavior 

influencing pacing decisions (Renfree & Casado, 2018), a maximum of 4 runners was tested at 

each time and each runner’s start was separated from the previous one by 60 s and performed 

in random order. The time on 10000-m was measured using a handheld stopwatch (Fastime 14, 

AST Ltd, Measham, UK) and the average speed was calculated. 

Participants reported to the laboratory at least 48 h after the 10000-m time trial to perform 

an incremental test on a motorized treadmill (Athlete 870 C, Medisoft S.A., Sorinnes, Belgium), 

whose software was modified by the producer on my request to allow changes in the speed as 

small as 0.1 km · h−1 (Figure 16). Accuracy and reliability in treadmill speed and the slope were 

assessed as recommended (Padulo et al., 2014) using a high-speed camera and digital 

inclinometer, respectively (iPhone 11 Pro Max, Apple Inc., Cupertino, CA, USA). Since the 

nominal speed of the treadmill differed from the real values, I applied a correction formula (y 

= 0.9698x – 1.2179, standard error of the estimate = 0.03, coefficient of determination = 1). 

The incremental treadmill test consisted of a discontinuous protocol preceded by a 5-min warm-

up performed at the same speed as the first step of the test and separated by 3 min. To minimize 

the risk that vLT1 intensity was not achieved during the first step of the test, the initial running 

speed was set at 70% of the 10000-m speed (Dantas & Doria, 2015). The treadmill speed was 

then increased by 1.5 km · h−1 every 3 min until voluntary exhaustion (Bentley et al., 2007). A 

gradient of 1% was maintained throughout the test to mirror the energetic cost of outdoor 
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running (Jones & Doust, 1996). Treadmill stages were separated by 30 s of passive rest to allow 

for the collection of capillary blood samples (Gullstrand et al., 1994). This protocol is 

appropriate to estimate V̇O2max (Bentley et al., 2007; Midgley et al., 2007c, 2008), enables the 

collection of steady-state data for LT (Bentley et al., 2007) and RE (Shaw et al., 2013) 

determination, and generates a reliable and valid Vpeak value (Machado et al., 2013; Peserico et 

al., 2014). Moreover, this protocol also conforms to the duration and increment rate 

recommended for accurate Vpeak determination (Berthon & Fellmann, 2002). Verbal 

encouragement was provided on request during the test to ensure maximal effort (Halperin et 

al., 2015). The treadmill console displaying running speed, time, and distance were not visible 

to participants throughout the test. During the test, ventilatory and gas exchange data were 

collected breath-by-breath using a stationary metabolic cart (Vyntus CPX, Vyaire Medical Inc., 

Mettawa, IL, USA), whose accuracy and precision had been previously reported (Groepenhoff 

et al., 2017; Perez-Suarez et al., 2018). The digital volume transducer of the chart was calibrated 

at 3 different flow rates using a 3-L syringe, whereas the O2 / CO2 analyzer was calibrated 

against ambient air and a certified gas mixture of 16% O2 and 4% CO2, according to 

manufacturer instructions. RE (in mL · kg–1 · km–1) at 12 km · h–1 was determined via regression 

using the means of the last min of each stage performed below vLT2 under the assumption of a 

linear relationship between treadmill speed and V̇O2 for this range of speeds (Batliner et al., 

2017). The maximal V̇O2 achieved during the test (V̇O2max, in mL · kg–1 · min–1 and L · min–1) 

was defined as the highest 15-s average (Macfarlane, 2001; Martin-Rincon & Calbet, 2020). 

Before proceeding with the analysis, V̇O2 data were exported and cleaned by removing test 

values with an externally studentized residual that was more than 3 SD away from the least-

squares line of the linear regression model constructed on each time-average (Cook & 

Weisberg, 1982). Vpeak was calculated as follows: Vpeak = speed of the last completed stage (km 

· h–1) + [running time (s) at exhaustion] / 180 s × 1.5 km · h–1 (Kuipers et al., 2003). A capillary 

blood sample (20 μL) was collected from the right hyperemic earlobe after each stage of the 

incremental test and immediately placed in reaction tubes containing a hemolyzing solution 

(1000 µl). Lactate concentration was determined using an automated enzymatic-amperometric 

analyzer (Biosen C-Line, EKF-diagnostic GmbH, Barleben, Germany), which calibrated 

automatically before each measurement against a 12 mmol ‧ L−1 multi-standard solution. 

Treadmill speeds were then plotted against lactate values and speeds at the first lactate threshold 

[defined as the speed preceding an increase in lactate concentration equal to or greater than 0.4 

mmol ‧ L−1 (Tanner & Gore, 2012)] and second lactate threshold [defined according to the 

modified Dmax method (Bishop et al., 1998)] were calculated using a lactate analysis software 
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(Lactate-E 2.0; Newell et al., 2007). V̇O2 and fractional V̇O2max were derived from the speed-

V̇O2 regression equation. After at least 20 min of recovery, participants carried out a constant-

speed treadmill test to exhaustion immediately preceded by a 3-min warm-up performed at the 

same speed of the warm-up before the incremental test. Running speed during the test (v∆50) 

was set halfway between vLT2 and Vpeak. The calibration of the digital volume transducer of 

the metabolic chart and the O2 / CO2 analyzer was checked before the beginning of the test. The 

gradient level, encouragement, and V̇O2 data collection were the same as the incremental test. 

Tlim (in s), and V̇O2max were recorded and used for training prescription and analysis. Since the 

characteristics of the constant-speed test make it suitable as a verification phase test for V̇O2max 

in trained runners (Demarie et al., 2000), I compared the highest V̇O2 value attained in the 

incremental test with the one attained in the constant-speed test. However, given the lack of 

information about the technical error of the measurement of the Vyntus CPX metabolic cart for 

V̇O2max from at the time of the design stage of the study, I used the highest value of the two 

tests as V̇O2max. 

 

Figure 16 One of the participants is shown while performing the incremental test as an example. 
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4.3.2 Training characteristics 

In the first investigation, HIIT characteristics were based on the protocol proposed earlier for 

similar cohorts of runners (Demarle et al., 2001, 2003; Slawinski et al., 2001; Garcin et al., 

2002; Lafitte et al., 2003), which had shown to maximize the time spent at V̇O2max in this 

population (Demarie et al., 2000). The main difference between IND and STD was that HIIT 

prescriptions in IND were individualized according to each runner’s values, whereas the 

average group values were used to prescribe the same HIIT session to all runners in STD (Figure 

17). This approach would have ideally permitted to minimize the differences in the mean 

training stimulus between the groups while preserving the natural degree of inter-individual 

variability related to the training prescription method. 

In the third investigation, physiological-based HIIT prescriptions in PHY were the same as 

those used in IND. Race pace-based HIIT prescriptions in RP were instead intended to mimic 

coaching-like practice, with the speed of each interval determined according to a given 

percentage of the target race pace, a fixed duration for each interval, and a given distance to 

cover during the recovery time (Figure 18). These values were extracted from the large cohort 

of similar runners used for the second investigation to match the intensity and distance of the 

intervals and recovery phases between the groups.  

 

 

FIGURE 17. Representation of the approach used to prescribe high-intensity interval training in the 

individualized (IND) and standardized (STD) groups in the first investigation. The speed and the 
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duration of each interval were set at the speed halfway between vLT2 and Vpeak (v∆50) and 50% of the 

time to exhaustion at v∆50 (Tlim), respectively, whereas the speed and the duration of each recovery 

period were set at 50% of the Vpeak and 25% of Tlim, respectively. HIIT prescriptions in IND were 

individualized according to each runner’s values, whereas the average group values were used to 

prescribe the same HIIT session to all runners in STD. Regardless of the group, the initial number of 

intervals was anchored to the maximal number of intervals that each runner would have been capable to 

perform during the first HIIT session (Nmax), in such a way each runner would have alternated Nmax – 1 

or Nmax – 2 intervals for the first 2 weeks of training. Other than mimicking previous research, this 

approach was also used to allow runners to better adapt to the new training load. From the 3rd week, the 

number of intervals increased on an individual basis in both groups. 

 

 

FIGURE 18. Representation of the approach used to individualize high-intensity interval training 

prescriptions in the physiologically-based (PHY) and race pace-based (RP) group in the third 

investigation. The track and the treadmill logo represent the 10000-m time trial and the incremental test 

followed by the constant-speed treadmill test, respectively. The approach used for PHY was identical to 

the one used for IND in the first investigation. Runners in RP were required to cover 1000 m at 110% 

of the target 10000-m pace during each interval, and 300 m in 2 min during recovery. Regardless of the 

group, the initial number of intervals was anchored to the maximal number of intervals that each runner 

would have been capable to perform during the first HIIT session (Nmax), in such a way each runner 

would have alternated Nmax – 1 or Nmax – 2 intervals for the first 2 weeks of training. Other than 

mimicking previous research, this approach was also used to allow runners to better adapt to the new 

training load. From the 3rd week, the number of intervals increased on an individual basis in both groups. 
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4.3.3 Training assessment 

Fifteen HIIT sessions were prescribed to IND and STD, and PHY and RP during the training 

intervention in the first and third investigation, respectively. All HIIT sessions, as well as the 

other training sessions, were conducted using GPS running watches [Forerunner 45, Garmin 

Ltd., Schaffhausen, Switzerland (accuracy: ~10 m using the combined GPS and GLONASS 

setting)], which monitored and recorded all the training characteristics [i.e., volume (km) and 

frequency (times · week–1)]. All the data collected were exclusively used to characterize 

training, track runners’ progress and adherence, but not to affect training decisions. Before the 

training intervention, all runners received their HIIT protocols via a proprietary app (Garmin 

Connect, Garmin Ltd., Schaffhausen, Switzerland). The runners were only allowed to modify 

the number of intervals to accommodate the expected increase in this variable throughout the 8 

weeks of training. Training speed was divided into three separate exercise intensity domains as 

follows (Jones et al., 2019): moderate = speed < vLT1, heavy = vLT1 ≤ speed ≤ vLT2, and severe 

= speed > vLT2, and the percentages of the overall training volume spent in each domain were 

calculated (Seiler, 2010).  

 

4.4 Statistical analysis 

Descriptive statistics are presented as mean (SD). Inferential analysis for the first and third 

investigations was performed using linear mixed-effects models (PROC MIXED) in SAS. Each 

outcome measure was modeled as a change score from baseline and percentages were treated 

as continuous data. Sex, age, and baseline score were identified a priori as putative covariates 

and included in each model to reduce variability and adjust for baseline imbalance between 

groups (Vickers, 2001; Vickers & Altman, 2001; Pocock et al., 2002). I included an interaction 

term between each covariate and the group predictor to allow the effect of each covariate to 

vary between groups. Moreover, I specified a diagonal covariance structure for the residuals to 

allow for unequal variance between groups. Heterogeneity of intervention effects was estimated 

using differences in variance between IND and STD, assuming the same (classical) 

measurement error in the two groups, and presented as SD (Atkinson & Batterham, 2015; Ross 

et al., 2019; Mills et al., 2021). Negative values of variance were presented as negative SD and 

interpreted as a smaller heterogeneity in IND than STD. The model assumptions were checked 

via residual plots, histograms, and Q-Q plots inspection; however, it was not possible to verify 

the normal distribution of the residuals across all levels of the predictors due to insufficient 
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observations in some of the subgroups. Since age was not linearly related to any of the 

outcomes, this covariate and the associated interaction term were dropped from the model. 

Models were fitted using the restricted maximum likelihood method, and p-values along with 

95% CI for between-group differences, in terms of estimated marginal means, were derived 

using the Satterthwaite approximation for degrees of freedom. This approach maintains the 

actual Type I error rate close to the nominal value even with small samples (Luke, 2017). The 

α level was set to .05 for both directional (confirmatory) and non-directional (exploratory) 

hypotheses. Although both within-group and between-group analyses were conducted, I based 

my conclusions on the between-group difference in change scores, since the latter represents 

the best approach to get information about intervention efficacy (Matthews & Altman, 1996; 

Bland & Altman, 2011, 2015). Only those participants who completed at least 12 out of 15 HIIT 

sessions as prescribed (i.e., a minimum attendance of 80%) were included in the analysis. 

In the second investigation, inferential analysis for the observed between-individual 

variability at a single time point was performed using PROC UNIVARIATE, whereas analysis 

for the true between-individual variability using repeated measurements was performed via 

mixed modeling (PROC MIXED) in SAS. Outcome measures were modeled as single 

observations and percentages were treated as continuous data. To estimate the true between-

individual variability, I treated participants (Subject ID) as a random effect. The linear mixed 

model was fitted using the restricted maximum likelihood method, and 95% CI for the overall 

mean, and within- and between-individual variability were derived from the model. The 95% 

CIs for the group mean values were calculated using the t-distribution, whereas the 95% CIs 

for the SD representing the inter-individual variability were calculated using the χ2-distribution. 

Normality was checked via histograms and Q-Q plots inspection.  
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5 
RESULTS 

 

‘The good thing about science is that it’s true 

whether or not you believe in it.’ 

Neil deGrasse Tyson – astrophysicist and science communicator 
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5. RESULTS 

 

5.1 Individualizing HIIT according to the physiological characteristics  

Thirteen runners who belonged to IND and 13 who belonged to STD dropped from the 

investigation due to various injuries (3 men in IND and 1 man in STD), lack of interest, or poor 

training adherence (5 men and 1 woman in IND and 4 men in STD), inability to perform the 

prescribed training intervention (1 man and 4 women in STD), and impossibility to perform the 

post-training intervention measurements as a result of the restrictions imposed due to the 

COVID-19 pandemic by the Italian government on March 2020 (4 men in IND and 2 men and 

1 woman in STD). 46 out of the 72 runners that were initially recruited completed the 

investigation [IND: 15 men, 8 women; age = 36 (9) years; height = 171.5 (6.7) cm, body mass 

= 65.1 (8.7) kg; STD: 20 men, 3 women; age = 36 (7) years; height = 175.3 (6.1) cm, body 

mass = 70.1 (7.0) kg]. However, gas exchange and 10000-m time data were not collected for 1 

man and 1 woman in IND after the training intervention due to issues with the metabolic cart 

and injury, respectively. 

IND ran 46.4 (15.1) km · week–1 with an average frequency of 4.4 (1.0) times · week–1, while 

STD ran 48.7 (14.4) km · week–1 with an average frequency of 4.2 (1.2) times · week–1. IND 

performed 70 (14)% of the overall training volume in the moderate-intensity domain, 6 (7)% in 

the heavy-intensity domain, and 24 (10)% in the severe-intensity domain, whereas STD 

performed 70 (17)% of the overall training volume in the moderate-intensity domain, 8 (12)% 

in the heavy-intensity domain and 23 (10)% in the severe-intensity domain. During the 

intervention period, Nmax increased from 3.8 (0.8) to 5.0 (1.0) in IND and from 4.5 (2.5) to 5.7 

(2.5) in STD. 

Descriptive statistics for all the outcomes are reported in Table 1, whereas inferential 

statistics are reported in Table 2. Relative V̇O2max and Vpeak improved significantly in IND, 

whereas no significant changes were observed in STD. The effect of the training intervention 

on V̇O2max (when expressed in both absolute terms and relative to the body mass) and Vpeak was 

statistically larger for IND than STD. IND reduced heterogeneity of intervention effect for Vpeak 

compared with STD. RE improved significantly in IND, whereas the fractional V̇O2max at LT2 

decreased in IND and the effect of training on the fractional V̇O2max at LT2 was statistically 

larger for STD than IND. 
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TABLE 1. Values of the outcome variables before and after the training intervention. 

 IND STD 

 PRE POST PRE POST 

V̇O2max (mL · kg–1 · min–1) 57.8 (6.1) 60.3 (7.0) 60.7 (4.9) 61.0 (5.7) 

V̇O2max (L · min–1) 3.78 (0.74) 3.92 (0.77) 4.21 (0.69) 4.23 (0.70) 

RE (mL · kg–1 · km–1) 216.4 (16.1) 212.5 (14.2) 222.7 (19.0) 218.3 (14.4) 

Vpeak (km · h–1) 16.8 (1.7) 17.2 (1.8) 17.3 (0.6) 17.4 (0.9) 

%V̇O2max at LT1 75.5 (7.8) 74.4 (5.2) 76.8 (6.8) 77.5 (6.7) 

V̇O2 at LT1 (mL · kg–1 · min–1) 43.7 (4.2) 45.0 (5.4) 46.7 (4.7) 47.1 (4.9) 

vLT1 (km · h–1) 12.1 (1.0) 12.6 (1.4) 12.6 (0.7) 12.9 (1.1) 

%V̇O2max at LT2 85.9 (6.1) 84.0 (3.6) 87.4 (5.2) 87.0 (5.5) 

V̇O2 at LT2 (mL · kg–1 · min–1) 49.7 (5.2) 50.8 (5.7) 53.2 (4.4) 52.9 (4.1) 

vLT2 (km · h–1) 13.9 (1.5) 14.3 (1.5) 14.6 (0.6) 14.6 (0.8) 

10000-m speed (km · h–1) 14.3 (1.7) 14.5 (2.2) 14.4 (1.9) 14.8 (1.0) 

Data are presented as means (SD). LT1, first lactate threshold; LT2, second lactate threshold; 

RE, running economy; vLT1, speed at the first lactate threshold; vLT2, speed at the second 

lactate threshold; V̇O2, oxygen uptake; V̇O2max, maximal oxygen uptake; Vpeak, peak running 

speed. 
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5.2 Testing interindividual variability in different treadmill-related measures 

and race pace-related measures 

Four runners (3 men and 1 woman) did not complete the second 10000-m trial due to a close 

competition (1), family (1), or work commitments (2). The physiological and characteristics of 

the 75 runners who were recruited to estimate the observed between-individual variability [58 

men, 17 women; age = 37 (8) years; height = 174.1 (6.6) cm, body mass = 69.3 (9.4) kg], the 

61 who were recruited to estimate the true between-individual variability [46 men, 15 women; 

age = 37 (8) years; height = 173.9 (6.5) cm, body mass = 68.4 (8.6) kg] are reported in Table 3. 

 

 

 

The observed vΔ50 corresponded to the 110% (95% CI: 109 to 111) of the 10000-m speed 

with a SD of 5% (95% CI: 4 to 6) and it was 1.4 km · h–1 (95% CI:1.3 to 1.6) faster than the 

10000-m speed with an SD of 0.7 km · h–1 (95% CI: 0.6 to 0.8). Instead, the observed vΔ50 

corresponded to the 92% (95% CI: 91 to 92) with an SD of 2% (95% CI: 0 to 2) and it was 1.4 

km · h–1 (95% CI: 1.5 to 1.3) slower than the Vpeak with an SD of 0.5 km · h–1 (95% CI: 0.4 to 

TABLE 3. Physiological and performance characteristics of the runners. 

     75 RUNNERS                       61 RUNNERS  

V̇O2max (mL · kg–1 · min–1) 58.6 (5.8) 58.3 (6.1) 

V̇O2max (L · min–1) 4.04 (0.76) 3.97 (0.76) 

RE (mL · kg–1 · km–1) 215.6 (18.5) 216.5 (19.0) 

Vpeak (km · h–1) 17.0 (1.3) 17.1 (1.5) 

vLT1 (km · h–1) 12.3 (1.0) 12.3 (1.0) 

vLT2 (km · h–1) 14.2 (1.1) 14.3 (1.3) 

10000-m speed (km · h–1) 14.2 (1.2) 14.5 (1.6) 

Data are presented as means (SD). LT1, first lactate threshold; LT2, second lactate 

threshold; RE, running economy; vLT1, speed at the first lactate threshold; vLT2, speed at 

the second lactate threshold; V̇O2, oxygen uptake; V̇O2max, maximal oxygen uptake; Vpeak, 

peak running speed. 
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0.8). After having accounted for the within-individual variability, the inter-individual 

variability in 10000-m speed at vΔ50 was 4% (95% CI: 3 to 6) when expressed as a percentage 

of 10000-m speed and 0.5 km · h–1 (95% CI: 0.4 to 0.8) when expressed as the difference 

between vΔ50 and 10000-m speed. Instead, the inter-individual variability in Vpeak at vΔ50 was 

1% (95% CI: 1 to 2) when expressed as a percentage of Vpeak and 0.2 km · h–1 (95% CI: 0.2 to 

0.3) when expressed as the difference between vΔ50 and Vpeak. 

 

5.3 Individualizing HIIT prescriptions: physiological characteristics vs race 

pace  

Due to COVID-19 restrictions imposed by the Italian government on November 2020, only 30 

runners out of 38 (15 for each group) completed all the measurements at the end of the first 

recruitment sequence, while one extra runner belonging to PHY completed the laboratory 

measurements only [RP: 9 men, 6 women; age = 41 (8) years; height = 173.7 (7.5) cm, body 

mass = 65.5 (9.7) kg; PHY: 11 men, 5 women; age = 36 (10) years; height = 171.3 (6.6) cm, 

body mass = 65.6 (8.1) kg]. 

PHY ran 45.6 (17.4) km · week–1 with an average frequency of 4.4 (1.2) times · week–1, 

while RP ran 45.9 (15.2) km · week–1 with an average frequency of 4.0 (1.4) times · week–1. 

PHY performed 68 (16)% of the overall training volume in the moderate-intensity domain, 6 

(8)% in the heavy-intensity domain, and 26 (11)% in the severe-intensity domain, whereas RP 

performed 64 (16)% of the overall training volume in the moderate-intensity domain, 8 (13)% 

in the heavy-intensity domain and 28 (14)% in the severe-intensity domain. During the 

intervention period, Nmax increased from 3.6 (1.0) to 4.6 (0.9) in PHY and from 4.7 (1.3) to 5.7 

(1.8) in RP. 

Descriptive statistics for the 31 runners are reported in Table 4, whereas inferential statistics 

are reported in Table 5. The statistics that are reported for each outcome are calculated based 

only on the runners who completed the pre-training and post-training measurements. V̇O2max 

and Vpeak increased significantly in PHY. However, V̇O2max also decreased in RP. The effect of 

the training intervention on V̇O2max and Vpeak was statistically larger in PHY compared with 

RP. The 10000-m speed increased significantly in RP and the effect of the training intervention 

was statistically larger compared with PHY. The fractional V̇O2max at LT1 decreased in RP and 

the effect of the training intervention was statistically smaller compared with PHY. 
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TABLE 4. Values of the outcome variables before and after the training intervention. 

 PHY RP 

 PRE POST PRE POST 

V̇O2max (mL · kg–1 · min–1) 58.0 (6.5) 60.9 (7.1) 54.8 (6.1) 52.8 (6.4) 

V̇O2max (L · min–1) 3.82 (0.74) 3.97 (0.76) 3.58 (0.65) 3.50 (0.63) 

Vpeak (km · h–1) 16.9 (1.7) 17.4 (1.8) 16.6 (1.5) 16.5 (1.5) 

10000-m speed (km · h–1) 14.4 (1.6) 14.6 (2.1) 13.7 (1.1) 14.1 (1.1) 

RE (mL · kg–1 · km–1) 212.6 (16.7) 210.2 (15.4) 200.0 (16.2) 200.5 (14.1) 

%V̇O2max at LT1 75.1 (8.0) 74.1 (5.2) 74.2 (6.3) 78.5 (6.4) 

V̇O2 at LT1 (mL · kg–1 · min–1) 43.2 (4.0) 45.4 (5.7) 40.5 (2.9) 41.2 (3.5) 

vLT1 (km · h–1) 12.1 (0.9) 12.7 (0.3) 12.2 (1.1) 12.3 (1.2) 

%V̇O2max at LT2 85.3 (6.5) 84.1 (3.3) 84.1 (6.6) 87.8 (5.7) 

V̇O2 at LT2 (mL · kg–1 · min–1) 49.2 (4.6) 51.5 (5.9) 45.9 (4.3) 46.2 (4.9) 

vLT2 (km · h–1) 14.0 (1.5) 14.5 (1.5) 14.0 (1.1) 13.9 (1.3) 

Data are presented as means (SD). LT1, first lactate threshold; LT2, second lactate threshold; 

RE, running economy; vLT1, speed at the first lactate threshold; vLT2, speed at the second 

lactate threshold; V̇O2, oxygen uptake; V̇O2max, maximal oxygen uptake; Vpeak, peak running 

speed. 
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6 
DISCUSSION 

 

‘Without proper interpretation, data is just noise.’ 

Unknown 
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6. DISCUSSION 

 

In my thesis, I aimed to clarify several still open questions about the effects of different HIIT 

prescription models on physiological response and performance in distance runners. This aim 

was achieved through three different research questions, which focused on separated but related 

aspects of the topic. The first question was whether a highly-individualized, physiologically-

based approach to HIIT prescription was more efficacious (i.e., superior) than a standardized 

one that imposes the same HIIT scheme on all runners in developing cardiorespiratory fitness, 

in terms of V̇O2max and Vpeak, and reducting heterogeneity of training effects. The experimental 

data corroborated both my hypotheses, which led me to conclude that individualizing HIIT 

prescription according to physiological characteristics and response to exercise should be the 

choice for coaches and athletes in those training phases aimed to improve cardiorespiratory 

fitness (usually during the preparatory phase and the early part of the specific period far from 

major competitions). The second aim was to look for alternative parameters to estimate the 

v∆50 that did not require laboratory tests. I found that data from an incremental treadmill test 

conducted without any lab measurements – namely the relative percent of the Vpeak and the 

absolute difference between Vpeak and v∆50 − can inform about the v∆50 value with sufficient 

heterogeneity between individuals to be used as valid alternatives to the delta concept. On the 

contrary, the larger variability in race pace-derive measures at v∆50 does not make them 

suitable for prescribing HIIT according to the physiologically-based approach. The third 

question was whether the method used to prescribe HIIT intensity (i.e., physiological 

parameters vs race pace) would have affected the magnitude and the heterogeneity of 

cardiorespiratory adaptations and 10-km performance in moderately-trained distance runners. 

Although the experimental data were inconclusive for heterogeneity in the intervention effect, 

they corroborated both my hypotheses about the mean training effect, which led me to conclude 

that the two training approaches may be possible within the same macrocycle, but the 

implementation of the physiologically-based should precede the implementation of the race 

pace-based approach in terms of proximity to major competitions. 

 

6.1 Individualizing HIIT according to the physiological characteristics  

Previous research showed that performing prolonged intervals at intensities near V̇O2max 

induces statistically significant improvements in V̇O2max compared with lower-intensity 
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(domain) protocols in trained endurance runners (Helgerud et al., 2007; Stöggl & Sperlich, 

2014). Several authors suggested personalizing HIIT prescriptions according to the 

physiological characteristics of the runners and their responses to exercise to maximize 

cardiorespiratory adaptations (see Buchheit & Laursen, 2013a, b for an overview). I 

investigated whether individualizing HIIT prescriptions using this approach would have 

induced higher adaptations in cardiorespiratory fitness, in terms of V̇O2max and Vpeak, and a 

smaller heterogeneity of training effects than standardized prescriptions, which are often 

adopted by distance runners because of their stronger social compatibility (Casado et al., 2019). 

The experimental data corroborated my first hypothesis since the mean intervention effect for 

V̇O2max and Vpeak was statistically larger in IND than STD, Moreover, the effect size for the 

relative V̇O2max (3.7 mL · kg–1 · min–1) was similar to, or slightly lower than, the one observed 

by Helgerud and colleagues (3.7 − 3.9 mL · kg–1 · min–1) when comparing a similar HIIT 

program with lower-intensity protocols. Although the smaller heterogeneity of training effects 

in IND than STD was not statistically significant for V̇O2max, this was the case for Vpeak. These 

apparent discrepancies are likely explained by the higher reliability of Vpeak than V̇O2max 

measures (Hopkins et al., 2001) and by the fact that the sample size for the investigation (which 

was also affected by the high dropout rate) was based on the mean training effect, which 

requires smaller sample sizes than for investigating and training response heterogeneity 

(Vallejo et al., 2018). These novel findings represent an important turning point for HIIT 

prescriptions since they highlighted the trade-off between generalizability and cardiorespiratory 

gains. The use of physiological anchors to prescribe exercise intensity aims to homogenize the 

cardiorespiratory stimulus across individuals. A major advantage of using this approach to 

individualize HIIT prescriptions is that reasonable errors in estimating exercise intensity, which 

would affect the time required to reach V̇O2max (Burnley & Jones, 2007), can be compensated 

by an increased or reduced interval duration or the number of intervals, which would mitigate 

the impact of the initial misestimation on the total time spent at V̇O2max (Billat et al., 2000). 

This mechanism relies on the presence of a continuous slow component of V̇O2 kinetics that 

allows V̇O2 to reach maximal values for sufficiently prolonged exercise, even when 

interspersed with brief recovery periods (Burnley & Jones, 2007; Jones et al., 2010). However, 

if the HIIT intensity happens to fall below the boundary of the severe domain (i.e., below vLT2), 

either as a consequence of a substantial underestimation or of an improvement in the vLT2 

during the training period, any such compensatory mechanism is no longer possible, impeding 

to runners to reach their V̇O2max during the HIIT session. This may result in a negligible 

cardiorespiratory stimulus in these individuals (Wenger & Bell, 1986, Midgley & McNaughton, 
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2006; Midgley et al., 2006b, 2007b) and consequently a large training response heterogeneity 

(Figure 19). The large individual variability in the exercise intensity observed in STD when 

running at the (same) prescribed speed [i.e., 46 (23)% of ∆ between the vLT2 and Vpeak] and, 

especially, the statistically larger heterogeneity of training effects on Vpeak in STD than IND 

agree with this theory-driven rationale. 

 

FIGURE 19. Representation of the physiological rationale underlying this investigation. The much 

larger chance that the prescribed HIIT intensity would shift from the severe to the heavy domain in STD 

than IND during the training period would result in a much larger possibility than some runners may 

face blunted − if not null − improvements in cardiorespiratory fitness in STD than IND due to a 

reduced/zero time spent at (or near) V̇O2max. This would in turn result in an overall smaller mean training 

effect and larger heterogeneity of intervention effects in STD compared with IND (modified from 

Demarie et al., 2000). 

 

Conducting a mediation analysis on the physiological determinants of V̇O2max response to 

the different HIIT interventions was beyond the scope of my investigation. Helgerud and 

colleagues (2007) observed within-group improvements in the maximal stroke volume and 

cardiac output following eight weeks of HIIT protocol with either short (15 s) or long (4 min) 

intervals in trained individuals. However, no statistical differences were observed between 

these HIIT protocols and when compared with lower-intensity protocols by the authors. 

Moreover, the authors did not detect any statistical difference in the blood volume and oxygen-
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carrying capacity within and between the interventions. Despite the lack of data, there is no 

reason to think that the observed differences in the V̇O2max response between the two different 

HIIT protocols investigated depend on different physiological determinants according to the 

‘classical’ model of V̇O2max (Basset & Howley, 2000; Joyner & Coyle, 2008), since the 

exercise-induced mechanical overload that occurs at intensities that elicit the V̇O2max represents 

the main mediating physiological mechanism for V̇O2max improvements in already trained 

runners (Midgley et al., 2006b, 2007b).         

The RE significantly improved in IND but not in STD and the two groups were not 

statistically different in their change scores. Previous uncontrolled (Demarle et al., 2001, 2003; 

Slawinski et al., 2001; Lafitte et al., 2003) and controlled studies comparing submaximal HIIT 

against lower-intensity protocols for what concerns within-group analysis (Helgerud et al., 

2007; Stöggl & Sperlich, 2014) detected a significant improvement in RE following similar 

HIIT interventions. However, before being tempted to interpret these findings as evidence of 

efficacy, it is important to keep in mind the limits in terms of error rate control and 

informativeness of using separate analysis of changes from baseline in each parallel group when 

making statistical inference in randomized studies (Matthews & Altman, 1996; Bland & 

Altman, 2011, 2015). While the former point equally applies in all circumstances, the latter 

becomes particularly relevant in training intervention studies with athletes since the within-

group analysis cannot isolate the effect of the experimental intervention from the rest of the 

training, which may be – perhaps highly – dependent on the phase of the season when the study 

or investigation is conducted. This makes it way more difficult to formulate and test precise 

hypotheses using only within-group analysis in the athlete population.  

I did not observe any statistical within-group or between-group difference in the lactate 

thresholds when expressed in terms of V̇O2 or speed. However, the fractional V̇O2max at vLT2 

significantly decreased in IND and it was inferior when compared with STD. Previous studies 

detected (Helgerud et al., 2007; Stöggl & Sperlich, 2014) and failed to detect (Demarle et al., 

2001, 2003; Slawinski et al., 2001; Lafitte et al., 2003; Garcin et al., 2004; Helgerud et al., 

2007; Stöggl & Sperlich, 2014) statistical changes in the lactate threshold(s) following similar 

submaximal HIIT protocols. Stöggl and Sperlich (2014), but not Helgerud and colleagues 

(2007), observed larger improvements in the speed at the lactate threshold after HIIT 

intervention than after moderate-intensity or heavy-intensity continuous training. Several 

factors, such as the choice of the measure (Basset & Howley, 2000; Midgley et al., 2007b), its 

method of determination (Faude et al., 2009; Poole et al., 2021), the different research designs, 



89 
 

and the small sample sizes characterizing these studies (Speed & Andersen, 2000), may explain 

these (real or apparent) discrepancies. Within the context of my investigation, I speculate that 

improvements in cardiorespiratory fitness and RE in IND might have contributed to reducing 

the fractional V̇O2max at vLT2 (Midgley et al., 2007b). 

I did not observe any statistical change in 10000-m performance within each group nor any 

difference between the groups. These results may appear unexpected when considering the 

important role that V̇O2max and especially Vpeak play in determining 10000-m performance in 

recreational (Machado et al., 2013) and trained (Morgan et al., 1989; Noakes et al., 1990; Evans 

et al., 1995) distance runners. When interpreting these findings, we should keep in mind that 

10000-m performance – and more generally distance running performance – represents a rather 

complex phenomenon involving several psychobiological factors interacting at multiple levels 

(Renfree & Casado, 2018). Even when attempting to minimize the weight of the psychological 

and environmental components as I did when designing the time trial, several physiological 

factors may influence to a various extent the performance (Basset & Howley, 2000; Midgley et 

al., 2007b). Noteworthy, previous literature only provides a rather imprecise (and sometimes 

contradictory) estimation of the role of each physiological determinant, which appears to vary 

according to the race distance and runners’ characteristics (Basset & Howley, 2000; Joyner & 

Coyle, 2008; Kenneally et al., 2021a). Kenneally and colleagues (2018, 2021a, b) suggested 

that training prescriptions according to a percentage of the (event-specific) target race pace may 

be more successful than prescriptions according to physiological characteristics in maximizing 

running performance because of their ability to stimulate the optimal combination of 

physiological (and possibly extra-physiological) characteristics required for that given task. 

Although these authors developed their reasoning from a TID perspective, the ‘race pace 

approach’ may also be extended to exercise prescription and represent an interesting candidate 

for future investigations on HIIT.  

A missing piece of information in my investigation relates to the lack of data about the total 

time spent at (or near) V̇O2max with the two different HIIT protocols. To my knowledge, very 

few longitudinal HIIT studies included this measure (e.g., Turnes et al., 2015). The main reason 

why I decided to not include this measurement in my design related to its poor reliability 

(Midgley et al., 2007d), which would have required either an unrealistically larger sample or a 

substantially increased burden to participants due to the more testing sessions that would have 

been needed to achieve sufficient power to detect plausible differences between the groups. In 

my investigation, I manipulated the submaximal HIIT component leaving the rest of the training 
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substantially unchanged other than for the replacement that was necessary to maintain a similar 

training volume to the runners’ habitual practice. This approach isolates the effect of the 

experimental HIIT interventions from the rest of the training when intervention allocation is 

randomized, thus avoiding confounding (Mansournia et al., 2018). That being said, it is worth 

mentioning that the implementation of my training program resulted in a polarized TID for most 

of the runners in IND and STD. Coaches usually adopt this TID scheme to build 

cardiorespiratory fitness and conditioning during the preparatory phase and the early part of the 

specific period far from major competitions (Kenneally et al., 2018, 2020a). Previous research 

found that the polarized TID led to superior improvements in physiological characteristics 

associated with endurance performance compared with other TIDs (Stögg & Sperlich, 2014, 

2015; Rosenblat et al., 2018). Although the resulting TID in my investigation matched with the 

typical coaching practice, the effect of the implementation of the two HIIT protocols with 

different TIDs (i.e., pyramidal) remains unknown. Similarly, the impact of using different 

periodization models (e.g., block periodization) than my more traditional approach on the 

difference between the two HIIT protocols requires further investigation. From a statistical and 

methodological perspective, I opted for a per-protocol analysis, which refers to inclusion in the 

analysis of only those individuals who completed the investigation without major deviation 

from the experimental training protocol (Moher et al., 2010). I chose this population analysis – 

which is often the standard in exercise physiology and sport sciences – since I was more 

interested in the causal effect that would have been observed if all runners had adhered to the 

training protocols rather than the effect of training prescriptions per se. One main drawback of 

the per-protocol analysis relates to the increased risk of selection bias due to non-random 

adherence from participants with the assigned interventions, which may affect both average 

treatment estimate and heterogeneity of training effects (Mansournia et al., 2018; Bonafiglia et 

al., 2019). Although the overall dropout rate was similar between the groups, the dropout 

analysis revealed that the initial training level might have played an important role in 

determining more dropouts for STD than IND. By applying the same fixed HIIT characteristics 

to a heterogeneous group of runners in STD, I indirectly forced those runners who were not 

able to sustain the prescribed training protocol to withdraw from the investigation. This 

restricted the sample to the higher caliber runners, for which smaller gains and possibly larger 

heterogeneity in V̇O2max response were expected. Although I partly accounted for selection bias 

by adjusting the analysis for pre-training scores, this approach cannot completely remove 

selection bias (Mansournia et al., 2018). An important limitation that is not related to the 

research design but the applicability of its findings relates to the extrinsic barriers for trained 
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distance runners to obtain individualized HIIT prescriptions according to physiological 

characteristics and response to exercise. Since my individualized approach would require at 

least a visit to a physiology lab in each mesocycle, many amateur runners may view the trade-

off between costs of training prescriptions and the resulting benefits as non-convenient. In this 

regard, future research should identify valid field-based alternatives to induce a similar 

cardiorespiratory stimulus without the need of relying on laboratory testing. 

 

6.2 Testing interindividual variability in different treadmill-related measures 

and race pace-related measures 

I previously showed that individualizing HIIT prescriptions using the delta concept led to 

superior and more homogeneous cardiorespiratory adaptations than standardized protocols and 

reduce the heterogeneity of training effects. Notwithstanding these proven benefits, the main 

limit to the implementability of the delta concept for exercise prescription is represented by the 

need for accessibility to physiology labs or medical clinics and expert personnel to properly 

conduct the measurements required to obtain valid and reliable data for exercise prescription. 

Therefore, I investigated whether more practical and accessible treadmill-related measures 

could be used as a valid surrogate of the delta concept by assessing the mean value and the 

individual variability occurring at vΔ50, an intensity that has been largely used to prescribe 

HIIT interventions in the literature (Billat et al., 2000; Demarie et al., 2000; Demarle et al., 

2001, 2003; Slawinski et al., 2001; Garcin et al., 2002; Lafitte et al., 2003). By using the same 

methodological approach, I also investigated whether 10000-m speed can be used to 

approximate vΔ50, as previously suggested by different authors (Billat, 2001, Billat et al., 

2002). To separate the true (inter-)individual variability from the biological (intra-individual) 

variability, I conducted repeated measurements on a subgroup of runners. 

I identified with discrete precision the mean values of Vpeak and 10000-m speed at which the 

vΔ50 occurs. Despite the slightly different incremental treadmill protocol and the definition I 

used to define the Vpeak, the point estimates for the difference between vΔ50 and Vpeak (i.e., − 

1.4 km · h–1) and the percentage of vΔ50 at which Vpeak occurs (i.e., 92%) were very similar to 

the estimates previously observed in the literature (Demarle et al., 2000; Billat et al., 2000; 

Demarie et al., 2000; Demarle et al., 2001, 2003; Slawinski et al., 2001; Garcin et al., 2002; 

Lafitte et al., 2003). However, contrary to previous recommendations (Billat, 2001, Billat et al., 

2002), the vΔ50 was substantially (⁓10%) higher than the 10000-m speed. The lower training 
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level of my runners compared to the elite ones investigated by Billat and colleagues (Billat, 

2001, Billat et al., 2002) may explain these discrepancies. 

In addition to the mean values of my candidate measures, I also quantified their inter-

individual variability – expressed as SD – as a means to check whether such measures were 

consistent across runners. In this regard, I observed a lower variability at vΔ50 when using Vpeak 

than when using 10000-m speed expressed as both absolute difference and relative percentage. 

That being said, when considering the uncertainty surrounding the point estimate (i.e., the 95% 

CI), the maximal plausible variability at vΔ50 expressed as the absolute difference from vΔ50 

was similar when using Vpeak and 10000-m speed. However, after having accounted for the 

within-individual variability, the inter-individual variability of Vpeak at vΔ50 was substantially 

lower than the variability of 10000-m speed at vΔ50, regardless of the method used to express 

the value. 

When using physiologically-based approaches to individualize HIIT prescriptions for 

maximizing cardiorespiratory adaptations, it is critical to determine the target intensity with 

high precision. This means to ensure that the training intensity is set sufficiently far from the 

limits of the (severe) domain to maximize the time spent at (or near) V̇O2max. By using a much 

larger sample size than what is generally used in the literature (to obtain a sufficient precision 

in parameter estimation) and repeated measurements (to isolate the true inter-individual 

variability by the biological variability), I corroborated my hypothesis that the variability in the 

absolute difference from Vpeak and vΔ50 and in the percentage of Vpeak at vΔ50 between runners 

is indeed low and can thus be used to individualize HIIT prescriptions according to the 

physiological approach whenever a direct measure of the vΔ50 is not easily available (i.e., in 

the most of the common scenarios). On the contrary, the larger variability in the absolute 

difference and relative percentage of 10000-m speed at vΔ50 does not provide sufficient 

precision to use this variable for individualizing this form of HIIT in this population. Since we 

make inferences on the population but we prescribe on individuals, estimates that have a large 

variability at the desired value in the population level may result in misprescriptions and 

suboptimal training outcomes at the individual level and therefore should be discarded in favor 

of less variable measures.  

A possible limitation of this investigation regards the information provided by its main 

inferential model. Although the model allowed us to isolate the true inter-individual variability 

from the random error, it did not allow us to investigate the effect of the training level on the 

mean value and the variability of the measures in this population. Previous studies showed that 
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higher caliper runners may be able to maintain a V̇O2 steady-state at higher percentages of the 

V̇O2max than what is generally expected for trained runners (Billat et al., 1998). Since vΔ50 and 

the delta concept, in general, is based on two physiological parameters – namely vLT2 and Vpeak 

[which is in turn determined by V̇O2max and RE (Billat & Koralsztein, 1996; Hill & Rowell, 

1996)] – any difference in the variability in these measures compared to lower caliber runners, 

all else equal, would inevitably affect the variability in these measures at vΔ50. In this regard, 

it is worth mentioning that higher caliper runners may be more homogeneous than the lower 

caliper counterpart in some measures but not necessarily in others (Conley & Krahenbuhl, 

1980). A key point when evaluating the impact of this limitation on the informativeness of this 

work is to not forget that, elite runners are those with the highest chances to perform 

physiological lab tests to obtain data for individualizing their training and therefore those who 

have the lesser need of surrogate measures for those variables. On the other hand, novice 

runners do not need near to maximal aerobic intensities to develop their V̇O2max (Wenger & 

Bell, 1986, Robinson et al. 1991; Midgley & McNaughton, 2006; Midgley et al., 2007b, 2007b) 

and therefore they are less affected by the need of matching and maintaining the proper 

physiological domain during their HIIT sessions.   

 

6.3 Individualizing HIIT prescriptions: physiological characteristics vs race 

pace  

The lack of any statistical differences for 10000-m speed between the two training interventions 

in my first investigation indicates that there is no evidence about the benefits of individualizing 

HIIT prescriptions according to a physiologically-based approach for what concerns running 

performance. Kenneally and colleagues (2018, 2021a, b) suggested that individualizing training 

prescriptions according to a percentage of the target race pace may be more successful in 

maximizing running performance than physiologically-based prescriptions because of their 

ability to stimulate the optimal combination of determinants for that given task. This hypothesis 

is in agreement with modern network theory (Bashan et al., 2012; Balagué et al., 2020; Ivanov, 

2021), according to which complex biological organisms, such as the human body, can adapt 

to a new task by developing a more efficient network of physiological interactions. Prescribing 

on a higher percentage of the target race pace may result in improved tolerance to the new 

training intensity and an improved capacity to sustain a faster pace in competition, provided 

that the intensity used to prescribed exercise is not too high to lose the specificity for the task. 

On the contrary, prescribing on a physiologically-based anchor (e.g., v∆50) may lead some 
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runners to train at intensities that are very distant from the target race pace, risking losing the 

specificity for the task. This would result in a larger individual response heterogeneity in race 

performance as well as in smaller gains at the group level, even when the average training 

intensity is similar between the groups (Figure 20). I successfully corroborated the hypothesis 

of larger improvements in 10000-m performance following race pace-based HIIT prescriptions 

than physiologically-based HIIT prescriptions in my third investigation. However, although I 

observed a moderate variability in the percentage of 10000-m pace in PHY at v∆50 [108 (5)%], 

which is in agreement with the variability observed in my previous two investigations, I failed 

to corroborate the predicted smaller heterogeneity in race performance when prescribing 

according to race pace in the trained distance runner population. Moreover, other than a larger 

improvement in the %V̇O2max at LT1 in RP compared with PHY, I did not observe any 

superiority of the race pace-based approach over the physiologically-based for what concerns 

the physiological factors I investigated. Several reasons may explain these results. From a 

statistical perspective, since I performed sample size estimation for mean training response only 

for outcomes related to confirmatory hypotheses (i.e., V̇O2max, Vpeak, and 10000-m speed), the 

inferential test may have been underpowered to detect differences in the other outcomes and 

response heterogeneity between the interventions (Vallejo et al., 2018). From a 

psychophysiological perspective, it is important to mention that the cardiorespiratory and 

metabolic factors I investigated represent only a part of all the determinants of race performance 

(Basset & Howley, 2000; Joyner & Coyle, 2008), which is affected by several different factors 

interacting at multiple levels (Renfree & Casado, 2018). A more efficient network of 

physiological interactions for a 10000-m run may not necessarily yield to improvement in 

performance unless any harmful effect from the other determinants is overcome. Although I 

tried to minimize the weight of the psychological and environmental factors when assessing 

performance response to the two interventions, I cannot exclude differences in these factors that 

may have increased the observed heterogeneity in RP. 
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FIGURE 20. The physiological approach to high-intensity interval training prescription may lead some 

runners to train at intensities that are very distant from the target speed with an increased risk of losing 

the specificity for the task. The resulting inter-individual variability in the training stimulus may affect 

both the individual response heterogeneity and the mean training effect for 10000-m performance. 

 

I also observed a larger effect on V̇O2max and Vpeak following the physiologically-based HIIT 

prescriptions than race pace-based HIIT prescriptions, which instead led to a decrease in 

V̇O2max. These findings corroborate my theory-driven hypothesis and agree with my previous 

findings showing how individualizing HIIT prescriptions according to physiological anchors 

should be the preferred choice when the training goal is to maximize cardiorespiratory fitness. 

However, I failed to detect a larger heterogeneity in V̇O2max and Vpeak following the race pace 

approach compared to the physiological approach. Exercising at a sufficient intensity to reach 

the V̇O2max (i.e., above the vLT2 or CS) seems to be a fundamental requirement to further 

develop cardiorespiratory fitness in already trained individuals (Wenger & Bell, 1986, 

Robinson et al. 1991; Midgley & Naughton, 2006; Midgley et al., 2006b, 2007b). I previously 

showed that exercise prescriptions that do not allow to train at the appropriate intensities for the 

whole duration of a target training period decrease mean training response in V̇O2max and Vpeak 

and increase heterogeneity in training response in Vpeak across individuals. I also showed that 

the race pace on a given running distance cannot be used to precisely estimate v∆50 due to the 
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moderate-to-large variability occurring across individuals from this population. In prescribing 

HIIT in RP, I individualized intervals speed at 110% of the target race pace, while maintaining 

intervals distance, recovery speed, and recovery distance fixed for all runners. I chose this 

approach to mimic coaching practice and provide an empirical comparator to investigate my 

main hypotheses and match the average intensity between RP and PHY. Prescribing HIIT using 

the race pace approach resulted in large variability in the physiological intensity [i.e., 40 (25)% 

of ∆ between vLT2 and Vpeak] that was similar to the one I observed when using standardized 

training prescriptions, with a high risk of falling outside the minimum training intensity to 

stimulate cardiorespiratory fitness adaptations in this population during the training period. It 

is important to remember that training close to or at V̇O2max represents a necessary but not 

sufficient condition to maximize the cardiorespiratory stimulus, and training intensity per se 

represents only one of the factors determining the time to exhaustion – and possibly the total 

time spent at (or near) V̇O2max – during intermittent high-intensity exercise (Jones et al., 2010; 

Jones & Vanhatalo, 2017). Although I did not measure the total time spent at (or near) V̇O2max, 

it may be possible that the larger degree of individualization allowed in RP than STD reduced 

the inter-individual variability in the training stimulus within RP and thus affected the 

differences in the heterogeneity of intervention effects between the groups (Midgley & 

Naughton, 2006; Buchheit & Laursen, 2013a, b).  

These findings may have important implications for coaches when deciding the most 

appropriate approach to prescribe HIIT to their athletes according to the training goal. As 

previously stressed (Kenneally et al., 2018a, b), maximizing V̇O2max development during a 

particular training phase may help in sustaining higher intensities during later performance-

oriented stages of training preparation. Therefore, the use of the physiologically-based approach 

and the one based on race pace may be possible within the same macrocycle, but the 

implementation of the former should precede the implementation of the latter in terms of 

proximity to major competitions. I want to stress that, despite the promising findings, there is 

no evidence that the 110% of the race pace represents the optimal HIIT intensity for maximizing 

performance on 10000-m or any other running distance. As I previously discussed, I chose this 

value to match the training intensity between the two groups I investigated, but the percentage 

value per se is not less arbitrary than those previously proposed by Kenneally and colleagues 

(2021a, b) to characterize the TID of athletes. Future research should identify the optimal 

percentage value or range to prescribe HIIT for any given race distance (i.e., how much above 

the target race pace we can be prescribed HIIT intensity to stimulate adaptations without losing 

the specificity for the task). 
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7 
CONCLUSIONS 

 

‘Everything is theoretically impossible, until it is done.’ 

Robert A. Heinlein − science fiction author, engineer, and naval officer 
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7. CONCLUSIONS 

 

1) Individualizing HIIT prescriptions according to physiological characteristics and response 

to exercise induce larger improvements in V̇O2max and Vpeak and reduce response heterogeneity 

for Vpeak compared with standardized prescriptions in distance runners. Although no conclusion 

can be drawn about the efficacy of the standardized approach per se, these results stressed the 

importance of favoring individualized prescriptions whenever improving these physiological 

attributes represents a priority for coaches and athletes. 

 

2) I identified valid surrogates of the delta concept that permit individualizing HIIT 

prescriptions according to the physiological approach making this form of HIIT more accessible 

to the largest part of the runner population. These measures, namely the relative percent of the 

Vpeak at v∆50 and the difference between v∆50 and Vpeak, only require a commercial (and 

properly calibrated) treadmill available in any commercial gym and also in some private houses 

and allow to estimate vΔ50 with discrete precision and reasonably low effort. 

 

3) The approach adopted to individualize HIIT prescriptions (i.e., physiological vs race pace 

approach) impacts the type of training response, in terms of cardiorespiratory fitness and 

running performance. These findings complement those from the first family of hypotheses in 

helping coaches and athletes to choose the most appropriate approach to HIIT prescription 

according to the desired goal of any given training phase. 

 

 

 

 

 

 



100 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

7. CONCLUSIONES 

 

1)  La individualización de las prescripciones de HIIT de acuerdo con las características 

fisiológicas y la respuesta al ejercicio induce mayores mejoras en el V̇O2max y la Vpeak y reduce 

la heterogeneidad de la respuesta para la Vpeak en comparación con las prescripciones 

estandarizadas en corredores de fondo. Aunque no se puede sacar ninguna conclusión sobre la 

eficacia del enfoque estandarizado per se, estos resultados enfatizan la importancia de favorecer 

las prescripciones individualizadas siempre que mejorar estos atributos fisiológicos represente 

una prioridad para los entrenadores y atletas. 

 

2) Identifiqué sustitutos válidos del concepto delta que permiten individualizar las 

prescripciones de HIIT de acuerdo con el enfoque fisiológico, haciendo que esta forma de HIIT 

sea más accesible para la mayor parte de la población de corredores. Estas medidas, a saber, el 

porcentaje relativo de Vpeak en v∆50 y la diferencia entre v∆50 y Vpeak, solo requieren una cinta 

de correr comercial (y debidamente calibrada) disponible en cualquier gimnasio comercial y 

también en algunas casas particulares y permiten estimar vΔ50 con una precisión discreta y un 

esfuerzo razonablemente bajo. 

 

3) El enfoque adoptado para individualizar las prescripciones de HIIT (es decir, enfoque 

fisiológico versus ritmo de carrera) impacta el tipo de respuesta al entrenamiento, en términos 

de aptitud cardiorrespiratoria y rendimiento de carrera. Estos hallazgos complementan los de la 

primera familia de hipótesis para ayudar a los entrenadores y atletas a elegir el enfoque más 

apropiado para la prescripción de HIIT de acuerdo con el objetivo deseado de cualquier fase de 

entrenamiento determinada. 
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8 
BIBLIOGRAPHY 

 

‘Without data, you’re just another person with an opinion’ 

W. Edwards Deming − engineer, statistician, professor, and much more 
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9 
ADDENDUMS 

 

‘Above all, don't fear difficult moments. The best comes from them.’ 

Rita Levi-Montalcini – neurologist 
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