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a b s t r a c t

A dynamic bipartite matching model is given by a bipartite matching graph which
determines the possible matchings between the various types of supply and demand
items. Both supply and demand items arrive to the system according to a stochastic
process. Matched pairs leave the system and the others wait in the queues, which
induces a holding cost. We model this problem as a Markov Decision Process and study
the discounted cost and the average cost problem. We assume that the cost function is
linear on the queue sizes. We show that for the N-shaped matching graph, an optimal
matching control prioritizes the matchings in the pendant edges and is of threshold type
for the diagonal edge. In addition, for the average cost problem, we compute the optimal
threshold value. We then show how the obtained results can be used to characterize the
structure of an optimal matching control for a quasi-complete graph with an arbitrary
number of nodes. For arbitrary bipartite graphs, we show that, when the cost of the
pendant edges is larger than in the neighbors, an optimal matching policy prioritizes the
items in the pendant edges. We also study the W -shaped matching graph and, when
the cost of the pendant edges is larger than the cost of the middle edge, we conjecture
that an optimal matching policy is also of threshold type with priority to the pendant
edges; however, when the cost of the middle edge is larger, we present simulations that
show that it is not optimal to prioritize items in the pendant edges.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We study matching models with a bipartite compatibility graph. In this model, one supply and one demand item
rrive to the system in each time slot according to a given stochastic process. Compatible supply and demand items can
e matched, in which case they leave the system, and items that are not matched stay in the system. We assume that
upply and demand items are divided in classes. Thus, each class of supply items is compatible with a different subset
f demand item classes and, likewise, each class of demand items is compatible with a different subset of supply item
lasses. In Fig. 1 we represent an example of a compatibility graph with three demand nodes and three supply nodes. In
his case, when the system is empty and there is an arrival of the demand class 2 and the supply class 2, the arriving
tems can be matched and leave the system. However, in case of an arrival of the demand class 1 and the supply class 3
hen the system is empty, both items stay in the system since they cannot be matched.
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Fig. 1. A matching graph with three supply classes and three demand classes.

Once the compatibility graph and the probability distribution of arrivals of supply and demand classes are fixed, the
stochastic process of the number of items present in the system depends clearly on how compatible items are matched,
i.e., on the matching policy. For instance, the First Come First Matched policy is a popular matching policy that consists
of matching the incoming items with the oldest compatible items, if any. Another example is the Matching the Longest
policy, which matches each incoming item with its compatible item with the largest number of items (or the largest
queue). Unmatched supply and demand items incur a cost (for instance, when the available kidneys are not compatible
with the patient that requires the donation). An optimal matching policy can be hence defined as how items are matched
so as to minimize the cost of the system. In this work, we consider bipartite matching graphs and we aim to characterize
the optimal matching policy for this case.

When the compatibility graph is complete, since supply and demand items arrive in pairs, any newly arriving pair can
be matched, so there is never any queue. This shows that an optimal matching control consists of matching all the items
for this matching graph. For the rest of the compatibility graphs, the characterization of an optimal matching policy is not
that easy. Indeed, we model this problem as a Markov Decision Process and use arguments of structured policies in this
article. We consider the discounted cost problem as well as the average cost problem. We assume that the instantaneous
cost is a linear function on the queue sizes (i.e., on the number of items of each class).

The main contributions of this article are summarized as follows:

• We first consider the N-shaped matching graph, which is formed by two supply and two demand classes. For this
system, we show that an optimal matching policy matches all the items of the pendant edges and is of threshold
type in the diagonal edge. Furthermore, for the average cost problem, we provide an analytical expression of the
optimal threshold.

• We then focus on quasi-complete matching graphs with an arbitrary number of supply and demand nodes. We
provide conditions on the holding costs under which a threshold type policy has the same cost as a threshold
type policy of the N-shaped graph. As a result, using that an optimal matching policy for the N-shaped graph is
of threshold type, we show that an optimal policy of a quasi-complete graph with an arbitrary number of supply
and demand nodes is also of threshold type.

• We study optimal matching policies of an arbitrary bipartite graph in which the holding cost of each pendant edge
is larger than the holding cost of its neighbors. For this case, we show that an optimal matching policy consists of
matching all the items of the pendant edges.

• Finally, we consider the W -shaped graph, which is formed by two supply and three demand classes. We differentiate
two cases. First, we consider that the cost of the pendant demand nodes is larger than of the middle demand
node. We present the properties that the value function must satisfy to prove that an optimal matching policy is of
threshold type with priority to the pendant edges. Unfortunately, given the difficulty of these properties, we did not
succeed in showing that these properties are preserved by the Dynamic Programming operator. However, we show
that, if there is a set of properties (containing those required to show the optimality of the threshold type policy)
that are preserved under the Dynamic Programming operator, an optimal matching policy is of threshold type with
priority to the pendant edges for this case. Furthermore, we consider the case when the cost of the pendant nodes is
smaller than of the middile demand node. For this case, we present our numerical work that shows that the matching
policy that prioritizes the pendant edges is not optimal.

A conference version of this article appeared in [1].
The remainder of the article is organized as follows. In Section 2, we put our work in the context of the existing

literature. In Section 3, we describe the optimal control problem we investigate in this paper. We characterize an optimal
matching policy for the N-shaped graph in Section 4. Then, in Section 5 we study the optimal policy of a quasicomplete
matching graph and in Section 6 of arbitrary bipartite matching graphs. We also consider in Section 7 the W -shaped
matching graph. Finally, we provide the main conclusions of our work in Section 8.

2. Related work

The study of how to optimally match compatible items has been widely studied. This problem was introduced by with

Petersen and König and it was analyzed first considering that the population is fixed. For this case, its known that the

2



A. Cadas, J. Doncel and A. Bušić Performance Evaluation 154 (2022) 102286

H

W
α

opcroft–Karp algorithm [2] solves this problem in a bipartite graph with a time complexity of O(m
√
n) where m is the

number of edges and n is the number of nodes. We refer to [3, Table I] for a historical review of algorithms that compute
maximum matchings. Then, this problem was extended to the dynamic setting in which one population is static and the
other arrives according to a stochastic process [4–7]. Our work differs from this large literature since we explore fully
dynamic matching models, i.e., all the items arrive to the system according to a random process.

In 1984, Kaplan studied the tenant assignment process of public housing in Boston [8] in which, when a public housing
unit becomes available, it is assigned to the longest waiting family that listed the corresponding housing project. Kaplan
was interested in the matching rate, i.e., the fraction of families having the same preferences that are assigned to a
specific housing project. The authors in [9] modeled this problem as the First Come First Served (FCFS) infinite bipartite
matching model. This problem is defined by a connected bipartite graph, where nodes represent the class of items and
the edges their compatibilities. Several articles followed the aforementioned work. The authors in [10] provided necessary
and sufficient conditions for the ergodicity of the Markov chain associated to this model. They also proved the product
form of its stationary distribution. Furthermore, the authors in [11] considered a more detailed Markov chain and proved
its reversibility. The authors in [12] showed that the stationary distribution of the FCFS infinite bipartite matching model
coincides with that of the following queueing systems: the redundant model of [13] and the skill-based parallel server
system of [14].

In [15] the authors considered the bipartite matching model with other matching policies such as Last Come First
Served, Random, Match the Longest and Priority and established necessary and sufficient conditions for the stability of
these models. They also showed that the Match the Longest policy has the maximum stability region and introduced the
Extended Bipartite Matching Model, which extends the FCFS infinite matching policy by considering any joint distribution
for the classes of arrival pairs.

We would like to remark that some authors also investigated matching models where the compatibility graph is not
bipartite. This alternative model was introduced by [16] and the main particularity is that items arrive to the system one
by one. The authors in [17] showed that the stationary distribution of items for this model with the FCFS matching policy
satisfies a product-form expression.

In this work, we aim to find study an optimal matching policy with holding costs on the size of the queues. The authors
in [18] also considered holding costs on the size of the queues in a non-bipartite matching model and for the finite horizon
case. In our work, we consider a bipartite matching model and the discounted and average problems. Indeed, to the best
of our knowledge, optimality results for bipartite matching models have been obtained only in asymptotic regimes. The
authors in [19] analyze the heavy-traffic regime in which the difference between the arrivals of one item class and its
compatible items tends to zero for the average cost problem and derive a new matching policy that is asymptotically
optimal with bounded regret. A related optimization problem of maximizing rewards on edges has been considered
in [20]. In that paper, the authors consider compatibilities given by a hypergraph and develop a matching policy based
on an extension of the Greedy Primal–Dual algorithm and, using fluid limits, they show asymptotic optimality of their
algorithm.

One of the main contributions of this work is to show the optimality of threshold-type matching policies in dynamic
bipartite matching graphs. Similar policies have been also studied in a different context in which the goal is to optimally
assign jobs to servers. For instance, the authors in [21,22] consider that N-shaped model and show that there is a threshold
policy that is asymptotically optimal. The authors in [23] extended this result to a parallel server system with an arbitrary
topology.

3. Model description

We consider a bipartite matching graph (D ∪ S, E) where D = {d1, d2, . . . , dnD} and S = {s1, s2, . . . , snS } are,
respectively, the set of demand nodes (or queues) and the set of supply nodes. E ⊂ D × S is the set of allowed matching
pairs. In each time slot n, a demand item and a supply item arrive to the system according to the i.i.d. arrival process A(n).

e assume independence between demand and supply arrivals. The demand item arrives to the queue di with probability
i and the supply item arrives to the queue sj with probability βj, i.e:

∀(i, j) ∈ A P(A(n) = e(i,j)) = αiβj > 0

with
∑nD

i=1 αi = 1,
∑nS

j=1 βj = 1 and where A = D × S is the set of allowed arrival pairs, e(i,j) = edi + esj and ek ∈ NnD+nS

is the vector of all zeros except in the kth coordinate where it is equal to one, k ∈ D ∪ S. We assume that the αi and βj
are chosen such that the arrival distribution satisfies the necessary and sufficient conditions for stabilizability of the MDP
model: Ncond given in [24], i.e. ∀D ⊊ D, ∀S ⊊ S:∑

di∈D

αi <
∑

sj∈S(D)

βj and
∑
sj∈S

βj <
∑

di∈D(S)

αi (1)

where D(j) = {i ∈ D : (i, j) ∈ E} is the set of demand classes that can be matched with a class j supply and
S(i) = {j ∈ S : (i, j) ∈ E} is the set of supply classes that can be matched with a class i demand. The extension to
subsets S ⊂ S and D ⊂ D is D(S) =

⋃
j∈S D(j) and S(D) =

⋃
i∈D S(i). The main notation of this article is presented in
Table 1.
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Table 1
Summary of the main notation of this article.
D = {d1, d2, . . . , dnD } Set of demand nodes
S = {s1, s2, . . . , snS } Set of supply nodes
αi Probability that a demand item arrives to node di
βi Probability that a supply item arrives to node si
(i, j) Edge that connects di and sj
edi The dith vector of the canonical basis of RnD+nS

esj The nD + sjth vector of the canonical basis of RnD+nS

e(i,j) The sum of edi and esj (i.e., e(i,j) = edi + esj )
D(j) The set of demand classes that can be matched with sj
S(i) The set of supply classes that can be matched with di
Q (n) = (qk(n))k∈D∪S Vector of queue lengths at time slot n
X(n) = (xk(n))k∈D∪S Vector of queue lengths at time slot n after arrivals
Ux Set of admissible matchings when the vector of lengths after arrivals is x
ck Holding cost of node k ∈ D ∪ S

We denote by qk(n) the queue length of node k at time slot n, where k ∈ D ∪ S. Let Q (n) = (qk(n))k∈D∪S be the vector
f the queue length of all the nodes and Q = {q ∈ NnD+nS :

∑
k∈D qk =

∑
k∈S qk} be the set of all the possible queues

ength. We must have q(n) ∈ Q for all n. Matchings at time n are carried out after the arrivals at time n. Hence, Q (n)
volves over time according to the following expression:

Q (n + 1) = Q (n) + A(n) − u(Q (n), A(n)), (2)

here u is a deterministic Markovian decision rule which maps the current state Y (n) = (Q (n), A(n)) to the vector of the
tems that are matched at time n. Thus, Y is a Markov Decision Process where the control is denoted by u. It is sufficient to
onsider only deterministic Markovian decision rules and not all history-dependent randomized decision rules as proved
n [25, Theorem 5.5.3] and [25, Proposition 6.2.1]. Let us define X(n) = Q (n) + A(n) as the vector of the queue length of
ll the nodes just after the arrivals. In order to ease the notations and because the matchings only depend on the queues
ength after the arrivals, we use the following notation in the remainder of the paper: u(Q (n), A(n)) = u(X(n)). When the
tate of the system is Y (n) = (q, a), x = q + a, u(x) must belong to the set of admissible matchings which is defined as:

Ux =

⎧⎨⎩u =

∑
(i,j)∈E

u(i,j)e(i,j) ∈ NnD+nS : (a) ∀i ∈ D,
∑
k∈S(i)

u(i,k) ≤ xdi , (b) ∀j ∈ S,
∑
k∈D(j)

u(k,j) ≤ xsj

⎫⎬⎭ (3)

here u(i,j) is the number of matchings in the edge (i, j). Ux is defined for all x ∈ Q. We consider a linear cost function on
he buffer size of the nodes: c(Q (n), A(n)) = c(X(n)) =

∑
k∈D∪S ckxk(n).

A matching policy π is a sequence of deterministic Markovian decision rules, i.e. π = (u(X(n)))n≥1. The goal is to obtain
n optimal matching policy for two optimization problems:

• The average cost problem:

g∗
= inf

π
gπ with gπ (y) = lim

N→∞

1
N

N−1∑
n=0

Eπ
y [c(Y (n))]

• The discounted cost problem:

v∗

θ = inf
π

vπ
θ with vπ

θ (y) = lim
N→∞

N−1∑
n=0

θ tEπ
y [c(Y (n))]

where θ ∈ [0, 1) is the discount factor and y ∈ Y = Q×A is the starting state. Both problems admit an optimal stationary
policy, i.e. the decision rule depends only on the state of the system and not on the time [25]. The notation Eπ

y indicates
that the expectation is over the arrival process, given that Y (0) = y and using the matching policy π to determine the
matched items u(X(n)) for all n.

As A(n) are i.i.d., to ease the notation from now on, we denote by A a random variable with the same distribution as
A(1). For a given function v, Y (n) = (q, a), x = q + a, u ∈ Ux, we define for all 0 ≤ θ ≤ 1:

Lθ
uv(q, a) = c(q, a) + θE[v(q + a − u, A)] = c(x) + θE[v(x − u, A)]

Lθv(q, a) = c(q, a) + min
u∈Ux

θE[v(q + a − u, A)] = c(x) + min
u∈Ux

θE[v(x − u, A)]

and in particular, we define Tu = L1u and T = L1. A solution of the discounted cost problem can be obtained as a solution
of the Bellman fixed point equation v = Lθv. In the average cost problem, the Bellman equation is given by g∗

+ v = Tv.
We say that a value function v or a decision rule u is structured if it satisfies a special property, such as being increasing,

decreasing or convex. Throughout the article, by increasing we mean nondecreasing and we will use strictly increasing
4
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Fig. 2. The N-shaped matching graph.

for increasing. For a collection of properties σ , we denote by V σ the set of structured value functions that satisfy those
properties. Similarly, we define Dσ as the set of structured decision rules induced by those structured value functions. A
policy is called structured when it only uses structured decision rules and the set of structured stationary matching policies
is denoted by Πσ

= {π = (u(X(n)))n≥1 : u ∈ Dσ
}. The framework of this work is that of property preservation when

we apply the Dynamic Programming operator. For the average cost problem, we use an adapted version of [23,Theorem
6.11.3] and we proceed to characterize the structure of an optimal matching policy as follows: first, we identify a set of
structured value functions V σ and a set of structured deterministic Markovian decision rules Dσ such that if the value
function belongs to V σ an optimal decision rule belongs to Dσ . Then, we show that the properties of V σ are preserved by
the Dynamic Programming operator, i,e. that Lv ∈ V σ if v ∈ V σ . Finally, we show that these properties hold in the limit
as well.

In the case of the average cost problem, our proofs are based on [23,Theorem 8.11.1], which uses the results of the
discounted cost problem. In fact, the average cost problem is considered as a limit when θ tends to one and, therefore, it is
enough to show that the properties still hold for this limit. The statement of the theorems we use for the discounted cost
problem and the average cost problem are provided in Appendix A. These theorems present some technical requiments
due to the unboundness of the costs. In Appendix A we show that the technical requirements of the theorems we use
are satisfied and, therefore, when we study an optimal matching policy in the discounted cost problem, we only need to
check that conditions (a), (b) and (c) of Theorem 6 are verified, i.e,.

(a) v ∈ V σ implies that Lθv ∈ V σ ;
(b) v ∈ V σ implies that there exists a decision u′

∈ Dσ such that u′
∈ argminu Lθ

uv;
(c) V σ is a closed subset of the set of value functions under pointwise convergence.

whereas when we study an optimal matching policy in the average cost problem, we only need to check that conditions
(a) and (b) of Theorem 7 are verified, i.e.,

(a) for any sequence (θn)n≥0, 0 ≤ θn < 1, for which lim
n→+∞

θn = 1,

lim
n→+∞

[v∗

θn
− v∗

θn
(0)e] ∈ V σ

H with e(y) = 1 for all y ∈ Y

(b) v ∈ V σ
H implies that there exists a decision u′

∈ Dσ such that u′
∈ argminu Tuv;

4. N-Shaped graph

We now focus on the N-shaped matching graph, which is formed by two supply nodes and two demand nodes as well
as a N-shaped set of edges (see Fig. 2). Specifically, we have D = {d1, d2}, S = {s1, s2} and E = {(1, 1), (1, 2), (2, 2)}. We
also define (2, 1) as the imaginary edge between d2 and s1 (imaginary because (2, 1) /∈ E) that we introduce to ease the
otations. To ensure stability, we assume that α > β .
In this section, we show that an optimal policy for the N-shaped matching graph has a specific structure. For this

urpose, we first present the properties of the value function. Then, we show how these properties characterize the
ptimal decision rule and how they are preserved by the Dynamic Programming operator. Finally, we prove the desired
esults in Theorems 1 and 2.

.1. Value function properties

We now present the properties of the value function. We first define the increasing property as follows:

efinition 1 (Increasing Property). Let (i, j) ∈ E . We say that a function v is increasing in (i, j) or v ∈ I(i,j) if

∀a ∈ A, ∀q ∈ Q, v(q + e , a) ≥ v(q, a).
(i,j)

5
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emark 1. The increasing property in (2, 1) can be interpreted as the preference to match items of (1, 1) and of (2, 2)
han of (1, 2). Indeed, v(q + e(1,1) + e(2,2) − e(1,2), a) = v(q + e(2,1), a) ≥ v(q, a).

We now define the convexity property as follows:

efinition 2 (Convexity Property). A function v is convex in (1, 2) or v ∈ C(1,2) if ∀a ∈ A, ∀q ∈ Q such that qd1 ≥ qs1 , we
have

v(q + 2e(1,2), a) − v(q + e(1,2), a) ≥ v(q + e(1,2), a) − v(q, a).

Likewise, v is convex in (2, 1) or v ∈ C(2,1) if ∀a ∈ A, ∀q ∈ Q such that qs1 ≥ qd1 , we have

v(q + 2e(2,1), a) − v(q + e(2,1), a) ≥ v(q + e(2,1), a) − v(q, a).

We also define the boundary property next:

efinition 3 (Boundary Property). A function v ∈ B if

∀a ∈ A, v(0, a) − v(e(2,1), a) ≤ v(e(1,2), a) − v(0, a).

We remark that, the properties I(1,1), I(2,2), I(2,1) and C(1,2) are used to characterize the optimal decision rule, whereas
(2,1) and B are required to show that C(1,2) is preserved by the operator Lθ . In the remainder of the section, we consider
he following set of structured value functions

V σ
= I(1,1) ∩ I(2,2) ∩ I(2,1) ∩ C(1,2) ∩ C(2,1) ∩ B, (4)

hich means that we consider that the value function satisfies the following properties: it is increasing with (1, 1), (2, 2)
nd (2, 1), convex in (1, 2) and (2, 1) and satisfies the boundary property.

.2. Optimal decision rule

A decision rule is of threshold type in (1, 2) with priority to (1, 1) and (2, 2) if it matches all the items of (1, 1) and
2, 2) and it matches the items of (1, 2) only if the remaining items (in d1 and s2) exceed a specific threshold t ∈ N ∪ ∞.
he decision rule of threshold type in (1, 2) with priority to (1, 1) and (2, 2) is defined formally now.

efinition 4 (Threshold-type Decision Rule). A decision rule ux is of threshold type in (1, 2) with priority to (1, 1) and (2, 2)
hen ux = min(xd1 , xs1 )e(1,1) + min(xd2 , xs2 )e(2,2) + kt (x)e(1,2) where

kt (x) =

{
0, if xd1 − xs1 ≤ t,
xd1 − xs1 − t, otherwise.

Let us note that if t = ∞, the above decision rule consists of never matching (1, 2). However, if t < ∞, the decision
rule matches the items of (1, 2) until the remaining items in d1 and s2 after matching all the possible items in (1, 1) and
(2, 2) do not exceed the threshold t . In fact, the state of the system after a decision rule of threshold type in (1, 2) with
priority to (1, 1) and (2, 2) is of the form (0, l, l, 0) if xd1 ≤ xs1 , of the form (l, 0, 0, l) if xd1 > xs1 and l < t and the form
(t, 0, 0, t) otherwise.

In the rest of this section, we consider that Dσ is the set of decision rules that are of threshold type in (1, 2) with
priority to (1, 1) and (2, 2) for any t ∈ N ∪ ∞.

We now show that there exists an optimal decision rule that matches all the items in (1, 1) and (2, 2).

Proposition 1. Let v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1) and 0 ≤ θ ≤ 1. For any q ∈ Q and a ∈ A, let x = q + a. Thus, there exists
u∗

∈ Ux such that u∗
∈ argminu∈Ux L

θ
uv(q, a), u

∗

(1,1) = min(xd1 , xs1 ) and u∗

(2,2) = min(xd2 , xs2 ). In particular, this result holds
for the average operator: Tu.

Proof. See Appendix B. □

From this result, it follows that there exists an optimal decision rule that matches all possible items of (1, 1) and (2, 2).
We denote by Kx the set of possible matching in (1, 2) after matching all the items of (1, 1) and (2, 2).

Definition 5. Let 0 ≤ θ ≤ 1, x ∈ Q. Then,

Kx =

{
{0}, if xd1 ≤ xs1 ,
{0, . . . ,min(xd1 − xs1 , xs2 − xd2 )}, otherwise.

We now prove that a decision rule of threshold type in (1, 2) with priority to (1, 1) and (2, 2) is optimal.

Proposition 2. Let v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1) ∩ C(1,2). Let 0 ≤ θ ≤ 1. For any q ∈ Q and for any a ∈ A, x = q + a, there exists
∗ σ ∗ θ
u ∈ D such that u ∈ argminu∈Ux Luv(q, a). In particular, this result holds for the average operator: Tu.

6
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roof. The idea of the proof is to show that for any admissible matching u, the matching u∗ that prioritizes the pendant
dges satisfies that Lθ

u∗v(q, a) ≤ Lθ
uv(q, a) for all q and a. Detailed proof is provided in Appendix C. □

.3. Value function property preservation

In this section, we show that the properties of the value function defined in Section 4.1 are preserved by the Dynamic
rogramming operator. In other words, we show that if v is increasing with (1, 1), (2, 2) and (2, 1), convex in (1, 2) and

(2, 1) and satisfies the boundary property, so does Lθv.
We first focus on the increasing property in (1, 1), (2, 2) and (2, 1) and we show that they are preserved by the Dynamic

Programming operator.

Lemma 1. If a function v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1), then Lθv ∈ I(1,1) ∩ I(2,2) ∩ I(2,1).

Proof. The idea of the proof is to consider any q and a and define q̄ as q with two additional items for each edge we
consider. Then, since v(q, a) ≤ v(q̄, a) by assumption, it is enough to show that Lθv(q, a) ≤ Lθv(q̄, a). Detailed proof is
provided in Appendix D.1. □

We now aim to show that the convexity in (1, 2) is preserved by the Dynamic Programming operator. It is important
to note that Lθv ∈ C(1,2) when the value function is not only increasing in (1, 1), (2, 2) and (2, 1) and convex in (1, 2), but
also satisfies the boundary condition.

Lemma 2. If v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1) ∩ C(1,2) ∩ B, then Lθv ∈ C(1,2).

Proof. The idea of the proof is to consider any q and a and define q̄ as q with two additional items for each that
we consider as well as ¯̄q as q̄ with two more additional items in the same edge. Then, since v ∈ C(1,2), we know that
v(q̄, a) − v(q, a) ≤ v( ¯̄q, a) − v(q̄, a) by assumption, it is enough to show that Lθv(q̄, a) − Lθv(q, a) ≤ Lθv( ¯̄q, a) − Lθv(q̄, a).
etailed proof is provided in Appendix D.2. □

Finally, to show that the Dynamic Programming operator preserves the boundary property, we need to use the
onvexity property in (2, 1). The preservation of the boundary and the convexity properties are proven in the following
emma.

emma 3. If v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1) ∩ C(1,2) ∩ C(2,1) ∩ B, then Lθv ∈ C(2,1) ∩ B.

roof. For the Boundary condition, the idea is to show that Lθv(0, a) − Lθv(e(2,1), a) ≤ Lθv(e(1,2), a) − Lθv(0, a) for any
∈ A, whereas for the convexity property we proceed similarly than in the proof of Lemma 2. Detailed proof is provided

n Appendix D.3. □

.4. Structure of an optimal policy

Now, using the result of Theorem 6, we show that there exists an optimal matching policy which is formed of a
equence of decision rules that belongs to Dσ (with a fixed threshold).

heorem 1. The optimal control for the discounted cost problem is of threshold type in (1, 2) with priority to (1, 1) and (2, 2).

roof. We apply Theorem 6 where V σ is the set of functions defined in (4) and Dσ the set defined in Definition 4. We
ocus on the structural conditions of the theorem. From Lemmas 1–3 of Section 4.3, it follows (a) since they show that
f v ∈ V σ , then Lθv ∈ V σ . The result of Proposition 2 shows (b) because the policy that belongs to Dσ minimizes Lθ

uv if
∈ V σ . Finally, since limits preserve inequalities, the point-wise convergence of functions of V σ belong to this set, which

shows (c). □

The following theorem shows that the previous result also holds for the average cost problem.

Theorem 2. The optimal control for the average cost problem is of threshold type in (1, 2) with priority to (1, 1) and (2, 2).

Proof. We want to apply Theorem 7 using the same value function set V σ and the same decision rule set Dσ as in the
proof of the previous theorem. Assumptions (A1) to (A4) hold because of Lemma 9. Let (θn)n∈N be a sequence such that

≤ θn < 1 for all n ∈ N and lim
n→+∞

θn = 1. Let n ∈ N. We know that v∗

θn
∈ V σ (see the proof of Theorem 1). The

nequalities in the definitions of the properties used in V σ still hold if we add a constant to v, thus v∗

θn
− v∗

θn
(0)e ∈ V σ .

sing Assumption (A3) and Assumption (A4), we have H ≤ v∗

θn
− v∗

θn
(0)e ≤ M , so v∗

θn
− v∗

θn
(0)e ∈ V σ

H . This last result holds
for each n ∈ N and since limits preserve inequalities V σ

H is a closed set, lim
n→+∞

[v∗

θn
− v∗

θn
(0)e] ∈ V σ

H which shows (a). The
σ 1 σ σ
result of Proposition 2 shows (b) because the policy that belongs to D minimizes Luv = Tuv if v ∈ VH ⊂ V . □
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Fig. 3. A complete matching graph minus the edge (3, 1).

4.5. Computing the optimal threshold

We consider the matching policy of threshold type in (1, 2) with priority to (1, 1) and (2, 2) in the average cost case.
In this result, we provide an analytical expression of the threshold at which items of (2, 1) are matched.

Proposition 3. Let ρ =
β(1−α)
α(1−β) ∈ (0, 1), R =

cs1+cd2
cd1+cs2

and Π T(1,2) be the set of matching policy of threshold type in (1, 2) with

priority to (1, 1) and (2, 2). The optimal threshold t∗, which minimizes the average cost on Π T(1,2) , is

t∗ =

{
⌈k⌉ if f (⌈k⌉) ≤ f (⌊k⌋)
⌊k⌋ otherwise

where k =
log ρ−1

(R+1) log ρ

log ρ
− 1 and f (x) = (cd1 + cs2 )x + (cd1 + cd2 + cs1 + cs2 )

ρx+1

1−ρ
− (cd1 + cs2 )

ρ

1−ρ
+ ((cd1 + cs1 )αβ + (cd2 +

cs2 )(1 − α)(1 − β) + (cd2 + cs1 )(1 − α)β + (cd1 + cs2 )α(1 − β)).
The threshold t∗ is positive.

Proof. The idea of the proof is to look at the Markov chain derived from the policy u∞
t ∈ Π T(1,2) . We show that the

Markov chain is positive recurrent and we compute the stationary distribution. Using the strong law of large numbers
for Markov chains, we show that the average cost gu∞

t is equal to the expected cost of the system under the stationary
distribution. Then, we find an analytical form for the expected cost which depends on the threshold on (1, 2), i.e, t . Finally,
we minimize the function over t . Detailed proof is provided in Appendix E. □

From this result, it is important to note that the value of k (and therefore, the value of t∗) is increasing with ρ and it
tends to 0 when ρ → 0 whereas it tends to infinity when ρ → 1. This means that, when β ≪ α, the threshold is zero,
i.e., an optimal matching policy always matches the items of the diagonal edge. On the other hand, when β → α (recall
that α > β to ensure stability), we have that the threshold tends to infinity. This means that an optimal matching policy
never matches items of the diagonal edge.

5. Optimal policy of quasi-complete graphs

We aim to generalize the results of the N-shaped graph to a quasi-complete matching graph with an arbitrary number
of supply and demand nodes. A quasi-complete matching graph is a matching graph where all the supply and demand
nodes are connected, except for one supply node which is connected to all but one demand node. Let us denote a quasi-
complete matching graph as G = (D ∪ S, E) with E = (D × S) \ {(i∗, j∗)}, where (i∗, j∗) (i∗ ∈ D and j∗ ∈ S) is the missing
edge (see Fig. 3 for an example). We show that, under certain assumptions on the holding costs, this matching graph is
related to the N-shaped matching graph. Hence, throughout this section, when we refer to the N-shaped matching graph
we use the superscript N .

First, we define the transformations to move from Y (the Markov Decision Process defined on G) to YN (the Markov
Decision Process defined on GN ).

Definition 6. Let Q and A be the sets of possible states and arrivals of G. Let QN and AN be the sets of possible states
and arrivals of GN . We define the projection from Q to QN and the projection from A to AN as

pNQ(q) =

⎛⎝ ∑
∗

qdi , qdi∗ , qsj∗ ,
∑

∗

qsj

⎞⎠ and

i∈D(j ) j∈S(i )

8
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pNA(a) =

⎧⎪⎨⎪⎩
e(1,1) if a = e(i,j∗), i ∈ D(j∗)
e(2,2) if a = e(i∗,j), j ∈ S(i∗)
e(2,1) if a = e(i∗,j∗)
e(1,2) otherwise

.

e can easily show that pNQ(x) = pNQ(q) + pNA(a) where x = q + a. Let aN ∈ AN , we also define (pNA)−1(aN ) = {a ∈ A :
N
A(a) = aN}.

Let A be the arrival process associated to G, we construct an arrival process AN for GN in the following way:

∀aN ∈ AN , P(AN
= aN ) =

∑
a∈(pNA)−1(aN )

P(A = a)

We assume that the quasi-complete graphs we consider in this section satisfy the following property: the holding cost
s the same for all the demand nodes that are compatible with all the supply nodes and the holding cost is the same for all
he supply nodes that are compatible with all the demand nodes. In other words, there exist c1 and c2 such that cdi = c1
or all i ∈ D(j∗) and csj = c2 for all j ∈ S(i∗). In the example of Fig. 3, this means that cd1 = cd2 as well as cs2 = cs3 . From
this assumption on the holding costs, we can construct the N-shaped matching graph such that cNd1 = cdi , for all i ∈ D(j∗),
cNd2 = cdi∗ , c

N
s1 = csj∗ and cNs2 = csj for all j ∈ S(i∗). Therefore, using Definition 6, it follows that

c(x) = cN (pNQ(x)) for all x ∈ Q. (5)

We now define the decision rule of threshold-type that we study in this section.

Definition 7 (Threshold-type decision rule). A decision rule ux is said to be of threshold type with priority to i∗ and j∗ if:

1. it matches all the items of (i, j∗) for all i ∈ D(j∗) and all the items of (i∗, j) for all j ∈ S(i∗).
2. it matches the items of (i, j) (i ∈ D(j∗) and j ∈ S(i∗)) only if the remaining items (in the sum of di for i ∈ D(j∗)) are

above a specific threshold, denoted by t (with t ∈ N ∪ ∞).

.e, ux is such that
∑

i∈D(j∗)(ux)(i,j∗) = min(
∑

i∈D(j∗) xdi , xsj∗ ),
∑

j∈S(i∗)(ux)(i∗,j) = min(xdi∗ ,
∑

j∈S(i∗) xsj ) and
∑

i∈D(j∗)
∑

j∈S(i∗)
ux)(i,j) = kt (x) where

kt (x) =

{
0 if

∑
i∈D(j∗) xdi − xsj∗ ≤ t∑

i∈D(j∗) xdi − xsj∗ − t otherwise .

We define D∗ as the set of decision rules that are of threshold type with priority to i∗ and j∗ for any t ∈ N ∪ ∞.

We aim to show that the stationary policy based on the above decision rules is optimal for a quasi-complete matching
raph with an arbitrary number of supply and demand nodes. For this purpose, we first need to show the following
roperties.

emma 4. Let 0 ≤ θ < 1, let π∗
= (u(X(n)))n≥0 (with u ∈ D∗ as defined in Definition 7) be a threshold-type policy with

riority in i∗ and j∗ and let (πN )∗ = (uN (XN (n)))n≥0 (with uN
∈ Dσ as defined in Definition 4) be a threshold-type policy with

priority in (1, 1) and (2, 2). Thus, we have vπ∗

θ (y) = v
(πN )∗
θ (yN ) for all y = (q, a) ∈ Q × A, with yN = (pNQ(q), pNA(a)). The

result remains true for the average cost problem with gπ∗

and g (πN )∗ .

Proof. The idea of the proof is to first show that for π∗, we have that pNQ(xn) = xNn and then that the expected cost in
both matching models coincides. Detailed proof is provided in Appendix F. □

Lemma 5. Let 0 ≤ θ < 1, let π be a stationary policy on Y , y = (q, a) ∈ Q × A and yN = (pNQ(q), pNA(a)). Thus, there exists
a policy πN on YN such that vπ

θ (y) = vπN

θ (yN ). The result remains true for the average cost problem with gπ and gπN
.

Proof. The idea of the proof is that, for any π , we define πN such that we have that pNQ(xn) = xNn and also that the
expected cost in both cases coincides. Detailed proof is provided in Appendix G □

We now prove that an optimal matching policy for a quasi-complete graph with an arbitrary number of supply and
demand nodes is formed by decision rules which are as defined in Definition 7.

Theorem 3. The optimal control for the discounted cost problem and the average cost problem is of threshold type with
priority to i∗ and j∗.

Proof. Let 0 ≤ θ < 1, let π be a stationary policy on Y and π∗
= (u(X(n)))n≥0 (with u ∈ D∗ as defined in Definition 7) be

∗ ∗ N N N
threshold-type policy with priority in i and j . Let y0 = (q0, a0) ∈ Q × A and y0 = (pQ(q0), pA(a0)). Using Lemma 5,

9
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Fig. 4. An example of the bipartite matching graphs under study.

there exists a policy πN such that:

vπ
θ (y0) = vπN

θ (yN0 ) ≥ v
(πN )∗
θ (yN0 ) = vπ∗

θ (y0)

where (πN )∗ = (uN (XN (n)))n≥0 (with uN
∈ Dσ as defined in Definition 4) is a threshold-type policy with priority in (1, 1)

and (2, 2). The inequality comes from our optimality result on GN : Theorem 1. The last equality comes from Lemma 4.
This was done for any y0 = (q0, a0) ∈ Q×A and the average cost problem follows easily (with Theorem 2), giving us the
final result. □

6. Optimal policy of the pendant edges of arbitrary bipartite graphs

In this section, we focus on an arbitrary bipartite matching graph.
We say that an edge (i1, j1) belongs to the neighborhood of an edge (i2, j2) if i1 = i2 or j1 = j2. We denote by N((i, j))

the neighborhood of an edge (i, j). We assume that in the neighborhood of an pendant edge there are not pendant
edges (we discuss how our results extend to several connected pendant edges in Remark 2). We denote by E∗ the set
of pendant nodes. An example of the matching graphs under study is provided in Fig. 4, where the set of pendant edges
is E∗

= {(1, 1), (3, 3), (6, 5)} and we have, for instance, that N((1, 1)) = {(1, 2)} and N((3, 3)) = {(2, 3), (4, 3)}.
We show that, under certain assumptions on the costs of the nodes, an optimal matching policy consists of matching

all the items of the pendant edges. To this end, we follow the same structure as in Section 4, i.e., we first present the
properties of the value function; then, we characterize the optimal decision rule and show how they are preserved by
the Dynamic Programming operator and, finally, we characterize the optimal matching policy in the pendant edges using
Theorems 6 and 7.

6.1. Value function properties

We now define the undesirability property for a given edge.

Definition 8 (Undesirability Property). Let (i1, j1) ∈ E . We say that a function v is undesirable in (i1, j1) or v ∈ U(i1,j1) if for
all (i2, j2) ∈ N((i1, j1))

v(q + e(i1,j1) − e(i2,j2), a) ≥ v(q, a),

for all a ∈ A and q ∈ Q such that qsj2 ≥ 1 if i1 = i2 and qdi2 ≥ 1 if j1 = j2.

Let us note that the above property is the same as saying that, v(q+e(i1,j1), a) ≥ v(q+e(i2,j2), a), for all (i2, j2) ∈ N((i1, j1)),
that is, it is preferable to match the items in (i1, j1) than in (i2, j2). In the remainder of this section, we consider the
following structured set:

V σ
=

⋂
(i,j)∈E∗

(
I(i,j) ∩ U(i,j)

)
, (6)

where I(i,j) denotes the increasing property in (i, j) as defined in Definition 1. We also assume that the following property
on the function c: for all (i, j) ∈ E∗, cdi ≥ cdi′ for all (i′, j) ∈ N((i, j)) (or csj ≥ csj′ for all (i, j′) ∈ N((i, j))). This means that
the cost on an pendant edges is larger than in its neighbors.
10
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.2. Optimal decision rule

In this section, we show that, for any v ∈ V σ , there is a decision rule u that prioritizes the pendant edges and minimizes
θ
uv. We say that a matching policy prioritizes the pendant edges if it matches all the items in the pendant edges. This
eans that, for all (i, j) ∈ E∗, u(i,j) = min(xdi , xsj ). We consider that Dσ is the set of decision rules that prioritizes the

pendant edges. We now show that, if v ∈ V σ , there exists a decision rule that belongs to Dσ that minimizes Lθ
uv.

Proposition 4. Let a ∈ A, q ∈ Q, x = q + a, v ∈ V σ , 0 ≤ θ ≤ 1. There exists u∗
∈ Ux such that u∗

∈ argminu∈Ux L
θ
uv(q, a)

and u∗

(i,j) = min(xdi , xsj ) for all (i, j) ∈ E∗. In particular, this result holds for the average cost operator Tu.

Proof. The idea of the proof is to show that for any matching u, there exists another matching policy u∗ that prioritizes
he items of the pendant edges and such that Lθ

u∗v(q, a) ≤ Lθ
uv(q, a) for any q and a. Detailed proof is provided in

ppendix H. □

.3. Value function property preservation

We now show that the properties of the value function that belong to V σ are preserved by the Dynamic Programming
perator, i.e., considering that v ∈ V σ , we aim to show that Lv ∈ V σ .
We first focus on the preservation of the increasing property in the pendant edges by the Dynamic Programming

perator. This can be shown using the same arguments as Lemma 1 and therefore we omit its proof.

emma 6. Let (i, j) ∈ E∗. If v ∈ I(i,j) ∩ U(i,j), then Lv ∈ I(i,j).

We also show that the undesirability property is preserved by the Dynamic Programming operator.

emma 7. Let (i, j) ∈ E∗. If v ∈ I(i,j) ∩ U(i,j), then Lv ∈ U(i,j).

roof. The idea of the proof is to consider any q with at least one item in the neighborhood of a pendant edge and
e define q̄ as q plus two items in the pendant edge under consideration minus two items of the neighborhood. Since
(q, a) ≤ v(q̄, a) by assumption for any a, we show that Lθv(q, a) ≤ Lθv(q̄, a) for any a. Detailed proof is provided in
ppendix I. □

.4. Structure of an optimal policy

In this section, we show that there exists an optimal policy that consists of a sequence of decision rules that belongs
o Dσ , i.e., that prioritizes the pendant edges. We first focus on the discounted cost problem.

heorem 4. The optimal control for the discounted cost problem prioritizes the pendant edges.

roof. We apply Theorem 6 where V σ is the set of functions defined in (6) and Dσ the set defined in Proposition 4.
rom Lemmas 6 and 7, it follows (a). The result of Proposition 4 shows (b). And, since limits preserve inequalities, the
oint-wise convergence of functions of V σ belong to this set, which shows (c). □

The following theorem shows that the previous result is also verified for the average cost problem.

heorem 5. The optimal control for the average cost problem prioritizes the pendant edges.

roof. We want to apply Theorem 7 using the same value function set V σ and the same decision rule set Dσ as in the
roof of the previous proposition. Let (θn)n∈N be a sequence such that 0 ≤ θn < 1 for all n ∈ N and lim

n→+∞
θn = 1. Let

∈ N. We know that v∗

θn
∈ V σ (see the proof of Theorem 4). The inequalities in the definitions of the properties used in

σ still hold if we add a constant to v, thus v∗

θn
− v∗

θn
(0)e ∈ V σ . Using Assumption (A3) and Assumption (A4), we have

≤ v∗

θn
− v∗

θn
(0)e ≤ M , so v∗

θn
− v∗

θn
(0)e ∈ V σ

H . This last result holds for each n ∈ N and since limits preserve inequalities
σ
H is a closed set, lim

n→+∞
[v∗

θn
− v∗

θn
(0)e] ∈ V σ

H which shows (a). The result of Proposition 4 shows (b) because the policy

hat belongs to Dσ minimizes L1uv = Tuv if v ∈ V σ
H ⊂ V σ . □

We now present the following remark.

emark 2. For the above results, we assume that the pendant edges do not have other pendant edges in their
eighborhoods. We now explain how the results of this section also hold when in the neighborhood of an pendant edge
here are other pendant edges. An example of such a matching model consists of the matching graph of Fig. 4 with an
dditional demand node d and an edge (7, 5).
7
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We first note that, if the cost of the pendant edges that are neighbors is the same, these edges can be merged and seen
as a single edge whose arrival probability is equal to the sum of the arrival probabilities of the merged nodes. Otherwise,
we require that the undesirability and increasing properties to be satisfied by the pendant edge with the highest cost and
the above arguments can be used to show that an optimal policy prioritizes the most expensive pendant edges.

7. Optimal policy of the W -shaped graph

We now focus on a W -shaped matching graph. This matching graph is formed by three demand nodes, two supply
nodes and the following set of edges: E = {(1, 1), (2, 1), (2, 2), (3, 2)}. Let us also define (1, 2) and (3, 1) as the imaginary
edge between d1 and s2 and between d3 and s1, respectively, that we introduce to ease the notations. Note that (1, 2) /∈ E
and (3, 1) /∈ E .

We assume that α1 < β1 and α3 < β2 to ensure the stability of the system.
We remark that the W -shaped matching graph is the simplest bipartite graph that one can consider (except for the

N-shaped matching graph, which has been studied in Section 4). Therefore, the goal of this section is twofold: (i) under
the condition of the holding costs of Section 6, we aim to go beyond the result of Theorem 4 and provide the structure
of an optimal policy of this matching graph; and (ii) we study an optimal policy when the conditions of Section 6 do not
hold. We first focus on the former case and then in the later one.

7.1. Higher cost on the pendant nodes

We now consider that the holding cost of the pendant nodes is larger than the holding cost of the middle node, i.e,
cd1 ≥ cd2 and cd3 ≥ cd2 .

7.1.1. Value functions properties
We present the properties that are needed to characterize an optimal matching policy for the W -shaped graph. First,

we consider the increasing and undesirability properties in the pendant edges (1, 1) and (3, 2) as defined in Definitions 1
and 8. We also consider the convexity property in (2, 1) and (2, 2) (see Definition 2). Finally, we present two additional
properties: the exchangeability and the modularity properties. These properties are required to prove that the optimal
decision rule has a threshold in (2, 1) and in (2, 2).

Definition 9 (Exchangeable Property). A function v is exchangeable in (2, 1) and (3, 1) or v ∈ H(2,1),(3,1) if ∀a ∈ A, ∀q ∈ Q,

v(q + e(2,1), a) − v(q, a) = v(q + e(3,1), a) − v(q − e(2,1) + e(3,1), a).

Likewise, v is exchangeable in (2, 2) and (1, 2) or v ∈ H(2,2),(1,2) if ∀a ∈ A, ∀q ∈ Q,

v(q + e(2,2), a) − v(q, a) = v(q + e(1,2), a) − v(q − e(2,2) + e(1,2), a).

Definition 10 (Modularity Property). A function v is modular in (2, 1) and (2, 2) or v ∈ M(2,1),(2,2) if ∀a ∈ A, ∀q ∈ Q,

v(q + e(2,1) + e(2,2), a) − v(q + e(2,1), a) = v(q + e(2,2), a) − v(q, a).

7.1.2. Optimal decision rule
In this section, we show that for any v satisfying the aforementioned properties, there is decision rule which is of

threshold-type in (2, 1) and (2, 2) and prioritizes the items in the pendant edges. Let us first present a formal definition
of the decision rule under consideration.

Definition 11 (Threshold-type Decision Rule). A decision rule ux is said to be of threshold type in (2, 1) and (2, 2) with
priority to (1, 1) and (3, 2) if:

1. it matches all of (1, 1) and (3, 2).
2. it matches items of (2, 1) only if the remaining jobs in s1 are above a specific threshold, denoted by t(2,1) with

t(2,1) ∈ N ∪ ∞ and matches items in (2, 2) only if the remaining jobs in s2 are above a specific threshold, denoted
by t(2,2) with t(2,2) ∈ N ∪ ∞.

In other words, ux = min(xd1 , xs1 )e(1,1) + min(xd3 , xs2 )e(3,2) + min(kt(2,1) (x), xd2 )e(2,1) + min(jt(2,2) (x), xd2 )e(2,2) where

kt(2,1) (x) =

{
0 if xs1 − xd1 ≤ t(2,1)
xs1 − xd1 − t(2,1) otherwise

and jt(2,2) (x) =

{
0 if xs2 − xd3 ≤ t(2,2)
xs2 − xd3 − t(2,2) otherwise

Let Dσ be the set of decision rules as defined above. We now show that the above decision rule minimizes Lθv.
u

12
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P

Fig. 5. W-shaped model. Average cost of our conjecture and a similar policy but with a priority in (2, 2) instead of (3, 2).

roposition 5. Let v ∈ I(1,1) ∩ I(3,2) ∩ U(1,1) ∩ U(3,2) ∩ C(2,1) ∩ C(2,2) ∩ H(2,1),(3,1) ∩ H(2,2),(1,2) ∩ M(2,1),(2,2). Let 0 ≤ θ ≤ 1.
There exists u∗

∈ Ux such that u∗ is a matching policy of threshold type in (2, 1) and (2, 2) with priority to (1, 1) and (3, 2)
(as defined in Definition 11) and u∗

∈ argminu∈Ux L
θ
uv(x). In particular, this result holds for the average operator: L1u = Tu.

Proof. The idea of the proof is similar to the one of Proposition 2. However, one has to use the property H(2,1),(3,1) to
handle (3, 1) left over items when defining the threshold in (2, 1) and also the property H(2,2),(1,2) to handle (1, 2) left over
items when defining the threshold in (2, 2). It is also needed the property M(2,1),(2,2) to prove the independence between
the two thresholds. Detailed proof is provided in Appendix J. □

7.1.3. Structure of an optimal policy
We want to characterize an optimal matching policy in the W -shaped graph with higher costs in the pendant edges. It

follows directly from the reasoning of Section 6 that matching all the items of the pendant edges (1, 1) and (3, 2) is optimal.
Therefore, the question now is what to do with the items of (2, 1) and (2, 2). In the N-shaped graph, the non-pendant
edge is matched only if the number of items in this edge is above a threshold. Therefore, in the W -shaped graph with
higher costs in the pendant edges, an optimal matching policy seems to be of threshold type as defined in Definition 11.
However, if we want to apply Theorem 6 and Theorem 7 to characterize an optimal matching policy, we need to show
the preservation by the Dynamic Programming of the following properties of the value function: I(1,1) ∩ I(3,2) ∩ U(1,1) ∩

U(3,2)∩C(2,1)∩C(2,2)∩H(2,1),(3,1)∩H(2,2),(1,2)∩M(2,1),(2,2). Given the difficulty of the aforementioned set of properties, we did
not succeed in showing that all the properties are preserved by the Dynamic Programming operator (even if we consider
additional properties such as, for instance, the boundary property of Definition 3). Hence, we conjecture the existence of
a set V σ that contains the properties I(1,1) ∩ I(3,2) ∩ U(1,1) ∩ U(3,2) ∩ C(2,1) ∩ C(2,2) ∩ H(2,1),(3,1) ∩ H(2,2),(1,2) ∩ M(2,1),(2,2) and
such that if v ∈ V σ , then Lθv ∈ V σ . Under this conjecture, we can use the result of Theorems 6 and 7 to prove that an
optimal matching policy for the W -shaped graph with higher costs on the pendant edges consists of decision rules that
are of threshold-type as defined in Definition 11.

7.2. Higher cost on the middle node

We consider the W -shaped graph when the cost on the pendant nodes is not larger. We now present our numerical
work that shows that prioritizing the items of the pendant edges is not optimal for this case. We set cd1 = cd2 = 10,
cd3 = cs1 = 1, cs2 = 1000, α1 = 0.4, α2 = 0.35, α3 = 0.25, β1 = 0.5 and β2 = 0.5. For these parameters, we illustrate
in Fig. 5 the evolution of the average cost of the system for two policies: (i) a policy of threshold type in (2, 1) and (3, 2)
with priority in (1, 1) and (2, 2) and (ii) policy of threshold type in (2, 1) and (2, 2) with priority in (1, 1) and (3, 2). For
both policies, we selected the best thresholds by numerical experiments which are t(2,1) = 14 and t(3,2) = 0 for the former
policy and t(2,1) = 11 and t(2,2) = 0 for the latter policy. We observe that the former policy outperforms the later policy.
This experiment shows that the matching policy that seems to be optimal in the W -shaped matching graph with higher
cost in the pendant edges is not optimal when the largest cost is in the middle edge. As a result, we can claim that, in
an arbitrary matching graph, an optimal policy is still unknown, but it seems to depend not only on the topology of the
matching graph, but also on the costs of the nodes. This makes the characterization of an optimal matching policy of an
arbitrary matching graph an pendantly difficult and challenging task.

8. Conclusion

We consider bipartite matching graphs with linear costs in the buffer size. We model this problem as a Markov Decision
Process where the goal is to find an optimal matching control, that is, how to match items so as to minimize the cost
13
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f the system. We study the derived optimal control problem for the discounted cost and the average cost problems. In
oth cases, we characterize the structure of an optimal policy in a wide range of matching models. First, for the N-shaped
atching graph, we show that there exists an optimal policy that is of threshold type for the diagonal edge with priority

o the end edges of the matching graph. Furthermore, we characterize the optimal threshold for the average cost problem.
hen, we show how the results obtained for the N-shaped graph can be used to provide the structure of a quasicomplete
raph with an arbitrary number of nodes. Additionally, we consider an arbitrary bipartite graph and we show that, when
he cost of the pendant nodes is larger or equal than the cost of its neighbor nodes, an optimal policy always matches all
he items in the pendant edges. Finally, we investigate the W -shaped matching model. For this case, we conjecture that
n optimal matching policy is also of threshold type with priority to the pendant edges when the cost of the pendant
odes is large and we provide numerical evidence that shows that, when the cost of the middle node is large, an optimal
atching control does not prioritize the pendant edges. The conclusion of the analysis carried out for the W -shaped graph

s that an optimal matching control seems to depend on the cost of the nodes.
The characterization of an optimal matching policy in an arbitrary bipartite matching graph remains as an open

uestion. For future work, it would be interesting to prove our conjecture of an optimal matching policy on the W -
haped matching graph when the cost of the pendant nodes is large and characterize an optimal policy when the cost of
he intermediate node is large. Another possible future research is the study of an optimal matching policy for general
non-bipartite) graphs. In this case, items arrive one by one to the system and there are not two different sets of nodes.
n spite of these differences with respect to bipartite matching graphs, we think that the techniques applied in this article
an be also used to characterize an optimal matching policy for non-bipartite matching graphs.
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ppendix A. Statement and discussion of Theorem 6 and of Theorem 7

heorem 6 (Adapted from [25, Theorem 6.11.3]). Assume that the following properties hold: there exists positive function w

n Y such that

sup
y

c(y)
w(y)

< +∞, (7)

sup
(y,u)

1
w(y)

∑
y′

P(y′
|y, u)w(y′) < +∞, (8)

nd for every µ, 0 ≤ µ < 1, there exist η, 0 ≤ η < 1 and some integer J such that for every J-tuple of Markov deterministic
decision rules π = (u1, . . . , uJ ) and every y

µJ
∑
y′

Pπ (y′
|y)w(y′) < ηw(y), (9)

where Pπ denotes the J-step transition matrix under policy π . Let 0 ≤ θ < 1. Let Vw the set of functions in the state space
which have a finite w-weighted supremum norm, i.e., supy |v(y)/w(y)| < +∞. Assume that

(*) for each v ∈ Vw , there exists a deterministic Markov decision rule u such that Lθv = Lθ
uv.

Let V σ and Dσ be such that

(a) v ∈ V σ implies that Lθv ∈ V σ ;
(b) v ∈ V σ implies that there exists a decision u′

∈ Dσ such that u′
∈ argminu Lθ

uv;
(c) V σ is a closed subset of the set of value functions under pointwise convergence.

Then, there exists an optimal stationary policy π∗
= u∗(X(n)) that belongs to Πσ with u∗

∈ argmin Lθv.
( )n≥1 u u

14
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The above statement has been previously presented in [26, Theorem 1] and it has the following nice properties: (i) it
removes the need to verify that V σ

⊂ Vw and (ii) its statement separates the structural requirements ((a), (b) and (c))
from the technical requirements related to the unboundedness of the cost function ((7), (8), (9) and (∗)).

In order to prove the optimality in the average cost case, we will use the following result:

Theorem 7. [25, Theorem 8.11.1] Suppose that the following properties hold:

(A1) ∃ C ∈ R, ∀y = (q, a) ∈ Y, x = q + a, −∞ < C ≤ c(x) < +∞,

(A2) ∀y ∈ Y, ∀ 0 ≤ θ < 1, v∗

θ (y) < +∞

(A3) ∃ H ∈ R, ∀y ∈ Y, ∀ 0 ≤ θ < 1, −∞ < H ≤ v∗

θ (y) − v∗

θ (0)
(A4) There exists a nonnegative function M(y) such that

(a) ∀y ∈ Y, M(y) < +∞

(b) ∀y ∈ Y, ∀ 0 ≤ θ < 1, v∗

θ (y) − v∗

θ (0) ≤ M(y)
(c) There exists u ∈ U0 for which

∑
y P(y|0, u)M(y) < +∞

Let H and M be defined in Assumptions (A3) and (A4). We define a subset V σ
H of V σ which contains all the value functions

v ∈ V σ such that H ≤ v(y) − v(0) ≤ M(y) for all y ∈ Y . Then, if

(a) for any sequence (θn)n≥0, 0 ≤ θn < 1, for which lim
n→+∞

θn = 1,

lim
n→+∞

[v∗

θn
− v∗

θn
(0)e] ∈ V σ

H with e(y) = 1 for all y ∈ Y

and
(b) v ∈ V σ

H implies that there exists a decision u′
∈ Dσ such that u′

∈ argminu Tuv;

Then Dσ
∩ argminu Tuv ̸= ∅ and u∗

∈ Dσ
∩ argminu Tuv implies that the stationary matching policy which uses u∗ is lim sup

average optimal.

Remark 3. When vθ (0) is used in this theorem, we mean vθ (y) with y = (0, a) for any a ∈ A.

We now show that the technical requirements of Theorem 6 due to the unboundness of the costs are verified in our
model since we are considering that the cost function is linear.

Lemma 8. The conditions ((7), (8), (9) and (∗)) are verified.

Proof. We show that the technical details given in (7)–(9) are verified when c is linear. Let y = (q, a) ∈ Q×A, x = q+ a,
we choose w(y) =

∑
i xi. In our case, the cost is a linear function of x therefore, c(y)/w(y) ≤ maxi∈D∪S ci. This shows (7).

n addition,

1
w(y)

∑
y′

P(y′
|y, u)w(y′) = E

[
w(x − u + a′)

w(y)

⏐⏐A = a′

]
≤ E

[
w(x + a′)

w(y)

⏐⏐A = a′

]
=

∑
i xi + 2∑

i xi
≤ 2

ince w(y) is increasing and two items arrive to the system in each step following a process which is independent of the
tate of the system. This shows (8). Finally, we can repeat the previous argument to show that for all J-step matching
policy π∑

y′

Pπ (y′
|y)w(y′) ≤

∑
y′

Pπ0 (y
′
|y)w(y′) = w(y) + 2J.

where π0 = (0, . . . , 0) is the policy which does not match any items. Therefore, (9) is satisfied if there exist J integer and
η < 1 such that

µJ (w(y) + 2J) ≤ ηw(y) ⇐⇒ η >
µJ (w(y) + 2J)

w(y)
.

Since it is decreasing with J and when J → ∞ it tends to zero, there exists a J integer such that η is less than one and,
therefore, (9) is also verified.

Since for each state of the system, the set of admissible matching policies is finite, it follows that (*) holds. □

We now show that Assumptions (A1) to (A4) of Theorem 7 hold in our model since the cost function under
consideration is a linear function.

Lemma 9. Assumptions (A1) to (A4) hold.
15
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P
t
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t

roof. First, we note that the cost function is nonnegative and therefore Assumption (A1) holds using C = 0. Let πML be
he policy Match the Longest as defined in [24, Definition 2.6]. This policy is stable for any bipartite matching graph as
roved in [24, Theorem 7.1], which means that the derived Markov chain is positive recurrent and gπML < ∞. Moreover,
he set {y ∈ Y : c(y) < gπML} is nonempty because gπML > min(i,j)∈A cdi + csj almost surely and c(0, a) = cdi + csj (for any
a = e(i,j) ∈ A). It is also finite because gπML < ∞ and c is increasing in y (because c is linear). Therefore, we can use [25,
Theorem 8.10.9] and Assumptions (A2) to (A4) hold. □

Appendix B. Proof of Proposition 1

Let v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1), 0 ≤ θ ≤ 1, q ∈ Q, a ∈ A, x = q + a and u ∈ Ux. The maximum number of items that can
be matched in (1, 1) is denoted by m(1,1) = min(xd1 , xs1 ) and in (2, 2) by m(2,2) = min(xd2 , xs2 ).

Let p(1,2) = min(u(1,2), xs1 − u(1,1), xd2 − u(2,2)) be the number of items that are matched in (1, 2) under the control u
that can be transformed from matching items in (1, 1) and (2, 2) at the same time. We define a policy up(1,2) that removes
the p(1,2) items in (1, 2) and matches p(1,2) items in (1, 1) and (2, 2), that is, up(1,2) = u + p(1,2)(e(1,1) + e(2,2) − e(1,2)).
Using (3), we verify that this policy is admissible, i.e. up(1,2) ∈ Ux: up(1,2) ∈ N4 is true because u ∈ Ux. (a) is true because
u
p(1,2)
(2,2) = u(2,2) + p(1,2) ≤ xd2 . (b) is true because u

p(1,2)
(1,1) = u(1,1) + p(1,2) ≤ xs1 . Then, since v ∈ I(2,1), it follows that

Lθ

up(1,2)
v(q, a) ≤ Lθ

uv(q, a).

We now define u∗ as the decision rule that matches all the items (1, 1) and (2, 2) of x−up(1,2) , that is, of the remaining
items when we apply up(1,2) . Hence, we have that u∗

= up(1,2) + e(1,1)(m(1,1) − u
p(1,2)
(1,1) ) + e(2,2)(m(2,2) − u

p(1,2)
(2,2) ). Using (3),

we also verify that u∗
∈ Ux: u∗

∈ N4 is true because up(1,2) ∈ Ux, m(1,1) ≥ 0 and m(2,2) ≥ 0. We immediately get that
u∗

(2,2) = m(2,2) ≤ xd2 and u∗

(1,1) = m(1,1) ≤ xs1 . For xd1 and xs2 , we distinguish the following cases:

1. If p(1,2) = u(1,2). Then we have u∗

(1,2) = u
p(1,2)
(1,2) = 0. Thus,

u∗

(1,1) + u∗

(1,2) = m(1,1) ≤ xd1
u∗

(2,2) + u∗

(1,2) = m(2,2) ≤ xs2

2. If p(1,2) = xs1 − u(1,1). Then,

u∗

(1,1) + u∗

(1,2) = m(1,1) + u(1,2) − xs1 + u(1,1) ≤ u(1,2) + u(1,1) ≤ xd1
u∗

(2,2) + u∗

(1,2) = m(2,2) + u(1,2) − xs1 + u(1,1) ≤ xd2 + u(1,2) − xs1 + u(1,1) = xs2 + u(1,2) − xd1 + u(1,1) ≤ xs2

3. If p(1,2) = xd2 − u(2,2). Then,

u∗

(1,1) + u∗

(1,2) = m(1,1) + u(1,2) − xd2 + u(2,2) ≤ xs1 + u(1,2) − xd2 + u(2,2) = xd1 + u(1,2) − xs2 + u(2,2) ≤ xd1
u∗

(2,2) + u∗

(1,2) = m(2,2) + u(1,2) − xd2 + u(2,2) ≤ u(1,2) + u(2,2) ≤ xs2

In all the cases, (a) and (b) are true. Hence, since v ∈ I(1,1) ∩ I(2,2), it results that Lθ
u∗v(q, a) ≤ Lθ

up(1,2)
v(q, a) and, as a

consequence, Lθ
u∗v(q, a) ≤ Lθ

uv(q, a) for any u ∈ Ux.

Appendix C. Proof of Proposition 2

Let q ∈ Q, a ∈ A, x = q + a and u ∈ Ux. We define m(1,1) = min(xs1 , xd1 ) and m(2,2) = min(xs2 , xd2 ). Since
v ∈ I(1,1) ∩ I(2,2) ∩ I(2,1), it follows from Proposition 1 that there exists u′

∈ Ux that matches all the items of the pendant
edges and Lθ

u′v(q, a) ≤ Lθ
uv(q, a). Therefore, u

′ is of the following form: u′
= m(1,1)e(1,1) + m(2,2)e(2,2) + ke(1,2) with k ∈ Kx.

We now prove that there exists t ∈ N ∪ ∞ such that

Lθ
u∗v(q, a) ≤ Lθ

u′v(q, a), ∀k ∈ Kx (10)

where u∗ is a decision rule of threshold type in the diagonal edge with priority to the pendant edges (see Definition 4). If
xs1 ≥ xd1 , then Kx = 0 and, as a result, we have that u∗

= u′. We now consider that xs1 < xd1 , in which case Kx ̸= {0}. For
this case, the state of the system after applying a threshold type decision rule (u∗ or u′) is of the form (l, 0, 0, l). Therefore,
to compare Lθ

u∗v(q, a) with Lθ
u′v(q, a), we only need to compare E[v(j∗e(1,2), A)] with E[v(j′e(1,2), A)], where j∗, j′ ∈ Kx. Since

v is convex in (1, 2), we distinguish the following cases:

• First, we consider that ∀j ∈ N, E[v((j + 1)e(1,2), A)] − E[v(je(1,2), A)] ≤ 0. For this case, we define u∗ as follows:
u∗

= m(1,1)e(1,1) + m(2,2)e(2,2) (note that this is the same as choosing t = ∞ and therefore kt (x) = 0). Since
E[v((j + 1)e(1,2), A)] − E[v(je(1,2), A)] ≤ 0, it follows that

Lθ
u∗v(q, a) ≤ Lθ

u∗+e(1,2)v(q, a) ≤ · · · ≤ Lθ
u∗+ke(1,2)v(q, a)

for all k ∈ K . Therefore, it follows (10).
x
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• We now consider that E[v(e(1,2), A)] − E[v(0, A)] ≥ 0. For this case, we define u∗ as follows: u∗
= m(1,1)e(1,1) +

m(2,2)e(2,2) + (xd1 − xs1 )e(1,2) (note that this is the same as choosing t = 0 and kt (x) = xd1 − xs1 ). Using that
E[v(e(1,2), A)] − E[v(0, A)] ≥ 0 and also that v is convex in (1, 2), it results that

Lθ
u∗v(q, a) ≤ Lθ

u∗−e(1,2)v(q, a) ≤ · · · ≤ Lθ
u∗−ke(1,2)v(q, a)

for all k ∈ Kx and since u∗
− (xd1 − xs1 − k)e(1,2) = u′ (with xd1 − xs1 − k ∈ Kx, ∀ k ∈ Kx), it follows (10).

• Finally, we consider that ∃j ∈ N∗, E[v((j+1)e(1,2), A)]−E[v(je(1,2), A)] ≥ 0. Let j = min{j ∈ N∗
: E[v((j+1)e(1,2), A)]−

E[v(je(1,2), A)] ≥ 0}. By definition of j and by convexity of v in (1, 2), we have

E[v((j − l)e(1,2), A)] − E[v((j − l − 1)e(1,2), A)] ≤ 0 ∀l ∈ [[0 ; j − 1]] (11)

and

E[v((j + 1 + l)e(1,2), A)] − E[v((j + l)e(1,2), A)] ≥ 0 ∀l ∈ N (12)

We define u∗ as the decision rule of Definition 4 with t = j. We first consider that xd1 − xs1 ≤ j, then we have
kt (x) = 0 and Lθ

u∗v(q, a) ≤ Lθ
u′v(q, a) for all k ∈ Kx by (11) (note that 0 ≤ k ≤ xd1 − xs1 ≤ j), which shows (10). We

now consider that xd1 − xs1 > j, then kt (x) = xd1 − xs1 − j and Lθ
u∗v(q, a) = c(x) + θE[v(je(1,2), A)]. Therefore, for all

k ∈ Kx, Lθ
u∗v(q, a) ≤ Lθ

u′v(q, a) by (11) if k ≥ j or by (12) if k ≤ j, which proves (10).

ppendix D. Proofs of Section 4.3

.1. Proof of Lemma 1

We first show that if v ∈ I(1,1), then Lθv ∈ I(1,1). Let q ∈ Q and a ∈ A, x = q + a. We define q = q + e(1,1), x = q + a.
ince v is increasing with (1, 1), we have that v(q, a) ≥ v(q, a). We aim to show that Lθv(q, a) ≥ Lθv(q, a).

Let ux ∈ argminu∈Ux
Lθ
uv(q, a). Since (x)s1 ≥ 1 and (x)d1 ≥ 1, from Proposition 1, it follows that (ux)(1,1) = min(xd1 , xs1 ) ≥

1. Therefore, we define ux = ux − e(1,1). Thus, it is easy to see that ux ∈ Ux because ux ∈ Ux. Moreover, we observe that
x − ux = x − ux and, since c is a linear function, c(x) > c(x). Hence,

Lθ
uxv(q, a) = c(x) + θE[v(x − ux, A)]

= c(x) − c(x) + c(x) + θE[v(x − ux, A)]

= c(x) − c(x) + Lθv(q, a)

< Lθv(q, a).

nd, since ux ∈ Ux, then by definition Lθv(q, a) ≤ Lθ
uxv(q, a) and, as a result, the desired result follows.

To prove that if v ∈ I(2,2), then Lθv ∈ I(2,2), one can use the same arguments as above with q = q + e(2,2). We omit it
for clarity of the presentation.

The proof of the preservation of the increasing property in I(2,1) is also similar but requires to handle the case when
o items can be matched in (1, 2). Let q ∈ Q and a ∈ A, x = q + a. Let q = q + e(1,1) + e(2,2) − e(1,2), x = q + a. Since

v ∈ I(2,1), we know that v(q, a) ≤ v(q, a). Besides, c(x) < c(x) holds because c is a linear function of x. We aim to show
that Lθv(q, a) ≤ Lθv(q, a).

Let ux ∈ argminu∈Ux
Lθ
vv(q, a). From Proposition 1, we know that (ux)(2,2) = min(xd2 , xs2 ) and (ux)(1,1) = min(xd1 , xs1 ).

We first consider that xd1 ≥ 1 and xs2 ≥ 1. We define ux = ux − e(1,1) − e(2,2) + e(1,2). Thus, we have that x − ux = x − ux
and ux ∈ Ux because ux ∈ Ux as well as xs1 = xs1 − 1 ≥ (ux)(1,1) − 1 = min(xd1 , xs1 ) − 1 = min(xd1 , xs1 + 1) − 1 ≥ 0,
xd2 = xd2 − 1 ≥ (ux)(2,2) − 1 = min(xd2 , xs2 ) − 1 = min(xd2 + 1, xs2 ) − 1 ≥ 0. Thus,

Lθ
uxv(q, a) = c(x) + θE[v(x − ux, A)]

= c(x) − c(x) + c(x) + θE[v(x − ux, A)]

= c(x) − c(x) + Lθv(q, a)

< Lθv(q, a).

nd since ux ∈ Ux, then Lθv(q, a) ≤ Lθ
uxv(q, a) and from the above inequality, the desired result follows.
17
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We now consider that xd1 = 0 or xs2 = 0. In that case, we cannot match more items in state x than in state x, which
implies that ux ∈ Ux. As a result,

Lθ
ux

v(q, a) = c(x) + θE[v(x − ux, A)]

≤ c(x) + θE[v(x − ux, A)] since v ∈ I(2,1)

= c(x) − c(x) + c(x) + θE[v(x − ux, A)]

= c(x) − c(x) + Lθv(q, a)

< Lθv(q, a).

nd since ux ∈ Ux, then Lθv(q, a) ≤ Lθ
uxv(q, a) and from the above inequality, the desired result follows.

.2. Proof of Lemma 2

Let q ∈ Q, q
d1

≥ q
s1
, a ∈ A, x = q+a, q = q+e(1,2), x = q+a, q = q+e(1,2) and x = q+a. Since v is convex in (1, 2), we

ave v(q, a)−v(q, a) ≤ v(q, a)−v(q, a). We aim to show that Lθv(q, a)−Lθv(q, a) ≤ Lθv(q, a)−Lθv(q, a). For y ∈

{
x, x, x

}
,

et uy ∈ argminu Lθ
uv(y). From Proposition 2, we can choose uy such that uy = min(yd1 , ys1 )e(1,1) +min(yd2 , ys2 )e(2,2) +kt (y)

e(1,2).
Let us also define m = x − ux. Suppose that q

d1
≥ q

s1
+ 1 or a ∈ A \ {e(2,1)}, we can distinguish 3 cases: (a) kt (x) > 0,

(b) kt (x) = 0 and kt (x) > 0 and (c) kt (x) = 0 and kt (x) = 0:

(a) If kt (x) > 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m, A) − v(m, A)]

= c(x) − c(x) + θE[v(m, A) − v(m, A)]

= Lθv(q, a) − Lθv(q, a).

(b) If kt (x) = 0 and kt (x) > 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m + e(1,2), A) − v(m, A)]

= c(x) − c(x) + Lθv(q, a) − Lθ
ux+e(1,2)v(q, a)

= c(x) − c(x) + Lθv(q, a) − Lθ
ux+e(1,2)v(q, a)

≤ c(x) − c(x)

= c(x) − c(x) + θE[v(m + e(1,2), A) − v(m + e(1,2), A)]

= Lθv(q, a) − Lθv(q, a)

where the inequality is given because kt (x) = kt (x) = 0 and 1 ∈ Kx.
(c) If kt (x) = 0 and kt (x) = 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m + e(1,2), A) − v(m, A)]

= c(x) − c(x) + θE[v(m + e(1,2), A) − v(m, A)]

≤ c(x) − c(x) + θE[v(m + 2e(1,2), A) − v(m + e(1,2), A)]

= Lθv(q, a) − Lθv(q, a)

where the inequality is true since v ∈ C(1,2).

uppose now that q
d1

= q
s1

and a = e(2,1), we can distinguish 2 cases: kt (x) > 0 and kt (x) = 0:

• If kt (x) > 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m − e(2,1), A) − v(m, A)]

≤ c(x) − c(x) + θE[v(m, A) − v(m, A)]

= c(x) − c(x) + θE[v(m, A) − v(m, A)]

= c(x) − c(x) + θE[v(m − e(2,1), A) − v(m − e(2,1), A)]

= Lθv(q, a) − Lθv(q, a)

where the inequality is given because v ∈ I .
(2,1)

18



A. Cadas, J. Doncel and A. Bušić Performance Evaluation 154 (2022) 102286

D

D

P

s

• If kt (x) = 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m − e(2,1), A) − v(m, A)]

= c(x) − c(x) + θE[v(m − e(2,1), A) − v(m, A)]

≤ c(x) − c(x) + θE[v(m − e(2,1) + e(1,2), A) − v(m − e(2,1), A)]

= Lθv(q, a) − Lθv(q, a)

where the inequality is given because v ∈ B.

.3. Proof of Lemma 3

.3.1. Preservation of B

roof. Let a ∈ A. Since v ∈ B, we have v(0, a) − v(e(2,1), a) ≤ v(e(1,2), a) − v(0, a). We aim to show that Lθv(0, a) −

Lθv(e(2,1), a) ≤ Lθv(e(1,2), a) − Lθv(0, a). For any x ∈ Q, we know from Proposition 2 that there exists ux ∈ argminu Lθ
uv(x)

uch that ux = min(xd1 , xs1 )e(1,1) +min(xd2 , xs2 )e(2,2) + kt (x)e(1,2). We show the desired result for each possible value of a:

• If a = e(1,1) or a = e(2,2). Suppose that kt (e(1,2)) = 0. Then,

Lθv(0, a) − Lθv(e(2,1), a) = c(a) − c(a + e(2,1)) + θE[v(0, A) − v(e(2,1), A)]
< c(a + e(1,2)) − c(a) + θE[v(0, A) − v(e(2,1), A)]
≤ c(a + e(1,2)) − c(a) + θE[v(e(1,2), A) − v(0, A)]

= Lθv(e(1,2), a) − Lθv(0, a)

where the second inequality is given since v ∈ B. Suppose now that kt (e(1,2)) > 0. Then,

Lθv(0, a) − Lθv(e(2,1), a) = c(a) − c(a + e(2,1)) + θE[v(0, A) − v(e(2,1), A)]
≤ c(a) − c(a + e(2,1))
< c(a + e(1,2)) − c(a)
= c(a + e(1,2)) − c(a) + θE[v(0, A) − v(0, A)]

= Lθv(e(1,2), a) − Lθv(0, a)

where the first inequality is given because v ∈ I(2,1).
• If a = e(1,2). Suppose that kt (2e(1,2)) = 0. Then,

Lθv(0, a) − Lθv(e(2,1), a) = c(a) − c(a + e(2,1)) + θE[v(e(1,2), A) − v(0, A)]
< c(a + e(1,2)) − c(a) + θE[v(e(1,2), A) − v(0, A)]
≤ c(a + e(1,2)) − c(a) + θE[v(2e(1,2), A) − v(e(1,2), A)]

= Lθv(e(1,2), a) − Lθv(0, a)

where the second inequality follows since v ∈ C(1,2). Suppose now that kt (2e(1,2)) > 0 and kt (e(1,2)) = 0. Then,

Lθv(0, a) − Lθv(e(2,1), a) = c(a) − c(a + e(2,1)) + θE[v(e(1,2), A) − v(0, A)]

= c(a) − c(a + e(2,1)) + Lθv(0, a) − Lθ
ua+e(1,2)v(0, a)

≤ c(a) − c(a + e(2,1))
< c(a + e(1,2)) − c(a)
= c(a + e(1,2)) − c(a) + θE[v(e(1,2), A) − v(e(1,2), A)]

= Lθv(e(1,2), a) − Lθv(0, a),

where the first inequality follows since 1 ∈ Ux Finally, suppose that kt (2e(1,2)) > 0 and kt (e(1,2)) > 0. Then,

Lθv(0, a) − Lθv(e(2,1), a) = c(a) − c(a + e(2,1)) + θE[v(0, A) − v(0, A)]
< c(a + e(1,2)) − c(a) + θE[v(0, A) − v(0, A)]

= Lθv(e(1,2), a) − Lθv(0, a).
19
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• If a = e(2,1). Then,

Lθv(0, a) − Lθv(e(2,1), a) = c(a) − c(a + e(2,1)) + θE[v(e(2,1), A) − v(2e(2,1), A)]
≤ c(a) − c(a + e(2,1)) + θE[v(0, A) − v(e(2,1), A)]
< c(a + e(1,2)) − c(a) + θE[v(0, A) − v(e(2,1), A)]

= Lθv(e(1,2), a) − Lθv(0, a)

where the first inequality follows since v ∈ C(2,1). □

D.3.2. Preservation of C(2,1)

Proof. Let a ∈ A and q ∈ Q such that q
s1

≥ q
d1
, x = q + a. We define q = q + e(2,1), x = q + a, q = q + e(2,1)

and x = q + a. Since v is convex in (2, 1), we have v(q, a) − v(q, a) ≤ v(q, a) − v(q, a). We aim to show that
θv(q, a) − Lθv(q, a) ≤ Lθv(q, a) − Lθv(q, a). For y ∈

{
x, x, x

}
, let uy ∈ argminu Lθ

uv(y). From Proposition 2, we can choose
y such that uy = min(yd1 , ys1 )e(1,1) + min(yd2 , ys2 )e(2,2) + kt (y)e(1,2). Let us also define m = x − ux. We can distinguish 2
ases: (a) q

s1
≥ q

d1
+ 1 or a ∈ A \ {e(1,2)} and (b) q

s1
= q

d1
and a = e(1,2):

(a) If q
s1

≥ q
d1

+ 1 or a ∈ A \ {e(1,2)}. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m + e(2,1), A) − v(m, A)]

≤ c(x) − c(x) + θE[v(m + 2e(2,1), A) − v(m + e(2,1), A)]

< c(x) − c(x) + θE[v(m + 2e(2,1), A) − v(m + e(2,1), A)]

= Lθv(q, a) − Lθv(q, a)

where the first inequality is given because v ∈ C(2,1).
(b) If q

s1
= q

d1
and a = e(1,2). Suppose that kt (x) = 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m − e(1,2), A) − v(m, A)]

≤ c(x) − c(x) + θE[v(m − e(1,2) + e(2,1), A) − v(m − e(1,2), A)]

= Lθv(q, a) − Lθv(q, a)

because c is a linear function and v ∈ B. Suppose now that kt (x) > 0. Then,

Lθv(q, a) − Lθv(q, a) = c(x) − c(x) + θE[v(m + e(2,1), A) − v(m, A)]

≤ c(x) − c(x) + θE[v(m + 2e(2,1), A) − v(m + e(2,1), A)]

< c(x) − c(x) + θE[v(m + 2e(2,1), A) − v(m + e(2,1), A)]

= Lθv(q, a) − Lθv(q, a)

where the first equality follows since v ∈ C(2,1). □

Appendix E. Proof of Proposition 3

Proof. Let u∞
t ∈ Π T(1,2) . Let us look at the Markov chain derived from this policy. The set of possible states (except for

Y0) is SA
= {(si, a) : i ∈ N, a ∈ A} with si = (t − i, 0, 0, t − i) if i ≤ t and si = (0, i − t, i − t, 0) otherwise. The si

are all possible states after matching the items using u∞
t . In order to see more clearly the behavior of the Markov chain,

we group together some states. Let us define S = {Si : i ∈ N} with S0 = {(s0, e(1,2)), (s0, e(1,1)), (s0, e(2,2)), (s1, e(1,2))} and
Si = {(si−1, e(2,1)), (si, e(1,1)), (si, e(2,2)), (si+1, e(1,2))} for all i ∈ N∗. Fig. 6 shows that this Markov chain defined on S is
clearly irreducible.

The balance equations are the following:

β(1 − α)πSi = α(1 − β)πSi+1 i = 0, 1, . . .

Solving these equations under the constraint that
∑

∞

i=0 πSi = 1 give:

πSi = ρ i(1 − ρ) i = 0, 1, . . . (13)

with ρ =
β(1−α)
α(1−β) ∈ (0, 1). So (13) is the stationary distribution of the Markov chain on S , which thus is positive recurrent.

sing these results, we can easily conclude that the Markov chain on SA is also irreducible. Then, since the arrival process
20
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Fig. 6. The graph associated to the Markov chain derived from u∞
t and defined on the state space S. pe(1,1) = αβ , pe(2,2) = (1 − α)(1 − β),

pe(1,2) = α(1 − β) and pe(2,1) = β(1 − α).

does not depend on the state and because the following condition must be satisfied πSi = π(si−1,e(2,1))+π(si,e(1,1))+π(si,e(2,2))+

π(si+1,e(1,2)), we can think of the following as the stationary distribution:

π(si,a) = ρ i(1 − ρ)pa (14)

with pa as defined in Fig. 6 (i.e. pe(1,1) = αβ , pe(2,2) = (1− α)(1− β), pe(1,2) = α(1− β) and pe(2,1) = β(1− α)), for all i ∈ N
and a ∈ A. Let us verify that (14) is indeed a stationary distribution:∑

k∈N

∑
a∈A

π(sk,a)p((sk, a), (si, a
′)) = pa′ (π(si−1,e(2,1)) + π(si,e(1,1)) + π(si,e(2,2)) + π(si+1,e(1,2)))

= pa′ (ρ i−1(1 − ρ)pe(2,1) + ρ i(1 − ρ)pe(1,1) + ρ i(1 − ρ)pe(2,2) + ρ i+1(1 − ρ)pe(1,2) )

= pa′ρ i(1 − ρ)(
β(1 − α)

ρ
+ αβ + (1 − α)(1 − β) + ρα(1 − β))

= pa′ρ i(1 − ρ)
= π(si,a′)

ence,
∑

i∈N
∑

a∈A π(si,a) =
∑

i∈N ρ i(1 − ρ)
∑

a∈A pa =
∑

i∈N ρ i(1 − ρ) = 1 and, therefore, (14) is the stationary
istribution of the Markov chain derived from the policy u∞

t and this Markov chain is positive recurrent. Using the
onotone convergence theorem and the strong law of large number for Markov chains, we can compute the average
ost gu∞

t :

gu∞
t (y) = lim

N→∞

1
N

N−1∑
n=0

Eu∞
t

y [c(Y (n))] = Eπ [c(Y )]

where Eπ means the expectation over the stationary distribution π defined as (14). Finally, we compute this value:

Eπ [c(Y )] =

t∑
i=1

∑
a∈A

c(st−i + a)π(st−i,a) +

∑
i∈N

∑
a∈A

c(st+i + a)π(st+i,a)

=

t∑
i=1

((cd1 + cs2 )i + cd1 + cs1 )ρ
t−i(1 − ρ)αβ + ((cd1 + cs2 )i + cd2 + cs1 )ρ

t−i(1 − ρ)(1 − α)β

+ ((cd1 + cs2 )i + cd1 + cs2 )ρ
t−i(1 − ρ)α(1 − β) + ((cd1 + cs2 )i + cd2 + cs2 )ρ

t−i(1 − ρ)(1 − α)(1 − β)

+

∑
i∈N

((cd2 + cs1 )i + cd1 + cs1 )ρ
t+i(1 − ρ)αβ + ((cd2 + cs1 )i + cd2 + cs1 )ρ

t+i(1 − ρ)(1 − α)β

+ ((cd2 + cs1 )i + cd1 + cs2 )ρ
t+i(1 − ρ)α(1 − β) + ((cd2 + cs1 )i + cd2 + cs2 )ρ

t+i(1 − ρ)(1 − α)(1 − β)

=

t∑
i=1

(cd1 + cs2 )iρ
t−i(1 − ρ) + (cd1 + cs1 )ρ

t−i(1 − ρ)αβ + (cd2 + cs1 )ρ
t−i(1 − ρ)(1 − α)β

+ (cd1 + cs2 )ρ
t−i(1 − ρ)α(1 − β) + (cd2 + cs2 )ρ

t−i(1 − ρ)(1 − α)(1 − β)

+

∑
i∈N

(cd2 + cs1 )iρ
t+i(1 − ρ) + (cd2 + cs1 )ρ

t+i(1 − ρ)αβ + (cd2 + cs1 )ρ
t+i(1 − ρ)(1 − α)β

+ (cd2 + cs1 )ρ
t+i(1 − ρ)α(1 − β) + (cd2 + cs2 )ρ

t+i(1 − ρ)(1 − α) (15)

Using basic algebra, one can show that, for any c , the following properties hold:
t∑

c · i · ρt−i
= c

(
t − ρ

1 − ρt

1 − ρ

)
and

∑
c · i · ρt−i

= c
ρt+1

1 − ρ
.

i=1 i∈N
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oreover, for any c and q, we have that

q · c · (1 − ρ)
t∑

i=1

ρt−i
= q · c · (1 − ρt ) and q · c · (1 − ρ)

∑
i∈N

ρt+i
= q · c · ρt .

sing these properties in (15), we obtain that

Eπ [c(Y )] = (cd1 + cs2 )
(
t − ρ

1 − ρt

1 − ρ

)
+ (1 − ρt )((cd1 + cs1 )αβ + (cd1 + cs2 )α(1 − β)

+ (cd2 + cs1 )α(1 − β) + (cd2 + cs2 )(1 − α)(1 − β)) + (cd2 + cs1 )
ρt+1

1 − ρ
+ ρt ((cd1 + cs1 )αβ

+ (cd1 + cs2 )α(1 − β) + (cd2 + cs1 )α(1 − β) + (cd2 + cs2 )(1 − α)(1 − β))

= (cd1 + cs2 )t + (cd1 + cd2 + cs1 + cs2 )
ρt+1

1 − ρ
− (cd1 + cd2 )

ρ

1 − ρ
+ ((cd1 + cs1 )αβ

+ (cd1 + cs2 )α(1 − β) + (cd2 + cs1 )α(1 − β) + (cd2 + cs2 )(1 − α)(1 − β)). (16)

e aim to obtain the value of t that minimizes (16). To this end, we compute the second derivative of (16) with respect
o t and it results in

(cd1 + cd2 + cs1 + cs2 )
ρt+1

1 − ρ
(log ρ)2,

which is positive for ρ ∈ (0, 1), i.e., (16) is convex. As a consequence, the minimum of (16) is achieved when its derivative
with respect to t is equal to zero:

cd1 + cs2 + (cd1 + cd2 + cs1 + cs2 )
ρt+1

1 − ρ
(log ρ) = 0 ⇐⇒ 1 + (1 + R)

ρt+1

1 − ρ
(log ρ) = 0,

here R =
cs1+cd2
cd1+cs2

. The root of the previous equation is

t0 =
1

log ρ
log

(
ρ − 1

(R + 1) log ρ

)
− 1.

Since t0 is not necessarily integer, the optimal threshold t∗ is obtained by computing the value of (16) for the ceil of
t0 and the floor of t0 and choosing the minimum of these values. □

We now show that t∗ is always positive.

emma 10. t∗ is always positive.

roof. From Taylor’s Theorem, it follows that for all ρ ∈ (0, 1)
1 − ρ

(1 + R)log(ρ)
∈

(
0,

1
R + 1

)
.

Since R > 0, we have that for all ρ ∈ (0, 1)

log
(

1 − ρ

(1 + R)log(ρ)

)
< 0.

Hence,

log
(

1−ρ

(1+R)

)
log(ρ)

> 0.

As a result, t∗ is positive since t0 is positive.

Appendix F. Proof of Lemma 4

Let 0 ≤ θ < 1, let π∗
= (u(X(n)))n≥0 (with u ∈ D∗ as defined in Definition 7) be a threshold-type policy with priority

in i∗ and j∗ and let (πN )∗ = (uN (XN (n)))n≥0 (with uN
∈ Dσ as defined in Definition 4) be a threshold-type policy with

priority in (1, 1) and (2, 2). Let y0 = (q0, a0) ∈ Q × A, with yN0 = (pNQ(q0), pNA(a0)).

First, let us note that (πN )∗ is the ‘‘projection’’ of π∗ on GN in the following sense. Let x ∈ Q, u(x) ∈ D∗ the matching
of state x (u(x) ∈ Ux) under the policy π∗ and uN (pNQ(x)) ∈ Dσ the matching of state pNQ(x) (uN (pNQ(x)) ∈ UN

pNQ(x)
)

under the policy (πN )∗. We can easily see that uN
(1,1)(p

N
Q(x)) =

∑
i∈D(j∗) u(i,j∗)(x), uN

(2,2)(p
N
Q(x)) =

∑
j∈S(i∗) u(i∗,j)(x) and

N (pN (x)) =
∑ ∑

u (x).
(1,2) Q i∈D(j∗) j∈S(i∗) (i,j)

22
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(

Then, we are going to prove by induction that for any aN1 ∈ AN , . . . , aNn ∈ AN and any a1 ∈ (pNA)−1(aN1 ), . . . , an ∈

pNA)−1(aNn ), we have pNQ(xn) = xNn .
We already specifically chose xN0 to verify this property: pNQ(x0) = pNQ(q0)+ pNA(a0) = qN0 + aN0 = xN0 . Now, assume that

pNQ(xn−1) = xNn−1. Then,

pNQ(qn) =

⎛⎝ ∑
i∈D(j∗)

(qn)di , (qn)di∗ , (qn)sj∗ ,
∑

j∈S(i∗)

(qn)sj

⎞⎠
=

⎛⎝ ∑
i∈D(j∗)

(xn−1 − u(xn−1))di , (xn−1 − u(xn−1))di∗ ,

(xn−1 − u(xn−1))sj∗ ,
∑

j∈S(i∗)

(xn−1 − u(xn−1))sj

⎞⎠
=

⎛⎝ ∑
i∈D(j∗)

(xn−1)di −
∑
j∈S(i)

u(xn−1)(i,j),

(xn−1)di∗ −

∑
j∈S(i∗)

u(xn−1)(i∗,j), (xn−1)sj∗ −

∑
i∈D(j∗)

u(xn−1)(i,j∗),

∑
j∈S(i∗)

(xn−1)sj −
∑
i∈D(j)

u(xn−1)(i,j)

⎞⎠
= pNQ(xn−1) −

∑
i∈D(j∗)

u(xn−1)(i,j∗)e(1,1) −

∑
j∈S(i∗)

u(xn−1)(i∗,j)e(2,2)

−

∑
i∈D(j∗)

∑
j∈S(i∗)

u(xn−1)(i,j)e(1,2)

= pNQ(xn−1) − uN (pNQ(xn−1))(1,1)e(1,1) − uN (pNQ(xn−1))(2,2)e(2,2)

− uN (pNQ(xn−1))(1,2)e(1,2)

= pNQ(xn−1) − uN (pNQ(xn−1))

= xNn−1 − uN (xNn−1)

= qNn

and pNA(an) = aNn (because pNA((pNA)−1(aN )) = aN for all aN ∈ AN ). Thus, pNQ(xn) = pNQ(qn)+pNA(an) = qNn + aNn = xNn . Finally,
using this property and (5), we have

Eπ∗

y0 [c(Y (n))] =

∑
a1∈A,...,an∈A

c(xn)
n∏

k=1

P(A = ak)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
a1∈(pNA)−1(aN1 )

· · ·

∑
an∈(pNA)−1(aNn )

c(xn)
n∏

k=1

P(A = ak)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
a1∈(pNA)−1(aN1 )

· · ·

∑
an∈(pNA)−1(aNn )

cN (pNQ(xn))
n∏

k=1

P(A = ak)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
a1∈(pNA)−1(aN1 )

· · ·

∑
an∈(pNA)−1(aNn )

cN (xNn )
n∏

k=1

P(A = ak)

=

∑
N N N N

cN (xNn )
n∏

k=1

∑
N −1 N

P(A = ak)

a1 ∈A ,...,an ∈A ak∈(pA) (ak )
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y

A

P
c
o
A

(

=

∑
aN1 ∈AN ,...,aNn ∈AN

cN (xNn )
n∏

k=1

P(AN
= aNk )

= E(πN )∗

yN0
[cN (YN (n))].

This equality is true for any n ∈ N. Therefore, vπ∗

θ (y0) = v
(πN )∗
θ (yN0 ) and gπ∗

(y0) = g (πN )∗ (yN0 ). This was done for any
0 = (q0, a0) ∈ Q × A with yN0 = (pNQ(q0), pNA(a0)), giving the final result.

ppendix G. Proof of Lemma 5

roof. Let 0 ≤ θ < 1, let π be a stationary policy on Y , y0 = (q0, a0) ∈ Q × A and yN0 = (pNQ(q0), pNA(a0)). We start by
onstructing a history dependent policy πN

= (uN
n )n≥0 on YN that will make YN ‘‘follow’’ (in some sense) the projection

f Y on GN . First, let us introduce new independent random variables Â(n) that we sample just after the arrivals on GN .
ˆ (n) is defined on A with the following distribution: ∀n ∈ N∗, ∀a ∈ A, ∀aN ∈ AN ,

P(Â(n) = a|AN (n) = aN ) =

{ P(A(n)=a)
P(AN (n)=aN )

if a ∈ (pNA)−1(aN )
0 Otherwise

.

Then, we define uN
n the decision rule of πN at time n based on the history of the trajectory, i.e.

(AN (1), Â(1), . . . , AN (n), Â(n)) = (aN1 , âN1 , . . . , aNn , âNn ),

the initial state y0 = (q0, a0) and the stationary policy π . Let x̂n ∈ Q be the state we end up by starting in x0 = q0 + a0
and following the dynamics (2) with the sequence of arrivals âN1 , . . . , âNn and under the policy π . Let u ∈ Ux̂n be the
decision rule applied for the state x̂n under the policy π . We construct uN

n ∈ UpNQ(x̂n) such that (uN
n )(1,1) =

∑
i∈D(j∗) u(i,j∗),

uN
n )(2,2) =

∑
j∈S(i∗) u(i∗,j) and (uN

n )(1,2) =
∑

i∈D(j∗)
∑

j∈S(i∗) u(i,j).

Now, let us show by induction that, under πN , we have pNQ(xn) = xNn for any aN1 ∈ AN , . . . , aNn ∈ AN and any
â1 ∈ (pNA)−1(aN1 ), . . . , ân ∈ (pNA)−1(aNn ) such that â1 = a1, . . . , ân = an.

We already specifically chose yN0 to verify this property: pNQ(x0) = pNQ(q0)+ pNA(a0) = qN0 + aN0 = xN0 . Now, assume that
pNQ(xn−1) = xNn−1. First, let us note that xn−1 = x̂n−1 because â1 = a1, . . . , ân−1 = an−1 and they both follow the same
dynamics under the same policy π . Then,

pNQ(qn) =

⎛⎝ ∑
i∈D(j∗)

(qn)di , (qn)di∗ , (qn)sj∗ ,
∑

j∈S(i∗)

(qn)sj

⎞⎠
=

⎛⎝ ∑
i∈D(j∗)

(xn−1 − u(xn−1))di , (xn−1 − u(xn−1))di∗

, (xn−1 − u(xn−1))sj∗ ,
∑

j∈S(i∗)

(xn−1 − u(xn−1))sj

⎞⎠
=

⎛⎝ ∑
i∈D(j∗)

(xn−1)di −
∑
j∈S(i)

u(xn−1)(i,j),

(xn−1)di∗ −

∑
j∈S(i∗)

u(xn−1)(i∗,j), (xn−1)sj∗ −

∑
i∈D(j∗)

u(xn−1)(i,j∗),

∑
j∈S(i∗)

(xn−1)sj −
∑
i∈D(j)

u(xn−1)(i,j)

⎞⎠
= pNQ(xn−1) −

∑
i∈D(j∗)

u(xn−1)(i,j∗)e(1,1) −

∑
j∈S(i∗)

u(xn−1)(i∗,j)e(2,2)

−

∑ ∑
u(xn−1)(i,j)e(1,2)
i∈D(j∗) j∈S(i∗)
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T

A

t

d

W

t
w
p

= pNQ(xn−1) −

∑
i∈D(j∗)

u(x̂n−1)(i,j∗)e(1,1) −

∑
j∈S(i∗)

u(x̂n−1)(i∗,j)e(2,2)

−

∑
i∈D(j∗)

∑
j∈S(i∗)

u(x̂n−1)(i,j)e(1,2)

= pNQ(xn−1) − (uN
n )(1,1)e(1,1) − (uN

n )(2,2)e(2,2) − (uN
n )(1,2)e(1,2)

= xNn−1 − uN
n

= qNn
and pNA(an) = aNn (because pNA((pNA)−1(aN )) = aN for all aN ∈ AN ). Thus, pNQ(xn) = pNQ(qn) + pNA(an) = qNn + aNn = xNn .

Then, using this property and (5), we have

Eπ
y0 [c(Y (n))] =

∑
a1∈A,...,an∈A

c(xn)
n∏

k=1

P(A(k) = ak)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
a1∈(pNA)−1(aN1 )

· · ·

∑
an∈(pNA)−1(aNn )

c(xn)
n∏

k=1

P(A(k) = ak)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
a1∈(pNA)−1(aN1 )

· · ·

∑
an∈(pNA)−1(aNn )

cN (pNQ(xn))
n∏

k=1

P(A(k) = ak)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
â1∈(pNA)−1(aN1 )

· · ·

∑
ân∈(pNA)−1(aNn )

cN (xNn )
n∏

k=1

P(A(k) = âk)

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
â1∈(pNA)−1(aN1 )

· · ·

∑
ân∈(pNA)−1(aNn )

cN (xNn )
n∏

k=1

P(Â(k) = âk|AN (k) = aNk )P(A
N (k) = aNk )

=

∑
aN1 ∈AN ,...,aNn ∈AN

∑
â1∈(pNA)−1(aN1 )

· · ·

∑
ân∈(pNA)−1(aNn )

cN (xNn )
n∏

k=1

P(AN (k) = aNk , Â(k) = âk)

= EπN

yN0
[cN (YN (n))].

his equality is true for any n ∈ N. Therefore, vπ
θ (y0) = vπN

θ (yN0 ) and gπ (y0) = gπN
(yN0 ). □

ppendix H. Proof of Proposition 4

Let q ∈ Q, a ∈ A, x = q+a and u ∈ Ux. We define x(i,j) = min(xdi , xsj ) for all (i, j) ∈ E to ease the notations. We assume
hat the matching graph has m pendant edges, i.e., E∗

= {(i1, j1), (i2, j2), . . . , (im, jm)}. For k = 1, . . . ,m, we define

pk = min(x(ik,jk) − u(ik,jk),
∑

(i,j)∈N((ik,jk))

u(i,j)).

We now observe that, for all (i, j) ∈ N((ik, jk)), we define 0 ≤ pi,j ≤ u(i,j) such that pk =
∑

(i,j)∈N((ik,jk))
pi,j. Hence, we

efine

u′
= u +

m∑
k=1

⎛⎝pke(ik,jk) −

∑
(i,j)∈N((ik,jk))

pi,je(i,j)

⎞⎠ .

e assume that u′
∈ Ux. Since v ∈ V σ , it follows that

Lθ
u′v(q, a) ≤ Lθ

uv(q, a). (17)

We now define mk = x(ik,jk) − u′

(ik,jk)
for all k = 1, . . . ,m and u∗

= u′
+

∑m
k=1 mke(ik,jk). We assume that u∗

∈ Ux. Using
hat v ∈ V σ , we have that Lθ

u∗v(q, a) ≤ Lθ
u′v(q, a), and, taking into account (17), it follows that Lθ

u∗v(q, a) ≤ Lθ
uv(q, a),

hich holds for any u ∈ Ux and therefore also for u ∈ argmin Lθv(q, a). As a result, u∗
∈ argmin Lθv(q, a). Besides, for any

endant edge (ik, jk), we have that

u∗

(ik,jk) = u′

(ik,jk) + x(ik,jk) − u′

(ik,jk) = x(ik,jk),

and the desired result follows if we show that u′
∈ U and u∗

∈ U .
x x
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• We aim to show that u′
∈ Ux. To prove this, we only need to show that, for any u ∈ Ux and any k ∈ {1, . . . ,m},

u0 ∈ Ux where

u0 = u + pke(ik,jk) −

∑
(i,j)∈N((ik,jk))

pi,je(i,j).

We start by showing that u0 ∈ NnD+nS . First, (u0)(ik,jk) ≥ 0 because u ∈ Ux and pk ≥ 0. Then, for all (i, j) ∈ N((ik, jk)),
we have u(i,j) ≥ pi,j by definition. Thus, it follows that (u0)(i,j) ≥ 0.
Now, we show (a) and (b) assuming that dik is of degree one (the proof for the case that sjk is of degree one is
symmetric and therefore we omitted it). We first show (a) for dik as follows:

(u0)(ik,jk) = u(ik,jk) + pk ≤ x(ik,jk) ≤ xdik
where the first inequality holds by definition of pk and the second by definition of x(ik,jk). We also show (a) for all
i ∈ D(jk) as follows:∑

r∈S(i)

(u0)(i,r) = (u0)(i,jk) +

∑
r∈S(i)\{jk}

(u0)(i,r)

= u(i,jk) − pi,jk +

∑
r∈S(i)\{jk}

u(i,r)

≤

∑
r∈S(i)

u(i,r)

≤ xdi ,

where the first inequality holds since pi,jk ≥ 0 and the second since u ∈ Ux.
We now show (b) for jk as follows:∑

r∈D(jk)

(u0)(r,jk) =

∑
r∈D(jk)

u(r,jk) ≤ xsjk ,

where the inequality holds since u ∈ Ux.
• We now aim to show that u∗

∈ Ux and we observe that it is enough to show that, for any k ∈ {1, . . . ,m},
u′

0 = u′
+ mke(ik,jk) ∈ Ux.

We first observe that, if mk = 0, then u0 = u′ and therefore u′

0 ∈ Ux. Therefore, we now consider than mk > 0. For
this case,

mk > 0 ⇐⇒ x(ik,jk) > u′

(ik,jk) = u(ik,jk) + pk.

We observe that pk = x(ik,jk) −u(ik,jk) cannot be given since the above expression gives a contradiction. Therefore, we
have that
pk =

∑
(i,j)∈N((ik,jk))

u(i,j). For this case, pi,j = u(i,j) for all (i, j) ∈ N((ik, jk)) and therefore

u′

(i,j) = 0. (18)

First, we have u′

0 ∈ NnD+nS because mk ≥ 0 and u′
∈ Ux. Then, we show (a) and (b) assuming that dik is of degree

one (the proof for the case that sjk is of degree one is symmetric and therefore we omitted it). We first show (a) for
ik as follows:

(u′

0)(ik,jk) = u′

(ik,jk) + mk = x(ik,jk) ≤ xdik .

Finally, we show (b) for jk as follows:∑
r∈D(jk)

(u′

0)(r,jk) = (u′

0)(ik,jk) +

∑
r∈D(jk)\{ik}

(u′

0)(r,jk)

= (u′

0)(ik,jk) +

∑
r∈D(jk)\{ik}

(u′)(r,jk)

= (u′

0)(ik,jk)

= x(ik,jk)

≤ xsjk ,

where the third equality holds by (18).
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ppendix I. Lemma 7

Let (i1, j1) ∈ E∗ and (i2, j2) ∈ N((i1, j1)). We consider that i1 = i2 (the case j1 = j2 is symmetric and therefore it can be
roven analogously). Let a ∈ A, q ∈ Q such that q

j2
≥ 1 and let x = q+ a. We define q = q+ e(i1,j1) − e(i2,j2) and x = q+ a.

ince v ∈ U(i,j), we know that v(q, a) ≥ v(q, a). We aim to show that Lθv(q, a) ≥ Lθv(q, a).
Let ux ∈ argminu∈Ux L

θ
uv(q, a), using Proposition 4, we can choose ux such that (ux)(i1,j1) = min(xdi1 , xsj1 ). Consider that

xdi1 ≥ 1, then (ux)(i1,j1) ≥ 1 because xj1 = xj1 + 1 ≥ 1. We define ux = ux + e(i2,j2) − e(i1,j1). We know that ux ∈ Ux since

0 ≤ (ux)(i1,j1) − 1 ≤ xsj1 − 1 = xsj1
,
∑

r∈D(j2)
(ux)(r,j2) =

(∑
r∈D(j2)

(ux)(r,j2)
)

+ 1 ≤ xsj2 + 1 = xsj2
and ux ∈ Ux. Besides,

x − ux = x − ux and the desired result follows since

Lθv(q, a) ≤ Lθ
uxv(q, a)

= c(x) + θE[v(x − ux, A)]

= c(x) + θE[v(x − ux, A)]

= c(x) − c(x) + Lθv(q, A)

< Lθv(q, A),

where the first inequality follows since ux ∈ Ux and the last one since c(x) > c(x). We now consider that xdi1 = 0, then
we cannot match more items in x than we could do in x, i.e. ux ∈ Ux. Indeed, we have (ux)(i1,j1) ≤ xdi1 = 0 ≤ xsj1

and∑
r∈D(j2)

(ux)(r,j2) ≤ xsj2 ≤ xsj2
. Therefore,

Lθv(q, a) ≤ Lθ
ux

v(q, a)

= c(x) + θE[v(x − ux, A)]

≤ c(x) + θE[v(x − ux, A)]

< c(x) + θE[v(x − ux, A)]

= Lθv(q, A),

where the first inequality follows since ux ∈ Ux, the second one since v ∈ V σ and the last one since c(x) > c(x).

ppendix J. Proof of Proposition 5

roof. Let a ∈ A, q ∈ Q, x = q+ a and u ∈ Ux. First of all, we need to introduce some notations. Let m(1,1) = min(xs1 , xd1 )
(resp. m(3,2) = min(xs2 , xd3 )) be the maximal number of matchings that can be done in (1, 1) (resp. in (3, 2)). Let

Kx =

{
{0} if xs1 ≤ xd1
{0, . . . ,min(xs1 − xd1 , xd2 )} else

be the set of possible matchings in (2, 1) after matching all the items in (1, 1) and in (3, 2). Let

Jx =

{
{0} if xs2 ≤ xd3
{0, . . . ,min(xs2 − xd3 , xd2 )} else

be the set of possible matchings in (2, 2) after matching all the items in (1, 1) and in (3, 2).
We now remark that Kx does not depend on the number of matchings in (2, 2). Indeed, if xs1 ≥ xd1 and xs2 ≥ xd3 , then

xd2 = xs1 − xd1 + xs2 − xd3 because x ∈ Q, thus min(xs1 − xd1 , xd2 ) = xs1 − xd1 which cannot be modified by any matching
in (2, 2). If xs1 ≥ xd1 and xs2 ≤ xd3 , then Jx = {0}, i.e., we cannot match items in (2, 2). If xs1 ≤ xd1 , then Kx = {0}, i.e., we
cannot match items in (2, 1) and this cannot be changed with matchings in (2, 2). A symmetric argument can be use to
show that Jx does not depend on the number of matchings in (2, 1).

Since v ∈ I(1,1) ∩ I(3,2) ∩ U(1,1) ∩ U(3,2), we can use Proposition 4: ∃u′
∈ Ux such that Lθ

u′v(q, a) ≤ Lθ
uv(q, a) and

u′
= m(1,1)e(1,1) + m(3,2)e(3,2) + ke(2,1) + je(2,2) with k ∈ Kx and j ∈ Jx. Therefore, the desired result follows if we prove that

there exist t(2,1) ∈ N ∪ ∞ and t(2,2) ∈ N ∪ ∞ such that

Lθ
u∗v(x) ≤ Lθ

u′v(x), ∀k ∈ Kx, ∀j ∈ Jx (19)

where u∗ is defined as in Definition 11. Let us first define the threshold in (2, 1) as t(2,1) = min{k ∈ N : E[v((k +

1)e(2,1), A) − v(ke(2,1), A)] ≥ 0} and the threshold in (2, 2) as t(2,2) = min{j ∈ N : E[v((j + 1)e(2,2), A) − v(je(2,2), A)] ≥ 0}
(with the convention that min{∅} = ∞). Then, given x, there are four cases:

1. x = x and x = x . In that case K = {0} and J = {0}, k = 0 and j = 0. Thus we have u∗
= u′.
s1 d1 s2 d3 x x t(2,1) t(2,2)
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2. xs1 > xd1 and xs2 > xd3 . In that case, we have xd2 = xs1 − xd1 + xs2 − xd3 . So the number of matchings in (2, 1)
((2, 2)) for u∗ is exactly kt(2,1) (jt(2,2) ). We define u2

= u′
− (k − kt(2,1) (x))e(2,1). Suppose that k < kt(2,1) (x) (this is only

possible if kt(2,1) (x) = xs1 − xd1 − t(2,1) > 0), then by definition of t(2,1) and convexity in (2, 1) (v ∈ C(2,1)) we have:
∀p ∈ {0, . . . , xs1 − xd1 − k − t(2,1) − 1},

E[v((t(2,1) + p + 1)e(2,1), A) − v((t(2,1) + p)e(2,1), A)] ≥ 0

⇐⇒ Lθ

u2−(p+1)e(2,1)−(j−xs2+xd3 )e(2,2)
v(q, a) − Lθ

u2−pe(2,1)−(j−xs2+xd3 )e(2,2)
v(q, a) ≥ 0

⇐⇒ Lθ

u2−(p+1)e(2,1)
v(q, a) − Lθ

u2−pe(2,1)
v(q, a) ≥ 0

because v ∈ M(2,1),(2,2). This means that

Lθ
u′v(q, a) ≥ Lθ

u′+e(2,1)
v(q, a) ≥ · · · ≥ Lθ

u2v(q, a)

Suppose now that k > kt(2,1) (x) (this is only possible if t(2,1) > 0), then by definition of t(2,1) and convexity in (2, 1)
(v ∈ C(2,1)) we have: ∀p ∈ {0, . . . ,min{xs1 − xd1 , t(2,1)} − xs1 + xd1 + k − 1},

E[v((min{xs1 − xd1 , t(2,1)} − p)e(2,1), A) − v((min{xs1 − xd1 , t(2,1)} − p − 1)e(2,1), A)] ≤ 0

⇐⇒ Lθ

u2+pe(2,1)−(j−xs2+xd3 )e(2,2)
v(q, a) − Lθ

u2+(p+1)e(2,1)−(j−xs2+xd3 )e(2,2)
v(q, a) ≤ 0

⇐⇒ Lθ

u2+pe(2,1)
v(q, a) − Lθ

u2+(p+1)e(2,1)
v(q, a) ≤ 0

because v ∈ M(2,1),(2,2) which means that

Lθ

u2v(q, a) ≤ · · · ≤ Lθ
u′−e(2,1)

v(q, a) ≤ Lθ
u′v(q, a)

Thus, we showed that Lθ

u2
v(x) ≤ Lθ

u′v(x) for any k ∈ Kx and any j ∈ Jx. Now, let us compare u2 and u∗. We can do
a similar proof as we just did but with (2, 2) instead of (2, 1). Suppose that j < jt(2,2) (x) (this is only possible
if jt(2,2) (x) = xs2 − xd3 − t(2,2) > 0), then by definition of t(2,2) and convexity in (2, 2) (v ∈ C(2,2)) we have:
∀p ∈ {0, . . . , xs2 − xd3 − j − t(2,2) − 1},

E[v((t(2,2) + p + 1)e(2,2), A) − v((t(2,2) + p)e(2,2), A)] ≥ 0

⇐⇒ Lθ
u∗−(p+1)e(2,2)−kt(2,1) e(2,1)

v(q, a) − Lθ
u∗−pe(2,2)−kt(2,1) e(2,1)

v(q, a) ≥ 0

⇐⇒ Lθ
u∗−(p+1)e(2,2)v(q, a) − Lθ

u∗−pe(2,2)v(q, a) ≥ 0

because v ∈ M(2,1),(2,2). This means that

Lθ

u2v(q, a) ≥ Lθ

u2+e(2,2)
v(q, a) ≥ · · · ≥ Lθ

u∗v(q, a)

Suppose now that j > jt(2,2) (x) (this is only possible if t(2,2) > 0), then by definition of t(2,2) and convexity in (2, 2)
(v ∈ C(2,2)) we have: ∀p ∈ {0, . . . ,min{xs2 − xd3 , t(2,2)} − xs2 + xd3 + j − 1},

E[v((min{xs2 − xd3 , t(2,2)} − p)e(2,2), A) − v((min{xs2 − xd3 , t(2,2)} − p − 1)e(2,2), A)] ≤ 0

⇐⇒ Lθ
u∗+pe(2,2)−kt(2,1) e(2,1)

v(q, a) − Lθ
u∗+(p+1)e(2,2)−kt(2,1) e(2,1)

v(q, a) ≤ 0

⇐⇒ Lθ
u∗+pe(2,2)v(q, a) − Lθ

u∗+(p+1)e(2,2)v(q, a) ≤ 0

because v ∈ M(2,1),(2,2) which means that

Lθ
u∗v(q, a) ≤ · · · ≤ Lθ

u2−e(2,2)
v(q, a) ≤ Lθ

u2v(q, a)

Thus, we showed that Lθ
u∗v(q, a) ≤ Lθ

u2
v(q, a) ≤ Lθ

u′v(q, a) for any k ∈ Kx and any j ∈ Jx.
3. xs1 ≥ xd1 and xs2 ≤ xd3 . In that case, we have Jx = {0} and jt(2,2) = 0. If xs1 = xd1 , then Kx = {0} and

kt(2,1) = 0. Thus, we have u∗
= u′. Otherwise, suppose that k < min{kt(2,1) (x), xd2} (this is only possible if

kt(2,1) (x) = xs1 − xd1 − t(2,1) > 0 and xd2 > 0), then by definition of t(2,1) and because v ∈ C(2,1) ∩ H(2,1),(3,1),
we have: ∀p ∈ {0, . . . , xd2 − k − max{t(2,1) − xd3 + xs2 , 0} − 1},

E[v((max{t(2,1), xd3 − xs2} + p + 1)e(2,1), A) − v((max{t(2,1), xd3 − xs2} + p)e(2,1), A)] ≥ 0

⇐⇒ E[v((max{t(2,1) − xd3 + xs2 , 0} + p + 1)e(2,1) + (xd3 − xs2 )e(3,1), A)

− v((max{t(2,1) − xd3 + xs2 , 0} + p)e(2,1) + (xd3 − xs2 )e(3,1), A)] ≥ 0

⇐⇒ Lθ
u∗−(p+1)e(2,1)v(q, a) − Lθ

u∗−pe(2,1)v(q, a) ≥ 0
28
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which means that

Lθ
u′v(q, a) ≥ Lθ

u′+e(2,1)
v(q, a) ≥ · · · ≥ Lθ

u∗v(q, a)

Suppose now that k > min{kt(2,1) (x), xd2} (this is only possible if kt(2,1) (x) < xd2 ), then by definition of t(2,1) and
because v ∈ C(2,1) ∩ H(2,1),(3,1), we have: ∀p ∈ {0, . . . ,min{xd2 , t(2,1) − xd3 + xs2} − xd2 + k − 1},

E[v((min{xs1 − xd1 , t(2,1)} − p)e(2,1), A) − v((min{xs1 − xd1 , t(2,1)} − p − 1)e(2,1), A)] ≤ 0

⇐⇒ E[v((min{xd2 , t(2,1) − xd3 + xs2} − p)e(2,1) + (xd3 − xs2 )e(3,1), A)

− v((min{xd2 , t(2,1) − xd3 + xs2} − p − 1)e(2,1) + (xd3 − xs2 )e(3,1), A)] ≤ 0

⇐⇒ Lθ
u∗+pe(2,1)v(q, a) − Lθ

u∗+(p+1)e(2,1)v(q, a) ≤ 0

which means that

Lθ
u∗v(q, a) ≤ · · · ≤ Lθ

u′−e(2,1)
v(q, a) ≤ Lθ

u′v(q, a)

Thus, we showed that Lθ
u∗v(q, a) ≤ Lθ

u′v(q, a) for any k ∈ Kx and any j ∈ Jx.
4. xs1 ≤ xd1 and xs2 ≥ xd3 . In that case, we have Kx = {0} and kt(2,1) = 0. If xs2 = xd3 , then Jx = {0} and

jt(2,2) = 0. Thus, we have u∗
= u′. Otherwise, suppose that j < min{jt(2,2) (x), xd2} (this is only possible if

jt(2,2) (x) = xs2 − xd3 − t(2,2) > 0 and xd2 > 0), then by definition of t(2,2) and because v ∈ C(2,2) ∩ H(2,2),(1,2), we
have: ∀p ∈ {0, . . . , xd2 − j − max{t(2,2) − xd1 + xs1 , 0} − 1},

E[v((max{t(2,2), xd1 − xs1} + p + 1)e(2,2), A) − v((max{t(2,2), xd1 − xs1} + p)e(2,2), A)] ≥ 0

⇐⇒ E[v((max{t(2,2) − xd1 + xs1 , 0} + p + 1)e(2,2) + (xd1 − xs1 )e(1,2), A)

− v((max{t(2,2) − xd1 + xs1 , 0} + p)e(2,2) + (xd1 − xs1 )e(1,2), A)] ≥ 0

⇐⇒ Lθ
u∗−(p+1)e(2,2)v(q, a) − Lθ

u∗−pe(2,2)v(q, a) ≥ 0

which means that

Lθ
u′v(q, a) ≥ Lθ

u′+e(2,2)
v(q, a) ≥ · · · ≥ Lθ

u∗v(q, a)

Suppose now that j > min{jt(2,2) (x), xd2} (this is only possible if
jt(2,2) (x) < xd2 ), then by definition of t(2,2) and because v ∈ C(2,2) ∩H(2,2),(1,2), we have: ∀p ∈ {0, . . . ,min{xd2 , t(2,2) −
xd1 + xs1} − xd2 + j − 1},

E[v((min{xs2 − xd3 , t(2,2)} − p)e(2,2), A) − v((min{xs2 − xd3 , t(2,2)} − p − 1)e(2,2), A)] ≤ 0

⇐⇒ E[v((min{xd2 , t(2,2) − xd1 + xs1} − p)e(2,2) + (xd1 − xs1 )e(1,2), A)

− v((min{xd2 , t(2,2) − xd1 + xs1} − p − 1)e(2,2) + (xd1 − xs1 )e(1,2), A)] ≤ 0

⇐⇒ Lθ
u∗+pe(2,2)v(q, a) − Lθ

u∗+(p+1)e(2,2)v(q, a) ≤ 0

which means that Lθ
u∗v(q, a) ≤ · · · ≤ Lθ

u′−e(2,2)
v(q, a) ≤ Lθ

u′v(q, a). Thus, we showed that Lθ
u∗v(q, a) ≤ Lθ

u′v(q, a) for
any k ∈ Kx and any j ∈ Jx. □
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